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Abstract 

We consider the computation of the mean of sequences in the 
quantum model of computation. We determine the query complex
ity in the case of sequences which satisfy a p-summability condition 
for 1 'S p < 2. This settles a problem left open in Heinrich (2001). 

1 lntroduction 

Computation of the mean of sequences and, equivalently, summation of se
quences, is an important numerical ta.sk, in particular for huge number of 
summands occurring in many numerical applications such as, e.g., high di
mensional integration. The larger the number of summands ( the larger the 
dimension) , the less these problems are tractable on a classical computer. 
lt is therefore an interesting and challenging task to understand to which 
extent a quantum computer could bring speed-ups. First results for the 
summation of bounded sequences are due to Grover (1998), Nayak and Wu 
(1999), Brassard, H0yer, Mosca, and Tapp (2000). The case of sequences 
satisfying a p-summability condition, which arises in various problems like 
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integration of functions from Lp and Sobolev classes, was studied in Hein
rich (2001). Up to logarithmic factors for p = 2, in the case 2 ~ p < oo the 
query complexity of the summation problem was determined. For the case 
1 ~ p < 2, matching upper and lower bounds were obtained only under an 
additional restriction. The bounds for the remaining case did not match. 
In this paper we settle this problem and determine the query complexity in 
the full range of parameters. 

Applications of our results to the quantum complexity of integration of 
functions from Sobolev classes are given in Heinrich (2001a). The use of 
quantum summation for integration was first pointed out by Abrams and 
Williams (1999). The quantum complexity of integration was studied in 
Novak (2001), later in Heinrich (2001) and Heinrich and Novak (2001). Path 
integration is discussed in Traub and Woiniakowski (2001). Furthermore, 
we refer to the surveys Ekert, Hayden, and Inamori (2000), Shor (2000), 
and to the monographs Pittenger (1999), Gruska (1999) and Nielsen and 
Chuang (2000) for general reading on quantum computation. 

Our analysis is based on the framework introduced in Heinrich (2001) 
of quantum algorithms for the approximate solution of problems of analy
sis. This approach is an extension of the framework of information-based 
complexity theory (see Traub, Wasilkowski, and Wozniakowski, 1988, No
vak, 1988, and, more formally, Novak, 1995) to quantum computation. lt 
also extends the binary black box model of quantum computation (see, e.g., 
Beats , Buhrman, Cleve, and Mosca, 1998) to situations where mappings 
from spaces of functions to the scalar field (such as the mean or the inte
gral) have to be computed. Let us recall the main notions here. For more 
details and background discussion we refer to Heinrich (2001). 

Let D, K be nonempty sets, let F(D, K) denote the set of all functions 
from D to K, and let F S: F(D , K) be a nonempty subset. Let K , the 
scalar field, be either R or C , the field of real or complex numbers, let G 
be a normed space over K , and let S : F -+ G be a mapping. We seek to 
approximate S(J) for f E F by means of quantum computations. Let H 1 

be the two-dimensional complex Hilbert space C 2 , with its unit vector basis 
{eo,ei}, let 

Hm =Hi 0·· · 0H1 

be the tensor product of m copies of H 1, endowed with the tensor Hilbert 
space structure. The following notation is convenient : 

Z[O, N) := {O, ... , N - 1} 

for NE N (as usual, N = {1, 2, ... } and No =NU {O} ). Let Cm= {\i) : i E 
Z[O, 2m)} be the canonical basis of Hm, where \i) stands for ej0 0 · · · 0 eim-1' 
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i = 2:~01 Jk2m-l-k the binary expansion of i. Denote the set of unitary 
Operators on Hm by U(Hm)· 

A quantum query on F is given by a tuple 

Q=(m,m',m",Z,T,ß), (1) 

where m,m',m" E N ,m' + m"::; m,Z ~ Z[o,2m') is a nonempty subset, 
and 

T:Z-tD 

ß: K-+ Z[O, 2m") 

are arbitrary mappings. Denote m( Q) := m, the number of qubits of Q. 
Given such a query Q, we define for each f E F the unitary operator Qt 

by setting for li) lx) IY) E Cm = Cm' @ Cm11 @ Cm-m'-m": 

Q 1
.)

1 
)I )={ li)lxEBß(j(T(i)))) ly) 

t i x y li) lx) IY) 

where EB means addition modulo 2m". 

if i E Z 
otherwise, 

A quantum algorithm on F with no measurement is a tuple 

(2) 

where Q is a quantum query on F, n E N o and Uj E U(Hm) (j = 0, ... , n), 
with m = m(Q). Given f E F , we let At E U(Hm) be defined as 

(3) 

We denote by nq(A) := n the number of queries and by m(A) = m = m(Q) 
the number of qubits of A. Let (At(x,y))x,yEZ[o ,2 m) be the matrix of the 
transformation At in the canonical basis Cm. 

A quantum algorithm on F with output in G (or shortly, from F to G) 
with k measurements is a tuple 

A = ((Ae)~~J, (be)~~J,(f)), 

where k E N , and Ae (f = 0, .. . , k - 1) are quantum algorithms on F with 
no measurements, 

bo E Z[0,2m0
), 

for 1 ::; f ::; k - 1, be is a function 

e-1 
be: rrz[o,2m;)-+ Z[0,2me), 

i=O 
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where we denoted me := m(Ae), and cp is a function with values in G 

k-1 

cp: IJ Z[O, 2me) -7 G. 
e=O 

The output of A at input f E F will be a probability measure A(f) on G, 
defined as follows: First put 

P.-1,1(xo, ... , .-r:k_i) = IA0,1(xo, bo)l 2 IA1,1(x1, bi (xo))l 2 
... 

. . . 1Ak-1,J(Xk- 1, bk -1(xo, ... ,Xk-2))12. (4) 

Then define A(f) by setting for any subset C ~ G 

A(J)(C) = PA,1(xo, ... , Xk-1). (5) 
cp(xo„.„Xk- 1 )EC 

By nq(A) := I:;~~J nq( Ae) we denote the number of queries used by A. 
Informally, such an algorithm A starts with a fixed basis state b0 and, 

at input f , applies in an alternating way unitary transformations Uoj (not 
depending on f) and the operator Q f of a certain query. After a fixed 
number of steps the resulting state is measured, which gives a (random) 
basis state, say fo. This state is memorized and then transformed (e.g. , by 
a classical computation, which is symbolized by b1 ) into a new basis state 
bi(fo) . This is the starting state to which the next sequence of quantum 
operations is applied (with possibly another query and number of qubits). 
The resulting state is again measured , which gives the (random) bas is state 
~ 1 . This state is memorized, h(fo,~1) is computed (classically), and so 
on. After k such cycles, we obtain fo , ... , ~k - I · Then finally an element 
of G is computed ( e.g., again on a classical computer) from the results 
of all measurements: cp(fo, .. . , ~k-d ·. The probability measure A(J) is its 
distribution. For details, see Heinrich (2001). 

The error of A is defined as follows: Let 0 ::; e < 1, f E F , and let ( be 
any random variable with distribution A(f). Then put 

e(S, A, f , B) = inf {c: I P{ llS(f) - (II > c:}::; B} . 

Associated with this we introduce 

e(S, A, F, B) = sup e(S, A, J, B), 
f EF 

e(S, A , f) = e(S, A, J, 1/4), 

4 



and 
e(S, A, F) = e(S, A, F, 1/4). 

The n-th minimal query error is defined for n E No as 

e~(S,F) = inf{ e(S,A, F) 1 Ais any quantum algorithm with nq(A):::; n} . 

This is the minimal error which can be reached using at most n queries. The 
query complexity is defined for E > 0 by 

comp~(S, F) = 

min{nq(A) 1 Ais any quantum algorithm with e(S,A,F):::; t:}. 

The quantities e~(S, F) and comp~(S,F) are inverse to each other in the 
following sense: For all n E N o and E > 0, eh(S, F) :::; E if and only if 
comp~ 1 (S, F) :::; n for all t: 1 > E. Thus, determining the query complexity is 
equivalent to determining the n-th minimal error. Henceforth, we will deal 
only with eh(S, F). 

2 The Main Result 

Let NE N and set D = Z[O, N), K = R , G = R. For 1 :::; p:::; oo let L: 
denote the space of all functions f : D --+ R , equipped with the norm 

( 

N-1 ) l / p 

llJllL: = ~ ~ lf(i)IP 

if p < cx:i and 

llf lliiv = max lf (i) 1-
00 O<i<N- 1 

Define SN: L:--+ R by 

l N-1 . 

SNf =N L f(i) 
i=O 

and let 

F = ß: := {f E L~ l llJllL~ ::_:; l}. 

Let -qs summarize the known results ab out the order of eÄ (SN ,BP"') ( and 
thus the query complexity of computing the mean of p-summable sequences) 
in Theorem 1. The case p = oo is due to Grover (1998), Brassard, fü1yer, 
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Mosca, and Tapp (2000) (upper bounds) and Nayak and Wu (1999) (lower 
bounds) . The results in the case 1 s p < oo are due to Heinrich (2001). 
Note that throughout the paper we often use the same symbols for possibly 
different constants. Also, log always means log2. 

Theorem 1. Let 1 s p s oo. There are constants co, c1, c2, c3 > 0 such 
that for all n, NE N with 2 < n S c1N, 

and 

c2n-2(l-L / p) S eh(SN, B;') S c3n-2(l-l / p) if 1 ~ p < 2, n S eo./N. 

The case 1 s p < 2, n 2: e0 ,/N was left open. We will settle it here by 
proving 

Theorem 2. Let 1 s p < 2. There are constants eo, ei, e2, e3 > 0 such that 
for all n, NE N with eoVN Sn S c1N, 

c2n-2/p N 2/p- l S eh(SN, B;') S c3n-2lv N 2/p-l max(log(n/VN) , 1)2/p- l. 

lt is interesting to mention the consequences for the case p = 1 sepa
rately: 

Corollary 1. There are constants c1 , e2, c3 > 0 such that 

if 0 ::; n < VN, and 

c2n-2 NS eh(SN, ß~) S c3n-2Nmax(log(n/./N) ,1) 

ij VN s n s e i N. 

Hence the decay essentially starts only beyond \IN. Note that the cor
responding quantities for the classical deterministic and randomized setting 
remain SZ(l) also in the range VN s n s c1N, see Heinrich and Novak 
(2001). 

Combiuing this with the respective result in Theorem 1, we can cover 
the full range n s e1N. This result is a direct consequence of Theorems 1 
and 2 and the monotonicity of e~ (SN, B{/) in n. 
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Corollary 2. Let 1 :::; p < 2. There are constants c 1, c2, c3 > 0 such that 
for all n , NE N with n:::; c1N, 

c min(n- 2(l -l/p) n-2/ P N 21P- 1) < eq (S BN) 2 , _ n N, p 

:::; c3 min(n- 2(l- t/p) , n-2/p N 21P- 1 ) max(log(n/VN) , 1)2/p-t . 

The following two sections contain the proof of Theorem 2. 

3 Upper Bounds 

For any M E N we define 

and 

SN,M f = ~ L J(i) 
iE Z (O,N}, lf (i)l<M 

S I 1 ""' N,f'vrl =SN!- SN,M f = N ~ 
iE Z [O,N), I J(i) l~M 

f (i). 

Proposition 1. Let 1 :::; p < oo. Then there is a constant c > 0 such that 
for all n, M , N E N with 

n ~ cM-Pl2 N max(log(M- p N), 1) 

we have 

e~(S'.v, M, ß:) = 0. 

Proof. lt is easily verified that 

q 1 N 
eN (SN,/lf ,ßp) = 0 

(we use the queries just classically to obtain the values of the f(i) up to 
any required precision and compute the sum classically). lt follows that , 
modifying c, if necessary, it suffices to prove the result for 

M 2 Mo. 

We will specify Mo later on. Furthermore, we may also asssume that 

MP < N 
- ' 

because otherw ise S',v,M f = 0 for all f E s:, so eö ( S'tv ,M ) = 0. Let 

m' = [logNl. 
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First we define a quantum algorithm Ao from B[;' to Z[O, 2m') x R. To 
specify its quantum query, fix any m" > m' + 1 and define the mapping 
ß: R -+ Z [O, 2m") by setting for z E R 

{ 

2m"-l if lzl < M 
- l2m"-m'-l(z + 2m')J if M ~ lzl < 2m' 

ß(z) - 2m" - 1 if z > 2m' 

0 if Z < -2m'. 

lt follows that for M ~ lzl ::; 2m' , 

-2m' + rm"+m'+lß(z) ::; z ~ -2m' + rm"+m' +l(ß(z) + 1) , (9) 

and 

II [ 

ß(z) = 2m - if and only if lzl < M. (10) 

In connection with this definition let us mention that for f E B[;', 

IJ(i)I ::; Nl /p ::; N ::; 2m' (i = 0, ... , N - 1). (11) 

Put Z = Z[O, N), let T : Z -+ Z[O, 2m') be the identical embedding, m = 

m' + m", and define the query by 

Q = (m, m', m", Z, T, ß). 

Let Hm = Hm' 0 H m", and let 

li) lx) (i E Z[o, 2m'), x E Z[o, 2m")) 

be the respective representation of basis states. Let Wo E U(Hm') be the 
Walsh-Hadamard transform, and let Xo E U(Hm') be defined by 

X I ') - { - li) if i = 0 
0 

i - li) otherwise. 

Consider the following unitary transforms on Hm, defined by: 

W li) lx) 

X li) lx) 

T li) lx) 

J li) lx) 

(Wo li)) lx) , 

(Xo li)) lx) , 

{ 
li) lx) 

- li) lx) 

li) lex). 

if i E Z and x -:f- 2m" -1 

otherwise, 
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Here ex stands for (2m" - x) mod 2m". Note that w0-
1 = W0 , and hence 

w- 1 = W. For J E B;' put 

(12) 

Denote 

D1 = {ili E Z , lf(i)I ~ M}. 
lt follows from the definitions above and from (10) that 

Q JTQ li) IO) = { li) IO) if i E .Dt 
f f - li) IO) otherw1se. 

Ao will be an algorithm with one measurement. We define its unitary trans
form as 

(13) 

where L E N will be specified la:ter. The starting state will be Ibo) = IO) IO), 
and the mapping <p : Z[O, 2m') x Z[O, 2m") ---+ Z[O, 2m') x R will be given by 

(14) 

This completes the definition of algorithm A0 . Clearly, Y1 is the Grover 
iterate for the set D f, and the whole algorithm is Grover's search algorithm 
(Grover , 1996), or amplitude amplification, in the terminology of Brassard, 
Hoyer, Mosca, and Tapp (2000), with respect to the Hm' component, fol
lowed by one more query Q1. Observe that by (9) and (11) each run of the 
algorithm Ao produces a pair (i, y) E Z(O, 2m') x R with 

y:::::; J(i) :S y + rm" +m'+ l if i E Dt (15) 

and 

y = 0 if and only if i < N and i t/. D f. (16) 

The final algorithm Ais defined as '!jJ (Af ), which means that we repeat Ao 
L * times and compose the outputs by the mapping 

see Heinrich (2001) , Section 2, for a formal definition. The number L* E N 
will be specified later. The mapping 'ljJ is defined as follows: Let 

L• l m' L• 
(ie, Ye)e=o E (Z[O, 2 ) x R) 
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be the outputs of the L* runs of Ao. We exclude all pairs with ie (f_ DJ (which 
amounts to checking if i ~ N or y = 0, by (16)), as well as all repetitions 
of any ie E D f (by a suitable sorting algorithm). For the remaining set we 
add the second components and divide by N (if the remaining set is empty, 
we output 0). 

Now we show that with a suitable choice of the parameters m", L, L *, the 
algorithm outputs S~ 1vrf with error at most 2-m"+m'+l with probability at 
least 3/4. This follow's from (15) if we prove that with probability at least 
3/4 the set of remaining indices equals DJ· If DJ = 0, this is trivial, so we 
assume D1 -1- 0. First we analyze Ao. Denote µ! = ID1l 1 hence µ! ~ 1, and 
let 0 < e f :::; 7r /2 be defined by 

. 2 e 2-m' sm f = µ!. (17) 

Finally, let 

l7/J1.1) = rm' 12 'L li) 
iEDJ 

and 
l7/J1,o) = rm' /2 1 i) . 

iE Z[o,2m' )\D J 

By the analysis of Brassard, H0yer, Mosca, and Tapp (2000), relation (8), 

Y/W IO) IO) = (rm' µ f )-1!2 sin((2L + l)e f) l7/J1,1) IO) + 
(1 - rm'µ1)- 1l2 cos((2L + l)e1) l7/J1,o) IO) , 

( w here the second term is replaced by 0 if µ f = 2m'). It follows that for any 
io E D1 , the algorithm Ao outputs (io , ß(J(io))) with probability 

(18) 

In the sequel we use the elementary relation 

2x/7r:::; sinx:::; x (x E [0,7r/2]). (19) 

Since f E Bf, we have 

hence 

(20) 
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and 
2-m' < M-PN2-m' < M-P. µ! - -

Therefore, by (19) and (17) 

and hence 

Now we put 

and define L by 

Since we assumed M 2 Mo, we get from (22) and (23), 

1 < ~MPl2 < L < ~MPl2 '. 
- 6 - - 3 

lt follows from (21) and (24) that 

(2L + 1 )B f :::; 3LB f :::; 7r /2. 

On the other hand, by (24) and (17), 

(2L + l)BJ > 2LB1 2 }MPl2 sinB1 = lMPl2 (rm' µ 1 )
112

. 

From (18), (19) , (25) and the relation above, 

4 l 2 2 
Qi0 > 2µj (2L + 1) B1 7r 

> _i_Mprm' 
97r2 

> _:}__MP N-1 = c MP N-1 
97!"2 2 , 

(21) 

(22) 

(23) 

(24) 

(25) 

w here in the last line we used ( 8) and set c2 = 2 / ( 97r2 ). lt follows that after 
L * repetitions of algorithm A0 the probability of ( io, ß(f ( io))) not being 
among the results is 

< (l _ c MP N-l)L* < e-c2MP N- 1 L* 
- 2 - , 
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where we used that 1 + x ::; ex for x E R. The probability that at least one 
io E D f is not among the results is 

where we used (20). Now we choose L* in such a way that this probability 
is not greater than 1/4 . This requires (recall that log means log2 ) 

(c2 log e) MP N- 1 L* ~ log(M-P N) + 2. 

which is satisfied if 

L*= ' 
1
3 

M -PN max(log(M-PN),1)1· 
1 c2 og e 

We put c3 
implies 

3/(c2 log e) and observe that the above combined with (7) 

L*::; (c3 + l)M-P N max(log(M-P N), 1) . 

Together with (24), this implies that algorithm A makes 

(2L + l)L*::; 3LL*::; (c3+l)M-Pl2 Nmax(log(M-PN),1) 

queries to compute S'tv M f up to error 2-m" +m' +l with probability at least 
3 / 4. Since m" was arbitrary, the result follows. D 

We need to express M in terms of n and N: 

Corollary 3. Let 1 ::::; p < oo. Th ere is a constant c 2: 1 such that for all 
n,M,NE N , 

whenever 
M ~ c(N/n) 21P max(log(n/VN), 1)2/P. 

Proof. Let eo be the constant from Proposition 1. We put 

c = max((2co) 21P, 1) . (26) 

Assume 
M ~ c(N/n) 21P max(log(n/VN), 1)2/P . 

lt follows that 

M-P/2 N :::=; c-P12n/ max(log(n/VN), 1). (27) 
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Squaring and dividing by N gives 

and hence 

max(log(M-P N) , 1) 

< max ( log(c-P) + 2 log(n/ JN) - 2 log ( max(log(n/ JN), 1)) , 1) 

< 2max(log(n/JN), 1) . (28) 

(27) , (28) and (26) give 

coAf-P/2 N max(log(M-P N), 1) ::; 2c0c-P12n::; n, 

which, by Proposition 1, implies 

D 

Proposition 2. Let 1 ::; p < 2. Th ere is a constant c > 0 such that for all 

k,n , N E N , 
e<Ji (SN,2k, B:)::; c(2(l-p/2)kn- 1 +2kn- 2 ). 

Proof. This is a direct consequence of the method of proof of Theorem 1 
in Heinrich (2001). For the sake of completeness, we recall some key steps. 
Since trivially e~ ( SN,2k, B;') ::; 1 for all n E No (just use the zero algorithm) , 
it suffices to prove the result under the assumption 

n :2 2c1-p/ 2)k . (29) 

Define S~u : L;' --+ R for e = 0, ... , k, a = 0, 1 as 

f ( i) 

if e :2 1 and 
f (i ). 

0:S(-l)C1 f (i)<l 

lt is shown in Heinrich (2001) (based on the counting algorithm of Brassard, 
H0yer, Mosca, and Tapp, 2000), that there is a constant c > 0 such that 
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for each choice of ve, ne E N (€ = 0, .. . , k), there are algorithms Ae,a (€ = 
0, ... , k, a = 0, 1) with nq(Ae,a) :::; vene and 

e(se,a A BN 2-vt) < c(rpe/2n -1 + n -2) 
N , e,a, p , - e e 

(use the relation following (27) in Heinrich, 2001, together with (21) and 
(22) of that paper) . Now choose 

ne = r r(l /2- p/4)(k-e)n l · 
and 

ve = f2 1og(k - f + 1)1+4. 

Due to (29), 

ne < r(l /2-p/4)(k-e)+ln . 

Let the algorithm A be defined by 

A = L (-l)a2eAe,a· 
O<t <k 
„-;,o-; 1 

(30) 

(We refer again to Heinrich, 2001, Section 2, for a formal definition.) Taking 
into account (30), it follows that 

k 

nq(A) :::; 2 L( f2 log(k - f + l)l + 4) r r (ll2-P/4)(k-e)n l :::; C1n. (31) 
e=O 

Moreover, since 

we get 

e(SN,2k, A , ß:) 
k 

< c L ( 2(1-p/2)e+(1/2-p/4)(k-e)n-1 + 2e+(l-p/2)(k-e)n-2) 

f=O 
k 

< c L (2(1/2-p/4)(k+e)n-l + 2k-p(k-f) /2n-2 ) 

e=o 
< c2 ( 2(1-p/2)kn-1 + 2kn-2) 

which together with (31) and a suitable scaling of n implies the desired 
result. D 

14 



Theorem 3. Let 1 ~ p < 2. There are constants eo, c > 0 such that for all 
n, NE N with n 2: co./N 

e;(sN, Bf) ~ cn-21PN21P-l max(log(n/./N), 1)2/ P- 1. 

Proof. First note that 

(32) 

Next observe that it follows readily from Lemma 3 in Heinrich (2001) (re
ducing the error probability by repeating the algorithm and computing the 
median) that there is a constant eo E N such that for all n, k, N E N , 

Now let n satisfy 

(34) 

and choose k E N in such a way that 

where c1 2'. 1 is the constant from Corollary 3. Consequently, we have 

(35) 

Moreover, with c2 being the constant from Proposition 2, 

(36) 
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Using (again) x ~ ln(l + x) for x > -1, we have 

n2 (n2 
) n 2 n n - > ln - + 1 > 2 ln - = -- log -- > log-. 

N - N - ./N loge ./N ./N 

Consequently, recalling our assumption n ~ ./N, we get 

and therefore 

N 2 /p- l n - 2/ p max log _!!__ 1 > N 21Pn - 2/p-2 max log _!!__ 1 
( ) 

2/ p- l ( ) 2/ p 

./N' - ./N' 

From (33), (35), (36), and the relation above we get 

e~0n (SN,ß:) < e1Ji(SN,2k ,ß:) 

< 2c3N2/ p-Ln-2/ P max (1og ~, 1) 
2

/ p-L (37) 

for all n with ./N ~ n < N. With a suitable scaling of n, the result follows 
from (37) and (32). D 

4 Lower Bounds 

We need some general results from Section 4 of Heinrich (2001). Let D and 
K be nonempty sets, let L E N , and let to each u = (uo, ... , UL-d E {O, l}L 
an f u E :F( D, K) be assigned such that the following is satisfied: 

Condition (I): For each t E D there is an e, 0 ~ f, ~ L - 1, such that 
f u ( t) depends only on ue, in other words , for u, u' E { 0, 1} L, ue = ue implies 
J u ( t) = J u' ( t) · 

Define the function e(L, f!, f,') for L E N , 0 ~ f! -f:. f!' ~ L by 

, /L minj=e,e Jj(L - j) 
g(L, e, n = V v==el + 1e - f!'I . (38) 

The following was proved in Heinrich (2001), using the polynomial method 
of Beals, Buhrman, Cleve, and Mosca (1998) and based on a result of Nayak 
and Wu (1999): 
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Lemma 1. There is a constant eo > 0 such that the following holds: Let 
D, K be nonempty sets, let F <;;; F(D, K) be a set of functions , G a normed 
space, S: F --7 G a function, and L E N. Suppose (Ju)uE{O,I}L <;;; F(D, K) 
is a system of functions satisjying condition (I). Let finally 0 ::; e # f' ::; L 
and assume that 

f u E F whenever lul E { f, e'}. (39) 

Then 

e~(S,F) 2'. ~min{\IS(Ju)-S(Ju1 )ll i lul = e, lu'I = e'} (40) 

J or all n with 

n::; Co{!(L, e, e') . ( 41) 

The next result contains lower bounds matching the upper ones from 
Theorem 3 up to a logarithmic factor. 

Theorem 4. Let 1 ::; p < 2. Then there are constants eo, c1, c2 > 0 such 
that for all n, N E N with coVN::; n ::; ciN, 

eq(S BN) > c n-21PN21P-l n N, p _ 2 · 

Proof. Let c0 be the constant from Lemma 1, and let 

c1 = co/Jl2. 

By assumption, 

We set 

L = N , e = r2c02n 2N- 1l, e' = e + 1. 

lt follows from (43) that e 2'. 2. Moreover, from (44), 

and, taking into account that e 2'. 2, 

17 . 

(42) 

(43) 

(44) 

(45) 



hence, by (42) and (43), 

e + 1 :S 31!/2 < 6c02 n 2 N- 1 :S 6c02ci N = N/2. (46) 

We have, by (45), (46) and (44), 

n::::; co./iNTi::::; eo . min Jj(N - j) s co12(L,P,P1
). (47) 

1=e,e+1 

Now we define 1/Jj E Lt' (j = 0, . .. , L - 1) as 

. i = { ( e + 1 )- 1
/ P N 11P if i = j 

1/J1 ( ) O otherwise. 

We have 
SN1/Jj = (P + 1) - 1/p Nl /p-1. 

For each u = (uo, ... , UL-1) E {O, l}L define 

L-1 

fu = L Uj1/Jj· ( 48) 
j=O 

Since ~he functions 1/Jj have disjoint supports, the system Uu)uE{O,l}L sat
isfies condit ion (I). Moreover, f u E Bt' whenever lul = f!, f! + 1. Lemma 1, 
relation ( 4 7) and the left and middle part of ( 46) give 

eh(SN, Bt') > ~min {ISNfu - SNfu1 l l lul = e, lu'I = e + 1} 

5 Comments 

~(e + 1)-1/p N1 /p-1 2 ~(6c(J2n2 N-1 )-1 /p N1 /p-1 

2/p 
eo n-2/pN2/p- 1. 

2 . 61/ P 

D 

Let us first mention that there remains another gap in the order of the 
quantity eh(SN, Bt') in all the results of Theorems 1, 2, and Corollaries 1, 
2, namely, the region c1 N :S n < !'{. As we mentioned before, we have 
e~(SN, B{/) = 0 for n 2 N (classical computation of the sum). Hence filling 
this gap means determining how fast e~ (SN, Bt') goes to zero in the region 
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close to classical computation. We did not consider this problem further. 
lt is theoretically interesting, but one should also mention that its solu
tion would not say much about the speed-up due to quantum computation: 
With an effort, just by a constant factor higher, the problem can be .solved 
with the same error (in fact, even up to any needed precision) by classical 
computation. 

Finally, we discuss the cost of our algorithm in the bit model of computa
tion. Here we assume that both N and n are powers of two. The algorithm 
behind Proposition 1 and Corollary 3 needs O(nm") quantum gates (see 
Nielsen and Chuang, 2000, Chapter 4, for basics on quantum gates), O(m") 
qubits, ancimakes O(n2N- 1/max(log(n/VN) , 1)) measurements to reach 
error 0(210g N-m"). The bit cost of the classical computations is negligi
ble as compared to the number of quantum gates: We need O(n2 N- 1m") 
classical bit operations to sort out the wrong elements and to add the right 
ones. The bit cost of the algorithm in connection with Proposition 2 was al
ready analyzed in Heinrich (2001). lt amounts to O(n log N) quantum gates, 
O(logN) qubits, and O(klogk) (which is O(lognloglogn)) measurements. 
The number of classical bit operations is O(log n log log n log N), and thus, 
again dominated by the number of quantum gates. Summarizing this for the 
algorithm of Theorem 3, we see that we can implement it with O(n log N) 
quantum gates, on O(log N) qubits, and with 

O(n2 N- 1 jmax(log(n/VN),1) + log(N/n) log log(N/n)) 

measurements. Thus the quantum bit cost differs by at most a logarithmic 
factor from the quantum query complexity. 
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