
2

I ·~

Interner Bericht

On a Problem in Quantum Summation

UNIVERSITÄT
KAISERSLAUTERN

Stefan Heinrich

Erich Novak

315/01

FACHBEREICH
INFORMATIK

Postfach 3049 · D-67653 Kaiserslautern

On a Problem in Quantum Summation

Stefan Heinrich 1

Erich Novak2

315/01

1Fachbereich Informatik
Universität Kaiserslautern

D-67653 Kaiserslautern, Germany
e-mail: heinrich@informatik.uni-kl.de

2Mathematisches Institut
Universität Jena

D-07740 Jena, Germany
e-mail: novak@mathematik.uni-jena.de

October 2001

Paper submitted to the Journal of Complexity. Abstract and paper
avaibable at
http://arXiv.org/abs/quant-ph/O 109038

On a Problem in Quantum Summation

Stefan Heinrich
Fachbereich Informatik

G ni versi tät Kaiserslautern
D-67653 Kaiserslautern, Germany

e-mail: heinrich@informatik.uni-kl.de

and

Erich Novak
Mathematisches Institut

Universität Jena
D-077 40 Jena, Germany

e-mail: novak@mathematik.uni-jena.de

Abstract

We consider the computation of the mean of sequences in the
quantum model of computation. We determine the query complex
ity in the case of sequences which satisfy a p-summability condition
for 1 'S p < 2. This settles a problem left open in Heinrich (2001).

1 lntroduction

Computation of the mean of sequences and, equivalently, summation of se
quences, is an important numerical ta.sk, in particular for huge number of
summands occurring in many numerical applications such as, e.g., high di
mensional integration. The larger the number of summands (the larger the
dimension) , the less these problems are tractable on a classical computer.
lt is therefore an interesting and challenging task to understand to which
extent a quantum computer could bring speed-ups. First results for the
summation of bounded sequences are due to Grover (1998), Nayak and Wu
(1999), Brassard, H0yer, Mosca, and Tapp (2000). The case of sequences
satisfying a p-summability condition, which arises in various problems like

1

•

integration of functions from Lp and Sobolev classes, was studied in Hein
rich (2001). Up to logarithmic factors for p = 2, in the case 2 ~ p < oo the
query complexity of the summation problem was determined. For the case
1 ~ p < 2, matching upper and lower bounds were obtained only under an
additional restriction. The bounds for the remaining case did not match.
In this paper we settle this problem and determine the query complexity in
the full range of parameters.

Applications of our results to the quantum complexity of integration of
functions from Sobolev classes are given in Heinrich (2001a). The use of
quantum summation for integration was first pointed out by Abrams and
Williams (1999). The quantum complexity of integration was studied in
Novak (2001), later in Heinrich (2001) and Heinrich and Novak (2001). Path
integration is discussed in Traub and Woiniakowski (2001). Furthermore,
we refer to the surveys Ekert, Hayden, and Inamori (2000), Shor (2000),
and to the monographs Pittenger (1999), Gruska (1999) and Nielsen and
Chuang (2000) for general reading on quantum computation.

Our analysis is based on the framework introduced in Heinrich (2001)
of quantum algorithms for the approximate solution of problems of analy
sis. This approach is an extension of the framework of information-based
complexity theory (see Traub, Wasilkowski, and Wozniakowski, 1988, No
vak, 1988, and, more formally, Novak, 1995) to quantum computation. lt
also extends the binary black box model of quantum computation (see, e.g.,
Beats , Buhrman, Cleve, and Mosca, 1998) to situations where mappings
from spaces of functions to the scalar field (such as the mean or the inte
gral) have to be computed. Let us recall the main notions here. For more
details and background discussion we refer to Heinrich (2001).

Let D, K be nonempty sets, let F(D, K) denote the set of all functions
from D to K, and let F S: F(D , K) be a nonempty subset. Let K , the
scalar field, be either R or C , the field of real or complex numbers, let G
be a normed space over K , and let S : F -+ G be a mapping. We seek to
approximate S(J) for f E F by means of quantum computations. Let H 1

be the two-dimensional complex Hilbert space C 2 , with its unit vector basis
{eo,ei}, let

Hm =Hi 0·· · 0H1

be the tensor product of m copies of H 1, endowed with the tensor Hilbert
space structure. The following notation is convenient :

Z[O, N) := {O, ... , N - 1}

for NE N (as usual, N = {1, 2, ... } and No =NU {O}). Let Cm= {\i) : i E
Z[O, 2m)} be the canonical basis of Hm, where \i) stands for ej0 0 · · · 0 eim-1'

2

•

i = 2:~01 Jk2m-l-k the binary expansion of i. Denote the set of unitary
Operators on Hm by U(Hm)·

A quantum query on F is given by a tuple

Q=(m,m',m",Z,T,ß), (1)

where m,m',m" E N ,m' + m"::; m,Z ~ Z[o,2m') is a nonempty subset,
and

T:Z-tD

ß: K-+ Z[O, 2m")

are arbitrary mappings. Denote m(Q) := m, the number of qubits of Q.
Given such a query Q, we define for each f E F the unitary operator Qt

by setting for li) lx) IY) E Cm = Cm' @ Cm11 @ Cm-m'-m":

Q 1
.)

1
)I)={ li)lxEBß(j(T(i)))) ly)

t i x y li) lx) IY)

where EB means addition modulo 2m".

if i E Z
otherwise,

A quantum algorithm on F with no measurement is a tuple

(2)

where Q is a quantum query on F, n E N o and Uj E U(Hm) (j = 0, ... , n),
with m = m(Q). Given f E F , we let At E U(Hm) be defined as

(3)

We denote by nq(A) := n the number of queries and by m(A) = m = m(Q)
the number of qubits of A. Let (At(x,y))x,yEZ[o ,2 m) be the matrix of the
transformation At in the canonical basis Cm.

A quantum algorithm on F with output in G (or shortly, from F to G)
with k measurements is a tuple

A = ((Ae)~~J, (be)~~J,(f)),

where k E N , and Ae (f = 0, .. . , k - 1) are quantum algorithms on F with
no measurements,

bo E Z[0,2m0
),

for 1 ::; f ::; k - 1, be is a function

e-1
be: rrz[o,2m;)-+ Z[0,2me),

i=O

3

where we denoted me := m(Ae), and cp is a function with values in G

k-1

cp: IJ Z[O, 2me) -7 G.
e=O

The output of A at input f E F will be a probability measure A(f) on G,
defined as follows: First put

P.-1,1(xo, ... , .-r:k_i) = IA0,1(xo, bo)l 2 IA1,1(x1, bi (xo))l 2
...

. . . 1Ak-1,J(Xk- 1, bk -1(xo, ... ,Xk-2))12. (4)

Then define A(f) by setting for any subset C ~ G

A(J)(C) = PA,1(xo, ... , Xk-1). (5)
cp(xo„.„Xk- 1)EC

By nq(A) := I:;~~J nq(Ae) we denote the number of queries used by A.
Informally, such an algorithm A starts with a fixed basis state b0 and,

at input f , applies in an alternating way unitary transformations Uoj (not
depending on f) and the operator Q f of a certain query. After a fixed
number of steps the resulting state is measured, which gives a (random)
basis state, say fo. This state is memorized and then transformed (e.g. , by
a classical computation, which is symbolized by b1) into a new basis state
bi(fo) . This is the starting state to which the next sequence of quantum
operations is applied (with possibly another query and number of qubits).
The resulting state is again measured , which gives the (random) bas is state
~ 1 . This state is memorized, h(fo,~1) is computed (classically), and so
on. After k such cycles, we obtain fo , ... , ~k - I · Then finally an element
of G is computed (e.g., again on a classical computer) from the results
of all measurements: cp(fo, .. . , ~k-d ·. The probability measure A(J) is its
distribution. For details, see Heinrich (2001).

The error of A is defined as follows: Let 0 ::; e < 1, f E F , and let (be
any random variable with distribution A(f). Then put

e(S, A, f , B) = inf {c: I P{ llS(f) - (II > c:}::; B} .

Associated with this we introduce

e(S, A, F, B) = sup e(S, A, J, B),
f EF

e(S, A , f) = e(S, A, J, 1/4),

4

and
e(S, A, F) = e(S, A, F, 1/4).

The n-th minimal query error is defined for n E No as

e~(S,F) = inf{ e(S,A, F) 1 Ais any quantum algorithm with nq(A):::; n} .

This is the minimal error which can be reached using at most n queries. The
query complexity is defined for E > 0 by

comp~(S, F) =

min{nq(A) 1 Ais any quantum algorithm with e(S,A,F):::; t:}.

The quantities e~(S, F) and comp~(S,F) are inverse to each other in the
following sense: For all n E N o and E > 0, eh(S, F) :::; E if and only if
comp~ 1 (S, F) :::; n for all t: 1 > E. Thus, determining the query complexity is
equivalent to determining the n-th minimal error. Henceforth, we will deal
only with eh(S, F).

2 The Main Result

Let NE N and set D = Z[O, N), K = R , G = R. For 1 :::; p:::; oo let L:
denote the space of all functions f : D --+ R , equipped with the norm

(

N-1) l / p

llJllL: = ~ ~ lf(i)IP

if p < cx:i and

llf lliiv = max lf (i) 1-
00 O<i<N- 1

Define SN: L:--+ R by

l N-1 .

SNf =N L f(i)
i=O

and let

F = ß: := {f E L~ l llJllL~ ::_:; l}.

Let -qs summarize the known results ab out the order of eÄ (SN ,BP"') (and
thus the query complexity of computing the mean of p-summable sequences)
in Theorem 1. The case p = oo is due to Grover (1998), Brassard, fü1yer,

5

Mosca, and Tapp (2000) (upper bounds) and Nayak and Wu (1999) (lower
bounds) . The results in the case 1 s p < oo are due to Heinrich (2001).
Note that throughout the paper we often use the same symbols for possibly
different constants. Also, log always means log2.

Theorem 1. Let 1 s p s oo. There are constants co, c1, c2, c3 > 0 such
that for all n, NE N with 2 < n S c1N,

and

c2n-2(l-L / p) S eh(SN, B;') S c3n-2(l-l / p) if 1 ~ p < 2, n S eo./N.

The case 1 s p < 2, n 2: e0 ,/N was left open. We will settle it here by
proving

Theorem 2. Let 1 s p < 2. There are constants eo, ei, e2, e3 > 0 such that
for all n, NE N with eoVN Sn S c1N,

c2n-2/p N 2/p- l S eh(SN, B;') S c3n-2lv N 2/p-l max(log(n/VN) , 1)2/p- l.

lt is interesting to mention the consequences for the case p = 1 sepa
rately:

Corollary 1. There are constants c1 , e2, c3 > 0 such that

if 0 ::; n < VN, and

c2n-2 NS eh(SN, ß~) S c3n-2Nmax(log(n/./N) ,1)

ij VN s n s e i N.

Hence the decay essentially starts only beyond \IN. Note that the cor
responding quantities for the classical deterministic and randomized setting
remain SZ(l) also in the range VN s n s c1N, see Heinrich and Novak
(2001).

Combiuing this with the respective result in Theorem 1, we can cover
the full range n s e1N. This result is a direct consequence of Theorems 1
and 2 and the monotonicity of e~ (SN, B{/) in n.

6

Corollary 2. Let 1 :::; p < 2. There are constants c 1, c2, c3 > 0 such that
for all n , NE N with n:::; c1N,

c min(n- 2(l -l/p) n-2/ P N 21P- 1) < eq (S BN) 2 , _ n N, p

:::; c3 min(n- 2(l- t/p) , n-2/p N 21P- 1) max(log(n/VN) , 1)2/p-t .

The following two sections contain the proof of Theorem 2.

3 Upper Bounds

For any M E N we define

and

SN,M f = ~ L J(i)
iE Z (O,N}, lf (i)l<M

S I 1 ""' N,f'vrl =SN!- SN,M f = N ~
iE Z [O,N), I J(i) l~M

f (i).

Proposition 1. Let 1 :::; p < oo. Then there is a constant c > 0 such that
for all n, M , N E N with

n ~ cM-Pl2 N max(log(M- p N), 1)

we have

e~(S'.v, M, ß:) = 0.

Proof. lt is easily verified that

q 1 N
eN (SN,/lf ,ßp) = 0

(we use the queries just classically to obtain the values of the f(i) up to
any required precision and compute the sum classically). lt follows that ,
modifying c, if necessary, it suffices to prove the result for

M 2 Mo.

We will specify Mo later on. Furthermore, we may also asssume that

MP < N
- '

because otherw ise S',v,M f = 0 for all f E s:, so eö (S'tv ,M) = 0. Let

m' = [logNl.

7

(6)

(7)

(8)

First we define a quantum algorithm Ao from B[;' to Z[O, 2m') x R. To
specify its quantum query, fix any m" > m' + 1 and define the mapping
ß: R -+ Z [O, 2m") by setting for z E R

{

2m"-l if lzl < M
- l2m"-m'-l(z + 2m')J if M ~ lzl < 2m'

ß(z) - 2m" - 1 if z > 2m'

0 if Z < -2m'.

lt follows that for M ~ lzl ::; 2m' ,

-2m' + rm"+m'+lß(z) ::; z ~ -2m' + rm"+m' +l(ß(z) + 1) , (9)

and

II [

ß(z) = 2m - if and only if lzl < M. (10)

In connection with this definition let us mention that for f E B[;',

IJ(i)I ::; Nl /p ::; N ::; 2m' (i = 0, ... , N - 1). (11)

Put Z = Z[O, N), let T : Z -+ Z[O, 2m') be the identical embedding, m =

m' + m", and define the query by

Q = (m, m', m", Z, T, ß).

Let Hm = Hm' 0 H m", and let

li) lx) (i E Z[o, 2m'), x E Z[o, 2m"))

be the respective representation of basis states. Let Wo E U(Hm') be the
Walsh-Hadamard transform, and let Xo E U(Hm') be defined by

X I ') - { - li) if i = 0
0

i - li) otherwise.

Consider the following unitary transforms on Hm, defined by:

W li) lx)

X li) lx)

T li) lx)

J li) lx)

(Wo li)) lx) ,

(Xo li)) lx) ,

{
li) lx)

- li) lx)

li) lex).

if i E Z and x -:f- 2m" -1

otherwise,

8

Here ex stands for (2m" - x) mod 2m". Note that w0-
1 = W0 , and hence

w- 1 = W. For J E B;' put

(12)

Denote

D1 = {ili E Z , lf(i)I ~ M}.
lt follows from the definitions above and from (10) that

Q JTQ li) IO) = { li) IO) if i E .Dt
f f - li) IO) otherw1se.

Ao will be an algorithm with one measurement. We define its unitary trans
form as

(13)

where L E N will be specified la:ter. The starting state will be Ibo) = IO) IO),
and the mapping <p : Z[O, 2m') x Z[O, 2m") ---+ Z[O, 2m') x R will be given by

(14)

This completes the definition of algorithm A0 . Clearly, Y1 is the Grover
iterate for the set D f, and the whole algorithm is Grover's search algorithm
(Grover , 1996), or amplitude amplification, in the terminology of Brassard,
Hoyer, Mosca, and Tapp (2000), with respect to the Hm' component, fol
lowed by one more query Q1. Observe that by (9) and (11) each run of the
algorithm Ao produces a pair (i, y) E Z(O, 2m') x R with

y:::::; J(i) :S y + rm" +m'+ l if i E Dt (15)

and

y = 0 if and only if i < N and i t/. D f. (16)

The final algorithm Ais defined as '!jJ (Af), which means that we repeat Ao
L * times and compose the outputs by the mapping

see Heinrich (2001) , Section 2, for a formal definition. The number L* E N
will be specified later. The mapping 'ljJ is defined as follows: Let

L• l m' L•
(ie, Ye)e=o E (Z[O, 2) x R)

9

be the outputs of the L* runs of Ao. We exclude all pairs with ie (f_ DJ (which
amounts to checking if i ~ N or y = 0, by (16)), as well as all repetitions
of any ie E D f (by a suitable sorting algorithm). For the remaining set we
add the second components and divide by N (if the remaining set is empty,
we output 0).

Now we show that with a suitable choice of the parameters m", L, L *, the
algorithm outputs S~ 1vrf with error at most 2-m"+m'+l with probability at
least 3/4. This follow's from (15) if we prove that with probability at least
3/4 the set of remaining indices equals DJ· If DJ = 0, this is trivial, so we
assume D1 -1- 0. First we analyze Ao. Denote µ! = ID1l 1 hence µ! ~ 1, and
let 0 < e f :::; 7r /2 be defined by

. 2 e 2-m' sm f = µ!. (17)

Finally, let

l7/J1.1) = rm' 12 'L li)
iEDJ

and
l7/J1,o) = rm' /2 1 i) .

iE Z[o,2m')\D J

By the analysis of Brassard, H0yer, Mosca, and Tapp (2000), relation (8),

Y/W IO) IO) = (rm' µ f)-1!2 sin((2L + l)e f) l7/J1,1) IO) +
(1 - rm'µ1)- 1l2 cos((2L + l)e1) l7/J1,o) IO) ,

(w here the second term is replaced by 0 if µ f = 2m'). It follows that for any
io E D1 , the algorithm Ao outputs (io , ß(J(io))) with probability

(18)

In the sequel we use the elementary relation

2x/7r:::; sinx:::; x (x E [0,7r/2]). (19)

Since f E Bf, we have

hence

(20)

10

and
2-m' < M-PN2-m' < M-P. µ! - -

Therefore, by (19) and (17)

and hence

Now we put

and define L by

Since we assumed M 2 Mo, we get from (22) and (23),

1 < ~MPl2 < L < ~MPl2 '.
- 6 - - 3

lt follows from (21) and (24) that

(2L + 1)B f :::; 3LB f :::; 7r /2.

On the other hand, by (24) and (17),

(2L + l)BJ > 2LB1 2 }MPl2 sinB1 = lMPl2 (rm' µ 1)
112

.

From (18), (19) , (25) and the relation above,

4 l 2 2
Qi0 > 2µj (2L + 1) B1 7r

> _i_Mprm'
97r2

> _:}__MP N-1 = c MP N-1
97!"2 2 ,

(21)

(22)

(23)

(24)

(25)

w here in the last line we used (8) and set c2 = 2 / (97r2). lt follows that after
L * repetitions of algorithm A0 the probability of (io, ß(f (io))) not being
among the results is

< (l _ c MP N-l)L* < e-c2MP N- 1 L*
- 2 - ,

11

where we used that 1 + x ::; ex for x E R. The probability that at least one
io E D f is not among the results is

where we used (20). Now we choose L* in such a way that this probability
is not greater than 1/4 . This requires (recall that log means log2)

(c2 log e) MP N- 1 L* ~ log(M-P N) + 2.

which is satisfied if

L*= '
1
3

M -PN max(log(M-PN),1)1·
1 c2 og e

We put c3
implies

3/(c2 log e) and observe that the above combined with (7)

L*::; (c3 + l)M-P N max(log(M-P N), 1) .

Together with (24), this implies that algorithm A makes

(2L + l)L*::; 3LL*::; (c3+l)M-Pl2 Nmax(log(M-PN),1)

queries to compute S'tv M f up to error 2-m" +m' +l with probability at least
3 / 4. Since m" was arbitrary, the result follows. D

We need to express M in terms of n and N:

Corollary 3. Let 1 ::::; p < oo. Th ere is a constant c 2: 1 such that for all
n,M,NE N ,

whenever
M ~ c(N/n) 21P max(log(n/VN), 1)2/P.

Proof. Let eo be the constant from Proposition 1. We put

c = max((2co) 21P, 1) . (26)

Assume
M ~ c(N/n) 21P max(log(n/VN), 1)2/P .

lt follows that

M-P/2 N :::=; c-P12n/ max(log(n/VN), 1). (27)

12

Squaring and dividing by N gives

and hence

max(log(M-P N) , 1)

< max (log(c-P) + 2 log(n/ JN) - 2 log (max(log(n/ JN), 1)) , 1)

< 2max(log(n/JN), 1) . (28)

(27) , (28) and (26) give

coAf-P/2 N max(log(M-P N), 1) ::; 2c0c-P12n::; n,

which, by Proposition 1, implies

D

Proposition 2. Let 1 ::; p < 2. Th ere is a constant c > 0 such that for all

k,n , N E N ,
e<Ji (SN,2k, B:)::; c(2(l-p/2)kn- 1 +2kn- 2).

Proof. This is a direct consequence of the method of proof of Theorem 1
in Heinrich (2001). For the sake of completeness, we recall some key steps.
Since trivially e~ (SN,2k, B;') ::; 1 for all n E No (just use the zero algorithm) ,
it suffices to prove the result under the assumption

n :2 2c1-p/ 2)k . (29)

Define S~u : L;' --+ R for e = 0, ... , k, a = 0, 1 as

f (i)

if e :2 1 and
f (i).

0:S(-l)C1 f (i)<l

lt is shown in Heinrich (2001) (based on the counting algorithm of Brassard,
H0yer, Mosca, and Tapp, 2000), that there is a constant c > 0 such that

13

for each choice of ve, ne E N (€ = 0, .. . , k), there are algorithms Ae,a (€ =
0, ... , k, a = 0, 1) with nq(Ae,a) :::; vene and

e(se,a A BN 2-vt) < c(rpe/2n -1 + n -2)
N , e,a, p , - e e

(use the relation following (27) in Heinrich, 2001, together with (21) and
(22) of that paper) . Now choose

ne = r r(l /2- p/4)(k-e)n l ·
and

ve = f2 1og(k - f + 1)1+4.

Due to (29),

ne < r(l /2-p/4)(k-e)+ln .

Let the algorithm A be defined by

A = L (-l)a2eAe,a·
O<t <k
„-;,o-; 1

(30)

(We refer again to Heinrich, 2001, Section 2, for a formal definition.) Taking
into account (30), it follows that

k

nq(A) :::; 2 L(f2 log(k - f + l)l + 4) r r (ll2-P/4)(k-e)n l :::; C1n. (31)
e=O

Moreover, since

we get

e(SN,2k, A , ß:)
k

< c L (2(1-p/2)e+(1/2-p/4)(k-e)n-1 + 2e+(l-p/2)(k-e)n-2)

f=O
k

< c L (2(1/2-p/4)(k+e)n-l + 2k-p(k-f) /2n-2)

e=o
< c2 (2(1-p/2)kn-1 + 2kn-2)

which together with (31) and a suitable scaling of n implies the desired
result. D

14

Theorem 3. Let 1 ~ p < 2. There are constants eo, c > 0 such that for all
n, NE N with n 2: co./N

e;(sN, Bf) ~ cn-21PN21P-l max(log(n/./N), 1)2/ P- 1.

Proof. First note that

(32)

Next observe that it follows readily from Lemma 3 in Heinrich (2001) (re
ducing the error probability by repeating the algorithm and computing the
median) that there is a constant eo E N such that for all n, k, N E N ,

Now let n satisfy

(34)

and choose k E N in such a way that

where c1 2'. 1 is the constant from Corollary 3. Consequently, we have

(35)

Moreover, with c2 being the constant from Proposition 2,

(36)

15

Using (again) x ~ ln(l + x) for x > -1, we have

n2 (n2
) n 2 n n - > ln - + 1 > 2 ln - = -- log -- > log-.

N - N - ./N loge ./N ./N

Consequently, recalling our assumption n ~ ./N, we get

and therefore

N 2 /p- l n - 2/ p max log _!!__ 1 > N 21Pn - 2/p-2 max log _!!__ 1
()

2/ p- l () 2/ p

./N' - ./N'

From (33), (35), (36), and the relation above we get

e~0n (SN,ß:) < e1Ji(SN,2k ,ß:)

< 2c3N2/ p-Ln-2/ P max (1og ~, 1)
2

/ p-L (37)

for all n with ./N ~ n < N. With a suitable scaling of n, the result follows
from (37) and (32). D

4 Lower Bounds

We need some general results from Section 4 of Heinrich (2001). Let D and
K be nonempty sets, let L E N , and let to each u = (uo, ... , UL-d E {O, l}L
an f u E :F(D, K) be assigned such that the following is satisfied:

Condition (I): For each t E D there is an e, 0 ~ f, ~ L - 1, such that
f u (t) depends only on ue, in other words , for u, u' E { 0, 1} L, ue = ue implies
J u (t) = J u' (t) ·

Define the function e(L, f!, f,') for L E N , 0 ~ f! -f:. f!' ~ L by

, /L minj=e,e Jj(L - j)
g(L, e, n = V v==el + 1e - f!'I . (38)

The following was proved in Heinrich (2001), using the polynomial method
of Beals, Buhrman, Cleve, and Mosca (1998) and based on a result of Nayak
and Wu (1999):

16

Lemma 1. There is a constant eo > 0 such that the following holds: Let
D, K be nonempty sets, let F <;;; F(D, K) be a set of functions , G a normed
space, S: F --7 G a function, and L E N. Suppose (Ju)uE{O,I}L <;;; F(D, K)
is a system of functions satisjying condition (I). Let finally 0 ::; e # f' ::; L
and assume that

f u E F whenever lul E { f, e'}. (39)

Then

e~(S,F) 2'. ~min{\IS(Ju)-S(Ju1)ll i lul = e, lu'I = e'} (40)

J or all n with

n::; Co{!(L, e, e') . (41)

The next result contains lower bounds matching the upper ones from
Theorem 3 up to a logarithmic factor.

Theorem 4. Let 1 ::; p < 2. Then there are constants eo, c1, c2 > 0 such
that for all n, N E N with coVN::; n ::; ciN,

eq(S BN) > c n-21PN21P-l n N, p _ 2 ·

Proof. Let c0 be the constant from Lemma 1, and let

c1 = co/Jl2.

By assumption,

We set

L = N , e = r2c02n 2N- 1l, e' = e + 1.

lt follows from (43) that e 2'. 2. Moreover, from (44),

and, taking into account that e 2'. 2,

17 .

(42)

(43)

(44)

(45)

hence, by (42) and (43),

e + 1 :S 31!/2 < 6c02 n 2 N- 1 :S 6c02ci N = N/2. (46)

We have, by (45), (46) and (44),

n::::; co./iNTi::::; eo . min Jj(N - j) s co12(L,P,P1
). (47)

1=e,e+1

Now we define 1/Jj E Lt' (j = 0, . .. , L - 1) as

. i = { (e + 1)- 1
/ P N 11P if i = j

1/J1 () O otherwise.

We have
SN1/Jj = (P + 1) - 1/p Nl /p-1.

For each u = (uo, ... , UL-1) E {O, l}L define

L-1

fu = L Uj1/Jj· (48)
j=O

Since ~he functions 1/Jj have disjoint supports, the system Uu)uE{O,l}L sat
isfies condit ion (I). Moreover, f u E Bt' whenever lul = f!, f! + 1. Lemma 1,
relation (4 7) and the left and middle part of (46) give

eh(SN, Bt') > ~min {ISNfu - SNfu1 l l lul = e, lu'I = e + 1}

5 Comments

~(e + 1)-1/p N1 /p-1 2 ~(6c(J2n2 N-1)-1 /p N1 /p-1

2/p
eo n-2/pN2/p- 1.

2 . 61/ P

D

Let us first mention that there remains another gap in the order of the
quantity eh(SN, Bt') in all the results of Theorems 1, 2, and Corollaries 1,
2, namely, the region c1 N :S n < !'{. As we mentioned before, we have
e~(SN, B{/) = 0 for n 2 N (classical computation of the sum). Hence filling
this gap means determining how fast e~ (SN, Bt') goes to zero in the region

18

close to classical computation. We did not consider this problem further.
lt is theoretically interesting, but one should also mention that its solu
tion would not say much about the speed-up due to quantum computation:
With an effort, just by a constant factor higher, the problem can be .solved
with the same error (in fact, even up to any needed precision) by classical
computation.

Finally, we discuss the cost of our algorithm in the bit model of computa
tion. Here we assume that both N and n are powers of two. The algorithm
behind Proposition 1 and Corollary 3 needs O(nm") quantum gates (see
Nielsen and Chuang, 2000, Chapter 4, for basics on quantum gates), O(m")
qubits, ancimakes O(n2N- 1/max(log(n/VN) , 1)) measurements to reach
error 0(210g N-m"). The bit cost of the classical computations is negligi
ble as compared to the number of quantum gates: We need O(n2 N- 1m")
classical bit operations to sort out the wrong elements and to add the right
ones. The bit cost of the algorithm in connection with Proposition 2 was al
ready analyzed in Heinrich (2001). lt amounts to O(n log N) quantum gates,
O(logN) qubits, and O(klogk) (which is O(lognloglogn)) measurements.
The number of classical bit operations is O(log n log log n log N), and thus,
again dominated by the number of quantum gates. Summarizing this for the
algorithm of Theorem 3, we see that we can implement it with O(n log N)
quantum gates, on O(log N) qubits, and with

O(n2 N- 1 jmax(log(n/VN),1) + log(N/n) log log(N/n))

measurements. Thus the quantum bit cost differs by at most a logarithmic
factor from the quantum query complexity.

References

[1] D. S. Abrams and C. P. Williams (1999): Fast quantum algo
rithms for numerical integrals and stochastic processes. Techni
cal report, http://arXiv.org/abs/quant-ph/9908083.

[2] R. Beals, H. Buhrman, R. Cleve, and M. Mosca (1998):
Quantum lower bounds by polynomials, Proceedings of 39th
IEEE FOCS, 352-361, see also http://arXiv.org/abs/quant
ph/9802049.

[3] G. Brassard, P. fö1lyer, M. Mosca, anc-1 A. Tapp (2000): Quan
tum amplitude amplification and estimation. Technical report,
http://arXiv.org/abs/quant-ph/0005055.

19

[4] A. Ekert, P. Hayden, and H. Inamori (2000): Basic concepts
in quantum computation. See http://arXiv.org/abs/quant
ph/0011013.

[5] L. Grover (1996): A fast quantum mechanical algorithm for
database search. Proc. 28 Annual ACM Symp. on the The
ory of Computing, 212- 219, ACM Press New York. See also
http://arXiv.org/abs/quant-ph/9605043.

[6] L. Grover (1998): A framework for fast quantum mechan
ical algorithms. Proc. 30 Annual ACM Symp, on the The
ory of Computing, 53- 62, ACM Press New York. See also
http://arXiv.org/abs/quant-ph/9711043.

[7] J. Gruska (1999): Quantum Computing. McGraw-Hill, London.

[8] S. Heinrich (2001): Quantum summation with an applica
tion to integration. Submitted to J. Complexity. See also
http://arXiv.org/abs/quant-ph/0105116.

[9] S. Heinrich (200la): Quantum integration in Sobolev classes (in
preparation).

[10] S. Heinrich and E. Novak (2001): Optimal summation and inte
gration by deterministic, randomized, and quantum algorithms,
Proceedings of the 4th International Conference on Monte Carlo
and Quasi-Monte Carlo Methods, Hong Kong 2000 (to appear).
See also http://arXiv.org/abs/quant-ph/0105114

[11] A. Nayak and F. Wu (1999): The quantum query complex
ity of approximating the median and related statistics. STOC,
May 1999, 384- 393, see also http://arXiv.org/abs/quant
ph/9804066.

[12] M. A. Nielsen and I. L. Chuang (2000): Quantum Computation
and Quantum Information, Cambridge University Press.

[13] E. Novak (1988): Deterministic and Stochastic Error Bounds
in Numerical Analysis. Lecture Notes in Mathematics 1349,
Springer.

[14] E. Novak (1995): The real number model in numerical analysis.
J. Complexity 11 , 57- 73.

20

[15] E. Novak (2001): Quantum complexity of integration. J.
Complexity 17, 2- 16. See also http://arXiv.org/abs/quant
ph/0008124.

[16] A. 0. Pittenger (1999): Introduction to Quantum Computing
Algorithms. Birkhäuser, Boston.

[17] P. W. Shor (2000): Introduction to Quantum Algorithms.

See http://arXiv.org/abs/quant-ph/quant-ph/0005003.

[18] J. F. 'I\'aub and H. Woiniakowski (2001): Path integration on a
quantum computer (in preparation).

[19] J. F. Traub, G. W. Wasilkowski, and H. Woiniakowski (1988):
Information-Based Complexity. Academic Press.

21

