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Abstract: In this paper we deal with locating a line in the plane. If d is a
distance measure our objective is to find a straight line [ which minimizes

f() = Z_: Wd(Exm,, 1)

or
)= md(Ex,,. 1
g() = max, wnd(Ezm,l)
respectively, where w,, > 0 are non-negative weights, Ez,, = (a1, 0m2),m =

1,..., M are the M existing facilities represented by points in the plane and
d(Ez,,, 1) = minpg d(Ez,,, P) is the distance from the existing facility Fz,, to
the line [.

We show that for all distance measures d derived from norms, one of the lines
minimizing f(/) contains at least two of the existing facilities. For the center
objective we always get an optimal line which is at maximum distance from at
least three of the existing facilities. If all weights are equal, there is an optimal
line which is parallel to one facet of the convex hull of the existing facilities.

1 Introduction

Path location is an extension of classical facility location. As in the usual prob-
lems we have a set Ex = {Fxy, Exg, ..., Exp} of existing facilities in the plane
with non-negative weights w,, for all m € M := {1,2,..., M} representing the
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importance of the existing facilities. Instead of a single point we want to locate a
dimensional facility such as a line or a curve in the plane. The objective function
is the same as in classical facility location, namely to minimize the distances (av-
erage distances or maximum distance) between the existing facilities and the new
one. A recent survey about the location of dimensional structures in the plane

can be found in [Mes95].

One application is for example the planning of new railways or motorways, where
the existing facilities can be cities and the weights represent the number of their
inhabitants. Path location can also be used to determine the location of pipelines,
drainage or irrigation ditches or in the field of plant layout, see for example

[MNS0].

The mathematical formulation of the problem is as follows. Given a distance
function d and the index set

M={1,2,... M}
the set of existing facilities
Ex ={Fx, Ex,,...,Exp}, Exy = (am1, am2) for all m € M
and non-negative weights w,, > 0 for all m € M we are looking for a line
lps={z:2=P+As,\ € R}

dependent on P,s € R? such that we minimize one of the following objective
functions:

Median-Problem:

Center-Problem:

g(l) := max w,d(Fzn,,l)

me

where

d(Ezm,!l) == mind(Ez,,, P)

Pel

The optimal lines are called 1-line-median or 1-line-center respectively and are
denoted by [*. We also define W :=3" .\ w,, as the sum of all weights.

In the following we use the classification scheme of [HN93] in which our prob-
lem can be written as 11/P/ - /d/Y" and 11/P/ - /d/ max, respectively, meaning



in short that we want to locate one line (1/) in the plane (P) with no special
assumptions (-), using the distance measure d and minimizing f(I) (3) or ¢(I)
(max) respectively.

In the next section some known results for Fuclidean, rectangular and block norm
distances are briefly described. In the main part in Section 3 these results will be
extended to arbitrary norms. Section 4 summarizes the results and gives some
algorithmic approaches to solve the problem.

2 Results for some special distances

A lot of research has been done for the case that the distance function d is the [
or the I, metric. In this paper we are dealing with the following statements:

Med1: There exists a 1-line-median passing through at least two of the existing

facilities

Med2: Every 1-line-median [* fulfills

w
Z W, S a
Ea;mEBl_* 2
W
Ezp,eBY,

where B;. and Bjt are the two halfplanes of R? separated by the line [*
(without the line [* itself).

Cenl: There exists a 1-line-center which is at maximum distance from at least
three of the existing facilities.

Cen2: If the weights are all equal, there exists a 1-line-center which has the same
slope as one of the facets of the convex hull of the existing facilities.

A line [ passing through at least two of the existing facilities and fulfilling
> Bomes- Wm < W and 2 Bomebt Wm < 1W is called a halving line, see [KM93].

The main results for locating lines in the plane which are known so far can now
be stated.

2.1 Euclidean distances
For the Euclidean distance Med1l, Med2, Cenl, and Cen2 are true.

At least three different proofs for Med1 can be found in [MN80], [MT83], [KM90]
and [LMWS8S]. The first three papers also proof Med2. Proofs for Cenl and Cen2
can be found e.g. in [MN83].



2.2 Rectangular distances

For rectangular distances and a line [ := {(z1,23) : o = Sz + b} C R?* (with
5,b € R) we get:

LW(FEz,, ) = min{dne (Exm, 1), dyer (Fxm, 1)}

where

|~

dhor(Exma l) = | | |‘§am1 — Gm2 t b|

S
dver(E:Em; l) = |§am1 — Upa + b|

R

Let us call dj,, and d,., the horizontal and vertical distance between the existing
facility and the line. They will be important in the next section. Note that which
of dp,, and d,., is the smaller one is only dependent on the slope § of the line [
and is independent of the existing facilities and of the value of b. In the above
formulas the case of a vertical line is neglected. If not all existing facilities have
the same z1-coordinate all vertical lines [ lead to dye,(Ex,,, 1) = oo for at least
one m € M and need not be considered any more. On the other hand, it is
possible that a vertical line minimizes horizontal distances. We do not discuss
that case here, because the usual solution approaches transform the horizontal
line problem into the vertical line problem (or vice versa), such that it is enough
to study d,.,.

The problem 11/ P/ - /d,.,/ Y is known in statistics as Lj—approximation whereas
11/ P/ - |dyer | max is called Chebyshev or L.,—approximation in two variables.

To prove the statements for rectangular distances 1t 1s sufficient to show that they
hold for horizontal and vertical distances. We formulate that as a lemma (which
will be needed later).

Lemma 1 For d,., the statements Medl, Cenl, and Cen2 are true.

Med1 is shown in [MT83]. [MN83] gives a proof for Cenl; an earlier proof for
Cenl and Cen2 can be found in [Sha78].

Lemma 2 For d,., Med?2 is true.

Proof: Suppose [ = {(z1,23) : x3 = 321 + b} is optimal, but

1

EzmeB Mitm2 >5am1 +b
Then we choose h € R such that A > 0 and

{m : ama > 8a,1 + b} = {m: aypa > Sa,,1 + b+ h}
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Evaluating I, = {(x1,22) : ©2 = 321 + b+ h} leads to

f(lh) - Z wm|§am1 _am2+b+h|‘|’ Z wm|§am1 —Clm2—|—b—|—h|
M iAo >5am1 +b Mim2<8am1+b
= Z wm(|§am1 _am2+b| _h)‘l’ E wm(|§afm1 _am2+b|+h)
M2 >8Am1 +b M2 <8am1+b
= f(l)+h( Yoo W= Y wm)<f(l)
M2 <5am1+b M iAo >8am1 +b

contradicting the optimality of [. q.e.d.

Lemma 1 and Lemma 2 are also true for horizontal distances d,, such that we
can conclude:

For rectangular distance Medl, Med2, Cenl, and Cen2 are true.

2.3 Block norm distances

The statements Medl and Cenl were extended to block norm distances in [Sch96].
With similar proofs, Med2 and Cen2 can be shown to be true for block norms.

3 Locating a line with arbitrary norms

Let B be a convex compact set in the plane containing the origin in its interior.
Moreover let B be symmetric with respect to the origin and let x be a point in
the plane. The gauge

ve(z) == min{|A| : € AB}

then defines a norm with the unit circle B. On the other hand we know from
[Min67] that all norms can be characterized by their unit circles.

We repeat that the distance between a point Fz,, in the plane and a line

[=lpo,:={z € R*:2=Xs+ P°, X\ € R} is defined as

d(Ezx,,, 1) = min d(Ez,,, P)

In [MT82] it is shown that to locate r lines in the plane is NP-hard for all distances
derived from norms. In the following we will prove that for r = 1 this problem is
polynomially solvable.

As a first result we note, that to determine the distance between a point Fz,,
and a line [ we can increase the unit circle around Ez,, until it touches the line.



Lemma 3 For any norm d with unit circle B, any line [, and any point Fx,, in
the plane it holds that

d(Exy, 1) = min{|\| : (Ez,, + AB)N 1 # (}
Proof:
d(Exn,,l) = rlrjlérlld(Exm, P)
= minmin{|A|: P — Ez,, € AB}
Pel
= rIrjléermin{|)\| :Pe B+ Ezx,}
= min{|A|: 3P € [ such that P € AB + Ez,,}
= min{|A|: (Fz,, + AB)NIl#0} q.ed.
Let d be any metric derived from a norm. The problem that we want to solve in

this paper can now be written as:
Find a line [ minimizing

f) = Y wnd(Eay, 1)

meM
or
g(l) = max w,d(Ezn,, )
me
respectively.

In the classification scheme of [HN93] (see Section 1) we can write the problems
as 1I/P/ - /norm/ Y and 1{/P/ - [norm/ max, respectively.

To prove Med1, Med2, Cenl, and Cen2 for these location problems we first need
to define another location problem, which can easily be solved.

Definition 1 Let t € R? be a given direction. For lwo points x,y in the plane
we then define

di(z,y) = v(y — )

() = { la] ifx=at

where

oo else

Note that +; can be infinity and therefore does not define a norm, but fulfills for all
z,y € R* and all o € R that v(z) > 0, y4(z) = 0 < z = 0, y(az) = |a|y(z)
and the triangle inequality. In the following we define the distance between a
point Kz, and a line [. That definition is derived from Definition 1 which will
formally be stated in Lemma 4.

Definition 2 For Fz,, € R?,t € R* and any line | C R* define
di(Exm, ) ;= min{|A| : Ez,, + M € [}

where min() := oco.



Lemma 4 For all t € R* and for all Ex,, € R* we gel that
di(Ezy, 1) = r]gléllth(Exm, P)
Proof: The result follows from the proof of Lemma 3 with
B:={X=XM:|\<1}. q.e.d.
If | = lp, is a straight line and [5(¢) the Euclidean length of ¢t € R* we get

l2<1§;(;3"°?> with Q € INlgy,: 1015y, =1
di(Exp, 1) =14 0 if 1N gg,, | = o0

0. @] 1flﬂlEIm,t:@

Note that 0 < di(FEz,,,l) < oo if and only if s and ¢ are linearly independent
vectors. The next figure shows the meaning of Definition 2 for the case that [ is

a straight line. L’

lEl'm751

As examples we get that the length of the horizontal line from Fx,, to [ then
is dey (Exm, 1) = dpor(E2,, 1) and the length of the vertical line is d.,(Ez,,,[) =

dyer (B2, 1), where €1 and ey are the unit vectors

(1) =()

We can now define the following location problems (1I/P/-/d;/> and
11/ P/ - /d;/ max, respectively): For a given ¢ € R? find a line /; minimizing

f(l) = Z Wy di (B, 1)

meM



or
g(lt) = nr?eaMX wmdt(E'r'n”m lt)

respectively.

To extend the results of Section 2 to arbitrary norms, we will prove that for any
distance d derived from a norm v and any line with fixed slops s there exists a
t € R? such that

d(Exm,l) = di(Ex,,, 1) for all m € M.

That means when evaluating the objective functions f(I) or g() respectively, we
can replace d by d;. The next lemma shows how to find an optimal line [ when
the used distance is of the type d;.

Lemma 5 Let p,q € R* and D be a linear transformation with
1. D(p) = q
2. det(D) #0

Then we have for all Exz,, € R*

dy(D(Ez), D(1)) = dy( By, 1)
where D(1) := {D(P): P € I},
Proof: To prove that result we first show that

d,(D(z), D(y)) = dy(z,y) for points z,y € R?

Case 1: d,(z,y) =@ < oo : That means, z — y = ap with |a| = @ and we get

dy(D(z), D(y)) = ~(D(y) — D(z))
= 7%(D(y — 7))
= 7(D(ap))
= v(aD(p))
= vlag) =la|=a

Case 2: d,(z,y) = oo : Then we know that z —y and ¢ are linearly independent,
which means that also D(z —y) and D(¢) are linearly independent (because
det(D) # 0) and we get

dy(D(z), D(y)) = o0



With Lemma 4 we now can conclude that for a line [ and any point Fz,,
4,(D(Ew,), D) = mind,(D(Ew,), D(P))
€

= I]Ijlgldp(ELEm,P) =d,(Ez,,l) q.ed.

We can use that result to transform 11/P/ - /d;/>. and 1I/P/ - /d;/ max to the
corresponding vertical line problems, which have been described in Section 2. As
a consequence we get:

Theorem 1 For all distances d; Medl, Med2, Cenl, and Cen2 are true.
Proof: Using Lemma 5 with p = ¢ and ¢ = e; we get that
de,(D(Fxy,), D() = di(Exp,l) (%)
such that we have for the objective functions f(I) and g(/)
[ is optimal for d; and Ex <= D(I) is optimal for d,., and D(Ex)

For d,., we know from Lemma 2 and Lemma 1 that Med1, Med2, Cenl, and Cen2
are true. It remains to show that those properties are not changed by applying
the transformation D. Due to the continuity of D we get

D(boundary(A)) = boundary(D(A)) ()
Med1: Because of (*) we have that
Ez, €l < D(Ez,) € D(I)

that means, D(!) is passing through at least two different points D(FEzy)
and D(FEz;) if and only if [ is passing through at least two of the existing
facilities.

Med2: Because det(D) # 0 we know that
Ez,, € By < D(Fz,,) € D(B])

With (#*) we conclude that D(B;) € {523(1)7 Bpy}- That means two points
Ex,, Exg lie on the same side of [, if and only if D(Ex,,) and D(Fzy) lie
on the same side of D(I).

Cenl: An immediate consequence of (%) is that
di(Exg,l) > di(Exy, ) < d.,(D(Fx), D(1)) > d.,(D(Ex,,), D(1))

enforcing that [ is at maximum distance from at least three of the existing
facilities if and only if D(/) is at maximum distance from at least three
points € D(Ex).



Cen2: From (xx) it follows that f is a facet of a set A if and only if D(f) is
a facet of D(A). Because of (%) it holds that d(Fzy,l) = d(Ex,,,!) if and
only if d(D(FExy), D(1)) = d(D(Ex,,), D(l)) such that we can conclude:

[ has the same slope as one of the facets (say between Exy and Fx,,) of the
convex hull of the existing facilities if and only if D([) has the same slope
as one of the facets (between D(Fzy) and D(Ex,,)) of the convex hull of
the transformed existing facilities D(Ex). q.e.d.

To solve 11/P/ - /d;/ Y we can proceed as follows: We choose a matrix D with
D(t) = ey and det(D) # 0. Then we define Dz, := D(Fx,,) for all m € M.
With the new set of existing facilities Dxq, ..., Dz,, we solve the vertical line

problem. Denote the optimal solution by *. Then D~!({*) is an optimal solution
of 1{/P/ - /d;/ . The same can certainly be done for 1{/P/ - /d;/ max.

Lemma 6 Let a slope s € R? be given. Let v be a norm or v = ~; for some
vector t € R*, with t and s linearly independent and let d(z,y) = v(y — x) be the
corresponding distance. Then there exists a constant C' := C(s,d,l3) such that
for all P € R? and all Ex,, € R*

d(E.TL‘m, lp75) = C ZQ(E.TEm, lpﬁ)

Proof: Consider at first Kz, = 0. For a fixed point Fy, Fy and s linearly inde-
pendent, we know that 5(0,1p,5) # 0 and 0 # d(0,[p, s) < oo and therefore we
find a real number C' # 0 such that d(0,(p, ) = Cl3(0,lp, ). Now we look at a
line [ = lps # lp, s. Because Fy and s are linearly independent [ can be written
as [ps with P = BB, for a real number 3.

Bd(0,1lp, s) = ﬂ&gg{s d0,Q) = ranellr%lﬁd((), as+ Fy)

= Enei]r% By(as+ Py) = E%i£7(ﬂas + 8F)
= mi%'y(o/s + P)=4d(0,lps)
a'e

— d(0,lps) = Bd(0,1p,s) = BCIL(0,1p, s) = Cly(0,lps)

using the above equation for both d and l,. For any point Ex,, # 0, Ex,, € R?
we finally get:

d(Exm,lps) = min d(Fzn,,Q)

QE€Elp,;
= mmd(E;L'm,ozs + P)
= mmd(() as+ P — Ex,,)
= d0,"Ywithl'={z:2=as+ P — Ex,}
= ('l3(0,1') because the slope of I’ remains s

= Cl(Exm,lps) qed.
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Note that in Lemma 6 the properties of the Euclidean distance [; have not been
used, such that /; can be replaced by any other distance derived from a norm or
by distances derived from 4; with ¢ and s linearly independent. If dy, ds, and dj
are such distances we get that

0(87 d17 dS)

C(s,dy,ds) = C(s,da, do)

If Il = {(21,22) : 9 = 321+ b}, 5,0 € R, 3§ # 0 we get as example (see Section 2)
that:

1 .
C(( 3 ) 7dho7’7due7’) — |S|

Theorem 2 For a given slope s € R? all 1-line-medians with slope s, thal means
the straight lines lps s minimizing

min f(lp;)

PeR?

are the same for all distances d derived from norms and distances d;. The result
also holds for the 1-line-centers with fixed slope s.

Proof: The result follows directly from Lemma 6. q.e.d.

The connection between any norm + (with the derived metric d(z,y) = v(y — z))
and the distances d; becomes clear in the following lemma.

Lemma 7 Let v be a norm and d the corresponding distance. Let Fx,, € R?
and [ be a straight line. Then we have:

d(Fz,,l)= min d(Ex,,[)

teER? ~(t)=1
Proof: Because of Lemma 3 we know that
d(Ex,,,1) = min{|\| : Bz, + \BNI1#0} =:)\°

That means there exists t° € R? with 'y(to) =1 such that Ez,, + \%t° € [. (Note
that 4(¢) = 1 if and only if ¢ € boundary(B).) Using the definition of dy, that

means:

d(Exm,l) = do(Frm,l)
For all ¢ with ~(#') = 1 we can calculate that

dy(Ezm,l) = min{|\: Ez, + X' €1}
> min{|A|: Ez,, + A\ABN 1 # 0}
= d(Fz,,l) using Lemma 3 again  q.e.d.
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Lemma 8 Let v be a norm and d the corresponding distance. Let [ be a straight
line with slope s € R?. Then there exists t € R? such thal

d(Ez,,, 1) = di(Ez,,,1) for all Ex,, € R?

Proof: Let Ez,, be one fixed existing facility. According to Lemma 7 we can find
u € R? such that v(u) =1 and

d(Ex,, 1) = d(Ex,, 1) < di(Ez,, 1) for all t € R?
Now suppose there exists k € M and v € R?* with v(v) = 1 and
d(E:Z?k, l) = dU(ELEk, l) < du(E.I'k, l)

Note that  and s (and v and s) are linearly independent, because d( Ex,,, ) # oo
(d(Exg,l) # o0). With Lemma 6 we know that there exists C' := C(s, d,, d,) such
that

dy(Ezy,l) = Cdy(Exy, 1) and dy(Fz,,, 1) = Cd,(Ex,,, 1)
yielding C' > 1 in the first case and C' < 1 in the second case, which is impossible.
q.e.d.

Theorem 3 The statements Medl, Med2, Cenl, and Cen2 hold for all distances
d derived from norms.

Proof:

Med1: Suppose [* is an optimal line, but does not pass through at least two of
the existing facilities. Choose t* such that d(Fz,,,[*) = dp(FEz,,, [*) for all
m € M according to Lemma 8.

Because of Theorem 1 we know that Medl holds for 11/P/ - /di/ 3, such
that we can choose [° minimizing the distance dy+» and passing through at
least two of the existing facilities.

Now let ¢° such that d(Ez,,,1°) = dw(Ex,,,[°) for all m € M according to
Lemma 8 again. Then we get:

[) = % wad(Bay, )

meM

= E Wy dps (B, )
meM

Z wmdt* (E.Tm7 ZO)
meM
E Wy dw (Ez,,,1°) because of Lemma 7
meM
= E 'U)md(EfEm,lo>
meM
= f(I°) > f(I*) because of the optimality of I*

v

v
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That means [° is an optimal line, too, which passes through at least two of
the existing facilities, which completes the proof.

Cenl and Cen2: The proof of Cenl and Cen?2 is the same as the proof for Med1.
By replacing Y~ by max in the above formulas and using the property to be at
mazximal distance from at least three of the existing facilities for Cenl, and
to pass through one facet of the convex hull of the existing facilities for Cen2
instead of passing through at least two of the existing facilities in the above
proof we analogously construct a line [° for that we get g(I*) > ¢(1°) > g(1*).

Med2: We assume that thereis a 1-line-median [* with 3" - wy, > % With
m l*
the same notation as in the proof of Medl we know from Theorem 1 that
any line [° minimizing d; fulfills

E wmggand Z Wy, <

Bzm€Byg EazmeBng

W
2

Therefore we get:

F) = Y wnde (B, )

meM

> Z wmdt*(El'm,lO)
meM

> f(I°

contradicting the optimality of [*. q.e.d.

4 Algorithms and Conclusions

For [y and [ metric a lot of algorithms have been developed. The 1-line-median
for I3 can be found in O(M?*logM) or in O(M?) time (see [MT83] and [LC85]).
For I; an O(Mlog*M) algorithm is proposed in [MT83], whereas the algorithm
given in [Zem84] runs in linear time. The I-line-center problem can be solved in

O(MlogM) time in the Euclidean case ([HIIR89]) and for {; in O(M) time via
linear programming ([Meg84]).

For distances d derived from block norms with G extreme points [Sch96] proposes
an O(G'M)-algorithm for the median problem and also an O(G'M)-algorithm for

finding a 1-line-center.

In this paper we dealt with the line-location-problem where the distance function
is derived from an arbitrary norm and could extend some properties to that case.
One result 1s that there always exists a 1-line-median, passing through at least
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two of the existing facilities. That easily proposes an O(M?) algorithm, checking
all pairs of existing facilities. The complexity of that algorithm certainly can be
reduced, using the fact that the 1-line-median has to be a halving line, such that
not all pairs of existing facilities have to be evaluated.

For center problems there always exists an optimal line which is at maximum
distance from at least three of the existing facilities, such that it is possible to
find a 1-line-center in O(M*) time by enumerating all triples of existing facilities.
If all weights are equal, one of the optimal lines has the same slope as one facet
of the convex hull of the existing facilities. That result means that it is enough
to determine the convex hull of the set of existing facilities which leads to an

O(MlogM) algorithm.
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