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Abstract 
The Tree and Christofides heuristic are weil known 1- and t- a.pproximate a.lgorithms for 

the 6.-TSP. In thi.s note their performance for the multicriteria. ca.se ia described, depending 
on the norm in JRQ in case of Q criteria. 

1 Algorithms 

Let G be a complete graph on n nodes and w : E( G) - R~ be a Q-criteria weight function. We 
assume that the triangle inequality is fulfilled, i.e. w(ik) $ w(ij) + w(jk) for all nodes i,j,k of 
G. Furthermore we assume that 11·11: IRQ - IR is 'a monotonous norm on IRQ. Hence !lall$ llbll 
whenever a $ b for a, b E IRQ, where the order on IRQ is the commonly used componentwise 
order. We first state the extensions of the two algorithms for the case of Q criteria and will then 
investigate their peformance. In the following text we will always abbreviate feasible Travelling 
Salesman tours by TS-tours. The weight of a TS-tour T is w(T) = (w1(T), ... wQ(T)) where 
w;(T) = LeeE(T) w;(e). 

Tree algorithm 

Step 1 
Step 2 
Step 3 

Let 'i' E argmin {llw(T)lllT is a spanning tree of G} 
Let G' = (V(G), E'), where E' consists of two copies of each edge of T 
Find an Eulertour ET in G' and a TS-tour HT embedded in ET. 

As 'i' is a spanning tree of G it follows that G' is Eulerian. lt is then possible to find a TS-tour in 
O(n2) time. 

Christofides algorithm 

Step 1 
Step 2 

Step 3 
Step 4 
Step 5 

Let 'i' E argmin {llw(T)lllT is a spanning tree of G} 
Find all nodes in T of odd degree 
Define o• :=(V•, E•) where 
v• = {v E V(G)lv has odd degree in 'i'}, E• = {(u,v)lu,v E v•} 
Let M E argmin {llw(M)lllM is a perfect matching of o·} 
Let G" = (V(G), E(M) u E(T)) 
Find an Euler tour ET in G" and the TS-tour HT embedded in ET 

Note that G• is a complete graph on a subset of nodes of G with even cardinality. Thus it contains 
a perfect matching. Again the resulting graph G" is Eulerian. Validity of both heuristics, i.e. that 
they produce a TS-tour, is shown as in the one criterion case and can be found in [5]. The 
Christofides algorithm was first published in[l]. Note that the triangle-inequality is used when 
constructing a TS-tour from an Euler tour in G' and G", respectively. 

•Partially aupported by a grant of the Deut.ehe Forschungs Gemeinschaft and grant ERBCHRXCT930087 of 
the European HC&M Programme 
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2 Results 

The concept of optimality we use in this note is that of pareto optimal TS-tours. A TS-tour PT is 
said tobe pareto optimal if there does not exist another TS-tour T such that wi(T) $ w,(PT) for 
all i = 1, . . . Q, with strict inequality in at least one case. In general there obviously exist several 
pareto optimal tours for an instance of the multicriteria ä-TSP 
We will give two definitions of f-approximate toure, the first is as follows. 

Definition 1 Let HT be a heuristic TS-tour and PT be a pareto optimal TS-tour, then HT is 
an l-approximate tour if 

lllw(HT)ll- llw(PT)lll < 
llw(PT)ll - l 

Theorem 1 The Tree algorithm proviclea a tour HT, which ia a 1-approximate tour /or any pareto 
optimal tour PT. 

Proof: 
We have to show that -llw(PT)ll $ llw(HT)ll- llw(PT)ll $ llw(PT)ll. Since the first inequality 
is trivial we look at the second. From the algorithm w(HT) $ 2w(f') = w(G'), hence 

llw(HT)ll $ 2llw(f')ll (1) 

since the norm is monotonous. By the choice of T: 

llw(f')ll $ llw(PT)ll (2) 

since removing one edge from PT yields a spanning tree of G. By {1) and {2) we have 

llw(HT)ll $ 2llw(PT)ll (3) 

· and the claim holds. 

0 

Lemma 1 Let PT be a pareto TS-tour. Then there eziata aome 6 E [O, 1] auch that llw(PT)ll ~ 
{1 + c5)llw(M)ll where M is the perfect matching of Step 3 in the Christofidea algorithm. 

Proof: 
Let { i 1 , ••• i 2m} be the odd-degree nodes of the spanning tree f' as theyappear in PT, i.e. 

where ai are possibly empty sequences of nodes. Let Mi = {[i1 1 i2], [ia, i4], ... [i2m-1, i2m]} and 
M2 = {[i2, ia], [i4, i5], ... [i2m, iil}· Then by the triangle-inequality w(PT) ~ w(M1) + w(M2). 
Now if w(M) $ w(M1), w(M) $ w(M2) it follow1 that llw(PT)ll ~ llw(M1) + w(M2)ll ~ 
2llw{M)ll· Otherwise atJeast llw(M1)ll ~ llwlM)ll and.l1w(M2)1l ~ llw{M)ll and hence llw(M1)+ 
w(M2)ll ~ max{llw(M1)ll, llw(M2)l1} ~ llw(M)ll. 

0 

Given a pareto optimal TS-tour PT we denote the maximal 6 E [O, 1] for which llw(PT)ll ~ 
(1 + c5)llw(M)ll holds by o(PT). 

Theorem 2 Let PT be a pareto optimal TS-tour. Then the TS-tour HT of the Christofides 
algorithm is a i+6CPT) -approximate tour. 
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Proof: 
We have that llw(HT)ll $ llw(G")ll = llw(f') + w(M)ll $ llw(f')ll + llw(M)ll· By Lemma 1 

- 1 
llw(M)ll $ l + 6(PT) llw(PT)ll (4) 

Hence (2), which holds here, too, and ( 4) imply 

llw(HT)ll $ llw(PT)ll (1 + l ! 6) · (5) 

0 

Theorems 1 and 2 show that the bounds guaranteed by the two heuristics carry over from the 
one criterion to the multicriteria case, with a weaker result for the Christofides algorithm, when 
Definition 1 is used. 
Nevertheless a more intuitive definition of c-approximate solutions for multicriteria problems is 
the following. 

Definition 2 Let HT be a heuristic TS-tov.r and PT be a pareto optimal TS-tour, then HT is 
an c-approximate tour if 

llw(HT)- w(PT)ll < 
llw(PT)ll - c 

Note that if HT is an c-approximate tour in the sense of Definition 2 it is so in the sense of of 
Definition 1. 

J. 

We will now restrict ourselves to lp-norms, i.e.ll:r:ll = (E?:1 lzilP) • for z E RQ, which of course 
are monotonous norms. 

Lemma 2 If a;, b; ~ 0 i = 1 ... Q p ~ 1 then 

(t la; - b;IP) t :$ (E<cll + ~>) t 
•=1 i=l 

Proof: 
Without loss of generality we may assume ai ~ bi i = 1, .. . Q. Hence ja; - b;I = a; - b; $ a; and 
la; - b;IP $ af $ af + bf. 

0 

Theorem 3 For the second definition of c-appro:r:imate aolution the following hold. 

1. The TS-tour HT of the Tree algorithm ia a (2P + 1) *-approximate tour for all pareto optimal 
TS-tours PT. 

2. For any pareto TS-tour PT the Christofidea algorithm gives a TS-tour HT which is a 
1. 

( ( 1 + t+6CPT) Y + 1) • -approximate tour. 

Proof: 

l. 

llw(HT) - w(PT)ll 
llw(PT)ll 

= 
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= 

< 

l. 

(L?:i ((w,(HT))" + (w1(PT))")) • 
l. 

(E?:1 (w,(PT))") • 

(
llw(HT)llP + llw(PT)i!P) t 

llw(PT)i!P 

(
2Pllw(PT)l!P + llw(PT)llP) t 

llw(PT)i!P 

= (2P + l)t 

where the first inequality follows from Lemma 2 and the second from (3). 

2. Analogously 

llw(HT) - w(PT)ll 
llw(PT)ll 

= 

( 
(mY llw(PT)llP + llw(PT)llP) t 

llw(PT)i!P 

((
2+cS)p )t 
l+cS + 1 

where we made use of (5) and again of Lemma 2. 

0 

Thus for p - oo the Tree algorithm gives a 2-approximate tour, the Christofides algorithm a 

( 1 + rtr )-approximation. These values could be calculated dirctly using llzlloo = ma.xc:i. .. Q lzd 
in Theorem 3. 
The first part of Theorem 3 as well as Theorem 1 are from a thesia of the second author [2). Figure 

l. p l. 
1 shows the values of ((p) = (2P + 1) • and ((p) = (J + 1) •, i.e. cS = 1. For cS = 0 both values are 
the same. 

3 Remarks 

Another possibility to define (-approximate solutions would be to require 

lw1(HT) - w1(PT)I < . _ 1 q 
lw1(PT)I - ( 1 

- ' „. 

But there is no known procedure to guarantee that even for a given pareto TS-tour PT. Note 
that equations (2), (4) do not hold componentwise in general. 
Another remark is on the problem of finding a norm-minimizing spanning tree or perfect matching, 
which are essential steps in the two algorithms. 
In case llzll = llxll1 = L?:i lz1I we have that for S ~ E llw(S)ll = L?:i Lees w1(e) = 
Eees ( E?:1 w1( e)) and can solve the tree and matching problems as one criterion problems 

with w'(e) = L~i w9 (e), and thus in polynomial time. 
In case llxll = llxlloo = max lx1I, however, llw(S)ll = maxt:l. .. Q Lees w1(e) and to find a norm 
minimizing spanning tree or matching is the Max-Ordering spanning tree and Max-Ordering 
matching problem. Both of these problems are known tobe NP-hard, see [3) and [4). 
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Figure 1: Performance guarantee for lp norme 
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