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Abstract

The Tree and Christofides heuristic are well known 1- and %— approximate algorithms for

the A-TSP. In this note their performance for the multicriteria case is described, depending
on the norm in R9 in case of Q criteria.

1 Algorithms

Let G be a complete graph on n nodes and w : E(G) — Rf be a Q—criteria weight function. We
assume that the triangle inequality is fulfilled, i.e. w(ik) < w(ij) + w(jk) for all nodes 1, j, k of
G. Furthermore we assume that ||.|| : R9 — R is'a monotonous norm on RR?. Hence ||a|| < ||3]|
whenever a < b for a,b € R9, where the order on IR9 is the commonly used componentwise
order. We first state the extensions of the two algorithms for the case of Q criteria and will then
investigate their peformance. In the following text we will always abbreviate feasible Travelling
Salesman tours by TS-tours. The weight of a TS-tour T is w(T) = (wy(T),...wq(T)) where
wi(T) = Leep(ry wile)-

Tree algorithm

Step 1  Let T € argmin {||w(T)|||T is a spanning tree of G}
Step 2  Let G’ = (V(G), E’), where E’ consists of two copies of each edge of T’
Step 3  Find an Eulertour ET in G’ and a TS-tour HT embedded in ET.

As T is a spanning tree of G it follov?s that G’ is Eulerian. It is then possible to find a TS-tour in
O(n?) time.

Christofides algorithm

Step 1  Let T € argmin {||w(7T)|||T is a spanning tree of G}
Step 2  Find all nodes in T of odd degree
Define G* := (V*, E*) where
V* = {v € V(G)|v has odd degree in T}, E* = {(u,v)|u,v € V*}
Step 3  Let M € argmin {||w(M)|||M is a perfect matching of G*}
Step 4 Let G = (V(G), E(M) U E(T))
Step 5  Find an Euler tour ET in G” and the TS-tour HT embedded in ET

Note that G* is a complete graph on a subset of nodes of G with even cardinality. Thus it contains
a perfect matching. Again the resulting graph G” is Eulerian. Validity of both heuristics, i.e. that
they produce a TS-tour, is shown as in the one criterion case and can be found in [5]. The
Christofides algorithm was first published in[1]. Note that the triangle-inequality is used when
constructing a TS-tour from an Euler tour in G’ and G”, respectively.
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2 Results

The concept of optimality we use in this note is that of pareto optimal TS-tours. A TS-tour PT is
said to be pareto optimal if there does not exist another TS-tour T such that wi(T") < w;(PT) for
all i = 1,...Q, with strict inequality in at least one case. In general there obviously exist several
pareto optimal tours for an instance of the multicriteria A-TSP

We will give two definitions of e-approximate tours, the first is as follows.

Definition 1 Let HT be a heuristic TS-tour and PT be a pareto optimal TS-tour, then HT is
an e-approzimate tour if

(Tl - [lw(PT)|I
W@ ¢

Theorem 1 The Tree algorithm provides a tour HT, which is a 1-approzimate tour for any pareto
optimal tour PT.

Proof:

We have to show that —||w(PT)|| < ||w(HT)|| - ||w(PT)|| < ||w(PT)||. Since the first inequality
is trivial we look at the second. From the algorithm w(HT) < 2w(T') = w(G"), hence

llw(HT)|| < 2llw(T)|| (1)
since the norm is monotonous. By the choice of T
llw(D)|l < llw(PT)|| )
since removing one edge from PT yields a spanning tree of G. By (1) and (2) we have
llw(HT)|| < 2||w(PT)|| 3)
‘and the claim holds.
o

Lemma 1 Let PT be a pareto TS-tour. Then there ezists some 6 € [0,1] such that ||w(PT)|| >
(14 8)||w(M)|| where M is the perfect matching of Step 3 in the Christofides algorithm.

Proof:
Let {i1,...i2m} be the odd-degree nodes of the spanning tree T as theyappear in PT, i.e.

PT = aoilaliz .o .azm_ﬁzmagm

where «; are possibly empty sequences of nodes. Let My = {[i1,13), [i3,144),...[i2m—-1,92m]} and
M; = {[ia, i3), [i, i5], - - - [i2m, 4]} Then by the triangle-inequality w(PT) > w(M1) + w(M3).
Now if w(M) < w(My), w(M) < w(M;) it follows that ||w(PT)|| > ||w(M1) + w(M3)|| >
2||w(M)||. Otherwise at least ||w(M;)|| > ||w(M)]|| and ||w(M3)|| > ||w(M)|| and hence ||w(M;)+
w(Mz)|| 2 max {|[w(My)|], ||w(M3)|[} 2 [lw(M)]|.

0

Given a pareto optimal TS-tour PT we denote the maximal § € [0,1] for which ||w(PT)|| >
(1 + 6)||w(M)]|| holds by 6(PT).

Theorem 2 Let PT be a pareto optimal TS-tour. Then the TS-tour HT of the Christofides
algorithm is a ﬁz—%pﬂ-approzimate tour.



Proof:
We have that [[w(HT)|| < [[w(G")|| = llw(Z) + w(F)|| € [lw(T)|| + [[w(#)||. By Lemma 1

= 1
[lw(M)|| < T(PT)”ID(PT)” (4)
Hence (2), which holds here, too, and (4) imply
1
(D)l < w(PDI (1+ 1) - ©)
0

Theorems 1 and 2 show that the bounds guaranteed by the two heuristics carry over from the
one criterion to the multicriteria case, with a weaker result for the Christofides algorithm, when
Definition 1 is used.

Nevertheless a more intuitive definition of e-approximate solutions for multicriteria problems is
the following.

Definition 2 Let HT be a heuristic TS-tour and PT be a pareto optimal TS-tour, then HT is
an e-approrimate tour if
lw(HT) - w(PT)|| _
lw(PT)]| -

Note that if HT is an e-approximate tour in the sense of Definition 2 it is so in the sense of of
Definition 1.

1
We will now restrict ourselves to lp-norms, i.e.||z|| = (E&l |z.-|’) " for z € R9, which of course
are monotonous norms.

Lemma 2 Ifa;,b; >0 i=1...Q p>1 then

i i

(i ot~ b-l") "< (qu(ai-’ 4 b:?)) '

=1 i=1
Proof:
Without loss of generality we may assume a; > b ¢=1,...Q. Hence |a; — b;| = a; — b; < a; and
la; = bilP < af < af + 0.
(m]

Theorem 3 For the second definition of e-approzimate solution the following hold.

1. The TS-tour HT of the Tree algorithm is a (2° + 1)%-approm'matc tour for all pareto optimal
TS-tours PT.

2. For any pareto TS-tour PT the Christofides algorithm gives a TS-tour HT which is a

((1 + m%m)P + 1)% -approrimate tour.
Proof:

1.

lw(HT) — w(PT)|| _ (E?:x lwi(HT) - w-(PT)I’) 7
llw(PT)I| (E?=  (wi( PT)),) 3




(S (EDY + @D’
(T, (w(pmyy)’

(nw(m*)uv + ||w(PT)||P) ’
lw(PT)P

(wuw(PT)u' + ||w(PT)nv)*
Tw(PT)|P

IA

= (2P+1)7
where the first inequality follows from Lemma 2 and the second from (3).

2. Analogously

IA

lw(HT) - w(PT)| (35) lle(PT)IP + llw(PT)IP *
Iezall Tw(PD)IP

i
2+6\° ’
((53) )
where we made use of (5) and again of Lemma 2.

o

Thus for p — oo the Tree algorithm gives a 2-approximate tour, the Christofides algorithm a

(1 + ﬁ;)-approximation. These values could be calculated dirctly using ||z||cc = maxi=1...q |2i]
in Theorem 3.
The first part of Theorem 3 as well as Theorem 1 are from a thesis of the second author [2]. Figure

1 shows the values of €(p) = (2° + 1)* and €(p) = 3+ 1)%, i.e. § = 1. For § = 0 both values are
the same.

3 Remarks

Another possibility to define e-approximate solutions would be to require

|wi(HT) — wi(PT)|
|wi(PT)|

<e i=1,...Q

But there is no known procedure to guarantee that even for a given pareto TS-tour PT. Note
that equations (2), (4) do not hold componentwise in general.

Another remark is on the problem of finding a norm-minimizing spanning tree or perfect matching,
which are essential steps in the two algorithms.

In case ||z|| = ||z|ly = E‘Qﬂ |z;| we have that for S C E ||w(9)|| = EQ ces Wi(e) =

i=1
D ces (E&l w;(e)) and can solve the tree and matching problems as one criterion problems

with w'(e) = Y, wy(e), and thus in polynomial time.

In case ||z|| = ||z]|cc = max|z;|, however, ||w(S)|| = maXi=1...¢ .5 wi(e) and to find a norm
minimizing spanning tree or matching is the Max-Ordering spanning tree and Max-Ordering
matching problem. Both of these problems are known to be NP-hard, see [3] and [4].



Figure 1: Performance guarantee for I/, norms
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