UNIVERSITÄT KAISERSLAUTERN

A Note on Approximation Algorithms for the Multicriteria Δ-TSP

Matthias Ehrgott

Preprint Nr. 266

ISSN 0943-8874

FACHBEREICH MATHEMATIK

A Note on Approximation Algorithms for the Multicriteria Δ-TSP

Matthias Ehrgott

Preprint Nr. 266

ISSN 0943-8874

Universität Kaiserslautern
Fachbereich Mathematik
Erwin-Schrödinger-Straße
67663 Kaiserslautern
Juni 1995

A Note on Approximation Algorithms for the Multicriteria Δ-TSP

Matthias Ehrgott *
Universität Kaiserslautern

Alexander Feldmann
Universität Kaiserslautern

Abstract

The Tree and Christofides heuristic are well known 1- and $\frac{1}{2}$ - approximate algorithms for the Δ-TSP. In this note their performance for the multicriteria case is described, depending on the norm in \mathbb{R}^{Q} in case of Q criteria.

1 Algorithms

Let G be a complete graph on n nodes and $w: E(G) \rightarrow \boldsymbol{R}_{+}^{Q}$ be a Q-criteria weight function. We assume that the triangle inequality is fulfilled, i.e. $w(i k) \leq w(i j)+w(j k)$ for all nodes i, j, k of G. Furthermore we assume that $\|\|:. \mathbb{R}^{Q} \rightarrow \mathbb{R}$ is a monotonous norm on \mathbb{R}^{Q}. Hence $\|a\| \leq\|b\|$ whenever $a \leq b$ for $a, b \in \mathbb{R}^{Q}$, where the order on \mathbb{R}^{Q} is the commonly used componentwise order. We first state the extensions of the two algorithms for the case of Q criteria and will then investigate their peformance. In the following text we will always abbreviate feasible Travelling Salesman tours by TS-tours. The weight of a TS-tour T is $w(T)=\left(w_{1}(T), \ldots w_{Q}(T)\right)$ where $w_{i}(T)=\sum_{e \in E(T)} w_{i}(e)$.

Tree algorithm

Step 1 Let $\bar{T} \in \operatorname{argmin}\{\|w(T)\| T$ is a spanning tree of $G\}$
Step 2 Let $G^{\prime}=\left(V(G), E^{\prime}\right)$, where E^{\prime} consists of two copies of each edge of T
Step 3 Find an Eulertour ET in G^{\prime} and a TS-tour $H T$ embedded in ET.
As \bar{T} is a spanning tree of G it follows that G^{\prime} is Eulerian. It is then possible to find a TS-tour in $\mathcal{O}\left(n^{2}\right)$ time.

Christofides algorithm

Step 1 Let $\bar{T} \in \operatorname{argmin}\{\|w(T)\| \mid$ is a spanning tree of $G\}$
Step 2 Find all nodes in T of odd degree
Define $G^{*}:=\left(V^{*}, E^{*}\right)$ where
$V^{*}=\{v \in V(G) \mid v$ has odd degree in $\bar{T}\}, \quad E^{*}=\left\{(u, v) \mid u, v \in V^{*}\right\}$
Step 3 Let $\bar{M} \in \operatorname{argmin}\left\{\|w(M)\| \mid M\right.$ is a perfect matching of $\left.G^{*}\right\}$
Step 4 Let $G^{\prime \prime}=(V(G), E(\bar{M}) \cup E(\bar{T}))$
Step 5 Find an Euler tour $E T$ in $G^{\prime \prime}$ and the TS-tour $H T$ embedded in ET
Note that G^{*} is a complete graph on a subset of nodes of G with even cardinality. Thus it contains a perfect matching. Again the resulting graph $G^{\prime \prime}$ is Eulerian. Validity of both heuristics, i.e. that they produce a TS-tour, is shown as in the one criterion case and can be found in [5]. The Christofides algorithm was first published in[1]. Note that the triangle-inequality is used when constructing a TS-tour from an Euler tour in G^{\prime} and $G^{\prime \prime}$, respectively.

[^0]
2 Results

The concept of optimality we use in this note is that of pareto optimal TS-tours. A TS-tour $P T$ is said to be pareto optimal if there does not exist another TS-tour T such that $w_{i}(T) \leq w_{i}(P T)$ for all $i=1, \ldots Q$, with strict inequality in at least one case. In general there obviously exist several pareto optimal tours for an instance of the multicriteria Δ-TSP
We will give two definitions of ϵ-approximate tours, the first is as follows.
Definition 1 Let $H T$ be a heuristic $T S$-tour and PT be a pareto optimal TS-tour, then $H T$ is an ϵ-approximate tour if

$$
\frac{\|w(H T)\|-\|w(P T)\| \|}{\|w(P T)\|} \leq \epsilon
$$

Theorem 1 The Tree algorithm provides a tour HT, which is a 1-approximate tour for any pareto optimal tour PT.

Proof:
We have to show that $-\|w(P T)\| \leq\|w(H T)\|-\|w(P T)\| \leq\|w(P T)\|$. Since the first inequality is trivial we look at the second. From the algorithm $w(H T) \leq 2 w(\bar{T})=w\left(G^{\prime}\right)$, hence

$$
\begin{equation*}
\|w(H T)\| \leq 2\|w(\bar{T})\| \tag{1}
\end{equation*}
$$

since the norm is monotonous. By the choice of T :

$$
\begin{equation*}
\|w(\bar{T})\| \leq\|w(P T)\| \tag{2}
\end{equation*}
$$

since removing one edge from $P T$ yields a spanning tree of G. By (1) and (2) we have

$$
\begin{equation*}
\|w(H T)\| \leq 2\|w(P T)\| \tag{3}
\end{equation*}
$$

and the claim holds.

Lemma 1 Let $P T$ be a pareto $T S$-tour. Then there exists some $\delta \in[0,1]$ such that $\|w(P T)\| \geq$ $(1+\delta)\|w(\bar{M})\|$ where \bar{M} is the perfect matching of Step ρ in the Christofides algorithm.

Proof:
Let $\left\{i_{1}, \ldots i_{2 m}\right\}$ be the odd-degree nodes of the spanning tree \bar{T} as theyappear in $P T$, i.e.

$$
P T=\alpha_{0} i_{1} \alpha_{1} i_{2} \ldots \alpha_{2 m-1} i_{2 m} \alpha_{2 m}
$$

where α_{i} are possibly empty sequences of nodes. Let $M_{1}=\left\{\left[i_{1}, i_{2}\right],\left[i_{3}, i_{4}\right], \ldots\left[i_{2 m-1}, i_{2 m}\right]\right\}$ and $M_{2}=\left\{\left[i_{2}, i_{3}\right],\left[i_{4}, i_{5}\right], \ldots\left[i_{2 m}, i_{i}\right]\right\}$. Then by the triangle-inequality $w(P T) \geq w\left(M_{1}\right)+w\left(M_{2}\right)$.
Now if $w(\bar{M}) \leq w\left(M_{1}\right), \quad w(\bar{M}) \leq w\left(M_{2}\right)$ it follows that $\|w(P T)\| \geq\left\|w\left(M_{1}\right)+w\left(M_{2}\right)\right\| \geq$ $2\|w(\bar{M})\|$. Otherwise at least $\left\|w\left(M_{1}\right)\right\| \geq\|w(\bar{M})\|$ and $\left\|w\left(M_{2}\right)\right\| \geq\|w(\bar{M})\|$ and hence $\| w\left(M_{1}\right)+$ $w\left(M_{2}\right)\left\|\geq \max \left\{\left\|w\left(M_{1}\right)\right\|,\left\|w\left(M_{2}\right)\right\|\right\} \geq\right\| w(M) \|$.

Given a pareto optimal TS-tour $P T$ we denote the maximal $\delta \in[0,1]$ for which $\|w(P T)\| \geq$ $(1+\delta)\|w(M)\|$ holds by $\delta(P T)$.

Theorem 2 Let PT be a pareto optimal TS-tour. Then the TS-tour HT of the Christofides algorithm is a $\frac{1}{1+\delta(P T)}$-approximate tour.

Proof:
We have that $\|w(H T)\| \leq\left\|w\left(G^{\prime \prime}\right)\right\|=\|w(\bar{T})+w(\bar{M})\| \leq\|w(\bar{T})\|+\|w(\bar{M})\|$. By Lemma 1

$$
\begin{equation*}
\|w(\bar{M})\| \leq \frac{1}{1+\delta(P T)}\|w(P T)\| \tag{4}
\end{equation*}
$$

Hence (2), which holds here, too, and (4) imply

$$
\begin{equation*}
\|w(H T)\| \leq\|w(P T)\|\left(1+\frac{1}{1+\delta}\right) \tag{5}
\end{equation*}
$$

Theorems 1 and 2 show that the bounds guaranteed by the two heuristics carry over from the one criterion to the multicriteria case, with a weaker result for the Christofides algorithm, when Definition 1 is used.
Nevertheless a more intuitive definition of ϵ-approximate solutions for multicriteria problems is the following.

Definition 2 Let $H T$ be a heuristic $T S$-tour and $P T$ be a pareto optimal TS-tour, then $H T$ is an ϵ-approximate tour if

$$
\frac{\|w(H T)-w(P T)\|}{\|w(P T)\|} \leq \epsilon
$$

Note that if $H T$ is an ϵ-approximate tour in the sense of Definition 2 it is so in the sense of of Definition 1.
We will now restrict ourselves to l_{p}-norms, i.e. $\|x\|=\left(\sum_{i=1}^{Q}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ for $x \in \mathbb{R}^{Q}$, which of course are monotonous norms.

Lemma 2 If $a_{i}, b_{i} \geq 0 \quad i=1 \ldots Q \quad p \geq 1$ then

$$
\left(\sum_{i=1}^{Q}\left|a_{i}-b_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{Q}\left(a_{i}^{p}+b_{i}^{p}\right)\right)^{\frac{1}{p}}
$$

Proof:
Without loss of generality we may assume $a_{i} \geq b_{i} \quad i=1, \ldots Q$. Hence $\left|a_{i}-b_{i}\right|=a_{i}-b_{i} \leq a_{i}$ and $\left|a_{i}-b_{i}\right|^{p} \leq a_{i}^{p} \leq a_{i}^{p}+b_{i}^{p}$.

Theorem 3 For the second definition of ϵ-approximate solution the following hold.

1. The TS-tour HT of the Tree algorithm is a $\left(2^{p}+1\right)^{\frac{1}{p}}$-approximate tour for all pareto optimal TS-tours PT.
2. For any pareto TS-tour PT the Christofides algorithm gives a TS-tour HT which is a $\left(\left(1+\frac{1}{1+\delta(P T)}\right)^{p}+1\right)^{\frac{1}{p}}$-approximate tour.

Proof:
1.

$$
\frac{\|w(H T)-w(P T)\|}{\|w(P T)\|}=\frac{\left(\sum_{i=1}^{Q}\left|w_{i}(H T)-w_{i}(P T)\right|^{p}\right)^{\frac{1}{p}}}{\left(\sum_{i=1}^{Q}\left(w_{i}(P T)\right)^{p}\right)^{\frac{1}{p}}}
$$

$$
\begin{aligned}
& \leq \frac{\left(\sum_{i=1}^{Q}\left(\left(w_{i}(H T)\right)^{p}+\left(w_{i}(P T)\right)^{p}\right)\right)^{\frac{1}{p}}}{\left(\sum_{i=1}^{Q}\left(w_{i}(P T)\right)^{p}\right)^{\frac{1}{p}}} \\
& =\left(\frac{\|w(H T)\|^{p}+\|w(P T)\|^{p}}{\|w(P T)\|^{p}}\right)^{\frac{1}{p}} \\
& \leq\left(\frac{2^{p}\|w(P T)\|^{p}+\|w(P T)\|^{p}}{\|w(P T)\|^{p}}\right)^{\frac{1}{p}} \\
& =\left(2^{p}+1\right)^{\frac{1}{p}}
\end{aligned}
$$

where the first inequality follows from Lemma 2 and the second from (3).
2. Analogously

$$
\begin{aligned}
\frac{\|w(H T)-w(P T)\|}{\|w(P T)\|} & \leq\left(\frac{\left(\frac{2+\delta}{1+\delta}\right)^{p}\|w(P T)\|^{p}+\|w(P T)\|^{p}}{\|w(P T)\|^{p}}\right)^{\frac{1}{p}} \\
& =\left(\left(\frac{2+\delta}{1+\delta}\right)^{p}+1\right)^{\frac{1}{p}}
\end{aligned}
$$

where we made use of (5) and again of Lemma 2.

Thus for $p \rightarrow \infty$ the Tree algorithm gives a 2 -approximate tour, the Christofides algorithm a $\left(1+\frac{1}{1+\sigma}\right)$-approximation. These values could be calculated dirctly using $\|x\|_{\infty}=\max _{i=1 \ldots} . .\left|x_{i}\right|$ in Theorem 3.
The first part of Theorem 3 as well as Theorem 1 are from a thesis of the second author [2]. Figure 1 shows the values of $\epsilon(p)=\left(2^{p}+1\right)^{\frac{1}{p}}$ and $\epsilon(p)=\left(\frac{3}{2}^{p}+1\right)^{\frac{1}{2}}$, i.e. $\delta=1$. For $\delta=0$ both values are the same.

3 Remarks

Another possibility to define ϵ-approximate solutions would be to require

$$
\frac{\left|w_{i}(H T)-w_{i}(P T)\right|}{\left|w_{i}(P T)\right|} \leq \epsilon \quad i=1, \ldots Q
$$

But there is no known procedure to guarantee that even for a given pareto TS-tour PT. Note that equations (2), (4) do not hold componentwise in general.
Another remark is on the problem of finding a norm-minimizing spanning tree or perfect matching, which are essential steps in the two algorithms.
In case $\|x\|=\|x\|_{1}=\sum_{i=1}^{Q}\left|x_{i}\right|$ we have that for $S \subseteq E \quad\|w(S)\|=\sum_{i=1}^{Q} \sum_{e \in S} w_{i}(e)=$ $\sum_{e \in S}\left(\sum_{i=1}^{Q} w_{i}(e)\right)$ and can solve the tree and matching problems as one criterion problems with $w^{\prime}(e)=\sum_{i=1}^{Q} w_{q}(e)$, and thus in polynomial time.
In case $\|x\|=\|x\|_{\infty}=\max \left|x_{i}\right|$, however, $\|w(S)\|=\max _{i=1 \ldots .} Q \sum_{e \in S} w_{i}(e)$ and to find a norm minimizing spanning tree or matching is the Max-Ordering spanning tree and Max-Ordering matching problem. Both of these problems are known to be NP-hard, see [3] and [4].

Figure 1: Performance guarantee for l_{p} norms

References

[1] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University, 1976.
[2] A. Feldmann. Näherungsalgorithmen für das TSP im Mehrdimensionalen. Master's thesis, Universität Kaiserslautern, Department of Mathematics, 1994.
[3] H.W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives. Annals of Operations Research, 52:209-230, 1994.
[4] U. Lebrecht. Max-lineare Zuordnungsprobleme in der Roboteroptimierung. Master's thesis, Universität Kaiserslautern, Department of Mathematics, 1991.
[5] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice Hall, Englewood Cliffs, 1982.

[^0]: *Partially supported by a grant of the Deutsche Forschungs Gemeinschaft and grant ERBCHRXCT930087 of the European HC\&M Programme

