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Abstract: vVe present a generalization of Proth's theorem for testing certain 

large integers for primality. The use of Gauß sums leads to a much simpler ap­

proach to these primality criteria as compared to the earlier tests. The running 

time of the algorithms is bounded by a polynomial in the length of the input string. 

The applicability of our algorithms is linked to certain diophantine approximations 

of l-adic roots of unity. 

§0. lntroduction 

A fundamental problem in computational number theory is to deterrnine whether 

a given integer N is prirne or composite. In general this can be quite a delicate 

problern [1 , 2, 5] , requiring sophisticated tools frorn algebraic number theory and 

algebraic geornetry. However, if the integer N is of a special form then very rapid 

tests for primality can be found. For example, by using properties of second order 

recurring series it is possible to give effective tests, provided N + 1 is easily factored 

[3, 12]. In particular, this applies to the Mersenne numbers N = Mp = 2P - 1, 

where p is any odd prime. The appropriate algorithm is the well known Lucas­

Lehrner test [10, 12]. lt is effective in the sense that its running time is bounded 

by a polynomial in the length of the input string, i.e. by a polynomial in log N. 

Similarly, the converse of Fermat 's theorem provides an effective primality 

test if N - 1 is factored. Here the analogue of the Lucas-Lehmer test is Pepin's 

theorem [12] which applies to Fermat numbers Fn = 22
" + 1. An extension of 

this test has been given by Proth [12, 14]: Assume that N = k · 2n + 1, where 
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0 < k < 2n and k is odd. The algorithm runs as follows. Let a E Z such that 

(;.) = -1. Then N is prime if, and only if, a<N-l)/2 = -1 mod N. To apply this 

test, use the law of quadratic reciprocity to find an appropriate a. Then compute 

b := a" mod N and perform n - 1 squarings modulo N. 

Recently [7] we generalized Proth's theorem to integers of the form N = 

k · 3n + 1 and N = k · 2"'3n + 1. Using the law of cubic reciprocity, this leads to 

tests which are completely analogous to that of Proth. 

In the present investigation we consider the general case where l is a prime 

and N = k. zn + 1. Instead of the higher reciprocity laws we use Gauß sums, which 

simplifies the analysis considerably. This k.ind of exponential sums is well known 

in the theory of cyclotomic fields [9, 15] and was introduced in primality testing 

by Lenstra and Cohen[4, 5]. 

Tests for integers of the form N = k · 3n + 1 and N = k · zn + 1 have also 

been given by Williams and Zarnke([l 7], without proof) and Williams [16]. Their 

derivation was based on properties of certain recurring series and works for integers 

N = k · zn - 1 as well. On the other hand, a generalization of Proth's theorem 

seems to be a very natural approach here and the Gauß sums provide very simple 

proofs of our algorithms. 

Some basic properties of Gauß sums are reviewed in section 1. The next 

paragraph contains the general form of Proth's theorem. As it turns out, its 

application to primality testing is related to Diophantine approximations of certain 

roots of unity in the ring Z1 of l-adic integers. 

§l. Gauß sums 

We here collect some basic properties of Gauß sums, proofs of which can be found, 

for example, in Lang's book [9]. 

Let p be a prime nurnber, q a power of p and consider the finite field GF(q) 

of q elements. If n is a positive integer we denote by (n = e2"1ri/n a primitive nth 

root of unity. Furthermore, we let < (n > denote the group of nth roots of unity. 

We consider an additive character .X and a multiplicative character x of GF( q). 
If we let .Tr: GF(q) ~ GF(p) denote the trace, then .X: GF(q) ~< (p > is given 

by .X(x) = (;r(z)_ The rnultiplicative character x: GF(qt ~< (q-1 > is defined 

on the nonzero elements of GF(q) and satisfies x(xy) = x(x)x(y). 

The Gauß sum T(X, .X) is given by 

T(x,.X)= L x(x).X(x). (1) 
zEGF(q)• 
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Usually, we write T(X) instead of T(X, .X) since .Xis fixed. From the definition it is 

immediate that T(X) is an integer in the cyclotomic field Q((q-l, (p) = Q(((q-l)p), 

i.e. T(X) E Z[((q-l)pl· An important Special case occurs if q = p is prime. Then 

q-1 

T(X) = L x( X)(:' q prime. (2) 
z=l 

Now let m be a divisor of q- land assume that x is of order m, i.e. xm = 1 and m 

is minimal with respect to this property. Then x(x) E< (m > and T(X) E Z[(',.,.p]· 

The cyclotomic field Q((mp) has the following automorphisms <:Tb and cc, 

where b, c are integers: 

<:Tb: (m ---+ (!i, (p---+ (p, (b, m) = 1, 

and 

€c : (m ---+ (m 1 (p---+ (;, (c,p) = 1. 

The action of these automorphisms induces a natural action of the group ring 

Z[ub, cc] on Q( (mp)· 

The behaviour of T(X) under these automorphsims is well known [9]. Clearly, 

We also find easily 

since 

T(xYC = x(c)T(x), 

T(X)~c = LX(x)(;Tr(z) = LX(x)(;r(cz) 

= x(c)-1 I:x(x)(;r(z). 

If we let a = T(X)m we see that 

Thus a is fixed under all automorphisms cc, which implies 

a := T(X)m E Z[(m]· 

Similarly, ( 4) shows that T(X)b-O'b is invariant under the action of cc, hence 
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We next consider the Frobenius operation on r(x). Let K denote the mth cyclo­

tornic field and n be a prirne not dividing the discrirninant of K, i.e. ( m, n) = 

1. Then n is unrarnified in K and by definition the Frobenius autornorphisrn 

'Pn E Gal(K/Q) corresponding to n is given by 'Pnb) :::: -yn rnod nZ[(m] for each 

-y E Z[(m]· Frorn this property it follows easily that 'Pn is given explicitly by 

'Pn((m) = c::i. 

Lemma 1: Let q be a power of the odd prime p and X be a multiplicative character 

of GF(q)* of order m. Let n be a prime number such that (n, 2mp) = 1. Then 

r(xt-un := x(n)-n rnod nZ[(m]· 

Proof: Let K = Q((mp) and 'Pn be the Frobenius autornorphism corresponding to 

n. Then 'Pn((mp) = (::ip. Hence 'Pn((m) = 'Pn((~p) = (!::;, = (~"· In the sarne 

manner 'Pn((p) = (;". Thus we obtain by (3) and ( 4) 

r(xt = 'Pn (r(x)) = r(xtnt:n = (x(n)r(x)r" 

= x(n)-nr(xt" mod nZ[(m„]· 

Now observe that the ideal (r(x)) = r(x)Z[(m„] is prime to (n) since the only 

prime ideals dividing ( r(x)) are those lying over (p ). Thus, r(x) is invertible 

modulo ( n) and we get 

The conclusion follows from property (6). 

In the next section we need the following special case of lemma 1. 

Lemma 2: Same assumptions as in the previous lemma. Moreover, assume n = 
1 rnod m and define a by a = r(x)m. Then a E Z[(m] and 

n - 1 --

a--m = x(n) rnod nZ[(m]· 

Proof: We have un = 1 since n = l(m). Consequently, by lemma 1 

a n~l = r(x)n-1 = r(x)n-O"n = x(n)-n = x(n) rnod n. 
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We now specialize the previous discussuion to the case where q = p is prime 

and also m = l is prime. Then x is a character of order l on (Z/qZ)* and r(x) is 

given by (2). Let a = r(x) 1
• If n is a prime number satisfying (n, 2pq) = 1 and 

n = l(l) then 
n - 1 

a-,- = (j mod nZ[(z], (7) 

for some integer a. We have, of course, (i = x(n)-1 and we may assume O :'.Sa:::; 
l - 1. The next result shows what, conversely, can be said if this congruence holds 

for n. 

Theorem 1: Let q, l be primes and llq - 1. Define r(x) by (2) where x is of order 

land let a = r(x) 1 E Z[(ni]· 

Assume that n is a positive integer such that ( n, 2pq) = 1 and that {7} holds 

for some a t. O(l). Finally, let lelln - 1. Then 

for each divisor r of n. 

Proof: We may assume that r is prime. If f = ordz(r) then fll - 1 and 

(r) = rZ[(,] = P1 „.pt, t = 1
/ 1 . 

The Pi are prime ideals in Z[(,] which are pairwise distinct and have residue dass 

degree /. This means that Z[(z]/Pi ~ GF(rf) and N(Pi) = rl (here .N denotes 

the norm). 

Let ordp(a) denote the order of a in Z[(z]/P, where Pis one of the Pi. From 

(7) we get an-l = 1 mod P. Hence ordp(a)ln - 1. On the other hand, ordp(a) is 

not a divisor of "11 , since in this case (f = a<n-l)/Z = 1 mod P. Since a t. 0(1) 

this would imply that l = .N((1 - 1) E P. Thus we obtain a contradiction to the 

fact that ( l, r) = 1. 

We therefore conclude that ze1 ordp(a) and the theorem follows from ordp(a)I 

.N(Pi) - 1. 

lf l = 2 then Theorem 1 irnplies r = 1mod2e if 2eJln - 1 and rln. In this case we 

immediately get Proth 's theorem. 

Concerning l = 3, we find r 2 = 1 mod 3e, hence r = ±1 mod 3e. This leads 

to the primality tests of our earlier paper [7]. However, the present derivation is 
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much simplified by the consequent use of the Gauß sums, thereby avoiding the law 

of cubic reciprocity. For some explicit examples we refer to the last section. 

Since l = 2 leads to Proth 's theorem we may henceforth assume that I > 
2. The next theorem links the efficiency the tests for primality to certain 1-adic 

approximations of roots of unity in Z1• 

Here we denote by Z1 the l-adic integers. We further let U denote the group 

of (1 - l)st roots of unity in Z1, provided l > 2. Then U =< ( > is generated by 

a primitive (l- l)st root (. 

Theorem 2: Let l > 2 be a prime. Under the assumptions of Theorem 1 there 

ezists TJ = TJ( r) E U for each prime r dividing n such that 

r = TJ mod ze. 

Proof: Since l is odd, the congruence :z: 1- 1 = 1mod1e has exactly l - 1 solutions. 

Each solution is congruent to an element of U modulo ze. Since r solves the 

congruence by Theorem 1, the conclusion follows. 

§2. Tests for primality. 

We are now going to apply the results of §1 to test integers N = k · zn + 1 for 

primality. Let l be an odd prime and let U as before be the group of ( I - 1 )st roots 

of unity in Z 1• The l-adic absolute value is denoted by lzl1 for :z: E Z1. 

We set 

00 

U = {TJ1, ... , TJ1-i}, T/i = i mod l, T/i = L ai;l;, 0 :s; ai; < 1. 
j=O 

Clearly, ry1 = 1 and T/l-l = -1 = 2:~0(1- l)l;. We also define 

Then T/~n) is a positive integer. Moreover, 0 < TJ~n) < zn and ITJ~n) - T/ill :s; 1-n. 

Finally, we let for n 2: 1 

(8) 
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Theorem 3: Let l,p be primes, where l is odd and llp - 1. Define r(x) and a as 

in Theorem 1. Let N = k · l" + 1 be such that ( N, 2lp) = 1 and l does not divide 

k. Moreover, let 0 < k < H~z-n. 
Then N is prime if, and only if, 

N - 1 

a-,- = (i mod N, a "t 0( l). 

Proof: If N is prime the congruence holds with (i = x(N)-1 by (7). 
Conversely, assume o.(N-l)/l = (jmodN. Let r be any prime dividing N. By 

Theorem 2, there ex.ists TJi E u such that Ir - TJill ~ z-n. If i = 1, then r = l(l"), 

i.e. r > l" > Hn. Otherwise Ir - TJ~n)lz ~ z-n and r 2: ,.,~n) since 0 < ,.,~n) < l". 

Consequently, r 2: Hn and since 

we conclude that r = N, q.e.d. 

To apply this result we need the constants Hn as defined by (8). In the simplest 

case l = 3 we have U = {1, -1} and Hn = fJ~n) = 3" -1. Hence, in Theorem 3 we 

may allow k tobe as large as (3" - 1)23-n > 3" - 2. 

lf l > 3 however, there is no simple argument leading to a lower bound for 

Hn. In practice, on the other hand, there are no difficulties to compute Hn. This 

can be accomplished as follows. 

Westart with 11i
1
> = i for 2 ~ i ~ l - 2. Given 77~") we have 77~") = 17i mod l". 

Thus ( 77~ n) )1 = 11! = 17i mod zn+l. Consequently, 

For practical purposes it is useful to consider the normalized constants 

as well as 

~n = min{6;ll ~ j ~ n}. 

Clearly, 0 < ~n < 1. Having computed ~"' the condition on k in Theorem 3 can 

be replaced by 

(9) 
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Hence, the larger An the larger is the admissible range for k in Theorem 3. As 

remarked, it is easy to compute Hn and An but is definitely not easy to prove 

good lower bounds for An. 

Of course, we expect An --+ 0, but it is not easy to find the exact rate of 

decrase. lf the "digits" aii in the l-adic expansion of 'T'/i were random numbers, 

we could view them as representing an infinite sequence of Bernoulli trials, where 

success ( aii = 0) occurs with probability z-1 • The law of the iterated logarithm 

[6] suggests An --+ 0, but not faster than c1n-1 for some positive constant c1 . The 

data from the table in §3 fit well with this heuristic argument. 

On the other hand, lower bounds for An can be deduced from the theory 

of diophantine approximations to l-adic numbers. For example, Ridout's 1-adic 

version [13] of the Thue-Siegel-Roth theorem immediately gives 

A > c2z-< }+e)n C2 > 0 
n - ' ' 

for each c > 0. For our purposes, however, this bound is too weak. 

§3. Running time 

In order to apply the tests of §2 the prime l is considered to be fixed. We thus are 

looking for primes N of the form 

N = k · zn + 1, k -:f- 0 mod l. 

Before searching for primes it is advisable to compute some constants in advance. 

First, we need the An as defined in the previous section. This problem reduces to 

the computation of the ( l - 1 )st roots of unity in Zz. A short tables for the primes 

l below 20 and some small values of n is given at the end of this paragraph. 

Next, consider the Gauß sums r(x), where x is a character modulo p. In our 

case p is prime such that llp - 1. Let g be any primitive root modulo p and let 

x(x) = (;nd(z), where ind(x) denotes the index of x mod p with respect to g. In 

particular, we have x(g) = (z =/:- 1. Then 

p-1 

r(x) = r(p,g,l) = L (;nd(z)(;. 
z=l 

Finally, 

a = a(p, g, l) = r(p, g, 1)1 E Z[(i]. (10) 
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We may therefore write 
l-2 

a =La;({, a; E Z. 
j=O 

Since a<N-l)/l = a 1
"n - l we also compute in advance ßo := a", provided k is 

fixed. To test N for primality, raise ßo to the 1n-1 th power in Z[(z)/NZ[(z] ~ 

(Z/NZ)[(z]. Denote this ring by RN. Then the computation of ßr- 1 
· involves 

O(log 1n-l) = 0( n log l) multiplications in RN. Each of these needs at most ( l-1 )2 

multiplications in Z/NZ together with some additions. Hence we have 

Theorem 4: Given N = k · ln + 1 and ßo = a", the primality of N can be decided 

with at most 0( n(log N) 2 l2 log l) bit operations. The implied constant does not 

depend on n, N and l. 

By using fast algorithms for integer and matrix multiplication [8] we can even 

achieve a running time of O(n(logN)l+ezl+e) for every c > 0. 

For small primes l however, there are other ways to reduce the number of 

multiplications in Z / NZ [ (,]. Formulas of this kind are often special cases of certain 

convolution algorithms and are widely used in practice [5, 11). See the remarks in 

the final section. 

Finally, we note that is it also necessary to find suitable primes p and char­

acters x to satisfy the condition· x( N) =j:. 1 if N is prime. In the case of Proth 's 

theorem (l = 2) this is accomplished by using the law of quadratic reciprocity. If 

k is fixed appropriate values for p and x are easily found . in practice. Again we 

refer to the next section for some examples. 

l n=50 n=lOO n=300 
5 4.6549E-2 5.0327E-3 4.5042E-3 
7 4.3159E-3 4.3159E-3 6.0847E-4 
11 1.7181E-3 1.2334E-3 9.5421E-4 
13 2.3642E-3 1.8515E-3 3.6136E-4 
17 3.1664E-3 1.8648E-3 l.1647E-3 
19 3.5415E-3 3.0809E-4 1.5404E-4 

Table of ßn for primes l < 20. 
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§4. Some examples 

In this final section we consider some explicit examples. First, let l = 3. Tests for 

integers of the form N = k · 3" + 1 have been given by Williams and Zarnke(l 7] 

and Guthmann[7]. The justificat'ion of the latter algorithrns depends on the use 

of the law of cubic reciprocity, while that of the forrner depends on the properties 

of recurring series. 

Given k even, we would like to test N = k · 3" + 1 for primality. Since 

ßn = 3n - 1 in this case Theorem 3 immediately leads to 

Theorem 5: Let N = k · 3n + 1, where k is even, k ~ 0(3) and 0 < k < 3" - 1. 

Let p be a prime such that p = 1(3) and p does not divide N. Let x be a character 

modulo p of order 3 such that x( N) -/:- 1. 

Then N is prime if, and only if, 

N-1 

a-3- = (3 mod N, a E {1, 2}, 

where a is defined by ( 9). 

Computations in Z((3 ] can be performed as usual. lf a = a0 +a1 ( 3 and b = b0 +b1 ( 3 

are elements of Z[(3] then 

This formula needs four multiplications. Using instead the identity 

three multiplications are sufficient ( where the computation of 2a1 b1 is counted as 

one addition). The computation of the Gauß sum r(p, g, 3) is straightforward, as 

well as the evaluation of O:(p, g, 3) = r(p, g, 3)3 • 

The condition x(N) =1- 1 is equivalent to ind(N) ~ 0 mod 3, if the character 

x corresponds to a primitive root modulo p. Generally, this condition is easily 

met. As an example, we consider the case k = 2. We are looking for primes 

N = 2 · 3" + 1. Choosing p = 7, we have x(N) = 1 if, and only if, N = ±1(7). 

Now N ~ 1(7) and N . = -1(7) is equivalent to 3jn. Thus, we can use p = 7 if n is 

not divisible by 3. lf it is, say N = 2 · 33" + 1, then take p = 13, g = 2, since in 

this case x(N) = x(3) = x(g) 4 = (3. 
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To summarize, take p = 7 if N = 2 · 3n + 1 and n ~ 0(3) and take p = 13 if 

N = 2 · 33
n + 1. The corresponding values of a are 

a(7, 3, 3) = -7(1 + (3), a(13, 2, 3) = -13( 4 + 3(3). 

Finally, we treat the case l = 5. lf we represent elements of Z[(5 ) by a0 + 
a 1 ( 5 + a2 (~ + a3 (:, ai E Z, then ordinary multiplication in Z[(5 ) needs 16 integer 

multiplications and 15 additions. Using the formulas given by Nussbaumer [lf, 
App. B2) this can also be achieved with 7 integer multplications. and 46 additions 

which is much better for large N. 

Let N = 2 · 5105 + 1. We want to show that N is prime. For the prime 

p = 11 we take the primitive root g = 2 and x(g) = (5 . Since N = 3(11), we have 

x(N) = (f. Then 

a(ll, 2, 5) = 11 · (-26 - 20(5 + 15(~ - 10(:). 

We compute 

a<N-l)/5 = c · c: mod N, 

where c is a certain integer. Hence by Theorem 3 and the table given above, N is 

a prime number. 
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