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1. INTRODUCTION. A well known theorem of Proth's [2, 3] states that if 

N is an integer of the form N = k · 2n + 1, where k is odd and 0 < k < 2n, and if 

a is an integer such that ( ;,r) = -1, then N is prime if, and only if 

N-1 
a-2- = -1 mod N. 

This test is very effective. Indeed, having found the appropriate a, compute b := 

a" mod N and then perform n - 1 squarings mod N. The integer a may be found 

by quadratic reciprocity. Hence this is an example of a polynomial test, which 

means that its running time is bounded by a polynomial in log N. 

What we shall do here is to generalize this test to integers of the form N = k · 

3n + 1. An effective algorithm for these integers has already been given by Williams 

[4 , without proof], by using properties of certain Lucas sequences. While these 

methods seem to be somewhat ad hoc our proof consists of a direct generalization 

of Proth's theorem. This is accomplished by using elementary facts about the 

arithmetic in Z[w], where tü is a primitive third root of unity. The advantage of 

our method is also shown by the fact that our test combines weil with Proth 's test 

to give an algorithm for integers of the form N = k · 2m3n + 1. This case has not 

been considered earlier in the literature (but see Williams' test [5]). 

2. ARITHMETIC IN Z[tü]. Set tü = H-1 + v'-3). Then w is a primitive 

third root of unity and w 2 = -w-1. The following facts concerning the arithmetic 
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of Q[w] = Q[v'=J] can be found, for example, in the book by Ireland and Rosen [1]. 

Let R be the ring of integers of Q[yC'3]. Then R = {a + bwla, b E Z}. The group 

of units G(R) of R consists of the six elements G(R) = {1, -1, w, -w, w 2 , -w2 }. 

The field Q[w] has an automorphism - of order two, sending w to w = ro- 1 . 

This gives a + bw = a - b - bw. The norm N of an element a = a + bw (with 

a, b E Q) is defined by N(a) = aa = a 2 - ab+ b2 • The group of units G(R) 

consists exactly of the elements of norm 1. 

Now assume that 7r ER is a prime element, i.e. if 7r '/. G(R) and 7rlaß (where 

a,ß ER) then 7rla or 7rlß. Moreover N(7r) = p or p 2 where p is a rational prime 

number. Conversely, assume that p is a prime number and p = 2 mod 3. Then p 

is also prime in R and N(p) = p2
• If p = 1 mod 3 then p splits as p = 7r7f and 

N(7r) = p . Finally, for p = 3 we have 3 = -w2 (1 - w) 2 and 1 - w is prime in R . 

3. PRIMALITY TESTS FOR INTEGERS OF THE FORM N = k3" + 1. 

N ow let 7r be a prime element of R such that N ( 7r) = 7r7f = N = 1 ( 3) is a rational 

prime. If a E R, then there exists a unique integer j with the property 

N-1 · 
a-,- = w 3 mod 7r 1 j E {O, 1, 2}, 

provided 7r does not divide a. Assume that a<N-l)/3 = w 11 (7r). Define ß ER by 

ß = aa-1 mod N. Since R is euclidean this can be computed by the generalized 

euclidean algorithm. We then have 

N-1 · J. ß-a- = w'- mod 7r. 

Applying the automorphism - and noting that ß = ß-1 mod N we obtain 

N - 1 II · ß--,- = w _, mod 1f, 

or, equivalently, 
N-1 • II ß-a- = w'- mod 71'. 

Since this 'congruence holds mod 7r and mod 1f, it holds mod their product N by 

the Chinese remainder theorem. We summarize these facts as follows: 

Theorem 1: Let N = 1(3) be a prime number and let a E R besuch that a is 

prime to N. Define ß E R by ß = aa-1 mod N. Then there exists an integer j 

such that 
N-1 · ß-,- = w 3 mod N, j E {O, 1, 2}. 
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We would like to have j i- 0 in Theorem 1. To investigate this problem 

further, we need some properties of the cubic residue symbol, which is defined as 

follows [1]. lf 11' ER is a prime with N(7r) i- 3, and a ER is prime to 11' then we 

define ( ~) 3 by 

(a) ~ . . 
· 11' 

3 
= a 3 = w 3 mod11', JE {0,1,2}. 

Then, clearly ( a~aa) 
3 
= ( ~) 

3 
( ~) 

3
. This symbol also satisfies a reciprocity law. 

To state it we need a further concept. lf a E R and a = a + bw with integers a 

and b, then a is called primary if, and only if, a = 2(3), i.e. a = 2(3), b = 0(3). 

Assume that q = 1(3) is a prime number and q = aa. lt is an easy exercise to show 

that among the associates of a there is exactly one that is primary. Moreover, if 

a is primary so is a. We now can state the cubic law of reciprocity: if a, 7r E R 

are prime and primary, and N(a) i- 3 f N(7r), and if 11' does not divide a then 

Theorem 2: Same assumptions as in Theorem 1. Moreover, assume that a is a 

primary prime with q = aa = 1(3) and that N(q-l)/3 t 1 mod a. Then 

N-1 · 
ß-s- = w 3 mod N, j E {1, 2}. 

Proof: Let N = 11'1f, where 11' is a prime of R. We may assume that 7r is primary. 

Now 

N1i2 =N"<"s>-
1 

=(7r1f)"
1
"sl-l = (~) 3 (~) 3 moda. 

Bycubicreciprocityl i- (-;)
3 
(~) 3 • Thisimpliesinparticulara<N-l)/3 '!-lmodN. 

For, otherwise a<N-l)/3 - 1 mod 7r and a<N-l)/3 = 1mod1f, which means 

Therefore aCN-l)/3 = wi mod N, j E {1, 2}. But then aCN-l)/3 = w-i t wi mod 

N, and we are done. 

We are prepared to give the analogue of Proth's theorem: 

Theorem 3: Let N = k · 3n + 1, where 0 < k < 3n - 2 and k is even and not 

divisible by 3. Let q be a prime number with q = 1(3) and (q, N) = 1. Let a ER 
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be a primary prime element such that q = N'(a) and N(q-l)/3 t 1 mod a . Finally 

define ß ER by ß = 0.0.-
1 mod N. 

Then N is prime if, and only if, 

N-1 . 
ß-a- = w 1 mod N, j E {1, 2}. 

Proof: If N is prime the statement follows from Theorem 2. Conversely, assume 

that the last congruence holds. Let .,... E R be any prime dividing N and set 

p = N(7r). Since a is prime to N, we may define ßo = aa-1 (.,..). Then ßf-1 = 
l{7r) because ßN-l = l{N). Hence, if r denotes the order of ßo mod .,..., we have 

rlN - 1 = k3n. But ß~N-l)/3 = ß(N-l)/3 = wi t 1( 7r) ( otherwise .,... would divide 

wi -1). So r does not divide N;-1 = k3n-1. This implies 3nlp-1. Now we 

have to distinguish two cases. If .,... E Z then .,... = 2(3) and N( .,...) = p = .,..2 . 

Since 3nlP - 1 we get 3nl.,.. + 1 and in particular .,... ~ 3n - 1. On the other 

hand, if.,... <t. Z then N(7r) = 7r1i' = p and we see that 3nlP - 1. Thus in any 

case s ~ 3n - 1 for each rational prime s dividing N. So, if N were composite 

N ~ ( 3n - 1 )2 = ( 3n - 2 )3n + 1 > N, a contradiction. Hence N is prime. 

4. PRIMALITY TESTS FOR INTEGERS OF THE FORM N = k2m3n + 1. 

Now we want to combine our test (Theorem 3) with Proth's. The theorems in this 

section are exactly parallel to those of section 2. 

Theorem 4: Let N be a prime number with N = 1(6). Let a ER, q = N(a) = 
aa prime such that (q,N) = 1, ß ER where ß = aa-1 (N). Then 

~ l . . ß e = (-1) w 1 , l E {0,1}, JE {0,1,2}. 

Proof: We have N = 7r1i', where.,... is a prime element of R. Since R/.,..R ~ GF(N), 

the equation z 6 = 1(.,...) has exactly six solutions, namely z = ( -1 )1wi, l E {O, 1 }, 

j E {O, 1, 2}. Since ß(N-l)/6 is a solution, ß(N-l)/6 = (-1)1wi for some land j. 

Conjugation gives (-1)1w-i = ß(N-l)/
6 = (ß-1 )<N-l)/6 mod1i'. Thus ß(N-l)/6 = 

( -1 )1wi mod 1i' too, and the conclusion follows. 

Of course, we again want to have l =f. 0 and j =f. 0. This is furnished by 

Theorem 5: Let N = 1(6) be prime, a ER be a primary prime with q = N(a) 
prime, (q, N) = 1 and ß ER with ß = aa-1 (N). Assume further that 

N1i1t1 moda and (~) = -1. 
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Then N-1 · 
ß-e- =: - r;v3 , j E {1, 2}. 

Proof: From Theorem 4 we get 

ßNi
1 

=: (-1)1roi, l E {0,1}, j E {0,1,2}. 

If j = 0, then ß(N-l)/3 = l(N), contradicting Theorem 2. Hence j # 0. If l = 0, 

then ß(N-l)/2 = l(N). Since ß = aa-1 = a 2q-1 (N), this would give 

N-1 ( N-1)-1 (q)-1 (q) 1 = (a2q-1)_2_ = aN-1 q-2- = N = N mod N, 

contrary to our hypothesis, q.e.d. 

Finally, we have the following test for primality. 

Theorem 6: Let N = k·2Tn3n+l, where mn 2: 1, (k, 6) = 1, and 0 < k < 2Tn3n-2. 

Let a ER with q = aa a prime and 

NY ~ 1 mod a, ( ~) = -1. 

Define ß ER by ß = aa-1 mod N. Then N is prime if, and only if, 

N - 1 · 
ß-e- = -ro3 mod N, j E {1, 2}. 

Proof: If N is prime, the conclusion follows from Theorem 5. Conversely, assume 

that the congruence holds. Suppose that 7r E R is a prime dividing N. Let 

ßo = ß mod 7f and let r be the order of ßo mod 7r. Then ß~-l = 1(11""), but 

ß~N-l)/2 = -l(7r). Therefore, r divides k · 2Tn3n but not k · 2Tn-l3n. Hence 2Tnlr. 

Similarly, ß~N-l)/3 = ro2i ~ 1mod7r, so 3nlr. 

This implies that 2Tn3n is a divisor of N(7r) . If 7f7f = p is a prime, then p = 
lmod2Tn3n, in particular p 2: 1+2Tn3n. Sincep2 2: (2Tn3n+1)2 > k·2Tn3n+l = N, 

we must have p = N. On the other hand, if 7f = p is a rational prime, then 

p = 2(3)- ahd N(p) - 1 = (p - l)(p + 1), and 2Tn3nlP + 1, i.e. p 2: 2Tn3n - 1. Thus 

p 2 2: 2Tn3n(2Tn3n - 2) + 1 > N which finishes the proof. 

5. SOME PRACTICAL CONSIDERATIONS. In Theorem 3 and Theorem 

6 it is not necessary to explicitly compute a-1 mod N. In fact, assume a" = 
a + br;v mod N, where r is a positive integer. Then ß" = r;vi mod N is equivalent to 
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a" = a- 1roi(N) or a + bro = (a - b- bro)roi(N). A moment's reftection reveals 

that 
N -1 N - 1 

ß-3- = ro mod N <====> a-3- = a + aro mod N, 
N-1 2 N -1 

ß-s- = ro mod N <==:> a-s- = aro mod N, 
N -1 N -1 

ß-e- = -ro mod N <==:> a-11- = a - aro mod N, 
N -1 2 N-1 

ß-0- = -ro mod N <====> a-e- = 2a + aro mod N, 

where a is a certain integer. 

Usually, it is easy to find the appropriate a required in the theorems. To 

give an example for Theorem 3, let k = 40. We look for primes N of the form 

N = 40 · 3n + 1. For n ::; 325 all these have been found by Williams and Zarnke [4]. 

Let q = 7 in Theorem 3. Then a = 2 + 3w and (7, N) > 1 iff n = 4 mod 6. These 

n can be excluded. Moreover, we need N 2 t 1 mod a. Since R/aR:: GF(7) this 

condition is satisfied if N t ±1(7). Hence a = 2 + 3w suffices if n t 0(6). For 

n = 543 (not in Williams' and Zarnke's list) we find a<N-l)/3 = aw mod N for 

some integer a, hence N = 40 · 3543 + 1 is prime. 

lf now n = 0(6) we may choose q = 13, where a - 1 + 3ro. In this case, N 

is of the form N = 40 · 36n + 1 = 2(13) and the condition N 4 t 1(13) is always 

satisfied. Hence, for N = 40 · 3n + 1 either q = 7 or q = 13 works. 

Finally, we give an application of Theorem 6. Assume k = 5, i.e. N = 
5 · 2m3n + 1. We may again choose q = 7, provided N 2 t 1(7) and ( ~) = 
( 1:) = N 3 = -1 ( 7). Here we have taci tly assumed that m ~ 2. Both conditions 

are met iff N mod 7 E {3, 5}. Since 5 = 35 (7) and 2 = 32 (7), we must have 

32m+n+ri mod 7 E {2, 4} or 2m + n mod 6 E {3, 5}. 

For instance, take m = 54 and n = 57. We find a.<N-l)/6 = a - aro mod N 

for some integer a. Hence N = 5 · 254357 + 1 is a prime number. 
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