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Summary. Let A := {a;li := l, ... ,m} be an i.i.d. random sample in IRn, 
which we consider a random polyhedron, either as the convex hull of the a; or 
as the intersection of halfspaces { z 1 a[ z ~ 1}. We introduce a dass of polyhe
dral functionals we will call "additive-type functionals", which covers a number 
of polyhedral functionals discussed in different rnathematical fields, wbere tbe 
emphasis in our contribution will be on those, wbich arise in linear optimization 
theory. The dass of additive-type functionals is a suitable setting in order to 
unify and to simplify the asymptotic probabilistic analysis of first and second 
moments of polyhedral functionals. We provide examples of asymptotic results 
on expectations and on variances. 

Keywords. Polyhedral functionals, probabilistic analysis 

1. Introduction 

Systernatic probabilistic analysis of polytope functionals like volume, surface 
area, number of facets or vertices was initiated by the paper "Über die konvexe 
Hülle von n zufällig gewählten Punkten" by Renyi and Sulanke in 1963, ~22), 
where the authors considered convex hulls of finite random samples in IR as 
random polytopes and analyzed asymptotically expectation values of the func
tionals under various distributions of the data. Besides, within the discuasion 
of classical problems like Sylvester's four-point problem in stochastic geometry, 
polytope functionals are of interest in several rnathematical fields like approxi
mation theory of convex sets, complexity theory of algorithms or statistics. 

Of particular interest to us is the probabilistic analysis of algorithms. An 
important example is the complexity problem of the simplex algorithm, which 
is known to be very effective in practice and intractable in worst-case situations. 
Borgwardt [3,4) was the first to confirm the conjectured polynomiality on the 
average theoretically for a dual variant of Ga.ss and Saaty's parametric algo-
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ril hm. He invest igales lhe expectation of a geomelrical polyhe<lral funclional. 
the uumber of sha<low vertices u11<..ler orthogonal projeclions inlo planes, which is 
linked to the expectation of pivots required. In contrast to Renyi and Sulanke·s 
approach the ran<lom objects he uses are halfspaces containing the origin , whose 
intersection forms a random polyhe<lron. Borgwar<lt iuterprets the polyhedral 
functional defined on polyhedra generated by intersection of halfspaces as a 
functional of a polar polytope generated by IRn-samples, which is of similar type 
as the classical geometrical functionals mentione<l above. 

Besides the number of pivot st.eps required by Borgwardt's "shadow vertex 
algorithm" . many other polyhedral random variables of interest in stochastic 
optimization theory can be interprete<l as corresponding " polar" functionals on 
polar polytopes: the number of a polyhedron 's vertices, the indicator functional 
whether a polyhedron is bounded, the indicator functional whether the maxi
mum value of a linear program is less than a given positive number, the number 
of shadow vertices in arbitrary subspaces, the rate of a linear program's redun
dant constraints et cetera. 

In our contributiou we intro<luce a dass of random variables defined on ran
dom finite IRn-subsets , which can be considered random polyhedra, either as 
convex hulls or as intersections of halfspaces as weil. This dass of functionals 
we call "additive-type functionals" covers most polyhedral random variables of 
interest in the mentioned fields, as we are going to show in the first part of the 
paper, where the emphasis will be mainly on those functionals which can be 
interactively interprete<l by means of polarisation. Second, after the introduc
tion of the stochastic model we will give a survey on asymptotic results about 
expectation values. Here, the most important aspect of our presentation should 
be the unified approach to asymptotic results on moments of polyhedral func
tionals, which have been treated seperately so far . Finally, we will provide new 
asymptotic estimations of centralized second moments for the first time in full 
generality of dimensions. 

2. The functionals 

A finite IRn-subset Ais called nondegenerate if every A-subset of cardinality S n 
is linearly independent and every A-subset of cardinality S n + 1 is in general 
position. For fixed m, n, m ~ n ~ 2 !et A := Am,n, 

(1) Am,n := {AIA. = {a1, ... ,am} C IRn, A nondegenerate}, 

be the set of nondegenerate IRn-subsets with cardinality m . If ambiguity is ex
cluded we notate A abbreviating Am,n. Any nondegenerate set A E A can be 
identified with a polyhedron in two ways. The first identification associates any 
element a E A with a closed halfspace fl( 1)(a) := {x E IRn 1 aT x S 1} containing 
the origin. So, A may be associated wih a polyhedron XA, 

(2) XA := n fl(l}(a). 

aEA 

On the other band, A defines the polytope 

(3) YA := convhull(A). 
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The assumption of non<legeneracy 0 11 .-l is transferre<l t.o polyhe<lra X .-t. an<l Y.-t. : 
Both polyhe<lra are nonvoi<l an<l full<limensional. .\.4 is simple. that means any 
k-dimensional face in X.-t. 's face latt ice P(X.4 ) intersec ts with exact.ly k boundary 
hyperplanes H( a) := { x E ffi n 1 aT x = l}. } ~4 is simplicial . which denotes that 
any k-dimesional face in Y.4 ·s face-lattice P( } ~4 ) is a k-simplex. 

Both identifications (2) and (3) are linked by polarisation , cf. Grünbaum 
[13] . Let 

(4) }' A := convhull(}·Ä U {O} ), 

then }'A = x_4' x_4 being polar to X A . which means 

(5) 

If we define the mapping 1/1 : P( X_A) ~ Pf~; A) by association of a X.A -face 
P* with the XA-face P , P := {x E XA 1 ;r: y = 1, y E P*} , 1/1 is one-to-one 
and inclusion-reversing. Roughly speaking , if XA is especially bounded , there 
is a one-to-one correspondence between the k-dimensional faces of XA and the 
n - k - 1-dimensional faces of X_A , k = 0, . .. , n - 1. 

We profit from this fact for we are able to interpret many combinatorial 
functionals on polyhedra of type XA as functionals of polytopes YA as weil and 
vice versa. 

Within our considerations on the one band functionals of polyhedra defined 
by intersections of halfspaces like (2) are 0f special interest , because this setting 
is the common situation we meet in linear optimization. On the other hand 
functionals of polytopes defined as convex hulls of points like (3) are easier to 
handle in the framework of stochastic geometry. Thus, if possible we analyze 
the polar interpretation ofan XA-functional defined on YA instead ofthe prima! 
interpretation defined on XA . This idea is due to Liebling [17] , who used the 
polar link-up between XA-vertices and X_.4-facets in order to interpret results by 
Renyi and Sulanke [22], Carnal [7] and Raynaud [21] about the expected number 
of YA-facets as results on the number of XA-vertices as weil . 

We are going to study a special dass of functionals on sets A E .A, which can 
be interpreted alternately on polyhedra of type X A or YA . The functionals on A 
we are interested in are defined in terms of A-subsets of cardinality n. For any 
set of indices I C {l , . .. , m} , III= n , Jet 

(6) A1 := {a; E A 1 i E I} , S1 := convhull(A1 ), fh := convhull(S1 U {O} ). 

By assumption of nondegeneracy S1 is an n - 1-simplex for any I . In our con
siderations only subsets A1 are of interest , whose corresponding simplices S1 
are boundary simplices (facets) ofYA . We distinguish between two kinds ofYA
boundary simplices. S1 is called a YA-boundary simplex of the first kind, if S1 
is a facet of YA and S1 n YA # S1, that means S1 is a boundary simplex of both 
YA and YA· S1 is called a YA-boundary simplex of the second kind, if S1 is a 
boundary simplex of YA and S1 n Eh = S1 , which means that S1 is a facet of YA 
and not of YA · We define corresponding indicator functionals x;(A, AI) by 

(7) ·(A A ) ·- { 1 S1 is a YA-boundary simplex of j-th kind . _ 1 2 Xi ' 1 . - 0 eise ' } - ' · 
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l-st kind 

- - - 2-nd kind 

0 

Fig. 1. Boundary siruplices of two kinda 

Now we are enabled to state our central definition of functionals we investigate: 

Definition A functional Z = (Z, u) is called an additive-type functional if for 
all A E A : 

(8) Z(A) := 2: [x1(A, Ar)+ ux2(A, AI)] Z(AI), 
IC{l, .. .. m} 

lll=n 

where u E {-1 , 0, l} and Z is a positive functional defined on IR.n-Hhets of 
cardinality n. 

The first factor in sum (8) indicates whether a subset Ar generates a YA
boundary simplex of first or second kind. The sign u decides whether the contri
bution of second kind boundary simplices has to be considered either negatively, 
positively or not at all. The functional Z defined on the YA-boundary simplices, 
say, and u characterize the functional Z completely. That means an additive
type functional decomp08es additively relative to the boundary simplices of YA . 
The term additive-type functional is above all a technical one, which covers m08t 
of the polyhedral functionals of interest. We introduce it mainly in order to unify 
and to simplify formulations of results on polyhedral functionals rather than for 
axiomatic reasons. 

Though many polytope functionals can be analyzed deterministically too, c.f. 
Grünbaum [13] , McMullen and Shephard (19], Croft, Falcooer and Guy [8] for 
surveys and further references, probabilistic analysis is often more appropriate. 
If sets A E A are generated at random withio a suitably choeen stochastic model, 
fuoctionals of type ( 8) become random variables. Before we state precisely the 
stochastic model we U8e, we present 80me examples from different fields of ap
plication covereä by definition (8) supplied with references on their probabilistic 
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analysis . The first two examples are polytope functionals , which have no natural 
interpretations on polyhedra of type (2) . 

Example 1: Volume of a polytope 

The functional " volume" of a polytope is of great interest in stochastic approxi
mation theory of convex sets. Given a convex and compact m.0 -subset C, choose 
some m vectors a; in C and take their convex hull Y..t as appro:ximation for C. 
The deviation of volume d(C , Y..t) := An(C\ Y,t ) , An being the Lebesgue-measure 
of dimension n , may serve as the error of approximation. The question is: How 
does this error depend on the geometry of C? As it is very hard to find best 
"lppro:ximations for general C, probabilistic analysis seems more appropriate . 

• area added 

ELl area subtracted 

0 

Fig. 2. illustratioo of the functiooal "volume" 

Most papers deal with the expectation d(C, m) := E..t(d(C, Y..t)) of the volume 
deviation, where sets A consist of random vectors a;, which are independently, 
uniformly on C distributed random vectors. Almost all results are of asymir 
totic character and link the rate of d's decreasing for large m with smoothness 
properties of C's boundary. As the list of references on this topic is very long, 
we refer the reader to the survey articles of Gruber [12], Buchta [6], Schneider 
[23] and Weiland Wieacker [25]. A widely open problem is the question for the 
distribution of the volume deviation or for its higher moments. The only result 
so far is due to Groeneboom [11] , who announced an asymptotic analysis ofY„'s 
limiting distribution for large m in case of n = 2. 

The Lebesgue-volume An of a polytope is an additive-type polytope func
tional in the sense of our definition: 

(9) An(Y..t)=(Z(Ar) , u), Z(Ar)=An(Sr), u=-l. 

An easy generalization of the functional " volume" is at band, if we replace the 
Lebesgue-measure An in (9) by an arbitrary measure µ.In case,of measure µ be
ing a probability measure on Ill0 the resulting functional equalS the "probability 
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contenl" of }·_.\. This inlerpret.ation fin<ls interesting st.atistical applicat.ions. cf. 
Efror1 [10] or \leilijson [20). 

Exarnple 2: · Surfact arm of a polytupr 

A sf'cond variable of intnest. in stochastic geomet.ry and stochastic approxima
tion theory of convex sets is the surface area of a polytope. The interest.ed rea<ler 
is referred to t.he survey papers citeJ above. Let OB be the boundary of an IRn
subset B and An-l the Lebesgue-measure of dimension n -1. then the Lebesgue 
surface area satisfies 

( 10) An-dcW-1) = (Z(AI) . u) , Z(AT) = An-dSI), u = l. 

Examples 3 an<l 4 deal with combinatorial functiouals of polytopes and polyhe
dra of type (2) . 

Example 3: Number of a polytope 's (first kind) boundary-si'mplices 

The number of a polytope's boundary simplices· (facets) is a polytope func
tional which was investigated by many mathematicians beginning with Euler , 
who stated the famous relation between number of facets , edges and vertices 
in the three-dimensional case. Research about the combinatorial theory of con
vex polytopes has been renewed by complexity analysis in linear prograrnming. 
Motzkin 's question "What is the maximurn number of facets of a polytope, when 
the number of vertices is given ?" and his " upper-bound conjecture" were a chal
lenge for a number of researchers , cf. McMullen and Shephard [19) for a survey. 
The probabilistic analysis of expectations of the functional "number of facets" 
was initiated by Renyi and Sulanke [22), who investigated random polygones, 
generated by random samples und er special distributions in IR 2 . Carnal [7) and 
Raynaud (21) generalized their results to classes of distributions and arbitrary 
dimensions respectively. Groeneboom [11) and Aldous et al. [1) gave asymptotic 
limiting distributions for )arge random samples in IR2 . All results about the 
number of facets of the polytope YA are polarly interpretable as results on the 
polyhedron XA 's vertices as weil. 

Let f n-l (YA) denote the number of boundary simplices of YA , then obviously 
by the definition of additive-type functionals: 

( 11) fn-dYA) = (Z(A1) ,u), Z(AI) = 1, u = l. 
Defining /,.~ 1 (YA) as the number of YA-boundary simplices of the first kind, 

(11) holds for /~~ 1 (YA) too if we set u = 0. lt is weil known, cf. Liebling 

(17), that /~~ 1 (YA) = v(XA), v(XA) being the number of XA's vertices . Thus, 

/~~ 1 (YA) = (Z(A1) ,u) , Z(AI) = 1, u = 0, is interpretable on YA and XA. 

Example 4: Number of shadow vertices 

If we project a polyhedron orthogonally into a subspace L , its image is again a 
polyhedron. We call a vertex of the polyhedron "L-shadow vertex" if the image 
ofthe vertex remains a vertex under the projection. A natural question is: "What 
is the number of the polybedron's shadow vertices in L?'' For polyhedra XA the 
number of shadow vertices is an additive-type functional: 

For fixed k E { 1, ... , n} !et U := { u1 , ... , u1:} be a linear independent IRn
subset. Hence, L :=linhull(U) is a linear IRn-subspace of dimension k. For any 
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set .-l. E .Am .n· which satisfies .-\ U CE .Am+k .n · let Sr·(.\_4) be an abbreviation 
for t lw 11u111ber of XA 's shaJ uw vert ices u11Jer an orthogonal projection into the 
subspac-t> L. we havt> 

( 1:2) .<i'c(.\-1)=( Z (.-l.t) . 11) . L' ( .-lt)= \(L n Sr #0) . u=O. 

This is due to the observation tha t the shadow vertices of XA in the projection 
spac-t> l rnrrespond one-to-one to the first. kind boundary simplices of YA inter
secte<l by L . For k = 11 t he 11u111ber of sha<low vertices equals the number of 
vntices. Thus . example 4 is a generalization of example 3. For k = 2 the num
ber of X .-1-shadow vertices has an interesting application in complexity theory 
of linear optimizat ion : 

Example 5: Th e 11u111ber of pi vot.s take11 by the simplex algorithm 

As mentioned in the introduction , Borgwardt 's probabilistic complexity analy
sis of the shadow vertex algorithm. a dual interpretation of Gass and Saaty's 
parametric simplex variant. is base<l on geometrical functionals on a polytope. 

Let .-\ E Am ,n be such that A U { u, v} E Am+2,n is a nondegenerate set for 
fixed linear independent ffi 0 -vectors u and v. The simplex path taken by phase 
II of the shadow vertex algorithm in order to solve the linear programming 
problem max.rEX A i•T x , when we start with an XA-vertcx xo , which satisfies 
uT .ro = maxrEXA v T x . is uniquely determined . We will denote the number of 
pivots of the simplex path by s0 ,„ (X A ) . Functional s0 ,„ is a functional of additive 
type, because 

(13) Su .v (XA) = (Z(AI) . u). O' = 0, 

Z(Ar) = x(cone(u. v) n 51#0)x(IR+un51 = 0) . 

In the language of the polyhedron Y4 , the number of pivots Su ,v (XA) is equal to 
the boundary simplices 51 of YA, which are intersected by the cone generated by 
u and v and which are not intersected by the ray generated by u . (Representation 
(13) is an immediate consequence of (2 .1.6) in Borgwardt(l987) .) 

The name shadow vertex algorithm is due to the fact that all vertices of the 
simplex path are shadow vertices of the polyhedron X A under an orthogonal 
projection into the plane linhull( u , v) . In Borgwardt 's stochastic model the ex
pected number of pivots required and the expected number of shadow vertices 
are the same up to a constant factor , cf. Borgwardt (3,4 ,5] . So, Borgwardt an
alyzes the expectation of the functional " number of shadow vertices" Su,v, cf. 
example 4, instead of functional Su ,u 's expectation . 

The remaining examples of additive-type functionals are indicator functionals 
( 0-1-functionals), that means they indicate whether a statement is true, which 
we denote by 1, or false . which is denoted by 0 . Expectation values of such 
indicator functionals lead to probability distributions in a natural way. 

Ex8Illple 6: x(a E YA) 

lf we choose A E Am ,n such that AU { a} E Am+1 ,n for a fixed a in IRn, then 

(14) x(a E YA) = (Z(AI) , u) . Z(AI) = x(a E SI) , u = -1. 

The functional defined by (14) can be interpreted as follows: a is no vertex of 
YAu{a} if and only if a E YA . Hence, the number v(YA) of vertices of the polytope 
YA can be represented by the equation 
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m 

( l~) !i(YA) = L( l - \(a; E YA\{a,) )) , 

i=I 

which is due to Efron [ 10] . Thus. the functional "number of vertices" of the poly
tope YA is not additive-type itself, but it is a sum of additive-type functionals. 

In the same way we can handle the functional " number of facets" of the 
polyhedron XA, which is polar to v( YA ): a lies in the polytope YA if and only 
if the additional constraint aT .r:::; 1 does not change the polyhedron XA , that 
means aT:x:::; 1 is a redundant equation for the polyhedron XAu{a} · The indi
cator functional X( aT x :::; 1 is redundant for X A) can be defined by ( 14) if we 
replace u = -1 by u = 0. So. the number of facets fn-1(XA) and the rate of 
redundancy redrate(XA) ofthe polyhedron XA is described by 

m 

(16) fn-i(XA) = I:O - x(a; E YA\{a,J)) = m(l - redrate(XA)). 
i=l 

The number of vertices of the polyhedron XA , cf. example 3, and the rate of 
redundancy of XA have tobe discussed together with the choice ofthe stochastic 
model for the probabilistic analysis of the simplex method, cf. May and Smith 
(18], Shamir (24] or Borgwardt (5], as the mass ofhighly redundant systems or the 
mass of systems with very few vertices should not be too high in the probability 
space, otherwise the results about the expected number of pivot steps are not 
significant for real problems. The next functional may be discussed in the same 
context: 

Example 7: x(cone{YA) = IRn) 
The indicator functional deciding whether total IRn is spanned by the convex 
cone of a polytope was first discussed by Schläßi and independently by Wendel 
[26] . The polar interpretation on XA is as follows: If cone(YA) = IRn then XA is 
bounded and vice versa. Let fln be the n-dimensional unit ball. The introduced 
functional is given as additive-type functional by 
(17) 

x(cone(YA) = IRn) = (Z(Ar),u), Z(Ar) = An(co~:~':-2)() fln), u = -1. 

Example 8: The maximum value of a linear programming problem 

Another question of interest in stochastic analysis of linear programming is the 
distribution function of the objective function 's optimal value. For polyhedra of 
type (3) th.is question can be reduced to the calculation of the expectation of 
the additive-type functional introduced as follows: 

Let A E Äm ,n such tbat A U { v} E Äm+l ,n is nondegenerate for a fixed 
v E IRn. Furthermore, for any set Ar let w(A1 ) be the normal vector of tbe 
hyperplane H(Ar) of unit length, h(Ar) be tbe distance oftbe hyperplane H(Ar) 
to the origin. Theo, the indicator functional x(m~EXA VT X< s) depending Oll 

the parameter s E JR+ can be additively defined by 
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(18) x( max VT X < s) = (Z(A1),11), IT= 0, 
rEXA 

Z(AI) = x(IR+v n S1 i= O)x( l(v~7~~; ))1 < s). 

As identity ( 18) is not obvious, we shall prove it : lf maxreX A vT :z: is finite , 
then , by assumption of nondegeneracy, the maximum is attained in a uniquely 
determined vertex :z:0 , say, whose set of active constraints may be A1 . On the 
other band, we know vertex zo with active constraints A1 is optimal for the 
functional vT :z:, if the ray IR. +v intersects S1 being a first k.ind boundary-simplex 
of Y,t . This establishes the first factor of Z(AI)'s definition. If Yo is the point 
of intersection of m.+v and S1 there exists a positive p with v = PYo implying 
vT :z:0 = p. A simple geometric observation delivers ph(Ar) = l(v, w(Ar))I, cf. 
figure 3. So, vT :z:0 < s, if and only if l(v, w(A1))I < sh(Ar) , which completes the 
proof of ( 18). 

1 
/ 

S1 hw(A1) / s / 11o 

/ 
1 / 

w(Ar) 
/ 

/ 

Fig. 3. IDustration of (18) 

Besides the mentioned examples many otber functionals of polytopes or polyhe
dra of type (2) and (3) can be denoted as additive-type functionals. For example, 
if we average on the choice of subspace L = L(U) in example 4, on the choice of a 
in example 6 or on the choice of v in example 8, new functionals of additive type 
arise. More generally, any weighted sum or integral of additive-type functionals 
is an additive-type functional again. Of course, this is not true for sums (15) or 
(16) as m is a limit of the summation index there. 
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3. The stochastic model 

The stocha.stic model which we use for generation of random sets .4 is the "ro
tation invariance model'' , which was introduced by Renyi and Sulanke [22) an<l 
which has bee11 used iu most contributions on probabilistic analysis of polyhe
dral functionals. We choose random samples A := { a 1 , •.. , am} consisting of m 
identically, indepently, distributed random vectors a; E IR0 

\ {O} by a rotation 
invariant distributio11 . That means the polar representations of a; , i = 1, .. . , m, 

( 19) 

consist of stocha.stically indepen<lent radial parts r; and directional parts w;. The 
radial part r; is arbitrarily distributed by a radial distribution function (RDF) 
F , which we assume to be continuous from the right without loss of generality. 
Often, we use the tail F := 1 - F of the distribution F instead of F. The 
directional part w; is uniformly distributed on the unit sphere Wn in IR0

• The 
sets A generated in the described way are nondegenerate with probability one, 
i.e. Pr(A E A) = l. Hence, it is possible to omit the discussion of degenerate 
events A. 

We concentrate on two important subdasses of rotationally invariant distri
butions. The first is the dass of distributions with algebraic tails concentrated 
in the n-dimensional unit ball, giveu by 

(20) Fa1g,nn := {F 1 F(l - r) ....... Cr0
, r-. 0+, C, 0t > O} . 

The sign ".....," denotes asymptotic equivalence. Fa1g,nn serves as au example for a 
dass of distributious, whose masses are coucentrated iu a compact subset of IR0

. 

The uniform distribution in the ball is a special case in Fa1g,nn setting C = n aud 
0t = l. The uniform distributiou on the uuit sphere cau be considered a poiutwise 
limiting case for 0t tending to 0. The secoud dass consists of distributions, which 
have no bounded support, and is characterized by exponeutial tails: 

(21) Fexp,Rn := {F 1 F(r)....., Cr11 exp(-ßr-Y), r-. oo, '1 E IR, C, ß, '"'f > O}. 

Here the Gaussian normal distributiou is a special case if we set '1 = n - 2, 
ß = 1, '"Y = 2 aud C = n/I'(n/2) . The iuvestigation of dasses (20) aud (21) in 
the context of polytope functionals has been initiated by Carnal [7) for n = 2. 
Instead of Fa1g,nn Carnal studied the wider dass of distributions with regu
larly varying tails. Though our results can be generalized to this dass too, 
cf. Küfer [14), we deal with the smaller dass (20) for simplicity of notation. 
Besides the mentioned dasses we use Fn" as abbreviatiou for the dass of all 
distributious, whose support is the n-dimensional unit ball iln, rnore forrnally 
Fnn := {F 1 F(l) = 1, F(r) < 1, r < l}.' FRn denotes the family of distribu
tions, which is not concentrated in auy compact subset of IR". 

• 
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4. Asymptotic results on expectations 

lfrandom samples Aare generated by the rotation-invariance model. expectation 
values E( Z) of additive-type functionals Z satisfy 

"° 
(22) E(Z) = (':1

) /(c'{'-"(h) + uc~-"(h)]Az(h)dh . 
0 

G i( h') equals the probability that a vector a E A \Ar belongs to the halfspace 
H ( 11 ( Ar) und er the condition that the distance h( A1) of the generating hyper
plane H(Ar) is h'. More formally : Gi(h') := Pr(a E H(ll(Ar)lh(Ar) = h'). 
G~ = 1 - G1 is the complementary distribution. Az(h) is closely related to a 
conditioned expectation value of the boundary simplex functional Z . We have: 
Az(h') := E(Z(Ar) 1 h(Ar) = h')p(h') , where p(h') is the density function of the 
distribution Pr(h(Ar) ~ h'). lf Z(Ar) is additionally invariant under simultan
ious rotations of its arguments, (22) is proven by Fubini's theorem and Az(h) 
can be presented explicitly. 

For special functionals and special distributions formula (22) was first de
veloped by Renyi and Sulanke (22] for n = 2 and by Raynaud [21] for arbi
trary n . Integrals of type (22) become Laplacian-type integrals if we substitute 
G2(h) = e- 1 • These integrals can be asymptotically evaluated for large m by use 
of Watson-type results on Laplacian-type integrals if we know the asymptotic 
behaviour of Az(h) near the boundary of the underlying distribution's domain. 
On the other hand, the asymptotic behaviour of Az(h) depends on the growth 
of Z(Ar) near the boundary of the distribution's domain and on the tail of the 
distribution's RDF. 

A basic dass of additive-type functionals Z is described by boundary-simplex 
functionals Z, which are asymptotically essentially equivalent to powers of ab~ 
lute values of determinants. In this situation an asymptotic evaluation of Az(h) 
is possible for classes (20) and (21) ofrotationally invariant distributions, which 
results in asymptotic equivalents for the expectation values E(Z). For ease of 
notation, we will use 1 det(A1 )1 in the following, where the set A1 is interpreted 
as a matrix. The term is well defined, as the absolute value of a determinant is 
independent under permutations of columns. 

Theorem 1 For any additive-type fv.nctional Z = (Z,u), which satisfies 

(23) Z(AI)....., C(l - h(AJ)r! det(Ar )19, h(AI) - 1-, 

for some C, T > 0, q E INo and any distribv.tion with RDF F E :Fatg,Un: 

(24) E(Z)....., Cm[(l-q)(n-l)-T]/(n-1+2a>, m _ oo. 

Theorem 2 For any additive-type functional Z = (Z, u), which satisfies 

(25) 

for some C > 0, h E IR, q E INo and any distribution with RDF F E :Fexp,Rn: 

(26) E(Z)....., C log(m)6h+(l-q)(n-l)/2, m - oo. 
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Theorems 1 and 2 show. how we can profit from the setting of additive-type 
functionab. The given theorems and modifications of them allow a unified pre
sentation of many well-known and new results about expectations of polyhedral 
functionals. 

Volume and surface area of a polytope }Ä. cf. examples l and 2, become 
special cases of the functionals Z in both theorems by setting r = 0, q = 1 and 
b = n or r = 0, q = b = 1 respectively, as is easily established using (9) and 
( 10). Sharpening and generalizing theorem 1, one can show that for all RDF 
F E Fnn the expected volume of YA tends to the volume of the ball and the 
expected surface area of YA tends to the surface area of the unit sphere. 

Much more interesting than these plausible asyrnptotic equivalents for vol
ume and surface area is the investigation of the asymptotic behaviour of the 
deviation of volume and surface area from the volume and the surface area of 
the unit ball . We only deal with the deviation of the volume, while the surface 
area can be treated in an analogous way. 

Unfortunately, the deviation of the volume d(.On , YA) is not additive-type. 
Thus, instead of d(.On, YA) we investigate Z(A) :=d(.On n cone(YA) , YA). which 
is additive-type by definition 

(27) Z=(Z,u), Z(A!):=..\n(cone(Sr)n.On)-..\n(SI), u=-1. 

We observe that both functionals are identical for nondegenerate A if YA has no 
boundary-simplices of the second kind. On the other hand, YA has no boundary 
simplices of the second kind if and only if cone(YA) = IRn for nondegenerate 
sets A. Schläßi and independently Wendel [26] showed for all distributions of 
our model, cf. example 6: 

(28) 

which implies: 

(29) 

Hence, d(.On ncone(YA), YA) is a good approximation for d(.On, YA) if m is !arge. 
d(.Onncone(YA), YA) satisfies the prepositions oftheorem 1 witb T = 1 and q = 1. 
Here, in case of uniform distribution tbeorem 1 meets Renyi and Sulanke's [22], 
Raynaud's [21] and Meilijson's [20] results. For an asymptotic evaluation of the 
expected deviation d(C, YA) in case of general convex and compact sets C the 
interested reader is referred to Barany [2] . 

For the Gaussian normal distribution in IR.2 result (26) on area and circum
ference is due to Renyi and Sulanke [22]. Tbe generalization to dass (21) in IR.2 

was done by Carnal [7], while Raynaud [21] achieved the corresponding result 
for the volume in c~ of tbe normal distribution in IRn for arbitrary n. 

Tbe number of YA 's facets or polarly spoken XA 's vertices, cf. example 3, are 
special cases of tbe tbeorems 1 and 2 too witb q = 0, T = 0 and 6 = 0, for which 
the same autbors acbieved results in case of the mentioned special distributions 
and dimensions. 

The additive-type functional "number of sbadow vertices Su (X A) of X A in 
tbe k-dimensional subspace L( U)", cf. example 4, does not fulfill the assumptions 
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of the theorems 1 and 2. Here, for k < n the asyrnpt.otic behaviour of the 
boun<lary simplex functional Z is of more general but similar type as those in 
(2.5) or (26) . We ornit the details and refer to a forthrnming paper of the author . 
The results are announced in Küfer [16) . Asymptotic estimations of expectations 
in the special case k = 2 and for the related functional "number of pivot, steps 
required by the shadow vertex algorithm'' have been done by Borgwardt [3.4,5) . 
Asymptotic equivalents for classes (20) and (21) are due to the author and can 
be found in Küfer [14,15) . A typical result is the following one: Let FE Fa1g,nn , 

then 

(30) E(Su )""' Cm(k-l)/(n-1+2a), m - oo. 

To the end of this section we provide two typical results for expectation 
values of functionals introduced in examples 7 and 8: 

For every RDF FE :Fnn redrate(XA) tends to l as m tends to infinity. In 
case of FE Fa1g ,nn the rate of converge can be given exactly: 

(31) 1 - redrate(XA) = O(m- 2a/(n- 1+2a l), m - oo. 

If A is generated randomly by a distribution with an RDF FE :Fnn and v 
is distributed independently from A by an arbitrary distribution with RDF Fv , 
we have: 

(32) Pr( max vT x < s) ""'Fv(s) , s E IR+ , m - oo. 
rEXA 

5. Asymptotic results on variances 

Corresponding to expectation values, integral representations of second moments 
of additive-type functionals Z = (Z, u) can be asymptotically handled as gener
alized Laplacian-type integrals. But here the situation is much more complicated 
for reasons of nonlinearity. Central object is the asymptotic analysis of threefold 
integrals of type 

(33) 

00 00 „ 
J J J cm(h1 , h2,<p)Äz(h1 , h2,<p)d<pdh1dh2 
0 0 0 

for !arge m. We refer to the authors dissertation [12], where an integral formula 
for second moments of additive-type polyhedral functionals is achieved in case 
of Z being invariant under simultaneous rotations of its arguments. We state 
two results on variances, which correspond to theorems 1 and 2 on expectations: 

Theorem 3 For any additive-type functional Z = (Z, u), which satisfies 

(34) 

for some C, T > 0 , q E INo and any distribution with RDF F E Fa1g ,nn: 

(35) Var(~) = O(m-(n-l)/(n-1+2<>>) 
E2(Z) ' 

m-oo. 
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The asymptotic order in (35) is sharp up to a few pathological cases of <listribu
tions , where the rate of decreasing is better. Un<ler the same assumptions on the 
boundary simplex functional Z theorem 3 can be generalized to the dass F nn: 
For every F E Fnn the quotient on the left hand side in (35) tends to zero as 
m ten<ls to infinity. That means in the light of Chebychev·s inequality : Even a 
small deviation from the mean value becomes rare if m is !arge for every fixed 
<limension 11. 

Theorem 3 generalizes a result of Groeneboom [ 11) , who obtained information 
about the variance (and the limiting distribution) of the number of a polytope 
YA 's facets in IR.2 for the uniform distribution in the unit ball. Theorem 3 is the 
first result on higher moments of polytope functionals like volume or surface area 
in full generality of dimensions. For general rotationally invariant distributions 
holds: 

Theorem 4 For any additive-type functional Z = (Z, 11) , which satisfies 

(36) 

for some C > 0. fJ E IR, q E INo and any distribution with RDF F E FRn: 

(37) Var(Z) C---- < m >_ n >_ 2. 
E2 (Z) - ' 

Theorem 4 meets a result of Aldous et al. (1), who investigated the limiting 
distribution for m - oo for the number of a polytope YA 's facets in IR2 un
der rotationally invariant distributions with sfowly varying tail. In this situation 
the expected number of facets tends to a constant , a fact which we know from 
Carnal [7). The same is true for the variance. Thus, theorem 4 can not be im
proved for general rotationally invariant distributions. But, we conjecture that 
for RDFs F E .Fexp,Rn one can proof that the quotient of variance and the 
squared expectation tends to zero if m tends to infinity. 

Theorem 3 and 4 cover the additive-type functionals introduced by examples 
1,2,3 and 6 as mentioned in the previous section. For indicator type functionals 
the discussion of higher moments is not meaningful. 
More involved is the investigation of a polyhedron XA 's number of shadow ver
tices in an arbitrary subspace L(U), because the boundary simplex functional Z 
is not invariant under simultatious rotations of its arguments. We obtained as a 
first result for an RDF FE .Fa1g,nn, k E {1 , ... , n}, cf. Küfer (16): 

(38) Var(Su) _ O( -(1:-l)/(n-1+2a)) _ 
E2(Su) - m , m oo. 

A related paper, we should mention here, is due to Devroye [9), who estimated 
higher moments for a dass of functionals on random samples A. Devroye's func
tionals are defined as cardinal numbers of certain A-subsets B, which are selected 
by a property remaining true for all subsets of B too. For instance let B be the 
set of all a E A, which are vertices of the polytope YA. Obviously, every subset 
of B consists of YA-vertices too. Devroye assumed the vectors a E A i.i.d. in IRn 
under an arbitrary (not necessarily rotation invariant) distribution and proved 
that for the cardinality number N(B) of sets having the "subset-property" the 
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p-th moment is bounded by the p-th power of the expectation times a constaut 
dependiug on p only. L1nfortunately. only few polyhedral functionals in discussion 
have this property. 

References 

!. Al<luus. D. J ., Friste<lt , B., G riffm, P. S, Pruitt. W. E .: The N"wnber of Extreme Points in 
the Convex Hull of a Random Sarnple. J . Appl. Prob. 28 ( 1991) 287-304 

2. Bar&ny, L: lntrinsic Volwnes and f-vectors of Random Polytopes. Math. Ann. 285 ( 1989) 
671-699 

3 . Borgwac<lt, K. H. : Uutersuchwigen :tur Asymptotilc der mittleren Schrittzahl von Sim
plexverfahren in der linearen Optimierwig. Dissertation, Universität Kaiserslautern 1977 

4. Borgwardt, K. H.: The Average Number of Pivot Steps Requ.ired by the Simplex Method 
is Polynomial. ZOR 26 ( 1982) 157- 177 

5 . Burgwardt, K . H.: The Simplex Method- A Probabilistic Analysis. Springer, New York 
Berlin Heidelberg 1987 

6 . Buchta, C.: Zwallige Polye<ler--eine Übersicht . In: Zahlentheoretische Analysis. Seminar. 
Hlawka et al. (ed. ) (Lecture Notes in Mathematics, vol. 1114) . Springer, New York Berlin 
Heidelberg 1985 

7. Carnal, H.: Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten. ZWVG 15 
(1970) 1~179 

8. Croft, T . C., Falconer, K. J ., Guy, R. K.: Unsolved Problems .in Geometry. Springer, New 
York Berlin Heidelberg 1990 

9 . Devroye, L.: Moment lnequalit.ies for Random Variables in Computat.ional Geometry. Com
puting 30 (1983) 111-119 

10. Efron, B.: The Convex Hull of a Random Set of Points. Biometrica 52 (1965) 331-345 
11. Groeneboom, P.: Limit Theorems for Convex Hulls . Prob. Th. and Rel. Fields 79 (1988) 

327-368 
12. Gruber, P. M.: Approximation of Convex Bod.ies by Polytopes. Rend. Circ. Mat. Palenno 

3 (1982) 195-225 
13. Grünbawn, B .: Convex Polytopes. Wiley, New York 1966 
14. Küfer, K.-H.: Asymptotische Varianzanalysen in der stochastischen Polyedertheorie. Dis

sertation, Univenität Kaiserslautern 1992 
15. Küfer, K.-H.: On the Number of Pivot Steps Required by the Simplex Algorithm. To 

appear in ZOR, Preprint 238 Dept. Math., Universität Kaiserslautern 1992 
16. Küfer, K.-H.: A Generalize<l Probabilistic Analysis of the Number of a Polytope's Shadow 

Vert.ices. Proceedings DGOR/NSOR-Symposium, Amsterdam 1993 
17. Liebling, T . M.: On the Number of Iterations of the Simplex Method. Operations Research 

Verfahren 17 (1972) 24S-264 
18. May, J . H. , Smith, R. L.: Random Polytopes: Their Definition, Generation and Aggregate 

Properties. Mathematical Programming 24 (1982) 39-54 
19. McMullen, P., Shephard, G. C. : Convex Polytopes and the Upper Bound Conjecture. 

Cambridge University Press, Cambridge 1971 
20. Meilijson, 1.: The Expected Value of Some Functions of the Convex Hull of a Random Set 

of Points Sampled in Rd. Israel Journal of Mathematics 72 (1990) 341-352 
21. R.aynaud, H.: Sur le Comportement Asymptotique de l'Enveloppe Convexe d'un Nuage 

des Points Tires au Hazard dans Rn. Journal of Applied Probability 7 (1970) 35-48 
22. Renyi, A., Sulanke, R.: Über die konvexe Hülle von n zulallig gewählten Punkten 1. ZWVG 

2 (1963) 76-84 
23. Schneider, R.: Random Approximation of Convex Sets. J . Microscopy 151 (1988) 211-227 
24. Sharnir, R. : The Efficiency of the Simplex Method: A Survey. Management Science 33 

(1985) 241-262 
25. Weil, W. , Wieacker, J . A. : Stochastic geornetry. In: Handbook of Convex Geornetry. Gru

ber, P . M., Wills, J.M. (eds.) North-Holland, Amsterdam 1993 
26. Wendel, J. : A Problem in Geometrie Probability. Math. Scand. 11 (1962) 109-111 




