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Abstract. The topic of this paper are discrete decision problems with mul-
tiple criteria. We first define discrete multiple criteria decision problems and
introduce a classification scheme for multiple criteria optimization problems.
To do so we use multiple criteria optimization classes. The main result is a
characterization of the class of lexicographic max-ordering problems by two
very useful properties, reduction and regularity . Subsequently we discuss the
assumptions under which the application of this specific MCO class is justi-
fied. Finally we provide (simple) solution methods to find optimal decisions
in the case of discrete multiple criteria optimization problems.
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1 Discrete Decision Problems and Multiple
Criteria Optimization Classes

A discrete decision problem consists of selecting from a finite set of altern-
atives A = {ay,...,am} an ‘optimal’ one. In this paper we consider the
context of multiple criteria decision making (MCDM). The solution of dis-
crete decision problems with multiple criteria is often called multiple attrib-
ute decision making, see [HY81]. Every alternative is evaluated with respect
to a certain number of criteria, or objective functions. We assume that
fo i A= R, ¢g=1,...,Q are @ real valued functions representing the dif-
ferent criteria. Therefore we can calculate the value of each alternative with
respect to each criterion as given by vg; = fy(a;). Since the number of al-
ternatives as well as the number of criteria is finite it is convenient to write
all the values as a @ x m matrix:

V= (vg5) = (f4(aj)) .



Matrix V summarizes the performance of all alternatives with respect to all
criteria. We understand an optimal alternative to be one with minimal per-
formance with respect to the @ criteria. This implies that minima of a set of
vectors, namely of {(fi(a;),...,fo(a;)):7=1,...,m}, or, in other words,
of the columns of V have to be found. Due to the fact that, if @ > 2, there
does not exist a canonical total order of R?, there are lots of reasonable
choices of a (partial) order of IR? which will lead to as many different defin-
itions of minima. This means that, besides specification of the criteria, the
decision maker (DM) faces the task of selecting an order, which will define
the optimal alternatives of the decision problem and finally he also has to
solve his decision problem. It is a straightforward assumption that the DM
will have certain ideas about properties of this solution process.

In the remaining part of this section we will introduce a framework which
allows to formalize the notion of the DM’s ideas concerning desirable features
of the solution process and properties of optimal solutions of decision prob-
lems. In Section 2 we will then introduce two such desirable properties and
show that they uniquely define a specific pattern of solving decision problems.
The corresponding (simple) solution method will be presented in Section 3.

Formally, let us consider a general multiple criteria optimization problem
(MCOP). Let F be the set of feasible solutions and f : F — R be the
objective function. Function f is a vector valued function and can be written
as f = (f1,..., fo), l.e. f1,..., fo are the @ criteria. The goal of the solution
of MCOP is to find ‘minimizers’ of the objective function, considered to be
optimal solutions of the MCOP at hand. It is quite common in MCDM that
an optimal decision is found by optimizing not directly with respect to the
criteria. Often a utility function U is applied to the vectors f(z), z € F.
Then any z € F minimizing U(f(z)) is an optimal solution of the MCOP.
For instance, U can be a scalarizing function defined by a weighting vector
A= (A,...,Ag) where A; > 0 and 25:1 Ag = 1. In this case U is defined
by U(f(2)) = S Aafy(=):

From these considerations we conclude that, in general, the solution of an
MCOP cannot be determined from the feasible set F and the objective func-
tion f, mapping F to IR?, only. Information concerning the utility function
U and the final comparison of the feasible solutions in the image space of U
(IR with the canonical order in in the case of a scalarizing function) is needed.
However, this information is usually implicitly defined by the ‘ideas’ of the
DM about the solution of ‘his’” MCOP. Making this information available the
DM could possibly gain a more profound understanding of the structure of an
MCOP. Furthermore, it would be easier for him to communicate with others
or even help him to find existing solution procedures.

We therefore propose to include this ‘hidden’ information explicitly in the
formulation of an MCOP. Our concept is more general and comprises utility
functions, scalarizing functions and many other as special cases. This concept
provides the possibility of a classification of multiple criteria optimization



problems, see [Ehr97], and also is a helpful tool for theoretical achievements
in the area.

Let 6 : R? — RF be a point-to-set map, i.e. 6(v) C IRF is a subset of
points in RF, where P > 1. This point-to-set map is applied to the objective
values vectors f(z), yielding a set of outcomes

0= 0 (x).

rzEF

Let us assume that RY is endowed with some kind of ordering <, which we
assume to be at least a strict partial order. Then we define the set of minima
to be all z € O such that there does not exist another point 2z’ € O satisfying
z/ < zand 2’ # z. An optimal solution of an MCOP is then any feasible
solution z such that z is in the preimage of an element of the set of minima.
The map 6 will be called the model of the MCOP problem.

We illustrate the concept by showing that scalarizing functions mentioned

above are special cases of models. If we define 8 by 6(f(z)) = Z(?:l Agfq(2)

and let P = 1 we have O = {Z?zl Agfq(z) : € F} and the set of minima
is simply the minimum of the scalarizing function and any minimizer of that
same function is considered an optimal solution, as usual. Note that # maps
to IR and solutions are compared by comparing #(f(z)) values in the ordered
set (IR, <). But, moreover, our concept of the model map allows the following
definition: let

Q
A:{)\ERQ/\(IZO,Q:LaQaZ)‘qzl}
q:l

We define

0(f(x)) == (A, f=)) :=={\ f(=)) : A€ A}
(Here (X, f(z)) denotes the Euclidean scalar product of A and f(z) in R%).
By this definition the set of minima is the set of all minima with respect to
any scalarizing function.

We introduce some notation and formalize the ideas of the above discussion.
As mentioned earlier the basic information about the MCOP problem is given
by the set of feasible solutions F, the criteria, f = (f1, ..., fg), and the image
space IR? of f. We will call this triple (F, f, IR?) the data of the MCOP.
The description of the MCOP is completed by the model map 6 (which is
possibly a point-to-set map) and the ordered set (IRF, <), in which minima
are actually sought. Therefore we have three basic elements defining an MCO
problem, namely data, model, and ordered set. From now on MCOPs will
be denoted by

(F, f, R°)/6/(R", <).

As an indication that P > 1 makes perfect sense we note that if we want to
solve an MCOP problem in the commonly used sense of Pareto optimality (i.e.



a solution z* € F is Pareto optimal if there does not exist another solution
x € F such that f,(z) < fo(z*) forallg =1,...,Q and f;(z) < f;(z*) for at
least one j). We choose = id, the identity map, RF = R? and < for < .
Here we use < in the following way: if a,b € IR? then a < b if a; < b, for
all g =1,...,@Q and a; < b; for at least one j. Thus (F, f, R?)/id/(R?, <)
denotes an MCOP to be solved in the sense of Pareto optimality.

The solution of an MCOP (F, f, R?)/8/(IRF, <) consists of two parts: the
determination of the set of minima of 6(f(F)) and the determination of the
set of optimal solutions, i.e. the preimage of the set of minima. The former
set will be denoted by

Vopt ((F, f, R®)/0/(R”, <))

pt
and the latter by
Opt ((F, £, R?)/0/(R”, <))

The notation of MCOP we have introduced here can be used as a clas-
sification scheme for multiple criteria optimization problems. We refer to
[Ehr97] for more about this aspect. The classification makes it easily pos-
sible to compare various MCOP problems and to exhibit their interrelations.
It may also provide a structure and guiding line through the vast amount of
literature on multiple criteria optimization. A second main advantage of the
previously introduced notation is the possibility of proving results which hold
independent of the data of a specific problem. In [Ehr97] various results of
this type have been proven. They can be interpreted as structural properties
of whole classes of MCOPs. We follow [Ehr97] and define an MCO class to
comprise the set of all MCOPs which have the same model map and ordered
set. An MCO class is denoted by

(o,0,0)/0/(R", <).

The dots indicate an arbitrary entry. We note that results which can be
shown for an MCO class are valid for all problems in the class, i.e. for any
specific problem data.

In Section 2 we introduce properties of MCO classes which are reason-
able from a decision makers point of view. We have mentioned the ‘ideas’
of the DM about the solution of MCOPs earlier. Formally, these ‘ideas’
are properties of MCO classes. For two of these properties we show that
they characterize a specific MCO class, the lexicographic max-ordering MCO
class. Subsequently further properties of this class are established. Section
2 is concluded by a discussion of the circumstances under which the applic-
ation of this specific MCO class seems to be justified. Section 3 is devoted
to (simple) solution procedures for determining optimal decisions under the
lex-MO MCO class when the MCOP is a discrete multiple criteria decision
problem.



2 Reduction, Regularity and the
Lexicographic Max-Ordering MCO Class

In this section we propose the lexicographic max-ordering MCO class. This
class will be shown to be uniquely defined by two properties which we describe
before proving the main result. Throughout this paper we only consider
MCO classes which satisfy the following normalization property. For the
special case that ) = 11t is natural to assume that the usual single objective
minimization with the canonical order of IR should be applied. Therefore, if
(o,0,0)/sort/(IRF <) is any MCO class, we require that @ = 1 implies

(o,0, R)/sort/(IR”, <) = (e,e, R)/id/(IR, <),

which actually means ordinary minimization of one criterion. Note that the
MCO classes defined by Pareto optimality (e, e, ¢)/id/(IR?, <) and by scal-
arizing the criteria (o, e, ¢)/(A,.}/(IR, <) both satisfy the normalization prop-
erty. For other MCO classes we refer to [Ehr97].

Let (o,0,0)/6/(IRF, <) be any MCO class. What could be desirable prop-
erties from a decision makers point of view? We propose two. The first one is
related to a reduced optimization problem. Let us suppose that, for whatever
reason, for some objective functions the values that are taken for some solu-
tions in Opt ((e,e,e)/6/(IR",<)) are known. Then it should suffice to con-
sider for the minimization only the remaining objectives, with the additional
constraints that for the known objectives the known values are taken. If the
optimal solutions of this reduced minimization problem are exactly those of
the original problem which have the given values for the specified objectives,
we say that the MCO class satisfies the reduction property. Formally we
define the reduced problem as follows.

Definition 1 Let (o,0,0)/0/(IRF <) be a MCO class and let (F, f, IR?) be
data to define any MCO problem of the given MCO class. Let y € IR? be
such that there exists at least one * € Opt ((F, f, R?)/0/(IRF,<)) with
f(z) = y. Furthermore let K = {i1,...,ix} C Q be an indexr set. Then
the reduced problem for K, denoted by RP(K), where f* := (fi,,..., fi.) is
defined by

(F*, 1%, R")/60/(R”, =)

and F*¥ .= {x € F: f,(F) =y, Vg € Q\K}.

Thus, in the reduced problem the values of the functions with indices in
Q\ K are fixed, those with indices in K are still to be minimized. Using the
definition of the reduced problem, we define the reduction property.

Definition 2 We say that an MCO class (e,e,0)/0/(IRY <) satisfies the

reduction property if for all MCO problem data (F, f, R?) defining prob-
lems in the class the following holds: for all index sets K C Q and for all



(y1,...,y0) € R9 as in Definition 1
Opt ((F*, f*, R*)/6/(R", <)) =
{z € Opt ((F,f,R?)/6/(R",<)) : fy(z) =y, Ve ¢ K}.

The second property can be interpreted as a pessimistic point of view of
the DM: he will at least want to have a solution such that the worst criterion
is as good as possible. I.e. an optimal solution of an MCOP should be such
that

max r*) < max ) Ve e F.
q:1,...,qu( )_q:LMqu( )

Evidently, minimizing the maximum of the ) criteria is again an MCO class.
Let 8(f(x)) := maxg=1 ¢ fq(z) and (jRP, <) := (IR, <). The corresponding
MCO class is

(o, 0,0)/ max/(RR, <)

and is called max-ordering MCO class. Formally, the pessimistic attitude of
a DM 1s formulated as the regularity property.

Definition 3 An MCO class (»,e,0)/0/(IRY <) satisfies the regularity
property if

Opt ((F, £, R?)/6/(R” . <)) C Opt ((F, f, R?)/ max /(R, <)) .
for all MCO problems (F, f, R%)/0/(IRY, <) in the class.

The main purpose of this section is to show that reduction and regularity
property uniquely define the lexicographic max-ordering MCO class. We will
now provide the definition of this class. First, we have to define the model
map.

Definition 4 For any element x € IR® we define
sort(z) = (sortq(z),...,sortg(z))

to be the wvector containing the components of x in non-increasing order:
sort,(z) > ... > sortg(z), {z1,..., 20} = {sort1(z),...,sortg(z)}.

Since sort is a mapping sort : IR? — IR? it remains to specify the order.
We shall use the lexicographic order. Therefore the ordered set is (jRQ, <iex)
and the lexicographic max-ordering class is defined by

(o,0,8)/sort/(RP, <jz).

We will usually call that class the lex-MO MCO class for short. By this
definition, a feasible solution z* € F of an MCOP is a lex-MO solution if its
objective function vector is a lexicographically minimal element of sort(f(F)),
ie. if

sort(f(z")) <iew sort(f(z)) Vze F.



This definition of optimality has appeared in the literature earlier, although
with different names, see e.g. [Ogr94] [MO92] and [Beh86, Beh81]. We also
refer to related papers [CLT96] and [Beh77] In none of these papers the
relevance for general multiple criteria optimization has been considered. This
was done for the first time in [Ehr95].

To prove our main result we first show that (e, e, e)/sort/(IR?, <;.;) does
indeed satisfy the reduction and regularity property.

Theorem 1 The lex-MO MCO class (o,e,0)/sort/(IR?,<;.,;) satisfies re-
duction and regularity property.

Proof:

We will write Opt and Opt (RP(K)) for the optimal sets of original and
reduced problem in the proof. First we show that (e, e,e)/sort/(IR?, <)
satisfies the regularity property. Let (F, f, R?) be data of an MCOP of the
lex-MO class and let z* € Opt ((f, f, R9)/sort/(IR?, glex)) be an optimal
solution. Assume there exists some feasible solution z such that

max r) < max x™).
q:l,...,qu( ) q=1,~~~nyq( )

Then sorty (f(z)) < sorty(f(z*)). This is a contradiction to the choice of z*
because it obviously implies sort(f(z)) <ier sort(f(z*)).

To prove that the lex-MO class satisfies the reduction property, too, con-
sider any MCO problem (F, f, R?)/sort/(IR?, <i.;;). We have to show that

Opt (RP(K)) ={z € Opt : fy(v) =y, Vq &K} (1)

for every choice of K and (y1,. .., yq) as in Definition 1. We denote the latter
set in (1) by Opt* for brevity. We observe that for all solutions z € Opt* it
holds that

fa@) = fo(¥) =y, Vg e{l,....Q}\K VzeOpt(RP(K)) (2)

by the definition of the reduced problem.
To show (1) first let # be an element of Opt (RP(K)). By definition of
Opt* it follows that

sort(f(2)) <iex sort(f(z)) Vz € Opt™. (3)
From (3) and (2) we conclude that
sort(f’c(:c)) <lex sort(f’c(:i‘))

which due to the choice of & as an optimal solution of the reduced problem
must be satisfied with equality. Therefore we have shown that sort(f(z)) =
sort(f(z)) which clearly implies z € Opt™.



We proceed with the reverse inclusion. Let z be an element of Opt*. Note
that z* is feasible for the reduced problem by definition of RP(K). Now
assume the existence of a solution Z € Opt (RP(K)) such that

sort (f*(2)) <iew sort(f* (z)).

This implies that also sort(f(Z)) <ier sort(f(z)), contradicting the choice of
z. Hence it must hold that

sort(£(2)) <iea sort(f(z)). (4)

(3) and (4) imply that sort(f(z)) = sort(f(z)), therefore z belongs to the set
Opt (RP(K)). We have proven both inclusions in (1) and the proof is com-
plete. a

We proceed to prove the converse of Proposition 1 and thus the main
result of the paper, namely that reduction and regularity are characteristic
properties of the lex-MO class. Theorem 2 has first been proven in [Ehr96]
and is also contained in [Ehr97].

Theorem 2 An MCO class (e,9,0)/0/(IRY, <) satisfies reduction and reg-
ularity property if and only if

(o,o,o)/&/(jRP,j) = (o,o,o)/sort/(BQ,glex).

Proof:

Due to Theorem 1 we only have to show the ‘only if” part. Let us as-
sume that (e, e e)/0/(IRF <) is an MCO class satisfying both reduction and
regularity property.

Let (F, f, R?) be data of an MCOP of class (e, e,e)/0/(IRF <). We prove
the result by induction on the number @ of criteria. For ) = 1 the result
follows immediately from the normalization property, since all MCO classes
coincide in that case.

Let us now assume that the result holds for not more than @ — 1 criteria
and consider the case of @) criteria. We have to show that

Opt ((F,f,R?)/6/(R",<)) = Opt ((F, f, R?)/sort/(R?, <o) .~ (5)

Let Z be a solution in Opt ((T,f, ]RQ)/G/(]Rp,j)). Furthermore, denote
by y the optimal value of a max-ordering solution: y is the unique point in
Vopt ((F, f, R9)/ max /(IR,<)). Since (o, o, e)/0/(IRT, <) satisfies the regu-
larity property there must exist an index ¢* such that f;+ (Z) = y. Therefore
ze {zeOpt((F,f,R?)/0/(RP,=<)) : f, () = y}.

Now we consider the reduced problem with £ = {1,...,Q} \ {¢*} and the
value of f,+ fixed at y. Then

{z € Opt ((F,f, R?)/0/(R", <)) : fpr (x) = y}



= Opt ((F*, f*, R971)/6/(R", <))

= Opt ((}"’C, . ]RQ_I)/sort/(]RQ_l, Slex))

= {z€Opt((7, f, R?)/sort/(R?,<ic)) : for =y}
C Opt ((F, f, RO)/sort/(IR?, <ier)) -

The first equation follows from the reduction property for (e, ,)/0/(IRY, <).
The second follows from the induction hypothesis since RP(K) is a multiple
criteria optimization problem with ¢ — 1 objective functions and feasible set
FX as defined in Definition 1. Finally the third is implied by the reduction
property for (e, e, e)/sort/(IR?, <i.;:). The inclusion is trivial. Hence we have
shown z € Opt ((F, f, R9)/sort/(IR?, <iez)).

Proving the converse inclusion analogously completes the proof of (5). We
let z be an element of Opt ((F, f, R?)/sort/(IR?, <)) . By regularity we
see that there exist ¢* and y such that

z € {x € Opt((F,f, R?)/sort/(R?, <ies)) : for () = y} .

As above we conclude that z € Opt ((F, f, R?)/6/(R”, <)). O

The interpretation of Theorem 2 is that, if the DM agrees with the reduction
property and has a pessimistic point of view (regularity property), he must
choose sort as model map and the lexicographic order of R?. In other words,
he will have to solve problems of the lexicographic max-ordering MCO class.
In Theorem 3 we summarize further properties of the lex-MO class.

Theorem 3 Let (F, f, IR?)/sort/(IR9,<j.;) be a problem of the lex-MO
class. Then the following hold.

(i) The set of minima Vopt ((T, [, R?)/sort/(IR?, Slez)) s a singleton.
(ii) Opt ((F, f, RQ) [sort/(IR?,<i.)) C Opt ((F, f, R?)/id/(R?, <)) .

(iii) Let m be a permutation of {1,...,Q}. Define the corresponding per-
mutation of objective functions fr(x) := (fz(1)(),..., fr(@)(%)). Then

Opt ((F, f, R?)/sort/ (R, <iez)) =
Opt ((F, fr, RY)/s0rt/(R?, <iez)) -
(iv) Let 7 : IR = IR be a strictly monotone mapping. Define the function
frgi=Tofy q=1,...,Q and define f; := (fr1,..., frq). Then
Opt ((.a f7 0)/SOI't/(]RQ7 Slex)) =
Opt ((e, fr, ®)/sort/(R?, <ies)) -

Proof:
Let (F, f, R?)/sort/(IR?, <ie;:) be a MCO problem of the lex-MO class.



(i) The first assertion is clear from the definition of the lex-MO class,
because the lexicographic order is a total order.

(ii) Let * € Opt ((F, f, R9)/sort/(IR?, <iez)) be a lex-MO solution. As-
sume there exists some feasible solution z such that f(z) < f(z*). Tt
follows that sort(f(z)) <jer sort(f(z*)), with sort(f(z)) # sort(f(z*)),

contradicting the choice of z*.
(iii) Clearly sort(f(z)) = sort(fz(z)) holds for all feasible solutions z € F.

(iv) By the strict monotonicity of 7 it holds that f,(z) < f,(z) if and only
if 7(fq(x)) < 7(fr(x)) for all x € F.

O

Besides the results of Theorem 3 it can also be shown that lex-MO solutions
can be used to parametrize Pareto optimal solutions. We refer to [Ehr95]
for details. We will now discuss the relevance of Theorem 3 for decision
makers. First we note that (i) means that lex-MO solutions are always
Pareto optimal. Pareto optimality is quite natural a requirement of optimal
solutions of MCOPs. If a solution which is not Pareto optimal represents an
optimal decision it would be possible to find another one which is not worse
with respect to all criteria an d strictly better with respect to at least one.
Such a situation would raise the suspicion that the MCOP is not formulated
correctly. Beyond this positive aspect, the fact that the set of minima is a
singleton (i) provides an improvement to Pareto optimality: the value of a
lex-MO solution is uniquely defined. The set of Pareto optimal solutions is
often prohibitively large to define an optimal solution, it can even be shown
that every feasible solution is Pareto optimal in some cases.

Results (iii) and (iv) will help us to identify situations in which the applic-
ation of lex-MO MCO class problems is appropriate. Note that due to (iii)
the numbering of criteria is irrelevant for the optimal solution. Therefore we
must assume the DM’s indifference with respect to the criteria. Indifference
implies that there are no rankings of criteria or relative importances present,
not even implicitly. In these cases we would consider lexicographic or scal-
arized optimization the better choice. See also the definition of A-extremal
and (global) lexicographic MCO classes in [Ehr97]. Finally, invariance under
monotone transformations, implies that performance with respect to the cri-
teria can be measured on ordinal scales. As a conclusion we state that the
lex-MO MCO class is the appropriate tool when the DM is totally indifferent
with respect to the criteria and performance is measured (at least) on ordinal
scales. Both are, as we conjecture, rather weak assumptions.

Moreover, the sorting of the criteria suggests that the scales should be the
same for all criteria. If this is not the case a priori a normalization can be
applied. For instance, we can define
maXj=1,.,m Yqj — Vqj

7 ! P—
Uq] =

maXj=1,....m Vg —MINj=1  m Vgj



Then all values v/ . are in the interval [0, 1]. We refer to [HY81] for more on

normalization of scales.

3 Optimality for Discrete Decision Problems

In this paper we will focus on discrete problems, as we have already indicated
in Section 1. In this case note that the set of values of the criteria is finite.
Welet R={vg; : 5 =1,...,m; ¢ =1,...,Q}. Then for all a; € A we
have that v(a;) € R%. Therefore we will replace IR? by the finite set R?.
Also, since all value vectors are explicitly given via the performance matrix
V, there is no need to consider the criteria as objective functions (this is
of course needed in general multiple objective optimization). Tt is therefore
possible to combine f and R? and only note V instead, in the above notation
for MCOPs. We will use the notation v(a;) or v; for the columns of V. Thus,
a multiple criteria discrete decision problem is denoted by

(A, V)/0/(R”, %).
The following assumption guarantees that the problem is not trivial. Define

0 A

Then the vector v* = (vf,..., U*Q) is called the utopia point and, clearly, if
for some alternative a; it holds that v(a;) = v* only this point, the ideal
solution, can be considered as an optimal decision. We therefore assume that
an ideal solution does not exist.

We now propose two approaches to solve a discrete multiple criteria decision
problem of the lex-MO class. The first is to sort the vectors v; and compare
them lexicographically.

Algorithm 1 for (A, V)/sort/(IR?, <jez)

Input:  performance matrix V
Output: set of optimal decisions Opt

forj=1,...,mdo v} := sort(v;)
min =1
1:=1
while i < m do
begin
if U:' <lew 'L’:nin
then min (=1
1:=1+4+1
end
Opt :={a; 1 v; = v;, }

min



The time needed for this algorithm is bounded by O(m@log@) for the
sorting of the m vectors v;. Finding the lexicographic minimum of the sorted
vectors v’ can be done in O(m(@)) time. The second algorithm uses perform-
ance matrix V, finds the smallest maxima of the columns and constructs a
smaller matrix. This step is applied iteratively.

Algorithm 2 for (A, V)/sort/(IR?, <jcx)

Input:  performance matrix V
Output: set of optimal decisions Opt

count :=1
fori:=1,...,mdo Q; :={1,...,Q}
Opt :={a1,...,am}

1: begin
fori:=1,...,mdo
begin
mi (= Max Vg
g=1,...Q
i* := argmin{m;}
Qi =\ {i"}
end
m* := min m;
i=1,..m

Opt == Opt \ {a; : m; > m*}
for a; € Opt do v} 1= (vgi 1 ¢ € Qi)
count := count + 1
end
if m > 1 and count < @
then goto 1:
else STOP

In each iteration m maxima of () numbers are determined in O(Qm) time.
Due to the condition count < @ and the fact that the cardinality of all Q;,
for which a; remains in Opt, decreases at least by one in each iteration the
algorithm stops after at most @) iterations. Therefore the overall time needed
is O(mQ?).

Comparing both algorithms, we see that in the worst case the second one
is slower, however, for the first the running time is always O(mQ@ log @), even
in the best case. The second one on the other hand may be much faster in
practice, because Opt tends to become a singleton after only a few iterations.

We illustrate the methods with a small example. Let us assume somebody
wants to buy a new car. There are five models a; to a5 available and the
relevant criteria for the decision are reputation of the brand (cl), petrol
consumption (c2), price (c3), design (c4), and tenure of the guarantee (c5).
To have a common ordinal scale for the criteria, she/he decides to evaluate



the cars with respect to the criteria on a 10 point scale, the fewer points the
better. Results are displayed in the matrix below

aq as as a4 as
|5 1 7 4 4
)| 4 4 3 5 2
)| 7 3 1 6 1
4|3 5 2 1 1
(5)| 2 1 2 3 5

According to the first algorithm we would sort all the columns of this matrix
V resulting in

7T 5 7T 6 5
5 4 3 5 4
4 3 2 4 2
31 2 3 1
21 1 11

Finding the lexicographic minimum of the columns would yield the optimal
decision Opt = {as}.

Let us now apply the second method. In the first iteration we find m; =
7,ms = 5,m3 = 7,mq = 6, and mys = 5. Therefore we would delete a1, agz,
and a4 from Opt. Furthermore Q5 = {1,2,3,5} and Q5 = {1,2,3,4}. In the
second iteration we therefore consider a much smaller problem, shown in the
following matrix

e
— =N

We now find 4 as the maximal entry in both columns, hence cannot change
Opt but make the problem still smaller since Q3 = {1,3,5} and Q5 =
{2,3,4}. In the third iteration we therefore consider

1 2
31
11

Now ms = 3 > ms = 2, a5 is deleted from Opt, which contains only a single
element and the algorithm stops.
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