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Introduction

It is well-known (see [M1], [M2]) that there is a coarse moduli scheme M{¢,, ¢z, c3) of
semistable coherent sheaves of rank 2 on IP; with Chern classes ¢;, ¢, ¢3; although so
far very few of these schemes have been studied in detail and not much is known about
their structure in general. This work is devoted to the study of M(0,2,4), which is
among the first non-trivial cases with extremal third Chern class, but still allowing
explicit considerations. The open subset M, of M(0,2,4) of u—stable reflexive sheaves
was described by Chang in [C] and Okonek in [O]. They proved that M, is irreducible,
rational and smooth of dimension 13. Moreover, they showed that any F € M, can be
represented as a cokernel of a 2 x 4-matrix of linear forms, i.e. has a short resolution

0 - kKR0(-2) —m ke0(-1) — F — 0.

It turned out that M, is dense in the Maruyama scheme M(0,2,4) and that this
compactification is the G.I.T.-quotient of the space of all semistable 2 x 4-matrices
of linear forms under the natural action of GL(2) x GL(4), see theorem I, 1.3.

Thus the study of M(0,2,4) is the study of 2 x 4-matrices of linear forms on a
4-dimensional vector space. There are some remarkable and astonishing phenom-
ena related to these matrices. In section 3 we succeeded in giving normal forms
to these matrices in the different geometric situations related to their Fitting ideals
of quadrics. This helps us to prove results on the subvarieties of the sheaves with
specified geometrical data, see 3.10 and theorem II, 4.5.

Our purpose is to describe the most important subvarieties of M(0,2,4) and their
sheaves. This classification is still far from revealing the structure of M(0,2,4) com-
pletely. In sections 1 and 2 we determine the subvarieties Sg, S, S of non-reflexive
sheaves of M(0,2,4) and prove theorem I. We show that M(0,2,4) is singular along
the irreducible subvariety Sy of properly semistable sheaves. The variety S, of sheaves,
which are singular along a conic, corresponds to the subvariety D} of reflexive sheaves,
which are centred pullbacks of bundles on a plane, under a remarkable duality between
the moduli spaces M(0,2,4) over IP; and [P respectively, see proposition 2.6.

The reflexive sheaves F in M(0,2,4) are singular at a 0-dimensional subscheme
Z(F) C IP; of length 4. They can be classified by the multiplicities of the points
of Z(F). This leads to the closures D, of the subvarieties of sheaves with a v-fold
point in Z(F). These are studied in section 4, together with the rational morphism
(of generic fibre dimension 1) from M(0,2,4) to the Hilbert scheme Hilb*(IP3) of four
points, defined by F +— Z(F). In proposition 3.5.4 we improve a result of Chang, [C],
about the fibre over a scheme with four simple points. The comparison of M(0,2,4)
with Hilb*(IP3) also involves normal forms for the ideals of the schemes in Hilb*(IP3),
which we did not find in the literature, see remarks 3.8.2 and 3.9.2. As a final result
we show in proposition 4.7 that the subvarieties S; and S; of non-reflexive sheaves
are both contained in Dy, whereas the singular locus Sy is not contained in D3, but
is in the closure D, ; of the subvariety of sheaves with two double points.



Acknowledgements: We thank Pauline Bitsch for her very efficient job in type-
setting this manuscript. The first author thanks the Department of Mathematics of
the University of Kaiserslautern for its hospitality during preparation of this work
and the DFG for paying for her visit to Kaiserslautern. The second author thanks
the Department of Mathematics of the University of Barcelona for an invitation to
lecture on partial results of this paper.



Notation

e Throughout the paper k will be an algebraically closed field of characteristic
zero.

e G,V denotes the Grassmannian of m-dimensional subspaces of a vector space

V, IP, = IPV = G,V the projective space, dim V =n + 1.
e The invertible sheaf of degree d on IPV is O(d), so that V* = H°(IPV, O(1)).

e For an Opy-module F we use the abbreviations F(d) = F @ O(d), H'F =
H'(IPV,F), and h*F(d) = dimx H' F(d).

e The sheaf of the trivial vector bundle with fibre F is denoted by £ ® O and
E ® F is written for (£ ® O) ®o F. Moreover, we write mF = k™ ® F for any
Opv-module and an integer m > 1.

e The dimension of a coherent sheaf is the dimension of its support.

e The Chern classes ¢;(F) of a coherent sheaf F on IP,, are considered as integers

and we call the n-tuple (¢;(F),...,c.(F)) the Chern classes of F.

o (Semi-)stability is always meant in the sense of Gieseker-Maruyama and u-—
(semi-)stability in the sense of Mumford-Takemoto, see [OSS].

e M(cy,...,c,) denotes the Maruyama scheme of semistable coherent sheaves on
IP,, of rank 2 and Chern classes (cy,...,¢,).



1 Description of M(0,2,4)

1.1. Sheaves F(A)

The dual of a linear map k* A k?®V* induces a sheaf homomorphism k? ® O(—2) 2
k* ® O(—1), whose cokernel is denoted by F(A). We shall always assume that A* is
injective and hence are given an exact sequence

0— k2 ®0(=2) 25 k* ® O(=1) — F(A) — 0.

Then F(A) has rank 2, Chern classes (0,2,4) and normalized Hilbert polynomial
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1
SXF(A)(m) = % +m?+ gm.

Moreover, it is easily verified that the above presentation of F(A) is at the same time
the Beilinson presentation, [OSS], theorem 3.1.3. It follows that F(A) = F(B) if and
only if A~ B,ie. B= S50 Ao R for some matrix S € GL(2,k), R € GL(4,k).

[t is also easy to see that F(A) has O(—1) as a quotient (and thus is not y—semistable)
if and only if A is not injective. Therefore, and in order to eliminate the action of
GL(4,k), we consider the subspaces

A=ImAc Gy RV

Clearly the isomorphism class of F(A) only depends on Im A. Given a subspace A
we can define a sheaf F(A) by the exact sequence

0 — k*®0(-2) — A" ®0(-1) — F(A) — 0,

where the left-hand side is induced from the surjection k2@ V — A*. f A=Im A
then F(A) = F(A). If X C G4(k* ®@ V") is the open set of A for which F(A) has
rank 2, and if A is the tautological subbundle on the Grassmannian, we obtain the
universal family F over X x IP3 with the presentation

0 — k*®0x BOp,(-2) — AR Op,(-1) — F — 0 (UF)

On G4(k* ® V*) we are left with the natural action of SL(2,k) by A — (g ® id)(A).
This can be linearized via the Pliicker embedding. By [N-T], prop. 5.1.1, the stable
and semistable points of this action in the sense of [M-F] can be characterized by

1.1.1 Lemma: A point A € G4(k* ® V*) is stable (semistable) if and only if for
any nonzero £ € k?

dmAN(E@V)<1  (<2).
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In concrete terms this means that Im A is stable (semistable) if and only if

(i) (i)

In particular, Im A is semistable and not stable if and only if

Ty *x *
A ( 0 0 2 )
with z,y and z',y' pairwise independent as vectors in V*.

1.2 Stability properties of the sheaves F(A)

If Im A is not semistable (but with A* injective) then A can be given the form

* ok kX
0 00 =2
with z # 0 and it follows that F(A) has z—torsion. Therefore, if F(A) is u—semistable

then Im A is already semistable. It follows from lemma 1.2.1 that F(A) is p-
semistable if and only if it is semistable.

1.2.1 Lemma: For a torsionfree coherent rank-2 sheaf F on IP3 with Chern
classes (0,2,4) the following are equivalent:
(a) F is properly semistable

(b) F is an ertension 0 - I — F — I' — 0, where Z and I' are ideal sheaves of
lines in IP5

(c) F = F(A) for some A = Im A € G4(k* ® V*) which is properly semistable.

Proof: If A= (:: ‘Z 2, ;),) is properly semistable, there is an exact diagram

0 0 0
l ! !

0 —s o9 28 00-1) ~—» L — 0
l l l

B = B0(=2) L5 AO(=1] ~s FlA) — B
1 : |

0 — 02 = 20(-1) — I, — 0
! l l
0 0 0



where £ resp. ' are the lines with equations z,y resp. z’,y’. Conversely any such
extension has a resolution of the above type. This proves the equivalence between (b)
and (c). Clearly (b) implies (a), because for any line ¢ we have XI,(m) = JX F(m),
[M2], lemma 1.4. If conversely F is properly semistable, we can find a torsionfree
quotient F — F” — 0 with rkF” =1, F" =0, XF'(m) = 1XF(m). By the
second property there is an embedding F” C O, and by the third C = O/F" satisfies
XC(m) = m + 1. Using the reducing method as in 1.7 it is easy to see that C is the
structure sheaf of a line ¢ and hence " = I,. Analogically Ker(F — F") = I, for
a second line ¢. This proves (a) = (b).

1.2.2 Lemma: Let k* 5 k2@ V* be given and A* injective. Then

1) F(A) is semistable if and only if Im A is semistable.
2) F(A) is stable if and only if Im A is stable.

Proof: If F(A) is semistable then by the remark preceding lemma 1.2 I'm A must be
semistable. Conversely, let /m A be semistable. Then it is easy to prove that F(A)
is torsionfree. Assume that F(A) were not semistable. Then there is a torsionfree
quotient F(A) — F” — 0 of rank 1 with X F"(m) < JXF(A)(m) for m >> 0. Let
c = . F", such that F” C O(c) with Supp O(c)/F" at most 1-dimensional. By the
presentation of F(A) we must have ¢ > —1, and since A is injective, it follows that
¢ > 0. If ¢ > 0 the Riemann-Roch formula would imply X F"(m) > JXF(A)(m).
Hence ¢ = 0. Then we are given an exact sequence

40(-1) = 0 — O/F" — 0

with bo A* = 0. Hence O/F" is the structure sheaf of a linear subspace Z C IP3 with
dimZ < 1. But XOz(m) = XO(m) — XF"(m) > XO(m) — 1XF(A)(m) =m + 1.
Therefore, Z cannot be a point or a line, contradicting dim Z < 1. This proves (1).
(2) follows from (1) and lemma 1.2.1.

1.3. The G.I.T. description of M(0,2,4)

Let G4(k* ® V*)** be the open subscheme of semistable points. By lemma 1.3 the
restriction to this open subset of the universal family, which is also flat over G4(k* ®
V*)** gives us a modular morphism to M(0,2,4), which factorizes through the good
quotient:

Ga(k* ® V™) //SL(2) - M(0,2,4).

Theorem I: ¢ is an isomorphism.

In particular, M(0,2,4) is irreducible, reduced, normal, 13-dimensional. By the re-
sult of Chang [C], theorem 2.12, the open part M,(0,2,4) of all reflexive sheaves
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in M(0,2,4) (any reflexive sheaf in M(0,2,4) is already p-stable) is rational, hence
M(0,2,4) is rational. Before proving the theorem in 1.7 we consider the subvarieties
So, S1,S2 of M(0,2,4), all irreducible and of dimension 8.

1.4. The semistable locus S, in M(0,2,4)

By lemma 1.2.1 the properly semistable classes of M(0,2,4) are given by two lines as
[Ze ® o). 1If G = G,V denotes the Grassmannian of lines in IP3, we get a bijective
morphism

Sym?(G) — S, C M(0,2,4)

from the symmetric product of G onto the subvariety of properly semistable points
of M(0,2,4). By lemma 1.2.1 Sy is in the image of ¢, and clearly irreducible of di-
mension 8. It will be shown in 2.2 that Sy is exactly the singular locus of M(0,2,4).

1.5 The subvariety S; C M(0,2,4)

Let £ be a null-correlation bundle (see [B], §7) and ¢ a jumping line of £ such that
E® O = O(—1) @B Of(1). Then there is a unique exact sequence

0 — F — & — O(-1) — 0.

Since £ is pu—stable, F is u-stable, too, and by this representation F has rank 2 and
Chern classes (0,2,4). We thus can construct an 8-dimensional irreducible family F}
of such sheaves and an injective morphism F} — M(0,2,4). We denote by 5, its
closure.

Sy is contained in the image of (.

Proof: Instead of using Beilinson’s spectral sequence, we give a direct construction.
A null-correlation bundle £ is the cohomology of a monad O(—-1) — 40 — O(1),
[OSS]. Since neither arrow is degenerate anywhere, we easily get a resolution (R) of

£.
0 — O(-3) = 40(-2) & 50(-1) — £ — 0 (R)

L bs 1 b, 1 b l
0 — O(-3) — 20(-2) — O(=1) — O-1) — 0 (1)

If there is a surjection € — O,(—1), £ a line, there is a projection b, compatible with
the surjection. Moreover, there exists then a homomorphism of the resolutions. The
homomorphism b, must be surjective, for otherwise B could be given the form



oo O N

with 2z vanishing on £. This, however, would imply that £ is not locally free along
{z = 0,det B = 0}. Also b3 cannot be 0, since C is not degenerate anywhere and
hence is an isomorphism. The kernel of the homomorphism (R) — (r) is now an
exact sequence

i —s PO[—2) 25 40{~1] —s F — 8,

1.5.1 Normal form: A null correlation bundle is defined by an indecomposable
vector £ € A’V via 0 — Q3(3) 5 (1) - € -5 0,and { =< z Ay >€ GV is
a jumping line of £ if E Az Ay = 0. Given £ and ¢ it is possible to find a basis
€o0,...,e3 € V such that £ = eg Aez+e; Aey; and £ =< eg A e; >. Then the kernel
sheaf of £ — Oy(—1) can be presented in normal form by the matrix

20 22 23 0
21 0 29 23 :
where 2z, ..., z3 is dual to the above basis.

1.6 The subvariety S; C M(0,2,4)

Let C be a smooth conic in IP;3 and O¢(1) a line bundle of degree 1 on C. For each
pair of generating sections of O¢(1) we get an exact sequence

0 — F —20 — 0O¢(l) —0

on IP3. The kernel sheaf F again has rank 2 and Chern classes (0,2,4). If z,...,23
are homogeneous coordinates such that C = {23 = 0, 2022 — 2 = 0}, then up to
equivalence O¢(1) has the resolution

0 —s 20(—2) -5 40] -1} Zs B0 — Op{1) —+1

with
23 0
A= ( —20 21 23 0 ) B = 0 z23
21 —Z29 0 z3 20 —21
-1 22



Therefore, F is stable by lemma 1.2.2 and belongs to the image of ¢. The isomor-
phism class of F depends only on C. Therefore, the Hilbert scheme of smooth conics
in IP3 defines an 8-dimensional irreducible family F; of sheaves in M(0,2,4). We let
S, be the closure of its modular image in M(0,2,4), which again is 8-dimensional and
irreducible. By the above, S, is contained in the image of ¢.

1.7 Proof of theorem I:

(i) The morphism ¢ is injective. This is clear on the open set of stable points by
the remark in 1.1. If
z 0 0
A= ( * 3: vy )
y

_is properly semistable, let

_(x y 0 O
AO-(O 0 z' y')'

Then Im Ag is in the orbit closure of Im A, since Im Ag is the limit of

= 0
[m(o t)A

for t — 0. Moreover, Im Ao generates the closed minimal orbit in the fibre of the
morphism G4(k* @ V*)** — M(0,2,4) over (I, ® Ip], where ¢ = {z =y = 0}, ¢ =
{z' = y’ = 0}. This proves injectivity of ¢ also over Sy.

(ii)) The morphism ¢ is surjective: since Sp, S1,.S; are contained in the image of ¢ by
1.4, 1.5, 1.6, it is sufficient to investigate the stable sheaves F in M (0,2,4)\S,US;US;.
We do this by classifying the quotients F**/F. Since Supp F**/F is at least 2-
codimensional ¢c(F**/F) < 0 and thus cF** < ¢ F = 2. On the other hand
0 < ¢ F** because F** is always p-semistable, [OSS], lemma 1.2.4.

a) Let F be p-stable. Then also 7** is u-stable, [OSS], loc. cit. By [H], remark
4.2.0, ;. F** > 0.

a.l) If cF** = 2, then C = F**/F must be 0-dimensional with Chern polynomial
c(C) = 14+2¢(C)h®, where £(C) is the length of C. But then from the short exact

sequence of C we get

aF™ = eaF +20(C) = 4 + 26(C).
By [H], theorem 8.2, c3F** < ¢p(F**)? — cp(F**) + 2 = 4. This implies C = 0
and F = F**. By [C], theorem 2.12, and [O], lemma 2.4, F is in the image of
P.
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a.2)

b)

b.1)

b.2)

b.3)

If, however, c;F** = 1 then by [H], example 4.2.1, F** = £ is a null-correlation
bundle. For C = £/F we get

XC(m)=m and ¢(C)=1—h?—4h%

Hence, C is supported by a line £. By Nakayama’s Lemma C ® O, has the same
support and its Hilbert polynomial must be m + ¢. Hence C ® O, = T & O¢(a)
where 7 is the 0-dimensional torsion. We get an exact “reducing” sequence

0—Co—C—TPOia) — 0

with Cy at most 0—dimensional. Since £ ® Oy splits at most into Op(—1) B O(1)
we must have a > —1. But the Euler characteristics of the sequence give us

m=XC(m)=4LCo)+lT)+m+a+l.

Therefore, a = —1 and Co = 7 = 0, i.e. C = Oy(—1). Therefore, F occurs in
Sy, which is in the image of ¢.

Now let F be stable, but not u-stable. Then F** is not stable, [OSS], lemma
1.2.4, [H], remark 3.1.1, but is still u—semistable.

If c;F** = 2 we again have a 0-dimensional quotient C = F**/F. By [H], thm
8.2 c3(F**) < ca(F**)2 4+ c2(F*) + 2 = 6. As in a.l) we obtain conditions
for c¢3 and ¢(C): there are only the possibilities /(C) = 0 and c3F** = 4 or
¢(C) =1 and ¢3F** = 6. In the first case F** = F would be stable, and in
the second we would have an exact sequence 0 — F — F** — k, — 0, where
k, is the structure sheaf of a simple point. Now F** has a non-zero section

O — F** which cannot factorize through . Hence, F contains the subsheaf
Ker(O — kp) = T with

X I(m)=XO(m)—1> %x F(m),

contradicting stability.

If c;F** = 1 then by [C], lemma 2.1 c3F** = 2 and there is an exact sequence
0 - O — F*™ — I; — 0 for some line ¢. If F” denotes the image of F in Iy,
we get X F'(m) < X I,(m) = ;X F(m), contradicting again stability of F.
So we are left with the case

c3F™* =0 or F** = 20 by [H], lemma 9.7. Now C = F**/F has

XC(m)=2m+2 and ¢(C)=1—2h%— 4R
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Therefore, C = Supp(C) is a curve of degree < 2. If C is a smooth conic, we
get a reducing diagram

0—Co—C—T®0Oc(a)—0

where 7T is the 0—-dimensional torsion of the rank—-1 sheaf O ® Oz on C,a > 0
is the degree of quotient mod T and Co is 0-dimensional. We get

9m +2 = 0Co) + &T) +a+2m+1.

If a = 0 there is an exact sequence 0 — k, - C — O¢ — 0 which yields a
contradiction to the stability of F. Therefore, C = O¢(1) and F belongs to S,
in the image of .

If, however, C = supp(C) is not a smooth conic, it must contain a line. Then
by the following lemma 1.7.1 there is a line ¢ and a surjection C — O,. The
composed homomorphism 20 — O, factorizes through O and we get the exact
diagram

0 — F — 20 — C — 0

) ! l

0O — I — O — 0, — 0.
| !
0 0

The image of F in Z, then contradicts stability, since X Z,(m) = X F(m).

1.7.1 Lemma: LetC be a coherent sheaf on IP3 with Hilbert polynomial 2m + 2,
and let C be generated by two sections. If Supp(C) contains a line, then there is a line
¢ and a surjection C — O, — 0.

Proof: Let ¢ C Supp(C) and consider the reducing sequence
0 30 30 —sC B —1.

It follows from the Koszul resolution of Oy, that there is a surjection 2C(—1) — C' —
0, and hence there is a surjection 40(—1) — C' — 0. We distinguish two cases.

Case 1: C ® Of has rank 1 on £. Then we get the decompositions
C=To Og:(a') and CRO, =T & O[(a)

where 7 has finite length, a > 0, and where ¢’ is another line, with 7" of finite length
and a’ > —1, since X C'(m) = m + ¢. It follows that
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a+ad +4T)+4T') =0.

If a = 0, there is nothing to prove. If a > 0, then the equation implies a = 1, a’ =
—1, 7 = 7' = 0. Hence we have the exact sequence

0 — Op(—1) — C — Of(1) — 0.

In this case £N ¢ # () since by our assumption C is generated by two sections also on
¢. If now N ¢ = {p}, and if we tensorise by O, we get the exact sequence

0 — Op(-1) —m CR®Op — k, — 0,

since Op has no 0-dimensional subsheaf. Since C ® Oy is globally generated, too, we
must have C ® Op = Oy, which proves the lemma in this case.

If £ = ¢’ we again obtain, after tensorising by Oy, an exact sequence

0 — Og(—l) —CR 0, — 0[(1) — 0,

since 'Torf)(Og(l), O¢) = 20,. Again it follows that C ® O, = 20, proving the
statement of the lemma, or contradicting rk C ® O, = 1.

Case 2: X(C ® Of)(m) = 2m + c. Here we get the reducing sequence

0—Cg—C—CR0,—0
CROr=T P Oa) ® Ob)

where Co, T have finite length, a,b > 0. We obtain from this

a+b+£0(Co)+€T) =0,

and from this again a =b=0, Co =7 =0, and C = 20,. This proves lemma 1.7.1.

(ii1)) To end the proof of the theorem it remains to show that ¢ is indeed an isomor-
phism.

To this end, using the relative Beilinson spectral sequence, we shall see that given a
family G — IP3 x S of rank 2 semistable sheaves on IP; with Chern classes (0,2, 4)
parametrized by S then the natural morphism S — M(0,2,4) factorizes locally
~ through G4(k* @ V*)**. We denote by = : IP3 x S — S the second projection. Now,
for s € S(k), H*(G,(—3)) and H?(G,(—2)) are the only non-vanishing cohomology
groups H(IP3, G,(p)) in the range —3 < p < 0 and they have constant dimension
4 and 2, respectively. From the base change theorem it follows that RI7.G(p) are
locally free in the range —3 < p < 0. The relative Beilinson spectral sequence [OSS],
theorem 4.1.11, gives us G as the cokernel

13



0 — R'1.G(-3)80% (3) — R*r.G(-2)B0% (2) — G — 0

on IP; x S.

Also G is the cokernel in

0 — R'7.(G ® 0p,5/5(2))BOp,(-2) — R'7.(G ® Qp,, 5/5(1))BOp, (—1) —
G — 0,

which follows from the second relative Beilinson sequence. Choosing suitable trivial-
isations of the locally free sheaves R'7.(G ® szsxs/s(Q)) and R'7.(G® Qi’;,xS/s(l))

we obtain that the natural morphism § — M(0,2,4) locally factorizes through
G4(k*®V*)**//SL(2). The construction of the morphism S — G4(k*®@V*)**//SL(2)

is functorial and thus we have a transformation
a: ] — Hom(—,G4(k* @ V*)*//SL(2))

where I : Sch/k — Sets is the functor I(S) := {G|G being an Op,«s—coherent
sheaf s.t. G, is a rank 2 semistable sheaf on IP; with Chern classes (0,2,4) for any
geometric point s € S(k)}/ ~, where G; ~ G, if there exists an invertible sheaf £
on S such that G; &£ G, @ m*L.

Furthermore, a(k) : 1(k) — Hom(k,G4(k* ® V*)**//SL(2)) is bijective and by using

the same arguments as in [OSS], p. 309, we prove that a is an isomorphism.

1.8 Remark: If F issemistable and a non-trivial extension 0 — Z, —» F — Iy —
0, then F** is only pu-semistable but not 20. In such a case c;F** = 1, see 1.7, b.2)
and there is an extension 0 - O — F** — I, — 0 as well as a diagram

0 0
l !
0 — I, — F — Ip — 0
! ! [
0 — 0 — F* — Ip — 0
! !
O = 0O,
l !
0 0.

If, in addition, £ and ¢’ are different lines, then the singular locus of F, i.e. the support
of Ext'(F, O) is the union of £ and two points or a double point on #'. The two points
distinguish the isomophism classes of the sheaves F in the extension. If F is a direct
sum, then its singular locus is the union of the two lines.
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2 Subvarieties of non—-reflexive sheaves and dual-
ity

After proving that the semistable locus Sp is the singular locus, we show that
SoN S = SoNS; = 851 NS; and equals the subvariety Sj C Sy of pairs of meet-
ing lines. Moreover, we describe a remarkable duality between the moduli spaces
M(0,2,4) over IP3 and IP;.

2.1 As a corollary of the proof 1.7 we obtain

M,(0,2,4) = M(0,2,4)\SoU S, U S,
M,(0,2,4) = M(0,2,4)\SoU S,

where M, resp. M, denote the open subschemes of reflexive resp. u—stable sheaves.

2.2 Proposition: The 8-dimensional subvariety Sy of semistable points is the
singular locus of M(0,2,4). ‘

Proof: We use the

Lemma: Let F be a rank-2 semistable sheaf, F = F' & F" with X F'(m) =
X F'(m) = ;X F(m) and F' ¥ F". If Ext*(F, F) = 0, then the tangent space

at [F) of the corresponding Maruyama scheme is isomorphic to

Ext\(F',F) ® Ext"(F,F") ® Ext'(F",F') ® Ezt'(F",F").

This lemma and a proof of it were communicated to the second author by J. Le Potier.
Since under the assumption Ezt*(F,F) = 0 the germ of the moduli space at [F] is
(analytically) isomorphic to Ezt'(F,F)/Aut(F), see also [LP], proof of proposition
6, and since Aut(F) = k* x k* in this case, the proof consists in determining the affine
quotient and its tangent space explicitly.

We apply this lemma to F = I, @ Iy, where £,{' are lines. First, from the simple
representation of any sheaf F in M(0,2,4) we immediately get Ezt?(F, F) = 0.

Hence, M(0,2,4) is smooth away from S,. Now

; 3 £4£82
dim Ezt'(T,, Tu) = { ’ eie'
by direct computation. It follows that the tangent space at [Z, ® Z,] € M(0,2,4)
in the presentation of the lemma has dimension 4 + 3 -3 +4 = 17, if £ # ¢'. Since
M(0,2,4) is 13-dimensional, this proves that this scheme is singular along So\Sg
where Sg is the subvariety of double lines. Then M(0,2,4) is also singular at S§.
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Remark: If we consider the same type of SL(2)-action on G4(k*® W*) where W is
3—-dimensional, the quotient G4(k* @ W*)**//SL(2) is the space M(0,2) on IP; which
is smooth. Indeed this space is isomorphic to the IPs = |Op;(2)| by assigning to each
sheaf its conic of jumping lines. The semistable locus Sy here is the divisor of singular
conics, see also [N-TJ, 5.2.1, and section 2.4.

2.3 Proposition: Let Sj C Sp be the 7-dimensional irreducible subvariety of pairs
(6,0) with ¢ne¢ #0. Then

S =8eN.8y = 8a 115 = 5 M8

Proof:

1) We prove first that S, C S; N Sy: Let [Z, & Ip] € S§ and let z, 2y, 22,23 € V*
homogeneous coordinates such that ¢ = {z; = 23 =0}, ¢ = {z; = 2, = 0}. Then
Z, @ Iy can be presented by the matrix

[ z3 z2 0 0O
A-(O 0 2o zl)'

We define two I-parameter flat families F; = F(A!) of deformations of I, @ Ty by

matrices
z3 Z9 0 tZO z3 292 0 tZ()
Al e 2 = v
. ( 0 tzz 2z, = ) & (tzo 0 2z, 2z

For t # 0 the isomorphism classes of F} resp. F? belong to S; resp. S;, as is easily
verified. This proves S C S; N S,.

2) Next we show that So NSy C S§. Then by 1) SoN.S; = Sj.

Let Fo = I,, @ I,, belong to Sy and let Fo = F(Ap). Then there is a 1-parameter
family A, such that Im A, converges to Im Ag in G4(k* ® V*)** and the biduality
sequence of F; = F(A,) for t # 0 is

0—4.;':—*5:._*0!‘(_1)__'0 (#)

where &, is a null correlation bundle and ¢, is a jumping line of &;.

2.a) In order to show that ¢;N¢; # ) we use the equations of the divisors of jumping
lines of the sheaves involved.

Let IPs & F 4 G = G,V be the incidence projections of points and lines. If
we apply R* = R*q. o p* to the sequence

0 — 20(-3) & 40(=2) = F(A)(=1) = 0
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we get the short exact sequence

0— 25 A 406 —» R F(A)(=1) = 0,

see 3.10, such that det A is the equation of Supp R'F(A)(—1) which is the
divisor of jumping lines of F(A). It follows that

< det Ay >—< det Ay >

in |0c(2)].

2.b) Let 0 # & € A?V. Using an isomorphism o : A'V = k, £(¢) == 0(EANE) =0
is the equation of the hyperplane section of G defined by the polar hyperplane
to < £ >€ IPA?V. This is at the same time the divisor of jumping lines of the

null-correlation sheaf & defined by 0 — Q3(3) 5 Q1) > & — 0. If fyis a
line then R°O,(—2) = R'Z;,(—2) and the support of this sheaf is the cone of
all lines ¢ meeting ¢, with the equation £y(¢) = 0 or ¢y A€ = 0. (4o, £ considered
as elements of A2V'). Hence, Supp R' Fo(—1) has equation ¢;(£) - £2(£) = 0.

2.c) From (#) we get the exact sequence
0 — R°0,(-2) — R'Fi(-1) — R'&(-1) — 0
for t #0. Let & be defined by ¢ € A?V. Then up to a constant
det A, = £,(£)&:(0).

Because ¢, is a jumping line of &, by 2.b) &(€) = 0 or & A€, = 0. Since,

however, < det A; >—< det Ap > and the latter is ¢,(¢)¢;(¢) up to a constant,

¢, and ¢; must satisfy ¢; Al; = 0, too. This proves £;N¥; # 0 and SoNS; C S;.
3) It follows from the proof in 1.7 that the stable sheaves F belonging to S; resp. S

satisfy coF** = 1 resp. o F** = 0. It follows that S;N S, C Sp. But since SoNS; C S;
we even get Sy NS, C S;. By 1) 51N S, = 8.

4) In order to show that also SN S; = Sj it is sufficient to show that So NS, C Sg,
since by 1) S C So N S;. Let [Fo| belong to So N'S;. There is a flat 1-parameter
deformation F; of Fo with F; stable for ¢ # 0 and biduality sequence

0— F — 20 - Oc¢(1) =0

where C; is a smooth conic, which is also the singular locus of F;. It follows that
the singular locus of Fy is also a conic, which consists of two meeting lines. This
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terminates the proof of the proposition.

2.4 The subvariety D of centred pullbacks.

If p=< z > is a point in [P3 = [PV we consider the natural inclusion and projection
PV & PV\{p} = PV/ < z > IP,.
Given a rank-2 bundle B on IP, with Chern classes (0, 2), then
F =10

is a rank-2 reflexive sheaf with Chern classes (0,2,4) having p as its only singular
point. We call it a centered pullback. The following lemma classifies these sheaves.

2.4.1 Lemma: Let F be a stable rank-2 reflezive sheaf on IP3. The following are
equivalent:

(i) F has Chern classes (0,2,4) and there is a point p with dim F,/m,F, = 4;

(ii) F is a centred pullback of a stable rank-2 bundle on P, with Chern classes
(0,2).

Proof: If B is a stable rank-2 bundle with Chern classes (0,2) on P = IPV/ < z >,
then it has Beilinson presentation -

B3 30,(~2) Lo A {1} — B — 1

as in the case of M(0,2,4). (The other Beilinson presentation would be 0 — 205(3) .
20(1) = B — 0 where 0 — k? Zk2@W & k' - 0is exact. Then det B is the

equation of the conic of jumping lines in IP}.) Now F = i, 7*B has the same presen-
tation A on IP; and therefore Chern classes (0,2,4). As in lemma 1.2.2 A is stable
with B and hence F is stable. The entries of A are elements of (V/ <z >)* C V* and
hence vanish at p =< = >. It follows that F,/m,F, = k*. If conversely F satisfies
(1) then the entries of A vanish at p and therefore A defines a stable rank-2 bundle
B on IPV/ < z > whose centered pullback is F.

2.4.2 Remarks:

1) By [N-T], lemma 5.3.1, the matrix A of B can be given the normal form

z1 2223 0

0 2 o 23), where 2z, 23, z3 are independent.

2) It follows that for such a sheaf F(A) the sheaf £xt'(F(A),O) = k.

18



Since the space of stable bundles with Chern classes (0,2) on IP; is 5-dimensional
and irreducible, the centered pullbacks form an irreducible family of stable reflexive
sheaves of dimension 8. We denote by D its closure in M(0,2,4). The matrices of

the stable sheaves in D} can be given the normal form as mentioned in the remark.
It follows from 2.5 that So N D} = Sj.

2.5 A remarkable duality

Since k* @ V* is 8-dimensional there is the natural isomorphism G4(k? ® V*) =
G4(k* ® V) given by A «—— K for an exact sequence of A € G4(k*®V*), 0 - K —
k2®V — A* — 0. We write K(A) = K. This leads to an isomorphism of the moduli

spaces
Mp,(0,2,4) = MP;(0,2,4)

as follows. The above isomorphism of the Grassmannians is not strictly equivariant,
but we get

g-Ae—g" " K(A).

Using the above exact sequences, their duals and the criterion of lemma 1.1.1, one
easily checks that K(A) is stable (semistable) if and only if A is stable (semistable).
Therefore, we obtain an induced isomorphism of the quotients
Ga(K2 @ V*)**//SL(2) = Guk*®V)*//SL(2)
Il Il

Mp,(0,2,4) 2 Mp;(0,2,4)

If G(K) denotes the sheaf defined on IP; by
0 — 20p3(—2) — K* ® Ops(—1) — G(K) — 0
as F(A) on IP3, then
[F(A)] < [G(K (A))]

2.5.1 Remark: The subspace K(A) C k* ® V also defines a homomorphism
KA ®Q3) - eV eN3) — k¥ 02%2) on IP;, whose cokernel is F(A).

This follows froin the exact diagram

0 0
l l
k? @ Q3(2) > kPR0(-2)
l l
0 - KA®O(-1) = kK*VRO(-1) - A*®0(-1) —» 0
It i l
0 - KARMBB) - kK2 - F(A) - 0
1 l
0 0
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relating directly to the two Beilinson complexes of F(A).

2.5.2 Remark: The sheaf ¢ = G(K(A)) on IP; cannot be constructed directly
from F = F(A) via the incidence transformation IP3 «— F — IP;. If R* = R*q.op"
then for the general sheaf F we only get an exact sequence on IP}

0 — G(2) — R'F(=2)" —» Ext*(RF(~2),0) — 0
where R!F(—2) is reflexive and equal to G*(—2).

2.6 Proposition

1) If F(A) on IP3 corresponds to G(K) on IP; under the above isomorphism ¢,
then the singular locus of G(K) is the set of unstable planes of F(A) and vice
versa.

2) Let o, %1, X,, A} denote the subvarieties ofMp;(O, 2,4) defined as So, S1, S2, D}
in Mp,(0,2,4) respectively. Then ¢(So) = o, #(S1) = X2, ¢(S2) = A} and
#(D}) = %,.

Proof:
1) If P is a plane, then the restriction Fp of F(A) has the resolution 0 —

20p(~2) 25 40p(—1) = Fp — 0 with LX Fp(m) = 243 since A*|P is again in-
jective by the characterization of semistability in lemma 1.1.1. If Fp is not semistable
it admits a torsion—free quotient C of rank 1 satisfying X C(m) 2 1X Fp(m) for
m >> 0. Then C C Op(—1) and we can even replace C by Op(—1). Hence, Fp is
not semistable if and only if it has Op(—1) as quotient. By the above representation

of Fp this means that ImA = A C k* ® V* contains a vector (o, 3) ® z, where z is

the equation of P. Finally, if k* Erev represents the kernel of k? ® V A} k* such
that G(K) is represented by B*, then < z > is a singular point of B* or G(K) if and
only if A contains a vector (a, ) ® z. This proves 1).

2) can be easily verified by calculating a matrix B from A in the different cases
described in lemma 1.2.1 for Sy, 1.5.1 for Sy, 1.6 for Sz, and 2.4.2 for Dj. The re-

markable fact is that S; corresponds to A} and D} to £,: if A = (" %34 D ) represents

0 2y 29 23

a stable sheaf F(A) in D), then B = (e° - ””) defines a typical sheaf in ¥, where

0 ey —e2 e
€0, €1,€2,€3 € V is a basis and zg,..., 23 € V* the dual basis.

2.6.1 Corollary: SoN D, = S;.
Proof: SeN Df = ¢~ HEeNE) = ¢ (B =S

The position of the subvarieties So, Sy, S2, Dy (all irreducible of dimension 8) can now
be illustrated by the following picture:
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2.6.2 Remark: Each isomorphism V % V* induces an automorphism of
M(0,2,4) by A — (id ® b)(K(A)), leaving Sp and S; fixed but interchanging S,
and Dj.
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3 Singular points and normal forms

In this section we investigate the structure of the reflexive sheaves in M(0,2,4) w.r.t
their singular points and give normal forms for the representing r.atrices in the dif-
ferent cases, thereby improving the results of Chang in [C]. This gives us new insight
into the structure of the divisors of jumping lines, too. The results on normal forms
will be used later.

3.1 Zero schemes of sections and singular points.

Let F be reflexive in M(0,2,4) and let s be a non-zero section. By [H], prop 4.2., we
get an exact sequence 0 — O(—1) - F — Iy (1) — 0, where Y is the zero locus of s,
and Y is non-degenerate since F is u-stable. In our case Y is a rational cubic curve.
This can be seen also from the following diagram, which is induced by the section s
and the presentation of F.

0 0

l l
o(-1) = 0O(-1)

I ls

0 — 20(-2) & 40(-1) » F = 0
| l )

0 — 20(-2) — 30(-1) - Iy(l) — 0
l l
0 0.

Taking duals in the right-hand column we get the exact sequence
0 — O(=2) = F*(=1) — 0 — wy(2) — &zt (F,0) — 0,

where £zt'(Zy (2),0) = wy(2) for the Cohen-Macaulay curve Y. Hence, £xt!(F, O)
is an Oy-module and Supp £zt'(F,O) C Y as a subscheme. Note that this support
is the singular locus of F and that the length ¢(Ezt'(F, O)) = 4 in our case.

3.2 Proposition: Let F € M(0,2,4) be reflexive. Then Ext*(F,O) is the struc-
ture sheaf Oz of the 0-dimensional scheme Z = Supp Ext'(F,O) of length 4 if and
only if F ¢ Dj.

Note that by 2.4 F ¢ Dj if 7 has more than one singular point.

Proof: Let A be the presenting matrix of 7 and p € Z. Then the following are
equivalent:

(i) rank A(p) =0 (iii)) F € Dj
(i) dim Fp/myF, =4 (iv) The minimal number of generators of £zt!(F,0), is
> 1
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The equivalence of (i), (ii), (iv) is obvious from the presentation of F and the result-
ing dual sequence. The equivalence of (ii) and (iii) was shown in 2.4. Hence, ¥ ¢ D)
if and only if for any p € Z the minimal number of generators of £xt!(F, ), is 1.

3.3 Proposition: Let F € M(0,2,4) be reflezive and not in Dy. Then Z = Supp
Ezt!(F,O) is not contained in a plane as a subscheme.

Proof: Let Y be any zero scheme of a section of 7(1). Then Z C Y as a subscheme.
If Pis a plane with Z C P, then also Z C PNY. But Y can be a non-degenerate
cubic curve. Then ¢(PNY) < 3 whereas ¢(Z) = 4, contradiction.

3.3.1 Remark: In the degenerate cases this means the following:

(i) If Z has at most double points, which are in 1 : 1 correspondence with their
tangent lines, then the union of tangent lines and points of Z is not contained
in a plane.

(i1) If Z consists of a triple point p and a simple point ¢, then (Z, p) is not contained
in a line, but it is contained in a plane P as any point of length 3. Then ¢ & P.

(iii) In the case of a point of length 4 there is the

3.3.2 Lemma: Let Z be a point of length 4, Supp (Z) = {p}, such that Z is not
contained in a plane and such that its Zariski tangent space T,Z is 1-dimensional.

Then there is a unique plane P containing the tangent line, such that ZO P has length
2

This plane is called the osculating plane of Z. Even so the lemma seems to be
known, we include a proof for the convenience of the reader. Note that it is wrong, if

dim T,Z > 2.
Proof:

1) We may assume that Z is supported at the origin 0 € k*. If £ = {z = 0} is
a plane such that Ozng = Oz/zO7z has length 3, then the residue class z generates
a submodule of length 1 and thus mz = 0, where m C Oj is the maximal ideal.
Moreover, z vanishes on the tangent line of Z.

2) If there were two independent linear forms z,y with this property, then the ideal
I C Op of Z contains z2,zy,y% z2,yz, where z is a third coordinate. Since TyZ has
dimension 1, w.l.o.g. I also contains z + f, y + ¢ where the polynomials f,¢g do not
contain linear terms. They can be reduced to polynomials in z only. Moreover, we
can assume that f = Az™, g = pz", m < n, \,u € k because zf, zg € I. Then
pzz™ ™ — Ay € I. This means that I would contain a linear form, since zz € I. (If
f=0o0r g =0 then already z or y € I.) Then Z would be contained in a plane. This
proves uniqueness.
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3) Let now £ = {z = y = 0} be the geometric tangent line of Z and consider the
exact sequence

0 — (2,9)0z — Oz — Oz — 0.

If £(Oz~¢) = 3, then for any plane P D ¢ we had ¢(Oznp) > 3. Since £ is the tangent
line, it follows ¢(Oz~¢) = 2. Consider now C = (z,y)Oz and the exact sequence

00— mC —C—C/mC— 0.

Then either mC = 0 or has length 1. In the first case mz = 0, my = 0, which was
excluded in 2). Then C is generated, say, by z, and there exists a scalar A € k such
that y — Az € mC. But then m(y — Az) = 0 since mC has length 1. This means that
(y — AZ)Oz has length 1 and hence Oz/(y — Az)Oz has length 3.

3.4 Lemma: Let F = F(A) € M(0,2,4) be reflezive and not in D}, and let Z be
its scheme of singular points. If p € Z is not a simple point (i.e. not of length 1)
then:

1) dimi T,Z = 1
2) there are homogeneous coordinates zy, ..., z3 s.t.

(i) {21 = 22 = 23 = 0} = {p}

(11) {z2 = z3 = 0} = £ is the tangent line generated by T,Z
(iti) A is equivalent to (2 ;f 2 g) where f; are linear forms vanishing in p.

Proof: By proposition 3.2 rank A(p) = 1. We may assume that

wn=(24838)

Hence, we can choose the coordinates so that zo(p) = 1, 2z;(p) = 0 for ¢ # 0, and such
that A is equivalent to
( go 91 92 93
2 fi fo fs

with g;, f; linear combinations in zi,2;,23 only. Choosing 2z, 2;,23 as local co-
ordinates at p with 2o = 1, the Fitting ideal of that matrix is generated by
91 — 9of1, 92 — 9of2, 93 — gofs, which at the same time is the ideal of Z at p. If
g1, 92,93 were linearly independent then p would be a simple point. Hence, we may
assume (after going to an equivalent matrix) that g; = 0. Since F and A are stable,

o O
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gdo, 91, 92 have to be independent. It follows that the tangent space has dimension 1
with generated line £ = {g, = g3 = 0}. We can now replace go, g1, 92 by 21, 22, z3.

3.4.1 Remark: The condition dim 7,Z = 1 implies that 7 is curvilinear at p,
i.e. there is a regular coordinate system z,y, z at p such that Oz, = O,/(z,y,2™)0,
for m > 2.

3.4.2 Corollary: With the same assumption as in lemma 3.4: let p,q € Z or
(p,€) a double point with tangent line ¢, q € £. Then

A(p))

rank <2

(A(q)

Proof: In the first case rank A(p) = rank A(q) = 1 and hence the result. In the
second case there are coordinates such that (i), (ii), (iii) are satisfied. Then, since

22(q) = z3(q) = 0, we get
A(p)\ _
(A(Q)> a 21

which is a matrix of rank < 2.

q)

* ~—_—
* O O O
* O O O
*» O O O

Notation: In the following we shall give normal forms for the presenting matrices
of the reflexive sheaves in M(0,2,4), depending on the structure of the 0—dimensional
schemes of singular points. We use the following notation: If zp,...,23 € V* is a basis
(homogeneous coordinates) and ey, ...,e3 € V the dual basis, p; =< e¢; >€ [PV = IP;
are the corresponding points, or vice versa. We write

Z(F) = Supp Ext'(F,0),

and endow it with the structure given by the Fitting ideal of A.

3.5 The case of 4 simple points.

Let Z = {po,...,p3}. By remark 3.3.1 we can assume that Z is not contained in a
plane. Let zq,...,23 € V* be a fixed basis corresponding to po,...ps. The following
lemma is a result of Chang [C], lemma 2.14.

3.5.1 Lemma: For any reflezive sheaf F in M(0,2,4) with Z(F) = Z there is a
coefficient A € k\{0,1} such that F is presented by the matriz

_ 20 21 29 0 1
Ay = ( g i > A € ©\{0,1}.

22 23
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3.5.2 Moreover, it is easy to check that Ay ~ A, if and only if A = u. Thus, the
isomorphism classes of u-stable reflexive sheaves F with given 4 singuiar points are
classified by A € k\{0,1}. The geometric meaning of A is the following.

3.5.3 Let C be any smooth rational cubic curve containing Z. Then for any iso-
morphism [P; ~ C the 4 points on [P, define a j-invariant

](C) =jc(po,.-.,P3)

independent of the isomorphism. Chang proved in [C], proposition 2.15, that for two
such cubics C,C" the following are equivalent:

(i) 7(C) = 5(C")

(i1)) C and C' belong to the same reflexive sheaf F in M(0,2,4) (as zero schemes of
sections of F(1)).

We prove in addition the more precise

3.5.4 Proposition: Let A\ be the above normal form w.r.t the 4 points and with
A #0,1. Then a smooth rational cubic curve C through the 4 points belongs to F(A))
if and only if

(A= X+ 1)3/2%(1 - 22

<
—
Q
~
Il
<
S e )
>
N
I

3.5.5 Remark: Such a cubic belongs to different non-isomorphic sheaves

F(Ar), F(A,) in case A # p but j(A) = j(u).

Proof: For given A we choose a cubic curve belonging to F(A)) and calculate its
J—invariant as a function in A. The rest follows from Chang’s result. By the diagram
in 3.1 any such curve is defined by the Fitting ideal of a 2 x 3 matrix Ay o S where
S is a 4 x 3 matrix of scalars.

We choose the curve C defined by the matrix

A _ (Zo-i-zz Zot+z1 21+ 22 )
A = 2

za+23 A1 +23 Az 422+ 23

— e O
—_O = =
—_—— O

It is easy to verify that < s,t >hi< fo, f1s f2, f3 > with

26



fo = t(s—1t)(s—At)
h
f2
fz = 2s(s—1t)(s—At)

I
»
~

il
V)
~

gives an isomorphism IP; 5 C with f < 0,1 >=po, f < 1,1 >= P2, f< 1,0 >=
P3, f < A, 1 >= p;. By definition the j-invariant of C does not depend on the order
of the points and thus is just j(A) = 28(A2 — XA +1)3/A%(X —1)%

3.6 The case of a double point and 2 simple points

In this case we choose and fix coordinates zq, ..., 23 such that Supp Z = {po, p2, p3}
with double point py and tangent line ¢ = {z; = z3 = 0}. Note that by remark 3.3.1
the line and the points are not contained in a plane.

3.6.1 Lemma: For any reflerive sheaf F € M(0,2,4) with Z(F) = Z (as zero-
dimensional schemes) there is a coefficient A € k\{0} such that F is presented by the
matriz

Moreover, Ay ~ A, if and only if A = p.

Proof: By lemma 3.4 there are coordinates wy,...,ws with pp = {w; = w, = w3 =

0}, ¢ = {w, = w3 =0} and

w; wy wiz 0 -
A~<w0 hH fa f3>’ fi(eo) = 0.

Then the coordinate transformation has the form

wy = azot+ an2z; +
w, = Bz  +
w, = Q3222 + Q2323
w3 = Q3222 + Q3323

We may assume that @ = 1 and by dividing the first row of A by 3, also g = 1.
Furthermore by taking linear combinations of the second and third column of A, we
can assume that wy, = 2, w3 = 23, and that w, = 2z,. Thus, we arrive at

A~ 21 29 23 0
zo+az +bzatczz fi fo f3 )
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By adding a multiple of the first row, we can assume a = 0. Furthermore, the
conditions rk A(e;) = rk A(e3) = 1 imply that b = ¢ = 0, fa(ez) = fa(ez) = 0 and
fi(es) = fs(es) = 0.

Heuce, we arrive at

A~ z1 4] z3 0
20 az+ Pz Y21 +06z3 pn )
Here we can cancel p (which must be non-zero) and then az;,vz,. After subtracting
B times the first row and cancelling again —f3z,, we obtain the above normal form.

Clearly A # 0, otherwise A could not be stable. The second statement is an easy
exercise.

3.7 The case of two double points

In this case again we choose and fix coordinates 2o, . .., z3 such that Supp Z = {po, p3}
and the tangent lines ¢y, ¢3 through po, p3 respectively are given by ¢y = {22 = 23 =
0}, ¢3 = {z0 = 21 = 0}. Note that by remark 3.3.1 the lines must be skew.

3.7.1 Lemma: For any reflexive sheaf F € M(0,2,4) with Z(F) = Z there ezxists
A € k\{0} such that F is presented by the matrix

_ 21 22 23 0
A,\ o ( 20 0 )\22 21 ) ’
Moreover, Ay ~ A, if and only if A = p.

The proof goes along the same way as in 3.6 by using lemma 3.4 and corollary 3.4.2
for the second double point.

3.8 The case of a triple and a singular point

Let Supp Z = {po,p3} where pg is a point of length 3 with 1-dimensional tangent
space. Let £ C P be the tangent line and the plane which contains the triple point, and
assume that p; € P, see. proposition 3.3. We choose and fix coordinates zo, ..., 23
such that po,ps are the corresponding coordinate points, ¢ = {z; = z3 = 0} and

P={Z3=0}.

3.8.1 Lemma: For any reflexive sheaf F in M(0,2,4) with Z(F) = Z there are
coefficients A # 0, a in k such that F is presented by

21 2z 23 0
AA,a =
20 /\21 azz 29
Moreover, two such matrices are equivalent if and only if the coefficients co'ncide.
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Proof: If we proceed as in the proof of lemma 3.6.1 using only rk A(es) = 1, we arrive
at a presenting matrix

2] z2 23 0
20+ az; bzy+czy f az+ Bz

where f is arbitrary in 21,22,23. If @ # 0 we can assume a = 1 and b = 0 and
f = dza+ez3. But in this case the computation of the Fitting ideal at py shows that po
could only be a point of length 2. Hence, @ = 0 and we can assume f = 1,a =0,c =0,
and f = 42, + 6z3. Furthermore, b # 0, for otherwise the matrix would be singular
along a conic in {z; = 0}. Finally vy = 0, because the Fitting ideal of the matrix
now contains bzgz3 — Y2022, so that the equation of P becomes bz3 — yz;. So we have
reduced the matrix to the desired form.

Again the second statement follows from a straightforward computation.

3.8.2 Remark: The Fitting ideal of the normal form in lemma 3.8.1 is generated
by zozz — Az, 2023, 2123, 2223, 2122, 23 which does not contain the parameter a. We
denote it by I,. However, A is determined uniquely by this ideal. With a little more
effort we can prove:

Any 0-dimensional scheme Z with the given geometric data as in 3.8 (and fixed co-
ordinates) is given by the ideal I, for some A # 0. We omit the proof but use this
result in theorem 4.5.

3.9 The case of a 4-fold point

Let Z be a 4-fold structure on p. By lemma 3.3.2 and lemma 3.4 we assume that Z
is not contained in a plane, has a tangent line ¢ and an osculating plane P. We fix
coordinates so that p € ¢ C P have ideals (z1, 22, 23), (22, 23), (z3) respectively.

3.9.1 Lemma: For any reflexive sheaf F in M(0,2,4)\D} with Z(F) = Z there
are coefficieints A\, u # 0 and «, 3 such that F is presented by the matriz

A _ 21 zg 23 0
Bt =\ zotan+Bz An pz oz )’

Two such matrices are equivalent if and only if the quadruples of coefficients are the
same.

Proof: As in the proof of lemma 3.6.1 we can assume that the presenting matrix of

F is
A = 21 29 23 0
" Nzt+tfo i f2 f5
where fo, ..., f3 are combinations of 2y, 2, 23 only. Since z;f3 is in the ideal of Z, it
follows that m,f3 = 0 in Oz,, where m, is the maximal ideal. It follows from the
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proof of lemma 3.3.2 that f; is the equation of the osculating plane. Hence we can
assume that f3 = z3. Now we can reduce the matrix to the form

2\ 23 23 0
2o+ az+ Bz Azy Yz +pz 2

as in the previous cases. Here A, u # 0, for otherwise we would get a second point in
Supp Z by putting the last row to zero.

Furthermore v = 0. For if 4 # 0, then a computation shows that < Au? + ayu —
B~2, —puv,7%,0 > is a second point in Supp Z. This proves the first statement of the
lemma. The second is again straightforward.

3.9.2 Remark: The Fitting ideal of the normal form in lemma 3.9.1 is generated
by zozs — A2? + azyz2, 2023 — pz122, 2123, 2223, 23, z3 and does not contain the
parameter 3. We denote it by I, , .. The three coeflicients are uniquely determined
by the ideal.

As in remark 3.8.2 we can prove: For any 4-fold point Z with the geometr