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1 Introduction 

Derived varieties play an essential role in the theory of hyperidentities. In 
[11] we have shown that derivation diagrarns are a useful tool in the analysis 
of derived algebras and varieties. In this paper this tool is developed further 
in order to use it for algebraic constructions of derived algebras. Especially 
the operator S of subalgebras, H of hornornorphic irnages and P of direct 
products are studied. Derived groupoids frorn the groupoid N or ( x, y) = 
x' /\ y' and frorn abelian groups are considered. The latter dass serves as an 
exarnple for fluid algebras and varieties. A fluid variety V has no derived 
variety as a subvariety and is introduced as a counterpart for solid varieties. 
Finally we use a property of the cornrnutator of derived algebras in order to 
show that solvability and nilpotency are preserved under derivation. 

2 Derivation diagrams of algebras 

Definition 2.1 Let V be a variety of a fixed type r = (n0 , n1 , ... , n-y, ... ), with 
fundamental opemtions F = {/0 , fi, ... , f...,, ... }. Let u = (t0 , ti, ... , t...,, ... ) be a 
fixed choice of terms of V, with ti having arity ni, i 2:: 0. For any algebra 
A = (A; F) in F, the algebra A = (A; u) is called a derived algebra of A 
( corresponding to u), and will be denoted by Au. The variety derived from V 
using u, is the variety V or V u generated by {Au : A E V} . A variety V u 
is called a derived variety of V. For a class K of algebras of type r we denote 
by D ( K) the class of all derived algebras for all choices of u of type r from 
K. D is a class operator. 
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Example 2.2 Let C = ( C3 , +) be the cyclic groilp of order 3. Then 8 
( C3, EB) with x EB y := x + 2y is a derived algebra. 8 is a quasigroup. 

Lemma 2.3 lf C is a derived algebra of 8 and 8 a derived algebra of A then 
C is a derived algebro of 8. 

Proof. Every operation of C is a term operation of 8 which again is 
composed by fundamental operations of A. Hence every operation of C is a 
term operation of 8. D 

Definition 2.4 The algebra A = (A, 0) and 8 = (B, 0) are called mutually 
derived from each others if A is a derived algebra of 8 and 8 a derived algebra 
ofA. 

Example 2.5 C3 and 8 in the above example are mutually derived. lf we 
consider x + y := (x EB y) EB y as a term operation of 8 we have 

(X EB y) EB y = (X + 2y) + 2y = X + y. 

(Mutually derived algebra are equivalent in.) 

Definition 2.6 Let 8 be a derived algebra of A but A not a derived algebra 
of 8. 
8 is called a derivative of order 1 if for every algebro C the following im
plication holds: lf 8 is a derivative of C and C a derivative of A then C is 
mutually derived from either A or 8. 
A series of derived algebras A 1 -+ A2 -+ A3 is a sequence of algebras, each 
of which is a derivative of order 1 of the previous one. 

Notation. Given an algebra A the derivation diagram of A is a directed 
graph whose vertices are the derived algebras of A. Two vertices A and 8 
are joined by an arc A -+ 8 if Aq = 8 and 8 is a derivative A of order 1 or 
is mutually derived from A. A vertex 8 also has a loop 8 -+ A if Bu = 8. 
U sually we label the vertices also with the choice u of terms from A. 
For practical reasons it may be necessary to simplify a derivation diagram if 
no important information is lost. 
lnstead of o _. o we draw o +-+ o. 

+-

2 



X(±> y 

Example 2.7 The derivation diagram ofthe cyclic groupC3 = ( {O, 1, 2}, +). 
2x+y x+y x+2y 

2y 

y 

Example 2.8 lt is wellknown that the opemtion Nor (x, y) = x' /\ y' of the 
Boolean algebra B =( {O, 1} ; /\,V,', 0, 1) generates every term function of B. 
The groupoid ( {O, 1}; o) is primal where x o y := Nor (x, y). This groupoid 
has the following diagram where the binary operations are presented by their 
terms of the Boolean algebra. 

x1
" y x1 v y 1 

Here we have 
x ffi y := ( x' /\ y) V ( x /\ y') 

and 
x ffi y := ( x' V y) /\ ( x V y') . 
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3 Algebraic constructions 

Lemma 3.1 lf f : A ---+ B is a homomorphism from A to B then f is also 
a homomorphism from Au to Bu. If f is an isomorphism then f is also an 
isomorphism from Au to Bu. 

Proof. We only consider a binary operation and a choice u consist
ing of a term t (x, y). Then we have f (t (a, b)) = t (! (a), f (b)) as f is a 
homomorphism. D 

Lemma 3.2 lf A is a subalgebra of B then Au is a subalgebra of Bu. The 
lattice subB of all subalgebras of B is a sub-meet lattice of subBu. 

Proof. lf Ai, A 2 are subalgebras of B then Ai /\ A 2 consists of the set
theoretic meet and (Ai n A2)u = Aiu n A2u· D 

We call a choice u surjective if there exists a choice u' such that 

Auu' = A. 

Remark. lf u is surjective then 

Sub (A) ~Sub (Au). 

Lemma 3.3 Let Rel (A) be the lattice of all compatible n-ary relations of 
the algebra A. Then Rel (A) is a sub-meet-lattice of Rel (Au). 
Especially GonA is a sublattice of Gon (Au). 

Proof. We consider congruences 0, T/ E Gon (A). As 0 /\ T/ = 0 n TJ we have 
like above that 0 /\ TJ = 0 n TJ E G onAu. D 

Corollary 3.4 lf Au is simple then A is simple. lf Au is subdirectly irre
ducible then A is subdirectly irreducible. 
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Proof. If 0 /\ T/ = 6 in Au then 0 /\ T/ = 6 also in A by lernrna 3.3. D 

Lemma 3.5 If A, B are algebras of type T and u is a choice of terms then 

Proof. The carrier sets on both sides are the sarne and the operation 
coincide on both sides in the following sense. A and B generate subvarieties 
of H S P ( A x B) . Hence there exist congruences 01 , 02 such that T ( A) ~ 
T (A x B) /01 and T (B) ~ T (A x B) /02 for the algebras. Let t be a terrn 
of the choice u then there exist t 1 E T (A) with t 1 = t mod 01 and t 2 E T (B) 
with t21 = t mod 02 and t corresponds to (ti, t2 ). D 

Clearly lemrna 3.5 holds also for arbitrary direct products. 
If we consider the step frorn an algebra A to a derived algebra Au the dass 
operators H, S, P behave weil. The reverse step is rnore cornplicated and 
deserves rnore analysis. 

Remark. The derived algebra Au = ( A, 0) induces a subalgebra 
Bu = (B, 0) if for every operation f E 0 and every ai, ... ,an E A we have 
f ( ai, ... ,an) E B where B is a subset of A. If B is a proper subset of A we 
call B an induced subalgebra of Au. 

Example 3.6 For the term t ( x, y) = 2x + 2y of the cyclic group C6 we have 
an induced subalgebra of C617 with u = {2x + 2y}. 

4 Fluid varieties 

Let us call a derived algebra Au of A non-trivial if Au is not isornorphic to 
A. 
A variety V of type T is solid if for every algebra A E V all derived algebras 
Au ( for every choice u) are of the variety V. 

Definition 4.1 A vari.ety V of type T is fluid if for every algebra A E V and 
for every choice u all non-trivial algebras Au are not of the vari.ety V. 

Furtherrnore we declare that every trivial variety is fluid (and solid). 
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Definition 4.2 The algebra A is fluid if no non--trivial derived algebra Ar 
is in the variety HSP(A). 

We observe with the help of the derivation diagram of the groupoid N or that 
fluid algebras may not generate a fluid variety. For instance x' A y and x A y' 
are fluid groupoids but the variety generated by the direct product of them 
is not fluid. 
We write commutative groupoids additively and denote terms 
( ... ((x + x) + x) + ... ) + x by kx if there are k variables in this term. In 
the following we consider the cyclic group (7ln; +) of non negative integers 
mod n. lt is easy to see that the following identities hold 

i) x + (y + z) = (x + y) + z 

ii) X+ y = y +X 

iii) x + nx = x 

Proposition 4.3 If() = (7ln; +) is the semigroup which is described as above 
then G is fluid. 

Proof. The binary terms t ( x, y) of g can be presented by t ( x, y) = 
kx + ly; k, l E IN0 , 0 ~ k, l ~ n - 1. Let ()" = ( G; EB) where x EB y = kx + ly 
be a derived groupoid. Let us assume that 9cr E HSP (()). Then we have 
x EB y = y EB x and therefore kx + ly = ky + lx. We have k = l and the 
operation EB is of the form x EB y = kx + ky, 0 ~ k ~ n - 1. 
Because of the associativity we have x EB (y EB z) = ( x EB y) EB z and hence 
kx + k2y + k2 z = k2x + k2y + kz. If k = 0 then x EB nx + 0 with x "I 0. 
Otherwise we have x + kz = kx + z for every x, y E 7ln. From this follows 
k = 1 and g" = (). D 

Theorem 4.4 /f A = (G; +, -, 0) is an abelian group of ordern then g = 
( G; +) is a fluid semigroup. 
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Proof. Ais the direct product of cyclic groups Ai = (Gi; +, -, 0) with 

an order of prime power pf'. Therefore we have 9u = (n gi) =TI 9iu· lf 
iEl u iEl 

we assume that 9u E HSP (Q) then it follows that gu E HSP (Q) for every 
i E /. Especially the associative and commutative law has to hold. We have 
shown in 4.3 that gier E HSP (g) if and only if gier ~ gi· Hence from our 
assumption it follows that gu ~ g. D 

Proposition 4.5 Every subvariety W of a fluid variety V is fluid. 

Proof. lf A E W ~ V is an algebra such that a non-trivial derived algebra 
Au is of W then we also have the contradiction Au E V. D 

Remark. The subvarieties of a fluid variety V of type T are a sublattice of 
the lattice of all varieties of type r. 

Example 4.6 /f we consider the derivation diagram in 2. 7 we have the fol
lowing fluid groupoids which are presented by their Boolean terms 
{x, y, 0, 1, x /\ y, x V y, x ED y}. Fluid varieteties are generated by 
{x,y,O,x /\ y,x ED y,x' /\ y,x /\ y}. 

In Graczynska [5] the properties of the greatest solid subvariety k (V) of a 
variety V are described and analyzed. 

Proposition 4. 7 /f the variety V is fluid then the greatest solid subvariety 
k (V) is trivial. 

Proof. Let V be fluid and assume that k (V) is not trivial. Let A be a 
non trivial algebra of k (V). We have A E V and also Au E V because k (V) 
is a solid subvariety of V. 0 

Remark. An arrow A -+ Au in a derivation diagram is called solid if Au E 

HSP (A) and fluid if Au rf: HSP (A). In Plonka [7) the hypersubstitutions 
are also distinguished between such properties. 
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5 Preservation Properties 

We like to extend our results in [10] and will use the following definition [3]. 

Definition 5.1 Let a, ß, Ö be congruences of an algebra A. a centralizes ß 
modulo Ö {which is denoted by C (a, ß, ö)) if for every n > 1, fort E Tn (A) 
andfor all (u,v) E a, (x2,Y2) E ß, ... ,(xn,Yn) E ß this equivalence holds. 

(5.1) 

Definition 5.2 The commutator [a, ß] in A is the smallest congruence Ö for 
which C ( a, ß, ö). holds. 

Proposition 5.3 Let A be an algebra with a, ß E C onA and let Aa be a 
derived algebra of A. Let~ be the order relation of the lattice of equivalences 
of the set A. For the commutator [a, ß].A and the commutator [a, ß].A.,. of the 
algebra A 17 the following holds 

(5.3) [a, ß].A.,. ~ [a, ß].A. 

Proof. lt is obvious that every congruence of Ais also a congruence of Aa 
as T (A17 ) is a subset of termfunctions of T (A). If ö = [a, ß].A then we have 
C(a,ß,ö) in A and again as T(Aa) ~ T(A) we have C(a,ß,ö) in A 17 • D 

Theorem 5.4 Let Aa be a derived algebra of A. Then the following holds 

(5.4.1) If A is abelian then Aa is abelian. 

( 5.4.2) If A is solvable then Aa is solvable . 

(5.4.3) If Ais nilpotent then A 17 is nilpotent. 
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Proof. (5.4.1) If Ais abelian then [\7 Ai \7 A] = 6A in A. As [\7 A, \7 A].A.,. ~ 
[\7, \7].A = 6A also Au is abelian. 
(5.4.2) Let A be solvable. Then [\7]Ä = 6 for some n E IN where [\lt = 
[[vr-1

, [vr-1
). By the above proposition we have for Au that [V]Ä„ ~ 

[vnL.i = 6. 
(5.4.3) If Ais nilpotent then (\7, vr = (\7, (\7, vr-1

) = 6 for some n EIN. 
Again by proposition 5.3 Au is nilpotent for some k ~ n. D 

Remark. Derived algebras behave well with respect to types of algebras. In 
the case of [11] it is easy to see that a subclone p (Au) of polynomial function 
preserves all the relations which characterize the clone p ( A) of polynomial 
functions of A. In the case of McKenzie's theory of types a choice u induces 
an order homomorphism on the lattices of types. 
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