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1 Introduction 

A polynomial function f : L ~ L of a lattice C = (L; /\,V) is generated by 
the identity function id ( x) = x and the constant functions ca ( x) = a ( for every 
x E L ), a E L, by applying the operations /\,V finitely often. Every polynomial 
function in one or also in several variables is a monotone function of C. 
If every monotone function of C is a polynomial function then C is called order
polynomially complete. 
In this paper we give a new characterization of finite order-polynomially lattices. 
We consider doubly irreducible monotone functions and point out their relation to 
tolerances, especially to central relations. We introduce chain-compatible lattices 
and show that they have a non-trivial congruence if they contain a finite interval 
and an infinite chain. The consequences are two new results. A modular lattice 
C with a finite interval is order-polynomially complete if and only if C is finite 
projective geometry. If C is simple modular lattice of infinite length then every 
nontrivial interval is of infinite length and has the same cardinality as any other 
nontrivial interval of .C. 
In the last sections we show the descriptive power of polynomial functions of 
lattices and present several applications in geometry. 

2 Prepolynornially complete lattices 

As a first step we consider order-polynomially complete lattices in a more general 
setting. For this we use some notions from clone theory [19]. Let A be some 
non empty set and p a relation. Then Polp is the clone of functions on A which 
preserves p. 
Let A = (A, n) be an algebra of type T. The clone p (A) of the polynomial 
functions of A consists of all n-place polynomial function, n E JN. We define 
recursively 
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i) The projection ef : An -+ An with ef (xi, ... , xn) = Xi and the constant 
function c~ : An -+ A with c~ (xi, ... , xn) = a, a E A, are n-place polynomial 
functions. 

ii) If f E n is a m-place Operation of the algebra A = (A, n) and pi, ... , Pm 
are n-place polynomial functions then f (pi (xi, ... , Xn), ... ,Pm (xi, ... , xn)) is 
a polynomial function. 

One may apply (ii) only a finite number of times. 
We use the following concepts. 

Definition 2.1 The algebra A = (A, 0) is polynomially complete (Junctionally 
complete) if every function f : An-+ A is a polynomial function. 

Theorem 2.2 /f A is polynomially complete of at most a countable type r then 
A is finite {1 O}. 

Definition 2.3 The finite algebra A = (A, 0) is prepolynomially complete if ev
ery function J : An -+ A is a polynomial function of the algebra A = ( A, n u {g}) 
for every g </; P (A). 

The prepolynomially complete algebra are described according to Rosenberg's 
completeness theorem in [15] and are connected to the relations p of following 
types. 

(1) Type 0: p is an order relation with a least and a greatest element. 

(2) Type L: Let IAI = pm, p a prime number, m ~ 1 
p = { ( ai, a2, aJ, a4) 1 ai + a2 = a3 + a4} where ( A, +) is an abelian group 
with p · A = 0. 

(3) Type C: p is a nontrivial equivalence relation. 

( 4) Type Z: An n-ary relation p is called central if there is a non-empty proper 
subset Z of A such that 

(i) (ai, ... ,an) E p if at least one ai E Zi; 

(ii) p is invariant under permutations of coordinates; 

(iii) (a1 , •.• ,an) E p if ai = a; for some distinct i,j. 

(5) Type R: Let IAI = hm, h ~ 3, m > land let T = {ni, ... , nm} be a set of 
equivalence relations such that 

(i) every equivalence relation ni has h equivalence classes c;, 
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m 
(ii) n Ci # 0 where Ci is an equivalence dass of ni; 

i=l 
( ai, „., ah) E p for each i, i = 1, „., m, at lf!~st two of the elernents 
ai, „., ah are equivalent in ni, p is called a regular relation. 

Definition 2.4 Let p be of the above list. The algebra A = (A, 0) is p-polynomially 
complete if P (A) = Polp. 

We do not assurne that A is finite and hence we have thc following 

Problem 1 : Is every p-polynornially cornplete algebra finite for p of type 0, L, 
C,Z,R? 

Definition 2.5 Let C = (L, /\.,V) be a lattice. C is called order-polynomially 
complete if every order-preserving map f : Ln --+ L, n E IN, is a polynomial 
function. 

A finite order-polynornially cornplete lattice is prepolynornially cornplete. 

Problem 2 : Is every order-polynornially cornplete lattice finite? 

This problern was presented by the author at the annual rneeting of the Austrian 
Mathernatical Society in Vienna 1973. 
The usual approach to attack such problerns is the cornparison of cardinalities 
[10]. This was less successful in the case of lattices. But for p-polynornially 
cornplete algebras of sorne types one can show with this rnethod that they are 
finite. 

3 Doubly irreducible monotone functions 

Definition 3.1 An element a is join-irreducible if from a = b V c it follows a = b 
or a = c. An element a is meet irreducible if from a = b /\. c it follows a = b 
or a = c. An element a is doubly irreducible {4}p.49 if it is both join- and meet
irreducible. 

Lemma 3.2 A finite lattice {, = (L; /\,V) is order-polynomially complete if and 
only if the lattice M on(L, L) does not contain any doubly irreducible elements 
besides the identity or constant. 

Proof. Every polynomial function of {, is generated frorn the identity and con
stants by the use of the operators rneet /\ and join V. D 
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Example 3.3 Let .C = (L; /\, V)be a bounded lattice such that 0 andl are doubly 
irreducible and L = [O, b] U [a, 1] Jor some a, b E L. Then the monotone function 

!( ) { 
1 for x E [ a, 1] . d bl . d "bl 

x = 0 for x E [O, b] is ou y irre uci e. 

Proof. Assume that J(x) = g(x) V h(x). Hence we have J(a) = g(a) V h(a) = 1. 
As 1 is V-irreducible we may conclude without loss of generality that g(a) = 1. As 
J(b) = g(b) V h(b) = 0 we have g(b) = 0 and hence J = g. For J(x) = .Q(x) /\ h(x) 
we can use similar arguments. D 

Example 3.4 We consider the lattice Mon(K3 , K 3 ) where K 3 is 3-element chain 
with 0 < a < 1. This lattice has the following Hasse diagram. 

a 

The monotone function J1 with f 1 (0) = 0, J1(a) = 1, J1 (1) = 1 is doubly ir
reducible and so is the dual function f2 , f2 (0) = Of2 ( a) = 0, f2 (1) = 1. Both 
functions do not preserve the central relation [17] of K 3 with center a. (A central 
relation is a special tolerance). 

From the above lemma it follows. 

Proposition 3.5 Let .C be a not necessarily finite lattice . lf the lattice Mon( L, L) 
contains a doubly irreducible element other than the identity or constant then .C 
is not order-polynomially complete. 

Later we will use the following well known fact. 

Proposition 3.6 lf the not necessarily finite lattice .C contains a nontrivial toler
ance (not the all relation or the identity relation} then .C is not order-polynomially 
complete. 

Proof. Let (} be a nontrivial tolerance of .C and ( a, b) ~ (} with a < b. Let 

( c, d) E (} with c < d. We consider J ( x) = { b folr x ~ d which is a monotone 
a e se 

function. J cannot be a polynomial function because f does not preserve (}. 0 
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Remark. If there exists a nontrivial tolerance (} on .C then there may be a 
very large set of monotone functions which do not preserve 0. But it seems tobe 
difficult to determine a doubly irreducible monotone function among them. 

4 Chain-compatible lattices 

Definition 4.1 Let .C = ( L, /\,V, 0, 1) be a lattice a, b E L a ::::; b. The codimen
sion of b in respect to a is the maximal cardinality of the chains from a to b. 
codim(a, b) :=max {ICI 1 C chain from a tob}. 

Definition 4.2 Let .C = (L; /\,V} be a lattice and ,\ a cardinal number. .C is 
called .\-chain-compatible if for all a, b, c E L with a :S b the following holds: 

eo dim ( a, b) < ,\ implies 
and 

codim{a /\ c, b /\ c) < ,\ 
eo dim ( a V c, b V c) < ,\ 

.C is called chain-compatible if .C is .\-chain-compatible for every ,\ :S ILI . 

Lemma 4.3 Let .C = (L; /\,V} be .\-chain-compatible with w :S ,\ :S ILI and 
let a, b, c E L with a :S b :S c. lf codim( a, b) < ,\ and codim( b, c) < ,\ then 
codim(a,c) < .\. 

Proof.Let C be a chain of maximal cardinality from a to c. We consider the 
maps /v: C - [b,c], /v (x) = b V x and f": C - [b,c], f" (x} = b /\ x. Both 
maps are obviously monotone. Furthermore we consider the following equivalence 
relations Ov := ker fv, (}" := ker f" and (} := (}" n Ov. As there exists an injective 
map C / Ov - [b, c] we have IC / Ov 1 < ,\ and likewise IC / (} J < .\. We conclude 

that IC / (} 1 :S IC / (}" l · IC / Ov 1 < ,\ · ,\ = .\. Now it remains to show that vor every 
equivalence dass [c] 11 ={x1 xOc, x E L} we have l[c] 11 1 < .\. 
From codim(a, b) < ,\ it follows codim{c, b V c) < ,\ by hypothesis and similiarly 
codim(b /\ c, c) < .\. If we denote l c = { x 1 x :S c, x E L} and dually j c we 
have [c] 11 = {[c] 11 n l c} U {[c] 11 n j c}. Now [c] 11 n ! c is a chain in [b /\ c, c] and 
hence l[c] 11 n l cl < .\. Similiarly we have l[c] 11 n j cl < ,\ and finally l[c] 11 1 < .\. 
Altogether we have ICI < .\. 0 

Lemma 4.4 Let .C have a finite interval [k, l] and an infinite chain C. lf .C is 
.\-chain-compatible for w :S ,\ :S ICI then .C contains a nontrivial congruence. 

Proof. We consider the congruence (} which is generated by all pairs ( u, v) such 
that codim(u /\ v , v) < .\. (} is not the identity relation as .C contains a finite 
interval. We will show that 0 fulfills the condition 
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(*) (a, b) E (} if and only if codim(a /\ b, b) < ,\. 
This condition holds for the generators. Obviously ( *) holds for ( c, c) E (} 
then also for (b,a) E 0. Now we assume that (*) holds for (a,b) E () and 
( b, c) E (). Then we have co dim ( a /\ c, b /\ c) < ,\ by ,\-chain-compatibility and 
codim(b /\ c, b /\ c) < ,\ by hypothesis. As we have codim(a /\ c, c) < A also 
( a, c) E () fulfills the condition ( *) . 
Now assume that (a,b) E () and (c,d) E () fulfil (*). We assume furthermore 
that a ~ b and c ~ d . By the hypothesis we have codim(a V d, b V d) < 
A and codim(a V c, a V d) < A and hence codim(a V c, b V d) < ,\. Therefore 
( a V c, b V d) E () fulfills ( * ). If we have a 1:. b and cf:. d we put a /\ b instead 
of a and c /\ d instead of c. Then ( a /\ b /\ c /\ d, b V d) E () fulfills ( *) and hence 
also 

( ( a /\ b /\ c /\ d) V ( ( a V c) /\ ( b /\ d) , ( b V d) V ( b V d))) E () 

fulfills ( *). This is nothing else than ( ( a /\ c) /\ ( b V d) , b V d) E () fulfills ( *) . 
Because of ( *) () is not the all relation. D 

Theorem 4.5 Let .C be a A-chain-compatible lattice of infinite length. If .C is 
simple then every nontrivial interval [a, b] is of infinite length and has the same 
cardinality as any other nontrivial interval [c, d] of .C. 

Proof. We change the proof of 4.4 in the following way. Let L have at least two 
types of infinite interval namely l[a, b]I =At and l[c, dJI = ,\2 • At < A2 • Then the 
intervals of cardinality At define a congruence as above and L is not simple. D 

Proposition 4.6 If .C is chain-compatible and of finite length then L is modular. 

Proof. If .C is not modular the .C has a sublattice which is isomorphic to N 5 . 

We have codim(r,c) 2:: codim(r V b,cV b) 
= CO dim ( b, t) 2:: CO dim ( b /\ c, t /\ c) 
= co dim (r, c)) 

Similarly we have codim (r, c) = codim (a, t) and codim (a, t) = codim (b, t). D 

Remark. The following lattice is chain-compatible but not modular. We assume 
that the intervals are of cardinality w0 . For ,\ = w0 the following holds. 

CO dim ( a V c, b V c) = CO dim (1, 1) = 0 ~ A 
( a V c, b V c) = CO dim ( 1, 1) = 0 ~ ,\ . 
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Theorem 4. 7 Every bounded modular lattice is chain-compatible. 

Proof. According to Dedekind's principle [6], page 162, for all elements a, b the 
intervals [a, a V b] and [a /\ b, b] are order isomorphic. If we put b /\ c instead of b 
we have 

[a, a V (b /\ c)] ~ [a /\ (b /\ c)], b /\ c. 

If we assume a ~ b it follows 

[a /\ c, b /\ c] ~ [a, a V (b /\ c)]. 

Furthermore we have 
[a,aV b/\c]~[a,b] 

and hence 
h (b /\ c) - h (a /\ c) ~ h (b) - h (a) <.X. 

For the other case we put a V c instead of a and we use similar arguments together 
with ( a V c) /\ b = a V ( c /\ b) for a ~ b. D 

5 Order-polynomially complete modular lattices. 

Theorem 5.1 A modular lattice .C with a finite interval is order-polynomially 
complete if and only if .C is a finite projective geometry. 

Proof. In [13] it is shown that every finite projective geometry is order-polynomially 
complete. 
On the other hand let .C be order-polynomially complete. Then .Cis bounded [5], 
[8]. If .C contains an infinite chain then by theorem 4.7 and lemma 4.4 .C has a 
nontrivial congruence relation. But this is contradiction that .C is simple (Prop. 
3.5). Therefore .C can have only finite chains. 
If .C is infinite and of cardinality a then .C has a antichain of the same cardinality. 
But according to Erne-Schweigert '[5] .C cannot contain a forest of the same car
dinality as .C. Hence .C is finite. A finite modular lattice .C is order-polynomially 
complete if and only if .C is a projective geometry. 0 
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6 Perspectivities and projectivities 

In the following we assume that 'P = (P ; /\,V) is the lattices of subspaces of the 
IR?. Hence 'P is the real projective plane. 
A range of a line f is the set of all points on the line f. A pencil is the set of all 
line through a given point u. 

Definition 6.1 [4] A perspectivity is a bijection between the ranges of two lines 
defined by the sections of one pencil. 

The perspectivity maps a into a', b into b' d into d', and so on. 
From the drawing we immediately get 

k 

Proposition 6.2 Every perspectivity p can be presented by a polynomial function 

p (X) = ( (X /\ f) V U) /\ k 

Remark. p ( x) is a lattice homomorphism for the points x on the line f. 
Remark. For the two lines k, f we have the property 

k5:fVu 
k/\u=o· 

This properties for lines coincides with the definition of perspectivity for points 
in [12]. 

Definition 6.3 A projectivity is a product of perspectivities. 

8 



c2 

aO 

To avoid qrackets we assume in the following that /\ binds stronger than V. We 
have 

pi(x) = [(x /\ f) V et]/\ k 
P2 (X) = [ (X f\ k) V e2) f\ m 

P2 (P1 (x)) = [(p1(x) /\ k) V e2] /\ m 
= [([(x /\ f) V e1] /\ k /\ k) V e2] f\ m 
= [(x /\ f V et)/\ k V e2] /\ m 

Theorem 6.4 Every projeetivity relating ranges of different lines ean be pre-
sented by 

Proof. By [4], p.243, 14.51 every projectivity is a product of two perspectivities. 
Above we have shown that it has this form. D 

Problem. Give a lattice theoretic proof of 6. 4 using the theorem of Pappus in 
its lattice theoretic form. 

Theorem 6.5 (Fundamental theorem of projeetive goemetry.) 
A projectivity p ( x) is determined when three points of one range and the corre
sponding three of the other range are given. 
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Proof. 

Ct = (a1 V~)/\ (a2 V bi) 
c2 = (a1 V b3) /\ (a3 V bi) 
C3 = ( a2 V b3) /\ ( a3 V b21) 

By Pappus we have Ct V c3 = Ct V c2 (= c2 V c3). 

We have 

p(x) = [(x /\ f V 0 1 ) /\ k V 0 2] /\ m. 

m=b1Vb2 
k = Ct V C2 

7 Central collineations 

A collineation T is an order-automorphism of P. T maps collinear points into 
collinear points, ranges into ranges, pencils into pencils and so on. 
A perspective collineation of P is a collineation with a center c and an axis C 
which leaves invariant all the lines through c and all points on C. A perspective 
collineation is either an elation or a homology according as the center and the 
axis are or are not incident. Throughout we assume that a =/:- c and a ~ C. 
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The elation e (x) is given by C, c, a and e (a). 

The homology h (x) is given by C, c, a and h {a). 

Lemma 7 .1 Let S be a finite set of points of P. lf the central collineation r is 
given by C, c, a and r (a) then we have r ls= p ls where 

p ( x) = V ( x /\ b V c) /\ [ ( x /\ b V a) /\ C V T ( a)] ( 7. 1} 
bES 

Proof. The proof can be read from the drawings from the above examples. If 
c E C we have 

p ( c) = [ ( c V a) /\ c V T ( a)] = c /\ ( c V T ( a)) = c. 

If r E S with r ~ C we have 

p(r) (rVc)/\[(rVa)]/\CVr(a) 
(rVc)/\(rVr(a))=r 
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Theorem 7.2 lf P is a finite projective plane and S is set of points of P then 
very central collineation r given by C, c, a and r (a) is of the above form (1.1). 

Remark. We observe that p is A-homomorphism of P and p(x) ~ r (x) for 
every x E P, P = (P,A, V). 

Corollary 7 .3 For every finite projective plane P with a set S of points, c a 
point, Ca line, not incident with c and C the polynomial p(x) of the form (7.1) 
is a polynomial automorphism. 

8 Geometrie constructions with a straight edge 

In this section we will consider geometric constructions with a straight edge on a 
sheet of paper. The sheet of paper will be conceived as the real projective plane 
under the hypothesis as given in Bieberbach §1 [2]. This projective plane will be 
considered according to Birkhoff p.30 as a geometric lattice .C = (L; A, V). 
A straight edge is a ruler without measurement. The construction with a straight 
edge can be described by a kind of polynomial function of .C. 
Every construction starts with a finite set of given points and lines. The points 
are denoted by Ai, ... , An-m and the lines by 9n-m+i. ... , 9n· 

Theorem 8.1 Every point and every line which can be constructed by a given 
set R = {Ai, ... , An-m,9n-m+l, ... , 9n} of points and lines are images from R by 
polynomial functions of .C. 

Proof. A geometric construction with a straight edge is actually performed on 
a sheet of paper. If the construction lies within the boundaries of the paper the 
polynomial function can be found just by following the steps of the construction. 
A problem are points and lines outside the sheet of paper. In most cases the 
theorem of Desargues has to be applied. According to Bieberbach there are three 
fundamental constructions. We will confine us to the 
First fundamental construction. 
Let g, h be two lines which meet in a point A outside of the boundaries of the 
sheet of paper. How can one draw a line from a to a point A1 on the paper? 
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g 

A2 A3 

We choose the points A2, A3 on the line g, the points A4 , As on h and a point S. 
Then we have the line 

A'= 
(A2 VS)/\ {[(A1 V Aa) /\ (A2 VS) V (A2 V As)/\ (A4 V Aa)] /\ (A1 V A 4) V As} 

The polynomial function is given by 

p(xi, ... , xs) = 
(x2 V xs) /\ {[(x1 V xa) /\ (x2 V xs) V (x2 V xs) /\ (x4 V xa)] /\ (x 1 V x 4) V xs} 

for the set R ={Ai, ... , As, S}. 

Theorem 8.2 Let the point A or respectively the line g be an image of the poly
nomial function p (xi, ... , xn) from the set R = {A1, ... ,An,gi, ... ,gm}· Then the 
point A or respectively the line g can be constructed from R finitely many steps 
only with a straight edge. 

Proof. Let us cosider p(Ai, ... ,An,91'· ··,9m)· We reduce p(xi, ... ,xn) in the 
following way. We delete every subword w(xi,„.,xn) of p(xi, ... ,xn) which has 
the property w (Ai, .. . , An, gi, ... , 9m) = 1 (the whole plane) or 0. 
Furthermore we apply x V x = x if necessary. p (x1, ... , xn) will still have the point 
Aas an image for R. Now we proceed by induction. If p(xi, .„, xn) = Xi, i = 
1, „., n it can be constructed as we have the element Ai or 9i at our disposal. Now 
assume 

or 
p (x1, „., Xn) = <i1 (x1, ... , Xn) /\ 7f2 (x1, ... , Xn) 

then we have again a construction by straight edge: in the first case as a line 
through two points and in the second case as a section of two lines. 
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