## UNIVERSITÄT KAISERSLAUTERN

## On the Convergence at Infinity of Solutions with Finite Dirichlet Integral to the Exterior Dirichlet Problem for the Steady Plane Navier-Stokes System of Equations

Dan Socolescu

Preprint Nr. 258

ISSN 0943-8874


## FACHBEREICH MATHEMATIK

# On the Convergence at Infinity of Solutions with Finite Dirichlet Integral to the Exterior Dirichlet Problem for the Steady Plane Navier-Stokes System of Equations 

Dan Socolescu

Preprint Nr. 258

ISSN 0943-8874

UNIVERSITÄT KAISERSLAUTERN
Fachbereich Mathematik
Erwin-Schrödinger Straße
67663 Kaiserslautern

Oktober 1994

ON THE CONVERGENCE AT INFINITY OF SOLUTIONS WITH FINITE DIRICHLET INTEGRAL TO THE EXTERIOR DIRICHLET PROBLEM FOR THE STEADY PLANE NAVIER-STOKES SYSTEM OF EQUATIONS

## Dan Socolescu

## 1. INTRODUCTION

Let $\Omega$ be a two-dimensional domain exterior to a compact set $\Delta$ with smooth boundary $\partial \Delta$ and assume for the sake of simplicity and without loss of generality that diam $\Delta \geqq 2$. The steady flow in $\Omega$ of a viscous incompressible fluid past the obstacle $\Delta$ with uniform velocity $\underset{\sim}{v}{ }_{\infty}$ at infinity is described by the NavierStokes equations and the continuity equation

$$
\Omega:\left\{\begin{array}{l}
v \nabla^{2} \underset{\sim}{v}-(\underset{\sim}{v} \cdot \nabla) \underset{\sim}{v}-\rho_{\infty}^{-1} \nabla p=\underset{\sim}{0},  \tag{1}\\
\nabla \cdot \underset{\sim}{v}=0,
\end{array}\right.
$$

with the boundary conditions
(2)

$$
\partial \Delta: \quad \underset{\sim}{v}=\underset{\sim}{0} \text {, }
$$

$$
\begin{equation*}
[0,2 \pi): \quad \underset{r \rightarrow \infty}{\lim } \underset{\sim}{v}(r, \theta)={\underset{\sim}{v}}_{v} \tag{3}
\end{equation*}
$$

Here $v$ is the coefficient of viscosity, $\nabla:=\left(\partial_{x}, \partial_{y}\right)$ is the Nabla differential operator, $\underset{\sim}{v}=(u, v)$ is the velocity vector, $\rho_{\infty}$ is the constant fluid density, which we take in the following without loss of generality to be equal to one, $p$ is the pressure, $r$ is the radius vector, i.e. the distance from the given point to the origin, taken interior to $\Delta$, and $\theta$ is the polar angle.

In his study on this exterior Dirichlet problem in 1933, Leray [15] constructed a certain solution ( ${\underset{\sim}{L}}^{L_{r}}, p_{L}$ ) satisfying (1) and (2) and having a velocity with finite Dirichlet integral

$$
\begin{equation*}
\underset{\Omega}{\mathcal{d}}|\nabla \underset{\sim}{v}|^{2} \mathrm{dxdy}<\infty . \tag{4}
\end{equation*}
$$

Whether this solution had the desired limit behaviour (3) was left open. Leray's construction went as follows. Let $\Omega_{R}$ be the set of points in $\Omega$ of radius vector $r$ < R. He first proved that for every $R>\max r=: r_{\Delta} \geqq 1$ and every constant vector $\underset{\sim}{v}$ there is at least one solution $\left({\underset{\sim}{v}}^{\mathrm{V}^{\prime}}, \mathrm{P}_{\mathrm{R}}\right)$ of (1) in $\Omega_{\mathrm{R}}$ satisfying the boundary conditions on $\partial \Omega_{R}$

$$
\underset{\sim}{v}{ }_{R}= \begin{cases}\underset{\sim}{0} & \text { on } \partial \Delta,  \tag{5}\\ \underset{\sim}{v} & \text { for } r=R .\end{cases}
$$

Concerning all such (velocity) solutions $\underset{\sim}{v}$ Leray proved the existence of a uniform bound for the Dirichlet integral, namely for some positive constant $C$ independent of $R$ and $v$

$$
\begin{equation*}
\int_{\Omega}|\nabla{\underset{\sim}{v}}|^{2} d x d y \leqq c^{2}\left(1+v^{-1}\right)^{2} \tag{6}
\end{equation*}
$$

He then showed that a sequence $R_{i} \rightarrow \infty$ exists, such that the solutions $\left({\underset{\sim}{v}}_{R_{i}}, p_{R_{i}}\right)$ of (1) and (5) in $\Omega_{R_{i}}$ converge uniformly together with all their first order derivatives in any compact subset of $\bar{\Omega}$ to a solution $\left({\underset{\sim}{L}}^{L}, p_{L}\right)$ satisfying (1), (2) and (4) cf. also [3], [5], [8], [10], [14] -. The further behaviour of $\underset{\sim}{v}{ }_{L}$ and $p_{L}$ as $r \rightarrow \infty$ was left unsettled and remained so for more than four decades.

In 1974 Gilbarg and Weinberger [11] proved that
(i) the Leray solution $\left({ }_{\sim}{ }_{L}, p_{L}\right)$ is bounded,
(ii) the velocity $\underset{\sim}{v}$ L has a limit in the mean at infinity

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \int_{0}^{2 \pi}|{\underset{\sim}{v}}(r, \theta)-{\underset{\sim}{v}}|^{2} d \theta=0, \lim _{r \rightarrow \infty}{\underset{\sim}{v}}_{L}(r)={\underset{\sim}{v}}_{0} \text {, } \tag{7}
\end{equation*}
$$

where

$$
\hat{\mathrm{v}}_{\mathrm{L}}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \underset{\sim}{v_{L}}(r, \theta) d \theta,|{\underset{\sim}{v}}|=\lim _{r \rightarrow \infty} \max _{[0,2 \pi]}|{\underset{\sim}{v}}|,
$$

(iii) the pressure $p_{L}$ converges pointwise and in the mean to the same limit at infinity
$\left(8_{1}\right) \quad[0,2 \pi): \quad \lim _{r \rightarrow \infty} p_{L}(r, \theta)=p_{\infty}$,
$\left.(8)_{2}\right) \quad$
$\quad \lim _{r \rightarrow \infty} \int_{0}^{2 \pi}\left|p_{L}(r, \theta)-p_{\infty}\right|^{2} d \theta=0$.
The questions of whether $\underset{\sim}{v}$ L tends pointwise to its asymptotic value ${\underset{\sim}{V}}_{0}$ and whether ${\underset{\sim}{V}}_{0}$ is equal to the prescribed asymptotic value $\underset{\sim}{v}{ }_{\infty}$ were however left open.
Four years later the same authors [12] investigated the asymptotic behaviour of an arbitrary solution with finite Dirichlet integral $\left({\underset{\sim}{D}}^{D}, P_{D}\right)$ of (1) and (2) and showed that
(i) the velocity $\underset{\sim}{v}$ D has at infinity the behaviour

$$
\begin{align*}
& \lim _{r \rightarrow \infty}\left|{\underset{\sim}{v}}^{v_{D}}(r, \theta)\right|^{2} / \ln r=0 \text {, uniformly in } \theta \text {, } \tag{9}
\end{align*}
$$

If furthermore $0<\lim _{r \rightarrow \infty}\left|\underset{\sim}{{\underset{v}{D}}^{D}}(r)\right|<\infty$, then there exists a constant vector $\underset{\sim}{v}{ }_{0}$ such that, by denoting $i=\sqrt{-1}$,

$$
\left\{\begin{array}{l}
\lim _{r \rightarrow \infty}\left|{\underset{\sim}{v}}_{D}(r)\right|=\left|{\underset{\sim}{v}}_{0}\right|, \\
\lim _{r \rightarrow \infty} \arg \left(\hat{u}_{D}(r)+i \hat{v}_{D}(r)\right)=\arg \left(u_{0}+i v_{0}\right), \\
\quad \lim _{r \rightarrow \infty} \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}(r, \theta)-{\underset{\sim}{v}}_{0}\right|^{2} d \theta=0 . \tag{12}
\end{array}\right.
$$

(ii) the pressure $p_{D}$ converges pointwise and in the.mean to the same limit at infinity
$(13) \quad,[0,2 \pi): \lim _{r \rightarrow \infty} p_{D}(r, \theta)=p_{\infty}$,
$(132)$

$$
\lim _{r \rightarrow \infty} \int_{0}^{2 \pi}\left|p_{D}(r, \theta)-p_{\infty}\right|^{2} d \theta=0
$$

The questions of whether every bounded $\underset{\sim}{V}$ D converges pointwise to its asymptotic mean value $\underset{\sim}{v_{0}}$ and whether the boundedness condition can be dropped were however left open.

In 1988 Amick [2] showed that
(i) every $\underset{\sim}{V}$ D $i s$ bounded. If furthermore the flow is "symmetric" (i.e. if $\partial \Delta$ is symmetric about the $x$-axis and $\underset{\sim}{v_{\infty}}=\left(u_{\infty}, 0\right)$, then one can find at least one solution ( ${\underset{\sim}{v}}^{v}, p_{D}$ ) with $p_{D}$ and $u_{D}$ even in $y$ and $v_{D}$ odd in $\left.y\right)$, then $\underset{\sim}{v_{D}}$ tends pointwise to its asymptotic mean value $\underset{\sim}{v}{ }_{0}$.
The questions of whether every "general" ${\underset{\sim}{V}}^{D}$ converges pointwise to its asymptotic mean value $\underset{\sim}{v} 0$ and whether $\underset{\sim}{v} 0={\underset{\sim}{v}}_{\infty}$ in the particular case of the Leray solution were however left open.

The present paper is concerned with these open problems. In fact we prove that
(i) every $\underset{\sim}{v}$ D converges pointwise to its asymptotic mean value ${\underset{\sim}{V}}_{0}$; in the particular case of the Leray solution, ${\underset{\sim}{V}}_{0}$ is equal to the prescribed asymptotic value $\underset{\sim}{\mathrm{v}}{ }_{\infty}$ - Theorem 2 and respectively Theorem 3 -.
(ii) the exterior Dirichlet problem to the steady two-dimensional Navier-Stokes equations possesses the Liouville property, i.e. if the asymptotic mean value $\underset{\sim}{v_{0}}$ of the velocity $\underset{\sim}{v}{ }_{D}$ is equal to zero, then $\underset{\sim}{V} D$ is identically zero - Theorem 1 -.
(iii) the Leray sequence of solutions $\left(\underset{\sim}{v_{R}}, p_{R_{i}}\right), i \in N$, of (1) and (5) in $\Omega_{R_{i}}$ converges quasi-uniformly on $\bar{\Omega}$ to $\left({\underset{\sim}{v}}^{L}, p_{L}\right)$ - Theorem 3 -.

These results were announced in [18], [19], [20], [21], [22]. However, since some proofs presented there were only sketched or incomplete, we give here all the details of the revised proofs.

## 2. CONVERGENCE AT INFINITY OF A SOLUTION WITH FINITE DIRICHLET INTEGRAL OF THE VELOCITY

Theorem 1 [21]. Every solution ( ${\underset{\sim}{D}}, p_{D}$ ) of (1), (2) and (4) with zero asymptotic mean value, i.e. $\left(\underset{\sim}{v} 0, p_{\infty}\right)=(\underset{\sim}{0}, 0)$, is identically zero.

Remark 1. Since the pressure $p_{D}$ is defined up to an additive constant, its asymptotic (mean) value $p_{\infty}$ can always be taken to be equal to zero.

For the proof of Theorem 1 we need the following results:
Theorem of Gilbarg and Weinberger [12, pp 384, 396, 399, 400]. The vorticity $\omega_{D}:=\partial_{y} u_{D}-\partial_{x} v_{D}$ of the velocity $\underset{\sim}{v}{ }_{D}$, its gradient $\nabla \omega_{D}$ as well as $r^{1 / 2} I n^{-1 / 4} r \quad \nabla \omega_{D}$ are square integrable in $\Omega$, $i$.e.

$$
\begin{equation*}
\int_{\Omega} r \ln { }^{-1 / 2} r\left|\nabla \omega_{D}\right|^{2} d x d y \leqq C \int_{\Omega} \omega_{D}^{2} d x d y \leqq 2 C \int_{\Omega}|\nabla{\underset{\sim}{D}}|^{2} d x d y \tag{14}
\end{equation*}
$$

where $C$ is a positive constant. Moreover

$$
\begin{align*}
& \lim _{r \rightarrow \infty} r^{3 / 4} \ln n^{-1 / 8} r\left|\omega_{D}(r, \theta)\right|=0 \text {, uniformly in } \theta,  \tag{15}\\
& \left|\omega_{D}\left(z_{2}\right)-\omega_{D}\left(z_{1}\right)\right| \leqq C_{1} \mu(R)\left|z_{2}-z_{1}\right|^{1 / 2},\left|z_{j}\right|>  \tag{16}\\
& R+2,\left|z_{2}-z_{1}\right| \leqq 1, z_{j}=x_{j}+i y_{j}, j=1,2,
\end{align*}
$$

where $C_{1}$ is a positive constant independent of $R$ and

$$
\begin{equation*}
\lim _{R \rightarrow \infty} R^{3 / 4} \ln n^{-3 / 8} R \mu(R)=0 \tag{17}
\end{equation*}
$$

Lemma 1 [20]. The derivatives of the Helmholtz-Bernoulli function $H_{D}:=\frac{1}{2}|{\underset{\sim}{v}}|^{2}+P_{D}$ have at infinity the behaviour

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left|\nabla H_{D}(r, \theta)\right| r^{3 / 4} \ln n^{-1} r=0 \text {, uniformly in } \theta . \tag{18}
\end{equation*}
$$

Lemma 2 [20], [21]. There exists a positive constant $\lambda$, such that

$$
\int_{0}^{2 \pi}\left({\underset{\sim}{v}}^{D}(r, \theta)-{\underset{\sim}{v}}_{D}(r)\right)^{2} d \theta=O\left(r^{-2 \lambda}\right)
$$

$$
\text { for } r \rightarrow \infty
$$

$$
\begin{equation*}
\hat{\sim}_{D}(r)-{\underset{\sim}{V}}_{O}=O\left(r^{-\lambda}\right) \tag{192}
\end{equation*}
$$

where "O" is the Landau symbol. Furthermore, if $\underset{\sim}{v}{ }_{0}=\underset{\sim}{0}$, then $\lambda=1$.

Proof of Lemma 1. Let us first give the Navier-Stokes equations $(1$,$) the equivalent form$

$$
\Omega:\left\{\begin{array}{l}
\frac{\partial H}{\partial x}=v \frac{\partial \omega}{\partial y}-v \omega  \tag{20}\\
\frac{\partial H}{\partial y}=-v \frac{\partial \omega}{\partial x}+u \omega
\end{array}\right.
$$

From (20) it follows immediately that $H_{D}$ and $\omega_{D}$ are solutions of

$$
\begin{equation*}
\Omega: \quad v \nabla^{2} \mathrm{H}-{\underset{\sim}{\mathrm{D}}} \cdot \nabla \mathrm{H}=v \omega_{\mathrm{D}}^{2} \tag{21}
\end{equation*}
$$

and respectively

$$
\begin{equation*}
\Omega: \quad \nu \nabla^{2} \omega-\underset{\sim}{v} \cdot \nabla \omega=0 \tag{22}
\end{equation*}
$$

Next we write the continuity equation $\left(1_{2}\right)$, the vorticity function $\omega_{D}$ and the equations (20), (21) and (22) in polar coordinates
$\Omega: \quad \frac{1}{r} \frac{\partial}{\partial r}[r(u \cos \theta+v \sin \theta)]-\frac{1}{r} \frac{\partial}{\partial \theta}(u \sin \theta-v \cos \theta)=0$,
$\Omega: \quad \frac{1}{r} \frac{\partial}{\partial r}[r(u \sin \theta-v \cos \theta)]+\frac{1}{r} \frac{\partial}{\partial \theta}(u \cos \theta+v \sin \theta)=\omega$,
(20')
(21')
$\Omega:\left\{\begin{array}{l}\frac{\partial H}{\partial r}=\frac{v}{r} \frac{\partial \omega}{\partial \theta}+(u \sin \theta-v \cos \theta) \omega, \\ \frac{1}{r} \frac{\partial H}{\partial \theta}=-v \frac{\partial \omega}{\partial r}+(u \cos \theta+v \sin \theta) \omega,\end{array}\right.$
$\Omega: \quad v\left(\frac{\partial^{2} H}{\partial r^{2}}+\frac{1}{r} \frac{\partial H}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} H}{\partial \theta^{2}}\right)-\frac{1}{r} \frac{\partial}{\partial r}\left[r\left(u_{D} \cos \theta+v_{D} \sin \theta\right) H\right]$
$+\frac{1}{r} \frac{\partial}{\partial \theta}\left[\left(u_{D} \sin \theta-v_{D} \cos \theta\right) H\right]=v \omega_{D}^{2}$,
(22')

$$
\begin{aligned}
\Omega: & \nu\left(\frac{\partial^{2} \omega}{\partial r^{2}}+\frac{1}{r} \frac{\partial \omega}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \omega}{\partial \theta^{2}}\right)-\frac{1}{r} \frac{\partial}{\partial r}\left[r\left(u_{D} \cos \theta+v_{D} \sin \theta\right) \omega\right] \\
& +\frac{1}{r} \frac{\partial}{\partial \theta}\left[\left(u_{D} \sin \theta-v_{D} \cos \theta\right) \omega\right]=0
\end{aligned}
$$

Using (23) we give (20') another equivalent form
(20'') $\quad \Omega:\left\{\begin{array}{l}\frac{\partial H}{\partial r}=\frac{\nu}{r} \frac{\partial \omega}{\partial \theta}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} F\right)+\frac{1}{r} \frac{\partial G}{\partial \theta}, \\ \frac{1}{r} \frac{\partial H}{\partial \theta}=-\nu \frac{\partial \omega}{\partial r}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} G\right)-\frac{1}{r} \frac{\partial F}{\partial \theta},\end{array}\right.$
where

$$
\Omega:\left\{\begin{array}{l}
F(r, \theta):=\frac{1}{2}\left[(u \sin \theta-v \cos \theta)^{2}-(u \cos \theta+v \sin \theta)^{2}\right],  \tag{24}\\
G(r, \theta):=(u \sin \theta-v \cos \theta)(u \cos \theta+v \sin \theta) .
\end{array}\right.
$$

Let us write now (20) as an inhomogeneous Cauchy-Riemann equation (20''') $\quad \Omega: \frac{\partial(H+i v \omega)}{\partial \bar{z}}=\frac{i}{2} \bar{w} \omega$,
where $z=x+i y$ and $z=x-i y$ are the complex variables, $\frac{\partial}{\partial \bar{z}}=$ $\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$, w : $=u$ - iv is the complex velocity. According to the Pompeiu formula [17], [23, p.22], the solution of (20''') in the $\operatorname{disc} D(z, R)=\left\{\zeta \in C| | \zeta-z\left|<R,|z|>R+2 \geqq r_{\Delta}+2\right\}\right.$ is given by

$$
\begin{align*}
D(z, R): & H_{D}(\tilde{z})+i v \omega_{D}(\tilde{z})=\frac{1}{2 \pi i}\left\{\int_{\partial D} \frac{H_{D}(\zeta)+i v \omega_{D}(\zeta)}{\zeta-\tilde{z}} d \zeta+\right.  \tag{25}\\
& P V \int_{D}(\zeta-\tilde{z})^{-1} \bar{w}_{D}(\zeta) \omega_{D}(\zeta) d \xi d \eta,
\end{align*}
$$

where $\zeta=\xi+i n$ and $P V$ denotes the Cauchy principal value. By differentiating (25) with respect to $z, \partial / \partial z=(1 / 2)(\partial / \partial x-i \partial / \partial y)$, we obtain

$$
\begin{align*}
D(z, R): & \frac{\partial\left(H_{D}+i v \omega_{D}\right)}{\partial z}(\tilde{z})=\frac{1}{2 \pi i}\left\{\int_{\partial D} \frac{H_{D}(\zeta)+i v \omega_{D}(\zeta)}{(\zeta-\tilde{z})^{2}} d \zeta+\right.  \tag{26}\\
& P V \int_{D}(\zeta-\tilde{z})^{-2}\left[w_{D}(\zeta) \omega_{D}(\zeta)-w_{D}(\tilde{z}) \omega_{D}(\tilde{z})\right] d \xi d \eta
\end{align*}
$$

where we have used on one hand the equality

$$
\begin{equation*}
D(z, R): \quad \overline{\tilde{z}}-\bar{z}=-\frac{1}{\pi} P V \int_{D} \frac{d \xi d \eta}{\zeta-\tilde{z}}, \tag{27}
\end{equation*}
$$

and on the other hand the analyticity in $z \in D(z, R)$ of the line integral in (25) and respectively that of the modified area integral, i.e.
(28) $D(z, R): \quad \operatorname{PV} \int_{D} \frac{\bar{w}_{D}(\zeta) \omega_{D}(\zeta)}{\zeta-\tilde{z}} d \xi d \eta+\bar{w}_{D}\left(z_{0}\right) \omega_{D}\left(z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)$ in a fixed point $\tilde{z}_{0} \in D(z, R), \tilde{z}_{0} \neq \tilde{z}$. We estimate next the two integrals in (26), taking without loss of generality $\tilde{z}=z$. From (15) as well as from the boundedness of $H_{D}$ it follows then

$$
\begin{equation*}
\int_{\partial D} \frac{H_{D}(\zeta)+i v \omega_{D}(\zeta)}{(\zeta-z)^{2}} d \zeta=O\left(R^{-1}\right) \text {, for } R \rightarrow \infty \tag{29}
\end{equation*}
$$

On the other hand using (16) as well as the boundedness of $w_{D}$ we get

$$
\begin{align*}
& \left|P V \int_{D}(\zeta-z)^{-2}\left[\bar{w}_{D}(\zeta) \omega_{D}(\zeta)-\bar{w}_{D}(z) \omega_{D}(z)\right] d \xi d \eta\right|  \tag{30}\\
& \leqq\left(P V|\zeta-\delta| \leqq 1+1<|\zeta-z|<R^{+}\right)|\zeta-z|^{-2} \times \\
& \left|\bar{w}_{D}(\zeta) \omega_{D}(\zeta)-\bar{w}_{D}(z) \omega_{D}(z)\right| d \xi d \eta \leqq C\{\mu(R)+ \\
& \max _{\bar{D}}\left|\omega_{D}\right| \max _{\bar{D}}\left[\left|\frac{\partial \bar{w}_{D}}{\partial z}\right|+\left|\frac{\partial \bar{w}_{D}}{\partial \bar{z}}\right|\right]+\underset{r}{ } \sup _{R}+2^{\left.\left|\omega_{D}\right| \ln R\right\}} .
\end{align*}
$$

Using now the estimate [12, p 402]

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{3 / 4} \ln n^{-1} r\left|\nabla_{\sim}^{v}(r, \theta)\right|=0 \text {, uniformly in } \theta \text {, } \tag{31}
\end{equation*}
$$

as well as (15), (17) and the boundedness of $\underset{\sim}{v}{ }_{D}$ from (20'''), (26), (29) and (30) we infer

$$
\left(32_{2}\right)
$$

$$
\begin{align*}
& \lim _{r \rightarrow \infty} r^{3 / 4} l n^{-1} r\left|\frac{\partial}{\partial z}\left(H_{D}+i v \omega_{D}\right)\right|=0 \text {, uniformly in } \theta,  \tag{1}\\
& \lim _{r \rightarrow \infty} r^{3 / 4}\left|\frac{\partial}{\partial \bar{z}}\left(H_{D}+i v \omega_{D}\right)\right|=0 \text {, uniformly in } \theta,
\end{align*}
$$

and the assertion of Lemma 1 then follows.

Proof of Lemma 2. By integrating (20'') with respect to $\theta$ between 0 and $2 \pi$ we get

$$
\left(r_{\Delta^{\prime}}{ }^{\infty}\right):\left\{\begin{array}{l}
\frac{d \hat{H}}{d r}=\frac{d \hat{F}}{d r}+\frac{2}{r} \hat{F}(r),  \tag{33}\\
\nu \frac{d \hat{\omega}}{d r}=\frac{d \hat{G}}{d r}+\frac{2}{r} \hat{G}(r),
\end{array}\right.
$$

where, according to (24),

$$
\left(r_{\Delta}, \infty\right):\left\{\begin{align*}
\hat{F}(r)= & \frac{1}{4 \pi} \int_{0}^{2 \pi}\left\{[(u-\hat{u}) \sin \theta-(v-\hat{v}) \cos \theta]^{2}-\right. \\
& {\left.[(u-\hat{u}) \cos \theta+(v-\hat{v}) \sin \theta]^{2}\right\} d \theta-} \\
& \hat{u}\left(\hat{u}^{c} 2+\hat{v}^{s 2}\right)-\hat{v}\left(\hat{u}^{s 2}-\hat{v}^{c 2}\right), \\
\hat{G}(r)= & \frac{1}{2 \pi} \int_{0}^{2 \pi}[(u-\hat{u}) \sin \theta-(v-\hat{v}) \cos \theta] \times  \tag{34}\\
& {[(u-\hat{u}) \cos \theta+(v-\hat{v}) \sin \theta] d \theta+\hat{u}\left(\hat{u}^{s 2}-\right.} \\
& \left.\hat{v}^{c 2}\right)-\hat{v}\left(\hat{u}^{c 2}+\hat{v}^{s 2}\right) .
\end{align*}\right.
$$

By

$$
\begin{array}{r}
\left(r_{\Delta}, \infty\right): \hat{\mathrm{f}}^{\mathrm{cn}(\mathrm{sn})}(\mathrm{r})=  \tag{35}\\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{f}(\mathrm{r}, \theta) \operatorname{cosn} \theta(\operatorname{sinn} \theta) \mathrm{d} \theta, \\
\\
n \in \mathrm{~N} \cup\{0\}, \hat{\mathrm{f}}:=\hat{\mathrm{f}}^{\mathrm{C} 0},
\end{array}
$$

we denote here the Fourier coefficients of the periodic, smooth function $f(r, \theta)$, i.e.

$$
\begin{equation*}
\Omega: \quad f(r, \theta)=\hat{f}(r)+2 \sum_{n=1}^{\infty}\left[\hat{f}^{\mathrm{Cn}}(r) \operatorname{cosn} \theta+\hat{\mathrm{f}}^{\mathrm{sn}}(r) \operatorname{sinn} \theta\right] . \tag{36}
\end{equation*}
$$

Multiplying (1 ${ }_{2}^{\prime}$ ) and (23) by $\sin \theta$ and respectively $\cos \theta$ and integrating with respect to $\theta$ we get
$\left.(37)_{1}\right)\left(r_{\Delta}, \infty\right): \quad \frac{d \hat{u}}{d r}=-\left(\frac{d}{d r}+\frac{2}{r}\right)\left(\hat{u}^{c 2}+\hat{v}^{s 2}\right)=\hat{\omega}^{s 1}$,
$\left(37_{2}\right)\left(r_{\Delta}, \infty\right): \quad \frac{d \hat{v}}{d r}=-\left(\frac{d}{d r}+\frac{2}{r}\right)\left(\hat{u}^{s 2}-\hat{v}^{c 2}\right)=-\hat{\omega}^{c 1}$.
Using the Parseval equality, from (10) we infer
(38)

$$
\lim _{r \rightarrow \infty} \hat{u}_{D}^{\mathrm{cn}(s n)}(r)=\lim _{r \rightarrow \infty} \hat{\mathrm{v}}_{\mathrm{D}}^{\mathrm{cn}(\mathrm{sn})}(\mathrm{r})=0, \mathrm{n} \in \mathrm{~N} .
$$

Noting now that by the integral theorem of the mean there exist $\theta_{1}(r)$ and $\theta_{2}(r)$, such that

$$
\begin{equation*}
\left[r_{\Delta}, \infty\right): \quad \underset{\sim}{v}\left(r, \theta_{1}(r)\right)={\underset{\sim}{D}}_{D}(r), H_{D}\left(r, \theta_{2}(r)\right)=\hat{H}_{D}(r), \tag{39}
\end{equation*}
$$

and applying the Cauchy-Schwarz inequality we get

$$
\begin{aligned}
& (401) \\
& \Omega: \quad\left|\underset{\sim}{v} D(r, \theta)-{\underset{\sim}{v}}_{D}(r)\right|^{2}=\left|\int_{0}^{2 \pi} \partial_{\phi \underset{\sim}{v}}(r, \phi) d \phi\right|^{2} \leqq \\
& 2 \pi \int_{0}^{2 \pi}\left|\partial_{\phi \sim \mathrm{D}}^{\mathrm{V}}\right|^{2} \mathrm{~d} \phi \text {, } \\
& \left(40_{2}\right) \quad \Omega: \quad\left|\underset{\sim}{v}\left(r, \tilde{\theta}_{2}\right)-\underset{\sim}{v}\left(r, \tilde{\theta}_{1}\right)\right|^{2} \leqq 2 \pi \int_{0}^{2 \pi}\left|\partial_{\phi}^{v}{\underset{\sim}{D}}\right|^{2} \mathrm{~d} \phi,
\end{aligned}
$$

and similarly for $H_{D}$, and hence , by taking account of (4), (14), (20) as well as of the boundedness of ${\underset{\sim}{V}}_{\mathrm{D}}$

$\left(41_{2}\right) \quad[0,2 \pi): \quad \int_{r_{\Delta}}^{\infty} r^{-1}\left|{\underset{\sim}{v}}\left(r, \tilde{\theta}_{2}\right)-\underset{\sim}{v}\left(r, \tilde{\theta}_{1}\right)\right|^{2} \mathrm{dr}<\infty$,
$\left.(42)_{1}\right) \quad[0,2 \pi): \quad \int_{r_{\Delta}}^{\infty} r^{-1}\left|H_{D}(r, \theta)-\hat{H}_{D}(r)\right|^{2} d r \leqq 2 \pi \int_{\Omega}\left|\nabla H_{D}\right|^{2} d x d y \leqq$

$$
4 \pi\left(\nu^{2} \underset{\Omega}{\int}\left|\nabla \omega_{D}\right|^{2} \mathrm{dxdy}+\left.\underset{\Omega}{\int_{\sim}^{v}}{ }_{\mathrm{D}}\right|^{2} \omega_{\mathrm{D}}^{2} \mathrm{~d} x \mathrm{~d} y\right)<\infty,
$$

$\left(42_{2}\right) \quad[0,2 \pi): \int_{r_{\Delta}}^{\infty} r^{-1}\left|H_{D}\left(r, \tilde{\theta}_{2}\right)-H_{D}\left(r, \tilde{\theta}_{1}\right)\right|^{2} d r<\infty$.
Integrating next $\left(411_{1}\right)$ and $\left(42{ }_{1}\right)$ with respect to $\theta$ and the Parseval equality we obtain

$$
\begin{align*}
& \int_{r_{\Delta}}^{\infty} r^{-1}\left|{\underset{\sim}{\hat{v}}}^{\mathrm{cn}(\mathrm{sn})}(r)\right|^{2} \mathrm{dr}<\infty, n \in \mathrm{~N},  \tag{43}\\
& \int_{\mathrm{r}_{\Delta}}^{\infty} \mathrm{r}^{-1}\left|\hat{\mathrm{H}}^{\mathrm{cn}(\mathrm{sn})}(\mathrm{r})\right|^{2} \mathrm{dr}<\infty, n \in \mathrm{~N} . \tag{44}
\end{align*}
$$

From the first equation (33) we get now

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left(\frac{d \hat{F}_{D}}{d r} / \frac{d \hat{H}_{D}}{d r}+\frac{2}{r} \hat{F}_{D} / \frac{d \hat{H}_{D}}{d r}\right)=1 . \tag{45}
\end{equation*}
$$

On the other hand by integrating $(331)$ with respect to $r$ we obtain

$$
\begin{equation*}
\left[r_{\Delta^{\prime}}, \infty\right): \quad \hat{F}_{D}(r) /\left(\hat{H}_{D}(r)-H_{0}\right)-2 \int_{r}^{\infty} \frac{\hat{F}_{D}(\rho)}{\rho} d \rho /\left(\hat{H}_{D}(r)-H_{0}\right)=1 \tag{46}
\end{equation*}
$$

where, according to (10), (11), (131), (34) and (38),

$$
\begin{align*}
\lim _{r \rightarrow \infty} \hat{H}_{D}(r):= & \lim _{r \rightarrow \infty}\left[\left.\frac{1}{2}{\underset{\sim}{\sim}}_{2}^{2}(r)+\frac{1}{4 \pi} \int_{0}^{2 \pi} \right\rvert\,{\underset{\sim}{v}}(r, \theta)-\right.  \tag{47}\\
& \left.\left.{\hat{\underset{\sim}{v}}}_{D}(r)\right|^{2} d \theta+\hat{p}_{D}(r)\right]=\frac{1}{2} \underset{\sim}{v_{0}^{2}}+p_{\infty}=: H_{0},
\end{align*}
$$

(48)

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \hat{F}_{D}(r)=0, \\
& \lim _{r \rightarrow \infty} \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho=0 \tag{49}
\end{align*}
$$

Consequently we have to consider the following possibilities:
 not exist,
b) the two limits exist but they are infinite and the limit of the ratio $2 \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho / \hat{F}_{D}(r)$ is one, i.e. either

or
$\left(50_{2}\right)$

$$
\left\{\begin{array}{l}
\lim _{r \rightarrow \infty} \frac{\hat{F}_{D}(r)}{\hat{H}_{D}(r)-H_{0}}=-\infty, \lim _{r \rightarrow \infty} \frac{2 \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho}{\hat{H}_{D}(r)-H_{0}}=\infty \\
\lim _{r \rightarrow \infty} 2 \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho / \hat{F}_{D}(r)=1,
\end{array}\right.
$$

c) the two limits exist and they are finite, i.e.

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \hat{F}_{D}(r) /\left(\hat{H}_{D}(r)-H_{0}\right)=\alpha, \lim _{\rightarrow \infty} 2 \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho \times  \tag{51}\\
& 1 /\left(\hat{H}_{D}(r)-H_{0}\right)=\beta, \alpha+\beta=1,
\end{align*}
$$

where either
$\left.c_{1}\right) \alpha=1, \beta=0$,
or
$\left.c_{2}\right) \alpha=0, \beta=1$,
or
$\left.c_{3}\right) \alpha \neq 0, \beta=1-\alpha \neq 0$.
Let us study at first the case a). Taking into account (47), (48) and (49) we infer that, for a suitably chosen neighbourhood $U_{\infty}$ of infinity

$$
U_{\infty}:\left\{\begin{array}{l}
\hat{F}_{D}(r)=f(r) g(r), \hat{H}_{D}(r)-H_{0}=h(r) j(r),  \tag{52}\\
-\int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho=k(r) l(r),
\end{array}\right.
$$

where without loss of generality we can assume that $f, g, h, j, k$, 1 are bounded, at least $C^{2}$-functions, such that

$$
\begin{array}{ll}
\left(53_{1}\right) & \lim _{r \rightarrow \infty} f(r)=\lim _{r \rightarrow \infty} h(r)=\lim _{r \rightarrow \infty} k(r)=0, \\
\left(53_{2}\right) \\
U_{\infty}:\left\{\begin{array}{l}
f(r)>0, \frac{d f}{d r}<0, \frac{d^{2} f}{d r^{2}}>0, h(r)>0, \frac{d h}{d r}<0, \\
\frac{d^{2} h}{d r^{2}}>0, k(r)>0, \frac{d k}{d r}<0, \frac{d^{2} k}{d r^{2}}>0, \\
(54) \\
\lim _{r \rightarrow \infty} g(r), \lim _{r \rightarrow \infty} j(r) \text { and } \underset{r \rightarrow \infty}{ } l(r) \text { do not exist. }
\end{array}\right. \tag{54}
\end{array}
$$

Moreover, from $\left(33_{1}\right)$, (46) and (52) it follows

$$
U_{\infty}:\left\{\begin{array}{l}
f(r) g(r)=r \frac{d k}{d r} l(r)+r k(r) \frac{d l}{d r},  \tag{55}\\
\left\{\left[r \frac{d k}{d r}+2 k(r)\right] l(r)+r k(r) \frac{d l}{d r}\right\} / h(r) j(r)=1 .
\end{array}\right.
$$

Let us give now (46) the equivalent form
(46') $\left[r_{\Delta^{\prime}}{ }^{\infty}\right): \quad\left(\hat{H}_{D}(r)-H_{0}\right) / \frac{d}{d r}\left[-r^{2} \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho\right]=\frac{1}{r}$.
But (46') implies the existence of a neighbourhood $\mathrm{V}_{\infty}$ of infinity, such that either
$\left(56 \sigma_{1}\right) \quad \mathrm{V}_{\infty}: \quad \hat{H}_{\mathrm{D}}(\mathrm{r})-\mathrm{H}_{0}>0$,
or
$(562)$

$$
\mathrm{V}_{\infty}: \quad \hat{H}_{D}(\mathrm{r})-\mathrm{H}_{0}<0 .
$$

Indeed, otherwise there exists a sequence $\left\{r_{n}\right\}_{n \in N^{\prime}} r_{n} \rightarrow \infty$, such that

$$
\begin{equation*}
\hat{H}_{D}\left(r_{n}\right)-H_{0}=0, n \in N . \tag{57}
\end{equation*}
$$

From (46') it follows then

$$
\begin{equation*}
\frac{d}{d r}\left[-r^{2} \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho\right]\left(r_{n}\right)=0, n \in N \tag{58}
\end{equation*}
$$

or, equivalently, by using the last equation (52),

$$
\begin{equation*}
\frac{d \ln |l|}{d r}\left(r_{n}\right)=-\frac{d \operatorname{lnk}}{d r}\left(r_{n}\right)-\frac{2}{r_{n}}, n \in N . \tag{59}
\end{equation*}
$$

Since on one hand, according to (54), the left hand-side of (59) does not have a limit at infinity, on the other hand, taking into account $\left(533_{1}\right)$ and $\left(53_{2}\right)$, the right hand-side of (59) has a limit at infinity, (57) can not hold and, consequently, either (561) or $\left(56_{2}\right)$ follows. Next we give $\left(33_{1}\right)$ the equivalent form
$\left(33^{\prime}\right) \quad\left(r_{\Delta}, \infty\right): \quad \frac{d \hat{H}_{D}}{d r} / \frac{d}{d r}\left(r^{2} \hat{F}_{D}\right)=\frac{1}{r^{2}}$.
Using a similar argument to the above one we infer the existence of a neighbourhood $W_{\infty}$ of infinity, such that either $\left.(60)^{\prime}\right) \quad W_{\infty}: \quad \frac{d \hat{H}_{D}}{d r}<0$,
or
$\left(60_{2}\right) \quad W_{\infty}: \quad \frac{d \hat{H}_{D}}{d r}>0$.

By derivating now (33i) with respect to $r$ we get

$$
\begin{equation*}
\left(r_{\Delta}, \infty\right): \quad \frac{d^{2} \hat{H}_{D}}{d r^{2}}=\frac{d}{d r}\left[\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \hat{F}_{D}\right)\right] . \tag{61}
\end{equation*}
$$

Using again a similar argument to the above ones we obtain that in a suitably chosen neighbourhood $Z_{\infty}$ of infinity either $\left(62{ }_{1}\right) \quad Z_{\infty}: \quad \frac{d^{2} \hat{H}_{D}}{d r^{2}}>0$,
or
$\left(622_{2} \quad z_{\infty}: \quad \frac{d^{2} \hat{H}_{D}}{d r^{2}}<0\right.$.
But $\left(56_{1}\right),\left(60_{1}\right)$ and $\left(62_{1}\right)$, respectively $\left(56_{2}\right),\left(60_{2}\right)$ and $(62)$, i.e the convexity, respectively the concavity, of $\hat{H}_{D}(r)-H_{0}$ in $\mathrm{V}_{\infty} \cap \mathrm{W}_{\infty} \cap \mathrm{Z}_{\infty}$, are in contradiction with $(52),(531),\left(53_{2}\right)$ and (54). Consequently the case a) can not occur.

Consider next the case b). Without loss of generality we restrict ourselves to $(50$, ) . But $(331)$ and the third relation $(501)$, i.e. $\lim _{r \rightarrow \infty} \frac{d}{d r}\left(\int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho\right) / \frac{2}{r} \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho=-1$, imply then (after integration !)

$$
\begin{equation*}
\hat{F}_{D}(r)=O\left(r^{-2}\right), \hat{H}_{D}(r)-H_{0}=O\left(r^{-2}\right) \text {, for } r \rightarrow \infty \tag{63}
\end{equation*}
$$

Let us investigate now the case $c_{1}$ ). Since in this case
(64)

$$
\lim _{r \rightarrow \infty}\left|\frac{\frac{d}{d r}\left(\int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho\right.}{\frac{2}{r} \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho}\right|=\infty
$$

we get that $\forall n \in N, \exists U_{\infty}(n)$, such that

$$
\begin{equation*}
U_{\infty}(n): \quad \frac{d}{d r}\left(\int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho\right) / \frac{2}{r} \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho<-\frac{n}{2} . \tag{65}
\end{equation*}
$$

From (65) it follows then

$$
\begin{equation*}
\int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho=O\left(r^{-n}\right), \forall n \in N, \text { for } r \rightarrow \infty \tag{66}
\end{equation*}
$$

For the sake of completeness we note that an inequality of the type

$$
\begin{equation*}
U_{\infty}(n): \quad \frac{d}{d r}\left(\int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho\right) / \frac{2}{r} \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho>\frac{n}{2} \tag{67}
\end{equation*}
$$

would lead to
(68)

$$
r^{n}=O\left(\int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho\right), \forall n \in N, \text { for } r \rightarrow \infty
$$

in contradiction with (49). Applying now the same argument to $(33$,$) , we obtain instead of (64), and respectively (65)$

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left|\frac{\frac{d \hat{\mathrm{~F}}_{D}}{d r}}{\frac{2}{r} \hat{F}_{D}}\right|=\infty, \tag{69}
\end{equation*}
$$

and respectively

$$
\begin{equation*}
U_{\infty}(n): \quad \frac{d \hat{F}_{D}}{d r} / \frac{2}{r} \hat{F}_{D}<-\frac{n}{2} \tag{70}
\end{equation*}
$$

Integrating now (70) and taking account of (46) and (66) we get finally

$$
\left\{\begin{array}{l}
\hat{F}_{D}(r)=O\left(r^{-n}\right),  \tag{71}\\
\hat{H}_{D}(r)-H_{0}=O\left(r^{-n}\right) .
\end{array}\right.
$$

The case $c_{2}$ ) leads to a contradiction. Indeed, in this case we have on one hand

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\hat{H}_{D}(r)-H_{0}}{\hat{F}_{D}(r)}= \pm \infty \tag{72}
\end{equation*}
$$

On the other hand $(33$,$) can be given after integration another$
equivalent form, namely

$$
\begin{align*}
{\left[r_{\Delta}, \infty\right): } & r^{2}\left(\hat{H}_{D}(r)-H_{0}\right)-2 \int_{\int_{\Delta}}^{r} \rho\left(\hat{H}_{D}(\rho)-H_{0}\right) d \rho-  \tag{73}\\
& r_{\Delta}^{2}\left(\hat{H}_{D}\left(r_{\Delta}\right)-H_{0}\right)+r_{\Delta}^{2} \hat{F}_{D}\left(r_{\Delta}\right)=r^{2} \hat{F}_{D}(r),
\end{align*}
$$

and, consequently, by taking account of (71) we infer

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{2}\left(\hat{H}_{D}(r)-H_{0}\right) /\left(2 \int_{r_{\Delta}}^{r} \rho\left(\hat{H}_{D}(\rho)-H_{0}\right) d \rho+C_{\Delta}\right)=1, \tag{74}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\Delta}:=r_{\Delta}^{2}\left(\hat{H}_{D}\left(r_{\Delta}\right)-H_{0}-\hat{F}_{D}\left(r_{\Delta}\right)\right. \tag{75}
\end{equation*}
$$

By integrating (74) we get then

$$
\begin{equation*}
r^{2}\left(\hat{H}_{D}(r)-H_{0}\right)=C r^{2}+o\left(r^{2}\right), C \neq 0, \text { for } r \rightarrow \infty \tag{76}
\end{equation*}
$$

in contradiction with (47).
It remains now to consider the case $c_{3}$ ). Since in this case
(77)

$$
\lim _{r \rightarrow \infty} \frac{\hat{F}_{D}(r)}{-2 \int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho}=\lim _{r \rightarrow \infty} \frac{\frac{d \ln I}{d r}}{\frac{d \ln r^{2}}{d r}}=\frac{\alpha}{\beta}=:-\lambda,
$$

where
(78)

$$
I:=\left|-\int_{r}^{\infty}\left(\hat{F}_{D}(\rho) / \rho\right) d \rho\right|
$$

and $\lambda$ is neither zero nor infinite, after integration we obtain

$$
\begin{equation*}
\hat{F}_{D}(r)=O\left(r^{-2 \lambda}\right) \text {, for } r \rightarrow \infty \text {, } \tag{79}
\end{equation*}
$$

where, due to (48), $\lambda$ must be positive. Using now (46) and (77) we infer finally

$$
\hat{H}_{D}(r)-H_{0}=O\left(r^{-2 \lambda}\right) \text {, for } r \rightarrow \infty
$$

Let us multiply now the continuity equation (11) by $\operatorname{cosn} \theta$ and respectively $\operatorname{sinn} \theta$ and integrate with respect to $\theta$ to get, $\forall \mathrm{n} \in \mathrm{N}$,

$$
\left(r_{\Delta^{\prime}} \infty\right):\left\{\begin{align*}
\left(\frac{d}{d r}+\frac{n+1}{r}\right)\left(\hat{u}_{D}^{c n+1}+\hat{v}_{D}^{s n+1}\right)= & -\left(\frac{d}{d r}-\frac{n-1}{r}\right)\left(\hat{u}_{D}^{c n-1}\right. \\
& \left.-\hat{v}_{D}^{s n-1}\right), \\
\left(\frac{d}{d r}+\frac{n+1}{r}\right)\left(\hat{u}_{D}^{s n+1}-\hat{v}_{D}^{c n+1}\right)= & -\left(\frac{d}{d r}-\frac{n-1}{r}\right)\left(\hat{u}_{D}^{s n-1}\right.  \tag{81}\\
& \left.+\hat{u}_{D}^{c n-1}\right) .
\end{align*}\right.
$$

The equations (81) reduce in the particular case $n=1$ to the equations $\left(37_{1}\right)$ and $\left(37_{2}\right)$. On the other hand, by taking into account the expression of the first Fourier coefficient of $\omega$ (see (23) !), i.e.

$$
\begin{equation*}
\left(r_{\Delta^{\prime}} \infty\right): \frac{1}{r} \frac{d}{d r}\left[r\left(\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}\right)\right]=\hat{\omega}_{D}(r), \tag{82}
\end{equation*}
$$

from the second equation (33) and (34) it follows

$$
\begin{align*}
\left(r_{\Delta}, \infty\right): \quad \frac{d}{d r}\left[r^{2}\left(\hat{G}-\nu \hat{\omega}_{D}\right)\right]+2 v \hat{\omega}_{D} r= & \frac{d}{d r}\left[r^{2}\left(\hat{G}-\nu \hat{\omega}_{D}\right)+\right.  \tag{2}\\
& \left.2 v r\left(\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}\right)\right]=0,
\end{align*}
$$

or, equivalently, after integration with respect to $r$,

$$
\begin{align*}
\left(r_{\Delta}, \infty\right): & \frac{d}{d r}\left(\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}\right)-\frac{1}{r}\left(\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}\right)=\frac{1}{2 \pi \nu} \int_{0}^{2 \pi}\left[\left(u_{D}-\right.\right.  \tag{83}\\
& \left.\left.\hat{u}_{D}\right) \sin \theta-\left(v_{D}-\hat{v}_{D}\right) \cos \theta\right]\left[\left(u_{D}-\hat{u}_{D}\right) \cos \theta+\left(v_{D}-\right.\right. \\
& \left.\left.\hat{v}_{D}\right) \sin \theta\right] d \theta+\frac{1}{v}\left[\hat{u}_{D}\left(\hat{u}_{D}^{s 2}-\hat{v}_{D}^{c 2}\right)-\hat{v}_{D}\left(\hat{u}_{D}^{c 2}+\hat{v}_{D}^{s 2}\right)\right]+\frac{\tilde{c}}{r^{2}} .
\end{align*}
$$

By repeating now for the equations (81) and (83) the same argument as for the equation $\left(33_{1}\right)$, respectively the equation $(46)$, we infer that all the Fourier coefficients of ${\underset{\sim}{V}}^{D}$ satisfy relations of the type (80), i.e.

$$
\left\{\begin{array}{l}
{\underset{\sim}{v}}_{\mathrm{v}}^{\mathrm{cn}(\mathrm{sn})}(r)=O\left(r^{2 \alpha_{n} n / \beta_{n}}\right),  \tag{84}\\
\underset{\sim}{\hat{v}_{D}}(r)-{\underset{\sim}{v}}_{0}=O\left(r^{2 \alpha_{n} n / \beta_{n}}\right), n \in N, \text { for } r \rightarrow \infty,
\end{array}\right.
$$

where, according to (11) and (38), and using a similar argument to that employed in the case $c_{2}$ ) we get

$$
\begin{equation*}
\frac{\alpha_{n}}{\beta_{n}}<0, \alpha_{n} \neq 0, n \in N \cup\{0\}, \alpha_{n} \neq 0 \text { for } n \rightarrow \infty \text {. } \tag{85}
\end{equation*}
$$

From (63), (71), (80) and (84) the assertions (19 $)$ and (192) then follow (for a suitable choice of $\lambda!$ ). In order to prove the last assertion of Lemma 2 let us consider the particular case where $\underset{\sim}{v} 0=\underset{\sim}{0}$. Using $\left.(19)_{1}\right)$ and $(192)$ and integrating (83) with respect to $r$ we get , for $r \rightarrow \infty$,
$\left(86_{2}\right)$

$$
\begin{align*}
& \hat{u}_{D}^{s 1}(r)-\hat{v}_{D}^{c 1}(r)+\int_{r}^{\infty} \frac{1}{\rho}\left[\hat{u}_{D}^{s 1}(\rho)-\hat{v}_{D}^{c 1}(\rho)\right] d \rho=o\left(r^{-\lambda}\right),  \tag{1}\\
& \frac{1}{2 \pi \nu} \int_{r}^{\infty} \int_{0}^{2 \pi}\left[\left(u_{D}-\hat{u}_{D}\right) \sin \theta-\left(v_{D}-\hat{v}_{D}\right) \cos \theta\right]\left[\left(u_{D}-\right.\right. \\
& \left.\left.\hat{u}_{D}\right) \cos \theta+\left(v_{D}-\hat{v}_{D}\right) \sin \theta\right] d \theta d \rho+\frac{1}{v} \int_{r}^{\infty}\left[\hat{u}_{D}\left(\hat{u}_{D}^{s 2}-\hat{v}_{D}^{c 2}\right)\right. \\
& \left.-\hat{v}_{D}\left(\hat{u}^{c}{ }^{c}+\hat{v}^{s 2}\right)\right] d \rho-\frac{\tilde{C}}{r}=\max \left\{o\left(r^{-2 \lambda+1}\right), o\left(r^{-1}\right)\right\}
\end{align*}
$$

By estimating $\left(86_{2}\right)$ we have taken into account that the only term on the left hand-side which depends on $\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}$, i.e. according to the Parseval equality,

$$
\begin{equation*}
\frac{1}{v} \int_{r}^{\infty}\left(\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}\right)\left(\hat{u}_{D}^{c 1}+\hat{v}_{D}^{s 1}\right) d \rho \tag{87}
\end{equation*}
$$

disappears when considering the non-slip boundary condition (2). Indeed, integrate to this end (11) with respect to $\theta$ and obtain

$$
\begin{equation*}
\left[r_{\Delta}, \infty\right): \quad \hat{u}_{D}^{c 1}(r)+\hat{v}^{s 1}(r)=\frac{C}{r} \tag{88}
\end{equation*}
$$

By the flux-divergence theorem $C=0$, provided (2) does hold. Comparing now ( $86_{1}$ ) and $\left(86_{2}\right)$ the last assertion of Lemma 2 then follows. For the sake of completeness we note that this assertion, i.e.
" $\lambda=1$, provided $\underset{\sim}{v_{0}}=\underset{\sim}{0}$ and (2) holds" is not only a consequence of $\left(86_{1}\right)$ and $\left(86_{2}\right)$, which were obtained by integrating twice $\left(33_{2}\right)$, but follows also when comparing the rates of decay at infinity of all the Fourier coefficients of the Navier-Stokes equivalent system of equations (20''), i.e. by multiplying (20'') by $\operatorname{cosn} \theta(\operatorname{sinn} \theta), n \in N$, and then integrating once with respect to $\theta$ and twice with respect to $r$ and using $\left(19_{1}\right)$ and $(192)$ as well as the (rate of decay of the) Fourier coefficients of $\omega_{D}$ obtained from (23). However, the last assertion of Lemma 2 is no longer valid if we use other boundary conditions than the non-slip boundary condition (2), namely non-homogeneous ones. In order to show this fact let us assume that the vorticity $\omega$ is independent of $\theta$ in $\Omega$. From ( $12^{\prime}$ ), (22') and (23) it follows then

$$
\begin{align*}
& \Omega: \quad u \cos \theta+v \sin \theta=\frac{C}{r},  \tag{89}\\
& \Omega:\left\{\begin{array}{l}
\omega=\frac{1}{r} \frac{d}{d r}[r(u \sin \theta-v \cos \theta)], \\
\frac{1}{r} \frac{d}{d r}\left(r \frac{d \omega}{d r}\right)-\frac{C}{v r} \frac{d \omega}{d r}=0,
\end{array}\right.
\end{align*}
$$

where $C$ is the constant appearing in (88). Integrating (90) we get

$$
\begin{align*}
& \Omega: \quad u \sin \theta-v \cos \theta=\frac{C_{1}}{2+C / v} r^{1+\frac{C}{v}}+\frac{C_{2}}{r},  \tag{91}\\
& \Omega: \quad \omega=C_{1} r^{C / \nu}, \tag{92}
\end{align*}
$$

where $C_{1}$ and $C_{2}$ are also integration constants. If $\underset{\sim}{v}$ has finite Dirichlet integral, then $\omega$ is square integrable in $\Omega$. Hence $C$ has to satisfy the condition

$$
\begin{equation*}
c<-v . \tag{93}
\end{equation*}
$$

According to (89) and (91) the velocity $\underset{\sim}{v}$ is given by

$$
\Omega:\left\{\begin{array}{l}
u=C_{r}^{-1} \cos \theta+\left(C_{3} r^{1}+C / \nu+C_{2} r^{-1}\right) \sin \theta,  \tag{94}\\
v=C r^{-1} \sin \theta-\left(C_{3} r^{1}+C / \nu+C_{2} r^{-1}\right) \cos \theta
\end{array}\right.
$$

with $C_{3}=C_{1}(2+C / v)^{-1}$. From (20') it follows now that $H$ is also independent of $\theta$, and satisfies the equation

$$
\begin{equation*}
\Omega: \quad \frac{d H}{d r}=\frac{c_{1}^{2}}{2+C / \nu} r^{1}+2 C / \nu+c_{1} c_{2} r^{C / \nu-1} \tag{95}
\end{equation*}
$$

where we have taken into account (91) and (92). After integration with respect to $r$ we get (up to an integration constant $C_{4}=p_{\infty}$ !)

$$
\begin{equation*}
\Omega: H(r)=C_{1} C_{3}(2+2 C / \nu)^{-1} r^{2}+2 C / \nu+C_{1} C_{2} C^{-1} \nu r C^{C / \nu} . \tag{96}
\end{equation*}
$$

Taking account of (92), from (96) it follows then

$$
\begin{align*}
\Omega: \quad p(r)= & \frac{c_{1} c_{3}}{2(1+c / \nu)(2+c / \nu)} r^{2}+2 c / \nu+  \tag{97}\\
& \frac{2 c_{1} c_{2} \nu}{c(2+c / \nu)} r^{c / \nu}-\frac{c^{2}+c_{2}^{2}}{2} r^{-2}+p_{\infty} .
\end{align*}
$$

Assume now for the sake of simplicity that $\partial \Delta$ is starshaped with respect to the origin. Consequently we can give the equation of the boundary $\partial \Delta$ the form

$$
\begin{equation*}
[0,2 \pi): \quad r=r_{\partial \Delta}(\theta) . \tag{98}
\end{equation*}
$$

Then (94) and (97) solve the following exterior Dirichlet problem for the Navier-Stokes equations (and the continuity equation!)

$$
\begin{align*}
\partial \Delta: \quad \underset{\sim}{v}= & \operatorname{Cr}_{\partial \Delta}^{-1}(\theta)(\cos \theta, \sin \theta)+\left[C_{3} r_{\partial \Delta}^{1}+C / \nu\right.  \tag{99}\\
& \left.\mathrm{C}_{2} r_{\partial \Delta}^{-1}(\theta)\right](-\sin \theta, \cos \theta),
\end{align*}
$$

(100) $[0,2 \pi): \quad \lim _{r \rightarrow \infty} \underset{\sim}{v}(r, \theta)=\underset{\sim}{0}$.

Taking now into account the fact that the unit outward normal to $\partial \Delta$ is given by
(101)

$$
\begin{aligned}
{[0,2 \pi): \underset{\sim}{n}=} & \frac{1}{\left(r_{\partial \Delta}^{\prime}{ }^{2}+r_{\partial \Delta}^{2}\right)^{1 / 2}}\left(-r_{\partial \Delta}^{\prime} \sin \theta-r_{\partial \Delta} \cos \theta, r_{\partial \Delta}^{\prime} \cos \theta\right. \\
& \left.-r_{\partial \Delta} \sin \theta\right),
\end{aligned}
$$

and using the periodicity of $r_{\partial \Delta}$ we get
(102)

$$
\underset{\partial \Delta}{v} \underset{\sim}{v} \cdot \underset{\sim}{n d s}=-C,
$$

in accordance with (88) and (89). Choosing now $\partial \Delta$ to be the unit circle, i.e. $r_{\partial \Delta}(\theta) \equiv 1$, and taking $C_{2}=-C_{3}$, from (94) and (97) it follows that the above exterior Dirichlet problem admits infinitely many solutions ( $C \neq 0!$ ). Assume next $C=0$. Since $\omega$ is square integrable in $\Omega$, from (92) it follows that $C_{1}=0$ and, consequently, $C_{3}=0$. The solution $(\underset{\sim}{v}, p)$ of the above exterior Dirichlet problem, i.e. the equations (94) and (97), then become

$$
\Omega:\left\{\begin{array}{l}
u(r, \theta)=c_{2} r^{-1} \sin \theta,  \tag{103}\\
v(r, \theta)=-c_{2} r^{-1} \cos \theta,
\end{array}\right.
$$

$$
\begin{equation*}
\Omega: p(r)=p_{\infty}-\frac{c_{2}^{2}}{2} r^{-2} \tag{104}
\end{equation*}
$$

On the other hand, according to the following
Theorem of Berker and Finn [4], [6, p. 129]. Let $\underset{\sim}{v}$ be a solution of (1) and (2). If there exists a limiting velocity ${\underset{\sim}{\infty}}_{\underset{\infty}{ } \text {, such }}$ that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{1 / 2}|\underset{\sim}{\underset{\sim}{v}}(r, \theta)-\underset{\sim}{v}|=0 \text {, uniformly in } \theta \tag{105}
\end{equation*}
$$

then $\underset{\sim}{v} \equiv \underset{\sim}{0}$ in $\Omega$,
the constant $C_{2}$ must be equal to zero, and the assertion that the non-uniqueness result showed above is valid only in the case of a non-vanishing flux $C$ then follows. Moreover, from (94) we get (for $C \neq 0!$ ), in accordance with $\left(86_{1}\right),\left(86_{2}\right)$ and (87),

$$
\begin{equation*}
\lambda=-1-\frac{C}{v}, \tag{106}
\end{equation*}
$$

and, consequently, by taking account of (93),
$\lambda \neq 1$, provided $C \neq-2 v$.

For the sake of completeness let us show why, in the case of a non-vanishing outflow $C(C<0!)$, the proof of the last assertion of Lemma 2 does no longer work. Indeed, from (84), (87) and (88) it follows

$$
\begin{align*}
& \frac{1}{v} \int_{r}^{\infty}\left(\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}\right)\left(\hat{u}_{D}^{c 1}+\hat{v}_{D}^{s 1}\right) d \rho=\frac{C}{v} \int_{r}^{\infty} \frac{1}{\rho}\left(\hat{u}_{D}^{s 1}-\right.  \tag{108}\\
& \hat{v}_{D}^{c} 1 \\
& ) d \rho=O\left(r^{-\lambda}\right), \text { for } r \rightarrow \infty
\end{align*}
$$

On the other hand, the equation

$$
\begin{equation*}
\left[r_{\Delta}, \infty\right): \quad \hat{u}_{D}^{s 1}(r)-\hat{v}_{D}^{C 1}(r)+\int_{r}^{\infty} \frac{1+C / \nu}{\rho}\left[\hat{u}_{D}^{s 1}(\rho)-\hat{v}_{D}^{C 1}(\rho)\right] d \rho=0 \tag{109}
\end{equation*}
$$

has the solution
(110) $\left[r_{\Delta}, \infty\right): \quad \hat{u}^{s 1}(r)-\hat{v}^{C 1}(r)=C_{1}(2+C / \nu)^{-1} r^{1}+C / \nu$,
in accordance with (91). Consequently the last assertion of Lemma 2 does no longer hold.

Remark 2. The above counter-example to the uniqueness of the viscous fluid flow of an incompressible fluid past a circular disk was given first by Hamel [13].

Proof of Theorem 1. By multiplying $(1$,$) by \underset{\sim}{v}$ and integrating over $\Omega_{r}$ we obtain, after using the Gauß-Green theorem and (2),

$$
\begin{align*}
& -v \int_{\Omega_{r}}\left|\nabla{\underset{\sim}{v}}^{v_{D}}\right|^{2} d x d y=-\frac{v}{2} \int_{\Omega_{r}}\left[\nabla^{2}\left(\left|{\underset{\sim}{v}}_{v_{D}}\right|^{2}\right)-\nabla \cdot\left(H_{D}{\underset{\sim}{v}}\right)\right] d x d y  \tag{111}\\
& =-v r \int_{0}^{2 \pi}\left[\frac{\partial}{\partial r}\left(-\frac{|{\underset{\sim}{D}}|^{2}}{2}\right)-\frac{1}{\nu} H_{D}\left({\underset{\sim}{v}}_{v_{D}}^{\sim} \underset{\sim}{n}\right)\right] d \theta .
\end{align*}
$$

Letting $r$ tend to infinity and using (4) we get
(112)

$$
\begin{aligned}
& -v \int_{\Omega}\left|\nabla{\underset{\sim}{v}}^{v_{D}}\right|^{2} d x d y=\lim _{r \rightarrow \infty}\left[-v r \frac{d}{d r} \int_{0}^{2 \pi}\left(\left|{\underset{\sim}{v}}^{2}\right|^{2} / 2\right) d \theta\right. \\
& \left.+r \int_{0}^{2 \pi} H_{D}(\underset{\sim}{v} \cdot \underset{\sim}{v}) d \theta\right] .
\end{aligned}
$$

On the other hand taking into account (88) we obtain the identity

$$
\begin{align*}
& \frac{r}{2 \pi}\left[-\nu \frac{d}{d r} \int_{0}^{2 \pi}\left(\left|{\underset{\sim}{D}}^{v_{D}}\right|^{2} / 2\right) d \theta+\int_{0}^{2 \pi} H_{D}(\underset{\sim}{v} D \cdot n) d \theta\right]=  \tag{113}\\
& -v r \frac{d}{d r}\left(\left|\hat{v}_{\sim}\right|^{2} / 2\right)-\frac{\nu r}{2 \pi} \frac{d}{d r} \int_{0}^{2 \pi}\left(\left|{\underset{\sim}{D}}^{v}-{\underset{\sim}{\hat{v}}}_{D}\right|^{2} / 2\right) d \theta+
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.\hat{v}_{D}\right)+p_{D}-\hat{p}_{D}\right]\left[\left(u_{D}-\hat{u}_{D}\right) \cos \theta+\left(v_{D}-\hat{v}_{D}\right) \sin \theta\right] d \theta .
\end{aligned}
$$

Next we multiply (20'') by $\cos \theta(\sin \theta)$ and $\sin \theta(\cos \theta)$ respectively, and after integration with respect to $\theta$ we get

$$
\begin{align*}
& \left(r_{\Delta}, \infty\right):\left\{\begin{array}{l}
\frac{d \hat{H}_{D}^{c 1}}{d r}=\frac{v}{r} \hat{\omega}_{D}^{s 1}+\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \hat{F}^{c 1}\right)+\frac{\hat{G}^{s 1}}{r}, \\
-\frac{\hat{H}_{D}^{c 1}}{r}=-v \frac{d \hat{\omega}_{D}^{s 1}}{d r}+\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \hat{G}^{s 1}\right)+\frac{\hat{F}^{c} 1}{r}, \\
\left(r_{\Delta^{\prime}}, \infty\right):-\left\{\begin{array}{l}
\frac{d H_{D}^{s 1}}{d r}=-\frac{v}{r} \hat{\omega}^{c 1}+\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \hat{F}^{s 1}\right)-\frac{\hat{G}^{c 1}}{r}, \\
\frac{\hat{H}_{D}^{s 1}}{r}=-v \frac{d \hat{\omega}_{D}^{c 1}}{d r}+\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \hat{G}^{c 1}\right)-\frac{\hat{F}^{s} 1}{r} .
\end{array}\right.
\end{array},\right. \tag{114}
\end{align*}
$$

From (114) and (115) it follows then
(116) $\left[r_{\Delta}, \infty\right): \quad \hat{H}_{D}^{C 1}(r)=\hat{F}^{c 1}(r)-\hat{G}^{s 1}(r)+\frac{C_{1}}{r}+v \hat{\omega}_{D}^{s 1}(r)$,
(117) $\left[r_{\Delta}, \infty\right): \hat{H}_{D}^{s 1}(r)=\hat{F}^{s 1}(r)+\hat{G}^{C 1}(r)+\frac{C_{2}}{r}-v \hat{\omega}_{D}^{C 1}(r)$,
where, according to (24),
$\left(1181_{1}\right) \quad\left[r_{\Delta}, \infty\right): \quad \hat{F}^{C 1}-\hat{G}^{s 1}=-\frac{1}{4 \pi} \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}-{\underset{\sim}{V}}_{D}\right|^{2} \cos (\theta-2 \phi) d \theta-$ $\left(\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}\right) \hat{v}_{D}$,
$\left.(118)_{2}\right) \quad\left[r_{\Delta}, \infty\right): \quad \hat{F}^{s 1}+\hat{G}^{C 1}=\frac{1}{4 \pi} \int_{0}^{2 \pi}\left|{\underset{\sim}{D}}^{v}-{\underset{\sim}{v}}_{D}\right|^{2} \sin (\theta-2 \phi) d \theta+$

$$
\left(\hat{u}_{D}^{s 1}-\hat{v}_{D}^{c 1}\right) \hat{u}_{D}
$$

(119)

$$
\begin{aligned}
& \Omega: \quad u_{D}(r, \theta)-\hat{u}_{D}(r)=\mid \underset{\sim}{v} D \\
& \quad v_{D}(r, \theta)-{\underset{\sim}{v}}^{\hat{v}_{D}}(r) \mid \cos \phi, \\
& \hat{v}_{D}(r)=\left|\underset{\sim}{v}(r, \theta)-{\underset{\sim}{v}}_{D}(r)\right| \sin \phi .
\end{aligned}
$$

Taking into account (116) and (117), from (113) it follows then
(113')

$$
\begin{aligned}
& {\left[r_{\Delta}, \infty\right): \quad \frac{r}{2 \pi}\left[-v \frac{d}{d r} \int_{0}^{2 \pi}\left(|\underset{\sim}{v}|^{2} / 2\right) d \theta+\int_{0}^{2 \pi} H_{D}\left(\underset{\sim}{v} \cdot{ }_{\sim}^{n}\right) d \theta\right]=} \\
& -\frac{\nu r}{2 \pi} \frac{d}{d r} \int_{0}^{2 \pi}\left(\left|{\underset{\sim}{D}}^{v}-{\underset{\sim}{v}}_{D}\right|^{2} / 2\right) d \theta+C_{1} \hat{u}_{D}+C_{2} \hat{v}_{D}- \\
& \frac{r \hat{u}_{D}}{4 \pi} \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}^{v_{D}}-\hat{v}_{\sim}\right|^{2} \cos (\theta-2 \phi) d \theta+\frac{r \hat{v}_{D}}{4 \pi} \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}-{\underset{\sim}{v}}^{\hat{v}_{D}}\right|^{2} \times \\
& \sin (\theta-2 \phi) \dot{d} \theta+\frac{r}{2 \pi} \int_{0}^{2 \pi}\left[\left|\underset{\sim}{v} D-{\underset{\sim}{v}}^{2}\right|^{2} / 2+\hat{v}_{D} \cdot\left(\underset{\sim}{v_{D}}-\right.\right. \\
& \left.\left.\hat{\sim}_{D}\right)+p_{D}-\hat{p}_{D}\right]\left|{\underset{\sim}{v}}_{D}-{\underset{\sim}{v}}_{D}\right| \cos (\theta-\phi) d \theta \text {. }
\end{aligned}
$$

Noting now that by the Cauchy-Schwarz inequality

$$
\begin{align*}
& \left(r_{\Delta}, \infty\right):\left|\frac{d}{d} \bar{r} \int_{0}^{2 \pi}\left(\left|{\underset{\sim}{v}}-\hat{v}_{\sim}\right|^{2} / 2\right) d \theta\right| \leqq\left(\int_{0}^{2 \pi}\left({\underset{\sim}{v}}^{v}-{\underset{\sim}{v}}_{D}\right)^{2} d \theta\right)^{1 / 2} \times  \tag{120}\\
& \left(\int_{0}^{2 \pi}\left[\frac{\partial}{\partial r}\left({\underset{\sim}{v}}-\hat{v}_{\sim}\right)\right]^{2} d \theta\right)^{1 / 2},
\end{align*}
$$

and using (31) and Lemma 2, from (113') we get, for $\mathrm{r} \rightarrow \infty$,

$$
\begin{align*}
& \frac{r}{2 \pi}\left[-v \frac{d}{d r} \int_{0}^{2 \pi}\left(\left|{\underset{\sim}{v}}^{2}\right|^{2} / 2\right) d \theta+\int_{0}^{2 \pi} H_{D}\left({\underset{\sim}{v}}_{D} \cdot \underset{\sim}{n}\right) d \theta\right]=o\left(r^{-3 / 4}\right)  \tag{121}\\
& +O\left(r^{-1}\right)+o\left(r^{-2}\right)+O\left(\left[\int_{0}^{2 \pi}\left(p_{D}-\hat{p}_{D}\right)^{2} d \theta\right]^{1 / 2}\right) .
\end{align*}
$$

Taking account of $\left(13_{2}\right)$, from (112) we infer then that the Dirichlet integral of $\underset{\sim}{v}$ D $v a n i s h e s ~ a n d, ~ h e n c e, ~ u s i n g ~(2) ~ t h e ~ L i o u v i l l e ~ p r o p e r-~$ ty stated in Theorem 1 then follows.

Theorem 2 [23]. Every solution ( ${\underset{\sim}{D}}, p_{D}$ ) of (1), (2) and (4) tends pointwise at infinity to its asymptotic mean value (vo $v_{\infty}$ ).

Proof. We choose $\left(\underset{\sim}{v}, p_{D}\right)$ to be an arbitrary, non-identically zero solution of (1), (2) and (4), and denote by $\left({\underset{\sim}{v}}_{0}, p_{\infty}\right)$ its asymptotic mean value. Choosing the point $P(R, \phi), R>r_{\Delta}$, as the origin of a new system of polar coordinates ( $r^{\prime}, \theta^{\prime}$ ), i.e. re ${ }^{i \theta}=$ $R e^{i \phi}+r^{\prime} e^{i \theta^{\prime}}$, we give the first equation $\left(20 y^{\prime}\right)$ the equivalent form $(20 \underset{1}{i v}) \quad \Omega: \frac{\partial}{\partial r}\left[\left|\underset{\sim}{v} D_{D}-{\underset{\sim}{v}}_{0}\right|^{2} / 2+p_{D}\right]=\frac{v}{r^{\prime}} \frac{\partial \omega_{D}}{\partial \theta^{\prime}}+\left[\left(u_{D}-u_{0}\right) \times\right.$

$$
\left.\sin \theta^{\prime}-\left(v_{D}-v_{0}\right) \cos \theta^{\prime}\right] \omega_{D}+\frac{u_{0}}{r^{\prime}} \frac{\partial v_{D}}{\partial \theta^{\prime}}-\frac{v_{0}}{r^{\prime}} \frac{\partial u_{D}}{\partial \theta^{\prime}}
$$

Integrating first ( $20 \frac{i v}{1}$ ) with respect to $r^{\prime}$ on $\left[0, \frac{R}{2}\right]$ and then with respect to $\theta^{\prime}$ on $[0,2 \pi]$, and taking the absolute value we obtain

$$
\begin{align*}
\Omega: & \frac{1}{2}\left|\underset{\sim}{v_{D}}(P)-\underset{\sim}{v_{0}}\right|^{2} \leqq \frac{1}{4 \pi} \int_{0}^{2 \pi}\left|\underset{\sim}{v_{D}}\left(\frac{R}{2}, \theta^{\prime}\right)-{\underset{\sim}{v}}_{0}\right|^{2} d \theta^{\prime}+  \tag{122}\\
& \frac{1}{4 \pi} \int_{0}^{R / 2} \int_{0}^{2 \pi}\left|\left[\left(u_{D}-u_{0}\right) \sin \theta^{\prime}-\left(v_{D}-v_{0}\right) \cos \theta^{\prime}\right] \omega_{D}\right| d \theta^{\prime} d r^{\prime} \\
& +\left|p_{D}(P)-\hat{p}_{D}\left(\frac{R}{2}\right)\right| .
\end{align*}
$$

Applying next the Cauchy-Schwarz inequality we get

$$
\begin{align*}
& {\left[r_{\Delta^{\prime}}, \infty\right): \int_{1}^{R / 2} \int_{0}^{2 \pi}\left|\left[\left(u_{D}-u_{0}\right) \sin \theta^{\prime}-\left(v_{D}-v_{0}\right) \cos \theta^{\prime}\right] \omega_{D}\right| d \theta^{\prime} d r^{\prime}}  \tag{123}\\
& \leqq \sqrt{2}\left(\int_{1}^{R / 2} \int_{0}^{2 \pi} r^{\prime}-1\left|\underset{\sim}{v_{D}}-\underset{\sim}{v_{0}}\right|^{2} d \theta^{\prime} d r^{\prime} \int_{1}^{R / 2} \int_{0}^{2 \pi} \omega_{D}^{2} d x^{\prime} d y^{\prime}\right)^{1 / 2} \\
& \leqq \sqrt{2}\left(\int_{1}^{R / 2} \int_{0}^{2} r^{\prime-1}\left|\underset{\sim}{v}-{\underset{\sim}{v}}_{0}\right|^{2} d \theta \cdot d r^{\prime}{\underset{\sim}{R} / 2}_{3 R / 2}^{\int_{0}^{2 \pi}} \omega_{D} d x d y\right)^{1 / 2},
\end{align*}
$$

where we have used the fact that the disc $r^{\prime}<R / 2$ is contained in the circular annulus $R / 2<r<3 R / 2$. On the other hand we have
(124) $\left[r_{\Delta}, \infty\right): \int_{0}^{1} \int_{0}^{2 \pi} \mid\left[\left(u_{D}-u_{0}\right) \sin \theta^{\prime}-\left(v_{D}-v_{0}\right) \cos \theta^{\prime} \mid \omega_{D}\right] d \theta^{\prime} d r^{\prime}$

$$
\leqq C^{\star} \max _{\frac{R}{2}+1}{\underset{\Omega}{\Omega_{2}}}^{\frac{R}{2}-1}\left|\omega_{D}\right|,
$$

where C* depends on the bounded velocity ${\underset{\sim}{v}}^{v}$. From ( $41_{1}$ ) and (122) we obtain then

$$
\begin{align*}
& \Omega: \quad\left|\underset{\sim}{v} D(P)-{\underset{\sim}{v}}^{v}\right|^{2} \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\underset{\sim}{v}\left(\frac{R}{2}, \theta^{\prime}\right)-{\underset{\sim}{v}}_{0}\right|^{2} d \theta^{\prime}+  \tag{125}\\
& 2\left|p_{D}(P)-\hat{p}_{D}\left(\frac{R}{2}\right)\right|+\tilde{C}^{*} \max _{\bar{\Omega}_{\frac{R}{2}}^{2}+1}^{{ }_{-1} \Omega_{R_{2}}^{2}-1}\left|\omega_{D}\right|+ \\
& \frac{2 \sqrt{2}}{\pi}\left(4 \pi^{2} \underset{\sim}{3 R / 2} \int_{0}^{2 \pi}|\nabla{\underset{\sim}{v}}|^{2} d x d y+\int_{1}^{R / 2} \int_{0}^{2 \pi} r^{\prime}-1 \mid \hat{v}_{D}-\right. \\
& \left.\left.{ }_{\sim}^{v} 0\right|^{2} \mathrm{dr} r^{\prime}\right)^{1 / 2}\left(\int_{\mathrm{R} / 2}^{3 \mathrm{R} / 2} \int_{0}^{2 \pi} \omega_{\mathrm{D}}^{2} \mathrm{~d} x \mathrm{dy}\right)^{1 / 2},
\end{align*}
$$

where again we have used that the disc $r^{\prime}<R / 2$ is contained in the circular annulus $R / 2<r<3 R / 2$. Next we show that the first equation (10) as well as the estimates $\left.(19)_{1}\right)$ and $(192)$ are independent of the fact that the system of coordinates is fixed or moving. To this end we consider again the two systems of polar coordinates, the old, fixed one, $(r, \theta)$, and the new, moving one, $\left(r^{\prime}, \theta^{\prime}\right)$. Using $2 \mathrm{ab} \leqq \mathrm{a}^{2}+\mathrm{b}^{2}$ as well as $\left(40{ }_{1}\right)$ we get

$$
\begin{align*}
\left(r_{\Delta^{\prime}} \infty\right): & \left.\left|\frac{d}{d r^{\prime}} \int_{0}^{2 \pi}\right|{\underset{\sim}{v}}\left(r^{\prime}, \theta^{\prime}\right)-\left.\hat{v}_{D}\left(r^{\prime}\right)\right|^{2} d \theta^{\prime} \right\rvert\, \leqq  \tag{126}\\
& 2 \int_{0}^{2 \pi}\left|{\underset{\sim}{D}}\left(r^{\prime}, \theta^{\prime}\right)-{\underset{\sim}{v}}_{D}\left(r^{\prime}\right)\right|\left|\frac{\partial v_{D}}{\partial r^{\prime}}\right| d \theta^{\prime} \leqq \\
& 4 \pi^{2} \int_{0}^{2 \pi} r^{\prime}\left|\nabla{\underset{\sim}{v}}^{\prime}\right|^{2} d \theta^{\prime} .
\end{align*}
$$

Integrating (126) with respect to $r^{\prime}$ on $\left[0, r^{*}\right], r^{*} \leqq R / 2$, and using again the fact that the disc $r^{\prime}<R / 2$ is contained in the circular annulus $R / 2<r<3 R / 2$, we obtain

From (127) it follows then

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}\left(\frac{R}{2}, \theta^{\prime}\right)-{\underset{\sim}{v}}_{D}\left(\frac{R}{2}\right)\right|^{2} d \theta^{\prime}=0 \text {. } \tag{128}
\end{equation*}
$$

Writing next $(331)$ and (46) in the new variables ( $r^{\prime}, \theta^{\prime}$ ), and using the same argument as for proving $\left(19_{1}\right)$ and $\left(19_{2}\right)$, we infer that for $r^{\prime} \rightarrow \infty$

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}^{v_{D}}\left(r^{\prime}, \theta^{\prime}\right)-{\underset{\sim}{\mathrm{v}}}_{D}\left(r^{\prime}\right)\right|^{2} \mathrm{~d} \theta  \tag{}\\
& \hat{\sim}^{\prime}=O\left(r^{\prime-2 \lambda}\right),  \tag{2}\\
& \underset{\sim}{\hat{v}_{D}}\left(r^{\prime}\right)-\underset{\sim}{v} \\
& v_{0}=O\left(r^{\prime}-\lambda\right) .
\end{align*}
$$

From (19') it follows then

$$
\begin{equation*}
\sup _{R \in[2, \infty)} \int_{1}^{R / 2} r^{\prime}-1\left|{\underset{\sim}{v}}_{D}\left(r^{\prime}\right)-{\underset{\sim}{v}}_{0}\right|^{2} d r^{\prime}<\infty . \tag{129}
\end{equation*}
$$

Taking now account of (4), (131), (14), (15), (191), (19'), (128), (129), and letting $R \rightarrow \infty$, from (125) we infer
(130) $[0,2 \pi): \quad \underset{R \rightarrow \infty}{\lim } \underset{\sim}{\underset{\sim}{V}}(r, \theta)=\underset{\sim}{V} 0$.

## 3. CONVERGENCE AT INFINITY OF THE LERAY SOLUTION

Theorem 3 [23]. The Leray solution ( ${\underset{\sim}{v}}_{L}, p_{L}$ ) of (1), (2) and (3) tends pointwise at infinity to ( ${\underset{\sim}{\infty}}_{\infty}, p_{\infty}$ ). Furthermore, the Leray sequence of solutions $\left({\underset{\sim}{v}}_{i}, p_{R_{i}}\right), i \in N$, of (1) and (5) in $\Omega_{R_{i}}$ converges quasi-uniformly on $\bar{\Omega}$ to $\left({\underset{\sim}{v}}, p_{L}\right)$.
For the proof of Theorem 3 we need the following results:
Definition 1 [16; p. 66]. Let $X$ and $Y$ be metric spaces and Let $f_{n}, n \in N, \operatorname{map} X$ into $Y$. The sequence $\left\{f_{n}\right\}_{n \in N}$ is said to converge quasi-uniformly on $X$ to $f: X \rightarrow Y$ if
(i) $\left\{f_{n}\right\}$ converges pointwise to $f$,
(ii) for every $\varepsilon>0$ there exists a sequence $\left\{n_{p}\right\}_{p \in N} \subset N$ and a sequence $\left\{D_{p}\right\}_{p \in N}$ of open sets $D_{p} \subset X, X=\bigcup_{p=1} D_{p}$, such that

$$
\operatorname{dist}_{Y}\left(f(x), f_{n_{p}}(x)\right)<\varepsilon, p \in N, x \in D_{p}
$$

Theorem of Arzela, Gagaeff and Alexandrov [1], [9], [16, p. 68]. Let $X, Y$ be metric spaces and let $f_{n}, n \in N$, map $X$ into $Y$ continuously. The sequence $\left\{f_{n}\right\}$ converges on $X$ to a continuous $\operatorname{map} f: X \rightarrow Y$, iff the convergence is quasi-uniform.

Lemma 3 [20]. The Leray sequence of velocities $\left\{v_{R_{i}}\right\}_{i \in N}$ satisfies the estimate
(131) $\left[r_{\Delta}, R_{i}\right]: \quad \int_{0}^{2 \pi}\left|{\underset{\sim}{R_{i}}}(r, \theta)\right|^{2} d \theta=O(\ln r)$, uniformly in $R_{i}$.

Proof. By the Cauchy-Schwarz inequality we have

$$
\begin{align*}
\left(r_{\Delta}, R_{i}\right): & \frac{d}{d r}\left[\int_{0}^{2 \pi}\left|{\underset{\sim}{v}}_{i}(r, \theta)\right|^{2} d \theta\right]^{1 / 2}=\frac{1}{2}\left[\int_{0}^{2 \pi}\left|{\underset{\sim}{R_{i}}}\right|^{2} \mathrm{~d} \theta\right]^{-1 / 2} \times  \tag{132}\\
& \int_{0}^{2 \pi} \frac{\partial}{\partial r}\left|{\underset{\sim}{\sim}}_{i}\right|^{2} \mathrm{~d} \theta \leqq\left[\int_{0}^{2 \pi}\left|\frac{\partial}{\partial r}{\underset{\sim}{v}}_{v_{i}}\right|^{2} \mathrm{~d} \theta\right]^{1 / 2} .
\end{align*}
$$

Integrating (132) between $r_{\Delta}$ and $r$ and applying again the CauchySchwarz inequality we get

$$
\begin{align*}
& {\left[r_{\Delta}, R_{i}\right]:\left[\int_{0}^{2 \pi}\left|\underset{\sim}{v_{i}}(r, \theta)\right|^{2} d \theta\right]^{1 / 2}-\left[\int_{0}^{2 \pi}\left|{\underset{\sim}{r}}_{i}\left(r_{\Delta}, \theta\right)\right|^{2}\right]^{1 / 2}}  \tag{133}\\
& \leqq\left(\ln \frac{r}{r_{\Delta}}\right)^{1 / 2}\left[{\underset{r}{r}}_{\int_{\Delta}}^{\int_{0}^{2 \pi}}\left|\frac{\partial}{\partial \rho} \underset{\sim}{v_{R_{i}}}(\rho, \theta)\right|^{2} \rho d \theta d \rho\right]^{1 / 2} .
\end{align*}
$$

Thus,
(134)

$$
\begin{aligned}
& {\left[r_{\Delta}, R_{i}\right]: \quad \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}_{R_{i}}(r, \theta)\right|^{2} d \theta \leqq 2 \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}_{R_{i}}\left(r_{\Delta}, \theta\right)\right|^{2} d \theta+} \\
&\left.\stackrel{r}{r} \int_{r_{\Delta}}{ }_{0}^{2 \pi}\left|\frac{\partial}{\partial \rho} \underset{\sim}{v}{\underset{R}{i}}\right|^{2} \rho d \theta d \rho\right] \ln \left(\frac{r}{r_{\Delta}}\right) .
\end{aligned}
$$

Using now (6) and the fact that, according to the construction of the Leray solution,

$$
\begin{equation*}
\lim _{R_{i} \rightarrow \infty} \int_{0}^{2 \pi}\left|{\underset{\sim}{v}}_{i}\left(r_{\Delta}, \theta\right)\right|^{2} d \theta=\int_{0}^{2 \pi}\left|{\underset{\sim}{v}}\left(r_{\Delta}, \theta\right)\right|^{2} d \theta, \tag{135}
\end{equation*}
$$

the assertion (131) then follows.
Lemma 4 [20]. The gradient $\nabla \omega_{R_{i}}$ is square integrable in $\Omega_{R_{i}}$, uniformly in $R_{i}$.

Proof. As known $\omega_{R_{i}}$ is solution of the equation

$$
\begin{equation*}
\Omega_{R_{i}}: \quad \nu \nabla^{2} \omega-\underset{\sim}{v_{R_{i}}} \cdot \nabla \omega=0 . \tag{136}
\end{equation*}
$$

Let now $\eta(r)$ be a smooth function which vanishes near $r \rightarrow \infty$ and near $r=r_{\Delta}, h\left(\omega_{R_{i}}\right)$ be a function of one variable, which is $C^{1}$ and piecewise $C^{2}$. An easy computation which uses the fact that $\nabla \cdot{ }_{\sim}^{\sim} R_{i}$ $=0$ shows that
(137)

$$
\begin{aligned}
& \Omega_{R_{i}}: \quad \nabla \cdot\left[\nu \eta(r) \nabla h\left(\omega_{r_{i}}\right)-\nu h\left(\omega_{R_{i}}\right) \nabla \eta(r)-\eta(r) h\left(\omega_{R_{i}}\right){\underset{\sim}{v}}_{R_{i}}\right] \\
& =\nu \eta(r) h ' \prime\left(\omega_{R_{i}}\right)\left|\nabla \omega_{R_{i}}\right|^{2}-h\left(\omega_{R_{i}}\right)\left[\nu \nabla^{2} \eta+\underset{\sim}{v} R_{i} \cdot \nabla \eta\right] \\
& \eta(r) h^{\prime}\left(\omega_{R_{i}}\right)\left[\nu \nabla^{2} \omega_{R_{i}}-{\underset{\sim}{v}}_{R_{i}} \cdot \nabla \omega_{R_{i}}\right] .
\end{aligned}
$$

Since $\omega_{R_{i}}$ satisfies (136) and $\eta$ vanishes near $r=r_{\Delta}$ and for $r \geqq$ $r_{\infty}$, integration over the domain $r>r_{\Delta}$ yields the identity

$$
\begin{align*}
& \int_{\Omega_{R_{i}}} u \eta h^{\prime \prime}\left(\omega_{R_{i}}\right)\left|\nabla \omega_{R_{i}}\right|^{2} d x d y=\int_{\Omega_{R_{i}}} h\left(\omega_{R_{i}}\right)\left[\nu \nabla^{2} \eta+\right.  \tag{138}\\
& \left.{ }_{\sim}^{v} R_{i} \cdot \nabla \eta\right] d x d y,
\end{align*}
$$

provided we take $R_{i} \geqq r_{\infty}$. Now we choose $r_{\infty} / 2=: R>r_{1}>r_{\Delta}$ and non-negative $C^{2}$ cut-off functions $\xi_{1}$ and $\xi_{2}$, such that
$\left(139{ }_{1}\right)\left[r_{\Delta}, R_{i}\right]: \quad \xi_{1}(r):=\left\{\begin{array}{l}0, r \leqq \frac{1}{2}\left(r_{\Delta}+r_{1}\right), \\ 1, r \geqq r_{1},\end{array}\right.$
$\left(139{ }_{2}\right)\left[r_{\Delta}, R_{i}\right]: \quad \xi_{2}(r):= \begin{cases}1, r \leqq 1, \\ 0, & r \geqq 2,\end{cases}$
and set

$$
\begin{equation*}
\left[r_{\Delta}, R_{i}\right]: n(r):=\xi_{1}(r) \xi_{2}\left(\frac{r}{R}\right) . \tag{140}
\end{equation*}
$$

Next we choose a positive constant $\omega_{0}$ and set

$$
h\left(\omega_{R_{i}}\right):= \begin{cases}\omega_{R_{i}}^{2}, & \left|\omega_{R_{i}}\right| \leqq \omega_{0},  \tag{141}\\ \omega_{0}\left(2\left|\omega_{R_{i}}\right|-\omega_{0}\right), & \left|\omega_{R_{i}}\right| \geqq \omega_{0} .\end{cases}
$$

Inserting $\left(139{ }_{1}\right),(1392),(140)$ and (141) in (138) we get

$$
\begin{align*}
& \left|\omega_{R_{i}}^{2}\right| \leq \omega_{0}\left|\nabla \omega_{R_{i}}\right|^{2} d x d y \leqq \omega_{R_{i}}^{2} \int_{\mid \leq \omega_{0}} n\left|\nabla \omega_{R_{i}}\right|^{2} d x d y  \tag{142}\\
& r_{1} \leqq r \leqq R \\
& =\underset{\left\{r_{\Delta} \leqq r \leqq r_{1}\right\}}{\int} h\left(\omega_{R_{i}}\right)\left[\nabla^{2} n+\nu^{-1}{\underset{\sim}{v}}_{R_{i}} \cdot \nabla n\right] d x d y \cdot \\
& \quad \cup\{R \leqq r \leqq 2 R\}
\end{align*}
$$

Consider now the part of the right integral over the circular annulus $R \leqq r \leqq 2 R$. We have on one hand

$$
\begin{equation*}
[R, 2 R]:|\nabla n| \leqq \frac{C}{R},\left|\nabla^{2} n\right| \leqq \frac{C}{R^{2}}, \tag{143}
\end{equation*}
$$

where the constant $C$. is independent of $R$. On the other hand $h\left(\omega_{R_{i}}\right)$ satisfies the inequalities

$$
\begin{equation*}
h\left(\omega_{R_{i}}\right) \leqq \omega_{R_{i}}^{2}, h\left(\omega_{R_{i}}\right) \leqq 2 \omega_{0}\left|\omega_{R_{i}}\right| \tag{144}
\end{equation*}
$$

Therefore, using (6)

$$
\begin{align*}
& \left|\int_{R \leqq r \leqq 2 R} h \nabla^{2} n d x d y\right| \leqq \frac{C}{R^{2}} \underset{R \leqq r \leqq 2 R}{\int} \omega_{R_{i}}^{2} d x d y \leqq  \tag{145}\\
& \frac{C}{R^{2}} \int_{R \leqq r \leqq 2 R}\left|\nabla{\underset{\sim}{v}}_{R_{i}}\right|^{2} d x d y \leqq C_{1} / R^{2},
\end{align*}
$$

where the constant $C_{1}$ is independent of $R_{i}$ and $R$. For the other
part of the integral over $R \leqq r \leqq 2 R$ we have

$$
\begin{align*}
& \left|\underset{R \leqq r \leqq 2 R}{ }{ }^{h}{\underset{\sim}{\sim}}_{R_{i}} \cdot \nabla n d x d y\right| \leqq \underset{R \leqq r \leqq 2 R}{\int}\left|h \hat{\sim}_{\sim} R_{i} \cdot \nabla \eta\right| d x d y+  \tag{146}\\
& \underset{R \leqq r \leqq 2 R}{\int}\left|h\left({\underset{\sim}{v}}_{R_{i}}-{\underset{\sim}{v}}_{R_{i}}\right) \cdot \nabla n\right| d x d y \leqq 2 \omega_{0} \underset{R \leqq r \leqq 2 R}{\int}\left|\omega_{R_{i}}\right| \times \\
& |\nabla n|\left|{\underset{\sim}{R_{i}}}-{\underset{\sim}{\sim_{i}}}_{i}\right| d x d y+\underset{R \leqq r \leqq 2 R}{\int} \omega_{R_{i}}^{2}|\nabla n|\left|{\underset{\sim}{v_{i}}}\right| d x d y .
\end{align*}
$$

Using now $\left(400_{1}\right)$, written for ${\underset{\sim}{v}}_{\mathrm{R}_{\mathrm{i}}}$, (143) and applying the CauchySchwarz inequality we obtain

$$
\begin{align*}
& \int_{R \leqq r \leqq 2 R}\left|\omega_{R_{i}}\right||\nabla n|\left|{\underset{\sim}{v}}_{i}-{\underset{\sim}{v}}_{R_{i}}\right| d x d y \leqq\left[\underset{R \leqq r \leqq 2 R}{\tilde{C} \int} \omega_{R_{i}}^{2} d x d y \times\right.  \tag{147}\\
& 2 R ~ \\
& \left.\iint_{R} \int_{0}^{\pi}\left|\frac{\partial}{\partial \theta}{\underset{\sim}{v}}_{v_{i}}\right|^{2} \frac{d \theta d r}{r}\right]^{1 / 2} \leqq \underset{R \leqq r \leqq 2 R}{\sim} \int_{\sim}\left|\nabla{\underset{\sim}{R}}_{i}\right|^{2} d x d y,
\end{align*}
$$

where the constant $\tilde{C}$ is independent of $R_{i}$ and $R$. Applying again the Cauchy-Schwarz inequality, from Lemma 3 we infer
(148) $\left[r_{\Delta}, R_{i}\right]:{\underset{\sim}{\sim_{R}}}^{i}(r)=O\left(\ln { }^{1 / 2} r\right)$, uniformly in $R_{i}$, and hence,

$$
\begin{equation*}
\underset{R \leqq r \leqq 2 R}{\int} \omega_{R_{i}}^{2}|\nabla n|\left|{\underset{\sim}{R_{i}}}^{\hat{N}_{i}}\right| d x d y \leqq C_{2} R^{-1} \ln { }^{1 / 2} \underset{R \leqq r \leqq 2 R}{\int} \omega_{R_{i}}^{2} d x d y, \tag{149}
\end{equation*}
$$

where the constant $C_{2}$ is also independent of $R_{i}$ and $R$. Fixing now $R_{i}$ and letting $R \rightarrow R_{i}$, from (6), (142), (145), (146) and (149) it follows then
(150)

$$
\begin{aligned}
& \lim _{R \rightarrow R_{i}}\left|\omega_{R_{i}}^{2}\right|^{\int} \omega_{0}\left|\nabla \omega_{R_{i}}\right|^{2} d x d y=\left.2 \omega_{R_{i}} \int\left|\leqq \omega_{0}\right| \nabla \omega_{R_{i}}\right|^{2} d x d y \\
& r_{1} \leqq r \leqq R \quad r_{1} \leqq r \leqq R_{i} \\
& \leqq \underset{r_{\Delta} \leqq r \leqq r_{1}}{\int} \omega_{R_{i}}^{2}\left(\left|\nabla^{2} n\right|+\nu^{-1}\left|{\underset{\sim}{R_{i}}}\right||\nabla n|\right) d x d y .
\end{aligned}
$$

Using now on one hand the fact that $\left\{{\underset{\sim}{v}}_{i}\right\}$ converges uniformly in any compact subset of $\bar{\Omega}$ to ${\underset{\sim}{L}}$, on the other hand the independence of the right hand integral of $\omega_{0}$, and letting $\omega_{0} \rightarrow \infty$, we infer that

$$
\int_{\Omega_{R_{i}}}\left|\nabla \omega_{R_{i}}\right|^{2} d x d y \leqq k \int_{\Omega_{R_{i}}} \omega_{R_{i}}^{2} d x d y,
$$

where the constant $K$ is independent of $R_{i}$. Taking account of (6), the assertion of the lemma then follows.

Lemma 5 [20]. The sequence of vorticities $\left\{\omega_{R_{i}}\right\}_{i \in N}$ satisfies the estimate

$$
\begin{equation*}
\Omega_{R_{i}}: \quad \omega_{R_{i}}(r, \theta)=O\left(r^{-1 / 2}\right) \text {, uniformly in } \theta \text { and } R_{i} \tag{152}
\end{equation*}
$$

Proof. For $r_{\Delta}<2^{n}<2^{n+1}<R_{i}$, (6) and (151) imply

$$
\begin{align*}
& \int_{2^{n+1}}^{n} \frac{d r}{r} \int_{0}^{2 \pi}\left(r^{2} \omega_{R_{i}}^{2}+2 r\left|\omega_{R_{i}} \frac{\partial}{\partial \theta} \omega_{R_{i}}\right|\right) d \theta \leqq  \tag{153}\\
& \left.2^{n}<r<2^{n+1} \omega_{R_{i}}+2\left|\omega_{R_{i}} \nabla \omega_{R_{i}}\right|\right) d x d y \leqq C^{*},
\end{align*}
$$

where the constant $C^{*}$ is independent of $R_{i}$. Hence by the integral theorem of the mean, there is an $r_{n} \in\left(2^{n}, 2^{n+1}\right)$ such that

$$
\begin{align*}
& \int_{0}^{2 \pi}\left[r_{n}^{2} \omega_{R_{i}}^{2}\left(r_{n}, \theta\right)+2 r_{n}\left|\omega_{R_{i}}\left(r_{n}, \theta\right) \frac{\partial}{\partial \theta} \omega_{R_{i}}\left(r_{n}, \theta\right)\right|\right] d \theta  \tag{154}\\
& \leqq-\frac{1}{\ln 2} \sum_{2^{n} n_{r}<2^{n+1}}\left(2 \omega_{R_{i}}^{2}+\left|\nabla \omega_{R_{i}}\right|^{2}\right) d x d y \leqq \frac{C^{*}}{\ln 2} .
\end{align*}
$$

Taking into account the inequality
(155)

$$
\begin{aligned}
& \omega_{R_{i}}^{2}\left(r_{n}, \theta\right)-\int_{0}^{2 \pi} \omega_{R_{i}}^{2}\left(r_{n}, \phi\right) d \phi \leqq \int_{0}^{2 \pi}\left|\frac{\partial}{\partial \phi} \omega_{R_{i}}^{2}\left(r_{n}, \phi\right)\right| d \phi \\
& =2 \int_{0}^{2 \pi}\left|\omega_{R_{i}}\left(r_{n}, \phi\right) \frac{\partial}{\partial \phi} \omega_{R_{i}}\left(r_{n}, \phi\right)\right| d \phi,
\end{aligned}
$$

from (154) we infer

$$
\begin{equation*}
r_{n} \max _{\theta \in[0,2 \pi]} \omega_{R_{i}}^{2}\left(r_{n}, \theta\right) \leqq C \tag{156}
\end{equation*}
$$

But $\omega_{R_{i}}$ as solution of the elliptic equation (136) satisfies the

Hopf maximum principle. Noting that $r_{n+1} \leqq 4 r_{n}$, we obtain that

$$
\begin{align*}
& r \max _{[0,2 \pi]} \omega_{R_{i}}^{2}(r, \theta) \leqq \max \left[4 r_{n} \max _{[0,2 \pi]} \omega_{R_{i}}^{2}\left(r_{n}, \theta\right)\right. \\
& \left.r_{n+1}^{\max } \omega_{[0,2 \pi]}^{2}\left(r_{R_{i}}, \theta\right)\right], \text { for } r \in\left(r_{n}, r_{n+1}\right)
\end{align*}
$$

From (156) and (157) we conclude then (152).
Lemma 6 [20]. The Leray sequence of velocities $\left\{{\underset{\sim}{v}}_{V_{i}}\right\}_{i \in N}$ satisfies the estimate

$$
\begin{equation*}
\Omega_{R_{i}}: \quad{\underset{\sim}{v}}_{i}(r, \theta)=O\left(\ln { }^{1 / 2} r\right) \text {, uniformly in } \theta \text { and } R_{i} \tag{158}
\end{equation*}
$$

Proof. We note at first that the complex velocity $\mathrm{w}_{\mathrm{R}_{\mathrm{i}}}$ is solution of the inhomogeneous Cauchy-Riemann equation

$$
\begin{equation*}
\Omega_{R_{i}}: \quad \frac{\partial w_{R_{i}}}{\partial \bar{z}}=\frac{i}{2} \omega_{R_{i}} \tag{159}
\end{equation*}
$$

Let denote now $r=|z| \geqq 8 r_{\Delta}$ and choose the integer $n$ so that $r \in\left[2^{n}, 2^{n+1}\right)$. Next we show that there is a sequence $\left\{r_{n}\right\}_{n \in N}$, $r_{n} \in\left(2^{n}, 2^{n+1}\right)$, such that
(160)

$$
\Omega_{R_{i}}: \quad{\underset{\sim}{R_{i}}}\left(r_{n}, \theta\right)=O\left(\ln { }^{1 / 2} r_{n}\right) \text {, uniformly in } \theta \text { and } R_{i} .
$$ Indeed, let $r_{\Delta}<2^{n}<2^{n+1}<R_{i}$. Using the inequality

$$
\begin{equation*}
\int_{2^{n}}^{2^{n+1}} \int_{0}^{2 \pi}\left|\frac{\partial}{\partial \theta}{\underset{\sim}{v_{i}}}(r, \theta)\right|^{2} \frac{d \theta d r}{r} \leqq \int_{2^{n}<r<2^{n+1}}\left|\nabla{\underset{\sim}{v}}_{i}\right|^{2} d x d y, \tag{161}
\end{equation*}
$$

it follows from the integral theorem of the mean that for some $r_{n} \in\left(2^{n}, 2^{n+1}\right)$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\partial}{\partial \theta} \underset{\sim}{\underset{\sim}{R_{i}}}{ }_{i}\left(r_{n}, \theta\right)\right|^{2} d \theta \leqq \frac{1}{\ln 2} \underset{2^{n}<r<2^{n+1}}{\int}\left|\nabla{\underset{\sim}{v}}_{i}\right|^{2} d x d y . \tag{162}
\end{equation*}
$$

By the Cauchy-Schwarz inequality and $(a+b)^{2} \leqq 2\left(a^{2}+b^{2}\right)$ we get

$$
\begin{align*}
& {[0,2 \pi): \quad\left|\underset{\sim}{v_{R_{i}}}\left(r_{n}, \theta\right)\right| \leqq\left[2 \pi \int_{0}^{2 \pi}\left|\frac{\partial}{\partial \theta^{\prime}} \underset{\sim}{v_{R}}{ }_{i}\left(r_{n}, \theta^{\prime}\right)\right|^{2} d \theta^{\prime}\right]^{1 / 2}+}  \tag{163}\\
& \left|{\underset{\sim}{v}}_{R_{i}}\left(r_{n}, \phi\right)\right|, \\
& {[0,2 \pi): \quad\left|\underset{\sim}{v} R_{i}\left(r_{n}, \theta\right)\right|^{2} \leqq 4 \pi \int_{0}^{2 \pi}\left|\frac{\partial}{\partial \theta^{\prime}}{\underset{\sim}{v}}_{R_{i}}\left(r_{n}, \theta^{\prime}\right)\right|^{2} d \theta^{\prime}+}  \tag{164}\\
& 2\left|{\underset{\sim}{R_{i}}}\left(r_{n}, \phi\right)\right|^{2} .
\end{align*}
$$

Integrating (164) with respect to $\phi$, we find

$$
\begin{array}{r}
{[0,2 \pi): \quad\left|\underset{\sim}{v} R_{i}\left(r_{n}, \theta\right)\right|^{2} \leqq} \tag{165}
\end{array} \frac{1}{\pi} \int_{0}^{2 \pi}\left|\underset{\sim}{v_{R_{i}}}\left(r_{n}, \phi\right)\right|^{2} d \phi+.
$$

(160) now follows from (6), (131) and (162). Next denote by $A_{n}$ the circular annulus $r_{n-2} \leqq|\zeta| \leqq r_{n+2}$ and by $\tilde{A}_{n}$ the subset $\tilde{A}_{n}:=\left\{z \in A_{n}| | z \mid \in\left[2^{n}, 2^{n+1}\right)\right\}$. By the Pompeiu formula we get

$$
\begin{align*}
\tilde{A}_{\mathrm{n}}: \quad \mathrm{w}_{\mathrm{R}_{\mathrm{i}}}(\mathrm{z})= & \frac{1}{2 \pi i}\left\{\int _ { \partial A _ { \mathrm { n } } } \left[\mathrm{w}_{\mathrm{R}_{\mathrm{i}}}(\zeta) /(\zeta-z) \mathrm{d} \zeta+\right.\right.  \tag{166}\\
& \left.\operatorname{PV} \int_{A_{\mathrm{n}}}\left[\omega_{R_{i}}(\zeta) /(\zeta-z)\right] d \xi d \eta\right\} .
\end{align*}
$$

For $z \in \tilde{A}_{n}$, $\operatorname{dist}\left(z, \partial A_{n}\right) \geqq 2^{n-1} \geqq|z| / 4=r / 4$. From (160) we infer then that the line integral in (166) is O( $\sqrt{1 n r})$, uniformly in $\theta$ and $R_{i}$. To estimate the area integral, we write
(167)

$$
\begin{aligned}
\tilde{A}_{n}: \quad\left|P V \int_{A_{n}}(\zeta-z)^{-1} \omega_{R_{i}}(\zeta) d \xi d \eta\right| \leqq & {\left[P V \int_{D}+\int_{A_{n} \backslash D}^{\int}\right]\left|\omega_{R_{i}}(\zeta)\right| \times } \\
& |\zeta-z|^{-1} d \xi d n,
\end{aligned}
$$

where $D:=\left\{\zeta \in A_{n}| | \zeta-z \mid<1\right\}$. By Lemma 5 the first integral on the right is bounded by $\mathrm{Cr}^{-1 / 2}$, where the constant C is independent of $\theta$ and $R_{i}$; and since $A_{n}$ is contained in the disc $|\zeta-z|<6 r$, we have by the Cauchy-Schwarz inequality and (6)

$$
\begin{equation*}
\left.\tilde{A}_{\mathrm{n}}: \quad \int_{A_{n} \backslash D}|\zeta-z|^{-1}\left|\omega_{R_{i}}(\zeta)\right| d \xi d \eta \leqq \int_{A_{n}} \omega_{R_{i}}^{2} d \xi d \eta\right)^{1 / 2} \times \tag{168}
\end{equation*}
$$

$$
\left[\int_{1<|\zeta-z|<6 r}|\zeta-z|^{-2} \mathrm{~d} \xi \mathrm{~d} \eta\right]^{1 / 2} \leqq C_{1} \ln { }^{1 / 2} r
$$

where the constant $C_{1}$ is independent of $\theta$ and $R_{i}$. Combining these estimates, (158) then follows.

Lemma 7 [20]. $r^{1 / 2} \imath_{n}-1 / 4 r_{r \nabla \omega_{R}}$ is square integrable in $\Omega_{R_{i}}$, uniformly with respect to $R_{i}$.

Proof. Choose $R_{i} / 2 \geqq R \geqq r_{1} \geqq r_{\Delta}$ and two non-negative $C^{2}$ cut-off functions $\xi_{1}$ and $\xi_{2}$ with the properties (139). Setting

$$
\begin{equation*}
\left[r_{\Delta}, R_{i}\right]: \eta(r):=\xi_{1}(r) \xi_{2}\left(\frac{r}{R}\right)-\frac{r}{\ln ^{1 / 2} r} \tag{169}
\end{equation*}
$$

and inserting this function and $h\left(\omega_{R_{i}}\right):=\omega_{R_{i}}^{2}$ in (138) we obtain

$$
\begin{align*}
& 2 \int_{r_{1}<r<R^{\prime}}\left|\nabla \omega_{R_{i}}\right|^{2} d x d y \leq 2 \int_{\Omega_{R}} \eta\left|\nabla \omega_{R_{i}}\right|^{2} d x d y=  \tag{170}\\
& \int_{\Omega_{R}} \omega_{R_{i}}^{2}\left(\nabla^{2} n+\nu^{-1}{ }_{\sim}^{v_{R_{i}}} \cdot \nabla \eta\right) d x d y .
\end{align*}
$$

Using the inequalities

$$
\begin{equation*}
\left(r_{\Delta}, R_{i}\right):|\nabla n| \leqq \frac{\bar{C}}{\ln ^{1 / 2} r},\left|\nabla^{2} \eta\right| \leqq \bar{C} \tag{171}
\end{equation*}
$$

where the constant $\bar{C}$ is independent of $R$ and $R_{i}$, as well as (6), (158) and the fact that $\left\{{\underset{\sim}{v}}_{R_{i}}\right\}$ converges uniformly together with all their first order derivatives in any compact subset of $\bar{\Omega}$ to ${\underset{\sim}{V}}^{v}$, from (170) the assertion of the lemma then follows.

Lemma 8 [20]. The sequence of vorticities $\left\{\omega_{R_{i}}\right\}_{i \in N}$ satisfies the estimate

$$
\begin{equation*}
\Omega_{R_{i}}: \quad \omega_{R_{i}}(r, \theta)=O\left(r^{-3 / 4} l^{1 / 8} r\right) \text {, uniformly in } \theta \text { and } R_{i} \text {. } \tag{172}
\end{equation*}
$$

Proof. We note that for $r_{\Delta}<2^{n}<2^{n+1}<R_{i}$

$$
\begin{equation*}
\int_{2^{n}}^{2^{n+1}} \frac{d r}{r} \int_{0}^{2 \pi}\left[r^{2} \omega_{R_{i}}^{2}+2 r^{3 / 2} \ln { }^{-1 / 4} r\left|\omega_{R_{i}} \frac{\partial}{\partial \theta} \omega_{R_{I}}\right|\right] d \theta \leqq \tag{173}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{2^{n}<r<2^{n+1}}^{\int}\left(\omega_{R_{i}}^{2}+2 r^{1 / 2} l n^{-1 / 4} r\left|\omega_{R_{i}}\right|\left|\nabla \omega_{R_{i}}\right|\right) d x d y \\
& \leqq \int_{2^{n}<r<2^{n+1}}^{\int}\left(2 \omega_{R_{i}}^{2}+r n^{-1 / 2} r\left|\nabla \omega_{R_{i}}\right|^{2}\right) d x d y .
\end{aligned}
$$

Using Lemma 7 and proceeding exactly as in the proof of Lemma 5, we get (172).

Lemma 9. The sequence of vorticities $\left\{\omega_{R_{i}}\right\}_{i f N}$ satisfies the HöZder condition
(174)

$$
\begin{aligned}
& \left|\omega_{R_{i}}\left(z_{2}\right)-\omega_{R_{i}}\left(z_{1}\right)\right| \leqq C \mu_{R_{i}}(R)\left|z_{2}-z_{1}\right|^{1 / 2}, \\
& \left|z_{1}\right|,\left|z_{2}\right|>R+2,\left|z_{2}-z_{1}\right| \leqq 1,
\end{aligned}
$$

where $C$ is a constant independent of $R$ and $R_{i}$ and

$$
\left\{\begin{array}{l}
\mu_{R_{i}}(R)=O\left(R^{-3 / 4} \ln n^{3 / 8} r\right),  \tag{17}\\
\mu_{R_{i}}(R)=O\left(R^{-3 / 4}\right), \text { if }\left|w_{R_{i}}\right| \text { is bounded. }
\end{array}\right.
$$

Proof. Let us define

$$
\begin{equation*}
\mu_{R_{i}}(R):=\sup _{r \geqq R}\left|\omega_{R_{i}}(r, \theta)\right|\left[1+\left|w_{R_{i}}(r, \theta)\right|^{1 / 2}\right] . \tag{176}
\end{equation*}
$$

so that (175) follows as a consequence of (158), (172) and (176). It remains now to prove (174). Let $D\left(z_{0} ; r^{\prime}\right)$ denote the disc of radius $r^{\prime}$ and center $z_{0}$, with $\left|z_{0}\right|>R+2$. We set
(177)

$$
I\left(r^{\prime} ; z_{0}\right):=\int_{D\left(z_{0} ; r^{\prime}\right)}\left|\nabla \omega_{R_{i}}\right|^{2} d x d y
$$

and show at first that

$$
\begin{equation*}
I\left(1 ; z_{0}\right) \leqq C \mu_{R_{i}}^{2}(R) \tag{178}
\end{equation*}
$$

where the constant $C$ is independent of $R_{i}$ and $R$. To this end let
$\eta$ be a non-negative cut-off function such that $\eta(r)=1$ for $r \leqq 1, \eta(r)=0$ for $r \geqq 2$. Inserting $\eta=\eta\left(\left|z-z_{0}\right|\right)$ and $h\left(\omega_{R_{i}}\right)$ $=\omega_{R_{i}}^{2}$ into (138), we obtain
(179)

$$
\begin{aligned}
& \left.\operatorname{raf}_{D\left(z_{0} ; 2\right)}{ }^{n \mid \nabla \omega_{R_{i}}}\right|^{2} d x d y=\int_{D\left(z_{0} ; 2\right)} \omega_{R_{i}}^{2}\left[v \nabla^{2} n+\right. \\
& \left.{\underset{\sim}{v}}_{\mathrm{R}_{\mathrm{i}}} \cdot \nabla \eta\right] d x d y \text {, }
\end{aligned}
$$

provided we take $R_{i} \geqq 2$. Taking into account the fact that in $D\left(z_{0} ; 2\right)\left|\nabla^{2} n\right| \leqq C,|\nabla n| \leqq C$, where the constant $C$ depends on the choice of $\eta$, from (176) and (179) we get then (178). Next we derive a growth estimate for $I\left(r^{\prime} ; z_{0}\right)$, from which (174) will follow. Multiplying (136) by $\omega_{R_{i}}$, integrating by parts, and using the fact that $\nabla \cdot{\underset{\sim}{v}}_{i}=0$, we find
(180)

$$
\begin{aligned}
& \iint_{D\left(z_{0} ; r^{\prime}\right)}\left|\nabla \omega_{R_{i}}\right|^{2} d x d y=\int_{\partial D\left(z_{0} ; r^{\prime}\right)}^{\omega_{R_{i}}} \frac{\partial \omega_{R_{i}}}{\partial r^{\prime}} r^{\prime} d \theta^{\prime} \\
& \begin{array}{l}
(2 \nu)^{-1} \int \\
\partial D\left(z_{0} ; r^{\prime}\right)
\end{array} \omega_{R_{i} \sim R_{i}}^{2} \cdot\left(\cos \theta^{\prime}, \sin \theta^{\prime}\right) r^{\prime} d \theta^{\prime},
\end{aligned}
$$

where $r^{\prime}, \theta^{\prime}$ are polar coordinates with respect to $z_{0}$ as origin. Using again the flux-divergence theorem as well as the identity $2 a b \leqq a^{2} / r^{\prime}+r^{\prime} b^{2}$, we get the estimate

$$
\begin{align*}
& \iint{ }^{\rho D\left(z_{0} ; r^{\prime}\right)}{ }^{\omega_{R_{i}}} \frac{\partial \omega_{R_{i}}}{\partial r^{\prime}} r^{\prime} d \theta^{\prime}=\frac{r^{\prime}}{2} \int_{\partial D\left(z_{0} ; r^{\prime}\right)}^{\left[\left(\frac{\partial \omega_{R_{i}}}{\partial r^{\prime}}\right)^{2}+\right.}  \tag{181}\\
& \left.\left(\omega_{R_{i}}-\hat{\omega}_{R_{i}}\right)^{2} / r^{\prime}{ }^{2}\right] r^{\prime} d \theta^{\prime}+\hat{\omega}_{R_{i}} \int_{\partial D\left(z_{0} ; r^{\prime}\right)} \nabla^{2} \omega_{R_{i}} d x d y .
\end{align*}
$$

Taking now account of an inequality of type $\left(40_{1}\right)$ and of (136), from (180) and (181) it follows

$$
\begin{equation*}
I\left(r^{\prime} ; z_{0}\right) \leqq \frac{r^{\prime}}{2} \frac{d I\left(r^{\prime} ; z_{0}\right)}{d r^{\prime}}+C * r^{\prime}, C *:=C \mu_{R_{i}}^{2}(R), \tag{182}
\end{equation*}
$$

or, equivalently,
(182')

$$
\frac{d}{d r^{\prime}}\left(I\left(r^{\prime} ; z_{0}\right) / r^{\prime 2}\right) \geqq-2 C * / r^{\prime 2}
$$

Integrating this inequality and using (178), we obtain ( $r^{\prime} \leqq 1!$ )

$$
\begin{equation*}
I\left(r^{\prime} ; z_{0}\right) \leqq I\left(1 ; z_{0}\right) r^{\prime 2}+2 C^{*} r^{\prime} \leqq C \mu_{R_{i}}(R) r^{\prime} \tag{183}
\end{equation*}
$$

Since (183) is valid for all discs $\left|z-z_{0}\right| \leqq r^{\prime} \leqq 1$ contained in $|z|>R+2$, from the Morrey lemma [7] it follows then (174).

Lemma 10. The sequence of Helmholtz-Bernoulzi functions $\left\{H_{R}\right\}_{i \in N}$ satisfies the estimate

$$
\begin{equation*}
\Omega_{R_{i}}: \quad H_{R_{i}}(r, \theta)=O(\ln r) \text {, uniformly in } \theta \text { and } R_{i} \tag{184}
\end{equation*}
$$

Proof. We note at first that the Helmholtz-Bernoulli function $H_{R_{i}}$ is according to (20''') the real part of a solution to an inhomogeneous Cauchy-Riemann equation

$$
\begin{equation*}
\Omega_{R_{i}}: \quad \frac{\partial\left(H_{R_{i}}+i v \omega_{R_{i}}\right)}{\partial \bar{z}}=\frac{i}{2} \bar{w}_{R_{i}} \omega_{R_{i}} . \tag{185}
\end{equation*}
$$

On the other hand from (20) it follows

$$
\begin{align*}
\Omega_{R_{i}}: \quad & \left|\nabla{\underset{H}{R_{i}}}\right|^{2} \leqq 2 \nu^{2}\left|\nabla \omega_{R_{i}}\right|^{2}+4\left|\underset{\sim}{v_{R_{i}}}-\underset{\sim}{{\underset{v}{r}}_{i}}\right|^{2} \omega_{R_{i}}^{2}  \tag{186}\\
& 4\left|{\underset{\sim}{v}}_{R_{i}}\right|^{2} \omega_{R_{i}}^{2} .
\end{align*}
$$

Using now the estimate $[11, \mathrm{pp} 13,16,18]$

$$
\begin{equation*}
\Omega_{R_{i}}: \quad\left|\underset{\sim}{R_{i}}(r)\right| \leqq C, \tag{187}
\end{equation*}
$$

where the constant $C$ is independent of $R_{i}$, as well as (6), (41, ) and Lemma 4, from (186) we infer that the gradient of $H_{R_{i}}$ is square integrable in $\Omega_{R_{i}}$, uniformly in $R_{i}$. Proceeding now exactly as in the proofs of Lemma 3 and Lemma 6, the assertion (184) then follows.

Lemma 11. The sequence of derivatives of the HeZmholtz-Bernoulli
functions $\left\{\frac{d H_{r}}{d r}\right\}_{i \in N}$ has at infinity the behaviour

$$
\begin{equation*}
\Omega_{R_{i}}: \frac{d H_{R_{i}}}{d r}=O\left(r^{-3 / 4} l n^{9 / 8} r\right) \text {, uniformly in } \theta \text { and } R_{i} . \tag{188}
\end{equation*}
$$

Proof. We proceed exactly as in the proofs of Lemma 1 and Lemma 8 and get (188).

Lemma 12. There exists a positive constant $\lambda$, which is independent of $R_{i}$, such that
$\left.(189)_{1}\right) \quad \Omega_{R_{i}}: \quad \int_{0}^{2 \pi}\left|{\underset{\sim}{R_{i}}}(r, \theta)-{\underset{\sim}{V_{i}}}(r)\right|^{2} \mathrm{~d} \theta=O\left(r^{-2 \lambda}\right)$,
$\left(189_{2}\right) \quad \Omega_{R_{i}}: \quad \underset{\sim}{\underset{\sim}{v}} R_{i}(r)-\underset{\sim}{v}{ }_{\infty}=O\left(r^{-\lambda}\right)$, uniformly in $R_{i}$.
Proof. We start again with the first equation (33), written now for the Leray sequence $\left({\underset{\sim}{v}}_{i}, p_{R_{i}}\right)$, i.e.
(190)

$$
\left(r_{\Delta}, R_{i}\right): \quad \frac{d \hat{F}_{R_{i}}}{\mathrm{dr}} / \frac{\mathrm{d} \hat{\mathrm{H}}_{\mathrm{R}_{i}}}{\mathrm{dr}}+\frac{2}{\mathrm{r}} \hat{\mathrm{~F}}_{\mathrm{R}_{\mathrm{i}}} / \frac{\mathrm{d} \hat{\mathrm{H}}_{\mathrm{R}_{i}}}{\mathrm{dr}}=1 .
$$

Integrating next (190) with respect to $r$ we get
(191) $\left(r_{\Delta}, R_{i}\right): \hat{F}_{R_{i}}(r) /\left(\hat{H}_{R_{i}}(r)-H_{R_{i}, \infty}\right)-2 \int_{r}^{1}\left(\hat{F}_{R_{i}}(\rho) / \rho\right) d \rho \times$

$$
1 /\left(\hat{H}_{R_{i}}(r)-H_{R_{i}, \infty}\right)=1
$$

where, according to (5), (34) and (47), written respectively for $\left({\underset{\sim}{R_{i}}}, p_{R_{i}}\right)$, and the Parseval equality

$$
\begin{equation*}
H_{R_{i}, \infty}:=\hat{H}_{R_{i}}\left(R_{i}\right)=\frac{1}{2}{\underset{\sim}{v}}_{2}^{2}+\hat{p}_{R_{i}}\left(R_{i}\right) \tag{192}
\end{equation*}
$$

On the other hand $\hat{p}_{R_{i}}$ is bounded in $\Omega_{R_{i}}$, uniformly in $R_{i}$ [11], i.e.

$$
\begin{equation*}
\Omega_{R_{i}}: \quad\left|\hat{p}_{R_{i}}(r)\right| \leqq C \text {, uniformly in } R_{i} \tag{193}
\end{equation*}
$$

and, hence, (at least for a subsequence!)

$$
\begin{equation*}
\lim _{R_{i}+\infty} \hat{p}_{R_{i}}\left(R_{i}\right)=p_{\infty} \tag{194}
\end{equation*}
$$

Letting now $r R_{i}$ in (191) we infer that the limit exists and is equal to one. Proceeding now exactly as in the proof of Lemma 2, and using the Lemmas 3 to 12 as well as (187) and (194), the assertions $\left(189{ }_{1}\right)$ and $\left(189{ }_{2}\right)$ then follow.

Proof of Theorem 3 [22]. In order to show that in the case of the Leray solution $\left({ }_{\sim}{ }_{L}, P_{L}\right)$

$$
\begin{equation*}
\underset{\sim}{v_{0}}={\underset{\sim}{v}} \text {, } \tag{195}
\end{equation*}
$$

it suffices to prove that
(197)

$$
\begin{align*}
& \int_{r_{\Delta}}^{\infty} r^{-1}\left|{\underset{\sim}{v}}_{\mathrm{v}}(r)-\underset{\sim}{v}\right|^{2} d r<\infty,  \tag{196}\\
& \int_{r_{\Delta}}^{\infty} r^{-1}\left|{\hat{\underset{\sim}{v}}}^{\hat{v}_{L}}(r)-\underset{\sim}{v}\right|^{2} d r<\infty .
\end{align*}
$$

Indeed, taking account of the inequality

$$
\begin{equation*}
\left[r_{\Delta}, \infty\right):\left|{\underset{\sim}{v}}_{\infty}-\underset{\sim}{v} 0\right| \leqq\left|{\underset{\sim}{v}}^{v}(r)-\underset{\sim}{v} \infty\right|+\left|{\underset{\sim}{v}}^{v}(r)-{\underset{\sim}{v}}_{0}\right|, \tag{198}
\end{equation*}
$$

and using (196) and (197), we find
(199)

$$
\left.\int_{r_{\Delta}}^{\infty} r^{-1}|\underset{\sim}{{\underset{\sim}{\infty}}}-\underset{\sim}{v}|^{2}\right|^{2} \mathrm{dr}<\infty,
$$

and (195) then follows. Noting now that $\underset{\sim}{v}$ L has finite Dirichlet integral and taking account of $(192)$, we obtain (196). For the proof of (197) we remark at first that from (1892) it follows

where the constant $C$ is independent of $R_{i}$, and hence, letting $\mathrm{R}_{\mathrm{i}}{ }^{+\infty}$, (197) then follows. It remains now to show that the Leray sequence of solutions $\left({\underset{\sim}{v}}_{R_{i}}, p_{R_{i}}\right)$, i $\in N$, of (1) and (5) in $\Omega_{R_{i}}$ converges quasi-uniformly on $\bar{\Omega}$ to the Leray solution $\left({ }_{\sim}{ }_{\mathrm{L}}, \mathrm{p}_{\mathrm{L}}\right)$ of (1), (2) and (3) in $\Omega$. To this end we define ${\underset{\sim}{v}}_{R_{i}}^{e}$ and ${\underset{\sim}{v}}_{e}^{e}$ as follows
(202)

$$
\begin{aligned}
& \bar{\Omega}: \quad{\underset{\sim}{V}}_{\mathrm{V}}^{\mathrm{e}}:=-\left\{\begin{array}{ll}
{\underset{\sim}{\mathrm{V}}}_{\mathrm{L}} & \text { in } \Omega, \\
\underset{\sim}{\mathrm{v}} & \text { at infinity }
\end{array}\right. \text {. }
\end{aligned}
$$

It is easy to see on one hand that $\underset{\sim}{v} R_{i}^{e}$, i $\epsilon N$, and $\underset{\sim}{v}{ }_{L}^{e}$ are continuous on $\bar{\Omega}$. On the other hand by using the stereographic projection the extended plane $\overline{\mathrm{R}}^{2}$ becomes a metric space. By Definition 1 and the Theorem of Arzela, Gagaeff and Alexandrov the assertion then follows.

Remark 3. The proofs of Lemmas 3-9 follow closely the proofs of the corresponding lemmas in [12, pp. 383, 384, 387, 388, 396, 399].

## REFERENCES

[1] P.S. Alexandrov, On the so-called quasi-uniform convergence, Uspekhi Mat. Nauk, 3, 1948, 213-215.
[2] C.J. Amick, On Leray's problem of steady Navier-Stokes flow past a body in the plane, Acta Math., 161, 1988, 71-130.
[3] K.I. Babenko, On properties of steady viscous incompressible fluid flows, Approximation methods for Navier-Stokes problems, Editor R. Rautmann, Lecture Notes in Mathematics, Vol. 771, Springer-Verlag, Berlin, 1980, 12-42.
[4] R. Berker, Sur les forces exercées par un fluide visqueux sur un obstacle, Rend. Circ. Mat. Palermo, 1, 1952, 260-280.
[5] R. Finn, On the steady-state solutions of the Navier-Stokes equations III, Acta Math., 105, 1961, 197-244.
[6] R. Finn, Mathematical questions relating to viscous fluid flow in an exterior domain, Rocky Mountain J. Math., 3, 1973, 107-140.
[7] R. Finn \& J. Serrin, On the Hölder continuity of quasiconformal and elliptic mappings, Trans. Amer. Math. Soc., 89,1958, 1-15.
[8] H. Fujita, on the existence and regularity of the steadystate solutions of the Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo Sect. I, 9, 1961, 59-102.
[9] B. Gagaeff, Sur les suites convergentes des fonctions mesurables $B$, Fund. Math., 18, 1932, 182-188.
[10] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, VoI.2, Nonlinear steady problems, Springer Tracts in Natural Philosophy, Vol. 39, SpringerVerlag, Berlin, 1994.
[11] D. Gilbarg \& H. Weinberger, Asymptotic properties of Leray's solution of the stationary two-dimensional Navier-Stokes equations, Uspekhi Mat. Nauk, 29, 1974, 109-122.
[12] D. Gilbarg \& H. Weinberger, Asymptotic properties of steady plane solutions of Navier-Stokes equations with bounded Dirichlet integral, Ann. Scuola Norm. Sup. Pisa, 5, 1978, 381-404.
[13] G. Hamel, Spiralförmige Bewegungen zäher Flüssigkeiten, Jber. Deutsch. Math. Ver., 25, 1916, 34-60.
[14] O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second edition, Gordon \& Breach, New York, 1969.
[15] J. Leray, Études de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., 12, 1933, 1-82.
[16] M. Nicolescu, Analiza matematica, Vol. II, Editura Tehnica, Bucuresti, 1958.
[17] D. Pompeiu, Sur une classe de fonctions d'une variable complexe, Rend. Circ. Mat. Palermo, 33, 1912, 108-113; Sur une classe de fonctions d'une variable complexe et sur certaines équations intégrales, Rend. Circ. Mat. Palermo, 35, 1913, 277-281.
[18] D. Socolescu, On the convergence at infinity of the steady plane Leray solution of the Dirichlet problem for the NavierStokes equations, Mathematical methods in Fluid Mechanics, Editors E. Meister, K. Nickel \& J. Polasek, Methoden und Verfahren der Mathematischen Physik, Band 24, Verlag P. Lang, Frankfurt am Main, 1982, 211-222.
[19] D. Socolescu, On the convergence at infinity of solutions with finite Dirichlet integral to the exterior Dirichlet problem for the steady plane Navier-Stokes system of equations, Calculus of variations and partial differential equations, Editors S. Hildebrandt, D. Kinderlehrer \& M. Miranda, Lecture Notes in Mathematics, Vol. 1340, Springer-Verlag, Berlin, 1988, 256-274.
[20] D. Socolescu, Asymptotische Abschätzungen für die Lösungen mit beschränktem Dirichlet-Integral des AuBenraumproblems für die zweidimensionalen stationären Navier-Stokes Gleichungen, communication at the workshop "Recent progress in the theory of the Navier-Stokes equations and related topics", Organizers C. Simader, H. Sohr, W. von Wahl \& M. Wiegner, Thurnau-Germany, July 6-10, 1992.
[21] D. Socolescu, On the Liouville property of the steady plane flow of a viscous incompressible fluid past an obstacle, communication at the workshop "Mathematical problems for Navier-Stokes equations", Organizers G.P. Galdi, A. Novotny, M. Padula, K. Pileckas, March 1-5, Ferrara-Italy, 1993.
[22] D. Socolescu, On the convergence at infinity of solutions with finite Dirichlet integral to the exterior Dirichlet problem for the steady plane Navier-Stokes system of equations, communication at the third international conference on "Navier-Stokes equations and related nonlinear problems", Organizers A. Sequeira, C. Albuquerque, C. Silva \& J. Videman, Madeira-Portugal, May 21-27, 1994.
[23] I.N. Vekua, Verallgemeinerte analytische Funktionen, Akade-mie-Verlag, Berlin, 1963.

Fachbereich Mathematik
Universität Kaiserslautern
Erwin-Schrödinger-StraBe
D-67663 Kaiserslautern
Germany-Europe

