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ON THE CONVERGENCE AT INFINITY OF SOLUTIONS WITH FINITE
DIRICHLET INTEGRAL TO THE EXTERIOR DIRICHLET PROBLEM FOR
THE STEADY PLANE NAVIER-STOKES SYSTEM OF EQUATIONS

Dan Socolescu

1. INTRODUCTION

Let @ be a two-dimensional domain exterior to a compact set
A with smooth boundary 9A and assume for the sake of simplicity
and without loss of generality that diam A 2 2. The steady flow
in @ of a viscous incompressible fluid past the obstacle A with
uniform velocity v, at infinity is described by the Navier-

Stokes equations and the continuity equation

VVZV - (veV)v - p;1Vp =0,

(1) Q
Vev = 0 ,

~

with the boundary conditions

(2) dA = v=20,
(3) [0,2m) lim v(r,0) = v_
r>o ~
Here v is the coefficient of viscosity, V := (ax,ay) is the
Nabla differential operator, v = (u,v) is the velocity vector,

P, is the constant fluid density, which we take in the following
without loss of generality to be equal to one, p is the pressure,
r is the radius vector, i.e. the distance from the given point
to the origin, taken interior to A, and 6 is the polar angle.

In his study on this exterior Dirichlet problem in 1933,
Leray [15] constructed a certain solution (YL'pL) satisfying (1)

and (2) and having a velocity with finite Dirichlet integral

(4) [ |Vv|2dxdy < o
q |~



Whether this solution had the desired limit behaviour (3) was
left open. Leray's construction went as follows. Let QR be the

set of points in @ of radius vector r < R. He first proved that

for every R > max r =: r, 2 1 and every constant vector v_ there
A hd
is at least one solution (VR,pR) of (1) in Qr satisfying the
boundary conditions on BQR
0 on JdA ,
(5) YR~
v, for r = R .

Concerning all such (velocity) solutions VR Leray proved the

existence of a uniform bound for the Dirichlet integral, namely
for some positive constant C independent of R and v

dxdy < C2(1 + w14,

s )

(6) I RAY
Q ~R
He then showed that a sequence Ri + o exists, such that the so-

lutions (vR ‘PR ) of (1) and (5) in QR converge uniformly to-
~R; i :

gether with all their first order deriiatives in any compact
subset of {0 to a solution (YL,pL) satisfying (1), (2) and (4) -
cf. also [3], [5], [81, [10], [14] -. The further behaviour
of Ve and Py, @s r » = was left unsettled and remained so for
more than four decades.

In 1974 Gilbarg and Weinberger [11] proved that

(i) the Leray solution (v ,pL) is bounded,

(ii) the velocity v has a limit in the mean at infinity

2m
(7) lim [ |v, (r,8) - v,|%d6 = 0 , lim 9. (r) = v, ,
. b4 Y0 YL 20
r+o 0 Yoo
where
= 1 2m
v.(r) = 5= /f v_(r,0)de |[vy] = 1lim max |v, |
~Li ~ v L : o
2n‘0 L 0 r+o [0,27] L

(1iii) the pressure p;, converges pointwise and in the mean to
the same limit at infinity



(84) (0,2m) : 1lim p (r,8) = p_ ,
Y >
27 2
(8,) lim / |p;(r,8) - p,["d6 =0
r>o 0

The questions of whether v_. tends pointwise to its asymptotic
value Vo and whether Vo i; equal to the prescribed asymptotic
value v _ were however left open.

Four yéars later the same authors [12] investigated the
asymptotic behaviour of an arbitrary solution with finite

Dirichlet integral (v ) of (1) and (2) and showed that

Vp’Pp

(i) the velocity v has at infinity the behaviour

(9) lim lvD(r,6)|2/ln r =0 , uniformly in 6 ,
Yoo ~
( 2m A 2
lim J |vp(r,8) - vp(r)["de =0 ,
r>o 0 7 -
(10)
lim |§D(r)l = lim max |v_(r,0)]| .
r+eo r>e 0€[0,2m] ~

If furthermore 0 < lim |VD(r)| < o, then there exists a

> -
constant vector v, such that, by denoting i= V-1,
Lam [gpleh| = 1%5]
(11)
iig arg (uD(r) + 1vD(r)) = arg (uO + 1v0) 7
2m
; 2
(12) lim / |v (x,8) - v,|“de = 0 .
~D .
r->» 0

(ii) the pressure pp converges pointwise and in the.mean to
the same limit at infinity

(131) [0,27) : 1lim pD(r,e) = P, ¢
r—>o
2m
(13,) lim / |pp(r,8) - p,|“de = 0 .
r>o 0



The questions of whether every bounded vy converges pointwise
to its asymptotic mean value v and whether the boundedness
condition can be dropped were however left open.
In 1988 Amick [2] showed that
(i) every Vb is bounded. If furthermore the flow is "symmetric"
(i.e. if 9A is symmetric about the x-axis and . (u,,0),
then one can find at least one solution (YD’pD
tends pointwise to

) with Pp and

u., even in y and v, odd in y), then v

D D D

its asymptotic mean value v,.
The questions of whether every "general" v, converges pointwise
to its asymptotic mean value v, and whether Yo = Ve in the par-

ticular case of the Leray solution were however 1éft open.
The present paper is concerned with these open problems. In
fact we prove that
(i) every vy converges pointwise to its asymptotic mean value
Voi in the particular case of the Leray solution, Vo is
equal to the prescribed asymptotic value v_ - Theorem 2
and respectively Theorem 3 -. i
(ii) the exterior Dirichlet problem to the steady two-dimensional
Navier-Stokes equations possesses the Liouville property,

i.e. if the asymptotic mean value v, of the velocity v, is

equal to zero, then Vb is identically zero - Theorem 1 -.
(iii) the Leray sequence of solutions (YR.’pR.)’ i € N, of (1)
i i

and (5) in QR converges quasi-uniformly on Q to (v ,pL)
i A

- Theorem 3 -.
These results were announced in [18], [19], [20], [21], [22].
However, since some proofs presented there were only sketched or

incomplete, we give here all the details of the revised proofs.

2. CONVERGENCE AT INFINITY OF A SOLUTION WITH FINITE DIRICHLET
INTEGRAL OF THE VELOCITY

Theorem 1 [21]. Every solution (vp,pp) of (1), (2) and (4)
with zero asymptotic mean value, Z.e. (UO’pw) = (0,0), 128 iden=

tically zero.
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Remark 1. Since the pressure Pp is defined up to an additive
constant, its asymptotic (mean) value p_ can always be taken to
be equal to szero.

For the proof of Theorem 1 we need the following results:

Theorem of Gilbarg and Weinberger [12, pp 384, 396, 399, 400].
The vorticity w

ava of the velocity v its gradient

p ‘< SyuD =
/2Zn_1/4r v

D’

B
Vw, as well as r*

D w, are square integrable in Q, t.e.
(14) frln_1/2r|Vw |2dxdy < wazdxdy < 2C [|Vv |2dxdy ;
D D ~D
Q 2 9
where C is a positive constant. Moreover
(15) lim r3/4ln_1/8r|wD(r,6)| = 0 , uniformly in 6 ,
Y >
1/2 .
(16) lwp(z,) = wplzg)| £ Cou(R) |z, - z,] , szl >
R+ 2, |z, -2z <1 r 2y = Xyt dyy ¢ 3= 1,2 ,

where 01 18 a positive constant independent of R and

3/4 3/8

(17) lim R in~

R

Ru(R) = 0 .

Lemma 1 [20]. The derivatives of the Helmholtz-Bernoull<t

function H, := é|v -

D + Py have at infinity the behaviour

(18) | 1im lVHD(r,6)|r3/4ln-1r = 0 , uniformly in 6 .

Yr—>oo

Lemma 2 [20], [21]). There exists a positive constant A, such
that

2T “ . _
(19,) [ upe®) - vole) 2ae = o2,
for r » » ,
(19,) %D(r) _‘Yo = o™ .

where "0" is the Landau symbol. Furthermore, i1f v, = 0, then A = 1.



Proof of Lemma 1. Let us first give the Navier-Stokes equa-

tions (11) the equivalent form

1. Q| —
X ) !
(20) Q
oH _ _,0uw
—a?- \)ax+uw.
From (20) it follows immediately that HD and wp are solutions of
2
(21) Q :  VIPH - v eVH = vl ,
and respectively
2 -
(22) Q = Ve - VD-Vw =0 .

Next we write the continuity equation (12), the vorticity function

wp and the equations (20), (21) and (22) in polar coordinates

[] - la_ 1 _1.3_ i - =
(12) Q = ar[r(ucose + vsin®) ] = ae(u51ne vcosf) = 0 ,
(23) Q 1 3—[r(usine - vcosf)] + 4 2—(ucose + vsinbf) = w

: r or r 96 f
OH _ v dw ; _
= = = XF + (usin® vcosfH)w ,
(20"') 9 @
% %% = —v%% + (ucosb + wvsinf)w ,
(21") R i V(BZH * o 2B g L QEE) | é—[r(u cosf + v.sinf)H]
arz r or r2 36 r or D D
19 . 2
+ = 5—[(uD51n6 - chose)H] = Vg s
320 . 13w . 1 32w, 19
(22%) Q = v ( + — 5= + — —3) - — —[r(u.cosd + v.sinf)w]
3r2 r 9r r2 39 r or D D
- 1 2—[(u sin® - v_cos8)w] =0
r 96 D D :

Using (23) we give (20') another equivalent form



M _ v 3w 13 2. . 123G

3t ras v 2T F) *v3E
(20'") Q E

19H _ _ 3w , 1 3 2. _ 13dF

r 36 Var 2 Br(r G) r 06 '
where

F(r,0) := %[(usine - vcose)2 - (ucosH + vsin6)2] P
(24) Q =

G(r,0) := (usinf® - vcosb) (ucosf + vsin9)

Let us write now (20) as an inhomogeneous Cauchy-Riemann equation

(20''") Q _a_iﬂ_i.i\)*w)=%‘;w ,
0z

where z = x + iy and z = x - iy are the complex variables, 3: =
9z

%(%; + i%;) , W := u - iv is the complex velocity. According to
the Pompeiu formula [17], [23, p.22], the solution of (20''') in
the disc D(z,R) = {t € C | [z - z| <R, |z|] >R + 2 21xr, + 2} is
given by

~ N s 1 HD(C) + i\)wD(C)
(25) D(z,R) : HD(z) + 1va(z) = 2ni{f = dg +

oD T - 2

BV [ (¢ - 2)7

A wp (L) wy(g)dedn

where ¢ = £ + in and PV denotes the Cauchy principal value. By
differentiating (25) with respect to z , 3/3z = (1/2)(3/3x - id3/3y) ,

we obtain

B(HD + ivwn)

92

HD(C) + iva(c)

D c o+

(2) = {7

(26) D(z,R) : TR - e = 2)2

PV S (¢ - 2) 2lwp(Dwg(z) - wp(Z)wp(Z) 1dEdn
D

where we have used on one hand the equality

py 5 S840

D = 2

(27) D(z,R) :

NI
|
N
"
|
3=



and on the other hand the analyticity in z € D(z,R) of the line
integral in (25) and respectively that of the modified area

integral, i.e.

&D(c)mD(c) _ =
(28) D(z,R) : PV é - - dEdn + wD(zo)wD(zo)(z - zo)

in a fixed point z € D(z,R), EO # z. We estimate next the two
integrals in (26), taking without loss of generality z = z.

From (15) as well as from the boundedness of HD it follows then

Hy(2) + ivw(2) 4

(29) dz = O(R™

5 ) , for Ro>x .,
3D (z = 2)

On the other hand using (16) as well as the boundedness of w
we get

D

(30) BV S (2 - 2) 2Ly (D) ey (2) - wy(z)wy(z) 1dEdn|
D

< (PV s + ;o g - z|7?
lz - z| €1 1< |g-2z| <R

|wp () wp(2) = wy(z)wy(z) [d€dn < C{u(R) +

PR e R ] 2]
max | wy| max[|z=—| + [—]|1 + sup w|1nR} .
p D p 92 3z rzR+2 D

Using now the estimate [12, p 402]

(31) 1im 274

In" ¢ |VYD(r,e)| = 0 , uniformly in 6 ,
r—>o

as well as (15), (17) and the boundedness of v from (20''Y),

~D”
(26), (29) and (30) we infer
: 3/4, -1 3 : : 3

(32,) iig 34107 ' |§E(HD + 1va)| = 0 , uniformly in 6 3
(32,) lim r3/4 13:(3 + ivw )| = 0 , uniformly in 0 ,

2 D D

r+m 9z

and the assertion of Lemma 1 then follows.

Proof of Lemma 2. By integrating (20'') with respect to 6

between 0 and 2m we get



dH _dF . 2’

E - d_r = F(r) ’
(33) (rA,w) R R .

do _ 46, 24y ,

where, according to (24),

r o~ 1 2‘" A ~ 2
F(r) = T S {[(u - u)sin® - (v - v)cosO]® -
0
[(u - 2)cosB + (v - ¥)sin8l2}dae -
G(acz " 352) _ S(GSZ _ Gcz) ,
(34) (rA,w) : X 1 o X X
G(r) = T J [(u - u)sin® - (v - v)cosf] x
0
[ (u - ﬁ)cosG + (v - v)sin@]lde + G(asz -
L {}CZ) _ G(ﬁcz N 352)
By
~cn(sn) 1 2
(35) (rA,w) : f (x) = g é f(r,0)cosnb(sinnb)de ,

n€ NG {0}, f :=

we denote here the Fourier coefficients of the periodic, smooth

function f(r,0), i.e.

(36) Q f(r,;0) = %(r) + 2 [%cn(r)cosne + Esn(r)sinne] .

nMs8

n=1

Multiplying (15) and (23) by sin6 and respectively cos6 and integ-
rating with respect to 6 we get

. an _ _,d 2, (o2 252, _ ~si
(371) (rA, ) & e (—dr # r) (‘u + v T) = w ’

o 8@, 2,452 - o2y L _ge]
(372) (rA’ ) H dr = (-a‘f + r) (u v ) = w

Using the Parseval equality, from (10) we infer
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(38) 1im G;“‘S“’(r) = 1im Gg“‘s“’(r) =0 ,neé€N

r—+oo Yr—>oo

Noting now that by the integral theorem of the mean there exist
81(r) and ez(r), such that

(39)  [r,,® : vpl(r,0,(r)) = vp(r) , Hy(r,8,(r)) = Hy(x) ,

and applying the Cauchy-Schwarz inequality we get

2T
(40,) Qi |vp(x,0) - V() |? = 7 3,vp(r,0)as|?
2T 5
27 é [8¢YD| d¢ ,
~ ~ 2 = 2
(40,) 2  |vplr,0,) - vy(r,0,)|% < 2n é |3¢YD| d¢ ,

and similarly for HD’ and hence , by taking account of (4), (14) ,
(20) as well as of the boundedness of v

~D
= -1 ~ 2 2
(41,) [0,2m) : J r |vp(r,8) - Y (x)|%dr < 2n/|Vv | dxdy < «
r - - Q -
A
(41,) [0,2m) : T r’1|v (r,6,) - v (r,0 )|2dr < ®
2 ’ : b5 bl b o Rl ;
r
A
-1 ~ 2 2
(42,) [(0,2m) : / r |Hp(r,8) - Hy(r)|“dr < 2n/|VH|“dxdy <
r Q
A

4n(v2f|VwD|2dxdy + fllezwgdxdy) < o,
Q Q -

(422) [0,2m)

P = = 12
J r |Hy(r,8,) - HD(r,e1)| dr < = ,
A
Integrating next (411) and (421) with respect to 6 and the
Parseval equality we obtain

0
(43) reheenren) (128 <, nen,
d v
A
(44) Feo a0 () 1%24r < » , nen .
r

A
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From the first equation (33) we get now

: dF._. dd dH
(45) D, D, 24
r D

: D
Lin (gr~/ar
Y »>oo

/ar—)=1.

On the other hand by integrating (331) with respect to r we obtain

& " o F(p) .
(46)  [r,,= : Fp(r)/(H(x) - By - 2£%—dp/(HD(r) - H

0)=1I

where, according to (10), (11), (131), (34) and (38),

_p 12 1 &P
(47) lim Hy(r) := lim [5 vp(r) B / IYD(r,B) -
> > 0
A 2 A 1.2
Gp(r) |%d0 + Bp(r) ] = b + b, =t g
(48) lim ﬁD(r) =0 ,
>
(49) lim f(ﬁD(p)/p)dp =0 .
Y-~ 1Y

Consequently we have to consider the following possibilities:

a) lim F(r)/(fy(r) - Hy) and lim 2 f(ﬁD(p)/p)dp/(ﬁD(r) - Hy) do
> Y—>oo 1
not exist,

b) the two limits exist but they are infinite and the limit of

the ratio 2 f(?D(p)/p)dp/ﬁD(r) is one, i.e. either
r

Y >

f,D(r) 2 J (FD(O)/D)dD
. — . X _
lim — = o , lim — = —oo ,
r->o HD(r) - H0 r—>o HD(r) - H0
(501) = =
lim 2 J (Fp(p) /o) dp/Fp(x) = 1,
B r
or
r " ~
FD(r) 2 £ (FD(p)/p)dp
lim e = =0 , lim — = ®
r->o HD(r) - HO r+o HD(r) - Ho
(502) 7 o
{ lim 2 J (F5(p) /p)dp/Fpy(x) = 1,
r



- D

c) the two limits exist and they are finite, i.e.

(51) lim f‘D(r)/(ﬁD(r) - Hy) = o, lim 2/ (ﬁD(p)/p)dp x
Yo =¥00 E
1/(Hy(r) - Hg) =8, a+B=1,

where either
cq) a=1,8=0,
or
c2) a=0, 8=1,
or
c3) o # 0, B 1 - a # 0.
Let us study at first the case a). Taking into account (47), (48)

and (49) we infer that, for a suitably chosen neighbourhood U_ of
infinity

Fy(r) = £(r)g(r) , Hy(r) - Hy = h(r)j(r) ,

(52) u_

o2} o]

- I (Fp(0) /o) de = k(D) 1(x) ,
r

where without loss of generality we can assume that £, g, h, j, k,
1 are bounded, at least Cz-functions, such that

(531) lim f(r) = 1lim h(r) = 1lim k(r) = 0 ,
r—>o© > Yo
af d2f dh
f(r) >0, == < 0 , >0, h(r) >0 , =— < 0,
dr a 2 dr
r
(53,) U
2 © 2 2
4250,k >0, 3Fs0,%E50,
dr dr
(54) lim g(r) , lim j(r) and 1lim 1(r) do not exist.
Yr—>oo Yoo r—>oo

Moreover, from (331), (46) and (52) it follows

f(r)g(r) = rE1(n) + k&,

(55) U_

(rgE + 2k 11(r) + rk(0) Z} /b3 () = 1



_‘I 3_

Let us give now (46) the equivalent form

A 200 A
(46')  [ry,=) : (Hy(r) - Hy)/Sl-r I (Fp(0) /0)dp] = .
But (46') implies the existence of a neighbourhood V_ of infinity,

such that either

(561) v, : HD(r) - HO >0 ,
or
(562) vV, : HD(r) - H0 £ 0 .

Indeed, otherwise there exists a sequence {rn}n r > such that

EN'
(57) Hy(r ) - Hy =0, n €N .
From (46') it follows then

(58) %;['rzi‘ﬁn‘p’/p’dpl‘rn) =0 ,nenN,

or, equivalently, by using the last equation (52),

I | dlnk 2
(59) il = -5 ) -2 ,nen.
n

Since on one hand, according to (54), the left hand-side of (59)

does not have a limit at infinity, on the other hand, taking into
account (531) and (532), the right hand-side of (59) has a limit

at infinity, (57) can not hold and, consequently, either (561) or
(562) follows. Next we give (331) the equivalent form

(333) (ry,e) ———/—r(r F

Using a similar argument to the above one we infer the existence
of a neighbourhood W_ of infinity, such that either

A

dH
(601) W o: T

D

<0,



i) G

or

(602) W : T

By derivating now (33{) with respect to r we get

5
d™H
D_d .1 d,.2
(61)  rpe=) 2 — = gl FE I -
r r

Using again a similar argument to the above ones we obtain that

in a suitably chosen neighbourhood Z_ of infinity either

dzﬁD

(62,) Z, : 5= >0 ,
dr

or
dzﬁD

(622) Z_ 5~ & 0o .
dr

But (561),(601) and (62,), respectively (56,), (60,) and (62,),
i.e the convexity, respectively the concavity, of ﬁD(r) - H0 in
vV, N W_n2_, are in contradiction with (52), (531), (532) and
(54) . Consequently the case a) can not occur.

Consider next the case b). Without loss of generality we restrict
ourselves to (501). But (331) and the third relation (501), i.e.

lim g;(i(fD(p)/p)dp)/%-i(ﬁD(p)/p)dp -1, imply then (after integ-

>

ration !)

2 2

(63) Fo(r) = o(r™) , Hy(r) - H, = O(r"%) , for r+e .

0

Let us investigate now the case c1). Since in this case
[oo]
d A
a;(i(FD(D)/D)dD
(64) lim = o ,
iy (Fy(p) /p)dp

2
x

R 8

we get that v n € N, 3 U_(n), such that

(65) U ) = SEU(Fp(0) /0)ap) /2T (BL(p) forap < - B .
: b a5



=15~

From (65) it follows then

oo}

(66) J(Fy(p) /o)dp = O(r™) , v n € N, for rre
r

For the sake of completeness we note that an inequality of the
type

(67) U_(n) : g—r<£<an<p)/0>ap>/§ £(§D<p)/p)dp > 3

would lead to

(68) o= 0(f(§D(p)/p)dp) ,Vn€EN, for r o ,
r

in contradiction with (49). Applying now the same argument to

(331), we obtain instead of (64),and respectively (65)

aF
(69) 1im || = » ,
Y-+ 2 A
T p

and respectively
dFD

(70) U, () : =P

22 n
Izfp < ~3 -

Integrating now (70) and taking account of (46) and (66) we get
finally

~

FD(r) = O(r—n) ’
(71) vVneN, for rro ,
o _ -n
The case c2) leads to a contradiction. Indeed, in this case we

have on one hand

(72) lim ————————— = t © |

On the other hand (331) can be given after integration another



=16~

equivalent form, namely
(73) [r,,=) : r2(H.(r) - Hy) - 2
A’ : D 0

(r,) - H

2 A

and, consequently, by taking account of (71) we infer

. 2 A r - ~
(74) lim % (A, (x) - Hy) /(20 p(Hp(p) - Hyldp + C,) = 1
Y >0 r
A
where
(75) C. = r2(H.(r.) - H, - F(r,)
p T Tp(Hp(r, 0o - Fplry) -

By integrating (74) we get then

(76) rz(ﬁD(r) - H = Cr2 + o(r2) , C#0 , for r e ,

o)

in contradiction with (47).

It remains now to consider the case c3). Since in this case

- (1) dlnI
(77) 1 4m D = 1im 9T 2=%=:—x,
r+o - 2f(FD(o)/o)do r+»» dlnr
r dr
where
(78)

H
1}

|- (Fpy (0) /p) o]
h of

and A is neither zero nor infinite, after integration we obtain

A

(79) Fo(r) = o(r™%Yy) , for row ,

where, due to (48), X must be positive. Using now (46) and (77)
we infer finally



| T

(80) ﬁD(r) - Hy = O(r—zx) , for roeo .

Let us multiply now the continuity equation (15) by cosnf and

respectively sinn6 and integrate with respect to 6 to get, v n € N,

[ ,d n + 1, ;Z“cn+1 ~sn+1, _ d n - 1, ;2en-1
rraaiie e A LR R
Asn—1)
D ’
(81) (rpo=) = o
(g_ R 1)(asn+1 _ “cn+1) - _(g_ _n 1)(Asn—1
dr r D D dr D
~en—1
L +uD ) .
The equations (81) reduce in the particular case n = 1 to the

equations (371) and (372). On the other hand, by taking into

account the expression of the first Fourier coefficient of w (see
(23) 1), i.e.

82) (= = L &r@d - $h1 = G

from the second equation (33) and (34) it follows

(335) (rA,W) : d [rz(a - vaD)] + 2vp.r = d [rz(a - Vo

ar D ar p) *
2\)r(ﬁg1 - 031)] =0,
or, equivalently, after integration with respect to r,
(83)  (pe ¢ S@S! -8 - L@t - Sh - oL Z"[(uo ;
GD)sine - (vD - GD)cosel[(uD = GD)cose + (vD -
vp)sinelae + ra (352 - 8% - Y (@g? + 9521

By repeating now for the equations (81) and (83) the same argument
as for the equation (331), respectively the equation (46), we

infer that all the Fourier coefficients of Vp satisfy relations
of the type (80), i.e.
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4 2a_n/B
an(sn)(r) = Bir n n) )

(84) n €N, for rr o ,
R Zann/Bn
vplr) - v, = O(r )

~0
where, according to (11) and (38), and using a similar argument
to that employed in the case c2) we get

a

(85) <0, a 0 ,')n e NU {0} , anfo for noo .

s

From (63), (71), (80) and (84) the assertions (191) and (192)
then follow (for a suitable choice of A!). In order to prove the
last assertion of Lemma 2 let us consider the particular case

where Vo = 0. Using (191) and (192) and integrating (83) with
respect to r we get , for row

~s1 ~ct 21 sl ~ =i
(86.) aSTr) - €M)+ ig;[ug (0) - %€M (p11ap = 0™ ,
1 =@ 2T A ~
(862) 37 i é [(uD - uD)51n6 - (vD - vD)cose][(uD -
G JcosO + (v, - G )sinf]dedp + 1 ?[ﬁ (ﬁsz - GcZ)
D D D PTS r DD D
- vp(ac? v52)14p - € = max o(xr™2* * 1 o™y .

By estimating (862) we have taken into account that the only term

on the left hand-side which depends on 831 - 3;1, i.e. according to
the Parseval equality,

~s1 e ~e1 ~s1
(87) (up vy ) (ug” + vp)do ,

1
v

KR8

disappears when considering the non-slip boundary condition (2).
Indeed, integrate to this end (15) with respect to 6 and obtain

o) Ag] ~s1 _C
(88) [rA, ) 3 ug (r) + v° (r) = =
By the flux-divergence theorem C = 0, provided (2) does hold.
Comparing now (861) and (862) the last assertion of Lemma 2 then

follows. For the sake of completeness we note that this assertion, i.e.
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" X =1, provided vy = 0 and (2) holds" is not only a conseauence

of (861) and (862): whiéh were obtained by integrating twice
(332), but follows also when comparing the rates of decay at
infinity of all the Fourier coefficients of the Navier-Stokes

equivalent system of equations (20''), i.e. by multiplying (20'"')

by cosn6 (sinn6), n € N, and then integrating once with respect

to 6 and twice with respect to r and using (191) and (192) as
well as the (rate of decay of the) Fourier coefficients of wp
obtained from (23). However, the last assertion of Lemma 2 is
no longer valid if we use other boundary conditions than the

non-slip boundary condition (2), namely non-homogeneous ones.

In order to show this fact let us assume that the vorticity w
is independent of 6 in Q. From (15), (22') and (23) it follows

then

(89) Q = ucos6 + vsin6 = % ;

w = 1 g—[r(usine - vcos0) ]

r dr :

(90) Q

1 d dw C dw _

racfa) "y a -0
where C is the constant appearing in (88) . Integrating (90) we

| ¢, 1+< ¢

(91) Q usin® - vcos6 = T /v b * oy
(92) 2 : w=cr/V,

where C1 and C2 are also integration constants. If v has finite

Dirichlet integral, then w is square integrable in Q. Hence C

has to satisfy the condition
(93) C <€ =y ;

According to (89) and (91) the velocity v is given by

1 + C/v

cr Yeoso + (C.r + Czr_1)sine ,

=t
]

3
(94) Q

-1

v = Cr sinf - (C3r1 + C/v

+ C2r—1)cose ,

get
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1

with C; = C, (2 + C/v) " '. From (20') it follows now that H is
also independent of 6, and satisfies the equation
C2
. dH _ 1 1 + 2C/v C/v - 1
(95) Q a; = > + C \;r + C1C2r ’

where we have taken into account (91) and (92). After integration

with respect to r we get (up to an integration constant C4 = pt)

(96) Q:  H(r) = C,C (2 + 2c/v) "1g2 * 2C/v C1C2C_1vrc/v

Taking account of (92), from (96) it follows then

c.C
. _ >3 2 + 2C/v
(27) ol plrl = 2(1 + C/V (2 + C/W) *
2 2
2€1%Y c/v St S 2,
C(2 + C/v) — g Py *

Assume now for the sake of simplicity that 9A is starshaped with

respect to the origin. Consequently we can give the equation of
the boundary 9A the form

(98) [0,27) t = rBA(e) .

Then (94) and (97) solve the following exterior Dirichlet problem

for the Navier-Stokes equations (and the continuity equation!) (1)

i _ -1 . 1 + C/v
(99) A : v = CraA(e)(cose,51n6) + [C3r8A () +

Czrgl(e)](—sine,cose) ,

(100) [0,2T7) : lim Y(r,e) = 9 .

Y+

Taking now into account the fact that the unit outward normal to
dA is given by

" - 1 et _ '
(101) [0,2m) : n (r'2 " r2 )1/2( raASLne raAcose,réAcose
A oA
- raAsine) 7



21—

and using the periodicity of Lap We get

(102) / vends = -C ,

A
in accordance with (88)and (89). Choosing now 9A to be the unit
circle, i.e. raA(e) = 1, and taking C2 = —C3, from (94) and (97)
it follows that the above exterior Dirichlet problem admits infin-
itely many solutions (C # 0!). Assume next C = 0. Since w is square
integrable in Q, from (92) it'follows that C1 = 0 and, conse-
quently, C3 = 0. The solution (Y,p) of the above exterior

Dirichlet problem, i.e. the equations (94) and (97), then become

r~1sine .

u(r,0) C

2
(103) Q

v(r,8) —C2r-1cose ,

-2

C
(104) Q p(r) = p, - =r % .

On the other hand, according to the following
Theorem of Berker and Finn [4], [6, p. 129]. Let v be a solu-
tion of (1) and (2). If there exists a limiting velocity Vs Such

that

vz ol = 0 , uniformly in 6

(105) lim r

Y >

|v(r,8) - v

then v g in Q,

the constant C2 must be equal to zero, and the assertion that
the non-uniqueness result showed above is valid only in the
case of a non-vanishing flux C then follows. Moreover, from (94)
we get (for C # 0!), in accordance with (861), (862) and (87),

(106) A= -1 ==,
and, consequently, by taking account of (93),

(107) . X # 1, provided C # -2v .
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For the sake of completeness let us show why, in the case of a
non-vanishing outflow C (C < 0!), the proof of the last assertion
of Lemma 2 does no longer work. Indeed, from (84), (87) and (88)

it follows

1 5,281 _ 2ely nel s1 _C71,4s1 _
(108) ers f(uD vp )(uD + vy )dp = U'fE(uD
b} r
381)dp = O(r—A) , for roew .

On the other hand, the equation

(109)  [r,,») : 831(r) = 3;1(r)

+

1SRG ) - 95T (o) 1ae = 0

has the solution

Ac1(

(110)  [r,,) : a5y - & =11 + ©/%

r) ’

C1(2 + C/V)
in accordance with (91). Consequently the last assertion of Lemma 2
does no longer hold.

Remark 2. The above counter-example to the uniqueness of the
viscous fluid flow of an incompressible fluid past a circular disk

was given first by Hamel [13].

Proof of Theorem 1. By multiplying (11) by v and integrating

over Qr we obtain, after using the GauB-Green theorem and (2),

(111) v J |vvgl2axdy = -y s (92 (|vp|?) - Ve (Hv) ldxdy
Q. - Q e ~
r b o)
2m o | v 2 1
= =VIr f [—a—r(—fz—) - '\7 HD(VD-n)]dG .
: VoD

Letting r tend to infinity and using (4) we get

2 o4 d = o 2
(112) -V é |Vvp|“dxdy = lim [-vr 5= (|YD| /2)dse

r—om

O =N

2m

+rf HD(VD~n)d6] .
0 b3 b e



On the other hand taking into account

(113)

Next we multiply (20'"')

s R

E_ d_ (|vp

[2) =

Vp) * Pp - ﬁD][(uD

2T
/2)d6 - f H

vr d

21 dr g (lvp

%— f [ZIV

- GD)cose +

and after integration with respect to 6 we get

p Vp

- §D|2 UL

(v

by cos6(sinf) and sin6f(cosH)

(88) we obtain the identity

*n)do] =

2
vD| /2)de +

ol &~

~D '<D

= vD)sinG]de

respectively,

~ie
dH ~ ~s1
_ v~si 1 d 2°¢cl G

ar "~ ™p ° ;7 IGe(TF ) =y
(el e et Lt act

D _ _ " D ., 1 g_(r2as1) S

r dr r2 dr r ¢
s A
Aty vacl , 1_d_ 2ps1) _ ¢!
dr T r 2 dr r ¢
r

(115) (rA,w) :

~s1 ~c1

ED__ = —\)de o+ J__ g_(r2G01) - _f;s_l

¥ dr 2 dr ¥
From (114) and (115) it follows then
116 ) 1€ (r) = PN (r) - 6% (x) + “, vos1 (x)
( ) [rA, D r - i D '
117 [r,,o) 2 HB3W(r) = F1(x) + €M (x) + S2 _ vl ()
(117) Tpr : p ‘¥ < r D !
where, according to (24),

2T

~c1 as1 _ _ 31 _ 2 _ a

(1181) [rA,w) : -G g é |YD YD‘ cos (8 2¢)de
~s1 ~c1
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2T
(118,)  [r,,=) : #51 + 8% - L é lvp - 9pl%sin(e - 2¢)de +
(Ag1 - 81)uD '
(119) Q up (r,8) - GD(r) = |vp(r,6) - QD(r)|cos¢ "
vp(r,8) - QD(r) = |YD(r,8) - §D(r)|sin¢ .

Taking into account (116) and (117), from (113) it follows then

2T
(113 [r,,=) : Z=[- \) f (|vpl 2/2)a8 + f Hy (vpen)de] =

vr d 2“ ~ &
~ 3T ar g (|YD VD| /2)de + C1uD + CZVD =
rﬁ 2T r\’; 2T

D A 2 D 2
I é |vp = vplTcos(8 - 2¢)d6 + = J [vy - V|

- 2m x o8 .

Binle — 29)Q0 * = é Llvp = vpl®/2 + vpety

vp) + pp - Ppllvy - vplcos(e - ¢)ae .

Noting now that by the Cauchy-Schwarz inequality

2T

) A 2000172
(120) (rp,») (é (vp - vp)~de) a

A

2T
d A w2
by é (lvp - vpl©/2)a8]

2T
s 2 1/2

and using (31) and Lemma 2, from (113') we get, for r-«,

2m
(121) i-vd f (lvpl?/2)a0 + [ By (vpem a0] = o(x~3/4

o 2n
sor™) + 0™ 4 O(L" (pp, = Bp) 2a01"/2) .

Taking account of (132), from (112) we infer then that the Dirichlet
integral of v, vanishes and, hence, using (2) the Liouville proper-
ty stated in Theorem 1 then follows.
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Theorem 2 [23]. Every solutiZon (gD,pD) of (1), (2) and (4)

tends pointwise at infinity to its asymptotic mean value (20’pw)'

Proof. We choose (vD,pD) to be an arbitrary, non-identically

~

zero solution of (1), (2) and (4), and denote by (YO’pm) its

asymptotic mean value. Choosing the point P(R,¢), R > Lpr @s the
. . . i0
origin of a new system of polar coordinates (r',06'), i.e. re'’ =
3 1
Rel¢ + r'ele , we give the first equation (20%) the equivalent form

oW
iv d 2 -V D _
(2077} i gprllvp - vol/2 + ppl = v v+ [lup - ug) >
u, ov vV, du
; 0 D 0 D
sin8' - (vp - volcos8'luy + =7 3gv ~ ¥T 3@

Integrating first (201V) with respect to r' on [0,%] and then with

respect to 6' on [0,2n], and taking the absolute value we obtain

2T
1 2 1 R 2
(122) Q 7|YD(P) - YOI S 1= g ‘YD(f’e') - YO' dae' +
1 R/2 2m
;o é é | T{ay = uy)sin®' - (v - vo)cose']wDIde'dr'

+ |pp(P) - P3| .

Applying next the Cauchy-Schwarz inequality we get

R/2 2m
(123) [r,,®) : { é |[(uD - uy)sind' - (vp - vo)cose']ledG'dr'
R/2 21 R/2 27
s VECT T vy - vgldetart £ S wlaxtay') /2
1 O - - 1 0
R/2 2 _. 5 3R/2 2 142
SV2Z( S Jx' |vy - vl®aetar S/ wydxdy) ,
1 0 - - R/2 0

where we have used the fact that the disc r' < R/2 is contained
in the circular annulus R/2 < r < 3R/2. On the other hand we have

m
| [(uy - uy)sing' - (v - vo)cose'|wD]d6fdr'

1
(124) (rpre) = é D

oSN
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< C* max | w
Q ~Q
B+1 1

2

pl

where C* depends on the bounded velocity v From (411) and (122)

D*
we obtain then

2T
2 1 R 2
(125) 2% lYD(P) - YO| 55 é |YD(§'6') - YO' det +
~ R ~*
2|pp(P) - ppl3)| + C*_ max lwpl +
Q ~0
§+1 5—1
2 2
3R/2 2m R/2 2T .
2V2 (402775 gy 2axdy + £ f ol
m id i
R/2 0 1 0
3R/2 2m
v0|2dr')1/2( ;o wgdxdy)1/2 ,
- R/2 0

where again we have used that the disc r' < R/2 is contained in
the circular annulus R/2 < r < 3R/2. Next we show that the first
equation (10) as well as the estimates (191) and (192) are inde-
pendent of the fact that the system of coordinates is fixed or
moving. To this end we consider again the two systems of polar
coordinates, the old, fixed one, (r,6), and the new, moving one,

(r',6') . Using 2ab < a’ + b? as well as (40,) we get

a_ 2" A 2
(126) (r,,=) : \a;w-é lvp(r',8') - vylx')|"ae’|

IA

2T N ov
’ (f) lvp(x'/8") = vp(x') |53l

IA

2T 2
[ x'|Vy|“aer .
0

~

4ﬂ2

Integrating (126) with respect to r' on [0,r*], r* £ R/2, and
using again the fact that the disc r' < R/2 is contained in the
circular annulus R/2 < r < 3R/2, we obtain

2m ~ 2 23R/2 2m 5
(127) [rpr=) = L |vpl(x*,0") - vy(r*)|“de' s4n® [ [/ |vv_|“dxdy .
o - - R/2 0 7
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From (127) it follows then

2m

(128) tim f |vo(B,0m) - 9 &) %6 = 0 .
Vb (2 p (3
R0 0

Writing next (331) and (46) in the new variables (r',6'), and
using the same argument as for proving (191) and (192), we
infer that for r'-w

2T

(191) S lvglet,00) - S (') a8 = o' 2"
o '~ :

(191) v (r') - v, = O(x'™})

2 w D) 0 :
From (195) it follows then
R/2Z 1~ 2

(129) sup S r' '|vp(r') - vy|Tdr' < o .

RE[2,») 1 - -

Taking now account of (4), (131), (14), (15), (19{), (195),
(128), (129), and letting R»», from (125) we infer

(130) [0,2T) lim YD(r,e) = Vg -

R>
3. CONVERGENCE AT INFINITY OF THE LERAY SOLUTION

Theorem 3 [23]. The Leray solution (QL,pL) of (1), (2) and

(3) tends pointwise at infinity to (gw,pm). Furthermore, the

Leray sequence of solutions (v »Pp ), © € N, of (1) and (5) in
z Z

QR converges quasi-uniformly on § to (vL,pL
: ~

For the proof of Theorem 3 we need the following results:

Definition 1 [16, p. 66]. Let X and Y be metric spaces and

)

let f , n € N, map X into Y. The sequence {fn}n€N t8 said to

converge quasi-uniformly on X to f : X + Y if
(¢) {f,} converges pointwise to f,

(27) for every € > 0 there exists a sequence {np}pEN c N and a

sequence {Dp}pEN of open sets D_ < X, X =

D_, such that
p p

p

nc 8

1
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distY(f(x),fn (x)) <e , p€N, x €D

p P

Theorem of Arzela, Gagaeff and Alexandrov [1], [9], [16,
p. 68]. Let X, Y be metric spaces and let fn’ n € N, map X into
Y continuously. The sequence {fn} converges on X to a continuous
map f : X » Y, 2ff the convergence is quasi-untiform.
Lemma 3 [20]. The Leray sequence of velocities {v, } sat-
i TEN
isfies the estimate

2n
(131)  [r,,R;] : / |vR (r,0) | 23p = o(lnr) , uniformly in R, .

Proof. By the Cauchy-Schwarz inequality we have

2m 2m
. d 2172 _ 1 2..-1/2
(132) (rA,Ri) : Ef[f IYR.(r'e)l de] = 7[[ |YR_| do] X
0 i 0 i
2T ZW 9
9 2 1/2
é-—a IYl|des IarRlde] :

Integrating (132) between r, and r and applying again the Cauchy-

Schwarz inequality we get

2m 2m
(133) [ Ry) e U lv (x,0) 240172 - (1 vy (x,,0)]%11/2
1 0 |
r 172 . 27 3 2 1/2
$ (Inz) [/ [ |55vg (0,8)|“pd8dp ] .
A r, 0 °P~%
A
Thus,
2T 2 2m >
(134) [r,,R;] : / |vg (x,8)|%de < 2/ |vp (rA,e)| de +
0 ~Ui 0o -
r 2T -
s s 15— R.| Ddedp]ln(;—) "
rAO A

Using now (6) and the fact that, according to the construction
of the Leray solution,
2T 2T

(135) lim / |v (r,,0)]|%a8 = J |v (r,,0)|%as ,
R +>0 0 i o -
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the assertion (131) then follows. .
Lemma 4 [20]. The gradient VwR 18 square integrable in QR 5
A £
untformly in Ri'

Proof. As known Wp is solution of the equation
2
(136) Q 5 wW 0w = vy *Vw = 0

R, ~Rs
i 1

Let now n(r) be a smooth function which vanishes near r » « and
1

near r = rA,h(wR ) be a function of one variable, which is C ' and
i
piecewise C2. An easy computation which uses the fact that V-VR
i
= 0 shows that
(137) QR. : V-[vn(r)Vh(wr’) - vh(mR‘)Vn(r) - n(r)h(mR.)YR_]
1 i i 5 1 i

= vn(o)h' (wg ) |Vug |? = hiwg ) [v¥n + vg V0]

1 L 1

2
n(r)h'(wR_)[vV Wwp o~ YR.'VMR.] 5
i Al i i

Since Wg satisfies (136) and n vanishes near r = rA and for r 2
i
r_, integration over the domain r > Ty yields the identity

(138) [ vnh''(wg )|Veg |2dxdy = S hiwg ) [v%n +
i i Q i

R, 1 R. +
¥ i 1

YRi-Vn]dxdy .

provided we take R, 2 r . Now we choose r_/2 =: R > r, > r, and

non-negative C2 cut-off functions 51 and 52, such that

o
-
a}
A
|
Ll
a]
+

A r1) ’
(139,) [r,,Ry] ¢ & (r) 2=

,,
_
~
ai
v
a}
—
~

(139,) [rA,Ri]

m
N
H
S
..
L}
1

,.
o
~
R
[\
N
~
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and set
(140) [rA'Ri] : n(r) := § (r)Ez( ) .

Next we choose a positive constant wg and set

IA

(141) h(w

o
~
£
b
|
£
(@]
£
b
[\
£
o

Inserting (1391), (1392), (140) and (141) in (138) we get

(142) 2/ |vug |%axdy £ 2/ n|Ve, |%axay
| w R |sw, i |wRi|Sw0 i
r1§ r <R
_ 2 -1 '
= / hwpg ) [Vn + v Tvp *Unldxdy .
{rA§r$r1} i i
U{R<r<2R}

Consider now the part of the right integral over the circular
annulus R £ r £ 2R. We have on one hand

(143)  [R,2R] : |Wn| s §, |v%n] = &

where the constant C:.is independent of R. On the other hand h(w

satisfies the inequalities

2
(144) h(wg ) £ wp , hlug ) £ 2w5fw |
p i s I e I 1
Therefore, using (6)
(145) | s nvnaxay| S s o2 axay s
RSr<2R R REr<2R i
S 1 |vvg |2axdy s c, /&%,
R RSr<2rR 7i

where the constant C1 is independent of Ri and R. For the other

R,)



o

part of the integral over R € r

IA

2R we have

(146) | / _hvp -Vndxdy| < e |h§\rR «Vn|dxdy +
RSr<2R ~0i RSr<2R i
S |h(v, - v, )eVn|dxdy £ 2w, S |wg | X
pSpsoR N Ry O rers2r R4

|vnllvg = Vg laxdy + 7 wi |vn||vg |axdy .
i i Rsr p i i

IA
IA

2R

Using now (401), written for VR * (143) and applying the Cauchy-

Schwarz inequality we obtain =

(147) S Jug I19n]lvg - 9p ldxdy € [C/ w2 axdy x
R<r<2R Ri Ry =Ry REr<2R Ri
2R 27 =
;s |%§VR |29%‘—1£]1/2 s ¢/ |vv, |%axay ,
R 0 ~Ry R<r<2R ~Ri

where the constant C is independent of Ri and R. Applying again

the Cauchy-Schwarz inequality, from Lemma 3 we infer

(148) [rA’Ri] : §Ri(r) = 0(1n1/2r) , uniformly in Ri 7

and hence,

C2R'11n1/2

IA

2
R [ (DR dxdy ,

(149) r
r RSr<2R i

2 A
ws |vn||v, |dxdy
R< Ry ~Ry

IN

2R

where the constant C, is also independent of R, and R. Fixing now

Ri and letting R ~» Ri’ from (6), (142), (145), (146) and (149)
it follows then

N

(150) lim 2 / |Vop |%axdy = 2 / |Vug |2axay
R>R, |wRi|§wo i |wRi|§w0 i
r1§r§R r1§r§Ri
2 2 =
< Joowp ([VSn| + v |vp [ |Vn])dxdy .
<r< 1 ks
£rér, 1 i

A 1
Using now on one hand the fact that {v_, } converges uniformly in
i

any compact subset of O to v on the other hand the independence

~ L
of the right hand integral of war and letting wg > ®, we infer that
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(151) [ |Vug |dxdy € K/ wl dxdy ,
QR. i QR. a.
1 h 8

where the constant K is independent of Ri' Taking account of (6),
the assertion of the lemma then follows.

Lemma 5 [20]. The sequence of vorticities {wR } satisfies
1 TEN
the estimate
(152) Qp : wp (r,0) = O(r_1/2) » uniformly in 6 and R,.
i i
Proof. For r, < 20 < 2n+1 < Ri' (6) and (151) imply
n+1
2 2m
dr 2 2 9
(153) i ;f-f (r wp  * 2r|wR.§§ wR_|)d6 <
2n 0 i p X i
! (w2 + 2|w, Vw, |)dxdy £ C* ,
n___.n+1 R By Ry
2 <r<2 i

where the constant C* is independent of Ri' Hence by the integral

theorem of the mean, there is an r, € (2n,2n+1) such that

2% 9 3 3
(154) é [r wp (r ,8) + 2rn|wR_(rn,6)5§-wR_(rn,9)|]d8
;1 i i
1 2 2 c*
TV ) Qup  + IVwR_I )dxdy < 75 -
2n<r<2n+1 1 i

Taking into account the inequality

2 2T 2 2m 3 2
(155) wRi(rn,e) - g wRi(rn,¢)d¢ < 6 L§$wRi(rn,¢)|d¢

2T 3
=2£ IwRi(rnr‘b)mei(rn'dz’)ld‘b ’

from (154) we infer

(156) r max wi (r_,8) s C
8ef[0,27] i

But wp as solution of the elliptic equation (136) satisfies the
i



TS

Hopf maximum principle. Noting that r < 4rn, we obtain that

n+1
2 2
(157) Y max wp (r,0) < max[4rn max wg (rn,G),
[0,27] i [0,27] i
r max - 2 ( 0) 1] £ r € (x_;xr_..)
n+1 X" Op Engqe ¥ H% n’ n+1
[0,;27] i
From (156) and (157) we conclude then (152).
Lemma 6 [20]. The Leray sequence of velocities {v, } satis-
T4 TEN

fies the estimate

(158) QR. : (r,0) = O(ln1/2r) , uniformly in 6 and Ri .

v
~R-
1 1

Proof. We note at first that the complex velocity w is solu-

R,
tion of the inhomogeneous Cauchy-Riemann equation *
Ry
(159) Q $ = S W .
Ry 57 5 By
Let denote now r = |[z| 2 8r, and choose the integer n so that

r € [Zn,2n+1). Next we show that there is a sequence {rn}nEN’

r € (2n,2n+1), such that

n
(160) g. & v 1B ,8) = 0016 7%¢ )y , uniformly in @ and R
Ri . ~Ri n’ B n’ ¢ y i -
Indeed, let r, < il 2n+1 < Ri' Using the inequality
n+1
2 2T
(161) ro 0 g e |28 g v, |%axdy ,
2n 0 i 2n<r<2n+1 i

it follows from the integral theorem of the mean that for some

r, € (272"

(162)

m
3 2
|§§YRi(rn,9)| de <

oO=N

J | vve |2dxdy :
2n<r<2n+1 s |

By the Cauchy-Schwarz inequality and (a + b)2 < 2(a2 + b2) we get



=3l =

2m
1/2
(163) [0,2m) |vR (rn,6)| < [2m7 [ |%§1-VR (rn,e')|2d6'] /2,
i ! 0 s 1
lvg (£ 00|
~Ri
i 4T 5 2
(164) [0,2m) : | VR (r ,8)|% < 4n [ [55vvp (rn,e')| de' +
~R 0 ~Ti
2|vg (r.0)|% .
i

Integrating (164) with respect to ¢, we find

2 127 2
(165)  [0,2m) : |vp (r ,8)|% £ =/ |vp (r ,¢)["de +
i mo0 i
2m
9 -
gn é Fruls AELANE
1

(160) now follows from (6), (131) and (162) . Next denote by An‘

the circular annulus r _, < |z| < r ,, and by A the subset
Rn := {z € Anl |z| € kP By the Pompeiu formula we get
~ B 1 _
(166) A : wp (2) = 5= { S lwp (R)/(c - 2) Az +
: aAn 1
PV / [wp (g)/(z - z)]d&dn} .

A i

n
For z € A, dist(z,dA ) 2 01 2 |z|/4 = r/4. From (160) we infer

then that the line integral in (166) is O(ylnr), uniformly in 6
and Ri' To estimate the area integral, we write

(167) in : |pV S (T - z)_1wR (z)dgan| < [PV/ + J Jlup (2)] x
A i D A ~\D i
n n
-1

|C"zl dEdﬂ ’

where D := {¢ € A ||t - z| < 1}. By Lemma 5 the first integral on
the right is bounded by Cr—1 2, where the constant C is independent
of 6 and R;; and since A  is contained in the disc |z - z| < 6xr, we
have by the Cauchy-Schwarz inequality and (6)

(168) A £ 1o - 2] Mg (2)]dgdn £ (f w? agam V2 «

&
An\D i An i



. .

[ s |z - z|"%agan1'/? < cj1n/%r
1<|z-z|<6r
where the constant C1 is independent of 6 and R,. Combining
these estimates, (158) then follows.
Lemma 7 [20]. rz/gln_1/4rVwR is square integrable in Qp ,

Z %
untformly with respect to R..

Proof. Choose Ri/2 2 R 2 r, 2 ra and two non-negative
C2 cut-off functions 51 and 52 with the properties (139).
Setting

" - Iy ...I
(169) [r,,R;] : nlr) := g,(r) &, (R 72" ¢
1n b
and inserting this function and h(wR ) == wﬁ in (138) we obtain
i i
2 2 =
(170) 2/ |Vw g | “dxdy s 2/ n|Vup |“dxdy =
r,<r<R A1 Q i
1 R
J wé (v2n + v_1vR +Vn)dxdy .
Q i b
R
Using the inequalities
(171)  (r,,R;) = |vn| < — |V2n| < C
ALY T = 1 1/2_ ° - !
n £

where the constant C is independent of R and R,, as well as (6), (158)

and the fact that {YR } converges uniformly together with all
i

their first order derivatives in any compact subset of Q to Vit

from (170) the assertion of the lemma then follows.

Lemma 8 [20]. The sequence of vorticities {wR } satisfies
7 1€EN

the estimate

(172) Qp ¢ wp (r,8) = O(r—3/41n1/8r) » uniformly in 6 and R, .
i dl
Proof. We note that for r, < 2™ « 2n+1 < Ri
20+ o
(173) roSEr %0 v 203207 A, 2w (146 s
r oy Ri RiBG RI
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S (wﬁ + 2r1/21n_1/4r]wR ||VwR |) dxdy
2n<r<2n+1 i i i
< S (2w§ . rln_1/2r|VwR |2)dxdy ’
N pn*] i 3

Using Lemma 7 and proceeding exactly as in the proof of Lemma 5,
we get (172).
Lemma 9. The sequence of vorticities {wp } satisfies the
. i 1F€N
Hélder condition

1/2

(174) le.(zz) - wR_(z1)| < CuR.(R)|z2 - z1| ,
L € & 1

-

|z1|, |z2| >R +2 , |z £ 1

2 1|

where C is a constant independent of R and R and

(R) = O(R_3/4ln3/8

r) .
(175)

(R) = o(R">/%) , if |wy | is bounded .
i i

(176) u 1/2]

(VA e

P log (£,8) [ (1 + |wy (x,8) |

s
i i o i i

so that (175) follows as a consequence of (158) , (172) and (176).

It remains now to prove (174). Let D(zo;r') denote the disc of

radius r' and center zg, With |zol > R + 2. We set

2
(177) I(r';zy) := s | Vog | “dxdy

D(zo;r') i

and show at first that

2
(178) I(;zy) < CuRi(R) ’

where the constant C is independent of R.l and R. To this end let
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n be a non-negative cut-off function such that n(r) = 1 for
r <1, n(re) = 0 for r 2 2. Inserting n = n(|z - zo|) and h(wR )
i
= wi into (138), we obtain
i
(179) 27 n|Vep |Paxdy = s w2 [vPn
i i

i
D(ZO;Z) D(ZO;Z)

yRi'Vn]dxdy ,

provided we take R, 2 2. Taking into account the fact that in
D(zy;2) |V2n| < C, |Vn| £ C, where the constant C depends on
the choice of n, from (176) and (179) we get then (178). Next

we derive a growth estimate for I(r';zo), from which (174) will

follow. Multiplying (136) by Wp v integrating by parts, and

using the fact that v'YR. =0, ;e find
i
" BwRi
(180) / |Vwp |“dxdy = i wp ppTr'de’
D(zy;ix') . 3D(zyir')
(2\))_1 di wz.v .-(cose',sine')r'de' "

8D (zyix') & &

where r', 6' are polar coordinates with respect to zy as origin.
Using again the flux-divergence theorem as well as the identity
2ab = a2/r' + r'bz, we get the estimate

BwR. QW

R.
i _ B i, 2
(181) ] wRisr—.r'de' = 5 I [(—ar, ) +
- ] P ]
BD(zo,r ) BD(zo,r )
(wp - QR )2/r'2]r'd9' + &R. s Vsz-dxdy .
i i laD(zo;r') i

Taking now account of an inequality of type (401) and of (136),
from (180) and (181) it follows

dI(r';zO)

L
(182) I(r';z,) < -g-— <= —— + C*r' , C* := Cu

or, equivalently,



- .

(182") %;T(I(r';zo)/r'z) > —oc*/r'2

Integrating this inequality and using (178), we obtain (r' < 1!)

2

(183) I(r';zo) S I(1;zo)r' + 2C*r' < Cu, (R)X' .

1

R

Since (183) is valid for all discs |z - zOI € r' £ 1 contained
in |z| > R + 2, from the Morrey lemma [7] it follows then (174).

Lemma 10. The sequence of Helmholtz-Bernoulli functions {HR }
7 1TEN
satisfies the estimate

(184) QR s Hp (r,6) = O(lnr) , uniformly in 6 and R, .
i i

Proof. We note at first that the Helmholtz-Bernoulli function

HR is according to (20''') the real part of a solution to an
i

inhomogeneous Cauchy-Riemann equation

B(HR' + ivw

i Ri) 1=
(185) Qp ¢ — = 5 Wp Wp o .
i 9z 1 L
On the other hand from (20) it follows
2 2 2 ‘ n 2 2
(186) Qp |VHR-| < 2v |VwR_| + 4|Y - YR.' Wt
i i i i i i
~ 2 2
4lvp | s PR
i i

Using now the estimate [11, pp 13, 16, 18]

(187) Qp |YR

(r)l = C,
1. i

where the constant C is independent of Ri' as well as (6), (411)

and Lemma 4, from (186) we infer that the gradient of HR is
i
square integrable in Qip + uniformly in R,. Proceeding now exactly
i
as in the proofs of Lemma 3 and Lemma 6, the assertion (184) then
follows.

Lemma 11. The sequence of derivatives of the Helmholtz-Bernoull<



-

dH
r.
functions {3?_3}i€N has at infinity the behaviour
dHR
(188) Qp = = L = O(r_3/41n9/8r) , uniformly in 6 and R;.

1

Proof. We proceed exactly as in the proofs of Lemma 1 and Lemma 8
and get (188).

Lemma 12. There exists a positive constant A, which is indepen-—
dent of R, such that

a - 5 2%
(189,) Qp s |vR (r:8) = v (r)|“de = o(x “%) ,
i 0 i i
_ -\ . .
(1892) QRi : YRi(r) -, = O(r 7) , uniformly in Ri :

Proof. We start again with the first equation (33), written now

for the Leray sequence (vR 'PR Y, 1e€
- i

Q
o 0 0]

dFR. dHR.
1

i
dr /dr

2 & ~
+EFR/ =

(190) (rA,Ri) : .
i

Q
3]

Integrating next (190) with respect to r we get

R.
A 1 A
(191)  (r,,R) = Fp () /(g (r) - By ) - 2/ (By (p)/p)do
1 " 1 b & r 1

1/(H () - Hy ) =1,
1 1

14

where, according to (5), (34) and (47), written respectively for

(YR.’pR.)’ and the Parseval equality
i i
= = _ 1.2 ~
(192) H := HRi(Ri) = 5V, * pRi(Ri) .

On the other hand ﬁR is bounded in Qp , uniformly in R, [11], i.e.
i i

R,

(193) Qp : |pg (r)| s C , uniformly in R, ,
i i

and, hence, (at least for a subsequence!)

(194) lim ﬁR;(Ri) = p_ .
"

R.>x
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Letting now r R; in (191) we infer that the limit exists and is
equal to one. Proceeding now exactly as in the proof of Lemma 2,
and using the Lemmas 3 to 12 as well as (187) and (194), the
assertions (1891) and (1892) then follow.

Proof of Theorem 3 [22]. In order to show that in the case
of the Leray solution (YL’pL)

14

(195) Vo = V

(oo}

it suffices to prove that

= 2
(196) r |YL(r) - YOl dr < « ,

A

H -8

(197) |2ar < = .

K-8

-1,~
r v tn) -y,
A

Indeed, taking account of the inequality
(198)  [ry,=) = vy, = vyl € |vp(r) = v [ + [vp(x) - vo| ,
and using (196) and (197), we find

(199) r |y, - volPar < =,

A
and (195) then follows. Noting now that v

K8

L has finite Dirichlet
integral and taking account of (192), we obtain (196) . For the
proof of (197) we remark at first that from (1892) it follows
R.
i 4.4
(200)  [r,,R;1 = [ o '|vp (p) - v
r i
A
where the constant C is independent of Ri’ and hence, letting
R, >, (197) then follows. It remains now to show that the Leray

sequence of solutions (YR /PR ), 1 € N, of (1) and (5) in QR
il i i

1
converges quasi-uniformly on Q@ to the Leray solution (v ,pL) of

(1), (2) and (3) in Q. To this end we define vg and vi as
i b

follows



] o

(Vg in Qp
(201) e v =+ * . i €N,
. | Vo 1R ﬁ\QR. F
i
(v, in Q ,
(202) Q Yi :=
\ Vv at infinity .

e

. e
Ve 1 € N, and v_ are
R

~L
continuous on {I. On the other hand by using the stereographic

It is easy to see on one hand that

projection the extended plane §2 becomes a metric space. By
Definition 1 and the Theorem of Arzela, Gagaeff and Alexandrov
the assertion then follows.

Remark 3. The proofs of Lemmas 3-9 follow closely the proofs
of the corresponding lemmas in [12, pp. 383, 384, 387, 388, 396,
399].
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