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Abstract 

In this paper, the complexity of full solution of Fredholm integral equations 
of the second kind with data from the Sobolev dass W2 is studied. The exact 
order of information complexity is derived. The lower bound is proved using a 
Gelfand number technique. The upper bound is shown by providing a concrete 
algorithm of optimal order, based on a specific hyperbolic cross approximation 
of the kernel function. Numerical experiments are included, comparing the 
optimal algorithm with the standard Galerkin method. 

1 Introduction 

lnformation- Based Complexity theory studies the intrinsic difficulty of the approxi
mate solution of numerical problems for which the information is partial, contamina
ted and priced. Determining the information complexity of basic problems of math
ematical physics is a principal goal of lnformation- Based Complexity theory. One 
of those basic problems is the solution of Fredholm integral equations of the second 
kind. 

A first estimate of information complexity for the construction of the full solution 
of integral equations with kernels from Sobolev classes was obtained by Emelyanov 
and Ilin [E167]. They restricted themselves to the study of algorithms computing 
the approximate solution using as information functionals only function values of 
the kernel and the free term at some points . 
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The general situation of algorithms using values of arbitrary linear continuous func
tionals was considered in [Per89]. However, in this paper the lower bound and the 
upper bound of information complexity differed by a logarithmic factor. In the 
present paper we determine the exact order of information complexity for Fredholm 
equations with kernels from Sobolev classes using a Gelfand number technique 
developed in [Hei93] . This exact order coincides with the order of the upper bound 
shown in [Per89]. 

2 Formulation of the problem and some general 
results 

Let V, E and J( be normed linear spaces. For the space of all bounded linear 
operators from V into E we shall write L(V, E) and L(E) = L(E, E). Assume that 
V is continuously embedded in E and lv E L(V, E) is the embedding operator from 
V into E. Moreover, we assume that there is some linear continuous operator T 
assigning to each element k E I< an operator Tk E L(E). Let Vo C V and I<o C I< 
be subsets given in such a way that the operator (I - Tk)- 1 E L(E) for any k E I<o , 
where I is the identity operator. Then setting X 0 = I<0 x V0 we consider the dass 
of operator equations 

u - Tk u = f, k E I<o, f E Vo . (1) 

The operator S : X 0 --t E defined by 

(2) 

is called the solution operator of equation (1). For the analysis of (1) and (2) we 
shortly recall the framework of Information- Based Complexity theory. For details 
the reader is referred to [TWW88]. 

By a method of specifying information about equations (1) on X 0 we understand 
any operator N : Xo --t IRni+n2

, N = (N1, N2) with 

N1k (.A1(k), ... ,.An1 (k)), .A; EI<*, i = l, .. . ,n1, 

N2f (a1(J), . .. ,an2 (J)), O'j E V*, j = l, . .. ,n2, 

where I<* and V* denote the dual spaces of I< and V respectively. N = (N1 , N2 ) is 
also called an information opera.tor. Moreover, we denote by card(N) the number 
of all linear functionals taking part in the definition of the information operator N, 
i.e. card(N) = n 1 + n2 . 

By an algorithm c.p of approximate solution of equations (1) we mean any operator c.p 
assigning to the information vector N(k, J) E IRni+n2 an element c.p(N(k, J)) E E as 
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an approximate solution of (1). We assume that every algorithm c.p is connected with 
some set F<P of elements g( b1 , ... , b1) E E defined by values of numerical parameters 
b1 , ... , b1 and c.p(N(k, !)) = g(b1, ... , b1), where b1, . . . , b1 depend on N(k, J) and for 
the calculation of these values it is required to execute only arithmetic operations, 
induding comparisons, on the components of the vector N(k, !). For a concrete 
algorithm c.p we denote by card( c.p) the number of arithmetic operations required 
in order to realize the algorithm. Moreover, for a fixed information operator N we 
denote by '1!(N) the set of algorithms c.p defined on N(X0 ). Considering algorithms of 
'1!(N) it is natural to suppose that card(N) ~ card(c.p)+l. Otherwise, the algorithm 
c.p E 4!(N) cannot use all information represented by the components of the vector 
N(k, !) . 

The error of the algorithm c.p E 4!(N) on the dass X 0 is defined as 

e( Xo,c.p) sup llS(k, J) - c.p(N(k, J))llE . 
(k,J)EXo 

The information complexity of equations (1) on the dass X 0 is determined by the 
quantity 

inf inf e(X0 ,c.p). 
N :card(N)<n <f' E<f>(N) 

- card(<p) $n 

This is the minimal error which can be reached performing at most n arithmetic 
operations on the values of at most n information functionals . Moreover, for a fixed 
information operator N = (Ni, N2 ) we introduce the following quantities 

r(Xo,N) 

d(Xo,N) 

inf e(Xo,c.p), 
<PE~(N) 

sup sup llS(k,f)-S(h,g)llE, 
k,hEKo f ,gEVo 

N 1k=N1h N2f=N29 

called the radius and the diameter of information N respectively. lt is well- known 
that 

1 
2,d(Xo, N) ~ r(Xo, N) ~ d(X0 , N) . (3) 

Note that the so- called n- th minimal radius of information 

rn(Xo) = inf r(Xo, N) 
N:card(N)S.n 

serves as a lower bound for the information complexity en(Xo), i.e. 

(4) 
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Now, as in [Hei93] we establish some relation between the n-th minimal radius 
rn(Xo) and Gelfand numbers of certain operators. First of all we impose some 
assumptions on our dass X 0 of equations (1). 

Let BK and Bv be unit balls of the spaces K and V respectively. Fix constants 
p = (p1, ... , P6), Pi > 0 for i = 1, ... , 6 and p4, P6 > l. We assume that we are given 
a subset Kp CI< such that 

(i) P1BK C f{P C P2BK, 

(ii) for any k E f{P : 

l\TkllE-->E::; p3' 1\(1 - Tkt1llE-->E::; p4' 

llTkllv__.v::; Ps, 11(1 -Tkt1 llv--.v::; P6 · 

In the sequel we shall consider equations (1) on the dass XP= Kp x Bv. 

Now we introduce the so- called Gelfand numbers of an operator. Given two Banach 
spaces Y and Z, for an operator U E L(Y, Z) the n- th Gelfand number of U is 
defined by 

Cn(U : Y-+ Z) inf sup 
A1 , ... ,An-! EY• yEBy 

llUYllz · 
>.; ( y)=O,i=l ,.„ ,n-1 

Moreover, let us define the operator W : I< -+ L(V, E) by 

where Jv is the embedding operator from V into E. Fora fixed information operator 
N = (N1 , N 2 ) we consider the following quantities 

c(w, N) 

c(Jv , N) 

sup l\'11kllv__.E, 
kEBg, 
N1k=O 

sup llJv JllE · 
fEBv , 
N2f=O 

Theorem 1 For any information operator N = (N1 , N2 ), 

di · [c(\ll,N) + c(Jv,N)] ::; r(Xp,N) ::; d2 · [c(\ll,N) + c(Jv,N)], 

where the constants d1 , d2 depend only on p. 
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Proof: 

Let us fix an arbitrary N = (N1,N2 ) and consider the quantities 

A sup sup llS(k, J) - S(h, J)llE, 
k ,hEKp fEBv 

N1k=N1h 

B sup sup llS(k,J)-S(k,g)llE· 
kEKp f,gEBv 

N2f=N2g 

lt is obvious that 

max(A, B) :::; d(Xp, N) :::; A + B. 

Now we shall derive some estimate for A. ~irst of all we note that 

A = sup 11((1 - Tkt 1 
- (1 -Tht1 )Jvllv-E 

k ,hEKp 
N1k=N1h 

sup 11(1 - Tk)- 1 (Tk - Th)(I - Th)-1 lvllv-E . 
k,hEKp 

N1k=N1h 

Moreover, using the properties of Kp, for h, k E I<p we have 

and on the other hand 

11(1 - Tk)- 1 (Tk - Th)(! - Tht 1 Jvllv-E 

> III - Tkl\s~E llTk - Thllv-+E III - Thllv~v 

~ (1 + P3t
1 (1 + Pst

1 llTk - Thllv-E · 

Further, from the definition of c ('11, N) and assumption (i) we obtain 

p1·c(IJ!,N) = sup llTkllv-E 
kEp1BK 
N1k=O 

P2 · c ('11, N) . 

In such a way it follows from (6) - (9) that 
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In a similar manner we can prove that 

(11) 

Now the statement of the theorem follows from (3), (5) , (10) and (11). 

D 

In the sequel we shall use the following notation: If P(b) and Q(b) are functions 
defined on some set B, we write 

P(b) --< Q(b) , 

if there is a constant c > 0 such that for all b E B: P(b) ~ c · Q(b). We write 

P(b)::::: Q(b) , 

if P(b)--< Q(b) and Q(b)--< P(b). 

Corollary 1 

This relation follows immediately from Theorem 1 and the definition of Gelfand 
numbers . 

3 The main result 

Let d E IN, G = [O, 27r]d, and let L2 (G) be the space of square- summable functions 
on G with the usual norm II· II and the usual inner product (·, ·). We set 

eo(s) 
1 

yl2;' 
1 ft cos (ns), 

~ sin(ns) 

for n E IN and s E [O, 27r]. Then for a given multiindex i = (i 1 , ... , id) E 71..d the 
basis function e; E L 2 ( G) is defined by 

6 



";:'here t = (t1, .. . , td) E G. The Fourier coefficients of f E L2(G) are given by 
f( i) = (!, ei), i E 7/f Moreover, for i E 7Ld we set lil = Jii + ... + i~ . 
Let r E IR+. Then the Sobolev space Hr ( G) is defined as 

Note that for r E IN , the space Hr(G) consists of all periodic functions on G which 
have square-summable generalized partial derivatives up to the order r. We shall 
use the following abbreviations: L2 = L2(G), Hr = Hr(G), Hr = Hr(G2). 

Now, referring to the notation of the previous section, we set E = L2 , V= Hr and 
I< = Hr. Moreover, for each k E Hr the operator T : Hr ---+ L( L2 ) is defined by 

Tkg(t) = L k(t,s)g(s)ds. (12) 

Let a1 > 0, a2 > 1, a = ( a 1, a 2) and consider the set 

Denote by X~ the dass of equations (1) with free terms f E Bw = Bv and operators 
(12) with kernels k(t,s) from H:, i.e. X~= H: x Bw. lt is easy to see that for 
some p1 , . •• , p6 depending on a the set H: may be considered as I<p treated in the 
previous section, thus 

p(a) . (13) 

Now we can state the main result. 

Theorem 2 For the class of equations {1} on X~ defined above 

Proof: 

The required upper estimate for the quantity en(X~) follows from [Per89]. In this 
paper an algorithm for the approximate solution of Fredholm integral equations with 
kernels from Sobolev spaces was constructed which provides the upper complexity 
bound. This algorithm uses as information the values of Fourier coefficients of the 
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kernels with numbers from a so-called hyperbolic cross. Some modification of this 
algorithm will be presented in the next section. 

N ow we shall prove the lower estimate for en (X~). U sing ( 4) and Corollary 1, we 
have 

(14) 

To show the lower bound, we shall estimate the Gelfand numbers of W. Let { b;j} i,jEzd 

be the unit vector basis of l2('ll.2d) and define the operator W : l2('ll.2d) ---+ 'Hr as 

Moreover, we define the operator U : L(Hr, L2) ---+ /00 ('ll.2d) ass1gnmg to each 
operator A E L(Hr, L2 ) an element 

lt is obvious that the operator W is an isometry, so llWll = 1, and the operator U 
is an injection with llUll ::; 1. Now we compose the operators Wand U with W and 
obtain an operator 

D UwW, 
D l2('ll.2d) ---+ loo('ll.2d) . 

lt is easily verified that D is a diagonal operator which acts in the following manner: 

Let )q 2:: A2 2:: ... 2:: An 2:: ... be the elements of the sequence { fo} arranged in 
nonincreasing order. N amely, 

If 

An inf{c: card{(i,j): ~ij > c} < n} 

max min { fo : ( i, j) E Q} . 
Qcz2d 

card{Q)=n 

then i t follows from the definition of {An lnE IN that 
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Let us estimate carä(Qn)· For this end we consider the set 

Keeping in mind that 

we have 

Qn C Bn C Qrp·nl, p = y'(2d + l)(d + 1) , (16) 

where \ pn l denotes the smallest integer greater than or equal to pn. Moreover, 

card(Bn) = 

card { (i,j): max{li1I„ „, lidl}::; fo, max{l11I„ „, 11dl}::; vn} + 
+ L card { (i,j): max{li1I, ... , lidl} = l, max{l11I, ... , IJdl}::; T} 

vfn<l~n 

~ n d + L 1d-1 ( T) d 

vfn<l~n 

~ nd. 2= ~ 
vfn<l~n 

~ nd logn. 

Now from (16) we find 

Combining (15) and (17) we obtain 

or what is the same 

Then it follows from Theorem 11.11.7 in [Pie78] that 
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Furthermore, by basic properties of Gelfand numbers 

Cn (D: l2(Z2d)---+ loo (Z2d)) < JjUll · Cn(llt: Hr---+ L(Hr, L2)) · JJWJJ 
< Cn ( W : Hr ---+ L( Hr, L2)) . 

Finally, using this inequality and relations (14) and (18) we get 

The theorem is proved. 

4 The algorithm 

0 

In this section, we shall describe the optimal algorithm used in the proof of the 
upper bound of Theorem 2. The algorithm is based on Fourier coefficients and a 
hyperbolic cross approximation of the kernel function k. The approximate solution is 
computed in two steps: first we compute a primary approximation v0 as the solution 
of an integral equation with an approximated kernel function, then we perform some 
kind of iterative refinement. 

\ 

The algorithm can be used not only for periodic functions on [O, 27r], but also for 
nonperiodic functions, carrying out a periodization of the kernel and the right- hand 
side by some transformation of variables, in a preprocessing step. We shall explain 
this transformation, which allows us even to simplify the algorithm by reducing the 
basis. 

Let (k, J) EX~ be given. For any m E IN, let Cm be the following set of multiindices 
. (. . ) 77d z = Z1' ... 'Zd E IL. : 

Then the orthogonal projection operator Pm: L2 (G)---+ span{e;: i E Cm} is defined 
as 

(Pmf)(t) L (!, e;) e;(t). 
iECm 

Now, fix n E IN and recall, that the set Bn is described by 
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15 

10 

-10 

-15 

Figure 1: Shape of the hyperbolic cross Bn for d = 1, n = 16. 

Ford= 1, the shape of this set is shown in figure (1). Then the projections h, fn of 
the kernel and the right-hand side, respectively, are defined by its Fourier coefficients 

h(i,j) { k(i,j) (i,j) E Bn 
0 otherwise, 

fn(i) { f ( i) i E Cn 
(19) = 0 otherwise. 

The algorithm replaces equation (1) by the approximate equation 

w - Thw = fn, (20) 

and computes an approximation v to w in an iterative way. As can be seen easily, 
for the construction of equation (20) we need the information N = (N1 , N2 ) about 
the initial eq uation ( 1), w here 

{ k(i,j)} ' 
(i,j)EBn 

{f(i)}. . 
iECn 

From relations (16), (17) it follows that 

- d 
card(N) ::::::: n ·log n. 

Unfortunately, the direct solution of equation (20) by means of some exact solution 
method for systems of linear equations would take too many arithmetic operations. 
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So we set m = r n l/31, and compute the approximate solution V in the following two 
steps. First , we calculate the solution v0 of the equation 

(21) 

and then the final approximation as 

rp (N; k, J) = v = vo + (I - Th Pmr 1 (Th vo - vo + fn) . (22) 

The algorithm (21), (22) was analyzed in [Per89] for the case d = 1. This analysis 
can be extended easily to the d- dimensional case ( d > 1), and we get 

(23) 

Related algorithms were discussed in [FH94] and [Fra94], where the analysis for 
arbitrary d E IN was carried out in greater detail. In a similar way as there, one can 
prove that the algorithm rp satisfies the error estimate 

(24) 

Consequently, from Theorem 2 and relations (21) - (24) it follows that the algorithm 
rp is error- optimal for the dass X~ in the sense of information complexity. 

A modification of the algorithm rp described by equation (22), which proved to be 
useful in implementations, is the use of a so-called dyadic hyperbolic cross instead 
of the hyperbolic cross Bn· For this end we replace the operator Th in (20) by the 
Operator 

M 

L P22M-I Tk (P21 - P21-1) + P22M Tk P1' 
l=l 

(25) 

where n = 2N and M = l~l Then Th1 is also an integral operator, whose kernel 
function is defined by 

{ O
k(i,j) (i,j) E Bn 

otherwise, 

LJ {C21 X C2m : l,m 2:: 0, max(l,m) + m ~ 2M} 

The shape of the dyadic set Bn is shown in figure 2. 
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-10 

-15 

Figure 2: Shape of the hyperbolic cross Bn for d = 1, n = 16. 

In the presented form, the algorithm works only for periodic on G functions. lt can 
be applied also to Fredholm integral equations with nonperiodic kernels and free 
terms 

z(x) - { k1(x,y)z(y)dy 
J[o,1]d 

g(x)' 

where x, y E IRd . For this end, we make e.g. the following change of variables 

x · J 

Yi 

1 
- (1 - cos t ·) 2 J , 

1 
2" (1 - cos si) 

for tii Sj E [O, ?r], j = 1, .. , d, and consider the transformed equation 

u-Tku = u(t)- { k(t,s)f(s)ds = f(t), 
J[0,7r]d 

where 

(26) 

(27) 

(
1- cost1 1 - costd 1- COSS1 1- COSSd) * 

ki 2 ' .. ' 2 ' 2 ' .. ' 2 

d 

2-d II . * Slil S;, (28) 
i=l 

( 
1 - cos t 1 1 - cos t d) 

z 2 ' .. , 2 (29) 
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(
1 - cost 1 1 - costd) 

J(t1, .. , td) = g 2 ,„, 2 . (30) 

From (28) - (30) it follows that the integral operator Tk of equation (27) can be 
considered as acting in the space of even 211'- periodic functions. Hence, for the 
approximate solution of equation (27) we can reduce our basis to the cosine- basis 
in L2( G). 

The cardinality of required information as well as the number of arithmetic opera
tions performed by the algorithm have changed only by a constant factor. If the 
functions (k , J) in (28), (30) are in H~, then the order of accuracy is preserved. 

5 N umerical examples 

To present a numerical example we restrict ourselves to the case d = 1 and consider 
the following two integral equations. 

with 

ui(s) 

fi(s) = 

_!_ """" sin( is) · sin(jt) 
11' -~ (1 + i 2 + j2)2 ' 

•,J>O 

_1_ """" sin\is) . 
.Ji ~o i2 

•> 
1 

ui(s) - .Ji L sin(is) · L(l + i2 + j 2
)-

2
• j- ~ 

i>O ;>O 

(31) 

Note that k1 and fi are chosen in such a way that they ( roughly) represent the same 
degree of smoothness: Both belang to the Sobolev space H 3 -o: for all o: > 0, but 
not to H 3 . Figure 3 shows the graphs of k1 and u 1 . 

The second example equation will be 

with 

__!__ """" sin(j s) sin( it) 
2, .~ i 3 . j3 

t ,J>O 

14 

(32) 

(s3 
- 31l's2 + 21l'2s)(t3 

- 37rt2 + 21l'2t) 

2881 



Figure 3: Kernel function and solution of example equation (31). 

h(s) 

where 

1211" (x3 - 3?rx2 + 27r2X) 2 
1 = 

2 
dx :::::::: 3.19608 . 

0 1 

The kernel of this integral equation belongs to the Sobolev space with dominating 
mixed derivative Ht-a.t-°'([O, 27r])2 for each a > 0, but not to Ht·t([O, 27r])2 (see 
e.g. [Fra94] for the definition). Both solution and right-hand side belong to the 
Sobolev space Ht-°'([O, 27r]), a > 0. 

We applied two algorithms to these equations: the order- optimal algorithm r:p 
with the dyadic hyperbolic cross Bn and the standard Galerkin method. Both 
algorithms use Fourier coefficients of the kernel function and the free term. They 
were implemented in c++ on a Workstation HP 9000/712/60. In all calculations 
double precision was used. The required Fourier coefficients of the right- hand 
sides were computed beforehand, the measured CPU- time does not include this 
preprocessing step. This procedure is justified by the subject of our attention: we 
assume that we are given the needed information or at least can compute each 
functional with constant cost, in order to look at the cost and the accuracy of the 
algorithm working with this information. 

15 



101 102 103 104 105 106 N 101 102 103 104 105 106 N 

10-2 0-2 

10-4 o-4 

10-6 o-6 

10-8 o-8 

10-10 0-10 

10-12 0-12 

10-14 0-14 
-- Galerkin -- Galerkin 

c · · · · · · · · · · Hyperbolic Cross c ·· · ·· · · · ·· Hyperbolic Cross 

Figure 4: Accuracy of the standard Galerkin method and the Hyperbolic cross 
method rp for example equations (31) (left) and (32) (right). 

In figure 4, the accuracy of both methods applied to the example equations is shown. 
There, the abscissa constitutes the full number of Fourier coefficients used by the 
algorithm. The ordinate is the L2-error of the approximate solution. Both axes are 
logarithmically scaled. 

The example equation (31) satisfi.es the conditions of Theorem 2. Consequently, the 
algorithm rp reaches the optimal convergence rate of O(N-r logr N) for all r < 3, 
whereas the Galerkin method has the well-known convergence rate of O(N-~) for 
all r < 3, but not O(N-t). 

Looking at the accuracy in example (32), we must recall that the kernel function of 
this equation is a function with dominating mixed derivative, so the algorithm rp is 
not optimal for this dass of functions. However, it performs clearly better than the 
standard Galerkin method also on this example. 

We compared both methods on the basis of the number of information functionals (in 
this case Fourier coefficients) required. We could have used the number of arithmetic 
operations or the run-time as well, but they would not change the outcome of the 
comparison. The Galerkin method includes the solution of a large (O(Nt) x O(Nt)) 
linear system, and even iterative variants could at best reach O(N), which is just 
the run- time of rp . 
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