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Abstract 

We study high dimensional integration in the quantum model of 
computation. We develop quantum algorithms for integration of func
tions from Sobolev classes w;([o, l]d) and analyze their convergence 
rates. We also prove lower bounds which show that the proposed al
gorithms are, in many cases, optimal within the setting of quantum 
computing. This extends recent results of Novak on integration of 
functions from Hölder classes. 

1 Introd uction 

Since Shor's (1994) discovery of a polynomial factoring algorithm on a quan
tum computer, the question of the potential power of quantum computing 
was posed and studied for many problems of computer science. Most of these 
are of discrete type, while so far little was done for numerical problems of 
analysis. This field contains a variety of intrinsically difficult problems. One 
of them is high dimensional integration. 

To judge possible gains by a quantum computer, one first of all needs 
to know the complexity of the respective problem in the classical settings. 
The complexity of many basic numerical problems in the classical deter
ministic and randomized setting is well understood due to previous ef
forts in information-based complexity theory (see Traub, Wasilkowski, and 
Woiniakowski, 1988, Novak, 1988, and Heinrich, 1993). This theory estab
lished precise complexity rates by developing optimal algorithms, on one 
hand, and proving matching lower bounds, on the other. 

Based on such grounds, it is a challenging task to study these problems 
in the quantum model of computation and compare the results to the known 
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classical complexities, this way locating problems where quantum computing 
could bring essential speedups, and moreover, quantitatively assessing the 
reachable gain. 

In a series of papers, Novak and the author started to investigate this 
field. Their research dealt with summation of sequences and integration 
of functions. So Novak (2001) studies integration of functions from Hölder 
spaces, using the algorithm of Brassard, H0yer, Mosca, and Tapp (2000) for 
approximating the mean of uniformly bounded sequences. Heinrich (200la) 
and Heinrich and Novak (200lb) developed quantum algorithms for the 
mean of p-summable sequences and proved their optimality. Moreover, such 
an approach required a formal model of quantum computation for numerical 
problems, which was developed and studied in Heinrich (200la). This way 
the basic elements of a quantum setting of information-based complexity 
theory were established. First ideas about path integration are discussed in 
Traub and Woiniakowski (2001). 

Integration of functions from Sobolev spaces is one of the basic numer
ical problems for which we know the complexity both in the classical de
terministic and randomized setting. In the present paper we study this 
question in the quantum setting. We develop a quantum integration algo
rithm by splitting the problem into levels, using a hierarchy of quadrature 
formulas, and this way reducing it to computing the mean of families of 
p-summable sequences. This enables us to apply the results of Heinrich 
(2001a) and Heinrich and Novak (2001b), and shows that the investigation 
of p-summable sequences was an important prerequisite to handle functions 
from Sobolev classes. We also prove lower bound which show the optimality 
(up to logarithmic factors) of the proposed algorithms. 

The contents of the paper is as follows. In section 2 we recall some 
notation from the quantum setting for numerical problems as developed in 
Heinrich (200la). In section 3 we add some new results of general type 
which will be needed later on. Section 4 recalls known facts about sum
mation of sequences and provides some refinements of estimates. The main 
result about quantum integration of functions from Sobolev classes is stated 
and proved in section 5. The paper concludes with section 6 containing 
comments on the quantum bit model and a summary including comparisons 
to the classical deterministic and randomized setting. 

For more details on the quantum setting for numerical problems we re
fer to Heinrich (2001a), also to the survey by Heinrich and Novak (2001a), 
and to an introduction by Heinrich (2001b). Furthermore, for general back
ground on quantum computing we refer to the surveys Aharonov (1998), 
Ekert, Hayden, and Inamori (2000), Shor (2000), and to the monographs 
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Pittenger (1999), Gruska (1999) , and Nielsen and Chuang (2000). 

2 Notation 

For nonempty sets D and K , we denote by F(D, K) the set of all functions 
from D to K. Let F ~ F(D, K) be a nonempty subset. Let K stand for 
either R or C , the field ofreal or complex numbers, let G be a normed space 
over K, and let S : F -+ G be a mapping. We seek to approximate S(f) for 
f E F by means of quantum computations. Let H 1 be the two-dimensional 
complex Hilbert space C 2 , with its unit vector basis {e0 ,ei}, let 

m 

equippeded with the tensor Hilbert space structure. Denote 

Z[O, N) := {O, ... , N - 1} 

for N E N, where we agree to write, as usual, N = {1, 2, ... } and No = 
NU {0}. Let Cm= {li) : i E Z[O, 2m)} be the canonical basis of Hm, where 
li) stands for ej0 0 · · · 0 eJm-i, i = 2::~01 Jk2m- l-k the binary expansion of 
i. Let U(Hm) denote the set of unitary Operators on Hm. 

A quantum query on Fis given by a tuple 

Q = (in, m', m", Z, T, ß), 

where m, m', m" E N, m' + m" ~ m, Z ~ Z[O, 2m') is a nonempty subset, 
and 

T:Z-+D 

ß: K-+ Z[O, 2m") 

are arbitrary mappings. We let m(Q) := m be the number of qubits of Q. 
Given a query Q, we define for each f E F the unitary operator Q1 by 

setting for li) lx) IY) E Cm= Cm' 0 Cm" 0 Cm-m'-m": 

Q 1
.) j ) I ) = { li) lx EB ß(j(T(i)))) jy) 

f 2 X y ji) jx) jy) 

where EB means addition modulo 2m". 

if i E Z 
otherwise, 

A quantum algorithm on F with no measurement is a tuple 

3 



Here Q is a quantum query on F, n E No and Uj E U(Hm) (j = 0, . .. , n), 
with m = m(Q). Given f E F, we define A1 E U(Hm) as 

A1 = UnQfUn-1 ... U1Q1Uo. 

We denote by nq(A) := n the number of queries and by m(A) = m = m(Q) 
the number of qubits of A. Let (A1(x, y))x,yEZ[o,2m) be the matrix of the 
transformation A1 in the canonical basis Cm. 

A quantum algorithm from F to G with k measurements is a tuple 

where k E N , Ae (f = 0, . . . , k - 1) are quantum algorithms on F with no 
measurements, 

l'-1 

be : II Z[O, 2m;) --+ Z[O, 2mt) (1 :::; f:::; k - 1), 
i=O 

where me := m(Ae), and 

k-1 
cp: II Z[O, 2mt)--+ G. 

l'=O 

The output of A at input f E F will be a probability measure A(J) on G, 
defined as follows: First put 

PA,J(xo, ... , Xk-1) = IAo,J(xo, bo)l 2 IA1,J(x1 , b1 (xo))l 2 
. .. 

. . . \Ak-l,j(Xk-1, bk_i(xo, ... 'Xk-2)) \2. 

Then define A(J) by setting for any subset C ~ G 

A(j)(C) = PA,J(xo, ... ,xk-1). 
<p(xa, .. . ,Xk-t)EC 

Let nq(A) := 2::::~,:J nq(Ae) denote the number of queries used by A. For 
more details and background see Heinrich (2001a). Note that we often use 
the term 'quantum algorithm' (or just 'algorithm'), meaning a quantum 
algorithm with measurement(s) . 

If A is an algorithm with one measurement, the above definition simpli
fies essentially. Such an algorithm is given by 

A = (Ao, bo, cp), Ao = (Q, (Uj)'J=0 ). 
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The quantum computation is carried out on m := m(Q) qubits. For f E F 
the algorithm starts in the state Ibo) and produces 

Let 
2m-l 

l'l/J1) = 2::: ai,f li) 
i=O 

(referring to the notation above, we have ai,f = Ao,J(i, bo)) . Then A out
puts the element <p( i) E G with probability Jai,f 12 . lt is shown in Heinrich 
(2001a), Lemma 1, that for each algorithm A with k measurements there is 
an al~orithm A with one measurement such that A(f) = A(f) f.or all f E F 
and A uses just twice the number of queries of A, that is, nq(A) = 2nq(A). 
Hence, as long as we are concerned with studying minimal query error and 
complexity (see below) up to the order, that is, up to constant factors, we 
can restrict ourselves to algorithms with one measurement. 

Let 0 ~ 0. Fora quantum algorithm A we define the (probabilistic) error 
at f E F as follows. Let ( be a random variable with distribution A(f). 
Then 

e(S,A,f,O) = inf {c ~ O I P{llS(f) -(II> c} ~ O} 

(note that this infimum is always attained). Hence e(S, A, f, 0) ~ c iff the 
algorithm A computes S(f) with error at most c and probability at least 
1 - 0. Trivially, e(S, A, f, 0) = O for 0 ~ l. We put 

e(S, A, F, 0) = sup e(S, A, f, 0) 
fEF 

(we allow the value +oo for this quantity). Furthermore, we set 

eh(S, F, 0) 

= inf{e(S,A, F,O) 1 Ais any quantum algorithm with nq(A) ~ n}. 

lt is customary to consider these quantities at a fixed error probability level: 
We denote 

e(S, A, !) = e(S, A, J, 1/4) 

and similarly, 

e(S, A, F) = e(S, A, F, 1/4), eh(S, F) = eh(S, F, 1/4). 
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The choice e = 1/4 is arbitrary - any fixed e < 1/2 would do. The quantity 
e~ ( S, F) is central for our study - it is the n-th minimal query error, that 
is, the smallest error which can be reached using at most n queries. Note 
that it essentially suffices to study e~(S,F) instead of e~(S,F,O), since with 
O(v)-repetitions, the error probability can be reduc.ed to 2-v (see Lemma 3 
below). 

The query complexity is defined for c > 0 by 

comp~(S, F) = 

min{ nq(A) 1 A is any quantum algorithm with e(S, A, F) ::; c} 

(we put comp~(S, F) = +oo if there is no such algorithm). It is easily 
checked that these fnnctions are inverse to each other in the following sense: 
For all n E No and c > 0, e~(S, F) ::; c if and only if comp~1 (S, F) ~ n for 
all c1 > c. Hence it suffices to determine one of them. We shall principally 
choose the first one. 

3 Some General Results 

Let 0 -::J F ~ :F(D, K) and 0 -::J F C :F(D, K), where D, D, K, K are 
nonempty sets. Suppose we want to construct an algorithJE A ~ F by 
the help of some reduction to an already known algorithm A on F in the 
followi~g form: For f E F we construct a function f = f(J) E F and 
apply A to it. When does this indeed give an algorithm on F? To clarify 
the problem, note that by definition, an algorithm A on F can only use 
queries _Q on F itself, ~hile in the approach above ~e use Ör(J) instead, 

where Q is a query on F. The way out is to simulate Qr(J) as BJ, where B 
is an algorithm without measurement on F. The following result contains 
sufficient conditions and is a generalization of Lemm~ 5 of Heinrich (2001a). 

Assume that we are given a mapping r : F --+ F of the following type: 
There are "'' m* E N and mappings 

T/j i5 --+ D (j = 0, ... ,"' - 1) 

ß K--+ z[o,2m·) 
(} jj X z [o, 2m* r--+ K 

such that for f E F and s E D 

(f(J))(s) = Q(s, ß o f o ry0 (s), .. . , ß o f o 'f/1t-1(s)). (1) 
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- -Lemma 1. Fo.r each quantum query Q on F and each mapping r of the 
above form (1) there is a quantum algorithm without measurement B on F 
such that nq(B) = 2K and for all f E F, x E Z[O, 2m), 

(Qqf) lx)) IO)m-m = Bt lx) IO)m-m' 

where iii = m(Q), m = m(B) > iii and IO)m-m stands for the zero state of 
the last m - iii qubits. 

Proof. Let 
Q- (- _, -II z- - ß-) = m,m,m , ,T, , 

and put 

KO = flog K l , m = m + Ko + Km*, m 1 = m1 + KO, m 11 = m *, 

Z = Z X [0, K), T(i,j) = 'flj(T(i)) for (i,j) E Z, 

let ß be as above, and define 

Q = (m,m',m",Z,T,ß). 

We represent 

a basis state of which will be written as 

li) lx) IY) lj) lzo) · · - lz„-1) · 

Define the permutation operator Po by 

Po li) lx) IY) li) lzo) ... lz„-1) = li) li) lzo) ... 1z„_1) lx) IY), 

another permutation operator 

the following counting operators 

Co li) li) ... \y) \i) \j EB K) ... \y) 

c \i) \j) ... \y) = \i) \j EB 1) .. . \y), 

where EB is addition modulo 2„0 , and the operator of sign inversion 

J \i) \j) \zo) . . . \y) = \i) \j) \ezo) ... \y) , 
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where e is subtraction modulo 2m· and ez stands for 0 e z. Finally, let 

T li) IJ) lzo) ... 1z„_1) lx) IY) 

li) lj) lzo) . .. 1z„_1) lx EB ß o l{r(i), zo, ... , z„-1)) IY) 

if i E Z, and 

T li) lj) lzo) ... 1z„_1) lx) IY) = li) lj) lzo) · · .1z„-1) lx) IY) 

if i r/. Z. We define B by setting for f E F, 

Bt = P0-
1C0

1(CQ1JP)"T(PQ1C- 1 )"C0Po. 

Let us trace the action of B f on 

li) lx) IY) IO) IO) · · · IO) · 

First we assume i E Z. The application of Po, followed by Co, gives 

li) I"' mod 2"0
) Jü) ... JO) Jx) IY). 

The transformation PQ1c-1 leads to 

li) lt;; - 1) Jü) ... 1ß o f o 'f/K-1 o 7(i)) Jx) Jy), 

and after the remaining "' - 1 applications of PQ1c- 1 we get 

li) Jü) lß o f o 'f/o o T"(i)) ... Jß o f o ry,__ 1 o 7(i)) lx) Jy). 

Then the above is mapped by T to 

li) Jü) lß 0 f 0 'f/0 0 T(i)) ... 1ß 0 f 0 'f/K-1 0 T(i)) 

lx EB ß o Q(T"(i),ß o f o 'f/o o T"(i), . .. ,ß o f o ry,__ 1 o T"(i))) IY) 

= li) Jü) lß 0 j 0 'f/O 0 T(i)) ... Jß 0 j 0 'f/K-1 0 T(i)) 

jx EB ß((r(f))(T"(i)))) Jy). 

The transformation (CQ1JP)" produces 

Ji) 1"' mod 2"0
) IO) ... JO) jx EB ß((f(j))(T"(i)))) Jy), 

and finally P01C0
1 gives 

Ji) lx EB ß( (r(f) )(T"(i)))) Jy) IO) IO) .. . JO) = ( Qr(f) li) Jx) Jy)) Jü)m-m. 

The case i tf. Z is checked analogously. 
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Corollary 1. Given a mapping r __: F -+ F as in ( 1), a normed space G 
and a quarJ,tum aLgorithm A from F to G , there is a quantum aLgorithm A 
from F to G with 

and for all f E F 
A(J) = A(r(J)). 

- - -
Consequently, if S : F -+ G is any mapping and S = S o r, then for each 
n E No 

e~,m (S, F) ..S e<j/S, F). 

The proof is literally the same as that of Corollary 1 in Heinrich (2001a). 
We omit it here. 

Lemma 2. Let D, K and F ~ F(D, K) be nonempty sets, Let k E No 
and Let St : F -+ R (L = 0, ... , k) be mappings. Define S : F -+ R by 
S(J) = 2=7=o St(!) (J E F). Let eo, ... , ek 2: 0, no, ... , nk E No and put 

n = 2=7=o nt. Then 

k k 

e<ti(S, F, Let) ..S L e<ti1 (St, F, et)· 
t=O t=O 

Proof. Let 8 > 0 and let At be a quantum algorithm from F to R with 
nq(At) '.S nt and 

e(St, At, F, et) ..S e<ti, (St, F, et) + 8. 

Let A = L~=O At be the composed algorithm (in the sense of section 2 of 
Heinrich, 2001a). Then 

k k 

nq(A) = L nq(At) '.S L nt. (2) 
t=O t=O 

Fix an f E F and let ( (t,J )7=o be independent random variables with distri
bution At (J). lt follows that with probability at least 1 - et, 

Setting 
k 

(1 = L(t,J, 
l=O 
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we infer from Lemma 2 of Heinrich (2001a) that (J has distribution A(f) . 
Consequently, 

k k 

IS(f) - (11=l2:)81(!) -(1,1)1 ~ L(eh1 (S1,F,Oi) + <5) 
l=O l=O 

with probability at least 

This gives 

k k 

e(S, A, f, L 01) ~ L eh/S1, F, 01) + (k + 1)8 
l=O l=O 

for all J E F, and the desired result follows from (2). D 

Corollary 2. Let D, K, F ~ F(D , K), k E No and S, 81 : F --t R (l = 

0, .. . , k) be as in Lemma 2. Assume vo, ... , vk E N satisfy 

k 1 
L e-vtfB ~ 

4
. 

l=O 

Let no, ... , nk E No and put n = E7=o v1n1. Then 

k 

eh(S, F) ~ L eh, (Si, F). 
l=O 

This is an obvious consequence of Lemma 2 above and of Lemma 3 in 
Heinrich (2001a), which can be restated in the following form: 

Lemma 3. Let S be any mapping from F ~ F(D, K) to R . Then for each 
n,v E N , 

4 Summation 

This section provides the prerequisites from summation needed later for the 
study of integration. For N E N and 1 ~ p < oo, let Lf denote the space 
of all functions f : Z[O, N) --t R , equipped with the norm 

( 
N-1 )l/p 

llJllL~ = ~ ~ IJ(i)IP ' 
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Define SN : LIJ -+ R by 

N-1 

SNf = ~ L f(i), 
i=O 

and let 

ß(L:) := {! E L: l llJllL~ ~ 1} 

be the unit ball of LIJ. 
We need the following results about summation, where (3) and (4) are 

from Heinrich (2001a) , Theorems 1 and 2, and (5) is from Heinrich and 
Novak (2001b), Corollary 2. 

Proposition 1. Let 1 ~ p < oo. There are constants c 1 , c2, c3 > 0 such 
that for all n, NE N with n ~ c1N, 

(4) 

and 

c2 min(n-2(l-l/p), n-2/P N 21P- 1) ~ e'fi(SN, B(L;)) 

~ c3 min(n-2(l-l/p), n-2/P N 2fp-l) max(log(n/ VN), 1)2/P- 1. (5) 

if 1 ~ p < 2. 

Remark. We often use the same symbol c, c1 , . .. for possibly different pos
itive constants (also when they appear in a sequence of relations). These 
constants are either absolute or may depend only on p, r, d - in all lemmas 
and the theorem this is precisely described anyway by the order of the quan
tifiers. 

In the case p = 2 we will not use Proposition 1 alone - that would give 
just a logarithmic factor instead of the iterated logarithm of Theorem 1 be
low. In the region w here n is close to N we use a refinement w hich can 
be obtained on the basis of the results in Heinrich and Novak (2001b). We 
introduce for ME N 

SN,Mf = ~ L f(i) 
iEZ[O,N], lf(i)l<M 
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and 
/ 1 """' SN,Mf = SNf-SN,Mf = N . ~ 

iEZ[O,N], IJ(i)l~M 

f (i). 

Let us first recall the case p = 2 of Corollary 3 of Heinrich and Novak 
(2001b), which we will use here: 

Lemma 4. There is a constant c > 0 such that for all n, M, NE N , 

whenever 
M 2: cNn-1 max(log(n/VN),1). 

The next result can be shown by repeating the respective part of the 
proof of Theorem 1 of Heinrich (2001a) (for the analogous p < 2 case see 
also the proof of Proposition 2 in Heinrich and Novak, 2001b). 

Lemma 5. There is a constant c > 0 such that for all k, n, NE N, k > 1 

e~ (S N,2k, B(L~)) ~ c ( n- 1k312 log k + 2kn-2 (k log k) 2
) . 

From these we can derive the following estimate: 

Lemma 6. There is a constant c > 0 such that for all n, N E N with 
n~N, 

where 
>..(n,N) = log(N/n) + loglog(n + 1) + 2. 

Remark. Observe that Lemma 6 gives an improvement over Proposition 1 
only for n close to N. 

Proof. lt suffices to prove the statement for 

N < n3/2 - , (6) 

the other case follows directly from ( 4). Let c0 denote the constant from 
Lemma 4 and let k be the smallest natural number with k 2: 2 and 

coNn- 1 max(log(n/VN),1) ~ 2k. (7) 

By Lemma 4, 

(8) 
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This together with Lemma 5 and Corollary 2 gives 

with a certain constant c1 E N . lt follows from (7) that 

2k-l:::; max (coNn- 1 max(log(n/VN),1), 2) , (10) 

which, in turn, implies 

2k ::=; cNn- 1 log(n + 1), (11) 

k ::=; c(log(N/n) +log log(n + 1) + 1) = c>.(n, N), (12) 

and thus 

k :S clog(N + 1). (13) 

From (12) and >.(n, N) 2: 2 we conclude 

log k ::=; clog >.(n, N), (14) 

while (13) gives 

log k ::=; c(log log(N + 1) + 1). (15) 

From (11), (13) , (15), and (6), we infer 

2kn- 1 k112 (1og k )2 ::=; cN n-2 log(n + l)(log N) 112 (log log(N + 1) + 1)2 

::=; cN-113 (1og(N + 1))312 (loglog(N + 1) + 1)2 ::=; c. 

Consequently 
2kn-2 (k log k) 2 :::; cn-1k312 tog k, 

and hence, by (9), (12), and (14), 

etn(SN, B(LfJ)) :S cn- 1k3/
2 log k :::; cn- 1 >.(n, N) 312 log >.(n, N). 

13 
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5 Integration 

This sectioll colltaills the maill result. Let D = [ü, l]d alld let C(D) be the 
space of colltilluous fullctiolls Oll D, equipped with the supremum llorm. For 
1 :S p < oo, let Lp(D) be the space of p-illtegrable fullctiolls, elldowed with 
the usual llorm 

llfl!Lp(D) = (l lf(t)!Pdt) l /p 

The Sobolev space w;(D) collsists of all fullctiolls f E Lp(D) such that for 

all a = (a1 , ... , ad) E Ng with lal := 1=1=l aj :Sr, the gelleralized partial 
derivative 8° f belollgs to Lp(D). The llOrm Oll w;(D) is defined as 

( ) 

l /p 

llfllw;(D) = L 118° fll~p(D) 
lalS:r 

We shall assume that r/d > 1/p, which, by the S0bolev embeddillg theorem 
(see Adams, 1975, or 'Ifiebel, 1995), implies that fullctions from w;(D) are 
colltilluous Oll D, alld hellce fullctioll values are well defilled. Let B(W;(D)) 
be the ullit ball of w;(D) alld let Id : w;(D) --+ R be the illtegratioll 
operator 

Id(j) = l f (t)dt. 

Theorem 1. Let r,d E N, 1 :S p < oo and assume r/d > 1/p. There are 
constants c1, c2 > 0 such that for all n E N with n > 4 

c1n-r/d-l < e~(Id, B(W;(D))) :S c2n-r/d-l if 2 < p < oo, 

c1n-r/d-l < e~ (Id, ß(W2(D))) :S c2n-r/d-l .Xo(n) , 

c1n-r/d-l < e~ (Id, ß(W;(D))) :S c2n-r/d- 1(logn)2/p-l if 1 :S p < 2. 

The function .Xo denotes an iterated-logarithmic factor: 

.Xo(n) = (log log n)312 log log log n. 

Proof. First we prepare the lleeded tools for the upper bound proof. For 
l E No let 

2dl_1 

D= u D1i 

i=O 
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be the partition of D into 2dl congruent cubes of disjoint interior. Let s1i 

denote the point in D1i with the smallest Euclidean norm. We introduce the 
following extension operator 

E1i: .:F(D,R)--+ F(D ,R) 

by setting 
(E1d)(s) = f( s1i + r 1s) 

for f E F(D, R) and s ED. Now let J be any quadrature rule on C(D), 

K-1 

J f = L ajf(tj) (! E C(D)) 
j=O 

with aj ER and tj ED, which is exact on Pr- 1(D) , that is, 

Jf=Idf forall /EPr-1(D), (16) 

where Pr-l (D) denotes the space of polynomials on D of degree not exceed
ing r - 1. (For example, for d = 1 one can take the Newton-Cotes formulas 
of appropriate degree and for d > 1 their tensor products.) Since r > d/p, 
we have, by the Sobolev embedding theorem (see Adams, 1975, or Triebe!, 
1995), w;(D) c C(D) and there is a constant c > 0 such that for each 
f E w;(D) 

11/llc(D) ::; cllfllw;(D)· (17) 

Consequently, 

11:-l 11:-l 

IJJI::; L lajllf(tj)I::; L lajll\Jllc(D)::; cllfllw;(D)· (18) 
j=O j=O 

For f E w;(D) we denote 

( )
1~ 

lflr,p,D = L l w~ f(t)IP dt 
lol=r 

According to Theorem 3.1.1 in Ciarlet (1978), there is a constant c > 0 such 
that for all f E w;(D) 

inf II/ - 9llw;(D) ::; elf lr,p,D· 
gEPr-1(D) 
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We conclude from (16), (18) and (19), 

inf 1 I d (J - g) - J (J - g) 1 

gE'Pr-1(D) 

< c inf II! - gllw;(D) ~ elf lr,p,D· (20) 
gE'Pr-1(D) 

Now define for l E No 

2d1-l 2dl_111;-l 

Jtf = rdt L J(E1d) = rdt L L a1J(s1i + r 1t1), 
i=O i=O j=O 

which is the composed quadrature obtained by scaling J to the subcubes 
Dti· Then we have for f E w;(D) 

2dl_1 

IIdf - Jtf I = IIdf - rd1 L:: J(E1d) 1 

and 

2dl_1 

rdt L IE1dl~,p ,D 
i=O 

It follows that 

i=O 

2dl_1 

< rdt L 11d(E1d) - J(E1d) 1 

i=O 

2dl_1 

< crdl L IE1dlr,p,D 
i=O 

< c ( Tdl '~' IEuf 1;,,,D) 'i• 

2dl_1 

rdt L L J, 18° f(s1i + T 1t)IP dt 
i=O lol=r D 

2dl_1 

rprl L:: L:: f, iao J(tW dt 
i=O lol=r D1; 

2-prllJIP ~ 2-pr!llJllP r • r,p,D Wp(D) 

16 
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Let us now describe the main idea: First we approximate Idf by the 
quadrature Jkf for some k, giving the desired precision, but having a num
ber of nodes much !arger than n. This Jk, in turn, will be split into the 
sum of a single quadrature Jko, with number of nodes of the order n, which 
we compute classically, and a hierarchy of quadratures (more precisely, dif
ferences of quadratures) J[ (l = k0 , •.. , k - 1). lt will be shown that the 
computation of the J[ f reduces to the computation of the mean of sequences 
with well-bounded L:Lnorms for suitable Nz. This enables us to apply the 
results of section 4 and approximate the means by quantum algorithms. In 
the sequel we give the formal details, the proper balancing of parameters 
and the proof of the error estimates. 

Define 

2d-111:-l 11:-l 

J' f := (J1 - Jo)f rd L L ajf(s1,i + r 1tj) - L ajf(tj) 
i=O j=O j=O 

11:'-l 

.L: ajJ(tj), (23) 
j=O 

where 

(24) 

For l E No, set 

11:'-l 

J[J J'(Elif) = L ajf (szi + r 1tj), (25) 
j=O 

2dl_1 

1; = rdl .L: Jfi· (26) 
i=O 

lt is easily checked that 

2dt_1 

l1+if = rd1 L J1(E1if). 
i=O 

and hence 
2dt_1 

rdL L (J1(E1d) - Jo(Ezd)) 
i=O 

2d1-l 

rdl .L: J!J = JfJ. (27) 
i=O 

17 



Using (22) and (21), we get 

2dl_1 2dt_1 

rdi L IJ!dlp < rdt L IJ1(E1d) - Jo(E1d)IP 
i=O 

2dt_1 

< rd1 L (!(Id - J1)(E1if)I + l(Id - Jo)(E1i)J)l)P 
i=O 
2dl_1 

< crdl L IE1dl~,p,D :s: crprlllfll~;(D)' 
i=O 

Now we derive the upper bounds. Clearly, it suffices to prove them for 

n :'.'.:max(,,;, 5). 

Let 

By the above, we have ko :'.'.: 0. Furthermore, let 

k = f (1 + d/r)ko l, 

hence k > ko. By (27) 

k-1 

1k = 1ko + :L 1:. 
l=ko 

For 

ko :S: l < k 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

put N1 = 2d1. We shall define mappings r 1 : B(W;(D)) -t L:1 in order to 
apply Lemma l. For this purpose we fix an m * E N with 

(34) 

and 

2m• /2-1 > C 
- ' (35) . 

w here c is the constant from ( 1 7). Hence, 

llfllc(D) :S: 2m· 12
-

1 for f E B(w;(D)). (36) 
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Define 'f/!j : Z[O, Ni) ---+ D (j = 0, ... . r;,' - 1) by 

'f/lj(i) = s1i + T 1tj (i E Z[O, N1)), 

and ß : R ---+ Z[O, 2m·) for z E R by 

{ 

0 if Z < -2m*/2- 1 

ß(z) = l2m*/2(z+2m* /2-l)J if -2m* /2-l:::; z < 2m* /2-l 

2m• - 1 if Z 2: 2m• 12- 1. 

Furthermore, let / : Z[O, 2m•) ---+ R be defined for y E Z[O, 2m*) as 

1(y) = rm*f2y- 2m·;2-1. 

lt follows that for -2m* /2- 1 < z < 2m• /2-1 
- - ' 

1(ß(z)):::; z:::; 1(ß(z)) + rm*/2
. 

Next let {} : Z[O, 2m• )tt' ---+ R be given by 

lt
1 -1 

{}(yo, „., Y1t1-1) = L ajT(yj)· 
j=O 

Finally, we set 

f1(f)(i) = {}((ß 0 f 0 'f/!j(i))j~ü1 ). 

for JE ß(W;(D)). We have 

tt'-1 
f1(J)(i) = L aj1(ß(J(s1i + 2-1tj))), 

j=O 

hence, by (25), (36) and (39), 

tt'-1 

IJ[d - f1(f)(i)I :::; L lajllf(s1i + r 1tj) - 1(ß(f(s1i + r 1tj)))I 
j=O 

tt'-1 

(37) 

(38) 

(39) 

< rm· 12 L:: lajl s crm·12 s ck-lrrk, (4o) 
j=O 

and therefore, by (26), for all f E ß(W;(D)) , 

2dl_1 

IJ[J - SN1r1(J)I:::; rdl L IJ[d - f1(f)(i)I :::; ck- 1rrk. (41) 
i=O 
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Moreover, by (28), (40), and (33), 

llf1(J)llLNz < ll(JfJ)~ü 1 llLNz + llf1(J) - (JfJ)~ü 1 llLNz 
p p p 

< ll(JfJ)~ü 1 llLNz + llf1(J) - (JfJ)~ü 1 llLNz 
p ~ 

< c2-rl _ 

Consequently, 

(42) 

By (30), ,.., 2dko :Sn, hence 

(43) 

( this just means that with ,.., 2dko queries we can compute Jko, the mean 
of ,.., 2dko numbers, classically, or, more precisely, up to any precision by 
simulating the classical computation on a suitable number of qubits). By 
assumption, r /d > 1/p and p;::: 1. Hence 

r > ~ ;::: (~ - 1) d. 

Now fix any 6 with 

0 < 6 < min (r, ~ (r - (~ -1) d)) , 
and put for l = ko, ... , k - 1 

n1 = r 2dko-ö(l -ko) l · 
v1 = lg(2 ln(l - ko + 1) + ln 8)1 . 

lt follows from ( 46) that 

Put 

k-1 k-1 

L e-vz/8 :S ~ L(l -ko + 1)-2 < ~-
l=ko l=ko 

k-1 

:n = n + 2,..,' L: v1n1 . 

l=ko 
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By (45), (46), and (31), 

k-1 

n < n + 2K,1 L f8(2 ln(l - ko + 1) + ln 8)1 l 2dko-ö(l-ko) l 
l=ko 

< c2dko :::; cn. (49) 

From (22) above and Lemma 6(i) of Heinrich (200la), 

By Lemma 2 and (43), 

e~(Jki B(w;(D))) 

:::; eh(Jk0 , B(w;(D)), 0) + eLn(Jk - Jk0 , ß(W;(D))) 

= eLn(Jk - Jk0 , ß(W;(D))). (51) 

Using (32), (48), Corollary 2 and (47), we get 

eLn (Jk - Jko, B(w; (D))) = e~,_, I;7,:-k1o v,n, (I: Jf, B(w; (D) )) 
l=ko 

k-1 

< L eg,_,n, (Jf, ß(W;(D))). (52) 
l=ko 

From (41) above and Lemma 6(i) of Heinrich (200la) we conclude 

eg,_,n
1 
(Jf, B(w; (D))) :::; ck- 1rrk + eg,_,n

1 
(SN1r1, B(w; (D))). (53) 

Corollary 1, relation (42) above and Lemma 6(iii) of Heinrich (200la) give 

eg,_,n
1 
(SN1I'i, ß(W;(D))) < eh

1 
(SNp c rrt ß(L;1 )) 

= crrteh
1
(SN" ß(L;1

)). (54) 

Joining (50)- (54), we conclude 

k-1 

e~(Id, B(w;(D))) :::; crrk + c L rrteh, (SNp ß(L; 1 )) . (55) 
l=ko 
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Now we prove the upper bound in the case 2 < p < oo. Relation (55), 
Proposition 1, (45), and (31) give 

k-1 
e~(Id, B(w;(D))) ~ crrk + c L rr1nj1 

l=ko 
k-1 

< crrk + c 2-cr+d)ko L: 2- cr-ö)(l-ko) 

l=ko 
< cr(r+d)ko ~ cn-r /d-1_ 

Next we consider the case 1 ~ p < 2. Observe that, by (44), 

~8 < r - (~ - 1) d. 

lt follows from (55), Proposition 1, (56), (31), and (30) that 

e~ (Id, B(w; (D))) 
k-1 

< crrk + c L rrln/2/pNl2/p-1max(log(ni/VM),1)2/p-1 

l=ko 
k-1 

< crrk + c L: rrl-~dko+~ö(l-ko)+(~-l)dl(ko + 1 )~-1 
l=ko 

k-1 
< crrk + crcr+d)ko(ko + 1 )~-1 L: 2c-r+c~-l)d+~")(l-ko) 

l=ko 

< cr(r+d)ko(ko + 1)~-1 ~ cn-r/d-l(logn)~-1. 

Finally we consider the case p = 2. From (55) and Lemma 6 we get 

e~(Id, B(w;(n))) 
k-1 

< crrk + c L rr1nj1 >.(ni, N1) 312 1og >.(n1, N1) 

l=ko 

< c 2-rk + c 2-(r+d)ko X 

k-1 

(56) 

L: rcr-ö)(l-ko)(z - ko + loglogn + 1)3121og(t - ko + loglogn + 1) 
l=ko 

< c r(r+d)ko (log log n) 312 log log log n ~ cn-r/d-l >-o(n). 
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To conclude the proof of the upper bounds in all three cases, we use (49) 
and scale n . 

Now we turn · to the lower bounds. Since B(W;(D)) c B(W;(D)) for 
p > q, it suffices to consider the case 2 < p < oo. Fix such a p. Let 'ljJ be a 
C00 function on Rd with 

supp'l/J C (0, l)d, a1 := h1/; > 0, 

and denote 11'1/Jllw;(D) = a2. Let n E N, k = 1 d-1(1og(n/c1)+l)l, where c1 is 
the constant from Proposition 1, which can be assumed to satisfy 0 < c1 :S 1, 
and put N = 2dk. lt follows that 

(57) 

Set 
'l/Ji(t) = 'l/J(2k(t - Si)) (i = 0, ... , N - 1), 

with the Si as in the beginning of the proof. We have 

I .1. 2 -dkl •1• 2 -dk N-1 
d'!-'i = d'!-' = 0'1 = 0'1 (58) 

and 
ll'l/Jillw;(D) :S 2(r-d/p)kll'l/Jllw;(D) = a22(r-d/p)k. 

Consequently, taking into account the disjointness of the supports of the 'l/Ji, 
for all ai ER (i = 0, ... , N - 1) , 

N-1 N-1 

II L ai'l/Ji11:r(D) = L lailpll'l/Jill~;(D) :S a~2prkJl(ai)~ü 1 ll~f · (59) 
i=O P i=O 

Fix any m* E N with 

m* /2 - 1 ~ dk/p. (60) 

Let ß: R -7 Z[O, 2m· ) and 'Y : Z[O, 2m•) -7 R be defined as in (37) and (38). 
For f E B(L~) we have 

\J (i)\ ::::; Nl /p = 2dk /p ::::; 2m· ;2-1. 

Hence, by (39), 

'Y(ß(f(i)))::::; J(i)::::; 1(ß(f(i))) + rm* /2 . (61) 
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Define 
N-1 

r: B(L~) -+ w;(n) by r(J) = L 1 oßoJ(i)1/Ji· 
i=O 

By (59) and (61), for f E B(L:), 

llf(f)llw;(D) < cr22rklll 0 ß 0 JllLN 
p 

< cr22rk (llJ llL;;' + llJ - 1°ß 0 f llL;;') 

< cr22rk ( 1 + rm· /2) . 

Furthermore, by ( 58), 

N-1 

Id o r(J) = L 1 o ß o f (i)Id1/Ji 
i=O 

N-1 

= cr1N-1 2:1oßof(i) 
i=O 

Define 
17: D-+ Z[O, N) by ry(s) = min{i 1 s E Dki}, 

with the Dki as in the beginning of the proof, and 

Then 

(!: D X Z[O, 2m•)-+ R by e(s,z) = 1(z)1/J17(s)(s). 

r(J)(s) 
N-1 

I: , o ß o J(i) 7/Ji(s) 
i=O 

= / o ß o J(ry(s)) 1/J11(s)(s) 

= e(s,ßofory(s)). 

So r is of the form (1) (with "'= 1) and maps 

B(L~) into cr22rk ( 1+rm·12) B(W;(D)). 

By Corollary 1 and Lemma 6(iii) in Heinrich (2001a), 

e~n(Idof,B(L~)) < eh(1d,cr22rk(1+2-m•/2) B(W;(D))) 

cr22rk ( 1+rm·12) eh(Id, B(W;(D))). 
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Using (61) again, we infer 

sup ISNf-SN(/oßof)l S:.Tm•/2
, 

fEB(Lfj 

and hence, by Proposition 1 and Lemma 6(i) and (ii) of Heinrich (2001a), 
using also (62) and (57), 

cn- 1 < e~n(SN,B(L:)) 

< e~n(SN o roß, ß(L:)) + rm· 12 

= <J! 1 e~n(Idor,B(L:)) +rm• /2 

< <J!1<J22rk (1 +rm•;2) eh(Id,ß(W;(D))) +rm•/2 

< cnrfdeh(Id, ß(W;(D))) + rm· 12 . 

Since m* can be made arbitrarily large, the desired result follows. D 

6 Comments 

Let us discuss the cost of the presented algorithm in the bit model of com
putation. The algorithm consists of quantum summations on the levels 
l = ko, .. . , k - l. On level l we have N1 ~ 2dl and n1 = 8(2-o(l-koln), 
where ö > 0 does not depend on l or n. Recall also that 2dko = 8(n) and 
k-ko = e (log n) . Referring to the respective discussion of Summation in the 
bit model in Heinrich (2001a), section 6, and Heinrich and Novak (2001b), 
section 5, we conclude that on level l we need O(log N1) qubits, O(n1 log Nt) 
quantum gates, O(log n1 log log n1) measurements in the case p > 2 and 

O(n[ N1-
1 

/ max(log(nt/ ../Ni), 1) + log(Ntfnt) log log(Nt/n1)) 

measurements for p :S 2. Summarizing, we see that altogether the algorithm 
needs O(logn) qubits, O(nlogn) quantum gates, O((logn) 2 loglogn) mea
surements for p > 2 and O(n/ log n) measurements for p :S 2. Thus the 
quantum bit cost differs by at most a logarithmic factor from the quantum 
query cost 8(n). 

In the following table we summarize the results of this paper and com
pare them with the respective known quantities of the classical deterministic 
and randomized setting. We refer to Heinrich and Novak (2001a) and the 
bliography therein for more information on the classical setting. The respec
tive entries of the table give the minimal error, constants and logarithmic 
factors are suppressed. 
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deterministic random quantum 

B(w;,iD)), 2::::; p < oo n-r/d n-r / d-1 / 2 n - r/d-1 

B(w;,d(D)), 1 < p < 2 n-r/d n-r/d-1+1 /p n-r/d- 1 

B(W[ d(D)) n-r /d , 

The quantum rate for 1 :S p < 2 is a certain surprise. Previous results led 
one to conjecture that the quantum setting could reduce the exponent of the 
classical randomized setting by at most 1/2. Now we see that in the case 
p = 1 there is even a reduction by 1. 
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