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ABSTRACT 

We are concerned with a parameter choice strategy for the Tikhonov 
regularization 

(Ä+al)x = T*y + w 

where Ä is a (not necessarily selfadjoint) approximation of T*T and T*y+w 
is a perturbed form of the (not exactly computed) term T*y. We give 
conditions for convergence and optimal convergence rates. 

INTRODUCTION 

We are concerned with the problem of finding approximations to the 

minimal norm least-square solution i of the operator equation 

Tx = y, (1) 

where T is a bounded linear operator between Hilbert spaces X and Y and y 

belongs to D(T+) := R(T) + R(Tt, the domain of the Moore-Penrose 

inverse T+ of T . lt is well known [6] that if the range R(T) of T is not 

closed, then the operator T+ ( which associates y E D(T+) the unique 

element X::= T+ y of minimal norm such that llTx-yll = inf{!ITx-y!l:xE X}) 



is not continuous, and hence the problern of solving (1) for x is ill-posed. So, 

regularization rnethods are ernployed to find approximations to x. A well 

known such rnethod is the Tikhonov regularization in which a well-posed 

equation 

(T*T+al)xn = T*y (2) 

is solved for each a > 0. lt can be easily seen that if yfJ E Y with lly-yfJll ~ 8, 

is available instead of y, then the solution of 

satisfies 

( al+T*T)x& = T*yli 

llxn-x&ll ~ _!_--+ 0 as 8--+ 0. 
fa 

(3) 

In order that x& to be an approximation to X:, we must have x& --+ X: as 

8--+ 0 and a--+ 0. lt is known ( c.f. Groetsch [6]) that 

llx-xnll --+ 0 as a--+ 0 . (4) 

Therefore a sufficient condition for x& --+ X: is to choose a = a( b) such that 

8/fiir5}--+ 0 as 8--+ 0. Next question is how fast the convergence is. This 

question is generally tackled under certain "smoothness" assumptions on the 
V 

unknown X:. lf X: E R((T*T) ), 0 < v ~ 1, then it is known [6] that 

(5) 

so that an a pnon parameter choice a = a( b) for max { av, 8 / .fli} to be 

minimum is a( 8) = c82/(2v+l) for some constant c > 0. With this choice of 

a, we have 

(6) 

lt is also known (Schock [11]) that the rate 0(8211f<2v+l)) is optimal, in the 

sense that it can not be replaced (in general) by o( f 11!<211+l)) for 

i E R((T*T(), unless X: = 0. In a posteriori parameter choice strategies, the 



parameter a = a( b") is choosen during the course of computation of xg. 

Many works in the literature devoted to this (c.f. Groetsch [5], Schock [12], 

Engl [1], Engl and Neubauer [3], Gfrerer [4], Nair [9], and the references 

there in .) 

In all the above refered works it is presumed that T*yö is computed exactly. 

But, due to the ill-posed nature of the operator T it is very likely that one 

actually deals with a perturbed quantity T*yö+w with llwll small instead of 

T*yö , so that T*yö+w does not belong to the range of T*. Suchsituation in 

the finite dimensional frame work has been considered by Schock [13). This 

consideration would be of very importance when one solves equation (3) 

numerically. For example the Operator A := T*T and T* may be 

approximated by sequences of operators (A ) and (T*) respectively, and in 
n n 

that case one generally considers the problem to be solved is 

(An +al)x = T:ys; 

but the actual problem at hand is of the form 

( A + al)x = T*yö +w 
n n n 

where w is some additional error due to computation involved in T*yö. The n . 

main purpose of this paper is to address this issue. We propose a priori and 

a posteriori parameter choice strategies for choosing a taking into 

consideration such inaccuracies due to computation. In particular we show 

that if A and zli are "good" approximations to A and T*yö respectively, 
n n 

then the optimal theoretical rate in (6) can be achieved. 

THE METHOD AND ITS CONVERGENCE 

Let yö E Y with lly-ylill ~ 8, (z~) in X such that 

l!zli-T*ylill ~ Tl ~---+ 0 as n -> w 
n n,u 

for each 8 > 0, and ( A ) be a sequence of bounded linear operators on X 
n 



such that 

II A-A n II ~ e: n --+ 0 as n --+ CD , 

where A := T*T. Since A is a non-negative and self-adjoint operator, it 

follows that for each n=l,2 „ „ , a ~ e:n/c
1 

for some constant c
1 

such that 

0 < c1 < 1 implies the existence of (An+ al)-1 as a bounded linear operator 

and ll(An +al)-1
11 ~ l/(1-c

1
)a. lt is to be remarked that if An is 

non-negative and self-adjoint, then the above conclusions hold for all a>O . 

In this context one recalls that in projection methods ([8),[3]) for compact T, 

one has non-negative self-adjoint operators A = P T*TP where (P ) is a n n n n 

sequence of orthogonal projections such that P x --+ x as n --+ CD for all 
n 

x E X; and in a degenerate kernel method for integral equations of the first 

kind considered by Groetsch [7), non-negative self-adjoint operators A are 
n 

obtained by approximating the kernel of the integral operator A = T*T by 

convergent quadrature rules . In both these cases one also has llA-A II --+ 0. 
n 

But the consideration of a general A , as has been done recently by Nair 
n 

[10), is again important in computational point of view, because due to 

truncation errors etc., one actually may not be dealing with a non-negative 

self-adjoint operator. 

We consider the equation 

(A +al)xli = zli 
n a,n n 

for a ~ e:n/c1 , for 0 < c1 < 1. 

In order to obtain estimates for llx-x li II we consider the equation 
a,n 

(A +al)x = T*y , a > e: /c1 D ~D - D 
(7) . 

Then we have 

(A +al)(x -xli ) = T*y--zli 
n ~n ~n n 



so that 

(A+a.I)(x -xö ) = T*yLzö+(A-A )(x -xö ). a,n a,n n n a,n a,n 

Therefore, writing T*y-zö = T*(y-yö) + (T*yL-zö) and using the relations 
n n 

e:n ~ c1 a, 0 < c1 < 1 and ll(A+al)-
1

11 ~ 1/ a, it follows that 

Ö T/n Ö 
llx -x 0 II< - + -' . 

a,n a,n - ra a 

Now, recall equation (2) which can be rewritten as 

(A
0 
+al)xa = T*y - (A-A

0
)xa. 

This together with (7) and using the fact that 

llxall = ll(A+al)-
1
T*yll = ll(A+al)-

1
A:X:ll ~ llxll, it follows that 

llx -x II <ll(A +al)-1illl(A-A )x II = o[e: 0
]. a a,n - n n a a 

Thus, 

ll:X:-xö II= o[llx-x II+ j_ + T/n,Ö + e:n] 
a,n a ra a a 

(8) 

for all a ~ e:
0
/c

1
. 

Now, (8) together with ( 4), (5) and (6) gives the following result. 

THEOREM 1 

(i) For ö > 0 and n=l,2, ... , let a = a(ö,n) > 0 besuch that 

,.Ji;:) Ö e:n dT/n,Ö O 
U\ u,n ---+ 0 , ---+ 0 , Q(b ) ---+ 0 an ( 6 ) ---+ 

~ Q(b,n) ,n a ,n 

as ö---+ 0, n ---+ CD . Then 

ll:X:-x 0 II ---+ O as ö---+ O , n ---+ CD • a,n 

(ü) Let x E R(Av), 0 < v ~ 1, and for ö > 0 let a = cö2/(2v+l) for some 

constant c > 0. Let n be a positive integer sucht that for 
0 

< _ O( ...f2v+2)/(2v+l)) _ O( ...f2v+2)/(2v+l)) 
e:n_cla,e:n- {)' ,TJn,Ö- {)' · 

Then 



A POSTERIORI PARAMETER CHOICE STRA TEGY 

For the sake of simplicity of presentations , we assume that 

T/ r = O(tf) and E = O(f) n,u n 

for all large enough n, and for some positive real numbers r and k. For p ~ 0, 

q > 0, we propose the following "discrepancy principle" 

(9) 

where n > n( 6) with ii( 6) tobe specified. 

First we note that 

llA xö -zöll = llax:ö II = lla(A +al)-
1
zöll < c (10) n a,n n a,n n n -

for some constant c > 0 and for all a ~ En/c
1

. Now, let c
2 

> 0 and c3 > 0 be 

such that llz~ll S c
2 

for all n = 1,2, ... and for all 6 S 6
0 

for a given 6
0 

> 0, 

and llAnll S c3 for all n = 1,2, .... Then for each n = 1,2, ... , and for all 

a ~ c4 =max{::: n=l,2, . .. } , 

1 c2 
llAnx~,n-z~ll = lla(An +al)- z~ll ~ l+c3/c4 =Co' say. (11) 

F'rom (10) we have 

f (a) := oqllA xö -zöll < caq, a > E /c
1
. n n a,n n - - n 

Therefore 

f [En] -+ o as n-+ CD . Now, let ii( 8) be the smallest positive integer such 
n c

1 

that for all n ~ ii( 8) , 



Then taking 

a
0 

= max { c4, [ ~j l/q} 
0 

it follows that for all n ~ ii( 8), 

a > E:n and f [E:n] < tf < f (a ). 
o-c nC - -no 

1 1 

Therefore, by interrnediate value theorern, there exists a = a( 8,n) such that 
E: 8p 
___.:: ~ a(8,n) ~ a and llA xli -zlijj = -
C 

1 
o n a,n n c}' 

for all n ~ ii(8).We also note that for n ~ ii(8) and a = a(8,n), 

Therefore 

so that 
a( 8,n) = 0( tf/(q+l)) 

for all n ~ ii(8). 

We surnmarize the above results, in Proposition 2 below. 

PROPOSITION 2: 

Let p ~ 0, q > 0. For 8 > 0, there exists positive integer ii(8) and 

a = a(8,n) > 0 for n ~ fi.(6) such that (9) holds, and 

a( 6,n) = 0( tf'/(q+l)) , n ~ ii(6) . 



PROPOSITION 3: 

If q~l ~min {2,r}, then 

oI' < coI'/(q+l) 
a(b',n)q -

for some constant c > 0 independent of n and b'. 

Proof: 

For any u E X, we have 

Therefore, 

ll(A +aI)-lzBll 
n n 

~ [11J ll(A+al)-1(z~-T*yB)+(A+aI)-1T*(yB-y)+(A+al)-1T*yll 

~ [d-] cln 'ab'+ --1 + llxll], 
1 [ä 

so that 

gP = II ax~ II ~ 11 ( 11 ~+ofci+llxll a) = o( if') 
aq ,n 1 n,u 

- . { 1 p p} 
µ - mrn r, + 2(q+l) ' q+l . 

From this the result follows. D 

Now we are in a position to state the main theorem of this paper. 

THEOREM-4: 

If q~l ~min {2,r,k}, X: E R(Av), 0 < 11 ~ 1, a = a(c5,n) is chosen according to 

(9) for n ~ fi( c5), then 

llx-x~)I = 0(8'), n ~ ii(O), 

where 
- . {pll p p k p } 

s - nnn q+l ' 1 - 2(q+l) , r - q+l ' - q+l . 



In particular we have the following : 

(a) If 1 + 2(:+l) ~ r , 1 + 2(:+l) ~ k and *:+l) ~ 1, then 

{ 

pll _E_ < _2_ 

llx-xö II= 0(156), s = q+l , q+l - 2v+1 . 
a,n 1 _ p _E_ > _2_ 

2(q+l)' q+l - 2v+l 

b) If r > 2v+2 k > 2v+2 th 
- 2v+1 ' - 2v+1 ' en 

Proof: 

We recall from (5),(6) and (8) that 

llic-x~,.11 = 0 [ ma.x {Cl',~, ;.o, '; }] 
From Proposition 3, we have 

and 
k 
~ = 0 [ o«-p/(q+l)] . 

These estimates together with Proposition 2 and the assumptions 

TJ ~ = 0( tf) and e: = 0( dt) imply the results. 
n,u n 

a 



lt is to be remarked that in the projection method case zb = P T*yb 
n n 

and in the degenerate kernel method, zb = T*yb, so that in both the above 
n 

cases, 

llzb-T*ybll - 0, as n - rn. n 

Moreover, in both the above cases the operator A is non-negative and self
n 

adjoint with II A-A II - 0, so that the analyis can be simplified. 
n 

Thus this paper generalizes the type of results in Engl and Neubauer ([2),[3]) 

for projection methods , and also the first part of Grotsch [8) providing a 

parameter choice strategy. 
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