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ABSTRACT

We are concerned with a parameter choice strategy for the Tikhonov
regularization

(A+a)x=T*y +w

where A is a (not necessarily selfadjoint) approximation of T*T and T*j+w
is a perturbed form of the (not exactly computed) term T*y. We give
conditions for convergence and optimal convergence rates.

INTRODUCTION

We are concerned with the problem of finding approximations to the
minimal norm least—square solution x of the operator equation
Tx=y, (1)

where T is a bounded linear operator between Hilbert spaces X and Y and y
belongs to D(T'):= R(T) + R(T)*, the domain of the Moore—Penrose
inverse TT of T. It is well known [6] that if the range R(T) of T is not
closed, then the operator Tt (which associates y € D(T+) the unique
element % := Ty of minimal norm such that || Tx—y|| = inf{|| Tx—y||:xe X})



1s not continuous, and hence the problem of solving (1) for x is ill—posed. So,
regularization methods are employed to find approximations to x. A well
known such method is the Tikhonov regularization in which a well-posed
equation

(T*T+al)x, = T*y (2)

is solved for each & > 0. It can be easily seen that if y8 € Y with ||y—y8|| < 4,
is available instead of y, then the solution of

(al+T*T)x§ = T*yb (3)

satisfies

Ix,—x8)| < L —0 as §—0.
a

In order that x3 to be an approximation to X, we must have x§ — x as

6 — 0 and a — 0. It is known (c.f. Groetsch [6]) that

|x—x4ll — 0 as a—0 . (4)
Therefore a sufficient condition for x§ — x is to choose a = o) such that

6/{a{8) — 0 as § — 0. Next question is how fast the convergence is. This
question is generally tackled under certain "smoothness" assumptions on the
unknown x. If x € R((T*T)v), 0 < v < 1, then it is known [6] that

[[x=%,ll = 0(e¥) , (5)

so that an a priori parameter choice a = o §) for max {a,6/{a} to be
minimum is of§) = c¢82/(2+1) for some constant ¢ > 0. With this choice of

a, we have

5—x3]| ¢ lx—x]l + %_ = o(82¥/@v+1)), (6)
a

It is also known (Schock [11]) that the rate 0(52V / (2V+1)) is optimal, in the
sense that it can not be replaced (in general) by 0(52 vl (2V+1)) for
XE€ R((T*T)u), unless x = 0. In a posteriori parameter choice strategies, the



parameter a = of¢) is choosen during the course of computation of x8.

Many works in the literature devoted to this (c.f. Groetsch [5], Schock [12],
Engl (1], Engl and Neubauer (3], Gfrerer [4], Nair [9], and the references
there in.)

In all the above refered works it is presumed that T*y® is computed exactly.
But, due to the ill-posed nature of the operator T it is very likely that one
actually deals with a perturbed quantity T*y%+w with ||w| small instead of
T*y® , so that T*y8+w does not belong to the range of T*. Such situation in
the finite dimensional frame work has been considered by Schock [13]. This
consideration would be of very importance when one solves equation (3)
numerically. For example the operator A := T*T and T* may be
approximated by sequences of operators (A ) and (T7) respectively, and in

that case one generally considers the problem to be solved is

— T*y8 -
(An+aI)x - Tny )

but the actual problem at hand is of the form

(A +al)x = T*yd +w
n n n
where w_ is some additional error due to computation involved in T*y8. The

main purpose of this paper is to address this issue. We propose a priori and
a posteriori parameter choice strategies for choosing a taking into
consideration such inaccuracies due to computation. In particular we show
that if A and zg are "good" approximations to A and T*y?® respectively,

then the optimal theoretical rate in (6) can be achieved.

THE METHOD AND ITS CONVERGENCE

Let y® € Y with ||[y—y®|| < 6, (2) in X such that
§_T*yb =
||znTy||$nn,6—oOa.sn > o

for each § > 0, and (An) be a sequence of bounded linear operators on X



such that

|[A-—A || <e —0 as n— o,
n n
where A := T*T. Since A is a non—negative and self-adjoint operator, it

follows that for each n=12,..., a > (-:n/c1 for some constant c, such that

0 <c¢, < 1implies the existence of (A_+ al) ™" as a bounded linear operator
and II(An+aI)_l|| ¢ 1/(1=,)a. It is to be remarked that if A_ is

non—negative and self—adjoint, then the above conclusions hold for all a>0.
In this context one recalls that in projection methods ([8],(3]) for compact T,
one has non—negative self-adjoint operators A = PnT*TPn where (Pn) is a

sequence of orthogonal projections such that Px —xasn—o for all

x € X; and in a degenerate kernel method for integral equations of the first
kind considered by Groetsch [7], non—negative self-adjoint operators A _ are

obtained by approximating the kernel of the integral operator A = T*T by
convergent quadrature rules. In both these cases one also has ||A—An|| — 0.

But the consideration of a general An, as has been done recently by Nair

[10], is again important in computational point of view, because due to
truncation errors etc., one actually may not be dealing with a non—negative
self—adjoint operator.

We consider the equation

6 — 6
(An+al)xa’u 28
for a> en/c1 ,for 0 < ¢, < 1.

In order to obtain estimates for ||x—x} || we consider the equation
)

(An-+-o:I)xa,n =T*y , a2e /¢, (7} -

Then we have
—xb = ¥ 8
(An-{-()zl)(xa,n xa,n) i i y—z8



so that

—x8 ).

(Atal)(x, —xb )= Tryo20+(A-A )(x, x5

a,n
Therefore, writing T*y—z8 = T*(y—y®) + (T*y®—2?%) and using the relations

e <¢,a0<c <1land ||(A+aI)_1|| < 1/aq, it follows that
Y]

Q,n a,n J—a (4

Now, recall equation (2) which can be rewritten as
— Ty _ (A_
(An+aI)xa =T*y — (A An)xa .

BS

This together with (7) and using the fact that
Ix Ml = I(A+al) ' T*y|| = [|(A+ad) " A%|| < [I%]], it follows that

I g% gl A+ (A=A ) = 0[ 2]

«a a,n

Thus,
: . § T ©
nx—xg,nn=o[nx—xan+—a e (8)

for all a> en/cl.

Now, (8) together with (4), (5) and (6) gives the following result.

THEOREM 1
(i) For § > 0 and n=1,2,..., let @ = o(6,n) > 0 be such that

a(é)n)_.oy 6 _’O,a—;n_n)_’oandnn’é — 0

as 6 — 0, n — o. Then

||i—xg’n||—»0 as 6—0,n—w.

(ii) Let x € R(AV), 0<v<l and for 6§ > 0let a = 6+ for some
constant ¢ > 0. Let n_be a positive integer sucht that for

e <ca,e = 0(6(2V+2)/(2u+1)) B O(b(2u+2)/(2u+1))'

Then
5 22U/ (2041)
lx—x3 Il = 0(8 ),n2n



A POSTERIORI PARAMETER CHOICE STRATEGY
For the sake of simplicity of presentations, we assume that

n, 5= 0(8) and e =0(6)

for all large enough n, and for some positive real numbers r and k. For p > 0,
q > 0, we propose the following "discrepancy principle"

5P
§ Ol = 2
14,5848l = <5 (9)

where n > fi(§) with fi(6) to be specified.

First we note that
|
1A x8 =28l = llexS Il = lla(A +al) 8]l < c (10)
for some constant ¢ > 0 and for all a > en/cl. Now, let ¢, > 0 and Cy > 0 be
such that [[z8|| < c, for all n = 1,2,... and for all 6 < §_ for a given § > 0,

and ||An|| < ¢y for all n = 1,2,... . Then for each n = 1,2,..., and for all

€
a ¢, = max {c—n : n=1,2,...} ,
1

C
—1 2
14 x5 ,28ll = oA, +al) a8l 2 el =, say. (1)

From (10) we have
fn(a) = aq||Anxg’n——zg|| <cal, a2 e /¢

Therefore

€

f [—5] — 0 as n — o. Now, let fi(6) be the smallest positive integer such
1

that for all n > fi(6) ,

n|C
e <c,mn{(E)" (5.



Then taking

s 1/a
G = max i, =
= max{e, (£}
(o]
it follows that for all n > i(§),
€ €
n n
a > CN and fn[q] <P < (a).
Therefore, by intermediate value theorem, there exists @ = a(é,n) such that
€ P
< a(6n) < a_and [[A x8 8] = &
1 o n &n n ap
for all n > fi(6).We also note that for n > fi(6) and a = a(4,n),

5P
4%
<A x8

n Q,n

1
= LA (exg )l

1231 = [EA] Rl Ei S |

6
< ||An||'a—q+—1-

Therefore

a +c
o ¢ P(atlA )/ Iagl ¢ P[],

9
so that
of6,n) = o(s*/(a+1)y
for all n > 7i(9).
We summarize the above results, in Proposition 2 below.

PROPOSITION 2:
Let p > 0, q > 0. For § > 0, there exists positive integer ii(6) and
a = a(é,n) > 0 for n > fi(6) such that (9) holds, and

o 6,n) = 0(/ 9Ty 0> 7(6) .



PROPOSITION b
If 7 < min {2,r}, then

& cpllat)
of 6,n)*

for some constant ¢ > 0 independent of n and 4.

Proof:
For any u € X, we have

(A, +aD)™ul < LA gl}a) il g _(’;1] I(A+al) " ul] .

Therefore,

I(A_+a1) 23]
¢ [1711] I(A+a) ™ (z8=T*y8)+(A+al) " T*(yd~y)+(A+al) " T*y|

1M, 6, 8 s
< (=] (sl + 2+ s,
—Cl o m

so that
Yot |l ¢ 1——<1 +o[a+|x]la) = 0(#)
o8 - an' - I— nn,5 -
R P
s )
From this the result follows. 8]

Now we are in a position to state the main theorem of this paper.

THEOREM4
If ;< min {2,r.k}, X € R(A”),0 < v< 1, a = of6,n) is chosen according to

(9) for n > ii(6), then
I%=x3, Il = 0(&) , n 2 (),

where

— AT pv __Pp __Pp __P
s-m1n{q+1,1 2(q_*_l),r q+1,k q+1}.



In particular we have the following:

o s . - P
(3.) If1+ 20q+ 1) Lr, 1+ 3q+1) < kandms 1, then

PV P _¢ 2
< s _ _ q+1’ q+l - 2v+1
g, ]l = 0(&), 5 { PR
2(q+1)’ q+1 = 2v+1

2U+2 2042
b) If r> 2222 k> 2242 then

”i_xg’n” - 0(5(21//21/+1)) '

Proof:
We recall from (5),(6) and (8) that

n €
ch—xg n|| = O[ma.x {a", [i_’ ;'6 , ?n}] i
' a

From Proposition 3, we have

%_a _ 61—p/2(q+1)[£§] i _ 0[61—p/2(q+1)] 7
Lo s8] 1 < o[y

and

" [5k—p/(q+1)] .

a="0

These estimates together with Proposition 2 and the assumptions
n s=0(8)ande = 0(6%) imply the results.



It is to be remarked that in the projection method case zg = PnT*yﬁ

and in the degenerate kernel method, zg = T*y8, so that in both the above

cases,

||Zg—T*y5|| —0, asn—o.
Moreover, in both the above cases the operator An is non—negative and self—
adjoint with ||A—An|| — 0, so that the analyis can be simplified.

Thus this paper generalizes the type of results in Engl and Neubauer ([2],[3])
for projection methods, and also the first part of Grotsch [8] providing a
parameter choice strategy.

ACKNOWLEDGEMENT

This work is carried out while Thamban Nair was a Visiting Professor
at the Universitit Kaiserslautern, Fachbereich Mathematik. The support
received is gratefully acknowledged.

REFERENCES

(1] Engl, H W.: Discrepancy principles for Tikhonov regularization of
ill—posed problems leading to optimal convergence rates.
J. Optim. Th. and Appl. 52 (1987), 209—215.

(2] Engl, HW. and A. Neubauer: An improved version of Marti's method
for solving ill—posed linear integral equations.
Math. Computation, 45 (1985), 405—416.

(3] Engl, H.W. and A. Neubauer: Optimal parameter choice for ordinary
and iterated Tikhonov regularization.
In: Inverse and Ill-Posed Problems (Eds.: H.-W. Engl and C.W.
Groetsch) Academic Press, Inc. London, 1987, 97—125.

(4] Gfrerer, H.: Parameter choice for Tikhonov regularization of
ill—posed problems.
In: Inverse and ill-posed problems (Eds.: HW. Engl and C.W.
Groetsch) Academic Press, Inc. London, 1987, 127—149.



(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Groetsch, C.W.: Comments on Morozov's discrepancy principle.
In: Improperly Posed Problems and Their Numerical Treatment.
(Eds.: G. Himmerlin and K.H. Hoffmann), Birkhauser, 1983, 97—104.

Groetsch, C.W.: The Theory of Tikhonov Regularization for
Fredholm Equations of the First Kind.
Pitman Books, London, 1984.

Groetsch, C.W.: Convergence analysis of a regularized degenerate
kernel method for Fredholm integral equations of the first kind.
Integral Equations and Operator Theory 13 (1990), 67—75.

Groetsch, C.W. and J. Guacaneme: Regularized Ritz approximations
for Fredholm equations of the first kind.
Rocky Mountain J. Math. 15,1 (1985), 33—37.

Nair, M.T.: A generalization of Arcangeli's method for ill—posed
problems leading to optimal rates.
Integral Equations and Operator Theory (To appear).

Nair, M.T.: A unified approach for regularized approximation
methods for Fredholm integral equations of the first kind
(Communicated).

Schock, E.: On the asymptotic order of accuracy of Tikhonov
regularizations.
J. Optim. Th. and Appl. 44 (1984), 95—-104.

Schock, E.: Parameter choice by discrepancy principle for the
approximate solution of ill—posed problems.
Integral Equations and Operator Theory 7 (1984), 895—898.

Schock, E.: What are the proper condition numbers of discretized
ill—posed problems ?
Lin. Alg. and Appl. 81 (1986), 129—136.



