UNIVERSITÄT KAISERSLAUTERN

> REGULARIZED APPROXIMATION METHODSWITHPERTURBATIONS FORILLPOSEDOPERATOR EQUATIONS
M. Thamban Nair and Eberhard Schock

Preprint Nr. 231

FACHBEREICH MATHEMATIK

REGULARIZED APPROXIMATION METHODS WITHPERTURBATIONS FOR ILIr-POSED OPERATOREQUATIONS
 M. Thamban Nair and Eberhard Schock

Preprint Nr. 231

UNIVERSITÄT KAISERSLAUTERN
Fachbereich Mathematik
Erwin-Schrödinger-Straße
6750 Kaiserslautern

REGULARIZED APPROXIMATION METHODS WITH PERTURBATIONS FOR ILL-POSED OPERATOR EQUATIONS

M. Thamban Nair
Department of Mathematics
Goa University, Goa, India
Eberhard Schock
Fachbereich Mathematik
Universität Kaiserslautern, Kaiserslautern, Germany

Abstract

We are concerned with a parameter choice strategy for the Tikhonov regularization $$
(\tilde{\mathrm{A}}+\alpha \mathrm{I}) \tilde{\mathrm{x}}=\mathrm{T}^{*} \tilde{\mathrm{y}}+\mathrm{w}
$$ where \tilde{A} is a (not necessarily selfadjoint) approximation of $T^{*} T$ and $T^{*} \tilde{y}+w$ is a perturbed form of the (not exactly computed) term $\mathrm{T}^{*} \mathrm{y}$. We give conditions for convergence and optimal convergence rates.

INTRODUCTION

We are concerned with the problem of finding approximations to the minimal norm least-square solution \hat{x} of the operator equation

$$
\begin{equation*}
\mathrm{Tx}=\mathrm{y} \tag{1}
\end{equation*}
$$

where T is a bounded linear operator between Hilbert spaces X and Y and y belongs to $\mathrm{D}\left(\mathrm{T}^{+}\right):=\mathrm{R}(\mathrm{T})+\mathrm{R}(\mathrm{T})^{\perp}$, the domain of the Moore-Penrose inverse T^{+}of T . It is well known [6] that if the range $\mathrm{R}(\mathrm{T})$ of T is not closed, then the operator T^{+}(which associates $\mathrm{y} \in \mathrm{D}\left(\mathrm{T}^{+}\right)$the unique element $\hat{\mathrm{x}}:=\mathrm{T}^{+} \mathrm{y}$ of minimal norm such that $\|\mathrm{T} \hat{\mathrm{x}}-\mathrm{y}\|=\inf \{\|\mathrm{Tx}-\mathrm{y}\|: \mathrm{x} \in \mathrm{X}\}$)
is not continuous, and hence the problem of solving (1) for $\hat{\mathrm{x}}$ is ill-posed. So, regularization methods are employed to find approximations to \hat{x}. A well known such method is the Tikhonov regularization in which a well-posed equation

$$
\begin{equation*}
\left(\mathrm{T}^{*} \mathrm{~T}+\alpha \mathrm{I}\right) \mathrm{x}_{\alpha}=\mathrm{T}^{*} \mathrm{y} \tag{2}
\end{equation*}
$$

is solved for each $\alpha>0$. It can be easily seen that if $\mathrm{y}^{\delta} \in \mathrm{Y}$ with $\|\mathrm{y}-\mathrm{y} \delta\| \leq \delta$, is available instead of y, then the solution of

$$
\begin{equation*}
\left(\alpha \mathrm{I}+\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{x}_{\alpha}^{\delta}=\mathrm{T}^{*} \mathrm{y}^{\delta} \tag{3}
\end{equation*}
$$

satisfies

$$
\left\|x_{\alpha}-x_{\alpha}^{\delta}\right\| \leq \frac{\delta}{\sqrt{\alpha}} \longrightarrow 0 \text { as } \delta \longrightarrow 0
$$

In order that $\mathrm{x}_{\alpha}^{\delta}$ to be an approximation to $\hat{\mathrm{x}}$, we must have $\mathrm{x}_{\alpha}^{\delta} \longrightarrow \hat{\mathrm{x}}$ as $\delta \longrightarrow 0$ and $\alpha \longrightarrow 0$. It is known (c.f. Groetsch [6]) that

$$
\begin{equation*}
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha}\right\| \longrightarrow 0 \text { as } \alpha \longrightarrow 0 \tag{4}
\end{equation*}
$$

Therefore a sufficient condition for $\mathrm{x}_{\alpha}^{\delta} \longrightarrow \hat{\mathrm{x}}$ is to choose $\alpha=\alpha(\delta)$ such that $\delta / \sqrt{\alpha(\delta)} \longrightarrow 0$ as $\delta \longrightarrow 0$. Next question is how fast the convergence is. This question is generally tackled under certain "smoothness" assumptions on the unknown $\hat{\mathrm{x}}$. If $\hat{\mathrm{x}} \in \mathrm{R}\left(\left(\mathrm{T}^{*} \mathrm{~T}\right)^{\nu}\right), 0<\nu \leq 1$, then it is known [6] that

$$
\begin{equation*}
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha}\right\|=0\left(\alpha^{\nu}\right), \tag{5}
\end{equation*}
$$

so that an a priori parameter choice $\alpha=\alpha(\delta)$ for $\max \left\{\alpha^{\nu}, \delta / \sqrt{\alpha}\right\}$ to be minimum is $\alpha(\delta)=\mathrm{c} \delta^{2 /(2 \nu+1)}$ for some constant $\mathrm{c}>0$. With this choice of α, we have

$$
\begin{equation*}
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha}^{\delta}\right\| \leq\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha}\right\|+\frac{\delta}{\sqrt{\alpha}}=0\left(\delta^{2 \nu /(2 \nu+1)}\right) \tag{6}
\end{equation*}
$$

It is also known (Schock [11]) that the rate $0\left(\delta^{2 \nu /(2 \nu+1)}\right)$ is optimal, in the sense that it can not be replaced (in general) by $o\left(\delta^{2 \nu /(2 \nu+1)}\right)$ for $\hat{\mathbf{x}} \in \mathrm{R}\left(\left(\mathrm{T}^{*} \mathrm{~T}\right)^{\nu}\right)$, unless $\hat{\mathbf{x}}=0$. In a posteriori parameter choice strategies, the
parameter $\alpha=\alpha(\delta)$ is choosen during the course of computation of $\mathbf{x}_{\alpha}^{\delta}$. Many works in the literature devoted to this (c.f. Groetsch [5], Schock [12], Engl [1], Engl and Neubauer [3], Gfrerer [4], Nair [9], and the references there in.)
In all the above refered works it is presumed that $\mathrm{T}^{*} \mathrm{y}^{\delta}$ is computed exactly. But, due to the ill-posed nature of the operator T it is very likely that one actually deals with a perturbed quantity $\mathrm{T}^{*} \mathrm{y}^{\delta}+\mathrm{w}$ with $\|\mathrm{w}\|$ small instead of $T^{*} y^{\delta}$, so that $T^{*} y^{\delta}+w$ does not belong to the range of T^{*}. Such situation in the finite dimensional frame work has been considered by Schock [13]. This consideration would be of very importance when one solves equation (3) numerically. For example the operator $\mathrm{A}:=\mathrm{T}^{*} \mathrm{~T}$ and T^{*} may be approximated by sequences of operators $\left(\mathrm{A}_{\mathrm{n}}\right)$ and $\left(\mathrm{T}_{\mathrm{n}}^{*}\right)$ respectively, and in that case one generally considers the problem to be solved is

$$
\left(\mathrm{A}_{\mathrm{n}}+\alpha \mathrm{I}\right) \mathrm{x}=\mathrm{T}_{\mathrm{n}}^{*} \mathrm{y}^{\delta} ;
$$

but the actual problem at hand is of the form

$$
\left(A_{n}+\alpha I\right) x=T_{n}^{*} y^{\delta}+w_{n}
$$

where w_{n} is some additional error due to computation involved in $\mathrm{T}^{*} \mathrm{y} \delta$. The main purpose of this paper is to address this issue. We propose a priori and a posteriori parameter choice strategies for choosing α taking into consideration such inaccuracies due to computation. In particular we show that if A_{n} and z_{n}^{δ} are "good" approximations to A and $T^{*} y^{\delta}$ respectively, then the optimal theoretical rate in (6) can be achieved.

THE METHOD AND ITS CONVERGENCE

Let $\mathrm{y}^{\delta} \in \mathrm{Y}$ with $\left\|\mathrm{y}-\mathrm{y}^{\delta}\right\| \leq \delta,\left(\mathrm{z}_{\mathrm{n}}^{\delta}\right)$ in X such that

$$
\left\|\mathrm{z}_{\mathrm{n}}^{\delta}-\mathrm{T}^{*} \mathrm{y} \delta\right\| \leq \eta_{\mathrm{n}, \delta} \longrightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

for each $\delta>0$, and $\left(\mathrm{A}_{\mathrm{n}}\right)$ be a sequence of bounded linear operators on X
such that

$$
\left\|\mathrm{A}-\mathrm{A}_{\mathrm{n}}\right\| \leq \varepsilon_{\mathrm{n}} \longrightarrow 0 \text { as } \mathrm{n} \longrightarrow \infty
$$

where $\mathrm{A}:=\mathrm{T}^{*} \mathrm{~T}$. Since A is a non-negative and self-adjoint operator, it follows that for each $n=1,2, \ldots, \alpha \geq \varepsilon_{n} / c_{1}$ for some constant c_{1} such that $0<c_{1}<1$ implies the existence of $\left(A_{n}+\alpha I\right)^{-1}$ as a bounded linear operator and $\left\|\left(A_{n}+\alpha I\right)^{-1}\right\| \leq 1 /\left(1-c_{1}\right) \alpha$. It is to be remarked that if A_{n} is non-negative and self-adjoint, then the above conclusions hold for all $\alpha>0$. In this context one recalls that in projection methods ([8],[3]) for compact T , one has non-negative self-adjoint operators $A_{n}=P_{n} T^{*} T P_{n}$ where $\left(P_{n}\right)$ is a sequence of orthogonal projections such that $P_{n} x \longrightarrow x$ as $n \longrightarrow \infty$ for all $x \in X$; and in a degenerate kernel method for integral equations of the first kind considered by Groetsch [7], non-negative self-adjoint operators A_{n} are obtained by approximating the kernel of the integral operator $\mathrm{A}=\mathrm{T}^{*} \mathrm{~T}$ by convergent quadrature rules. In both these cases one also has $\left\|A-A_{n}\right\| \longrightarrow 0$. But the consideration of a general A_{n}, as has been done recently by Nair [10], is again important in computational point of view, because due to truncation errors etc., one actually may not be dealing with a non-negative self-adjoint operator.

We consider the equation

$$
\left(\mathrm{A}_{\mathrm{n}}+\alpha \mathrm{I}\right) \mathrm{x}_{\alpha, \mathrm{n}}^{\delta}=\mathrm{z}_{\mathrm{n}}^{\delta}
$$

for $\alpha \geq \varepsilon_{\mathrm{n}} / \mathrm{c}_{1}$, for $0<\mathrm{c}_{1}<1$.
In order to obtain estimates for $\left\|\hat{x}-x_{\alpha, \mathrm{n}}^{\delta}\right\|$ we consider the equation

$$
\begin{equation*}
\left(\mathrm{A}_{\mathrm{n}}+\alpha \mathrm{I}\right) \mathrm{x}_{\alpha, \mathrm{n}}=\mathrm{T}^{*} \mathrm{y}, \quad \alpha \geq \varepsilon_{\mathrm{n}} / \mathrm{c}_{1} \tag{7}
\end{equation*}
$$

Then we have

$$
\left(\mathrm{A}_{\mathrm{n}}+\alpha \mathrm{I}\right)\left(\mathrm{x}_{\alpha, \mathrm{n}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right)=\mathrm{T}^{*} \mathrm{y}-\mathrm{z}_{\mathrm{n}}^{\delta}
$$

so that

$$
(\mathrm{A}+\alpha \mathrm{I})\left(\mathrm{x}_{\alpha, \mathrm{n}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right)=\mathrm{T}^{*} \mathrm{y}^{\delta}-\mathrm{z}_{\mathrm{n}}^{\delta}+\left(\mathrm{A}-\mathrm{A}_{\mathrm{n}}\right)\left(\mathrm{x}_{\alpha, \mathrm{n}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right)
$$

Therefore, writing $T^{*} y-z_{n}^{\delta}=T^{*}\left(y-y^{\delta}\right)+\left(T^{*} y^{\delta}-z_{n}^{\delta}\right)$ and using the relations $\varepsilon_{\mathrm{n}} \leq \mathrm{c}_{1} \alpha, 0<\mathrm{c}_{1}<1$ and $\left\|(\mathrm{A}+\alpha \mathrm{I})^{-1}\right\| \leq 1 / \alpha$, it follows that

$$
\left\|\mathrm{x}_{\alpha, \mathrm{n}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\| \leq \frac{\delta}{\sqrt{\alpha}}+\frac{\eta_{\mathrm{n}, \delta}}{\alpha} .
$$

Now, recall equation (2) which can be rewritten as

$$
\left(\mathrm{A}_{\mathrm{n}}+\alpha \mathrm{I}\right) \mathrm{x}_{\alpha}=\mathrm{T}^{*} \mathrm{y}-\left(\mathrm{A}-\mathrm{A}_{\mathrm{n}}\right) \mathrm{x}_{\alpha} .
$$

This together with (7) and using the fact that $\left\|\mathrm{x}_{\alpha}\right\|=\left\|(\mathrm{A}+\alpha \mathrm{I})^{-1} \mathrm{~T}^{*} \mathrm{y}\right\|=\left\|(\mathrm{A}+\alpha \mathrm{I})^{-1} \mathrm{~A} \hat{\mathrm{x}}\right\| \leq\|\hat{\mathrm{x}}\|$, it follows that

$$
\left\|\mathrm{x}_{\alpha}-\mathrm{x}_{\alpha, \mathrm{n}}\right\| \leq\left\|\left(\mathrm{A}_{\mathrm{n}}+\alpha \mathrm{I}\right)^{-1}\right\|\left\|\left(\mathrm{A}-\mathrm{A}_{\mathrm{n}}\right) \mathrm{x}_{\alpha}\right\|=0\left[\frac{\varepsilon_{\mathrm{n}}}{\alpha}\right] .
$$

Thus,

$$
\begin{equation*}
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\|=0\left[\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha}\right\|+\frac{\delta}{\sqrt{\alpha}}+\frac{\eta_{\mathrm{n}, \delta}}{\alpha}+\frac{\varepsilon_{\mathrm{n}}}{\alpha}\right] \tag{8}
\end{equation*}
$$

for all $\alpha \geq \varepsilon_{\mathrm{n}} / \mathrm{c}_{1}$.
Now, (8) together with (4), (5) and (6) gives the following result.

THEOREM 1

(i) For $\delta>0$ and $\mathrm{n}=1,2, \ldots$, let $\alpha=\alpha(\delta, \mathrm{n})>0$ be such that

$$
\alpha(\delta, \mathrm{n}) \longrightarrow 0, \frac{\delta}{\sqrt{\alpha(\delta, \mathrm{n})}} \longrightarrow 0, \frac{\varepsilon_{\mathrm{n}}}{\alpha(\delta, \mathrm{n})} \longrightarrow 0 \text { and } \frac{\eta_{\mathrm{n}, \delta}}{\alpha(\delta, \mathrm{n})} \longrightarrow 0
$$

as $\delta \longrightarrow 0, \mathrm{n} \longrightarrow \infty$. Then

$$
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\| \longrightarrow 0 \text { as } \delta \longrightarrow 0, \mathrm{n} \longrightarrow \infty
$$

(ii) Let $\hat{\mathrm{x}} \in \mathrm{R}\left(\mathrm{A}^{\nu}\right), 0<\nu \leq 1$, and for $\delta>0$ let $\alpha=\mathrm{c} \delta^{2 /(2 \nu+1)}$ for some constant $\mathrm{c}>0$. Let n_{o} be a positive integer sucht that for

$$
\varepsilon_{\mathrm{n}} \leq \mathrm{c}_{1} \alpha, \varepsilon_{\mathrm{n}}=0\left(\delta^{(2 \nu+2) /(2 \nu+1)}\right), \eta_{\mathrm{n}, \delta}=0\left(\delta^{(2 \nu+2) /(2 \nu+1)}\right) .
$$

Then

$$
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\|=0\left(\delta^{2 \nu /(2 \nu+1)}\right), \mathrm{n} \geq \mathrm{n}_{\mathrm{o}}
$$

A POSTERIORI PARAMETER CHOICE STRATEGY

For the sake of simplicity of presentations, we assume that

$$
\eta_{\mathrm{n}, \delta}=0\left(\delta^{\mathrm{r}}\right) \text { and } \varepsilon_{\mathrm{n}}=0\left(\delta^{\mathbf{k}}\right)
$$

for all large enough n, and for some positive real numbers r and k. For $p \geq 0$, $q>0$, we propose the following "discrepancy principle"

$$
\begin{equation*}
\left\|\mathrm{A}_{\mathrm{n}} \mathrm{x}_{\alpha, \mathrm{n}}^{\delta}-\mathrm{z}_{\mathrm{n}}^{\delta}\right\|=\frac{\delta^{\mathrm{p}}}{\alpha^{\mathrm{q}}} \tag{9}
\end{equation*}
$$

where $\mathrm{n}>\tilde{\mathrm{n}}(\delta)$ with $\tilde{\mathrm{n}}(\delta)$ to be specified.

First we note that

$$
\begin{equation*}
\left\|\mathrm{A}_{\mathrm{n}} \mathrm{x}_{\alpha, \mathrm{n}}^{\delta}-\mathrm{z}_{\mathrm{n}}^{\delta}\right\|=\left\|\alpha \mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\|=\left\|\alpha\left(\mathrm{A}_{\mathrm{n}}+\alpha \mathrm{I}\right)^{-1} \mathrm{z}_{\mathrm{n}}^{\delta}\right\| \leq \mathrm{c} \tag{10}
\end{equation*}
$$

for some constant $\mathrm{c}>0$ and for all $\alpha \geq \varepsilon_{\mathrm{n}} / \mathrm{c}_{1}$. Now, let $\mathrm{c}_{2}>0$ and $\mathrm{c}_{3}>0$ be such that $\left\|\mathrm{z}_{\mathrm{n}} \delta\right\| \leq \mathrm{c}_{2}$ for all $\mathrm{n}=1,2, \ldots$ and for all $\delta \leq \delta_{\mathrm{o}}$ for a given $\delta_{\mathrm{o}}>0$, and $\left\|\mathrm{A}_{\mathrm{n}}\right\| \leq \mathrm{c}_{3}$ for all $\mathrm{n}=1,2, \ldots$. Then for each $\mathrm{n}=1,2, \ldots$, and for all $\alpha \geq c_{4}=\max \left\{\frac{\varepsilon_{n}}{c_{1}}: n=1,2, \ldots\right\}$,

$$
\begin{equation*}
\left\|A_{n} x_{\alpha, n}^{\delta}-z_{n}^{\delta}\right\|=\left\|\alpha\left(A_{n}+\alpha I\right)^{-1} z_{n}^{\delta}\right\| \geq \frac{c_{2}}{1+c_{3} / c_{4}}=c_{o} \text {, say. } \tag{11}
\end{equation*}
$$

From (10) we have

$$
\mathrm{f}_{\mathrm{n}}(\alpha):=\alpha^{\mathrm{q}}\left\|\mathrm{~A}_{\mathrm{n}} \mathrm{x}_{\alpha, \mathrm{n}}^{\delta}-\mathrm{z}_{\mathrm{n}}^{\delta}\right\| \leq \mathrm{c} \alpha^{\mathrm{q}}, \alpha \geq \varepsilon_{\mathrm{n}} / \mathrm{c}_{1} .
$$

Therefore
$\mathrm{f}_{\mathrm{n}}\left[\frac{\varepsilon_{\mathrm{n}}}{\mathrm{c}_{1}}\right] \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. Now, let $\tilde{\mathrm{n}}(\delta)$ be the smallest positive integer such that for all $\mathrm{n} \geq \tilde{\mathrm{n}}(\delta)$,

$$
\varepsilon_{\mathrm{n}} \leq \mathrm{c}_{1} \min \left\{\left[\frac{\delta^{\mathrm{p}}}{\mathrm{c}}\right]^{1 / \mathrm{q}},\left[\frac{\delta^{\mathrm{p}}}{c_{o}}\right]^{1 / \mathrm{q}}\right\} .
$$

Then taking

$$
\alpha_{o}=\max \left\{c_{4},\left[\frac{\delta^{\mathrm{p}}}{\mathrm{c}_{\mathrm{o}}}\right]^{1 / \mathrm{q}}\right\}
$$

it follows that for all $\mathrm{n} \geq \tilde{\mathrm{n}}(\delta)$,

$$
\alpha_{o} \geq \frac{\varepsilon_{\mathrm{n}}}{\mathrm{c}_{1}} \text { and } \mathrm{f}_{\mathrm{n}}\left[\frac{\varepsilon_{\mathrm{n}}}{\mathrm{c}_{1}}\right] \leq \delta^{\mathrm{p}} \leq \mathrm{f}_{\mathrm{n}}\left(\alpha_{\mathrm{o}}\right) \text {. }
$$

Therefore, by intermediate value theorem, there exists $\alpha=\alpha(\delta, \mathrm{n})$ such that

$$
\frac{\varepsilon_{\mathrm{n}}}{\mathrm{c}_{1}} \leq \alpha(\delta, \mathrm{n}) \leq \alpha_{o} \text { and }\left\|\mathrm{A}_{\mathrm{n}} \mathrm{x}_{\alpha, \mathrm{n}}^{\delta}-\mathbf{z}_{\mathrm{n}}^{\delta}\right\|=\frac{\delta^{\mathrm{p}}}{\alpha^{\mathrm{p}}}
$$

for all $\mathrm{n} \geq \tilde{\mathrm{n}}(\delta)$. We also note that for $\mathrm{n} \geq \tilde{\mathrm{n}}(\delta)$ and $\alpha=\alpha(\delta, \mathrm{n})$,

$$
\begin{aligned}
\left\|z_{n}^{\delta}\right\|-\frac{\delta^{p}}{\alpha^{\mathrm{q}}} & =\left\|z_{\mathrm{n}}^{\delta}\right\|-\left\|\mathrm{A}_{\mathrm{n}} \mathrm{x}_{\alpha, \mathrm{n}}^{\delta}-z_{\mathrm{n}}^{\delta}\right\| \\
& \leq\left\|\mathrm{A}_{\mathrm{n}} \mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\| \\
& =\frac{1}{\alpha}\left\|\mathrm{~A}_{\mathrm{n}}\left(\alpha x_{\alpha, \mathrm{n}}^{\delta}\right)\right\| \\
& \leq\left\|\mathrm{A}_{\mathrm{n}}\right\| \cdot \frac{\delta^{\mathrm{p}}}{\alpha^{\mathrm{q}+1}}
\end{aligned}
$$

Therefore

$$
\alpha^{\mathrm{q}+1} \leq \delta^{\mathrm{p}}\left(\alpha+\left\|\mathrm{A}_{\mathrm{n}}\right\|\right) /\left\|\mathrm{z}_{\mathrm{n}}^{\delta}\right\| \leq \delta^{\mathrm{p}}\left[\frac{\alpha_{\mathrm{o}}+\mathrm{c}_{3}}{\mathrm{c}_{2}}\right],
$$

so that

$$
\alpha(\delta, \mathrm{n})=0\left(\delta^{\mathrm{p} /(\mathrm{q}+1)}\right)
$$

for all $n \geq \tilde{n}(\delta)$.
We summarize the above results, in Proposition 2 below.

PROPOSITION 2:

Let $\mathrm{p} \geq 0, \mathrm{q}>0$. For $\delta>0$, there exists positive integer $\tilde{\mathrm{n}}(\delta)$ and $\alpha=\alpha(\delta, \mathrm{n})>0$ for $\mathrm{n} \geq \tilde{\mathrm{n}}(\delta)$ such that (9) holds, and

$$
\alpha(\delta, \mathrm{n})=0\left(\delta^{\mathrm{p} /(\mathrm{q}+1)}\right), \mathrm{n} \geq \tilde{\mathrm{n}}(\delta) .
$$

PROPOSITION 3:

If $\frac{\mathrm{p}}{\mathrm{q}+1} \leq \min \{2, \mathrm{r}\}$, then

$$
\frac{\delta^{\mathrm{p}}}{\alpha(\delta, \mathrm{n})^{\mathrm{q}}} \leq \mathrm{c} \delta^{\mathrm{p} /(\mathrm{q}+1)}
$$

for some constant $c>0$ independent of n and δ.

Proof:

For any u $\in X$, we have

$$
\left\|\left(\mathrm{A}_{\mathrm{n}}+\alpha \mathrm{I}\right)^{-1} \mathrm{u}\right\| \leq \frac{\left\|(\mathrm{A}+\alpha \mathrm{I})^{-1} \mathrm{u}\right\|}{1-\left(\varepsilon_{\mathrm{n}} / \alpha\right)}=\left[\frac{1}{1-\mathrm{c}_{1}}\right]\left\|(\mathrm{A}+\alpha \mathrm{I})^{-1} \mathrm{u}\right\| .
$$

Therefore,

$$
\begin{aligned}
\|\left(\mathrm{A}_{\mathrm{n}}+\right. & \alpha \mathrm{I})^{-1} \mathrm{z}_{\mathrm{n}}^{\delta} \| \\
& \leq\left[\frac{1}{1-\mathrm{c}_{1}}\right]\left\|(\mathrm{A}+\alpha \mathrm{I})^{-1}\left(\mathrm{z}_{\mathrm{n}}^{\delta}-\mathrm{T}^{*} \mathrm{y}^{\delta}\right)+(\mathrm{A}+\alpha \mathrm{I})^{-1} \mathrm{~T}^{*}\left(\mathrm{y}^{\delta}-\mathrm{y}\right)+(\mathrm{A}+\alpha \mathrm{I})^{-1} \mathrm{~T}^{*} \mathrm{y}\right\| \\
& \leq\left[\frac{1}{1-\mathrm{c}_{1}}\right]\left[\frac{\eta_{\mathrm{n}}, \delta}{\alpha}+\frac{\delta}{\sqrt{\alpha}}+\|\hat{\mathrm{x}}\|\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{\delta^{\mathrm{p}}}{\alpha^{\mathrm{q}}}=\left\|\alpha x_{\alpha, \mathrm{n}}^{\delta}\right\| \leq \frac{1}{1-\mathrm{c}_{1}}\left(\eta_{\mathrm{n}, \delta}+\delta \sqrt{\alpha}+\|\hat{\mathrm{x}}\| \alpha\right)=0\left(\delta^{\mu}\right) \\
& \mu=\min \left\{\mathrm{r}, 1+\frac{\mathrm{p}}{2(\mathrm{q}+1)}, \frac{\mathrm{p}}{\mathrm{q}+1}\right\} .
\end{aligned}
$$

From this the result follows.
Now we are in a position to state the main theorem of this paper.

THEOREM 4:

If $\frac{\mathrm{p}}{\mathrm{q}+1} \leq \min \{2, \mathrm{r}, \mathrm{k}\}, \hat{\mathrm{x}} \in \mathrm{R}\left(\mathrm{A}^{\nu}\right), 0<\nu \leq 1, \alpha=\alpha(\delta, \mathrm{n})$ is chosen according to (9) for $\mathrm{n} \geq \tilde{\mathrm{n}}(\delta)$, then

$$
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\|=0\left(\delta^{\delta}\right), \mathrm{n} \geq \tilde{\mathrm{n}}(\delta)
$$

where

$$
\mathrm{s}=\min \left\{\frac{\mathrm{p} \nu}{\mathrm{q}+1}, 1-\frac{\mathrm{p}}{2(\mathrm{q}+1)}, \mathrm{r}-\frac{\mathrm{p}}{\mathrm{q}+1}, \mathrm{k}-\frac{\mathrm{p}}{\mathrm{q}+1}\right\} .
$$

In particular we have the following:
(a) If $1+\frac{\mathrm{p}}{2(\mathrm{q}+1)} \leq \mathrm{r}, 1+\frac{\mathrm{p}}{2(\mathrm{q}+1)} \leq \mathrm{k}$ and $\frac{\mathrm{p}}{\frac{\mathrm{p}}{(\mathrm{q}+1)}} \leq 1$, then

$$
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\|=0\left(\delta^{8}\right), \mathrm{s}= \begin{cases}\frac{\mathrm{p} \nu}{\mathrm{q}+1}, & \frac{\mathrm{p}}{\mathrm{q}+1} \leq \frac{2}{2 \nu+1} \\ 1-\frac{\mathrm{p}}{2(\mathrm{q}+1)}, & \frac{\mathrm{p}}{\mathrm{q}+1} \geq \frac{2}{2 \nu+1}\end{cases}
$$

b) If $\mathrm{r} \geq \frac{2 \nu+2}{2 \nu+1}, \mathrm{k} \geq \frac{2 \nu+2}{2 \nu+1}$, then

$$
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\|=0\left(\delta^{(2 \nu / 2 \nu+1)}\right)
$$

Proof:

We recall from (5),(6) and (8) that

$$
\left\|\hat{\mathrm{x}}-\mathrm{x}_{\alpha, \mathrm{n}}^{\delta}\right\|=0\left[\max \left\{\alpha^{\nu}, \frac{\delta}{\sqrt{\alpha}}, \frac{\eta_{\mathrm{n}, \delta}}{\alpha}, \frac{\varepsilon_{\mathrm{n}}}{\alpha}\right\}\right]
$$

From Proposition 3, we have

$$
\begin{aligned}
& \frac{\delta}{\sqrt{\alpha}}=\delta^{1-\mathrm{p} / 2(\mathrm{q}+1)}\left[\frac{\delta^{\mathrm{p}}}{\alpha^{\mathrm{q}}}\right]^{1 / 2 \mathrm{q}}=0\left[\delta^{1-\mathrm{p} / 2(\mathrm{q}+1)}\right] \\
& \frac{\delta^{\mathrm{r}}}{\alpha}=\delta^{\mathrm{r}-\mathrm{p} / \mathrm{q}}\left[\frac{\delta^{\mathrm{p}}}{\alpha^{\mathrm{q}}}\right]^{1 / \mathrm{q}}=0\left[\delta^{\mathrm{r}-\mathrm{p} /(\mathrm{q}+1)}\right]
\end{aligned}
$$

and

$$
\frac{\delta^{\mathbf{k}}}{\alpha}=0\left[\delta^{\mathrm{k}-\mathrm{p} /(\mathrm{q}+1)}\right]
$$

These estimates together with Proposition 2 and the assumptions $\eta_{\mathrm{n}, \delta}=0\left(\delta^{\mathrm{L}}\right)$ and $\varepsilon_{\mathrm{n}}=0\left(\delta^{\mathrm{k}}\right)$ imply the results.

It is to be remarked that in the projection method case $z_{n}^{\delta}=P_{n} T^{*} y^{\delta}$ and in the degenerate kernel method, $z_{n}^{\delta}=T^{*} y^{\delta}$, so that in both the above cases,

$$
\left\|\mathrm{z}_{\mathrm{n}}^{\delta}-\mathrm{T}^{*} \mathrm{y}^{\delta}\right\| \longrightarrow 0, \text { as } \mathrm{n} \longrightarrow \infty .
$$

Moreover, in both the above cases the operator A_{n} is non-negative and selfadjoint with $\left\|A-A_{n}\right\| \rightarrow 0$, so that the analyis can be simplified.
Thus this paper generalizes the type of results in Engl and Neubauer ([2],[3]) for projection methods, and also the first part of Grotsch [8] providing a parameter choice strategy.

ACKNOWLEDGEMENT

This work is carried out while Thamban Nair was a Visiting Professor at the Universität Kaiserslautern, Fachbereich Mathematik. The support received is gratefully acknowledged.

REFERENCES

[1] Engl, H.W.: Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates. J. Optim. Th. and Appl. $\underline{52}$ (1987), 209-215.
[2] Engl, H.W. and A. Neubauer: An improved version of Marti's method for solving ill-posed linear integral equations. Math. Computation, 45 (1985), 405-416.
[3] Engl, H.W. and A. Neubauer: Optimal parameter choice for ordinary and iterated Tikhonov regularization.
In: Inverse and Ill-Posed Problems (Eds.: H.W. Engl and C.W. Groetsch) Academic Press, Inc. London, 1987, 97-125.
[4] Gfrerer, H.: Parameter choice for Tikhonov regularization of ill-posed problems.
In: Inverse and ill-posed problems (Eds.: H.W. Engl and C.W. Groetsch) Academic Press, Inc. London, 1987, 127-149.
[5] Groetsch, C.W.: Comments on Morozov's discrepancy principle. In: Improperly Posed Problems and Their Numerical Treatment. (Eds.: G. Hämmerlin and K.H. Hoffmann), Birkhäuser, 1983, 97-104.
[6] Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman Books, London, 1984.
[7] Groetsch, C.W.: Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind. Integral Equations and Operator Theory 13 (1990), 67-75.
[8] Groetsch, C.W. and J. Guacaneme: Regularized Ritz approximations for Fredholm equations of the first kind.
Rocky Mountain J. Math. 15,1 (1985), 33-37.
[9] Nair, M.T.: A generalization of Arcangeli's method for ill-posed problems leading to optimal rates. Integral Equations and Operator Theory (To appear).
[10] Nair, M.T.: A unified approach for regularized approximation methods for Fredholm integral equations of the first kind (Communicated).
[11] Schock, E.: On the asymptotic order of accuracy of Tikhonov regularizations.
J. Optim. Th. and Appl. 44 (1984), 95-104.
[12] Schock, E.: Parameter choice by discrepancy principle for the approximate solution of ill-posed problems. Integral Equations and Operator Theory $\underline{7}$ (1984), 895-898.
[13] Schock, E.: What are the proper condition numbers of discretized ill-posed problems?
Lin. Alg. and Appl. $\underline{81}$ (1986), 129-136.

