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0.1. Introduction 

The present work is a further connecting link betweeen the theory of tensor norms 

introduced by A. Grothendieck {[Gr]) and the theory of operator ideals established by 

A. Pietsch {[Pl],[P3]). We focus on a further developing of the axiomatic setting, 

practised by Grothendieck, Lotz, Defant and Floret {[Gr],[Lz],(D],[D-Fl],[D-F2]) and 

more abstractly in categorical terms by Cigler, Losert, Michor and Pelletier 

{[C-Lo-M],[M],[Pe]) . Our aim is, to investigate some more aspects concerning the 

inner structure of operator ideals ( and their corresponding tensor norms) which is 

independent of concrete realizations like series-representations ( e.g. ( JI, II • II y)), 

measuretheoretical arguments (e.g. (7'2,ll · llp)) or factorization-properties (e.g. 

{W,ll • 11)). 
For instance we want to know sufficient and necessary conditions for an arbitrarily 

given maximal Banach ideal (A,11 · llA) such that A(M,F") ~ A(M,F)" does hold if M is 

a finite dimensional and F an arbitrary Banach space. Especially for A := l - the 

ideal of all continuous operators - we recognize the weak version of the prinicple of 

local reflexivity ([Li-Rt],[Dn]) and therefore a transition to the local theory of Banach 

spaces. lt will be seen that the above problem involves interesting. connections with 

the so-called accessible operator ideals introduced by A. Defant ([D]) and the 

conjugated Banach ideals which appear first in the paper of Gordon, Lewis and 

Retherford ([G-L-R]). lt seems to be useful to look on operator ideals and 

tensornorms simultaneously. For instance, up to now, we do not know another proof of 

theorem 2.9. which does not need the language of tensornorms . 

We now describe the contents of this paper in more detail. 

In the first paragraph we generalize the notion of conjugated operator ideals which 

also allows us to characterize every maximal Banach ideal in such a way. This can be 

realized by using the calculus of maximal operator ideals associated to finitely 

generated tensor norms which was introduced by A. Defant ([D], 2.5.). 

In the second chapter we investigate the "local" structure of Banach ideals of type 

(A1\ll · llAti) where (A,11 · llA) is a given maximal Banach ideal. 

We recognize that such Ati are always right-accessible (even that (At.)dd is accessible), 

but in general we are not able to show their left-accessibility. 
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Until a few days ago it was still unknown if there exists a (maximal) Banach ideal 

which is not accessible, but recently on the Oberwolfach-meeting "Geometrie der 

Banachräume" in September 1991, Pisier gave such a counterexample, answering a 

question of Floret and Defant ([D-F2], 31.6.). 

However we can show that for a given maximal Banach ideal (A,11 · llA), (Aß,11 · llAß) is 

left-accessible iff the weak version of the principle of local reflexivity can be 

transformed from the canonical operator norm II ·II to the ideal norm 11 · II A or 

equivalently if (A*)min(E,F) is a subspace of Aß(E,F) for all Banach spaces F with the 

metric approximation property and for all Banach spaces E. In that case we call the 

above generalization the weak A-local reflexivity principle (short: (w) A-Lr.p.) and 

since especially the maximal Banach ideal (C ,11 · llc ) of all (p,q)-factorable 
p,q p,q 

operators (1 ~ p, q ~ ro, i + ~ ~ 1) is (left-) accessible, so is (c;,q)ß and therefore the 

(w) C* -l.r.p. holds. 
p,q 

This paper is a summary of some sections of the author's dissertation ([Oe]); I am 

very grateful to Prof. Dr. E. Schock and Prof. Dr. A. Defant for their motivating 

discussions. 

0.2. Notation and terminology 

We shall use the common notations of Banach-space-theory; in particular BE 

denotes the closed unit ball of a normed space E ( over K = IR or C), E' the dual space 

of E and C(E,F) is the class of all ( continuous) operators between the normed spaces 

E and F. Given T E C(E,F), the dual operator of T is denoted by T'. NORM, BAN 

and FIN denotes the class of all normed spaces, Banach spaces and finite dimensional 

spaces respectively. FIN(E) is the class of all finite dimensional subspaces of a normed 

space E and COFIN(E) is the dass of all finite codimensional subspaces of E. 

Concerning operator ideals we follow · Pietsch.'s book ([Pl]). If (A,11 · llA) and (B,11 · lls) 

are both normed operator ideals, we sometimes use the abbreviation A ~ B to indicate 

the equality (A,11 · llA) = (B,11 · lls) and we write Ad instead of ..f1ual. If T : E -> Fis an 

operator, we indicate that it is a metric injection (llTxll = llxll) by writing 

T:Ec.-.!...F 
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and that it is a metric surjection (F has the quotient norm of E via T) by 

1 T: E->> F. 

If there exists an isometric isomorphism between the spaces E and F, we write E ~ F. 

For G E FIN(E), J~ : G c:.2... E denotes the canonical metric injection and for 

G E COFIN(E), G closed, Q~ : E - 1->> E/G denotes the canonical metric 

surjection. We asssume the reader to be familiar with the basics of the general theory 

?f tensor norms as they are presented in [D], [D-Fl) or [D-F2). Another important 

tool to describe local properties of ideal components is given by the trace on a normed 

space E which is the linearization of the duality bracket 

E' XE-> K 

( a,x) 1-+ <x,a> , 

whence 

tr: E' ® E -> K 
n n 
E a. ® x. 1-+ 

i=l l l 

E <x.,a.>. 
i=l l l 

We recall that a Banach space E has the metric approximation property (short: 

m.a.p.) if for all compact sets K ~ E and for all E > 0 there is a finite dimensional 

Operator L E 1(E,F) with llLll ~ 1 such that llLx-xll ~ E for all x E K. 

Finally we remember the important 

WEAK PRINCIPLE OF LOCAL REFLEXIVITY: 

Let M and F be normed spaces, M finite dimensional and T E .C(M,F"). Then for 

every E > 0 and N E FIN(F') there is an R E .C(M,F) such that 

llRll ~ (l+E)llTll 

and 

<Rx,b> = <b,Tx> 

for all (x,b) EM x N. 
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1. a-CONJUGATED OPERATORS 

Let (A,11 • llA) be an arbitrarily chosen normed operator ideal. According to (G-L-R] 

the conjugated operator ideal („·«\11 · llAtJ is given by all operators T E C(E,F) 

(E,FEBAN) for which there exists a number p ~ 0 such that for all LE1(F,E) = F'®E 

the following inequality holds: · 

By definition llTllAt. := inf(p) where the infimum is formed by all such p ~ 0. 

We generalize this concept as follows: 

1.1. DEFINITION: 

Let a be a tensor norm ( on BAN). Let E,F be Banach spaces. An operator TEl(E,F) 

is called ~conjugated if 

3 p ~ 0 V L E 1(F,E) : 1tr(TL)1 ~ pat(L;F',E) . 

We put llTll(a) := inf(p) where the infimum is formed by all such p ~ 0. The dass of 

all ~onjugated operators is denoted by 1J ci 

A straight forward calculation shows that (1J a'll · 11 ( a)) is always a regular Banach 

ideal (cf. (Pl], 6.4.2.) where the regularity follows directly by using the tensor-norm

property of at. 

If a is finitely generated, then (1J a'll · ll(a)) is a maximal Banach ideal. 

Our next aim is to characterize maximal or conjugated Banach ideals respectively by 

suitable chosen (1J a'll · 11( a)). 

To beginn with, we have "the following 

1.2. PROPOSITION: 

Let a be a tensor norm. Then 



-5-

Proof: 

Let L E 1(F,E) = F'® E (E,F E BAN). Since -(1Jo:* ,ll·ll(o:*)) and (o:*)' = at are 

associated (see [D-Fl], 4.2.) it follows by [D-Fl], 4.4. that 

F' ®+--t E c:....!....1J *(F,E). 
(}: (}: 

Hence 

at(L;F',E) = llLll(o:*) . 

D 

The investigation of maximal Banach ideals need a momentous 

1.3. DEFINITION: 

Let (A,11 · llA) be a p-Banach operator ideal (0 < p ~ 1) and E,F be Banach spaces. Let 

n n 
z E E®F, z = E x.®y. , A := E jF y.®x .. We put 

i=l 1 1 z i=l 1 1 

o: iz;E,F) := sup { 1 i!l <yi'Txi> 1 : T E B A(E,F')} 

= sup { 1 tr('\ T) 1 : T E B A(E,F')} . 

Obviously o: A is a tensor norm on BAN for which 

E® F c:..J.... A(E,F')' 
aA 

holds canonically. For associated maximal Banach ideals (A,11 • llA) N o: ([D-Fl],4.2.) 

we have the following 

1.4. PROPOSITION: 

Let (A,11 · llA) be a maximal Banach ideal and a be a finitely generated tensor norm. 

Then the following are equivalent: 

( 1) ( A, II · 11 A) N (}: 

(2) 
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Proof: 
Let (1) be valid. Since A(E,F') ~ (E®a'F)' ([D-Fl],4.3.), it follows by the Hahn-

Banach-theorem that · (2) holds. Conversely let (2) be valid. Let M,N E FIN. By [Pl], 

9.2.1., 9.2.2. it follows for arbitrary L E 1(M,N) = M'®N, that 

Hence 

a(L;M',N) = a_'.{(L;M',N) 

= sup { 1tr(L'O)1 : 0 E M"® a N', a i0;M" ,N') ~1} 
A 

= sup { 1tr(L"O')1 : O' E B A*(N" ,M")} 

= sup { 1<L",rp>1 : <p E B A(M",N")'} 

= llL"llA = llLllA · 

D 

Our aim is now to show that each maximal Banach ideal A can be represented by 1J ß · 

with the finitely generated tensornorm ß := a ,A· Therefore we need the following 

1.5. LEMMA: 

Let ß be a tensor norm and E,F E BAN. 

lf ß is right-finitely generated ( e.g. right-injective) or if F is reflexive, then we have 

the canonical isometric isomorphism 

In particular 

Proof: 

ü.p ( • ;E,F) = ß( • ;E,F). 
ß 

We have to show that <I> : Ti---+ (z H tr(A T)) is an isometric isomorphism from 
z 

1J IE,F') to (E® /)', Az defined as in 1.3.. Obviously, <I> is well--defined and 

ll<I>(T)ll ~ llTll(.ß)' Let now 'i/J E (E®/)' be arbitrarily given. We put 

<y,Tx> := <x®y,'i/J>. First let e: > 0, L E 1(F',E) = F"®E and ß be right-finetely 



-7-

generated. Then there exist M E FIN(F") and zL E M ® E such that 
F" . 

L = (JM ®ldE)zL and 

ßt(zL;M,E) < (l+e:)ßt(L;F",E) . 

n 
Let N := [Txi, ... ,Txn] E FIN(F') and zL = E 11.®x. be a representation of zL in M®E. 

i=l l l 

Then by the weak principle of local reflexivity (applied to the operator J~
11 

: M c:.+ 

F") there exists S
0 

E .C(M,F) with llS
0

ll $ l+e: such that 

n 
ltr(TL)I = I< E x.®S T/.,'l/l>I $ ll'l/lll·(l+e:)

2
·ßt(L;F" ,E) . 

i=l l 0 l 

Hence TE 'Dß(E,F'), '1/1 = <I!(T) and llTll(ß) $ 11'1/111. 

lf ß is arbitrary and F reflexive, then L = A with w E E® F suitable chosen. Hence 
w 

ltr(TL)I = l<w,'l/l>I 5 ll'l/lll·ßt(L;F",E) . 

D 

We have now prepared for the 

1.6. THEOREM 

(1) Let (A,11 · llA) be a maximal Banach ideal. Then there is a uniquely defined 

finitely generated tensor norm ß on BAN such that (A,11 · llA) = ('D ß'll · ll(ß)) . ß is 

given by aA. 

(2) Let ß be a finitely generated tensor norm on BAN. Then there is a uniquely 

defined maximal operator ideal (A,ll·llA) such that ß = aA. (A,ll·llA) is given by 

(1J ß'll · 11 (ß)) . 

Proof: 

To prove (1), we look at (B,ll·lls) := ('Daill·ll(aA)) . Let (A,ll·llA)"' a with finitely 

generated a. Then (A*,11 · llA*)"' a* ([D-Fl], 4.5.) . By 1.4. this implies 
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Consequently a Ais finitely generated and (B,11 · lls) maximal .> Hence there is a finitely 

generated tensor norm ß such that (B,11 · lls) rv ß. This implies (by considering 1.4. and 

1.5.) ß' = a8 = aA. Hence 

Since A and Bare maximal Banach ideals, the claim follows. Part (2) of this theorem 

follows directly by the previous lemma. 

2. CONJUGATED OPERATOR IDEALS AND THE ~LOCAL 

REFLEXIVITY PRINCIPLE 

D 

We have observed that each maximal Banach ideal can be represented by an Ball.ach 

ideal of type 1J a with suitable tensor norm a. On ·the other hand there are tensor 

norms ß such that 1J ß is not maximal; since there are Banach spaces which do not 

have the m.a .p. ([E]), (1J7[,ll · ll(?r)) = (It.,ll · 111t.) j (.C,ll · 11) can't be maximal ([J-0]). 

In this connection, interesting relations to geometric structural properties of Banach · 

. ideals appear. Especially we remember the idea of "accessibility" which was :first 

noted - in the context of tensor norms - in the famous paper [Gr] of A. Grothendieck 

and transformed to the language of operator ideals by A. Defant ([D]): Let (A,11 · llA) 

be a p-Banach Operator ideal (0 < p S 1). (A,11 · llA) is called right-accessible (short: 

r.a.) if for all (M,F) E FIN x BAN, T E .C(M,F) and e: > 0 there are N E FIN(F), 

SE .C(M,N) such that T = J~S and llSllA ~ (l+e:)llTllA· 

(A,ll·llA) is called left-accessible (short: La.) if for all (E,N) E BANxFIN, TE .C(E,N) 

and E > 0 there are L E COFIN(E), S E .C(E/L,N) such that T = SQ~ and 

llSllA S (l+E)llTllA· (A,ll · llA) is called accessible if it is r.a. and 1.a .. (A,ll · llA) is called 

totally accessible if for all T E 1(E,F) (E,F E BAN) and E > O there are 

L E COFIN(E), N E FIN(F) and S E .C(E/L,N) such that T ~ J~SQ~ and 

llSllA S (l+E)llTllA. 

Combining the previous observation with the following statement, it follows that the 

maximal Banach ideal (1,ll · 11 1) of the class of integral operators is not totally 

accessible: 
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2.1. PROPOSITION: 

Let (A,11 · llA) be a Banach ideal . 

(1) If (A,11 · llA) is totally accessible then (A*,ll · llA*) = (At., 11 · llAt.) 

(2) If (At.,11 · llAt.) = (A*,11 · llA*) and Ais maximal, then Ais totally accessible. 

Proof: 

(1) follows directly by assumption and the definition of adjoint Banach ideals. To 

prove (2), let A be maximal with At.~ A* . By 1.6. there is a f.g . tensor norm a = ä 
such that A* ~ 1J a· Hence 1J a ~ 1Jä (1.2.). By 1.5. this implies that a = ä is totally 

accessible and so is A ~ A**"' at ([D-Fl], 9.2.) . . 

0 

In contrast to the total accessibility of maximal Banach ideals, Pisier's contruction of 

a counterexample of a nonaccessible maximal Banach ideal is more delicate ([D-F2], 

31.6. ). However, if (A,11 · llA) is a p-Banach ideal (ü < p ~ 1), then (Amin,11 · llAmin) in 

general is accessible ([D-F2], 25.3.). We will see that right-accessibility can be 

transferred to the larger Banach ideal ((A*)t., 11 · ll(A*)t.) · 

To investigate such operator ideals of type (A*)t., it is very helpful to introduce a 

generalization of the cofinite hull ä (cf. [H) and [D-Fl ]) : 

2.2. DEFINITION: 

Let a be a tensor norm on BAN and E,F be Banach spaces. Letz E E®F, 
n n 

z = }; x.®y. , /\ = }; jFy.®x . . We set 
i= 1 l l z i= 1 l l 

ax(z;E,F) := sup { 1<z,w>1 : w E BE'® F'} 
a 

= sup { 1 tr( /\ L) 1 : L E 1(E,F'), a(L;E' ,F') < 1} . z -

By definition, ax is itself again a tensor norm on BAN such that ax ~ a' and 

E® F c:...L (E'® F ')' . ax a 
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Especially for a = ß' we get o:x = ~ (by ([D-Fl], 3.4.)). A furth~r important property 

of ax - which lead us to a sort of "weak accessibility" - is given by the following 

2.3. LEMMA: 
Let a be a tensor norm on BAN and E,F be Banach spaces. Then 

E'® F c_.!._. 1Jdd(E F) . 
ax a ' 

In other words: 

cl(L;E',F) = llL"jj(o:) V L E 1(E,F) = E'® F. 

Proof: 

By definition, /r(A; ·, ·) llA'll(ßt) for all tensor norms ß and for all ,A E 1. In 

particular, this equality holds for at and L'. Hence 

D 

2.4. PROPOSITION: 

Let a be a finitely generated tensor norm on, BAN .and E,F be Banach spaces. If a is 

totally accessible or if one of those Banach spaces has m.a.p., then 

a(z;E,F) = axx(z;E,F) 

for all z E E®F. 

Proof: 

Obviously in general axx := ( axt ~ a. If a is totally accessible, then 

a = ( a't ~ ( clt and we received equality. To prove the other case, we may assume 

that F has m.a.p. By the approximation lemma ([D-Fl], 2.2) we can select F to be 

finite dimensional. So let E > 0 be given. Then, by 1.5., there exists a finite operator 
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L E 1J a(E,F') with llLll( a) ~ 1 such that 

By 2.3., ax(L;E',F') = llLll( a) ~ 1, and we have obtained the requested result. 

D 

2.5. COROLLARY: 

Let (A,11 · llA) be a Banach ideal and E,F E BAN such that E' or F has the m.a.p .. 

Then 

In particular, ((A*)ß)dd is always accessible. 

Proof: 
We may assume that Ais maximal. Then A,,; 1J a N a' with a = a A finitely generated 

(1.6.). By [D'"-Fl], 7.1. and the previous considerations we obtain (by assumption): 

D 

If E' has the m.a.p., even more holds: 

2.6. PROPOSITION: 

Let (A,11 • llA) be a Banach ideal and E,F be Banach spaces such that E' has the m.a.p .. 

Then: 

(*) Amin(E,F) c...l. (A*)ß(E,F) . 

In particular, ((A*)ß,11 · ll(A*)ß) is always right-accessible. 
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Proof: 
We may assume that A ~ 'D "" a' with a = a, finitely generated. First, let E E FIN. a ~ . 
Since E' has the m.a.p. and Eis reflexive, we obtain (like the previous proof): 

Let now E' have m.a.p., L E :F(E,F) = E'®F and E > 0. By [Pl], 10.2.6. there is an 

A E :F(E,E) such that llAll $ l+E and LA = L. Canonical factorization of A leads to 

M E FIN(E) and A0 E l(E,M) such that A = J~Ao and llAoll $ l+E. 

By the preceding discussion we have for L = IdF(LJ~)A0 = (A~®ldF)LJ~: 

a'(L;E',F) $ (l+E)a'(LJ~;M',F) $ (l+c)llLll(a) $ 

$ (l+c)llL"ll(a) = (l+E)(at(L;E',F) $ (l+E)a'(L;E',F) . 

Again we have obtained (*). Since Amin is always (right-) accessible, (*) implies the 

right-accessibility of (A*)li. 
D . 

Using the totally accessible Banach ideal A := 7'
2 
~ 1;, we recognize that in general 

(*) is not an (isometric) equality: Let E 0 := C(K), F 0 := 1
2
(µ) where K is a compact 

T
2
-space and µ a positive, regular Borel-measure and look at the canonical 

embedding J
2 

: E0 c:.+ F 0 • Then J
2 

E 7'
2 

(cf. [J], 19.6.3.). Since J
2 

is not compact, 

J
2 
~ .,r;in ~ Ko7'

2 
([Pl], 19.1.2., 19.2.8., 24.6.3. ). Hence .,r;in(E0 ,F 0 ) /:= (1'pli(E0 ,F 0 ) 

~ 7' 
2
(Eo,F o). 2.6. leads immediately to the föllowing question which remains still 

open: 

2.7. PROBLEM: 

Let (A,11 · llA) be a maximal Banach ideal. Is (A1\ll · 11At.) always left-accessible ? 

Therefore we are c~ncentrating on the search for properties which are equivalent to 

the left-accessibility of such Banach ideals Ali, as described in 2.7., and we will 

recognize a surprisingly connection to a natural generalization of the weak principle of 

local reflexivity, which is given by the following 
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2.8. DEFINITION: 

Let (A,11 · llA) be a p-Banach operator ideal (0 < p ~ 1). We are talking about the weak 

A-local reflexivity principle (short: (w) A-1.r.p.), if the following property is given: 

Let ME FIN, FE BAN and NE FIN(F'). For all E > 0 and TE .C(M,F") there is an S 

E .C(M,F) such that 

and 

<b,Tx> = <Sx,b> 

for all (x,b) E MxN. 

We are now prepared to prove our main 

2.9. THEOREM: 

Let (A,11 · llA) be a maximal Banach ideal. Thert the following statements are 

equivalent : 

(1) (Ati,11 · llAti) is left accessible 

(2) The (w) A-1.r.p. holds 

(3) A(M,F") ~ A(M,F)" for all M E FIN, FE BAN 

( 4) (A*)min(E,F) c.....!.... Ati(E,F) for all FE BAN with m.a.p„ E E BAN. 

Proof: 

By 1.6. (A,ll·llA) can be represented as A,;, B* with B := A*,;, 1Jß, ßfinitely generated 

on BAN. 

(1) =} (3): Let ((B*)ti,11 · ll(B*)ti) be left-accessible and ME FIN, FE BAN. 

Since M is reflexive, 2.3. implies that 
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Hence, by Lemma 1.5.: 

A(M,F)' = 1Jß*(M,F)' ~ '.1J~(F,M) ~ (B*)t.(F,M) ~ At.(F,M). 

(This isometric isomorphism holds in general- without assumption (1).) 

Using [D-F2], 25.2., [D-Fl], 7.1. and the assumption (1), we conclude that 

In consideration of 1.5., dualization now yields: 

and we have obtained statement (3). 

(3) ==> (2): Let M E FIN, F E BAN and N E FIN(F'). By assumption, the following 

map is an isometric isomorphism: 

N 

(*) A(M,F)" ---> A(M,F") 

~ t-+ T~ 

Thereby Te E .C(M,F") is defined by <b,T ex> := <tr((b®x) · ),e> (xEM, bEF') and 

tr((b®x)·) E A(M,F)' is given by <S,tr((b®x) · )> := tr((b®x)S) = <Sx,b> 

(SEA(M,F)) . 

Let {b
1

, ... ,b } be a basis of N, {x
1

, . .. ,x } be a basis of M and L .. := b.® x . (l<i<m, 
m n lJ 1 J - -

l~j~ n) . Since 

N 

At.(F,M) --- > A(M,F)' 

R t-+ tr(R·) 

the linear span of {tr(Lij') : l~i~m, l~j~n} is a finite dimensional subspace of A(M,F)' 

on which Helly's lemma can be applied ([Pl], 28.1.1.). 

Now, let T E A(M,F") and E > 0 be given. By (*) there is a e E A(M,F)" with 
0 

11~0 11 = llTl[A and <~i,Tx? = <tr(Lij·),~0> _ for all i and j. Hence, by Helly, there 
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exists an S E A(M,F) such that 
0 

and 

<b.,Tx.> = <S x.,b.> (1 < i < m, 1 < J. < n). 
l J OJ l - - - -

Since {b1, .. . ,bm} and {xl' ... ,xn} are chosen as bases of N and M, we have reached 

statement (2) by linearit.y. 

(2):::::} (4) : Let ME FIN, E E BAN and e: > 0 be given. By a similar argument as in 

the proof of 2.6., we only have to show that 

n 
Let L E 1(E,M) = E'0 M, L = }.; a.0 z., al' ... ,a E E' and zl'" .. ,z E M. By 2.3. and 

i=l l l n n 

• 7.> t III 
2.4., there 1s an A E 1(M" ,E") such that llAllB* = (µ) (A;M ,E") ~ 1 and 

ß'(L;E',M) = (~t(L;E' ,M) = llL"ll(m < (l+e:)ltr(L"A)I. 

Let N := [al' ... ,a
0

] E FIN(E') . By assumption (2) there is an B E B*(M" ,E) such that 

llBlls* ~ (l+e:)llAlls* ~ l+e: and 

<a,(AjM)z> = <(BjM)z,a> 'V a E N, z E M. 

Hence 

1tr(L"A)1 = 1tr((jML)B)1 ~ llLll(B*)t. · (l+e:) ~ (l+e:)ß'(L;E',M) 

and the implication follows. 

Since ( 4) obviously implies (1 ), we obtain all desired equivalences, and the theorem is 

proven. 

D 

Given a maximal, right-accessible Banach ideal (A,11 · llA), then (A*,11 · llA*) is always 

left-accessible ([D-Fl],9 .2. ), in particular (At.,ll · llA6 ). Hence 
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2.10. COROLLARY: 

Let (A,11 · llA) be a maximal, right-accessible Banach ideal. Then the (w) A-1.r.p. 

holds. 

Especially, this statement is true for the (right-)accessible, maximal Banach ideal 

(l ,11 · llc ) N a (1 ~ p, q ~ rn, .!. + .!. ~ 1) ·Of (p,q)-factorable operators ([D-Fl], 
p,q p,q p,q p q 

4.6., 9.4.) . 

Another important consequence is a generalization of a result of Pietsch (cf. [Pl], 

E. 3.2.): 

2.11. LEMMA: 

Let (A,11 · llA) be a p-Banach ideal (0 < p S 1) such that the (w) A-1.r.p. holds. Let M 

E FIN, E,F E BAN, A E .C(E',M') and T E 1(F',E'). Then, given e: > 0, there exists an 

XE !(M,E) such that llXllA S (1,+e:)llA'llA and AT= X'T. 

Proof: 

That is the proof of [Pl], E. 3.2., only using the ideal norm 11 • llA instead of II· II· 

D 

This lemma leads us to a statement which is especially true for all maximal Banach 

ideals A with the (w) f-1.r.p.: 

2.12. LEMMA: 

Let (A,ll · llA) be a p-Banach ideal (0 < p ~ 1) such that (A,ll · llA) ~ (..fd,11·11_.fd) and 

the (w) f-1.r.p. holds. Let E,F be Banach spaces such that F' has the m.a.p .. Then 

we obtain isometrically: 

This equality is also valid if we only assume that (A,11 • llA) is an arbitrarily given 

p-Banach ideal (0 < p S 1) and that E' has m:a.p .. 
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Proof: 

Let e > 0, T E (Ad)6(E,F) and L E 1(E',F'). First, let F' have the m.a.p .. Then, there 

is an A E 1(F' ,F') such that II All ~ 1 +e and L = AL. Canonical factorization of A 

leads to M E FIN, A
1 

E .C(F',M"), A
2 

E .C(M",F') such that A = A
2
A

1
, llA

2
11 ~ 1 and 

llA111 ~ l+e. By assumption on A and the previous lemma, there is an XE 1(M',E) 

with llXllAd ~ (l+e)llA
1
LllA and (A

1
L)(T'A

2
) = X'T'A

2
. Since A

2 
E 1(M",F') there 

exists an B
2 

E 1(F,M') such that A
2 

= B~. Thus we obtain: 

Hence T E (A6)<l(E,F) and llTll(A6)d ~ llTll(Ad)6 · 

The other inclusion follows directly by the definition of conjugated Banach ideals, 

since always 

Now, let have E' m.a.p .. Then, there is an B E 1(E',E') such that llBll ~ l+e and 

T'L = BT'L. Again, canonical factorization (of B) leads to M E FIN(E'), CE.C(E',M) 

such that B = J~'c and llCll ~ l+e. Let S E .C(F,M') with LJ~
1

jM 1 = S'. Since 

obviously (A<l,11 ·II Ad) o ((Ad)6,ll · ll(Ad)ll) ~ (1,ll ·II), we obtain the following estimation: 

1tr(T'L)1 = 1 tr(T'S'jMC) r ~ llSTll1· llCll 

~ llS ' llA· llTll(Ad)6 · (l+e) ~ llLllA· llTll(Ad)6 · (l+e) · 

D 

An immediate consequence of this lemma is given by 
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2.13. COROLLARY: 

Let (A,11 · llA) be a maximal Banach ideal and E,F be Banach spaces such that F" has 

m.a.p .. Then the following statements are equivalent: 

(1) (At.,11 · llAt.) is left-accessible 

(2) At.(E,F) ,;,, (At.)dd(E,F) . 

Proof: 

(1) ::::::} (2): Since (1) is equivalent to the (w) (Ad)d-1.r.p„ this implication follows 

directly by the previous lemma. 

(2)::::::} (1): (At.)dd is always (left-) accessible, by 2.5. 

0 

Finally we show some applications of the (w) A-1.r.p. which are dealing with a 

duality-theory of maximal Banach ideals in the following sense: 

2.14. PROPOSITION: 

Let (A,11 · llA) be a maximal Banach ideal, M E FIN and Fan arbitrary Banach space. 

Then the following statements are equivalent: 

(1) The (w) A-1.r.p. holds 

(2) (A*)min(F,M) ~ A(M,F)' . 

Thereby the isometric isomorphism (2) is given by canonical trace-duality. 

Proof: 

(1) ::::::> (2): The assumption implies the left-accessibility of At., by 2.9. By [D-F2), 

25.2. it follows that (A*)min(F,M) ,;,, Ali(F,M). The proof of theorem 2.9. shows further 

that At.(F,M) ~ A(M,F)', given by trace-duality. Hence we obtain (2) . 

(2) ===> (1) : Let (2) be valid. Then, by [D-Fl), 7.2 . it follows that 

A(M,F") ~ (A*)min(F,M)' ~ A(M,F)" . 

Hence we obtain (1), by 2.9 . 

D 
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2.15. PROPOSITION: 

Let (A,11 • llA) be a maximal Banach ideal and E,F be Banach spaces such that E has 

m.a.p„ If the (w) A- 1.r.p. holds, then 

(A*)min(F ,E) c:...l... A(E,F) ' , 

given by trace-duality . 

. Proof: 

By 1.4. and 1.6. A* ,,; 1J a A* rv aA* = a~ = a Ad . Therefore, we have only to show (by 

[D-Fl], 7.2.) that 

(*) ~ : F'0 E c:...l... A(E,F)' 
aA<l 

L i---+ (Ti---+ tr(TL)) 

is a well-defined isometric isomorphism. 

Since itr(TL))I ~ llTllA·aA<l(L;F',E) for all TE A(E,F) and L E 1(F,E), (*) is well-

defined and ll~(L)ll ~ aAd(L;F',E) . To show the converse inequality, let E > 0 and L E 

1(F,E) be given. By definition of aAd' there is an SE A<l(F',E'), llSllA<l ~ 1 such that 

aAa(L;F',E) < (l+E)ltr(L'S)I. 

Since E has m .a .p„ there is an A E 1(E,E) such that llAll ~ l+E and L = AL. Let 

M E FIN(E) and A
0 

E .C(E,M) such that llA
0

!1 ~ l+E and A = J~A0 . Then 

tr(L'S) = tr((J~)'S(A0L) ' ) . Since (J~) ' S E 1(F',M') and (A
0
L)'E 1(M',F'), the (w) 

A-1.r.p . implies, that there is an X E .C(M,F) such that 

llXllA ~ (l+E)ll(J~) ' SllAd ~ l+E and (J~)'S(A0L)' = X'(A
0
L)' (by 2.11.) . Therefore we 

obtain: 

aAa(L;F',E) < (l+E)itr(XA
0
L)I = (l+E)l~(L)(XA0)I 

~ (l+E)ll~(L)ll · llXAJA 

~ (l+E) 3 ll~(L)ll · 

Hence we have received (*) and the proposition has been proven. 

0 
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