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Projective Resolutions associated to 
Projections. 

by T. de Jong and D. van Straten 

Let X be a d -dim<'nsional germ of an analyt.ic space and let. 

X--+ 11 ,d+t b f ' 't v · 'd 0 't' : "- e a m1 .e map . 1a tp , we can cons1 er X as an 

O:=Ocd+l - module . If X is Colie11 - Macaulay, then Ox has a free 

resolution as 0 - module of the form: 

11> 
O --+ G---+ F ---+Ox---+ O (1) 

r r 
where P = ffik=OO.fk and G = Ef) k=OO .gk are free 0 -modules of 

rank r t l. The determinant f of thc matrix ( •I>ij ) of '1> can be used as 

a deflning equatlon for the Image Y of X in cd+t ( see [Te]) . 

Now Ox is not only a 0 - module, but even an 0 - algebra, due to 

the fact that Ox is a ri11g. Let fk be mapped to uk in Ox and 

assume u0 :: 1. Then one gets a surjection : 

(2) 

of 0 - algebras , or equivalently, an embedding X c__-. cd+t X er . 

The equations of X in this embedding come into two types: 
r 

Ii=O «l>ij fi = 0 (3A) 

fi fj - L k~O Mi j k . f k :: 0 (JB) 

(3 Al are the "module-equations" between the ui that folJow from ( 1) 

(3B) are the "multiplicat.ion- equations" . They express the product 

ui .uj in the modale basis. The Mijk are certain elements of 0 and 

could be called the structure constants ( cf. [Ca 1. [M-P ]). 
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Another way of looking at (3A) and (3B) is to say that the left hand 

side of these equations generate the kernet of the surjection of (2) 

as a S : =O[f1 ,f 2, ... , fr] - module. 

In the fir.st part of this article we will extend thls to a description 

of a projective resolution of Ox as an S -module. lt turns out that 

this resolution has the form: 

o -+ L,.+1 ---+ Ly ---+ .... ---+ !.1 ---+ s ---+ Ox ---+ o (4) 

( 
r+2 ) where !.k is a free S -module of rank k k+J . Note that these are 

the well-known ranks occuring in the minimal resolutions of varieties 

of minimal multiplicity ( [Wa,J, [E -R-S] ). Our complex involves '1>, 

certain maps L and M describiirn the algebra structure of Ox on 

the complex ( 1) and a certain homotopy H expressing the associativity 

of the multiplication in Ox . The construction closely follows the steps 

taken in [E -- R-S], where a similar complex was constructed associated 

to a map X ----. Cd, representing (in the case that X ls Cohen­

Macaulay) Ox as a free O{'d -module. 

In the second part of the article we treat the special case that <p is 

genericitlly t - 1 and the defining function f of Y is in 12 , where J is 

the ideal in 0 of the conductor of the map X ---+ Y. In this case one 

can express the maps L, M and lI explicitely in terms of the matrix 

cf>ij _ As a consequence, we get that in this case the resolution (4) is 

minimal. 

,A.ckncwle~gemcmt: 

The first author is supported by a stipendium of the E. C. ( Science 

Project) The second author thanks Abdullah Gqmpie Sam for many 

fruitful discussions. 
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§ J. 

We- consider a commutative ring R with 1, and E a ffinitely generated) 

projective R - module . We put S := ffik Sk (E) , where Sk is the k - th 

symmetric power of E. The "diagonal map /J" is the map 

f1 : j\k(E)----+ /\k - 1CE>@E 

defined on generators by 

- ) - i -· J ..... 6(e1/\ . . . /\ ek)- '-'i ( 1) e1/\ .. . /\ ei/\ . . . /\ek ®ei 

Here and in the sequel the tensor products are over the ring R. 

We define for any S - modufo M a rnap 

dM : j\k(E)@M ---t /\k - J(E)@M 

by dM = ( 1® rn )( A ® 1 ) , where rn: S © M ---+M is the multiplication map. 

By ahuse of notation, the map M©/\k (E)--+ M®/\k- l (E) defined 

by s dM s , where s is the swap, is also denoted by dM. Note that. 

dM dM = 0 . 

7>topcslticn ( 1.1) (Scheja and Storch) 

Let M be an S - modale which is finitely generated as an R -modale. 

Put Kk = S ©/\kCE)@M and d = d5 ®1 - l®dM : Kk--+Kk-1 

Then d2 == 0 and 

K( M) : 0 --+ Kr ---+ Kr- I ---+ . . . ---+ K1 ---+ Ko = S © M ---+ 0 

is a resolution of M as S - module. 

ptcct: For a proof see [E-R- S]. theorem 1.1. Cln this theorem it is 

assumed that M is projective, but this is not needed in the proof of 

the above statement . ) 

So in the case that M is a projective R - module , t.he above complex 

K( M) is a S --projective resolution of M. Special such S - modules M 

arize as R -algebras of the form R EB E as considered in [E- R- S] . We 

will consider the case of R -algebras A given by an exact sequence 

of projective R -modules : 
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7'/Ag'Mttt ( 1.2) I 

0 ------JG ----. RfDE ~ A ------JO 

where rk(E) = r and rk(G)=r+l. We abbreviate REBE to F. 

Because now A is (in generall no longer a projective R --module, the 

resolution (1.t) with M =A does not give us a projective resolution 

of Aas an S - module. We will replace A by "G~F" in (1.1), but 

the differential needs special care. In order to define this differential 

we introduce some maps expressing the commutatitity and associativity 

of A. Consider the followlng commutative diagram: 

1'iAg'Mm ( 1. 3 J : 

0 ~/\2 (G) ~ F®G ~ Sz(F) ~Sz(A) ~o 
1 lmz lmt l m 
0 ~ G -------. P ------J A ~ 0 

The first row is a projective resolution of the second symmetric· 

power s2 (A)of A, m is the mnltiplication map of the algebra structure 

of A, which is lifted to maps m1 and m2 of complexes. Because F = 

R ffJ E, we have decompositions 

Sz(Fl = F ff) SzlE) and 

f® G = G ffi E60G. 

So we c:an decompos<" mt .rnd mz as fol lows 

m1 = ldp EB M w here M : S2 (Ei ------J P <l lHl 

m2 = ldG ffi l. where l.: E®G ~ G 

By composition we get a map E®E --+S2<m--+F that we also 

denote by M. 

In order to express the associativity of the multiplication of A, we 

consider the following cornmutative diagram: 
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2 0 --+ A (E)®G 1 ®cf> A2(fü®F---+ A2CE>® A--+ 0 

[L,L] l 
cf> 

[M,MJ l O l 
G F A --+0 

Here [M,M] is the map MO®MH.d®t ), so 

[M,M](e1 /\e2 ®f) = M(e1 ® M(ez®f)) - M(e2 © Mte1 ® f)) 

The map [ L,L] is defiried similarly. 

The commutativlty of the Jeft band square follows from the 

commut.ativity of diagram (1.3), whereas the commutativity of the right 

hand square expresses the associativity and commutativity of the algebra 

A. lt follow.s that there exists a homotopy 
2 H:A<E>®F G 

I.e., we have et> H = [ M, M] and H ( 1 ® '1>) = [L,LJ. 

J>'leposltlcn I 1'e~Wtlcn ( 1. 5 J : 

Let ,4k = S®j\k(E)@F $ S®Ak-l(E)@G 

and d = ( :t :z) : ,4k --+ ,4k-1 
3 4 

with d1 =d5 ®1 - (l®MHil®I) 

d2 = 10 <1> 

d3= (l®HH6®1Hil®D 

d
4 

= -d5 ® 1 + (l®U(Ll®t). 

One has: dd= 0, i.e. A. = C,4., cl) is a complex. 

pto~ 1 This is a straightforward calculation, and is an expression of 

the various commutations of maps. We only indicate what i.s involved: 

2 For d1 + dzd3 = 0 , use <I>H = [M,M] 
') 

For d3d2 + d 4~= 0, use HU®cl>)= [L,Ll 

For d1d2 + d2d4= 0 : use M( l@ 1.I>) = lf> L 

For d3d1 + d4 d3 = 0, one has to use the commutativity of t.he following 

„ 
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-diagram : 

;\3fEl®F ~ ;\2CE>®E®F -
5
-®-

1 
E®/\2CE>®F 

6@1 ! 
1 1 ®mi 

;\2(E>@E@F ------+ 
H 

/\.2(E)@F ------

This commutativity can be checked by composing with the injective 

map '1>. Then it comes down to the relations '1> H = [M,Ml and 

lf>L=M(t@cf>), together with the equality of maps /\.3 (E)@ F ---+F: 

[ M,M]l1®m1 )(6 ®1) = m1 C[M,M]®1Hs®1) (6®1), 

which is checked by direct computation . 

!emma ( 1.6 J : 

Let B = ffiBk be a Z- graded abelian group with map o of degree - 1, 

not necessarily with &S = 0. 

Consider the "mapping cone" C = ( C. , d) where 

ck = Bk ffi Bk.:1 and d = ( _i0 ~~ ) . 

Then d2 = 0, and C~ is an exact complex. 

p'lD~ 1 A simple calculation shows that indeed d2 = 0, and a 

homotopy between the zero map and the identity map of C is 

given by ( ~ g) : C k --+ C k + 1 t>!J 

7>zcpositlcn ( 1.7 J : 

The complex 
a a a o 

"- : O --+ ,Ar+I --+,Ar--+ · · · · --+,Ai ---+ ,Ao= S® F --+ O 

is a S - proje-ctive re-solution of A. 

PWDt: We apply lemma (1.61 with Bk= S®/\.k(E)@G and ~ = 
ds ® 1 - ( 1 ® L) ( 6 ® 1) and get an exact mapping cone complex C . 

There is an injective map of complexes C C.--+ "-., given in degree 

k by (l@~)ffild: 

S®/\.klEl®GEBS ©/\.k - J(E)®G --S©/\.k(E)®F EBS®/\.k - l(fü©G 

The cokernel of this map can be identified with the complex KlA) 

of (1.1) . Hence we have a short exact sequence of complexes 
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0 ---+ C ---+ 4 ---J Ji(A) --t 0 

Because C is exact by (1.6) and Ji(A) is a resolution of A by (1.1) 

it follows from the long exact homology sequence that A is a 

S -projective resolution of A. 

§2. 

Although the complex A has · the "right" length, it is usually not 

minimal. In [E ·-R -S] it is described how to obtain from K(A) a smaller 

complex. We will apply their ideas to prune our complex 4 in a 

similar way. 

De6lnlticn I /JotAtlcn ( 2.1): ( see also [B-E]. [E-R-S]) 

Let n : F = Rffl E ---+ E the cartesian projection and define maps 

in:= (/\k11©1>6: /\k+l(p) --+/\k(E)@F 

as the composition of the diagonal map and the induced projection. 

The commutative diagram with exact rows 

0 ~ /\k(E) -----+ /\ k+1(F)-----+ /\k+1(E) ---+ 0 

= l in l 6 l 
k k k 

O ---+ /\ (E) ---+ /\ (E)@F---+ /\ (E)@E ~ O 

shows that Cokerlin) ~ Coker ( 6). We denote this common cokemel 
k k . k+1 k by L :=L 2 (E):= Coked6:/\ (E)---+/\ (E)@E) . 

Lk is a projective R -module of rank k (~++~ ). 

Consider the incl usion F= RtB E 4 S and the induce~ map S© F ---+ S 

The Koszul complex P :=(P.,ö) on this map with terms Pk = S © /\ k(F) 

and the usual differential. is exact. 

J>tcposltlcn ( 2 .2 ) : The diagram 

where 

i) 
--f'k-1 
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is anti commut.ative . 

I-fonc:e there is an induced differential c'l: ~k _______. ~k - l ( k ? 2) 

where 4k = Coker(j)= S®Lk ©S®/\k-t(El@G. 

ptco61 The anti -commutativity of the diagram 

~ S© /\k+l !Fl __ __.. S© /\k(F) 

t©in l t®in l 
S ® /\k(E)@F d1 S©/\k- l(E)@F 

can be proved as in [E--R--S], lemma(3.1). 

To prove the statement of the propostion one has to show that 

the compostion 

S'°'/\k+l(F) l©in /\k d3 k 2 
V)/ • --- S® CEl®F --+ S®/\ - (E)@G 

is the zero map. 

A direct computation shows that the composition of this map with 

the injective map t©cf> is equal to: 

. "' i+'+k (t@cf>ld3 (1@mHs®e1/\ev'\ „ ./\ek+tl = L..ii < j <k( -1) J . s®lei/\ej/\ekl®y 

where y = - M(ei®M(ej®ek))+ MCei®M(ek®ej)) + cyclic:, which is zero 

due to the symmetry of M. 

'TJieorem ( 2 .3) : 

The complex L = ( 4. , c'l > 

a cl · a cl cl 
L : 0 -~ 4rt 1 --+ 4r --+ . . . ---+ 42 --+ 4 1 --+ 4J = S --+ 0 

with c'l : 4 1= S®S2!ElEBS®G --+4o=S given by 

c)(s@e1@e2 a:i t® g) =s(e1e2 - MCe1@e2n+tcf>(g) 

and cl: 4k -----.4k - I (k 22) as in (2.2), is an S -projective resolution 

of A. Furthermore, if the ring R is local with maximal ideal m, then 

the resolution is minimal (after localization at (m,E) c 5) if •l>(G) c mF 

UE~G) c mG, M<E®El c mF and HIA2(El®ElcmG. 

ptco6: As in [E-R- S], theorem 3.2 . 

( r +I \ ( r ) ( r+2 ) Remark that the rank of 4k is equal to k k +1 J + (r+l) k- t = k k+t 



~· 

§3. 

In [J -·S] the fol lowing situation was studied: 

X 

lP 
y c z 

Here Y=Spec<BHs a hypersurface in a smooth ambient space Z=Spec(R). 

If p :X----. Y is a generically 1- 1 map from a Cohen-Macaulay 

space X=Spec(A) to Y, then the conductor 1 = HomB(A,B) defines a 

subspace :t = Spec(C) ; C= B/I of Y. From the inclusion i::t---.Y one 

can reconstruct A as a B·- module via A=Hom8 U, B). The ring stn1ct11re 

on A is translated into the fact that the ideal 1 satisfies the ring 

co11ditio11 (R. C'.) 

'/<lng U~ltlctt ( 3 .1 ) I 

HomB(l, I) ~ Hom8o. B) 

Conversely, any ideal 1 c B that satifies this ring condition gives rize 

to an algebra structure on the module HomB(I, B), which has as an 

R- module a projective resolution as in (1.2). The ring condition can 

also be interpreted saying that the hypersurface Y has to be singu/ar 
? 

along L For example, if the local equation f of Y is in the Iji , (where 

IR is the ideal of L. in R), then L. 4 Y satisfies (R.C .). This particular 

case will be studied in some more detail in § 4. 

Below we will describe how, in this situation of a "generic projec:tion" 

X----. Yc Z, the algebra structure on A is determined by the map tl> . 

So we start with diagram ( J.2). The ideal of the image is constructed 

as follows : the map lf> induces a map ;\.r+l(lf>l:/\r+J (G) ---.j\r+J (F) 

and by transposition an injective map i :1.. C-t R, where 

t.. :=/\r+J(G)@/\r+J(F *) is an invertible module . We define B :=R/t... 

Now A is a B - module . This is Cramers rule, and an intrinsic way 

of saying this is by looking at the map /\r (~):/\r (G) --+/\r (f), 

which by transposition and the natural isomorphism /\r (f *) ~ 

/\r+t(F * )@F gives rize to a map o/ : F® ! -+G. One has ~ 11' =(ld ® i) 
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so 1t' is a homotopy expressing the fact that multiplication with 

elements of /.. is zero on A. From now on we make the following 

assumption : 

ßssumptlcn ( 3 .2) : 

The canonical map 
can 

Homs(A,ß) --+B ; (a:A---.B)t-+a(U 

is injective. 

So Homs(A,B) is via can an ideal 1 In B (and in A) and is called the 

conductor of the ring map a ---.A. . The map Call sits in d diagram -

with exact rows and columns. 

7'iAgu:tm( 3.3): 

0 
1 

+ 

0 

l 
o---. E*@I.. ----+E*®f...----+ 0 

1 l + • 
0 ---. F*@f... ~ G*@/... ----+ Homs(A,ß) ~ 0 

1 l L\ lp@l l can 

0 --+ 1.. R B --+ O 
1 

l l 1 • 
0 c c ----+ 0 

l 
1 

l 
0 0 

The second row is a presentation of Hom8 1 A,B) and can be obtained 

from (1.2) essentially by dualizat.ion . The third row is the definition 

of B. The rnap p :F* --.R is induced by the inclusion R C...-.F, an~ the 

map 6 :G* ®t.. ----... R is induced by the compo.sition : 

R c_. F ~ G®f..* 

by transposition. The columns of the diagram are obtained by the snake 

lemma . 

Thf' df'composit ion F =R(f) P. decomposes the map ~ : G ---. F into two 

maps: 
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/ ' 

C(: G ----+ R 

lp: G ----+ E 

The diagonal map ex*: /..---+ G*©t. is induced by CJ: by transposition 

(and tensoring with t. ) . 
,.,_, 

The module A can also be obtained back as A ..:::....Homs(Homs(A,B), ß) 

and under this isomorphism the element 1 corresponds to thc map can. 
' "v 

The r'ing condition f R.C. l HomnO ,ll ::.:...... Hom 8 ( l, R) now means that 

cvcry clcmcnt a < A.' corresponding to (a :Hom8 (A,ß) --+B; 'P f-+<p(a)) 

i: Hom6 (Hom6 (A,B),B) and represented by (aF'aG) can be lifted to 

(bF,bG), representing 6 r Hom8 (Hom8 (A,B),Hom8 (A,B)), making the 

following diagram commutative: 

1'lAgu:tm ( 3.5): 

0---+ F*@.!. --... G*@t. ----+ Homs(A,B>--+ 0 

b I 1. . / l "' I l 
F I +ap ~ / a G h I a 

o-L+ t. h R I B 0 

tt~1 J-'A !}/ /c~l'V 
0 --+ F*®t. G*@ t. Hom

8
(A,B)---+ 0 

By transposition bF and bG induce maps M(a) :F --+Fand Lfa) :G --+G, 

represent.ing the multiplication by a on A. The maps ap and aG are 

determined by a as follows: 

J>tcposltlcn ( 3 .6): 

1 ) The tran.sposition aF * e P is a lift of a e A . 

* • "' • .,. • 
2) The transposition ac c G@.!. is equal to lf'(aF ) , where lf': F --t G®.!. 

is the map induced by 'f'. · 

The proof is left to the reader. 

So in short, the maps L(a) and M(a) describing multiplication by ar A 

are determined by the following steps: 
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1) Lift a to a/ E F and get aF : F* ®/... --+!... 
* 'v • • • 

2) Compute aG as o/ (aF) E G®f... and get aG :G ©/... ---... R 

3) Lift the map a
0 

over the map ~ : G *® /... ---... R to get a map 

* /... • „ bG : G ® ----.. G @,.. and by transpostition Ua): G--+ G 

This is the essential step, and the condition to be able to do this 

is of course again CR.C.) 

4) Lift the compostion b
0

(<I>*@1) over (ct>*©t> to get bF :F*®f...----tF*®!. 

and by transposition M(a): F --+ F. As the map can is injective , this 

is possible for any choice of bG in step 3). 

§4 . 

A particular case in which the ring condition (3 .1) is satisfied arizes 

as follows . Suppose we are given the R- resolution of L of the form: 

* __..'P __ G*-~-... R --... C --+ 0 

where we assume ( for reasons of simplicity) that E and G are free 

R- modules. We choose bases {fk} and {gk }(k=O„ „,r)for F =REBE 

resp. G and assume that fo = l ~ R. The map I{) : G---+E has as matrix 

•Ptj• i.e. l{)(gj ) = 'Pilj · Here and in the sequel we use the Einstein 

summation convention: indices occuring twice are summed over. 

The modale t. is trivial and the component A1 : = A( g1 *> can be obtained 

as the i- th minor of 'f-'ij · Let IR be the R ideal generated by the Ai. 

The particular case we want to discuss in some more detail is the 

following : 

Suppose we are p,iven an element 

f E IIf 
We will assume that f is a non zero--divisor in R. 

Such an f can always be written as : 

f = h„~ . ~ · 
1 J 1 J 

where hij is a symmetric mat.rix of elements of R. 
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(Jf one does not want to assume E and G free, than the matrix (hij) 

should be considered as an element h of s2( G*) ®/... ) . We now take 

IX· = h„ ~· 1 IJ J 

and Jet t1>: F ---.G be the map df>fined by the following matrix: 

( 
cto .... cxr \ 

cf>= ( cI>i;)= ~10 · · · · flr} 

'PrO · · · · 'Prr 

So f = df>tl <I>), which is a generator for the ideal of a space Y. 

We will determine the maps L. M and H of § 1 expressing the ring 

structure of A = Cok( <fJ i . To do this we need some elementary relations 

between minors of matrices. 

1'~tlon ( 4.1): 

Let tl> = ( cI> ij) be a square matrix of size r + 1. Let I = ( i1, „„ , ip) 

and J = ( h, „. , jp) be strictly increasing sequences of numbers 

smaller than r. Then. we define o/IJ = ( -1 )k det(cf>I,J) 

where k = i1 + .„ + ip + J1 + .„ + jp. and cf>1•J is obt.ained from 

the matrix <I> by deleting columns i1, „. , ip and rows j1. „. , jp. 

The o/I,J for non- strictly increasing sequences of numbers are 

defined by making o/IJ anti - symmetric in both I and J. 

!.emf'ttlt ( 4 .2) : 

One has the following identities : 

1 L) cI>ij o/jk = det(cf>)~ik 

2U cl>1;\l'jk mn= o/knsim-'t'kmsin 

3U <l>ijo/jkm npq=lf\mpq 0in + 

t- 111 ~ !- Hf ~ 
kmqn°ip rkmnp 0 iq 

1R) o/kjcI>ji = det{cl>)Ski 

2R) o/nmkj<l>ji='t'nk 0mi-o/mk 8ni 

3R) 'V qpnmkjtl>ji = o/ qpm k0ni + 

+'l'nq mk 0pi i ll'pnmk 8qi 

ptc~: t U is Crdmers rule . 2U is obtained by expanding the determinant 

ohtained from et> by deleting column k and rows m and n and concating 

with the i-th row of cf> with respect to its j column. JU is obtained 

similarly. The "R"-identies are obtained by "reflectlon" 
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Bec:ause of the special shape of our matrix <I> we find it useful to use 

the following notation . 

fJctatlcn ( 4.3): 

We put .L\i = 'f' iO 

.L\ijk = 'i' ij Ok 

.L\ijk mn = lf' ijk Omn 

We remark that the .L\i are in fact the components of the map 

6 : G* ___... R. The ideal generated hy these 6i is I, and the ring 

condition ( R. C.) is exactly that lf' ij i: 1 for all i and j. 

The identities we will u se all fo llow from ( 4 .2) by putting some 

index equal to zero and are summarized in: 

Daentltles ( 4 .4): 

1 ) ex k ll k i j = '!' ij 
2) '~' ij~jkm = - Cik i' im 

3) Ciijk 'P km = 6 i 0 jm ·- 6; 0im 

7/aecwm ( 4 .5 ) : 

Matrices Lp and Mp, representing multiplication by f p, i.e. 

making a commutative diagram: 

0 --.G ---F ---A~O 

l1Y lMP lfp . 

0---. G---...f---11A~O 

are given by (LP ) „ = h-kflk . IJ J IP 

t MP ). . = 1 if j=O and i= p . 
IJ 

= (lni tracel LP .Lj) if i=O , j > O 

= 0 otherwise . 
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ptoc6: Substituting ex k ;;: hkmilm in (4.4) l) we obtain: 

'f'1p;;: hkm6mAkip p<:O) 

As explained in§ 3 the map n,P)*: G* G* 

is a lift of 'f' p over 6 where ~' p(gt) = o/ip• i.e. we have a commutative 

diagram : 

So, we can take (LP)~.11 = hkmAkip· Hence the statement. 

To prove the statement about Mp we have to show the commutativity 

of the diagram in the statement of the theorem. Because of the special 

fonn of the Mp this is equivalent to (lflLP) (gj) = cxlP and the 

commutativity of the following diagram 

G 

Here ~L(fi ) = 1/2trace (LpLi). Indeed (\pLP )ij = 'Pik(LP)kj = 'Pikhjmilmkp. 

By (4.4) 2) this is equal to hjmAmöip which is equal to cxjSip which 

proves the first statement . 

We now calculate 2 [L•p(g ;>· This is equal to: 

•Pi jh a bilbcihcdAdap 

Using (4.4) J) t.his can be rewritten as: 

hjdAdaphabilb - Achcd~daphaj 

Because of the symmetry of hij and the anti-symmetry of 

Adap in d and a we see that the above expression is equal 

to 2hjdildaphabilb = 2cxa(LP)aj which proves the assertion. 

J!) -
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'ilteo'lRm ( 4 .6 ) : 

The homotopy H: ;\ 
2 

(E) ® F G has as rnatrix 

112 clpqtJ - lqptJ) 

where lpqij = habAbcphcdAdaiqj 

f:1'lC~I 

We have to prove that HU@'1>) = [L,L] and '1>H = [M,M]. 

lt suffices to prove the first equality because from this it follows that 

'1> H (l ®et>)= .P[L, L] = ( 1 @et>) [ M , M]. Composing this with 1f' we get the 

identity f. H ( 1 ®et>)= f [ M, M]. As we assume f to be a non-zero divisor 

the second equality follows. 

We compute: 

l pqim 1Pmk = habAbcphcdAdaiqmct>mk· 

Using (4.4) 4) this is equal to : 

hab Abcphcd < Adaqöik + A1dqsak + Aaiq0dk} 

= ( hab AbcphcdAdaq) 0ik + 2 hkbAbcphcd Aidq 

by relabeling the indices in the last tenn and using the anti -symmetry 

of the deltas twice. On the other hand 

( L q r.P )ik = L~c 1,Pck = ( hcd 6diq )(hkb6~p) 
which is -112 times the last term of ( •) . 

lt follows that Hpqimcl>mk = f tP , L q] ik because the first tenn of (•) 

is symmetric in p and q. @ 

f/!.ematk(4.7): The maps L,M and I;I can be described intrinsically in 

tenns of II> and h t s2 (G*) 09 t.. However, to prove the commutativities 

expressed by Theorems (4.!i) and (4.6) this basis free approach seems 

to be of no help. 
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Ccwlla.'l"f ( lf .8) t If (R, m) is a local ring. the entries of <P.ij are in m 
? 

and f e IR "'as above, then the complex L. of theorem (2.3) is a rn/11/mal 

resolution of A=Cok(~)as S- rnodule (after localizing at (m,En. 

p'l.0"6 : This follows from (2 .3) and the explicit fonuulds for L. M 

and H given iu (4 . .';) and (4 .6). 
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