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Projective Resolutions associated to
Projections.

by T. de Jong and D. van Straten
Onteoduction.

Let X be a d-dimensional germ of an analytic space and let
w X __thﬂ be a finite map. Via ¢, we can consider OX as an
O:=O¢d+1 - module. If X is Cohen - Macaulay, then Oy has a free
resolution as O -module of the form:
0—»G—LF——_—-+OX——oo )
where F = Q)k‘;oo.fk and G = (Dkrzoo.gk are free O -modules of
rank r+l. The determinant f of the matrix ('l’ij) of ® can be used as
a defining equation for the image Y of X in cd*! (see [(TeD.
Now Oy is not only a O -module, but even an O -algebra, due to
the fact that Oy is a ring.  Let fy be mapped to uy in Oy and

assume ug = 1. Then one gets a surjection:
O[f],fz,...,fr] -—+OX——00 (2)

of O -algebras, or equivalently, an embedding X —y ¢dtlxer .

The equations of X in this embedding come into two types:
r

> 50 ®; £ =0 (3A)

. r
i~ > k=0 Mijk-fk = 0 (3B)

(3 A) are the "module-equations” between the u; that follow from (1)
{3B) are the "multiplication- equations” . They express the product
ul- .Uj J
could be called the structure constants ( cf. [Ca], [M-P}).

in the module basis. The M;;i are certain elements of O and



Another way of looking at (3A) and (3B) is to say that the left hand
side of these equations generate the kernel of the surjection of (2)

as a S :=O[f] f£9,....f,] -module.

In the first part of this article we will extend this to a description
of a projective resolution of OX as an S -module. It turns out that

this resolution has the form:

0 =Ly —4L —.... L —5S—0y—0 )

where Lk is a free S -module of rank k (rk++21 ) Note that these are
the well-known ranks occuring in the minimal resolutions of varieties
of minimal multiplicity ( [Wa],[E-R-S] ). Our complex involves &,
certain maps L and M describing the algebra structure of OX on
the complex (1) and a certain homotopy H expressing the associativity
of the multiplication in OX' The construction closely follows the steps
taken in [E-R-S], where a similar complex was constructed associated
to a map X ——OCd, representing (in the case that X is Cohen-
Macaulay) OX as a free OCd -module.

In the second part of the article we treat the special case that ¢ is
generically 1-1 and the defining function f of Y is in 12 , where I is
the ideal in O of the conductor of the map X — Y. In this case one
can express the maps L, M and H explicitely in terms of the matrix
d)ij . As a consequence, we get that in this case the resolution (4) is

minimal.
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A Projectioe Resolution.

We consider a commutative ring R with 1, and E a (finitely generated)
projective R -module. We put S:=®p S, (E), where Sk is the k-th

symmetric power of E. The "diagonal map A" is the map
a: Ny —— AF(E)QE
defined on generators by
Aley . . . Nep)= 35 (--l)i"’e,/\.../\éi/\.../\ek ®e;

Here and in the sequel the tensor products are over the ring R.

We define for any S -module M a map

d,, : AkBeM — A TEem
by d,, = (lem)(A®1), where m:S®M —M is the multiplication map.
By abuse of notation, the map M®/\k (E) ——+M®/\k-] (E) defined
by sd,, s , where s is the swap, is also denoted by d,,. Note that
dy, dy4 = 0.

Proposition (1.1) (Scheja and Storch)

Let M be an S -module which is finitely generated as an R -module.
Put K, = S ®AK(E)OM and d = dg@1 - 1@d,, : K — Kp_q

Then d? = 0 and

KM: 0 —K, —@K, | — ... —K; —K;=S®OM —0
is a resolution of M as S -module.

prook: For a proof see [E-R—-S], theorem 1.1. (In this theorem it is
assumed that M is projective, but this is not needed in the proof of

the above statement. ) b

So in the case that M is a projective R -module, the above complex
K(M) is a S -projective resolution of M. Special such S -modules M
arize as R -algebras of the form R @ E as considered in {E-R-S]. We
will consider the case of R -algebras A given by an exact sequence

of projective R -modules:



Diagzam (1.2):

i)
0 » G » ROGE — A — 0

where rk(E) = r and rk(G)=r+1. We abbreviate RBE to F.

Because now A is (in general) no longer a projective R -module, the
resolution (1.1) with M = A does not give us a projective resolution
of A as an S -module. We will replace A by "G LF" in (1.1), but
the differential needs special care. In order to define this differential
we introduce some maps expressing the commutatitity and associativity

of A. Consider the following commutative diagram:

Diagram (1.3):

0 —AZ(G) — FRG — S,(F) —Sy(A) — 0

l illlz i![l‘ l m

0 — G — F — A —0

The first row is a projective resolution of the second symmetric
power Sy (A)of A, m is the multiplication map of the algebra structure
of A, which is lifted to maps my and my of complexes. Because F =

R @ E, we have decompositions

Sq(F)
F& G

F® So(E) and
GH ERG.

1]

S0 we can decompose my and my as follows

my = Id;, ® M where M:So(E}) — T and

mg =Id,, ® L where L: ERG — G
By composition we get a map EQE — So(E) —F that we also
denote by M.
In order to express the associativity of the multiplication of A, we

consider the following commutative diagram:



Diagram (1.4 ):

0 — A2 122, AZ(E)9F —— AZ(E)Y® A — 0

[LL] l [M,Mjl 0 l
]
0 b s ey P ————rid A —4P
Here [M,M] is the map MO1®MNA®1), so
[(MM](ejAeg®f) = Mley@Miey@f)) - Mleg® Miey® f))
The map [ L,L] is defined similarly.
The commutativity of the left hand square follows from the
commutativity of diagram (1.3), whereas the commutativity of the right
hand square expresses the associativity and commutativity of the algebra
A. It follows that there exists a homotopy
H: AY(E)®F —— G
le., we have PH= [M\M] and HUU®®)=[L,L].

Proposition / Definition (1.5):

Let A, =seAkmer e soAf lE®c

d, d
and 8=(d1d2) : Ay * Ax-1
34
with dy = dy®1 - (1IeM)(A®1)
d2= 1P

dg= (IeH) (A (A®1)
dy= -dg@1 + InL)(Ax1).

One has: 40=0, i.e. A= (A.,d) is a complex.

prook : This is a straightforward calculation, and is an expression of
the various commutations of maps. We only indicate what is involved:
For d” + dgd3 = 0 , use ®H = [M,M]

For dgdy + d4%= 0 , use HU®®)= [LL]

For dydy + d2d4= 0, use M(1®®) = ®L

For dady + d4d3= 0, one has to use the commutativity of the following

(s



diagram:

A®1 1 ‘
ANESF =25 A2ZEeEeF —2LEe A2B)9F 2 ERG
A1 f

Ll

1 ®H11 H i
2 2

N (E)QE®QF ——————— A“(E)®F » G

This commutativity can be checked by composing with the injective

map ®. Then it comes down to the relations ®#H=[M,M] and

®PL=M1® D), together with the equality of maps /\3 (E)YRF —F:
(MM]U®m A ®1) = my ([M\M]el)(s®1) (Ax1),

which is checked by direct computation. ®

Lemma (1.6) :
Let B = @By be a Z-graded abelian group with map § of degree -1,
not necessarily with 8§ = 0.

Consider the "mapping cone" € =(C.,d) where

- . 4§ Id
Ck—Bk ®Bk“] andd-(_gs _8).

Then d? = 0, and € is an exact complex.
prook : A simple calculation shows that indeed d® = 0, and a

homotopy between the zero map and the identity map of € is

given by (0 &

b 0):Ck —Cp )

Proposition (1.7 ) :
The complex
"y 'Y a 'Y a 'y a 'y -—
A: 0 7Ar+l 'AI" SR vAi 1A0—5®F _"O
is a S - projective resolution of A.

pr00f : We apply lemma (1.6) with By = S® AK(F)® G and 5 =

d

dg ®1 - (1QL)(A® 1) and get an exact mapping cone complex C.
There is an injective map of complexes € &— A, given in degree
k by 1®®)DId:

sapkEBacasa AR T BIoe ——seAREIRF @se Nk EIG
The cokernel of this map can be identified with the complex K(A)

of {1.1). Hence we have a short exact sequence of complexes



0 —C — A —K(A) —0
Because € is exact by (1.6) and K(A) is a resolution of A by (1.1)
it follows from the long exact homology sequence that A is a

S -projective resolution of A. b

§2. A Smaller Resolution.

Although the complex A has the “right" length, it is usually not
minimal. In [E-R-S] it is described how to obtain from K(A) a smaller
complex. We will apply their ideas to prune our complex A in a

similar way.

Definition / Notation (2.1) : ( see also [B-E], [E-R-S])
Let m : F= RODE — E the cartesian projection and define maps
in= (Akn@na: A (p — 3 AKBIBF
as the composition of the diagonal map and the induced projection.
The commutative diagram with exact rows
0 et AREEY ——p AR oy AR ) s
=4 in | Al
0 ———0/\k(E) — Ak(E)®F — /\k(E)®E —0
shows that Coker(in)~ Coker(A). We denote this common cokernel
by LK :=1% (B):= cokerta: AK'lB) — A (B)BE).
Lk is a projective R -module of rank k (:;]l )
Consider the inclusion F=R®BE <93 S and the induced map SOF — §
The Koszul complex P :=(P.,5) on this map with terms P = S®/\k(F)

and the usual differential, is exact.

Proposition (2.2 ) : The diagram

5
Pryy — P,

il il
A —— A

where



j= 08im@0 :s®A B — seAKEIRE 0 saAk liEIoc
is anti commutative.
Hence there is an induced ditterential :Lk ——-—-—-bLk_] (k22)
where £, = Coker(j)= s®LK @s® AKE)®G.
proof: The anti -commutativity of the diagram

so AR (R —2 s AK(R)

1Qin l 1Qin l

k dy k-1
s® AK(E)OF —— s AK Y EIQF

can be proved as in [E-R—-S7], lemma(3.1).

To prove the statement of the propostion one has to show that
the compostion
% . d' 3
so Ak 810, so aAkmer —3 se Ak ZB)0c
is the zero map.
A direct computation shows that the composition of this map with
the injective map 1Q® is equal to:
1R ®)d3(IRIN)(s@eyjAegA ... Aey ) = Zi<j<k( Pk s®lejA\e;\ep )@y
where y = - M(ei®M(ej®ek))+ M(eié_oM(ek@ej)) + cyclic, which is zero

due to the symmetry of M. &

Theozem (2.3) :
The complex L =(£.,d)

T QU S T R I N L Y R B ey

with 3: £;=S®S,(E)®S®G — £,=S given by

ds@e@ey ®t@g) =slejeg - Mle,@ey)+tdlg)
and 3: £ —— 4y | (k22) as in (2.2), is an S -projective resolution
of A. Furthermore, if the ring R is local with maximal ideal m, then
the resolution is minimal (after localization at (m,E) C S) if ®(G)CmF
LERG)C mG, M(E®E)CmF and HIAZ(E)®E)CmG.
proof: As in ([E-R-S], theorem 3.2. X

rtl

Remark that the rank of Lk is equal to k( kgt (r+1)(kr_1) = k(r+2)

k+1 -

-8



§3. Genetic Projections.

In (J-S] the following situation was studied:

X
le
z -——l——i Y ¢ Z

Here Y=Spec(B)is a hypersurface in a smooth ambient space Z=Spec(R).
If o :X— Y is a generically 1-1 map from a Cohen-Macaulay
space X=Spec(A) to Y, then the conductor 1 = Homp(A,B) defines a
subspace X = Spec(C); C=B/I of Y. From the inclusion i:X —Y one
can reconstruct A as a B-module via A=Hompg(I,B). The ring structure
on A is translated into the fact that the ideal I satisfies the ring
condition (R.C.)

Ring Condition (3.1):
Homg(1, 1) —— Homg(I, B)

Conversely, any ideal I ¢ B that satifies this ring condition gives rize
to an algebra structure on the module Homg(I, B), which has as an
R- module a projective resolution as in (1.2). The ring condition can
also be interpreted saying that the hypersurface Y has to be singular
along X. For example, if the local equation f of Y is in the 11% , (where
I is the ideal of X in R), then £ C3Y satisfies (R.C.). This particular
case will be studied in some more detail in § 4.

Below we will describe how, in this situation of a "generic projection"
X —3YC Z, the algebra structure on A is determined by the map ®.
So we start with diagram (1.2). The ideal of the image is constructed
as follows: the map ® induces a map /\H](d)):/\rﬂ (G) ——b/\rﬂ (F)
and by transposition an injective map i:4“— R, where
L= /\rH(G)@/\rH(F *) is an invertible module. We define B:=R/%.
Now A is a B - module. This is Cramers rule, and an intrinsic way
of saying this is by looking at the map A (@): AT (G) — AN (F),
which by transposition and the natural isomorphism /\r(F*) R

/\”](F *)®F gives rize to amap ¥ : F® £ —G. One has ® ¥ =(1d®1i)



so " is a homotopy expressing the fact that multiplication with
elements of £ is zero on A. From now on we make the following

assumption:

Assumption (3.2):
The canonical map
Homp(A.B) <229 B; (a:A — B) —ba(1)
is injective. _
So Hompg(A,B) is via can an ideal I in B {and in A) and is called the
conductor of the ring map B—A. The map can sits in a diagram -

with exact rows and columns.

Diageam(3.3) :

0o 0
|
! !
0— E'RL —E*QL — 0
| -
v ') : vt !
0 =+ F'®L —G'®4L —— Hompg(A,B) — 0
ip®1 La ican
0 — L —3 R —— B — 0
l ! !
0 — ¢ —b £ i B
! !
0 0

The second row is a presentation of Homg(A,B) and can be obtained
from (1.2) essentially by dualization. The third row is the definition
of B. The map p:F*P —R is induced by the inclusion R “9F, and the
map A :G* ®L — R is induced by the composition:

R C— F—» gL
by transposition. The columns of the diagram are obtained by the snake
lemma.

The decomposition F=RBE decomposes the map ®:G — F into two

maps:



x:G ——R

p:G —— E
The diagonal map o' £ —G*® L is induced by « by transposition
(and tensoring with £ ).
The module A can also be obtained back as A —r-'\C—OHomB(HomB(A,B) ,B)
and under this isomorphism the element 1 corresponds to the map can.
The ring condition (R.C.) Homp/I,1) ;i+HomB (I,B) now means that
every clement a ¢ A, corresponding to (a :Homg(A,B) —B; ¢ —¢(a))
¢ Homg(Hompg(A,B),B) and represented by (ag,a,) can be lifted to
(bF,bG), representing b« Homg(Homp(A,B),Homg(A,B)), making the

following diagram commutative:

Diagram (3.5):
0 — F'®L — G*®4L —— Homp(A,B) — 0
b /7 b / A ! A
F/ 2 la b { la
04 L —/-» B ——0

A ’/' A

0 —F ®L———’ G®L——momB(AB)—+o

By transposition by and b, induce maps M(a):F —F and L(a):G —3G,
representing the multiplication by a on A. The maps ap and a, are

determined by a as follows:

Proposition (3.6):

1) The transposition aF*e F is a lift of a € A.

* ~ o) *
2) The transposition aé cGR AL is equal to ‘i’(a; ), where ¥ :F — G®L
is the map induced by V.

The proof is left to the reader.

So in short, the maps L(a) and M(a) describing multiplication by ac A

are determined by the following steps:



1) Lift a to a;e F and get aF:F*QOL — L
2) Compute aG* as ‘?(a;)eG@)L* and get aG:G*®L — R
3) Lift the map a, over the map A:G*RL —R to get a map
bG:G*(XJL —— G*®4 and by transpostition L(a):G — G
This is the essential step, and the condition to be able to do this
is of course again (R.C.)
4) Lift the compostion b, (@*®1) over (d*®1) to get by, F*'RL —F*® L
and by transposition M(a):F — F. As the map can is injective, this

is possible for any choice of b, in step 3).

§4. A Patticular Case.

A particular case in which the ring condition (3.1)is satisfied arizes
as follows. Suppose we are given the R-resolution of X of the form:

x
0—»E* - 4,(}* 5 + R »C — 0

where we assume (for reasons of simplicity) that E and G are free
R-modules. We choose bases {fy} and (gk } (k=0,...,r)for F =R®BE
resp. G and assume that fy =1¢R. The map ¢: G—E has as matrix
Pijr i.e. (p(gj ) = ‘pijfj- Here and in the sequel we use the Einstein
summation convention: indices occuring twice are summed over.
The module £ is trivial and the component A :=A(gi*) can be obtained
as the i-th minor of Py Let IR be the R ideal generated by the A;.
The particular case we want to discuss in some more detail is the
following:
Suppose we are given an element

fe IRZ
We will assume that f is a non zero-divisor in R.
Such an f can always be written as: l

f= hiin Ai

where hij is a symmetric matrix of elements of R.



(If one does not want to assume E and G free, than the matrix (hij)

should be considered as an element h of SZ(G*) ®L.). We now take
(Xi = hlj Aj

and let ®: F —G be the map defined by the following matrix:

(Xo....(x

‘I’=(°ij)= (“.’10 ""‘f’lrr/
PO . ... -

So f = deti®), which is a generator for the ideal of a space Y.
We will determine the maps L, M and H of §1 expressing the ring
structure of A = Cok(¢ ). To do this we need some elementary relations

between minors of matrices.

Deginition (4.1) :

Let & = ((bij) be a square matrix of size r +1. Let I = (i, ..., ip)
and J = (jl, i i jp) be strictly increasing qequences of numbers
smaller than r. Then we define ‘PIJ = (-1) det(d’)”

where k = iy + ... + .p R jp. and ¢ L) is obtained from
the matrix ® by deleting columns iy, ..., ip and rows j;, ..., jp.
The ‘P’u for non-strictly increasing sequences of numbers are
defined by making ‘}’u anti-symmetric in both I and J.

Lemma (4.2):

One has the following identities:

1L) @;;%) = det(®); 1R) Wy ;= det(®) 5y,
ZL) @5%ik mn= Yindim - km‘gin ZRY Y ki ®ji= Yk ®mi ™ Y mk®ni
3L) &, ‘{’kanpq ¥k m pqlin 3R) ¥ o.. =Y

qpnmkj = ji qpmksni+
Yem gn® Ip . Vkmnp iq f lan mk‘spi "‘Fpnmk 8q

prook : 1L) is Cramers rule. ZL) is obtained by expanding the determinant
obtained from ® by deleting column k and rows m and n and concating
with the i-th row of ® with respect to its j column. 3L) is obtained

similarly. The "R"-identies are obtained by "reflection” ®

- 13



Because of the special shape of our matrix ® we find it useful to use

the following notation.

Notation (4.3):

We put A; = ¥
Aijk=Yij ok
Aijkmnzi‘uijkOmn

We remark that the A; are in fact the components of the map

A:G* — R. The ideal generated by these A; is I, and the ring

condition (R.C.) is exactly that ‘Fij ¢ I for all i and j.

The identities we will use all follow from (4.2) by putting some
index equal to zero and are summarized in:

Daentities (4.4):

2)
3) Aijk‘pkm = 48
4) qun kj i~ quk:’ni N "“nqk‘t"pi : Apllkﬁqi

Theozem (4.5):
Matrices LP and MP, representing multiplication by fp, i.e.

making a commutative diagram:

0 —G » F » A » 0
P IMP Uy
0 — G » F »A —0
are given by (Lp)ij = hjkAkip
{ MP )ij =1 if =0 and i=p.

= i1/2) tracet LP .Lj) ifi=0, j»>0

=0 otherwise.



proof: Substituting «y = hy A in (4.4) 1) we obtain:
As explained in§ 3 the map (LPY*. ¢* —— G*
is a lift of ‘}’p over A where \l’p(gi*) = ‘Fip, i.e. we have a commutative

diagram:

*
{iPy* ¢
/ a

G*—‘n—»R

So, we can take (Lp)tm = hkmAkip' Hence the statement.

To prove the statement about MP we have to show the commutativity
of the diagram in the statement of the theorem. Because of the special
form of the MP this is equivalent to (qJLp )(gj ) = ocjfp and the

commutativity of the following diagram

G—‘P———'E

LP| wd

G —— R

Here u(f; ) = 1/2trace (LPL)). Indeed (oLP )j = 0 WPy = oyehinBrikp
By (4.4) 2) this is equal to hijm‘Sip which is equal to "‘jsip which
proves the first statement.
We now calculate 2u«pig’-). This is equal to:
‘pijhabAbcihchdap

Using (4.4) 3) this can be rewritten as:

hjdAdaphabAb N Achchdaphaj
Because of the symmetry of hij and the anti-symmetry of

Adap in d and a we see that the above expression is equal

to zhjdAdaphabAb = Z(xa(Lp)a} which proves the assertion. R



2

Theorem (4.6 ) :
The homotopy H: /\Z(E)®F — G has as matrix

1/72(& L

paij ~ <qpij’

where apqij = habAbcphchdaiqj

prook:

We have to prove that HU®®) = [L,L] and ®H = [M,M].

It suffices to prove the first equality because from this it follows that
dHI®® =&[L,L]=(1®9@)[ M,M]. Composing this with ¥ we get the
identity f H(1® ®)= f[ M,M]. As we assume f to be a non-zero divisor

the second equality follows.

We compute:

& pqimPmk = PabBbep hed Adai qmPmk-

Using (4.4) 4) this is equal to:

hap Al:n‘.phcd{Adaqaik * Aidq‘Sa\k t Aaiq‘sdk}

= Chgpy ApcphedAdaq’ ik + 2 hkb2bephed idq (%)
by relabeling the indices in the last term and using the anti-symmetry
of the deltas twice. On the other hand

19 _ . ! ;
(LI = L Loy = (hedBgiq) thip Abep)

which is -1/2 times the last term of ( *).

It follows that H P .Lq] ik because the first term of (%)

pqim®mk = |L
is symmetric in p and q. , ®

Rematk (4.7): The maps LM and H can be described intrinsically in
terms of ® and h¢ S, GHRL. However, to prove the commutativities
expressed by Theorems (4.5) and (4.6) this basis free approach seems

to be of no help.



Cozollam (4.8): If (R,m) is a local ring, the entries of @jj are in m
and f ¢ IR as above, then the complex L. of theorem (2.3)is a minimal
resolution of A= Cok(®)as S- module (after Alocahzmg at (m,E)).
proof : This follows from (2.3) and the explicit formulas for L. M
and H given in (4.5) and (4.6). %
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