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Abstract

The Multiple Objective Median Problem involves locating a new
facility so that a vector of performance criteria is optimized over a
given set of existing facilities. A variation of this problem is obtained
if the existing facilities are situated on two sides of a linear barrier.
Such barriers like rivers, highways, borders, or mountain ranges are
frequently encountered in practice. In this paper, theory of the Mul-
tiple Objective Median Problem with line barriers is developed. As
this problem is nonconvex but specially-structured, a reduction to a
series of convex optimization problems is proposed. The general res-
ults lead to a polynomial algorithm for finding the set of efficient
solutions. The algorithm is proposed for bi-criteria problems with
different measures of distance.

1 Introduction

Planar location problems have been intensively studied over the last two
decades due to their increasing importance in modern life. Growing popu-
lation and increased economic demand gave rise to studies on choosing an
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optimal site for such facilities as shopping centers, schools, fire stations, etc.
Development of personal computers required higher integration of electronic
circuits which led to a similar problem of optimal locating of electronic ele-
ments. Those problems, formulated with single performance criterion as well
as with multiple criteria have been studied by many authors and efficient
algorithms have been proposed. For an overview see e.g. [6, 7, 18, 26].

However, as modern life encounters an ever growing concentration in
many areas and aspects, more recent location models often deal with obstacles
or barriers. The literature on restricted location problems is very limited and
focused on some particular types of distance metrics and barrier shapes, all
considered for the single criterion case. See e.g. [19] for an introduction to
location problems with barriers. One circle as a barrier and the Euclidean dis-
tance were studied in [15] while closed polygons as barriers and the /,-metric
were examined in [1, 4]. Line barriers with passages have been treated in the
case of the Manhattan metric /; [17, 2] for which arbitrarily shaped barriers
can be handled, and for arbitrary metrics derived from norms in [16].

The authors believe that this paper is the first to study multiple objective
restricted location problems.

The problem we consider is based on the Multiple Objective Median Prob-
lem, also referred to as the Multiple Objective Weber Problem or the Multiple
Objective Minisum Problem. It can be formulated as

min [£1(X)...., (X)) (Q22). 1)

XeF

The () individual criteria measure the performance of a locational decision
in the feasible region F' C IR? with respect to a finite set of existing facilities
Ex = {Ex,Exy, ..., Exy} represented by points in IR?. Each objective is
given as a Median function, i.e. the weighted sum of distances from the new
facility to the existing facilities in £x. Thus

M
fo(X) = Z Wemdy(X, Exp,), g=1,...,Q, (2)
m=1

with positive weigths wym, ¢ = 1,...,Q, m = 1,..., M. As each decision
maker may consider different ways of transportation, distances may be meas-
ured differently in each objective. Thus for each criterion ¢ € {1,...,Q}, d,
is an arbitrary distance function derived from a norm.

Solving (1) is understood as generating its efficient (Pareto) solutions. A
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feasible point Xz € F' is said to be an efficient solution of (1) if there is no
other point X € F such that f(X) < f(Xg), L.e.

Vged{l,....Q} fo(X) < f4(X)
and dge{l,....,Q} st [, (X)< fi(XE).
Let Xg denote the set of efficient solutions of (1) and let Vg denote

the image of Xz in the objective space, that is Vg = f(Xg), where f =
[f1,---, fol- Vg is referred to as the set of nondominated solutions of (1).

(3)

When each objective function of (2) is minimized individually over F', the
set of optimal solutions, denoted by A}, is found:

A =A{argmin fo(X)},  ¢=1...,Q.

We also define the utopia point U = [Uy, ..., Ug|, where U, = minxer f,(X),
ie. Uy = fo(X), a=1,...,Q.

With respect to the classification scheme for location problems proposed
in [7, 11] this problem has the classification 1/P/e /d/(Q)—Y. This is the clas-
sification of a single-facility location problem (1 in the first position) in the
plane (P in the second position) with no special assumptions and constraints
(e in the third position), d as a vector of distance functions d, ...,dg (d in
the fourth position) and @ criteria which can all be given as Median functions
(Q — X in the fifth position). We will use this classification scheme in the
following to achieve a simple description of the different problems mentioned.

In almost all models known in the literature, the feasible region F' covers
the complete IR? which is a simplification of many real-life situations. Con-
sider various applications with areas where positioning of a new facility is not
allowed (see e.g. [5, 9, 10]) or with regions where trespassing is prohibited.
Such barriers may be for example determined by buildings, lakes, or moun-
tain ranges. The idealized case that the barriers are linear and have only
a finite set of passages is a special case frequently encountered in practice.
Line barriers with passages may be rivers, border lines, highways, mountain
ranges or, on a smaller scale, conveyer belts in an industrial plant. Here
trespassing is only allowed through a finite set of passages. In this paper, the
Multiple Objective Median Problem is extended by the concept of barriers,
which significantly increases the complexity of the problem but makes the
model a more realistic representation for many applications.
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For a given finite set of closed barrier sets
B={By,Bs,...,B} C IR

let F := IR*\ int(Ul_, B;) be the feasible region where new facilities can be
located. Furthermore, let ds(X,Y) be the length of a shortest path (with
respect to d) from X to Y not crossing a barrier.

Thus the Multiple Objective Median Problem can now be restated as the
Multiple Objective Median Problem with Barriers 1/P/B/dg/Q — >_:

min [fi1(X),..., fo(X)]

4
st. XeF ()

with the individual objective functions given by

M
fo(X) = Z Wom dq.8(X, Exy,), g=1,...,Q, (5)
m=1
where .
qug(X, Y):= inf qu(Ti,TiH), X,Y eF, (6)
Ty, ThEF '

with T} = X, T, = Y and r intermediate points 7; € F (i = 1,...,7) such
that there exists a feasible path (not crossing B) from 7; to T;;; with length
dq (Tw Ti+1)'

The set of efficient solutions of (4) is denoted by Xr s and the set of
nondominated solutions of (4) is denoted by Vg 5.

Note that 1/P/B/dg/Q — Y has a solution only if all existing facilities
are located in connected components of F'.

Observe that as a result of this change of the distance function, the object-
ive functions of (4) may not be convex since in general the distance measures
d, s are not positively homogeneous (¢ € {1,...,Q}). Consequently, the mul-
tiple objective problem may not have features possessed by convex multiple
objective programs. In general, the efficient set Xz g may not be connected,
and the set Vg 5 + IR? may be neither convex (that is, one may encounter
nondominated solutions in a duality gap) nor the set Vg 5 may be connected.
Here connectedness of the set is understood as defined in [3]. When @ = 2,
we may apply to (4) the following general result for bicriteria problems [22].

4



Theorem 1 Let () = 2. If Xgp ts connected, then Vg g is connected.

As (4) is a nonconvex multiple objective program, it may feature globally
as well as locally efficient solutions that can be found by means of some suit-
able scalarizations specially developed to handle nonconvexity. All the glob-
ally efficient solutions can be found by means of the lexicographic weighted
Tchebycheff approach (see [20]) while the locally efficient solutions can be
generated using the augmented Lagrangian approach (see [21]). In order to
avoid treating (4) in this general methodological framework and to obtain
specific and more effective approaches, we focus on the special case of line
barriers with passages but still consider a large class of metrics including the
class of [, metrics, which transforms (4) to problem 1/P/BL/(l,)s,/Q — > .
In Section 2, we show that 1/P/B/dg, /Q—Y has a special structure that
allows to develop conceptual results and specific approches to finding the effi-
cient solutions. In Section 3, an algorithm is proposed for the bi-criteria case,
i.e. for the problem 1/P/B./dg,/2 — Y. Section 4 includes an illustrative
example and the paper is concluded in Section 5.

2 General Results

The following mathematical model will be used for the Multiple Objective
Median Problem with line barriers 1/P/B/dg, /Q—_:

Let L := {(z,y) € R* | y = ax + b} be a linear barrier and let {P, €
L|neN:={1,...,N}} be a set of points on L, i.e. the set of passages
through L. Then

BL ZZL\{Pl,...,PN}

is called a line barrier with passages or shortly line barrier. (The case that
the barrier is a vertical line, which is not included in this description, can be
easily transformed to this definition.)

The feasible region F' for new locations is defined as the union of the
two closed half-planes F! and F? on both sides of B;,. Here F' U F? = IR?
because the line y = ax + b belongs to both half-planes F*! and F?. As all
results can be easily transferred to the case that the line barrier has a finite
width, for simplification, this model will be used in the following although
a new location placed directly on the barrier is not allowed in reality. In



the case that By is of a finite width, only the boundary of B (except the
passages) belongs to F'.

Furthermore, a finite number of existing facilities Ex¢, € F', m € M* :=
{1,..., M*} are given in each half-plane F* i = 1,2, represented by points
in IR?. A vector of positive weights w} . :z.wq(Exﬁn) €eR,, q=1,...,0Q,
is associated with each existing facility Ex!, representing the demand of
Ez! in the individual criterion. As in the more general problem formulation
(4), different distance functions derived from norms are permitted for the
individual criteria.

The distance measure in 1/P/B;/dg, /Q — > with respect to the given
distance functions d, ..., dg is strongly influenced by B;. Given a distance
function d, (for criterion ¢) and the barrier model as above, the distance
function d, 5, results from (6), where the infimum can be replaced by the
minimum.

r—1
dop,(X,Y) = min Y dy(T;, Ti11), X,Y € F, (7)
relN i=1
Ti,...T,€F
with intermediate points 7;, i = 1,...,r defined as in case of (6). This leads

to the following description of d, 5, (see [16]):

Lemma 1 Let d, be a metric derived from a norm and i,j € {1,2}, i # j.
Then for every q € {1,...,Q}

dys, (X, V) = | WY yoxYer
GBAR T T dy (X, Pogxy)) +dg(Pagxy),Y) if X€F,Y¢€F,

where n(q, X,Y) denotes the index of a passage located on a shortest path
from X toY with respect to criterion q.

Note that the triangle inequality holds for d, 5, even though d,p, is
not positively homogenous. Consequently, in general d, 5, is not a distance
function derived from a norm.

As shown in [16] for the corresponding single objective problem, Lemma
1 can be used to rewrite the vector objective function evaluated at a point
X € F* with respect to each criterion ¢ € {1,...,Q}:



Lemma 2 Let d = [dy,...,dg| be a vector of metrics derived from norms,
X € F' and i,j € {1,2}, i # j. Then for each existing facility Ex? there

exist passages Pn(q X,Bzi) such that
fi(X) leX(X) 9{,)(
f = : + : ; (8)
fo(X) fo.x(X) 90,x
where
) ME ) Mi ‘
ox(Y) = Z_:l Wymda(Y, B7,) + Z_:l Woma(Ys P x psi))s Y € F,(9)
. M] . .
gg,X = Z_l wf],mdq(Pn(q,X,Ez{'n)a E'T‘Zn) (10)
forqg=1,...,Q.

Lemma 2 reveals that the Multiple Objective Median Problem with line
barriers 1/P/Br/dg, /Q — 3 is closely related to the unrestricted Median
Problem. Observe also that the right hand side of (8) takes on different
values depending on what passage points have been used to evaluate the
distance from a point X to the existing facilities located in the opposite half-
plane while passing through those passage points. Due to the definition of
n(g, X, Exi,), we have that fi(Y)+gly < fi o (Y)+g)  forall X,V € F"
and ¢ =1,...,Q. Corollary 1 summarizes the discussion above.

Corollary 1

(i) [ff,X,...,fZé,X] is the objective function of the unrestricted Median
Problem 1/P/ e /d/Q — Y in the half-plane F' with existing facilities
Exé,...,Ex?VI,-,Pl,...,PN.

(11) For all points X,Y € F*

91,x

AY) fiy(Y) gy fix(¥)
: + : +
fo(Y) Foy(Y) oy fox () 7 x

)

(11)

[IA



Consequently, the Multiple Objective Median Problem with Line Barriers
can be decomposed into unrestricted Multiple Objective Median Problems
with respect to the facilities in one half-plane and the passage points con-
necting the two half-planes. Note that the second term in the right-hand-side
of (8) denoted by [g] x, ...,y x] is only implicitly dependent on the loca-
tion of a new facility and does not directly influence the minimization of the

objective [f1, ..., fol-

The relationship between the unrestricted problems and the restricted
problem suggests that the properties of the former could be helpful in solving
the latter. One of the most important properties of the Multiple Objective
Median Problem is the inclusion of its efficient set in the convex hull of the
existing facilities. In order to be able to apply this fact to the restricted
problem we make the following assumption.

Assumption 1 Let d = [dy,...,dg| denote a vector of metrics derived from
norms such that at least one of the following three statements holds for the
unrestricted Multiple Objective Median Problem 1/P/ e [d/Q — Y :

(a)
Xg C conv{Ex, | m € M}, (12)

(b)
Xy C rectparana{ETm | m € M}, (13)

where rectparane{ Exm | m € M} is the smallest rectangle containing
all {Ex,, | m € M} whose sides are parallel to the coordinate azes,
and By, is a horizontal line,

(c)
XE g red’)diagonal{E‘Svm | m e M}7 (14)

where rectgiagonal{ ETm | m € M} is the smallest rectangle containing
all {Ex,, | m € M} whose sides are diagonal to the coordinate azes,
and By, is a line diagonal to the coordinate axes.

We emphasize that Assumption 1 is not very constraining since part (a) does
hold e.g. for [, distance functions where p € (1, 00) [14, 25]. Part (b) holds
for the [; distance function and part (c) holds for the [, distance function.
All of the following results hold as long as Assumption 1 is satisfied.



Under Assumption 1(a), the efficient set of 1/P/Br/dg, /Q — > is con-
tained in the union of the convex hulls of all the existing facilities and the
passage points on both half-planes. Assumptions 1(b) and (c) have analogous
implications.

Theorem 2 Consider 1/P/BL/ds, /Q — Y and the related problem 1/P/ e
/d/Q — Y as indicated in Lemma 2.

(a) If the vector of distance functions d satisfies Assumption 1a, then

Xgp, C conv{Ez, ,P,|meM' neN}
U conv{Ez?,P, | m e M? neN}.

(b) If the vector of distance functions d satisfies Assumption 1b, then

Xpp, C rectpamndl BT, Pn|me M, neN}
U rectparanel{ Ex2, P, | m € M? n e N}.

(c¢) If the vector of distance functions d satisfies Assumption 1c, then

XE,BL - rectdiagonal{E:cin, Pn | m & Ml, n e N}
U rectdiagonal { E12,, P, | m € M? n e N'}.

Proof: Since the proof for parts (b) and (c) is similar to the proof of part
(a), we only give the proof for this part of the theorem:

Without loss of generality let X* € F! be an efficient solution of
1/P/Br/ds,/Q—3 such that X* & conv{Ex,,, P, | m € M' | n € N}.
From Lemma 2 we know that the objective function evaluated at the point
X™ can be written as

FOX) =[x (X, fou- (X)) + (91 xes -, 9G]

where [f] y.,..., f4 x-] is the objective function of the problem of type
1/P/ e /d/Q — ¥ with existing facilities {Ex., P, | m € M', n € N'}.
Consequently, Assumption 1 implies that X* & X5 of this problem. There-
fore there must exist a point X° € Xp, X° # X*, of 1/P/e /d/Q — ¥ such
that

[ (X5 fou (X)) < [fl e (X7), - fux (X)) (15)
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Adding [g7 -, .-, 9% x| to both sides of (15) and using Corollary 1(ii), we
obtain that

[1(X®), o fo(XO)] < [A(XT), .., fo(XT)],

which contradicts the assumption that X* € Xg g, .

|

As aresult of Lemma 2 and Theorem 2, problem (4) with line barriers can
be decomposed into a finite series of subproblems (P{) (i € {1,2}, k € IN)
of the following form:

min [fi1(X),..., fo(X)]
s.t. X € F},

where F} is a part of the half-plane F* (3,7 € {1,2}, ¢ # j) such that the
passage points Pn(q, X,Fai) located on a shortest path from a point X € F}
to a facility Fa? € F’ are the same for all points X € F} (¢ = 1,...,Q,
m = 1,...,M’). Observe that the objective functions of problem (16) are
identical with those of problem (4), however the feasible set F} may not be
convex.

Defining n(q, k, Ex?)) to be n(q, X, Ex} ) where X is an arbitrary point
in F}, we observe that there exist passages Pn(q’hEm{n) depending only on F}
such that for all X € F}

(16)

dq,BL (XJ Exgn) = de(X7 Pn(q,k,EzZn)) + dQ(Pn(q,k,EzZ-n)a Exgn)a
g=1,....,Q, m=1,..., M.

Consequently, the term [gik, . .,gé’k] = [9{7?(’ . .,ggp(] (with an arbitrary
point X € F}) is constant for all X € F]. Furthermore we have that
Ui Fi = F*. Note that the number of regions F} is finite because there exists
only a finite number of possible combinations of passage points Pn(q,-, Fai,) 88
we have that n(q,e, Ex?) € {1,...,N} (¢=1,...,Q, m=1,..., M7).

Using this partitioning of the feasible region F', the vector objective func-
tion of (16) is given by

X s f@O] = [fLa(X) + gl for(X) + 904, X €F, (17)
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where forg=1,...,0Q

M? Mi
;,k(X) = Z w;,md(I(X’ E.’Ein) + Z w;,mdq(X’ Pn(q,k,Ezzn))’ X € Flza (18)
m=1 m=1
. MJ . .
gcjlyk = Z w],mdq(Pn(q,k,EzZn)’ E‘rgn) (19)
m=1

Solving problem (16) is still a complex task since finding the feasible sets
F} is computationally expensive. Therefore we relax the constraint X € F}
to X € F* which makes every subproblem (P}) a convex multiple objective
problem for which connectedness of X%, is a well known result from the
literature [23].

Let X, and YV, denote the set of efficient solutions and nondominated
solutions of the relaxed problem (P}), respectively.

Individual minimization of each objective function f; ,(X) over the feas-
ible set F" produces the set of optimal solutions:

quc = {arg)r(réillgi f;’k(X)}, g=1,...,Q,

and the optimal solution value:

i — i J —
Yo = Iin forX)+ g5 ¢=1,...,Q.

Having the efficient set of each convex subproblem available we can specify
their relationship with the efficient set of the nonconvex problem (4) with line
barriers. Similarly, the nondominated set of this problem can be described
by means of the nondominated set of the convex problems.

Theorem 3
(i) .
XE,BL g U Xé‘,k

i=1,2;
k

(11) .
Vg 5, = min U yfg,k.
1=1,2;
k
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Proof:

(i) Let X* € F" (i,j € {1,2}, i« # j) be an efficient solution of
1/P/Br/dg, /Q — >. From Lemma 2 and (17) we have that there
exists a k € IN such that

(X7, ..., fo(XT)] = [fli,k(X*) +g{,k’ ce afé),k(X*) + gé,k]-

Assume that X* & A7 ,. Then there is a point X° € X, X° # X*,
such that

[FLe(X) o fouXO] < [fLe(X7), s fou(XT)].

Adding [g{"k, ey gZM] to both sides of this inequality and using Corol-
lary 1(ii), we therefore obtain

[fl(Xo)’ MR fQ(XO)] < [fl(X*)’ ) fQ(X*)]’
contradicting that X* € X3, .
(ii) Part (ii) results from part (i) and the definition of efficient solutions.

|

Theorem 3 provides the new information about the efficient sets and non-
dominated sets of problem (4) with line barriers and of the subproblems (P}),
which will be used in the next section in the development of an algorithm
for finding these sets in the bicriteria case.
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3 Methodology for the case of two criteria

In this section we study the bi-objective Median Problem with a line barrier
which we formulate as

min [f,(X), f2(X)], (20)

XeF

where f; and f, are defined by (2). Furthermore the distance functions of
both criteria are identical throughout this section, i.e. d; = ds.

Using Theorem 3, a very simple but not efficient algorithm to find the
efficient set Xy 5, can be proposed. The algorithm first checks for all existing
facilities in either half-plane F* and for all possible passages to the opposite
half-plane F7, and then determines the set of efficient solutions of the cor-
responding relaxed problems (Pf). From the union of all the efficient sets
Xp, 1, of the subproblems (Fy), the efficient solutions of the original problem,
referred to as globally efficient solutions, have to be determined. This can be
done by constructing the lower envelope of all the nondominated solutions of
the subproblems in the objective space.

However, a polynomial algorithm for 1/P/By,/dg, /2—3 can be proposed
if the idea of reducing the nonconvex original problem 1/P/BL/dg,/2—3
to a finite set of the relaxed problems (P}) is used more efficiently. Due to
the definition of the relaxed problems (P}), their number depends upon the
number of the passages and existing facilities and in total there are O(N?M)
subproblems, where M := M*+ M?. We will show that considering a smaller
number of the subproblems is sufficient to find the globally efficient set Xz 5, .
This smaller number will be additionally reduced by applying a reduction
procedure eliminating subproblems whose nondominated sets are dominated
by nondominated sets of other subproblems. We now discuss the details of
this approach.

Without loss of generality we assume that the passages are in consecutive
order, i.e. there is no passage between P, and P,;; for 1 < n < N — 1.
Let DJ(m) denote the difference of distances between an existing facility
Ez’ and every two adjacent passages P, and P,,; defined as follows: for
ge{1,2},4,je{1,2},i#j,andn=1,...,N—1:

Di(m) :=d(Ed? ,P,) — d(Exl,, Poy1), m € M.

Since d is a metric derived from a norm, a shortest path SP from an
existing facility Fz/ € F7 to a point X € F" has to pass through one of the
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passages Py, ..., Py depending on the following condition:

P e SP & Di(m)<d(Py,X)—d(P,X)

P,cSP & (d(P,,X)—d(P,_1,X) < D’ ,(m))
A (Di(m) < d(Pny1, X) — d(Py, X)), n=2,...,N—1,

Py €SP & d(Py,X)—d(Py_1,X) < D%_,(m).

This analysis leads to the following observations. If a shortest path from
a point X € F' to an existing facility ExzJ, € F7 passes through the passage
point P,, then for the shortest path from any existing facility Ex, to X
with D] ;(m) > D] _,(m) a passage P5 with 7 < n cannot be optimal.
Analogously, the shortest path from any existing facility Ex’, to X with
Di(m) < DJ(m) through a passage P, with 7 > n cannot be optimal.
We conclude that not all of the O(N?M) possible combinations of existing
facilities and passage points have to be considered because a majority of
these combinations will not lead to efficient solutions. In fact, the number

of subproblems (P}) can be reduced to O((M;ffl)%. This is polynomial
in the number of existing facilities M if the number N of passage points is
constant, which is a realistic assumption.

The selection procedure suggested here is given in the appendix; for a
more detailed discussion about the selection of the individual subproblems

(Pf) we refer to [16].

After the selection of an appropriate set of subproblems (P}) is completed,
the set of globally efficient solutions has to be determined from the sets X
of efficient solutions of the selected subproblems.

Let List(P}) be a list of all currently selected subproblems. If M is the
overall number of existing facilities, and NV is the total number of passages,
then List(P}) contains up to L := (M;;]_V L 1) selected subproblems. Since only
a small number of these subproblems contribute to the globally nondominated
solutions, a reduction procedure is developed which reduces the number of
subproblems a second time before the globally nondominated solutions are
finally determined as the lower envelope of the remaining sets Vg . We now

turn our attention to the reduction procedure.

Consider a problem (P}) and its efficient and nondominated sets X},
Viy- Since (Pf) is a convex problem, Vj, is a curve spanned between the
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points A} and B} where

A= (ai,kaaé,k) and B, = (bik’ bg,k)

and
ai,k = )I(Tg;l fi(X)
b = o (arg (lex min [/, £(X)]))
bz2,k = )I(Ig}l f2(X)
ik = h (arg (lex min [f2(X)af1(X)]>>
XeF
f,
i A
Qo 177
b, 1------ — i
2k 3 Ckl i 3<
ali,k bli,k fy
Figure 1: The nondominated set Y, of a convex problem (F).

As illustrated in Figure 1, the nondominated curve is contained in the
triangle Ty with vertices A}, B, Ci, where C} = (af ,b%,). Observe that
the examination of the mutual location of the triangles T} will help eliminate
those problems (Pf) whose nondominated sets are dominated by nondomin-

ated sets of other subproblems.
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€Y (b)

(©) (d)

N

N =

Figure 2: Some examples for possible locations of the triangles A%, B}, Ci and
At Bt C! for two different subproblems (P}) and (P?) in the objective space
(1,7 € {1,2}). The bold curves represent the set of globally nondominated
solutions, respectively.

Figure 2 shows four of many possible locations of the nondominated curves
for two arbitrary problems (Pf) and (P}), i,7 € {1,2}. In particular, Figure
2a shows that one of the two problems can be eliminated while Figure 2b
presents an irreducible case. Figure 2c and d show that only subsets of the
two nondominated sets may be in the globally nondominated set.

These observations will be incorporated into the reduction procedure as
follows:

In the first part of the procedure, the Hershberger Algorithm [13], that
finds the lower envelope of a collection of line segments in linear time, is used
to determine the lower envelope of the segments A% B: of all subproblems in
List(P}). Since our goal is to find a superset of the nondominated sets of the
subproblems, we add an auxiliary horizontal line at point B}, and an auxiliary
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vertical line at point A% (this is equivalent to finding (AL BE + IR2)) of each
individual segment A% B to eliminate points coming from other subproblems
but dominated by the points of subproblem (P%).

After the lower envelope is found, all the subproblems contributing to it
are selected and stored in a second list List(Py).

In the second step of the procedure all those subproblems (P}) are added
to the list List(P}) for which at least one point (i.e. the point C}) is not
dominated by the lower envelope.

Summarizing, the following procedure is obtained:

Reduction Procedure:
Let R% := {(z,y) € R* : >0, y > 0}.
Input: List(P}), Segments A Bi.

Step 1 Construct (A} B + IR%) for all subproblems in List(Py).

Step 2 Apply the Hershberger Algorithm to find the lower envelope of these
line segments.

Step 3 Identify those subproblems in List(Pf) whose corresponding segments
At B! contribute to the lower envelope. Let List(P}) be the list of these
subproblems and remove them from List(P}).

Step 4 For every remaining subproblem (P}) € List(P}) check whether Cf is
dominated by the lower envelope. If it is not dominated, add (P}) to
List(P}).

Output: Reduced list of subproblems List(P}).

The time complexity of the reduction procedure O(r) = O(L) is linear
in the number of subproblems L. For many location problems the savings
resulting from the reduction procedure will be substantial, however they
cannot be theoretically guaranteed.

The reduction procedure eliminates only those subproblems (P}) whose
nondominated sets are entirely dominated by the nondominated set of an-
other subproblem (P}) (see Figure 2a). Cases with partial reductions (see
Figure 2c¢, d) are subject to further investigation.
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Theorem 4

yE,BL g U yg,k-

List(P})

Proof: Assume that there exists a subproblem (P!) € List(Pf) such
that Ygﬂ,% is globally nondominated, but Y}i“,/} ZU List(P}) Vi k-

Since Yor g UList(pi) Vi, the corresponding point C} of the triangle
T} of this subproblem is dominated by some point D in the lower envelope
found by the Hershberger Algorithm. Therefore there exists a point Yg,k €

Usiste) Vi Yy 3 # Vi 4o dominating D and thus dominating Yy, which

contradicts the assumption.

Recall that our ultimate goal is to analytically find X% g, , while in gen-
eral we do not know the analytical descriptions of X}, , and YV, for each
individual subproblem. In this situation we find piecewise linear approxim-
ations of yg,k and determine the globally nondominated points, as proposed
in [12], by means of the Hershberger Algorithm [13].

As this algorithm finds a lower envelope of a collection of line segments
in the plane, we again add an auxiliary horizontal line at point Bj and a
vertical line at point A% of every triangle T} to eliminate points coming from
other subproblems but dominated by the points of subproblem (P}). After
the lower envelope is found, these auxiliary lines are eliminated.

The resulting lower envelope of the approximations of yf'E,k will be an
approximation of the globally nondominated solutions Vg g, .

In order to find a piecewise linear approximation of Xﬁ;,k, we repeatedly
solve the single objective Median problem 1/P/ e /d/ Y formulated as

min  A(fiu(X) +gl0) + 1= N(B(X) + 65, (e f{1,2}, i #))
s.t. X CF!
A€ (0,1).

with the weights A of our choice.
In the case that d = [,, p € (1,00), this can be done e.g. by applying
the Weiszfeld Algorithm [24] which determines an approximate solution of
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1/P/ e /l,/> . For an overview of solution procedures for various kinds of
planar Median problems we refer to [6].

The Weiszfeld Algorithm as well as many other algorithms for solving
single and multiple objective location problems have been implemented in
LOLA [8]. In particular, the points A¥ and B can be found by solving the
corresponding single objective Median Problems.

The quality of the approximation depends on the number of repetitions.
The piecewise linear curves found for every subproblem become the input to
the Hershberger Algorithm [13] that produces their lower envelope in time
O(S), where S is the total number of line segments composing the piecewise
linear curves.

The discussion above leads to a polynomial algorithm for solving the bi-
objective Median Problem with a line barrier:

Algorithm for solving 1/P/Br/dg, /2 — 3:

Step 1 Apply the selection procedure (see Appendix) and create a list List(Py)
of selected subproblems (P%).

Step 2 For every subproblem (P}) € List(P}): find the triangle 7}.

Step & Apply the reduction procedure and create a reduced list of subproblems
List(Py).

Step 4 For every subproblem (P}) € List(P}) find a piecewise linear approx-
imation of its nondominated set.

Step 5 Construct the lower envelope of the piecewise linear approximations of
the subproblems (P}) € List(P}).

Output: The lower envelope is an approximation of Vg g, .

If M is the number of existing facilities, N is the number of passages,
L = M;fl_ 1) is the maximum number of subproblems in List(P}) after
the application of the selection procedure, and S is the total number of
line segments composing the piecewise linear approximations, the overall

complexity of the proposed Algorithm is O(s + r + h) where
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O(s) =O(NMlogM + L) is the complextity of the selection procedure,

O(r) = O(L) is the complexity of the reduction procedure
and
O(h) = O(S) is the complexity of the piecewise linear ap-

proximation of the nondominated sets and of
the Hershberger Algorithm.

4 Example

In the following example we consider a location problem with the classific-
ation 1/P/BL/(l1)s,/2 — ¥, where distances are measured according to the
Manhattan metric [;. For the analogous unrestricted Median problem of type
1/P/ e /l;/2 — Y efficient algorithms are given in [11]. These algorithms are
implemented in LOLA, the Library of Location Algorithms [8], which will be
used to find the efficient and nondominated sets of 1/P/B/(l1)5,/2 — .

Let the line barrier
By = {(a,y) € I |y = 5} \ {Pi = (4,5), P, = (9,5)}

divide the plane into the two half-planes F; and F5. Furthermore four existing
facilities are given on both sides of By, with coordinates and weights as listed
in Table 1. Thus M! = M? = {1,2} and M' = M? = 2.

Y F!
Ex}
8 1 o
Ex}
7+ o
6 +
P Py

5
4 1 ) . BL
5 | Ez;
2 F2
1 E_q;%o
0 —t—+ —t— x

0 1 2 3 4 5 6 7 8 9 10 11

Figure 3: The example problem with the classification 1/P/Br/(l1)s,/2—.
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Existing facility Bz, | wi, | ws, | Di(m)
Exl (5,7) 8 | 2 3
Ery|  (10,8) 5 | 6 5
Ex? 6,1) 10 | 1 1
Ex2 (8,4) 7 | 4 3

Table 1: Existing facilities with their weights and the values of D:(m) =

In step 1 of the Algorithm presented above the selection procedure is
applied and List(P}) includes the 6 subproblems () listed in Table 2 which
are further investigated.

weights of
(P}) P, P, weights of existing facilities
Wy | Wo | Wy | We

(PH 0|0 |17|5 | @,(FExL):=w,(Ezl), g€ {1,2}, m e M},
w,(Ez?) :=0, q € {1,2}, m € M?

(PH |10 | 1| 7 | 4| @,(Ex}) :=wy(Exl), q€{1,2}, m e M,
wy(Ex2) =0, q € {1,2}, m € M?

(P 11715 | 0|0 | @,Ex)):=w,(Ez.), g€ {1,2}, m e M,
wy(Ex2) =0, q € {1,2}, m € M?

(P | 0]0|13]8 |w,(Fz.):=0,q€{1,2}, me M,
w,(Ex2) = w,(Ez%), q € {1,2}, m € M?

(P2 | 8|25 |6 |w(Ex):=0,q¢€{1,2}, me M
wy(Ex?) := wq(E:E ), g € {1,2}, m € M?

(P3| 13|8 | 0|0 |w(Exk):=0, qe{1,2}, me M,
wy(Ex?) := wq(E 2), g€ {1,2}, m € M?

Table 2: Weights of the existing facilities £z = {Fz}, Exi, Ex?, Ex3, P, Py}
of the 6 selected subproblems (P}) of type 1/P/ e /l;/2 — %

At the end of step 3, the reduced list List(P}) includes (P3), (P2), (P?).
Due to the choice of the distance function and the fact that the nondominated
sets of the subproblems are piecewise linear curves, step 4 can be omitted.
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For illustrative reasons, we include the sets of efficient solutions (see Table
3) and nondominated solutions (see Figure 4) of the subproblems in List(P})
which were determined using LOLA [8].

sub- efficient solutions of the subproblems X7, ,

problem

(F) | {@y)eR[(z=9) A(B<y<T)}

(P | {@y) e R?*|(5<z<9) A (y=5)}
U,y e R [@=9) A 5<y<T)}

(%) | {@y) eR|(4<z<5) AGB<y<T)}

(73) | {yeR|B<z<9) A(A<y<E)}

(P7) | {@y) e R*|(6 <z <8) A (y=4)}
Uf(z,y) e R?|(z=8) N (4<y<H)}

(7)) | {my eR|(A<z<6)A(4<y<5)}

Table 3: Efficient solutions of the 6 subproblems in List(P},).

Step 5 yields the set of globally nondominated solutions )Vg and the set
of globally efficient solutions X’ of this example problem:

Ve = Vpo Uiy Ui,
Xg = Xé,OUXJ%,OUXJ%,l
= {zy) e R*[((z=9) A (5<y<T))
V(B<z<9) A(d<y<D))
V(6<z<8) A(y=4))}

The set of globally efficient solutions X is graphed in Figure 5.

5 Conclusions

This paper studies the Multiple Objective Median Problem with a line bar-
rier. The primary goal of this pioneering research is the analytical determ-
ination of the efficient set of the problem. The structure of the efficient
set is first examined in order to motivate the design of special algorithms.
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Figure 4: Nondominated solutions of the 6 subproblems in List(P§).

The theoretical analysis shows that the original nonconvex problem can be
decomposed to a series of multiple objective convex subproblems.

A polynomial algorithm for solving bi-criteria median problems with a
line barrier and different distance measures is proposed. An approximation
of the nondominated set of these problems is determined as the lower envel-
ope of the nondominated sets of the subproblems. An illustrative example is
included. More research is needed to efficiently design the reduction proced-
ure eliminating some of the subproblems. Currently, the procedure checks
only for the nondominated sets that are entirely dominated by nondomin-
ated sets of other subproblems. Cases with partial domination should also
be considered.

We would like to emphasize that several approaches in the literature can
find an approximate description of the efficient set of the general convex mul-
tiple objective problem. None of them, however, offers an exact description
neither deals with nonconvex problems. Interestingly, the approach proposed
in this paper finds an approximate description of a nonconvex problem and
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Figure 5: [Efficient solution Xp of the example problem of type
1/P/B./(1)s, /2 - X

an exact description for problems with specific distance functions.

Clearly, other location problems with barriers should be studied in the
multiple objective framework. Complexity of those problems, however, may
heavily affect the ability to analytically approximate their efficient sets. In
this case, one may be interested in obtaining partial information about the
efficient solutions and in designing tools for choosing a most preferred solution
as the optimal one.

Furthermore, not only location problems can lead to nonconvex multiple
objective problems decomposable to a series of convex problems. This class
of nonconvex multiple objective problems should be explored independently
of their applications.

6 Appendix

In this section we briefly sketch the selection procedure that returns a list
of subproblems (Pf) for further consideration in the Algorithm to solve
1/P/B/dg, /2 — . For a more detailed description we refer to [16].

Forn=1,...,N—1and j € {1,2} let 7 : M7 — M/ be a permutation
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of M’ such that o o .
D} (m)(1)) < --- < Dl(m)(M?)).

Furthermore define forn=1,...,N —1

ko = argmax {0,7(m) | Dj(m}(m)) < d(Pos1, X) — d(Py, X) }
meMI

and ky := M. Since two permutations 7/ and 77 need not be the same for

n # 0, let M} := M’ and

Mi = Mi_ \{m_i(m) [ m)_(m) < kna}, n=2,... N

Then
MZ . - N -
F(X) = X wpd(X, B,) + Z( > w;j(m)>d(X,Pn)
m=1 n=1 \ o (m)emd
Wﬁz(m)gkn
ket (X)

Selection Procedure:
For:=1,2 do

Step 1 Let j € {1,2} with j # 2 and
Di(m) = d(P,,Ezl) — d(Pyy1,Ezl);me Mi;n=1,...,N—1.

Step 2 Forn =1 to N — 1 find a permutation 7’ : M* — M" such that
Di(r}(1)) < -+ < Di(ml(M)).

Step 8 Let MJ := Mi.
For k; = 0 to M7 do
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Determine My,
For ky =k, to M7 do

Determine M3,

For kN—l = kN_Q to MJ do
Determine MY, and let ky := M7,

(a) Forn=1to N let

Bo(Pa) = > wy(Ba] 50, a€{1,2}.
o, (m)EMS,

(b) For m € M let
Wy (Fxl) == wy(Exl), q€{1,2}.

) of type 1/P/ e /d/>" with the
existing facilities Ex = {P,..., Py, Ext,..., Ex%,;}, the weights

.....

Output: List of subproblems List(P}).

With M := M*' + M?, the time complexity of the selection procedure is
O(N(MlogM) + (MFNTH).

N-1
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