
Buffer Analysis and Message Scheduling
for Real-Time Networks

vom
Fachbereich Elektrotechnik und Informationstechnik

der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades eines

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von
Rodrigo Ferreira Coelho

geboren in Rio de Janeiro, Brasilien

D 386

Eingereicht am: 25.10.2017
Tag der mündlichen Prüfung: 21.11.2017
Dekan des Fachbereichs: Prof. Dr.-Ing. Ralph Urbansky

Promotionskomission
Vorsitzender: Prof. Dr.-Ing. Wolfgang Kunz
Berichterstattende: Prof. Dipl.-Ing. Dr. Gerhard Fohler

Prof. Christian Fraboul
Prof. Jean-Dominique Decotignie

Erklärung gem. § 6 Abs. 3 Promotionsordnung

Ich versichere, dass ich diese Dissertation selbst und nur unter Verwendung der
angegebenen Quellen und Hilfsmittel angefertigt und die aus den benutzten Quellen
wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Diese
Dissertation wurde weder als Ganzes noch in Teilen als Prüfungsarbeit für eine staatliche
oder andere wissenschaftliche Prüfung eingereicht. Es wurde weder diese noch eine an-
dere Abhandlung bei einem anderen Fachbereich oder einer anderen Universität als
Dissertation eingereicht.

(Ort, Datum) (Rodrigo Ferreira Coelho)

Abstract

For many years, most distributed real-time systems employed data communication sys-
tems specially tailored to address the specific requirements of individual domains: for
instance, Controlled Area Network (CAN) and Flexray in the automotive domain, AR-
INC 429 [FW10] and TTP [Kop95] in the aerospace domain. Some of these solutions
were expensive, and eventually not well understood.
Mostly driven by the ever decreasing costs, the application of such distributed real-

time system have drastically increased in the last years in different domains. Conse-
quently, cross-domain communication systems are advantageous. Not only the number
of distributed real-time systems have been increasing but also the number of nodes per
system, have drastically increased, which in turn increases their network bandwidth
requirements. Further, the system architectures have been changing, allowing for appli-
cations to spread computations among different computer nodes. For example, modern
avionics systems moved from federated to integrated modular architecture, also increas-
ing the network bandwidth requirements.
Ethernet (IEEE 802.3) [iee12] is a well established network standard. Further, it

is fast, easy to install, and the interface ICs are cheap [Dec05]. However, Ethernet
does not offer any temporal guarantee. Research groups from academia and industry
have presented a number of protocols merging the benefits of Ethernet and the tempo-
ral guarantees required by distributed real-time systems. Two of these protocols are:
Avionics Full-Duplex Switched Ethernet (AFDX) [AFD09] and Time-Triggered Ether-
net (TTEthernet) [tim16]. In this dissertation, we propose solutions for two problems
faced during the design of AFDX and TTEthernet networks: avoiding data loss due
to buffer overflow in AFDX networks with multiple priority traffic, and scheduling of
TTEthernet networks.
AFDX guarantees bandwidth separation and bounded transmission latency for each

communication channel. Communication channels in AFDX networks are not synchro-
nized, and therefore frames might compete for the same output port, requiring buffering
to avoid data loss. To avoid buffer overflow and the resulting data loss, the network
designer must reserve a safe, but not too pessimistic amount of memory of each buffer.
The current AFDX standard allows for the classification of the network traffic with two
priorities. Nevertheless, some commercial solutions provide multiple priorities, increas-
ing the complexity of the buffer backlog analysis. The state-of-the-art AFDX buffer
backlog analysis does not provide a method to compute deterministic upper bounds

iii

for buffer backlog of AFDX networks with multiple priority traffic. Therefore, in this
dissertation we propose a method to address this open problem. Our method is based
on the analysis of the largest busy period encountered by frames stored in a buffer. We
identify the ingress (and respective egress) order of frames in the largest busy period
that leads to the largest buffer backlog, and then compute the respective buffer back-
log upper bound. We present experiments to measure the computational costs of our
method.
In TTEthernet, nodes are synchronized, allowing for message transmission at well

defined points in time, computed off-line and stored in a conflict-free scheduling table.
The computation of such scheduling tables is a NP-complete problem [Kor92], which
should be solved in reasonable time for industrial size networks. We propose an approach
to efficiently compute a schedule for the TT communication channels in TTEthernet
networks, in which we model the scheduling problem as a search tree. As the scheduler
traverses the search tree, it schedules the communication channels on a physical link.
We presented two approaches to traverse the search tree while progressively creating the
vertices of the search tree. A valid schedule is found once the scheduler reaches a valid
leaf. If on the contrary, it reaches an invalid leaf, the scheduler backtracks searching for
a path to a valid leaf. We present a set of experiments to demonstrate the impact of
the input parameters on the time taken to compute a feasible schedule or to deem the
set of virtual links infeasible.

iv

To my parents, brother, wife and kids.

You cannot teach a man anything;
you can only help him discover it in himself.

Galileo Galilei

Preface

It is Autumn 2017, a beautiful time of the year. And also a good time to remember
everyone that helped me on this long way to my PhD thesis.
First of all, I would like to thank Prof. Fohler, who certainly is a very good sample of

his own description of the adjective Austrian: a mixture of German and Italian. Con-
sidering the nationalities clichés, this mix could go very wrong if we take, for instance,
Italian punctuality and German spontaneity. On the other hand, the right mixture can
be very positively inspiring. During the last years, I learned not only from our serious
scientific discussions, but also from his positive manner of addressing hard problems.
And also, that in some occasions, there is no better help than a beer with friends.
Further, I would like to thank Prof. Jean-Dominique Decotignie, Prof. Christian

Fraboul and Prof. Wolfgang Kunz for being part of my PhD committee, and for pro-
viding valuable comments that helped to improve the contributions of this thesis.
During the years of my PhD studies, I met many colleagues at the university. Many

of them became good friends. I am glad I had the opportunity to met you guys. This
time would not have been as productive and fun without you, my former colleagues
Alexander Neundorf, Cuong Ngo, Jens Theis, Mitra Nasri, Ramon Oliver, Raphael
Guerra, and Stefan Schorr; and current colleagues Ali Syed, Ankit Agrawal, Florian
Heilman, Gautam Gala, Kristin Krüger and Steven Dietrich.
I am also very thankful for three important people that make sure that the chair of

Real-Time Systems runs seamlessly: Steffi, Markus, and Carmen. Despite not being
officially in this chair, Carmen always helped me in important moments when Steffi was
not here: thanks Carmen. Thanks Steffi for fixing the paperwork and giving me the
right hints on the bureaucracy involved in my academic life: thanks to you, I could
enjoy the benefits offered by the university and could still focus on my research. Thanks
Markus, our technical support Chuck Norris. Both technically and personally, one of
the most important persons in the group.
I had the great opportunity to supervise many undergraduate students, who collab-

orated to this thesis with good discussions, creation of many tools and some beers.
Thanks Alan Green, Anoop Bhagyanath, Catalin Voinea, Jose Romero, Luiz Gonzaga,
Manjula Kalloli, Pramod Murthy, Naga Rajesh and Vijay Desai.
Pursuing the PhD gave me the opportunity to meet great people also outside our re-

search group in Kaiserslautern. Thanks Jean-Luc Scharbarg, Jirka Klaue, Sergio Penna
and Stefan Schneele: our technical discussions greatly motivated me and contributed to

ix

the results presented in this thesis.
And, above all, I am thankful to my family: indubitably, they have been my big

strength all my life. Thanks pai and mãe for supporting me all my life. Not only
showing me the importance of a good education, but also for making our home the most
pleasant place to be. The distance between us did not stop them to take care of me
in the hard times. I am also very thankful to my brother, for being a great motivator,
my best friend and for supporting our parents during all these years while I have been
abroad.
I am specially thankful to my wife. I can not find an appropriate adjective to define

this great woman. Thank you very much Tatiana for supporting me all this time, for
taking care of our home, for withstanding the last months in which I have spent very
little time at home, and for raising our kids better than anyone else could ever do. I
love you.
At last, and certainly not least, I am very thankful to my kids Rafael and Mathias.

I would never have made it that far without the strength gained in the countless bad
slept nights and clinic visits. These memories, on the other hand, quickly go away and
are replaced by an immense happiness every time I see these boys laughing, playing and
discovering the world around them. I love you kids.

Thank you all.

x

Publications

I have authored or co-authored the following publications:

Conference and refereed workshop papers
• Coelho, Rodrigo F. ; Fohler, Gerhard ; Scharbarg, Jean-Luc: Upper Bound

Computation for Buffer Backlog on AFDX Networks with Multiple Priority Virtual
Links. In: 32nd ACM Symposium on Applied Computing. Marrakesh, Morocco :
ACM Publisher, April 2017

• Coelho, Rodrigo F. ; Fohler, Gerhard ; Scharbarg, Jean-Luc: Dimensioning
buffers for AFDX networks with multiple priorities virtual links. In: Digital
Avionics Systems Conference. Prague : IEEE Computer Society, September 2015

• Coelho, Rodrigo F. ; Szczepanski, Mark ; Miari, Tarek: A web monitoring
tool for AFDX networks. In: 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS) in conjunction
with ECRTS 15, 2015

• Coelho, Rodrigo F. ; Fohler, Gerhard ; Scharbarg, Jean-Luc: Worst-case
backlog for AFDX network with n-priorities. In: 13th Workshop on Real-time
Networks (RTN’14) in conjuction with 26th ECRTS, 2014

• Garikiparthi, Naga R. ; Coelho, Rodrigo F. ; Fohler, Gerhard: Calculation
of Worst Case Backlog for AFDX Buffers with Two Priority Levels using Trajectory
Approach. In: 12th Workshop on Real-time Networks (RTN’13) in conjuction with
25th ECRTS, 2013

• Coelho, Rodrigo F. ; Kotra, Anand ; Fohler, Gerhard: A Control The-
ory Approach to Video Stream Adaptation for Restricted Bandwidth Networks.
In: Proceedings of 1st Workshop on Adaptive Resource Management (WARM10).
Stockholm, Sweden, April 2010

xi

• Coelho, Rodrigo F. ; Fohler, Gerhard: A control theory based method for
increased resource efficiency in real-time MPEG-2 video stream adaptation. In:
Proceedings of Work-in-Progress Session, 29th IEEE Real-Time Systems Sympo-
sium, 2008

xii

Contents

Preface ix

Publications xi

I Introduction 1
I.1 Real-Time Systems . 3

I.1.1 Distributed Real-Time Systems 4
I.2 Real-Time Data Communication . 4

I.2.1 Ethernet-Based Real-Time Communication 5
I.3 Description of the Addressed Problems 6

I.3.1 Avoiding Data Loss due to Buffer Overflow in AFDX Networks
with Multiple Priority Traffic . 6

I.3.2 Scheduling of TTEthernet Networks 7
I.4 Contributions . 7

I.4.1 Computation of Buffer Backlog Upper Bounds for AFDX Net-
works with Multiple Priorities . 7

I.4.2 A Strictly Periodic Scheduler for Time-Triggered Ethernet 8
I.5 Dissertation Outline . 8

II AFDX Background and State-of-the-Art in Buffer Backlog Analysis 11
II.1 Introduction . 12

II.1.1 Devices . 13
II.1.2 Virtual Link . 14
II.1.3 Frame Relay, Contention and Buffering 16

II.2 Predictable Properties . 16
II.2.1 Frame Delay . 16
II.2.2 No Message Loss . 17

II.3 Off-Line Analysis to Ensure Predictable Properties 17
II.3.1 Network Calculus . 18

II.3.1.1 Arrival Curves . 18
II.3.1.2 Service Curves . 18
II.3.1.3 Delay and Backlog . 19

xiii

II.3.2 Trajectory Approach . 21
II.3.2.1 Assumptions . 21
II.3.2.2 Computations . 22

II.3.3 Forward End-to-End Delay Approach 25
II.3.4 Simulation . 25
II.3.5 Model Checking . 26
II.3.6 Holistic Approach . 26

II.4 Summary . 26

III Buffer Backlog Upper Bound for AFDX Networks with Multiple Priority Traffic 29
III.1 Introduction . 30
III.2 Upper Bound Computation . 31

III.2.1 Terminology . 31
III.2.2 Assumptions . 31
III.2.3 Notations . 32
III.2.4 Method Overview . 34
III.2.5 Intervals . 36
III.2.6 Worst Case Scenario . 39

III.2.6.1 Computation of β∗, α∗, θ∗P 43
III.2.6.2 Mutually Exclusive Characteristics 46

III.2.7 Upper Bound Computation . 49
III.2.7.1 Buffer Backlog Upper Bound encountered by one Virtual

Link . 49
III.2.7.2 Backlog Upper Bound for the Buffer Under Analysis . . 50
III.2.7.3 Summary of Upper Bound Computation 51

III.2.8 Discussion . 52
III.3 Experiments . 53
III.4 Summary . 54

IV TTEthernet Background and State-of-the-Art in Time-Triggered Schedulers 57
IV.1 Introduction . 58
IV.2 Terminology . 58
IV.3 Relevant Properties of Time-Triggered Ethernet 59

IV.3.1 Clock Synchronization . 59
IV.3.2 Scheduling TTEthernet Transmission Windows 61
IV.3.3 Contention . 61
IV.3.4 Transmission Window Implementations 62
IV.3.5 TT Frames Latency . 63
IV.3.6 Converting RC Temporal Requirements into TT Reservations . . 64

IV.4 Related Work . 65
IV.4.1 SMT and MIP Solver Approaches 65
IV.4.2 Tabu Search Meta Heuristics . 66
IV.4.3 Strictly Periodic Scheduling . 66

xiv

IV.4.3.1 Scheduling a Pair of Tasks 66
IV.4.3.2 Scheduling Multiple Tasks 68

IV.5 Summary . 68

V Off-Line Scheduler for Time-Triggered Networks 71
V.1 Motivation . 72
V.2 Impact of Clock Synchronization Protocol Frames 72
V.3 Scheduling Problem Formulation . 72

V.3.1 Problem Statement . 73
V.3.2 Example . 73

V.4 Search Tree-based Scheduler for Time-Triggered Networks (STSTTN) . 74
V.4.1 Network Assumptions . 75
V.4.2 Search Tree . 75
V.4.3 Traversing the Search Tree and Reducing Search Space 79

V.4.3.1 Look Back Approach . 80
V.4.3.2 Look Ahead Approach 82
V.4.3.3 Selecting Edges . 83
V.4.3.4 Backtracking . 85

V.4.4 Assigning Virtual Links to Levels 87
V.4.5 Preventive Tree Pruning . 88
V.4.6 Traversing Costs . 89

V.4.6.1 Look Back . 89
V.4.6.2 Look Ahead . 90

V.4.7 Crossing Multiple Physical Links 90
V.4.7.1 Scheduling TT Virtual Links with Minimum Latency . . 91

V.5 Evaluation . 94
V.5.1 Generator of Virtual Links Set 95
V.5.2 Experiments . 96

V.6 Summary . 110

VI Conclusions 113
VI.1 Overview of Contributions . 114

VI.1.1 Computation of Buffer Backlog Upper Bounds for AFDX Net-
works with Multiple Priorities . 114

VI.1.2 A Strictly Periodic Scheduler for Time-Triggered Ethernet 115
VI.2 Future Work . 116

A Proof of Theorem III.1 117
A.1 Scenarios with β� > θ�P . 118
A.2 Scenarios with β� ≤ θ�P . 118

A.2.1 β� ≤ τ ≤ θ�P . 118
A.2.2 ω� ≤ τ < β� . 118

xv

B Computing Competing Frames with Trajectory Approach 121

Bibliography 123

Glossary 128

Summary 129

Zusammenfassung 135

Curriculum Vitae 143

xvi

List of Figures

II.1 Physical interconnection of a simple avionic system using ARINC 429.
Adapted from [SV08] . 12

II.2 Comparison of federated and IMA architecture. Adapted from [WW07] 13
II.3 Publicly available AFDX topology of the Airbus A380. On the right-

hand side, the relationship between physical link and bandwidth of
virtual links. 14

II.4 AFDX end-system regulator and scheduler multiplexer 15
II.5 Example of an arrival curve. Adapted from [LBT01] 19
II.6 Example of a service curve. Adapted from [LBT01] 19
II.7 Delay and backlog on a node. Adapted from [LBT01] 20
II.8 Nodes and links according to the model used by the trajectory approach 22
II.9 Valid and invalid paths for τa and τb according to the trajectory ap-

proach assumptions . 22
II.10 Serialization effect . 24

III.1 Publicly available AFDX topology of the Airbus A380. Output port
under analysis is port 9 of switch 2 (S2_P9). 35

III.2 Traffic that impacts the computation of the busy period under analysis
marked with green lines . 35

III.3 AFDX output port: buffers (one per priority) and output link. Further,
the input links from where competing frames ingress the switch. Green
lines represent ingress and egress competing frames 36

III.4 Example scenario. Ingress and egress frames at the top, buffer backlog
in the middle and interval types at the bottom 37

III.5 Example scenario with β > θP . 38
III.6 Worst-case scenario for P-buffer considering the same competing frames

as in Figure III.4 . 39
III.7 Scenarios to illustrate the computation of δR�P

τ and δT �P
τ . On top, the

worst case scenario . 42
III.8 Largest P-frame and largest frame among all competing frames egress

from different input links . 47
III.9 Fabricated scenario in which the largest P-frame and largest frame

among all competing frames egress from the same input link 48

xvii

III.10 Idle time on the input link enforcing fm to be the last arriving com-
peting frame does not impact the computation of the P-buffer backlog
upper bound computation . 48

III.11 Fabricated scenario in which α∗ and θ∗Pi do not change for a set of
competing frames as described in Section III.2.6.2.3 49

III.12 Worst case scenario in which ∆∗P < 0 50
III.13 P-buffer backlog behaviour of each implementation design during ingress

and egress of a P-frame . 52

IV.1 Relationship between message, frame, virtual link and phase. 59
IV.2 Exchange of messages for the TTEthernet clock synchronization proto-

col (adapted from [tim16]). 60
IV.3 Relationship between cluster cycle, integration cycle, and transmission

of PCFs.(adapted from [tim16]) . 60
IV.4 Impact of transmission window implementations on frame integration

strategies. 63
IV.5 Transmission window schedule along a TT virtual link path. 64
IV.6 Schedules for two virtual links on the same physical link. v1 scheduled

at φ1 = 0 and six different schedules for v2. The number of non-similar
schedules is 4. 67

V.1 Invalid schedule. The 6th instance of v1 collides with the 5th instance
of v3. 74

V.2 Valid schedule. No collision occurs . 74
V.3 Complete enumeration of the search tree used to model the scheduling

problem of the three TT virtual links presented in Table V.2 76
V.4 Search space reduction after applying a simple feasibility test per edge. 78
V.5 Reduced search tree using the approach presented in Section V.4.3. . . 79
V.6 Partial schedule tree with look back. 81
V.7 Partial schedule tree with look ahead. 82
V.8 Example comparing search trees with look back and look ahead. 84
V.9 Search tree for two edge selection methods. 85
V.10 Backtracking with look back approach. 86
V.11 Backtracking with look ahead approach: backtrack from level three to

level two, and later from four to three. 86
V.12 Search tree for two assignments of virtual links to levels. 87
V.13 Search tree until level four. 89
V.14 Search tree showing preventive tree pruning with threshold equals to two. 90
V.15 Relationship between Λ and latency along the path of the virtual link v. 92
V.16 Experiment Cra1u5: STSTTN runs for 500 sets of virtual links. Sets

scheduled by STSTTN on the left and not scheduled on the right. Data
classified by traversing and edge selection algorithms. 99

V.17 Experiment Cra1u8: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data
classified by traversing and edge selection algorithms. 100

xviii

V.18 Experiment Cra1u9: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data
classified by traversing and edge selection algorithms. 101

V.19 Experiment Cra2u5: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data
classified by traversing and edge selection algorithms. 102

V.20 Experiment Cra2u7: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data
classified by traversing and edge selection algorithms. 103

V.21 Experiment Cra2u8: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data
classified by traversing and edge selection algorithms. 104

V.22 Experiment Cra2u9: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data
classified by traversing and edge selection algorithms. 105

V.23 Experiment Cra3u5: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data
classified by traversing and edge selection algorithms. 106

V.24 Experiment afdx1u8v200c1: STSTTN runs for 500 sets of virtual links.
Sets scheduled by STSTTN on the left and not scheduled on the right.
Data classified by traversing and edge selection algorithms. 107

V.25 Experiment afdx1u9v200c1: STSTTN runs for 500 sets of virtual links.
Sets scheduled by STSTTN on the left and not scheduled on the right.
Data classified by traversing and edge selection algorithms. 108

V.26 Experiment afdx1u9v400c1: STSTTN runs for 500 sets of virtual links.
Sets scheduled by STSTTN on the left and not scheduled on the right.
Data classified by traversing and edge selection algorithms. 109

xix

List of Tables

III.1 Notations . 32
III.2 Interval types description and respective buffer backlog accrual 37
III.3 Difference on the backlog accrual caused by replacing a type 1, 2 and

3 with a type 4 interval . 40

IV.1 Transformation of sporadic task into periodic reservation. 64

V.1 Example virtual links set . 73
V.2 Set with three virtual links . 76
V.3 Example with four TT virtual links. 80
V.4 Computation of Λl,c using the look back approach. 81
V.5 Computation of Λl,c using the look ahead approach. 83
V.6 Example with same four TT virtual links presented in Sections V.4.3.1

and V.4.3.2. Here with other Ids, sorted by decreasing utilization. . . . 84
V.7 Example with same four TT virtual links presented in Sections V.4.3.1

and V.4.3.2. Here with other Ids, sorted by decreasing and increasing
utilization, respectively. 87

V.8 Example with four TT virtual links to depict the preventive tree pruning. 88
V.9 Input to the scheduler: set of virtual links 96
V.10 Input to the scheduler: set of configuration parameters 97

xxi

Chapter I

Introduction

For many years, most distributed real-time systems employed data communication sys-
tems specially tailored to address the specific requirements of individual domains: for
instance, Controlled Area Network (CAN) and Flexray in the automotive domain, AR-
INC 429 [FW10] and TTP [Kop95] in the aerospace domain. Some of these solutions
were expensive, and eventually not well understood. In recent distributed real-time
systems the number of nodes per system, have drastically increased, which in turn in-
creases the network bandwidth requirements. Further, the system architectures have
been changing allowing for applications to spread their computations among different
computer nodes. For example, modern avionics systems moved from federated to inte-
grated modular architecture, also increasing the network bandwidth requirements.
Ethernet (IEEE 802.3) [iee12] is a well established network standard. Further, it is

fast, easy to install, and the interface ICs are cheap [Dec05]. However, Ethernet does
not offer any temporal guarantee. In order to close this gap, research groups from
academia and industry have presented a number of protocols merging the benefits of
Ethernet and the temporal guarantees required by distributed real-time systems. In the
aerospace domain, two of these protocols are: Avionics Full-Duplex Switched Ethernet
(AFDX) [AFD09] and Time-Triggered Ethernet (TTEthernet) [tim16].
AFDX guarantees bandwidth separation and bounded transmission latency for each

communication channel. Communication channels in AFDX networks are not synchro-
nized, and therefore frames might compete for the same output port, requiring buffering
to avoid data loss. In order to avoid buffer overflow and the resulting data loss, com-
puting an upper bound for the backlog in every buffer on the network is vital for the
correct behavior of distributed real-time avionics systems. Although the current AFDX
standard allows for the classification of the network traffic with only two priorities, some
commercial solutions provide multiple priorities, increasing the complexity of the buffer
backlog analysis.
In TTEthernet, nodes are synchronized, allowing for message transmission at well

defined points in time, computed off-line and stored in a conflict-free scheduling table.
The computation of such scheduling tables is a NP-complete problem [Kor92], which
should be solved in reasonable time for industrial size networks.
In this dissertation, we address the two aforementioned problems faced during the

design of AFDX and TTEthernet networks: avoiding data loss due to buffer overflow

1

2 Chapter I. Introduction

in AFDX networks with multiple priority traffic, and computing the schedule of time-
triggered communication channels in TTEthernet networks.
We address the first problem by presenting a method to compute an upper bound for

the buffer backlog of each buffer on an AFDX network. This computation is based on
the analysis of the largest busy period encountered by frames stored in a buffer. Our
approach first identifies the ingress (and respective egress) order of frames that leads
to the largest buffer backlog. Then, we compute the respective buffer backlog upper
bound.
In order to efficiently compute a schedule for the TT communication channels in

TTEthernet networks, we propose an approach in which we model the scheduling prob-
lem as a search tree. As the scheduler traverses the search tree, it schedules the com-
munication channels on a physical link. Our scheduler is based on two approaches to
traverse and, to progressively create the vertices of the search tree. A valid schedule is
found once the scheduler reaches a valid leaf. If on the contrary, it reaches an invalid
leaf, the scheduler backtracks searching for a path to a valid leaf.
We present in Section I.1, the basic concepts on distributed real-time systems used

in this dissertation. Section I.2 describes the properties of real-time communication
systems, and fundamental characteristics of two of these communication systems: AFDX
and TTEthernet. Section I.3 presents an informal description of the problems addressed
in this dissertation. Section I.4 describes the contributions proposed in this dissertation,
and Section I.5 shows the organization of the next chapters.

I.1. Real-Time Systems 3

I.1 Real-Time Systems

For real-time systems, not only is the correct value of the computation (logic correctness)
important, but also the point in time when this value is available (temporal correctness).
Logic and temporal correctness determine the quality of a real-time system. The classic
example of an airbag depicts such a system: the airbag must inflate within a predefined
time window after a car crash occurs. If it inflates too late, the passenger hits the
dashboard before the airbag can provide any protection. If, on the contrary, it inflates
too early, the airbag does not offer the optimal cushioning to the passenger.
One of the most important properties that a hard real-time system should offer is

predictability [SR90]. With respect to predictability of real-time systems, Buttazzo
describes in [But05]:

“To guarantee a minimum level of performance, the system must be able to
predict the consequences of any scheduling decision. If some task cannot be
guaranteed within its time constraints, the system must notify this fact in
advance, so that alternative actions can be planned in time to cope with the
event.”

The literature classifies real-time systems with respect to the impact on the environ-
ment in case of deadlines misses. Kopetz concisely describes this classification in [Kop11]:

“If a result has utility even after the deadline has passed, the deadline is
called soft, otherwise, it is firm. If severe consequences could result if a firm
deadline is missed, the deadline is called hard. A real-time computer system
that must meet at least one hard deadline is called a hard real-time computer
system. . . If no hard deadline exists, then the system is called a soft real-time
computer system”

Hard real-time systems must ensure that no deadline is missed. Therefore, such sys-
tems enforce the rules determining which task executes at which point in time: these
rules define the schedule of a system. The creation of a schedule for a hard real-time
system requires the knowledge about the characteristics of the executing tasks. These
characteristics are described by a task model: an abstraction used to express the tem-
poral requirements of tasks. Two common task models are the periodic and sporadic
task models. In the first, a task (τi) is activated periodically, with period Ti, for the
execution of a job (ji,k). The exact time required by a job to execute is not known in
advance. Therefore, task models provide the worst case execution time (WCETi) as an
upper bound for execution time of the jobs. Further, the latest acceptable completion
time of a job of task τi is represented by the task deadline (di). The sporadic task model
is similar to the periodic, except that the activations of jobs do not necessarily occur
periodically. Instead of a period, the sporadic task model defines the minimum time
between two consecutive job activations.

4 Chapter I. Introduction

I.1.1 Distributed Real-Time Systems
In distributed real-time systems, the computed response depends on the interaction of
interconnected computer nodes. Again, the correctness of a computation in such systems
depends on the logical and temporal correctness. The time required for these nodes to
communicate directly affects the response time of a task. Therefore, communication
in distributed real-time systems is done via a real-time communication system, in this
dissertation also referred to as real-time network. This type of communication system
should add as little time as possible to the task response time. In other words, a real-
time network should offer low message transport latency. Additionally, the transmission
latency of a message should vary as little as possible, i.e., add low jitter. In a classic
example of a control loop implemented as distributed real-time system, the control
algorithm executes periodically, acquiring the state of the system under control (plant)
by reading the value from a sensor, computing the control signal, and sending the
computed value to an actuator. The control rules account for the physical effects on the
plant considering a predefined latency caused by the network. In this example, if the
transmission latency of the messages sent by the computer node to the actuator deviates
from the expected latency, the plant will be in a state different from the one considered
by the control algorithm, when the message arrives on the actuator. This unexpected
latency variation could lead to system instability.

I.2 Real-Time Data Communication
According to [Kop11], data communication is classified in three fundamental categories:
event-triggered (ET), rate-constrained (RC) and time-triggered (TT).

Event-Triggered Communication In ET communication, a message is sent every time a
relevant event occurs, e.g., completion of a computation or change of an input signal.
This type of communication allows every node to send a message at any point in time: in
the worst case, every node tries to send a message at the same time. Three approaches
handle this scenario: i) the network buffers these messages, ii) the network exerts back-
pressure on the sending node, or iii) the network discards some messages. Consequently,
ET communication may lead to large transmission latency jitter or even message losses.
Two examples of event-triggered networks are switched Ethernet (IEEE 802.3) and

Controlled Area Network (CAN). Even though extensions to switched Ethernet provid-
ing real-time properties exist, switched Ethernet as defined in the IEEE standard 802.3
does not provide any temporal guarantee. In CAN, the protocol imposes backpressure
flow control to the sender nodes by applying CSMA/CR (carrier sense multiple access/
collision resolution) in conjunction with message priority assignments: if more than
one node try to send messages simultaneously, only the message with higher priority is
transmitted. After this transmission is completed, the nodes try to send their messages
again; as in the previous round, the message with higher priority among the competing
messages is transmitted. This strategy imposes large jitter on messages with low priori-
ties. Nevertheless, it is possible to provide an off-line analysis of the best and worst-case

I.2. Real-Time Data Communication 5

transmission latency for every message in CAN.

Rate-Constrained Communication In RC communication, the network ensures a prede-
fined share of the total bandwidth to each communication channel. Further, the network
applies backpressure to the sending nodes to ensure that each communication channel
does not utilize more network bandwidth than the predefined value. Avionics full-duplex
switched Ethernet (AFDX) is an example of RC communication system.

Time-Triggered Communication In TT communication, the transmission time of each
frame is decided off-line and stored in a conflict-free scheduling table. Frames are trans-
mitted periodically in each communication channel. Therefore, two values define the
transmission time of each frame of a communication channel: phase and period. Phase
determines the dispatching time of the first frame of a communication channel w.r.t.
the start of the schedule, and period specifies the timespan between the start of the
transmission of two consecutive frames.
For a correct behavior of TT networks, all participating nodes must share the same

notion of time, i.e., this type of communication relies on a clock synchronization protocol
to maintain all nodes synchronized. Only then, can the participating nodes agree on the
time of transmission and reception of frames. Time-Triggered Ethernet (TTEthernet)
is an example of a time-triggered communication system.

I.2.1 Ethernet-Based Real-Time Communication
Intrinsically, Ethernet does not offer any temporal guarantees. Further, the correct
delivery of frames can not be detected by protocol layers below the transport layer
(it can only be detected at higher layers, or at the transport layer if TCP is used).
Nevertheless, many solutions have been proposed in the last years to expand the IEEE
standard 802.3 in order to provide temporal guarantees. Decotignie describes in [Dec05]
how the intrinsic properties of Ethernet prohibit the use of standard Ethernet in real-
time systems. He further presents different strategies to overcome these properties and
refers to various existing solutions in the industrial domain.
Recently, other solutions have been proposed to modify the standard Ethernet to pro-

vide temporal guarantees. Particularly, the Time-Sensitive Network (TSN) IEEE task
group, previously called Audio Video Bridging (AVB) task group, has been presenting
solutions to allow for guaranteed packet transport with bounded low latency, low jitter,
and low packet loss [Gro17].
In the last years, two Ethernet-based real-time communication systems have gained

large attention in the industry: Avionics Full-Duplex Switched Ethernet (AFDX) and
Time-Triggered Ethernet (TTEthernet).

AFDX AFDX is a rate-constrained network based on switched Ethernet, used in most
recent aircraft. A virtual link defines a logical communication channel between one
source and to one or more destinations. The properties of the frames of a virtual link
are defined off-line, namely: i) a static route, ii) a priority level, iii) a maximum frame

6 Chapter I. Introduction

size (Lmax), iv) a minimum time between two consecutive frames (BAG), and v) a
maximum jitter. AFDX applies traffic shaping and policing to avoid the propagation of
unexpected traffic.
Due to unsynchronized message transmission, contention may occur on the output

ports of switches. Nevertheless, since the traffic route and the dispatching rules are
static and known before run-time, off-line analysis allow for the computation of upper
bounds of the frame transmission latencies and buffer backlog.

TTEthernet TTEthernet is a real-time network based on switched Ethernet which allows
for best-effort, rate-constrained and time-triggered traffic to coexist in the same commu-
nication system. TTEthernet provides a fault-tolerant transparent clock synchronization
protocol, required to synchronize the nodes participating in the time-triggered message
communication. Similarly to AFDX, TTEthernet applies traffic policing to avoid the
propagation of unauthorized traffic.

I.3 Description of the Addressed Problems
In this dissertation, we propose solutions for two problems faced during the design of
AFDX and TTEthernet networks. The following sections describe those problems.

I.3.1 Avoiding Data Loss due to Buffer Overflow in AFDX Networks with
Multiple Priority Traffic

In AFDX networks, the transmission of frames is not synchronized. Thus, the points in
time when the frames ingress a switch are not known in advance. As a result, frames of
different virtual links might compete for a switch output port, leading to data contention.
AFDX addresses this data contention by means of buffering.
The ARINC 664 Part 7 standard (AFDX) [AFD09] states that “each output port of

the switch should be able to buffer at least 512 frames (balanced between high and
low priority).” Despite being a very specific recommendation, the actual largest buffer
backlog depends on the traffic on the network. Further, the AFDX standard does
not define how the actual memory reservation should be distributed among buffers of
different priorities. Therefore, deciding on the amount of memory reserved for the buffer
of each priority level is left as a design decision.
In order for the designer to provide a safe, but not too pessimistic value for the memory

allocated to each buffer, he/she must compute an upper bound for the backlog of each
buffer in the network. Note that, due to the safety critical properties of avionics systems,
buffer overflow and the resulting data loss must be avoided at all cost. Nonetheless, large
overprovision of memory to buffers should be avoided.
The current ARINC 664 Part 7 standard defines two priority levels that can be as-

signed to the network traffic. Nevertheless, some AFDX commercial products allow for
the assignment of multiple priority levels. For instance, the AFDX switch described in
[TTT], provides eight priority levels. In this dissertation, we also relax the two priority

I.4. Contributions 7

levels limitation described in the current ARINC 664 Part 7 standard, and assume that
the network traffic may be configured with any priority out of a set with multiple pri-
ority levels. Consequently, the network designer must configure the memory reservation
for not only two, but for multiple buffers on each output port of every switch on the
network.
Current methods to compute the exact largest buffer backlog rely on checking all

possible combinations of ingress and egress times of frames. Therefore, computing the
exact largest buffer backlog value of each buffer in an industrial size AFDX network is
intractable. Considering the unpredicted dispatch time of AFDX frames, the computa-
tional requirements of those methods explode as the network traffic increases.
The aforementioned issues depict the importance and the challenges of computing an

upper bound for the buffer backlog on AFDX networks with multiple priority traffic.

I.3.2 Scheduling of TTEthernet Networks
In time-triggered networks, the transmission time of each frame is known to the sender
and receiver(s) before run-time. A scheduling table stores the transmission and recep-
tion time window for each frame. This table is computed off-line and ensures that
transmission windows (on a physical link) do not overlap.
The start of the transmission window of each frame is defined by two parameters:

period and phase, where period represents the constant amount of time between the
transmission of any two consecutive frames of the same message, and phase represents
the amount of time between the start of the schedule until the point in time when the
first frame of a message is scheduled.
The computation of a scheduling table for TT messages is a NP-complete problem in

the strong sense. Hence, the synthesis of a scheduling table for an industrial size TT
network in reasonable time is a challenging problem.

I.4 Contributions

I.4.1 Computation of Buffer Backlog Upper Bounds for AFDX Networks with
Multiple Priorities

The maximum backlog of a buffer on an output port of an AFDX switch depends on
the frames that compete for that port (these frames are called competing frames). It
depends not only on the number of competing frames but also on their priority, on their
size, and on the order in which they ingress and egress the buffer.
In order to compute the backlog upper bound for a buffer on an AFDX output port,

we initially identify the competing frames in the largest busy period of each virtual link
that egress from that output port. Our approach then computes the worst case scenario
for the busy period of each virtual link. We define worst case scenario as the ingress
order (and resulting egress order) of competing frames that leads to the largest backlog
of the buffer under analysis encountered by a frame of that virtual link on a given output
port. Then, we compute the largest backlog encountered by a frame of that virtual link

8 Chapter I. Introduction

on its worst case scenario. In the final step, we analyze the largest backlog encountered
by a frame of each virtual link with the same priority as the buffer under analysis (and
egressing through the same output port), and compute an upper bound for the backlog
of that buffer.
The method presented in this dissertation extends the state-of-the-art by proposing

a deterministic (not stochastic) computation of an upper bound for the buffer backlog
in AFDX networks with multiple priority traffic.

I.4.2 A Strictly Periodic Scheduler for Time-Triggered Ethernet
In this dissertation we propose an off-line scheduler for time-triggered networks, in par-
ticular for TTEthernet, called Search Tree based Scheduler for Time-Triggered Networks
(STSTTN). We formulate the scheduling problem as a set of search trees, each of them
representing one physical link. As STSTTN traverses a search tree, it schedules one
virtual link on each level by selecting a phase, represented by an edge in the tree. Once
STSTTN reaches a leaf on the deepest level of the tree, a valid schedule is found. If
STSTTN reaches an invalid leaf, it backtracks until a valid edge is found or the set of
virtual links is deemed unschedulable.
We present two approaches to traverse, and progressively create the vertices of the

search tree: look back and look ahead. The first approach checks for the feasibility of
a selected phase based on the properties of all virtual links which have already been
scheduled at that point of the search. Look ahead additionally accounts for the proper-
ties of virtual links which have not been scheduled yet. We further present an optional
pruning tree heuristic to reduce the search space.
While traversing the search tree, STSTTN analyzes the properties of each virtual link

allowing for an efficient selection of phases.

I.5 Dissertation Outline
The rest of this dissertation is organized as follows:

Chapter II – In this chapter, entitled AFDX Background and State-of-the-Art in Buffer
Backlog Analysis, we describe the fundamental AFDX properties used throughout this
dissertation and the related work on the computation of upper bounds for the worst
case traversal time and buffer backlog.

Chapter III – In this chapter, entitled Buffer Backlog Upper Bound for AFDX Networks
with Multiple Priority Traffic, we present a method to compute an upper bound for
the backlog on each output buffer of AFDX networks with multiple priority traffic. We
describe the properties of the worst case scenario for the buffer backlog, and present the
formulas for the computation of an upper bound for the backlog of each buffer on an
AFDX network. Additionally, we discuss how the values computed by our method can
be applied to AFDX switches that do not conform with our assumptions.

I.5. Dissertation Outline 9

Chapter IV – In this chapter, entitled TTEthernet Background and State-of-the-Art in
Time-Triggered Schedulers we describe the properties of Time-Triggered Ethernet re-
quired by the scheduler proposed in Chapter V and present the state-of-the-art methods
to compute schedules for time-triggered systems.

Chapter V – In this chapter, entitled Off-Line Scheduler for Time-Triggered Networks,
we propose an off-line scheduler for Time-Triggered Ethernet networks, called Search
Tree based Scheduler for Time Triggered Networks (STSTTN).

Chapter VI – In this chapter, we summarize the contributions of this dissertation and
bring the concluding remarks.

Appendix A – In this appendix, we present the details of the proof of Property iii) of
the Theorem III.1.

Appendix B – In this appendix, we show how to apply the trajectory approach to com-
pute the competing frames used in the computation of the buffer backlog upper bound
presented in Chapter III.

Chapter II

AFDX Background and State-of-the-Art in
Buffer Backlog Analysis

In this chapter, we present the fundamental AFDX properties used throughout this
dissertation and the related work on the computation of upper bounds for the worst
case traversal time and buffer backlog. We start Section II.1 by presenting the origins
of AFDX and how this network relates to previously deployed avionics networks. We
present the types of devices connected to the network, explain the concept and the
properties of virtual links, and show how network cross traffic leads to contention on
the network.
Due to their safety critical nature, distributed avionic systems (in this dissertation,

we use the terms avionics and avionic systems interchangeably) demand real-time be-
havior. We show in Section II.2, that despite the cross traffic, AFDX networks can
guarantee predictable temporal properties, namely bounded worst case traversal time
and no message loss, for the frames traversing the network. In order to compute upper
bounds to the worst case traversal time and buffer backlogs, a number of algorithms
have been proposed. We present in Section II.3 state-of-the-art methods to compute
these upper bounds and discuss their advantages and limitations. Section II.4 concludes
this chapter with a summary.

11

12 Chapter II. AFDX Background and Buffer Backlog Analysis

II.1 Introduction
The need for data communication in avionic systems exists since many decades. When
electronic devices were introduced in commercial aircraft, the task of data communica-
tion was sending information from a variety of sensors (radar, engines etc) to cockpit
displays. ARINC 429 [FW10] is one of the first standards (introduced in 1978) specifi-
cally designed for avionic systems and it is still vastly used in current commercial fleets.
ARINC 429 uses a unidirectional data connection with transmission rates up to 100kbps.
Data communication in ARINC 429 relies on a direct cable connection between source
and destination(s) of each communication channel, i.e., each communication channel
forms an individual connection with its own cables. For a communication channel with
n destinations, ARINC 429 requires n point-to-point connections using n cables. Conse-
quences of the excessive cabling required to establish the point-to-point communication
channels are: a large impact on the aircraft weight and a high complexity involved in
designing, deploying and maintaining such a system. Figure II.1 presents the physical
interconnection of a simple avionic system using ARINC 429.

Figure 3. Example Avionics System with Exclusively MIL-STD-1553B

The physical medium is a twisted shielded pair
terminated with triax connectors connected in a star
topology. In this paper, transformer coupling is
assumed for the bus connections to enable 20 foot
distance between subsystems and legacy 1553B is
assumed for the protocol resulting in a speed of
1Mbps. Using the same subsystem interconnect
requirements as in Figure 1 and using a Mil-Std-
1553B data bus exclusively, the same avionics
would resemble Figure 3. This does not consider
certification requirements that would introduce
additional buses separated for functions of higher
criticality.

ARINC 429
ARINC 429 Digital Information Transfer

System sets electrical characteristics and protocol

for systems compliant with ARINC 500 series and
700 series specifications. The connections are
point-to-point twisted shielded pair for transmit and
receive. It supports a single-source, multi-drop bus
with up to 20 receivers. In order to separate the
different functionalities based on software
certification levels, often a separate transmit port is
used for safety critical functionality. The devices’
ARINC 429 drivers can operate at 100 Kbps or
12.5kbps. The protocol is simplistic and limited.
Messages are constrained to 32-bit words with a
format that includes five primary fields [7]. Using
the same subsystem interconnect requirements as
in Figure 1 and using exclusively ARINC 429 dat
buses, the same Avionics would resemble

a
Figure 4.

This does not consider certification requirements
that would introduce additional buses separated for
functions of higher criticality.

Figure 4. Example Avionics System with Exclusively ARINC 429

 1.D.1-4

Figure II.1: Physical interconnection of a simple avionic system using ARINC 429. Adapted
from [SV08]

ARINC 429 has been used in avionic systems based on federated architectures. In such
architectures, each application is allocated to a dedicated hardware (Line Replacement
Unit - LRU). This architecture leads to a number of issues. For example, in order to
accommodate possible future functionalities added during the lifetime of an aircraft,
each LRU is designed with large resource overprovision. Considering the overprovision
of each LRU, the total resource (and cost) reserved in a federated architecture is large.
Most recent aircraft implement a new architecture paradigm retiring the federated

architecture in favor of the Integrated Modular Avionics (IMA) systems. IMA allows
for flexibility when allocating applications to resources. Thus, resources can be shared
among multiple applications. On IMA systems, LRUs have been replaced with “avionics
boxes” to host general purpose controllers, called CPIOM (Core Processing & IO Mod-
ule) [But10]. In this type of architecture, reserved resources in CPIOMs can be used
by multiple applications. Figure II.2 depicts the architecture difference for a simple
example of an avionic system implemented in a federated and an IMA architecture.

II.1. Introduction 13

Effectors Sensors

I/O

G
P

U

G
P

U

I/O

CPU

D
is

p
la

y

D
is

p
la

y

CPU
Network
Interface

CPU

I/O

C
o
n
tr

o
ls

C
o

n
tr

o
ls

I/O I/O

Effectors

Common I/O
Unit

Network
Interface

Network
Interface

Common CPU

Sensors

Example Federated Architecture

CPUs: 3
I/O + Network modules: 5
Physical comm channels: 4

Example IMA Architecture

CPUs: 1
I/O + Network modules: 4
Physical comm channels: 1

Common communications network

Figure II.2: Comparison of federated and IMA architecture. Adapted from [WW07]

Sharing resources among distinct (safety critical) applications requires complex timing
analysis and methods to enforce the required temporal and spatial resource isolation. We
refer the interested reader to the ARINC 653 standard “Avionics Application Software
Standard Interface” for further details on how to ensure the temporal guarantees required
by avionic systems.
ARINC 429 drawbacks and the communication requirements of IMA architectures

made ARINC 429 obsolete. Therefore, EADS Airbus division developed the standard
ARINC 664 Part 7 [AFD09] as Avionics Full DupleX switched ethernet (AFDX). ARINC
664 Part 7 defines AFDX networks in different aspects. In this chapter, we focus on the
parts of the standard relevant to this dissertation.
In essence, AFDX is an Ethernet based network tailored to account for the avionic

systems requirements. On top of the advantages achieved with switched Ethernet, e.g.,
simpler cabling (compared to ARINC 429), high bandwidth, and no frame collision,
AFDX provides a set of properties required by the safety critical applications running
on avionic systems: redundancy, bandwidth isolation and temporal guarantees.

II.1.1 Devices
Two types of devices are used in AFDX networks: end-system (ESs) and switches. Fig-
ure II.3 shows, on the left-hand side, a sketch of the publicly available Airbus A380
AFDX network (Section II.1.2 explains the contents of the right-hand side). Each el-
ement in the actual network has a redundant counterpart which is not shown in this
figure. Figure II.3 presents end-systems as circles and switches as rectangles.

According to the ARINC 664 Part 7 standard, the main function of the end-system
is to provide services (interface) which guarantee a secure and reliable data exchange

14 Chapter II. AFDX Background and Buffer Backlog Analysis

S1

S2

S3

S4

S5

S6

S7

S8

S9
100 kbps

20 kbps

40 kbps

20 kbps

Physical Link
Bandwidth
(100 Mbps)

Figure II.3: Publicly available AFDX topology of the Airbus A380. On the right-hand side,
the relationship between physical link and bandwidth of virtual links.

to the software running on AFDX nodes. Any two AFDX nodes are connected via a
AFDX switch. These switches apply the store and forward paradigm to relay frames
from input to output ports.

II.1.2 Virtual Link

The concept of virtual link (VL) has its origin in the communication channels used by
ARINC 429. A virtual link defines a logical communication link between one source
application located in a node to one or more destination applications in one or more
nodes. To each virtual link, a share of the total physical link bandwidth is guaranteed.
In a physical link connecting two nodes, one can imagine that a set of independent
communication channels (virtual links) exist, each of which with its own share of the
total bandwidth. Figure II.3 shows, on the right-hand side, a representation of how
virtual links bandwidth reservations relate to the maximum bandwidth of a physical
link (this example highlights the physical link connecting switches S5 and S6).
AFDX specifies two parameters to enforce the bandwidth isolation guaranteed to

each virtual link: a bandwidth allocation gap (BAG) and the maximum size of an
Ethernet frame (Lmax). BAG represents the minimum time interval between the first
bit of two consecutive frames from the same virtual link, assuming no jitter imposed by
the end-system scheduler. AFDX defines eight possible values for BAG: 2n ms, where
n ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Lmax is the size, in bytes, of the largest Ethernet frame that
can be transmitted over this virtual link. The bandwidth allocated to a virtual link is

II.1. Introduction 15

given by the ratio Lmax

BAG
.

End-system schedulers are responsible for scheduling the transmission of frames of
all egress virtual links: they not only throttle the dispatch of frames of a virtual link
to enforce the minimum frame separation imposed by BAG (traffic regulator), but also
multiplex the dispatch of frames of all egress virtual links (scheduler multiplexer). Fig-
ure II.4 depicts the role of end-system traffic regulators and multiplexers. Notice that
AFDX switches perform filtering and traffic policing to avoid unexpected traffic to cross
the network. A frame is delayed by the scheduler multiplexer every time two or more
frames enter the multiplexer at the same time. This delay is called jitter. In Figure II.4,
a frame of VL2 is delayed by a frame of VL1, and a frame of VL3 is delayed by a frame
of VL1 and VL2 (the figure highlights the jitter suffered by a frame of VL3). In order
to ensure predictable bounds for frame traversal time, the maximum allowed jitter for
each virtual link is defined during the design phase of the network. During the network
design phase, a static route taken by (frames of) each virtual link is defined.

Scheduler
Mux

Regulator
BAG1

Regulator
BAG2

Regulator
BAG3

BAG3 BAG3 BAG3

BAG2 BAG2 BAG2BAG2

BAG1

Virtual Link 1

Virtual Link 2

Virtual Link 3

t

t
Jitter3

Single multiplex flow

t

tt

BAG1

BAG2

BAG3

Figure II.4: AFDX end-system regulator and scheduler multiplexer

According to ARINC 664 Part 7, each virtual link is classified with one priority:
high or low. In case of contention for an output port (see Section II.1.3), priorities
associated to a frame define which frame egresses the respective port first, i.e., frames
of low priority can only egress an output port if no frame of high priority is ready to
egress this port. The current ARINC 664 Part 7 standard defines two priority levels
for virtual links. Some commercial AFDX products, however, allow for the assignment
of multiple priority levels to virtual links. The AFDX switch presented in [TTT], for
instance, permits the classification of virtual links with 8 priorities. Remember that
AFDX defines 8 values for BAGs. Thus, assigning virtual links priorities according to
their BAGs such that the lower the BAG the higher the priority, allows for the generation
of a non-preemptive rate monotonic frame schedule.

16 Chapter II. AFDX Background and Buffer Backlog Analysis

II.1.3 Frame Relay, Contention and Buffering
AFDX end-systems do not share any notion of global time and are, consequently, not
synchronized. Therefore, frames of virtual links ingressing a switch from different input
ports and egressing from the same output port might compete for this output port
leading to data contention. ARINC 664 Part 7 addresses the data contention issue by
means of buffering, i.e., each switch output port stores in an output buffer all the frames
that cannot be directly forwarded to the output port. The impact of buffering on the
performance of an AFDX network is twofold: first, buffering delays the transmission
time of frames traversing the network; second, buffer overflow leads to frame losses,
which should be avoided at all cost in safety critical avionic systems.

II.2 Predictable Properties
To ensure real-time behavior, required by safety critical applications on avionic systems,
AFDX network designers must ensure that: i) the delay imposed on frames traversing
the network is lower than the accepted delay for that virtual link, and ii) the output
buffers do not overflow leading to frame losses. These two properties are not intrinsically
guaranteed by AFDX networks. Rather, AFDX networks provide the deterministic
mechanisms that allow for achieving these properties:

i) frames arrival in the same order they are transmitted (for each virtual link)

ii) bounded technological latency (also called switching latency – sl).

iii) bounded transmission jitter on end-systems (Section II.1.2)

iv) bounded transmission jitter on switches (configuration parameter [AFD09] Section
4.1.1.1)

v) bounded maximum delay caused by a switch (“maximum elapsed time between:
ingress of the last bit of a frame on the input port of a switch and egress of this last
bit of the frame from the given output port of the switch” [AFD09])

Nevertheless, the correct off-line temporal analysis allows for the network designer to
ensure that both the frame delay and buffer backlog do not exceed the respective ex-
pected values. We refer to the time required for a frame to traverse the network, from its
source end-system to its destination end-system as traversal time, transmission latency,
and end-to-end delay, interchangeably.

II.2.1 Frame Delay
We divide the analysis on delay encountered by a frame traversing an AFDX network
in two parts: first, the latency imposed to a frame during transmission and reception
disregard any other frame on the network; second, the latency imposed by transmission/
reception of other frames. For the first part, values depend on the hardware used

II.3. Off-Line Analysis to Ensure Predictable Properties 17

in the network and the upper bounds are defined in ARINC 664 Part 7. The latter
requires thorough analysis of all virtual links on the network. Investigating all possible
combinations of contention on each output port is intractable for AFDX networks used
in large commercial airplanes. Also, a naive approach assuming a critical instance as
the time when the first frame of all virtual links sharing the same output port arrive at
the same time, leads to extremely pessimistic values since this scenario is not achievable
in all cases. We present in Section II.3, state-of-the-art methods used to compute upper
bounds for the delay encountered by a frame in an AFDX network.

II.2.2 No Message Loss
AFDX offers two mechanisms to avoid frame losses on the network: redundancy and
buffering. An AFDX network is composed of two redundant networks: the so-called A-
network and B-network. In case of frame losses, for instance in the A-network, a copy of
this frame arrives at the destination end-system through the B-network. Presentation
of the redundancy mechanisms used in AFDX networks is out of the scope of this
dissertation. For details on redundancy management on AFDX networks, we refer the
interested reader to the ARINC 664 Part 7 standard [AFD09].
As presented in Section II.1.3, ARINC 664 Part 7 addresses the contention on the

output port of switches by buffering. The standard states that “each output port should
be able to buffer at least 512 frames (balanced between high and low priority)”. Despite
being a very specific recommendation, the number of 512 frames does not imply a safe
buffer length for all possible traffic configurations of an AFDX network. Further, the
standard does not define how the actual memory allocation for each buffer should be
done. Therefore, dimensioning the output port buffer size for each priority level is left as
a design decision. These values must be passed as parameters during the configuration of
the network (section 4.7.3.2 of ARINC 664 Part 7). We present in Section II.3 the state-
of-the-art methods used to compute upper bounds for the buffer backlog encountered
by a frame in an AFDX network.

II.3 Off-Line Analysis to Ensure Predictable Properties
At run-time, AFDX provides the mechanisms (frame schedule, filtering) to enforce the
predictable properties presented in Section II.2. However, it is up to the network de-
signer to ensure that once the AFDX policies are applied at run-time, all temporal
requirements are met. Therefore, a collection of off-line methods (tools) exists to allow
the network designer to configure the AFDX network such that the network communica-
tion does not lead to violation of the applications temporal requirements. As mentioned
in Section II.2, simulating all possible frame arrival combinations to achieve exact num-
bers for the largest delay encountered by a frame traversing an AFDX network or for
the largest backlog of an output buffer, is intractable for larger avionics networks in
commercial aircraft. The main reason for this highly time consuming analysis is the un-
synchronized and sporadic nature of AFDX flows, i.e., the points in time when frames
are transmitted on the network are not known before run-time, rather the minimum

18 Chapter II. AFDX Background and Buffer Backlog Analysis

interval between these frames and their maximum sizes are known. Therefore, most of
the methods presented in this section compute upper bounds, not maximum achievable
values, for frames of a virtual link traversing the network, and for the buffer backlog.
The state-of-the-art methods presented in this section can be divided into two cate-

gories: Methods of the first category analyzes the traffic as flows, assuming that both
the traffic generated by virtual links and the network services provided by switches are
bounded by so called envelopes. Network calculus (Section II.3.1) fits into this category.
Methods of the second category analyze the network at a finer granularity: instead of
considering a virtual link as a flow, these methods investigate the behavior of a se-
lected frame of the virtual link under analysis. Later in this chapter we introduce five
such methods: trajectory approach (Section II.3.2), forward end-to-end delay approach
(Section II.3.3), simulation (Section II.3.4), model checking (Section II.3.5), and holistic
approach (Section II.3.6).

II.3.1 Network Calculus
Network calculus (NC) provides a set of formal tools for modeling the network com-
munication, including AFDX networks, and computing upper bounds for frame delays
and buffer backlogs. Network calculus has been used for certification purposes, includ-
ing the certification of the Airbus A380 [FFG06]. This method is based on two types
of curves: arrival and service curves. The first is used to bound the traffic and the
latter to bound the service offered by AFDX nodes. We present in this section a very
short introduction to network calculus and concentrate on graphic explanations of this
method. For details on the algebra behind network calculus, we refer the interested
reader to [Cru91b], [Cru91a] and [LBT01].

II.3.1.1 Arrival Curves

Let us consider that the amount of data generated by a virtual link until a point in time
t is represented by a cumulative function x(t). An arrival curve α represents an upper
bound on the data generated by this virtual link during a time span of length t−s, such
that:

x(t)− x(s) ≤ α(t− s)

Figure II.5 depicts, on the left-hand side, an example of a cumulative function x(t)
constrained by an arrival curve α [LBT01]. The arrival function is presented separately
on the right-hand side.

II.3.1.2 Service Curves

Service curves represent a lower bound on the guaranteed service offered by network
nodes. Let us consider a flow represented by the cumulative function x traversing a

II.3. Off-Line Analysis to Ensure Predictable Properties 19

s1

α(t-s)1

α(t-s)2

α(t-s)3

α(t-s)4

α(t)
x(t)bits

bits

t
t

s3 s4s2

Figure II.5: Example of an arrival curve. Adapted from [LBT01]

system S where y represents the output flow leaving S. We say that S offers to the flow
x a service curve β, if and only if:

y(t)− x(t) ≥ β(t− s)

where β is a wide sense increasing function, with β(0) = 0, for all t ≥ 0 [LBT01]. Fig-
ure II.6 depicts an example of a cumulative function y(t) and a lower bound represented
by a service curve β [LBT01].

s1

β(t-s)1

β(t-s)2

β(t-s)3

β(t)

y(t)

bits

bits

t
t

s3s2

Figure II.6: Example of a service curve. Adapted from [LBT01]

II.3.1.3 Delay and Backlog

Figure II.7 depicts two curves commonly used to bound respectively, the traffic generated
by a flow and the service offered by a network node: the leaky bucket arrival curve (γr,b)
and the rate latency service curve (βR,T).

Two parameters define a leaky bucket curve: r represents the bandwidth, and b rep-
resents the largest data burst. For the service curve βR,T , the parameter R represents

20 Chapter II. AFDX Background and Buffer Backlog Analysis

γr,b

d ()γ βr,bv , R,T

v
 (

)
γ

β
r,

b
v
 ,

R
,T

βR,T

bits

t

Figure II.7: Delay and backlog on a node. Adapted from [LBT01]

the minimum sustained bandwidth offered by the node, and T represents the largest
delay imposed on a flow traversing the node. We can extract two important pieces of
information from Figure II.7: i) an upper bound for the largest delay imposed on flow
x, and ii) an upper bound for the largest backlog on the system modeled by β. These
values are computed, respectively, by calculating the largest horizontal and vertical dis-
tances between the arrival and service curves. These differences are represented by d
and v in Figure II.7. Considering the convexity of the region between α and β in the
curves depicted in Figure II.7, the values d and v are reached at angular points of either
α or β [LBT01].
Notice that the computed values represent upper bounds, not the largest achievable

values or the worst case values. The tightness of the upper bounds computed with
network calculus strongly depends on the tightness of arrival and service curves, i.e.,
how close these curves represent the modeled traffic and service, respectively. On one
hand, simple curves have well-known properties [BMN11], which simplify the network
calculus computations. On the other hand, for some networks, simple curves lead to
pessimistic bounds.
A large number of published papers integrate the properties of AFDX traffic and

the frame scheduling (dispatching) policies into arrival and service curves. A common
issue in the analysis using network calculus is that, originally, this approach does not
take into account the so-called serialization effect. Serialization occurs when analyzing
the impact of multiple flows arriving at a network node from the same input port. In
this case, two frames of these flows can never arrive at the node at the same time.
Consequently, the largest burst represented by b in the leaky bucket arrival curve, is not
the sum of the frames of these two flows. This effect is neglected by the simple analysis
of arrival and service curves. [BSF10] and [ZLX+13] present two methods to account
for the serialization effect. The comparison presented in [BSF10] shows that, even for a
small example network, accounting for the serialization effect decreases the pessimism
by more than 10% when compared to the original network calculus.
The methods presented so far use deterministic network calculus (DNC) to com-

pute deterministic upper bounds for delay and buffer backlog. Another approach called
stochastic network calculus (SNC) [SRF02], [RSF08] computes upper bounds for end-to-
end delays and buffer backlogs that occur in AFDX networks with a certain probability.

II.3. Off-Line Analysis to Ensure Predictable Properties 21

Results of an example presented in [RSF08] show that, in comparison to the deter-
ministic approach, stochastic network calculus can be much less pessimistic. Another
interesting result from this work is that the larger the network load, the larger is the
difference between the end-to-end delay upper bounds computed by deterministic and
stochastic network calculus. For instance, considering a probability of 1× 10−4 that the
end-to-end delay exceeds the SNC upper bound, SNC computes an upper bound equal
to 106µs, while DNC computes 2086µs.
In summary, network calculus allows for the computation of upper bounds for worst

case traversal time and buffer backlog values on AFDX networks. This approach has
been used for certification purposes. Nevertheless, network calculus computations are
pessimistic. On top of the pessimism due to the modeling of traffic and service curves
as envelopes, i.e., not exact curves, the holistic nature of analysis using network calculus
(intrinsically) adds pessimism to the computed upper bounds: the resulting upper bound
is the sum of the upper bound on each node. In most networks, the conditions leading
to the upper bounds in each node are unachievable.

II.3.2 Trajectory Approach

Martin and Minet introduce the trajectory approach (TA) in a technical report [MM04]
and in two conference: papers [MM06a] and [MM06b]. These papers present the theory
behind the trajectory approach, however they do not address the analysis of AFDX
networks specifically. Bauer et al. present the applicability of TA in the analysis of
AFDX networks in [BSF09]. The main contribution of the trajectory approach is to
provide an upper bound for the end-to-end delay encountered by any frame of a flow
traversing a data network. Unlike holistic approaches, the trajectory approach accounts
for the worst case scenario experienced by a frame on its trajectory and not on each
traversed node.

II.3.2.1 Assumptions

The underlying assumption of the trajectory approach is that no collision (ensured
by AFDX) or frame losses occur on the network. We describe in the next sections,
additional properties assumed in the trajectory approach. Figure II.8 depicts an example
of the network model used by the trajectory approach.

II.3.2.1.1 Network In the trajectory approach, each node represents an output port (of
a switch or an end-system), including the respective output physical link. Nodes are
the entities responsible to dispatch frames according to the configured frame scheduling
policy. Most of the published trajectory approach work assumes a Fixed Priority First
In First Out (FP/FIFO) policy.
Network nodes are interconnected by “links”, which represent the switch fabric. For

the end-to-end delay analysis, the links account for the time taken by switches to forward
the packets internally (from a switch input to an output port). The nomenclature used
by TA, depicted in Figure II.8, is rather non-intuitive. That terminology has its origins

22 Chapter II. AFDX Background and Buffer Backlog Analysis

in the analysis of distributed systems where nodes are responsible for the computation
and the connections between nodes exhibit a static behavior.

Trajectory Approch
View

Network View

Switch Switch

N1 N2 N3N1 N2 N3

Figure II.8: Nodes and links according to the model used by the trajectory approach

II.3.2.1.2 Flows The trajectory approach assumes that flows generate frames periodi-
cally and might experience a release jitter. In the context of AFDX networks, these
parameters represent the BAG and maximum jitter on the source end-system, respec-
tively. For the trajectory approach, the “computation time” in a node represents the
transmission time of a frame traversing that node, i.e., Lmax

BAG
.

II.3.2.1.3 Path The path of each flow, i.e., nodes traversed by a frame from its source
to its destination, is static and defined off-line. The trajectory approach imposes a
restriction on the valid flow paths: it assumes that if the path of a flow τi “meets” the
path of a flow τj and “leaves” this common sub-path, the path of these two flows do not
“meet” again. Figures II.9a and II.9b depict a valid and an invalid set of paths for two
flows, τa and τb. Notice that, according to the mentioned TA restriction, Figure II.9b
presents an invalid set of paths, since τa meets τb on node N4 and N5, then leaves the
path of τb and meets τb again on node N6.

II.3.2.2 Computations

The trajectory approach computes an upper bound for the end-to-end traversal time
encountered by any frame, e.g., fm, of a flow τi by analyzing the busy period of this
frame along its trajectory from source to destination node. On each node traversed by

N1

N4

N2

N5

N3

N6 N7

τ
a

τ
b

(a) TA valid path

N1

N4

N2

N5

N3

N6 N7

τ
a

τ
b

(b) TA invalid path

Figure II.9: Valid and invalid paths for τa and τb according to the trajectory approach as-
sumptions

II.3. Off-Line Analysis to Ensure Predictable Properties 23

fm, the trajectory approach accounts for the delay accrued by each flow that “meets” the
path of τi for the first time. TA defines the points in timeMh

i and Shmax to represent the
earliest start time of the busy period of fm and the latest start time of arrival of fm on
node h, respectively. According to [BSF09], for a node dispatching frames according to
the FIFO policy, only frames arriving between Mh

i and Shmax on that node might accrue
delay to the traversal time of fm.
For an AFDX network in which all traffic has the same priority, the trajectory ap-

proach provides Equation (II.1) to compute an upper bound for the traversal time (Ri)
encountered by a frame fm of flow τi released at time t. (We present in Appendix B the
TA equations for networks with multiple priority traffic.) W lasti

i,t represents the latest
starting time of fm on its destination node and Ci represents the transmission time of
fm.

Ri = max (W lasti
i,t + Ci − t) (II.1)

The next equation shows the computation of W lasti
i,t .

W lasti
i,t =∑

j∈{1...n}
Pj∩Pi 6=∅

(
1 +

⌊
t+ Ai,j
Tj

⌋)
× Cj (II.2.1)

+
∑
h∈Pi
h6=lasti

 max
j∈{1...n}
h∈Pj

{Cj}

 (II.2.2)

+ (|Pi| − 1)× sl (II.2.3)

+
∑
h∈Pi

h6=firsti

∆h (II.2.4)

− Ci (II.2.5)

Where

Ai,j =Shmaxi − S
h
minj
−M j

h + Shmaxj ,

Tj =BAGj,

Pi represents the path of flow τi, sl represents the switching latency (called technological
latency in [AFD09]) of a switch, and ∆h represents the pessimism on node h due to the
serialization effect (same effect as described in Section II.3.1.3). Note that ∆h is not
related to ∆ presented in Chapter III.

Term (II.2.1) represents the delay accrual caused by frames on the busy period of fm

along its path from source to destination node; Term (II.2.2) accounts for the processing
time of the largest frame for each node visited by fm, i.e., the largest impact due to the
store and forward property of the nodes; Term (II.2.3) represents the technological
latency, i.e., time required by the switch fabric to relay the frame in all visited nodes;

24 Chapter II. AFDX Background and Buffer Backlog Analysis

IL 1
τ

i
τ

1

τ τ τ
2 3 4

τ τ τ
2 6 7

τ τ τ
8 9 10

τ
i
τ τ τ

1 2 3

τ τ τ τ
4 5 6 7

τ τ τ
8 9 10

IL 2

IL 3

IL 4

OL

Node

h

(a) Ten flows “meet” τi for the first time in
node h

IL1

Δh

M
h

i

busy period bp
h

busy period bp
h-1

IL 3

IL 4

IL 2

OL
t

f
m

f
m

f7

f7

f1

f2f3f4

f4

f10

f10

f6

f9 f8

f5

(b) Arrival and dispatching of frames on
node h

Figure II.10: Serialization effect

Term (II.2.4) accounts for the serialization effect on each visited node; and Term (II.2.5)
represents the transmission time of fm.
Term (II.2.4) has been introduced by Bauer et al. [BSF10] to eliminate the pes-

simism due to the serialization effect, from the original trajectory approach. Notice
that Term (II.2.1) accounts for the frames of all flows that meet τi along its path.
Term (II.2.1) assumes that, in the worst case, a frame of each crossing flow arrives at
same time as fm on the node where they first meet. This assumption is, however, pes-
simistic. Figure II.10a depicts an example of a node (h) in which ten flows (τ1 . . . τ10)
meet τi for the first time. Figure II.10b presents a possible arrival sequence for the
frames of these ten flows. Notice that frames ingressing node h from the same input
link (IL) cannot arrive on this node at the same time, i.e., they arrive serialized. Fig-
ure II.10b further shows that the data transmitted before Mh

i does not accrue any delay
to the transmission time of fm, and therefore, should be subtracted in the computation
of W lasti

i,t . Term (II.2.4) accounts for this subtraction on every traversed node. Bauer et
al. show in [BSF10] that, for most of the analyzed cases, the trajectory approach with
the serialization term leads to tighter end-to-end delay upper bounds, when compared
to those computed by the original TA, network calculus or NC with serialization effect.
Bauer et al. present in [BSF12c] a method to compute backlog upper bounds for AFDX
buffers considering single priority traffic. The presented results show that buffer back-
log upper bounds computed with TA can be up to 20% tighter than those computed
with network calculus with serialization. The same authors extended the trajectory
approach analysis for AFDX networks to compute end-to-end delay upper bounds for
multiple priority traffic [BSF12b].
A later work by Kemayo et al. [KRR13] however, presents a counter example in which

the computations with trajectory approach with serialization term leads to optimistic
end-to-end delay upper bounds. This optimism occurs in some corner cases. The main
reason for the optimistic results in some corner cases is the delay imposed to fm caused

II.3. Off-Line Analysis to Ensure Predictable Properties 25

by frames arriving even before Mh
i . In some networks, the result of (W lasti

i,t + Ci − t)
in Equation (II.1) is optimistic for some values of t. Nevertheless, this optimism does
not appear at the result of Equation (II.1) if the serialization effect is not taken into
account, i.e., Term (II.2.4) equals to zero. We refer the interested reader to a detailed
example and respective explanations in [KRR13]. Li et al. present in [LCG14], a method
to fix this optimism.

II.3.3 Forward End-to-End Delay Approach
Kemayo et al. present the forward end-to-end delay approach (FA) in [KRBR14]. Sim-
ilar to the trajectory approach for single priority traffic, FA analyzes the busy period
encountered by a frame of the flow under analysis. The main difference w.r.t. TA is
that FA accounts for the impact of flows crossing τi by investigating the largest back-
log generated by these flows. For details on the computations1, we refer the interested
reader to [KRBR14]. Simulation results of a small network show that, for flows that do
not suffer from the serialization effect, the end-to-end delay upper bounds computed by
FA are as tight as those computed by the trajectory approach and tighter than those
computed by network calculus with and without serialization. For flows that suffer
from serialization, FA leads to more pessimistic upper bounds when compared to those
computed by TA and NC.
In [KBR+15], Kemayo et al. integrate the serialization effect into FA presenting a

detailed analysis of the largest possible backlog accrued by frames ingressing the node
from each input link individually. This analysis accounts for the serialization of frames
on each input link. Results from the simulation of a small network show that the upper
bounds computed by FA are very close to those computed by TA: some experiments
show that FA leads to tighter bounds than TA, whereas in some other experiments,
TA leads to tighter bounds. However, computations with FA for larger networks are
not available. Consequently, the applicability of FA for large commercial airplanes still
needs to be confirmed.

II.3.4 Simulation
As presented in Section II.1.3, AFDX nodes dispatch their frames asynchronously.
Therefore, simulating all possible frame dispatch combinations is intractable for large
airplane networks (the number of combinations explodes as the number of end-system
and virtual links grows). Nevertheless, simulating the behavior of the network allows
for the measurement of the exact end-to-end delay and buffer backlog of switches, and
can be used to estimate the pessimism of upper bound computation methods. Con-
sidering that simulating a large network is intractable, Bauer et al. [BSF10] propose
the simulation of the so called unfavorable scenarios. These scenarios are created by
adjusting the release time of each frame on their source nodes, such that the combined
transmission of all frames lead to the worst case end-to-end delay of a frame of the flow

1The interested reader should notice that in [KRBR14] and [KBR+15], the authors use a variable
name t to represent the length of time interval under investigation, not a point in time.

26 Chapter II. AFDX Background and Buffer Backlog Analysis

under analysis. Obviously, since not all possible scenarios are simulated, the success of
this method relies on the correct computation of the release time of frames, i.e., if the
computed unfavorable scenario is not the worst case scenario, then this method leads
to optimistic results.

II.3.5 Model Checking
This approach models the network as a timed automata and uses model checking to
compute the exact worst case end-to-end delay encountered by frames traversing the
network. Three main steps are required: i) model the network, ii) formalize the prop-
erties to check, and iii) run the model checker. One key aspect when computing upper
bounds using model checking is the network model: a rather generalized model, which
does not embed all properties of AFDX traffic, will be checked for a large number of non-
valid states in the context of AFDX and demands larger computational efforts. There-
fore, [ASEF10] also accounts for the serialization of frames, consequently reducing the
search space and improving the performance. On one hand, despite the large improve-
ment w.r.t. the computational demand, this approach does not scale and is therefore not
used for the upper bound computations in large avionics networks. On the other hand,
this approach can be used to evaluate the pessimism of the upper bounds achieved by
other methods, e.g., trajectory approach, network calculus or forward end-to-end delay
approach.

II.3.6 Holistic Approach
Gutiérrez et al. present in [GPGH14] a holistic approach to compute end-to-end delays
on AFDX networks. This work takes into account the delay on the network starting
at a higher level: the authors consider the time required for message fragmentation
(into multiple frames) and the schedule of sub-virtual links. The comparison presented
in [GPGH14] shows that the upper bounds computed by this approach for the investi-
gated network configurations are more pessimistic than those of the trajectory approach
(even without the serialization effect) and network calculus with the serialization effect.

II.4 Summary
In this chapter, we presented the fundamental properties of AFDX networks and the
state-of-the-art approaches to compute upper bounds for end-to-end latency and buffer
backlog. We showed in Section II.1 that AFDX networks can ensure predictable tempo-
ral properties for frames traversing the network by means of AFDX-compliant switches
and end-systems. We described the concept of virtual link and showed how AFDX can
provide bandwidth isolation. Section II.1 introduced the contention issue in AFDX
networks, i.e., the condition when multiple frames try to egress an output port at the
same time. AFDX addresses the contention issue by buffering, which in turn raises two
important questions presented in Section II.2: What is the largest latency encountered
by a frame due to buffering? And, what is the largest backlog in an output buffer?

II.4. Summary 27

In Section II.3 we presented the state-of-the-art methods to address these two ques-
tions. Due to the unsynchronized nature of AFDX networks and the large number
of virtual links in large commercial airplane avionics systems, simulating all possible
combinations of frames dispatching times is intractable. Nevertheless, we showed in
Section II.3.4, that simulation is used in small networks to estimate the pessimism of
other approaches. Therefore, a number of methods have been proposed to compute
upper bounds for the worst case traversal time and largest buffer backlog. We divided
the analysis of these existing methods into two categories: methods of the first category,
analyze the traffic at flow level and bound the traffic and services on the network by
means of envelopes ; methods of the second analyze the network at a finer granularity
by investigating the effects of the network service on a given frame. For most of the
compared cases (see [BSF12b]), methods of the second category lead to the computa-
tion of tighter upper bounds when compared to those achieved by methods of the first
category (including network calculus with serialization).
We showed that model checking has been used to compute the exact worst case end-

to-end latency in AFDX networks. This method however, does not does not scale and
is therefore not used for the upper bound computations in large avionics networks. Yet,
this approach can be used to evaluate the pessimism of the upper bounds achieved by
other methods.
Despite the importance of avoiding buffer overflows in AFDX networks, the majority

of work on upper bound computation targets the worst case traversal time, not giving
much attention to the buffer backlog analysis. We showed that, the state-of-the-art
AFDX buffer backlog analysis does not provide a method to compute deterministic
upper bounds for buffer backlog of AFDX networks with multiple priority traffic.

Chapter III

Buffer Backlog Upper Bound for AFDX
Networks with Multiple Priority Traffic

This chapter presents a method to compute an upper bound for the backlog on each
output buffer of AFDX networks with multiple priority traffic. In contrast to traditional
methods that analyze the buffer backlog of multiple priority AFDX traffic at flow level
(modeling network traffic and service with envelopes), our method analyzes the network
at frame level.
We start by showing in Section III.1, that frames traversing an AFDX network face

contention on the switches output ports. AFDX networks address this contention by
means of buffering. Considering the safety-critical properties of avionics systems con-
nected to AFDX networks, an overflow of these buffers and the resulting data loss must
be avoided at all cost.
Section III.2 presents our method to compute a backlog upper bound for each output

buffer on the network. This is the largest section in this chapter and is subdivided
into eight subsections: Sections III.2.1, III.2.2, and III.2.3 present the terminology,
assumptions and notations, respectively. We introduce our solution by presenting an
overview in Section III.2.4.
Computing a buffer backlog upper bound depends on identifying the arrival of frames

(competing frames) that leads to the largest buffer backlog. Notice that not only the
amount and sizes of these competing frames should be accounted for. Also the order and
the points in time in which they ingress in the output buffers impact the buffer backlog.
We introduce the concept of intervals in Section III.2.5 and present, in Section III.2.6,
the properties that define the arrival of competing frames, in each type of interval,
leading to the largest buffer backlog. Section III.2.7 presents the formulas to compute
an upper bound for this buffer backlog. In Section III.2.8 we discuss how the results
achieved by our method can be applied to AFDX switches that do not conform with our
assumptions on how the ingress and egress of frames are handled by AFDX switches.
Section III.3 presents the computational costs of our method when implemented in two
different programming languages. Section III.4 concludes this chapter with a summary.

29

30
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

III.1 Introduction

An increasing number of modern aircraft, adopts Avionics Full DupleX switched Eth-
ernet (AFDX) for data communication of safety-critical avionics systems, replacing for-
merly deployed point-to-point networks. In order to ensure the correct timing behavior
of these safety-critical systems, AFDX networks must ensure two important properties:
no (or minimal) frame loss and bounded end-to-end latency (Section II.2). As presented
in Section II.1, AFDX is based on switched Ethernet and therefore no data loss or frame
traversing delay occurs due to collision. Contention however, frequently occurs on the
output ports of AFDX switches increasing frames latency eventually leading to data
loss.
ARINC 667 Part 7 does not specify any means for node synchronization, i.e. data

communication between connected nodes occurs asynchronously. One positive effect
of this property is that AFDX nodes do not need to maintain a clock synchronization
protocol, which on occurrence of failures, could lead to data losses. However, due to
the unsynchronized data transmission, data contention occurs on switches output ports
whenever frames from different physical links ingress AFDX switches and try to egress
from the same port at the same moment. ARINC 664 Part 7 [AFD09] addresses the
contention issue by means of buffering, i.e., AFDX switches implement buffers on their
output ports to store contained frames. Most avionics systems connected via AFDX
networks are considered safety-critical. Therefore, buffer overflow and the resulting
data loss in AFDX networks must be avoided at all cost. In order to achieve this goal,
the network designer must specify the memory reserved for each buffer of every output
port of all switches on the network such that no buffer overflow occurs. At the same
time, over-reservation should be avoided.
The AFDX standard defines two priority levels to classify virtual links. Yet, existing

commercial AFDX solutions allow for the classification of virtual links into multiple pri-
ority levels. For instance, the AFDX switch presented in [TTT] permits the classification
of virtual links with eight priorities. Considering that up to eight values of bandwidth
allocation gap (BAG) are allowed in the current ARINC 664 Part 7 standard, if pri-
orities are assigned according to BAGs (higher priorities to virtual links with smaller
values of BAG), this commercial solution permits the generation of a non-preemptive
rate monotonic schedule of frames. In order to provide a buffer analysis for AFDX net-
works that provide multiple priority traffic (obviously, accounting for the current two
priority AFDX standard), we assume in this chapter that virtual links can be classified
into one out of many (not only two) priority levels.
Computing the exact largest value for the buffer backlog of each buffer is intractable

for an industrial size AFDX network since the number of possible combinations of arrival
orders of frames on an output port grows factorially with the number of frames in the
busy period1. Therefore, we present in this chapter a method to compute an upper

1In this dissertation, we consider the busy period definition presented in [DBBL07]. The main property
of this definition is that, in a busy period of priority P (bpP), all frames of priority P or higher ready
for transmission strictly before the end of bpP are transmitted in this busy period, and therefore do
not impact frames that do not belong to bpP.

III.2. Upper Bound Computation 31

bound for those buffer backlogs. Further, we present the properties of the scenario
leading to the largest buffer backlog of each output buffer in an AFDX network and the
formulas to compute an upper bound for these buffer backlogs. The results presented
in this chapter allow for the AFDX network designer to safely allocate memory to each
output buffer in an AFDX network with multiple priority virtual links.

III.2 Upper Bound Computation
The computation of an upper bound for the backlog encountered by a frame, e.g., fm,
entering an output buffer on an AFDX network depends on the identification of:

• the frames that form the worst case busy period encountered by fm on the output
port under analysis

• the arrival order of these frames (frames in the worst case busy period) that lead
to the largest buffer backlog

The buffer backlog upper bound computation presented in this chapter assumes that the
frames in the busy period are given, i.e., computed by one of the methods presented in
Chapter II. In Appendix B we present how one of these methods (trajectory approach)
can be used to compute the competing frames.

III.2.1 Terminology
In this dissertation, we use the terms time of transmission and time of arrival to refer
to the time when a frame is completely transmitted and received, respectively. Further,
the terms ingress and arrival of frames, and egress and transmission of frames are used
interchangeably. We use the term competing frames to refer to all frames present in the
busy period of the virtual link under analysis. Scenario refers to a specific ingress order
and the respective egress order of competing frames. Finally, whenever not mentioned
otherwise, we use buffer to refer to a switch output port buffer. Notice that we assume
that on each switch output port, there exists one buffer for each priority level (see
Section III.2.2).

III.2.2 Assumptions
We assume an AFDX network N with the following characteristics:

• all nodes (end-systems and switches) comply with the ARINC 664 Part 7 standard

• the network topology is static and defined off-line

• the connection between two nodes is done via two unidirectional physical links

• the maximum bandwidth (BW) is constant and has the same value on every
physical link, e.g. 100Mbps.

32
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

• a set of virtual links, considering that each virtual link is defined off-line with the
following properties:

– maximum frame size (Smax)

– bandwidth allocation gap (BAG)

– maximum jitter (Jmax)

– fixed physical path (route) from source to destination(s) end-systems

– one priority level P , out of a set of priority levels P , s.t. P = {1, 2, 3, . . . , n}

• a set of switches with the following properties:

– every output port of each switch has one buffer for each priority level

– frames are dispatched according to the store and forward paradigm, i.e. a
frame can only egress after it is completely stored in the output buffer

– stored frames are dispatched to the output port according to the Fixed Pri-
ority First-In First-Out (FP/FIFO) policy

– frames are copied to and removed from the output buffers bit by bit as frames
ingress and egress the switch, respectively

We consider that a switch output port is composed of a frame dispatcher, output buffers
(one buffer per priority level on each output port), and an output link (OL).

III.2.3 Notations
Table III.1 presents the terms, indices and sets used to describe and to compute the
upper bound for the buffer backlog in each buffer on an AFDX network.

Table III.1: Notations
N AFDX network, i.e., switches, end-systems, network topology and vir-

tual links (including their routes)
BW Network bandwidth
O Set of output ports in the network
o, P , i , v Indices used to represent a switch output port, priority, input link and

a virtual link, respectively
CFv,o Set of all competing frames in the largest busy period encountered by

a frame of the virtual link v on the output port o
Po Set of priorities of all VLs that egress the output port o
Io Set of input links, connected to the same switch as the output port o,

from which the competing frames ingress
Vo,P,i Set of virtual links that egress the output port o with priority P and

ingress from the input link i
P-buffer Buffer of priority P
P-frame Frame of priority P
P-data Data of priority P

III.2. Upper Bound Computation 33

fmax Largest frame among all competing frames
fLP,max Largest competing frame with priority lower than P
∗ Index used to represent the scenario leading to the largest backlog

faced by a virtual link (worst case scenario)
� Index used to represent a scenario other than the worst case scenario
ω Point in time when the first competing frame starts to ingress
α Point in time when the first competing frame starts to egress
β Point in time when the last competing frame of priority other than

the frame under analysis completely egresses
θP Point in time when the last competing frame of the priority P or higher

ingresses
s(data) Function that computes the size of data
t(size) Function that computes the time required to transmit data of length

size on a physical link, i.e., t(size) = size/BW
d(time) Function that computes the maximum amount of egress data on any

physical link during a time span time, i.e., d(time) = time ∗BW
σPALL Sum of the size of all competing P-frames
σPInterval Sum of the size of competing P-data that egresses during a given

interval

R∗P(b−a) Amount of ingress P-data in scenario * during the interval]a, b], i.e.,
R∗P(b−a) = R∗Pb −R∗Pa , s.t. R∗Pa = R∗P(a−0), R

∗P
b = R∗P(b−0)

T ∗P(b−a) Amount of egress P-data in scenario * during the interval]a, b], i.e.,
T ∗P(b−a) = T ∗Pb − T ∗Pa , s.t. T ∗Pa = T ∗P(a−0), T

∗P
b = T ∗P(b−0)

B∗Pθ∗P P-buffer backlog at time θ∗P in the worst case scenario

Bo,P,v,max Largest backlog of a buffer in node o of priority P perceived by a
frame of virtual link v

Bo,P,max Largest backlog of a buffer in node o of priority P perceived by any
frame of priority P

blP (τ) Function to compute P-buffer backlog at time t

δR�P
τ Difference between the amount of P-data that ingresses during the

time interval]ω∗, τ] in the scenario � and *
δT �P

τ Difference between the amount of P-data that egresses during the time
interval]ω∗, τ] in the scenario � and *

Notice that Table III.1 shows three functions that address the computation of frame
properties. For a given frame fa:

• s(fa) computes the size of fa

• t(s(fa)) computes the time required to transmit fa

• d(t(s(fa))) computes the amount of egress data during the interval of time in
which fa egresses. The result of this equation is equivalent to s(fa), i.e., d(time)

34
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

is the inverse function of t(size). Notice that, while s(size) takes a frame as input,
d(time) takes a time value as an input.

We refer to the positive part of any variable with the notation ()+, e.g. (∆)+ =
max(0,∆). Further, we use the symbols ī, v̄, P̄ , respectively, to represent input links,
virtual links and priorities other than those already used in the outer loop described in
Algorithm 1.

III.2.4 Method Overview
When computing the backlog of any buffer on an AFDX network, we do not to consider
the complete network at once. Rather, for the backlog upper bound computation of
a buffer, we only investigate the network traffic that impacts the busy period of the
virtual links that egress from the same output port as the buffer under analysis. Once
the set of competing frames is known, we only investigate the respective output port,
the buffer under analysis and the physical links where the competing frames ingress.
Figures III.1, III.2 and III.3 show, based on an example, the relationship between the

complete AFDX network and the buffer under analysis. In this example, we analyze the
backlog of the buffer connected to the output port 9 of switch 2 (connecting switch S2 to
switch S3) in Figure III.1. Notice that each line connecting two entities in this figure is a
bi-directional link. We consider in this chapter that, each bi-directional link is modeled
by two unidirectional links. We assume that all traffic that impacts the computation
of the busy period under analysis reaches the output port of S2 from end-systems and
switches as depicted by the green arrows in Figure III.2. Once the set of competing
frames is known, the analysis can be restricted to the entities depicted in Figure III.3
and presented next:

• Switch output port (o) which the buffer under analysis is part of.

• Buffer under analysis (only the buffer under analysis needs to be considered).

• Virtual links that egress from output port o. Notice that only frames of these
virtual links are present in the busy period under analysis. These frames are
called competing frames (CFv,o).

• Input links from where competing frames ingress. Input links IL1, IL2, IL3, and
IL4 in Figure III.3, represent the links connecting the three end-systems e7, e8, e9

and the switch S1 to switch S2.

Algorithm 1 presents an overview of the upper bound computation for the buffer
backlog on the output ports of AFDX nodes. To compute an upper bound for the
backlog of a buffer on the network (for each output port o, and each buffer of priority
P– Lines 1 and Line 2 of Algorithm 1), we execute six basic steps:

III.2. Upper Bound Computation 35

S1

S2

S3

S4

S5 S

S6

S7

S8

S9

S2_P9

S_P

End-system

Switch

Output port

Figure III.1: Publicly available AFDX topology of the Airbus A380. Output port under analysis
is port 9 of switch 2 (S2_P9).

e1

e5

e9

e8

e7

e2

e3

e6

e4

S2S1

S9

S5

S2_P9

Figure III.2: Traffic that impacts the computation of the busy period under analysis marked
with green lines

i) identify all virtual links that egress from the same output port as the buffer under
analysis with the same priority as this buffer, i.e. generate the set Vo,P .

ii) select each virtual link (v) with the same priority (P) as the buffer under analysis
– Line 3

iii) compute the frames in the largest busy period encountered by a frame of virtual
link v , i.e. the competing frames (CFv,o) – Line 4

36
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

1

Buffers

2
3
4

n

IL 1

IL 2

IL 3

IL 4

OL

S2_P9

Figure III.3: AFDX output port: buffers (one per priority) and output link. Further, the input
links from where competing frames ingress the switch. Green lines represent ingress and egress
competing frames

iv) determine the properties of the worst case scenario – part of Line 52

v) compute the largest backlog encountered by a frame of virtual link v (Bo,P,v,max) –
Line 5

vi) compute an upper bound for the buffer backlog (Bo,P,max) by calculating the maxi-
mum largest backlog among all virtual links with priority P that egress the output
port o – Line 6

Algorithm 1 Upper bound computation overview
1: for each output port o ∈ O do
2: for each priority P ∈ Po do
3: for each virtual link v ∈ Vo,P do
4: CFv,o = GetCompetingFrames(N , o, v)
5: Bo,P,v,max = ComputeBacklog(N , CFv,o, P)
6: Bo,P,max = max

∀v∈Vo,P
(Bo,P,v,max)

In order to improve readability, the next sections omit the output port index o when-
ever possible.

III.2.5 Intervals
We define four types of time intervals to facilitate the buffer backlog analysis. According
to the ingress and egress of frames with same priority as the buffer under analysis,
each of these intervals present a specific backlog accrual. For the backlog analysis of a
buffer of a given priority P, Table III.2 presents the buffer backlog accrual according to
the ingress and egress of P-frames and the size of the respective interval s(Interval).
It is noteworthy that, when analyzing the ingress and egress of P-frames, any time
interval that does not match the properties of Table III.2 can be decomposed into
smaller intervals until each of them adheres to properties presented in that table.

2The theoretical analysis of the worst case scenario is presented in detail in Section III.2.6 and need
not be done in every iteration of Algorithm 1; only the computations resulting from this analysis
are executed in Line 5 of Algorithm 1.

III.2. Upper Bound Computation 37

Table III.2: Interval types description and respective buffer backlog accrual
interval
type

ingress of
P-frames

egress of
P-frames

backlog accrual

1 Yes No σPInterval

2 Yes Yes σPInterval − s(Interval)
3 No No 0

4 No Yes −s(Interval)

Figure III.4 depicts the ingress and egress of frames on a node and the respective
classification of intervals. Notice that frames are classified into three priority groups:
P, HP and LP, respectively for the priority under analysis, higher and lower priorities
than P. The upper part of the figure presents the competing frames ingressing from the
input links IL1 to IL4 and the egress frames from the output link (OL). The central part
of Figure III.4 presents the backlog on P-buffer and the lower part shows the interval
types.

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω α βθp

t

frames

HP

P

LP

1
2
3
4

in
te

rv
a
l

ty
p

e

τ1
τ2

τ3
τ4

Figure III.4: Example scenario. Ingress and egress frames at the top, buffer backlog in the
middle and interval types at the bottom

In intervals of type 1, P-frames ingress and no P-frame egresses during the whole
interval (see time intervals between ω and α, and τ3 and τ4). Consequently, the backlog
accrual is equal to the sum of all P-data that ingresses the P-buffer in these intervals.
In intervals of type 2, P-frames ingress and egress during the whole interval (see time
intervals between α and τ1, and τ4 and θP). Consequently, the backlog accrual is equal
to the sum of all P-data that ingresses the P-buffer minus the length of the interval.
In intervals of type 3, no P-frame ingresses or egresses the buffer. Consequently, the

38
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

P-buffer backlog does not change (see time interval between τ2 and τ3). In intervals of
type 4, no P-frame ingresses while P-frames egress during the whole interval (see time
intervals between τ1 and τ2, and after θP). Thus, the backlog decreases during type 4
intervals.
In every scenario, four events define important points in time for the analysis of the

worst case buffer backlog: ω, α, β and θP (see Figures III.4, III.5 and III.6). Notice
that, in the next paragraphs, we omit the scenario index (*, �) in the notations of these
points in time since the actual explanations apply to any scenario.

• ω: point in time when the first competing frame starts to ingress
• α: point in time when the first competing frame starts to egress
• β: point in time when the last competing frame of priority other than the frame

under analysis completely egresses
• θP : point in time when the last competing frame of the priority P or higher

ingresses

These points in time mark the start or end of some of the intervals described in
Table III.2. For the sake of simplicity and without loss of generality, we assume in this
chapter that the start of arrival of the first ingress frame occurs at t = 0, i.e. ω = 0.
Additionally, in order to facilitate the presentation of the effects of different scenarios
on the buffer backlog accrual, we define a new variable ∆ to represent the amount of
egress data between β and θP , i.e. ∆ = d(θP −β). Negative values of ∆ reflect scenarios
in which the egress of the last frame of priority other than P occurs after the ingress of
the last P-frame, i.e. β > θP , which are analyzed differently. Figure III.5 presents such
a scenario. Notice that ∆ is not related to ∆h presented in Chapter II.

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω α βθp t

frames

HP

P

LP

Figure III.5: Example scenario with β > θP

III.2. Upper Bound Computation 39

III.2.6 Worst Case Scenario
We define worst case scenario as the ingress order of competing frames (and consequent
egress order) that leads to the largest backlog of the buffer under analysis encountered
by a frame, e.g., fm, of the virtual link v . Figure III.6 depicts the worst case scenario
(represented with the index *) for the P-buffer backlog considering the same set of
competing frames as in Figure III.4. Theorem III.1 describes the properties of the worst
case scenario for the P-buffer backlog encountered by a frame of the virtual link v (of
priority P).

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω∗ α∗ β∗ θ∗p

t

frames

HP

P

LP

1
2
3
4

in
te

rv
a
l

ty
p

e

fm

Figure III.6: Worst-case scenario for P-buffer considering the same competing frames as in
Figure III.4

Theorem III.1. The scenario leading to the largest backlog encountered by a frame fm

of a virtual link of priority P presents the following properties: i) the smallest sum of
lengths of type 2 intervals, ii) no type 4 interval before the arrival of the last P-frame,
i.e., not before θ∗P , iii) no type 1 or type 3 interval occurs after a type 2 interval, iv)
the largest P-buffer backlog occurs at the point in time when the last P-frame ingresses,
i.e., at θ∗P , v) fm is the last ingressing competing frame.

Next, we prove the five properties of Theorem III.1.

i) Smallest sum of lengths of type 2 intervals

Proof. At any moment, the backlog of P-buffer, is equal to the amount of ingress
data minus the amount of egress data until that moment. Notice that θ∗P is the
point in time when the last P-frame ingresses. Considering that, in the worst case
scenario, no type 4 interval occurs until θ∗P , the backlog (B∗Pθ∗P) at this point in
time is equal to the sum of all ingress P-data minus the sum of all egress P-data,
during type 2 intervals, until θ∗P . Equation III.1 presents this relationship:

B∗Pθ∗P = σPALL −
∑

s(Intervaltype_2) (III.1)

40
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

Consequently, the smaller the sum of lengths of type 2 intervals, the larger the
P-buffer backlog at θ∗P . Notice that property iv) of Theorem III.1 states that the
largest backlog of P-buffer occurs at θ∗P . Thus, the worst case scenario contains
the smallest sum of lengths of type 2 intervals until θ∗P . �

ii) No type 4 interval occurs before the arrival of the last P-frame

Proof. During intervals of type 4, the amount of data in the P-buffer decreases
(see Section III.2.5). Further, the occurrence of a type 4 interval does not favor
the occurrence of any other interval that compensates the decrease of the buffer
backlog w.r.t. the worst case scenario (caused by this type 4 interval).

Let us compare the buffer backlog of a scenario ’ in which a type 4 interval of size
s(I4) occurs from τ until τ + s(I4) before θ∗P , against the worst case scenario. At
the end of this type 4 interval, the buffer backlog in scenario � is smaller than in
the worst case scenario (Table III.2 shows that type 4 is the only interval type with
negative backlog accrual). The difference on buffer backlog accrual at the end of
this type 4 interval depends on the type of interval during [τ, τ + s(I4)] in the worst
case scenario. Table III.3 presents the accrual difference w.r.t. all types of interval
in the worst case scenario.

Table III.3: Difference on the backlog accrual caused by replacing a type 1, 2 and 3 with a
type 4 interval

interval type
replacement

backlog accrual difference

1 with 4 −(σ∗PI4 + s(I4))

2 with 4 −σ∗PI4
3 with 4 −s(I4)

Notice that, for a type 1 interval (I4) to occur, no P-frame may ingress during
[τ, τ + s(I4)]. Therefore, the amount of P-data stored in P-buffer until τ + s(I4)
decreases by σ∗PI4 (the amount of P-data stored between [τ, τ + s(I4)] in the worst
case scenario). Consequently, σ∗PI4 = 0 is the largest possible increase on the backlog
accrual after the interval I4. Recall that σ∗PI4 = 0 for type 3 intervals. Thus, no
increase in the backlog accrual is possible by replacing a type 3 with a type 4
interval. Replacing intervals of type 1 with type 4 and type 2 with type 4 leads to
decreasing the backlog by (σ∗PI4 + s(I4)) and σ∗PI4 , respectively. These two values are
larger than or equal to the largest possible backlog accrual after the interval I4, i.e.,
larger than σ∗PI4 . Hence, the occurrence of type 4, and the resulting replacement
with one of the other interval types, before θ∗P does not lead to a scenario in which
the backlog in P-buffer is larger than the largest backlog in the scenario described
by Theorem III.1. �

iii) No type 1 or type 3 interval occurs after a type 2 interval

III.2. Upper Bound Computation 41

Proof. Let us consider a scenario � (different from the worst case scenario as de-
scribed by Theorem III.1) in which a type 1 or type 3 occurs after a type 2 interval.
This implies that, in this scenario �, P-frames egress before β�, where β� represents
the transmission time of the last frame of priority other than P in scenario �, i.e.,
the counterpart of β∗. Next, we compare the buffer backlog in scenario � against
the backlog in the worst case scenario, and prove that there exists no scenario in
which the buffer backlog is larger than the backlog at θ∗P in the scenario described
by Theorem III.1.

Let B�P
τ be the P-buffer backlog of scenario � at a given point in time τ and B∗Pτ

be the buffer backlog of scenario * at the same point in time. Next, we prove that,
at any point in time between ω� and θ�P , the P-buffer backlog in scenario �is less
than or equal to the P-buffer backlog at θ∗P in the worst case scenario. Notice that
property iv) of Theorem III.1 proves that the P-buffer backlog does not increase
after the arrival of the last P-frame (θ∗P). Thus, our claim holds if:

B∗Pθ∗P −B
�P
τ ≥ 0 ∀ ω� ≤ τ ≤ θ�P

The buffer backlog of scenario � at any point in time τ is equal to the buffer backlog
of scenario * at the same τ plus the difference (increase or decrease) on the amount
of data that ingresses (δR�P

τ), minus the difference on the amount of data that
egresses (δT �P

τ) the P-buffer in the time interval]ω, τ]. Assuming ω∗ = ω� = 0, we
represent B�P

τ as:

B�P
τ = B∗Pτ + δR�P

τ − δT �P
τ (III.2)

where
δR�P

τ = R�P
τ −R∗Pτ (III.3)

δT �P
τ = T �P

τ − T ∗Pτ (III.4)

Figure III.7 illustrates the properties of δR�P
τ and δT �P

τ . In this example, the value
of δR�P

τ and δT �P
τ at t = τ1 are respectively s(f ′12) (size of the first ingress frame in

input link 2 of scenario �) and τ1−α�. At t = τ2, δR�P
τ is equal to 0 since the same

amount of P-data ingresses in both scenarios. The value of δT �P
τ is equal to s(f ′12).

In the worst case scenario, we represent the backlog at θ∗P w.r.t. any point in time
τ as:

B∗Pθ∗P =B∗Pτ +R∗P(θ∗P−τ) − T
∗P
(θ∗P−τ) (III.5)

Consequently, from Equation (III.2) and (III.5) we represent the difference between
the buffer backlog of the worst case scenario at θ∗P and of scenario � at time τ as:

B∗Pθ∗P −B
�P
τ =R∗P(θ∗P−τ) − T

∗P
(θ∗P−τ) − δR

�P
τ + δT �P

τ (III.6)

42
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω∗ α∗ β∗ θ∗ t

frames

HP

P

LP

fm

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω� α� β�θ� t

τ1 τ2

fmf�1
2

Figure III.7: Scenarios to illustrate the computation of δR�P
τ and δT �P

τ . On top, the worst
case scenario

Per definition, R(a−b) = Ra −Rb. Then:

R∗P(θ∗P−τ) = R∗Pθ∗P −R
∗P
τ = σPALL −R∗Pτ (III.7)

and:
σPALL = R�P

τ +R�P
(θ�P−τ) (III.8)

Substituting (III.8) into (III.7) and then into (III.6):

B∗Pθ∗P −B
�P
τ =R�P

τ +R�P
(θ�P−τ) −R

∗P
τ − T ∗P(θ∗P−τ) − δR

�P
τ + δT �P

τ

=R�P
τ +R�P

(θ�P−τ) −R
∗P
τ − T ∗P(θ∗P−τ) − (R�P

τ −R∗Pτ) + δT �P
τ

we have:
B∗Pθ∗P −B

�P
τ =R�P

(θ�P−τ) − (T ∗P(θ∗P−τ) − δT
�P
τ) (III.9)

We prove in Appendix (A.2.2) that the value computed by Equation III.9 is larger
than or equal to zero for any value of τ between ω� and θ�P , i.e., the P-buffer

III.2. Upper Bound Computation 43

backlog in scenario � is less than or equal to the P-buffer backlog at θ∗P in the
worst case scenario. . Notice that we do not investigate the P-buffer backlog for
values of τ larger than θ�P since no P-frame ingresses after this point in time, and
consequently the respective buffer backlog does not increase. �

iv) The largest P-buffer backlog occurs at θ∗P

Proof. Let us define a function blP (τ), where t represents time, to express the P-
buffer backlog. Considering that the backlog of P-buffer does not increase after the
arrival of the last P-frame, blP (τ) is a decreasing function for values of τ larger than
θ�P . Thus:

blP (τ) ≤ blP (θ∗P), ∀ τ ≥ θ∗P

According to Theorem III.1, no type 4 interval occurs before θ∗P in the worst case
scenario, i.e. the backlog on the P-buffer does not decrease until θ∗P . Therefore,
blP (τ) is an increasing function for values of t between ω∗ until θ∗P , i.e.:

blP (τ) ≤ blP (θ∗P),∀ ω∗ ≤ τ ≤ θ∗P

Consequently, at θ∗P , the P-buffer has the largest backlog. �

v) f m is the last ingressing competing frame

Proof. The proof of Property iv) of Theorem III.1 shows that for a given set of
competing frames, the largest backlog of the P-buffer occurs at θ∗P . Considering
that this theorem provides the worst case scenario properties, i.e., the properties
of the scenario leading to the largest backlog encountered by a frame (fm) of the
virtual link v , then fm must be the last ingress frame, i.e. ingress at θ∗P . �

III.2.6.1 Computation of β∗, α∗, θ∗P

This section presents the computation of the three important points in time – α, β and θP
– used to identify the worst case scenario and to compute the buffer backlog upper
bound. The next two statements provide important properties to identify the worst
case scenario:

1. From ω∗ until θ∗P , P-frames might egress only in type 2 intervals.
Per definition, P-frames might only egress in intervals of type 2 or 4 (see Ta-
ble III.2). Further, in the worst case scenario (according to Theorem III.1), no
type 4 occurs before θ∗P .

2. There exists only one type 2 interval in the worst case scenario: the
interval [β∗, θ∗P].
According to Theorem III.1, no type 1 or type 3 interval occurs after a type 2
interval. Remember that no interval of type 4 occurs until θ∗P , i.e., P-frames
egress only in type 2 intervals until θ∗P . Therefore, the start of a type 2 interval

44
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

defines β∗, the moment in time when the last frame of priority other than P
egresses. Further, since no type 4 interval occurs until θ∗P , the interval [β∗, θ∗P] is
a type 2 interval, and no other type 2 interval exists.

Consequently, the smallest sum of lengths of type 2 intervals, which is in fact only one
type 2 interval, requires the largest β∗ and the smallest θ∗P .

III.2.6.1.1 Computation of β∗ Notice that the largest β∗ implies the largest amount of
time, after ω∗, in which no P-frame egresses. Three effects may delay the transmission of
the first P-frame, thus defining the point in time β∗: idle time, blocking and interference.
Next we address each of these effects.
The store and forward characteristic of AFDX switches intrinsically leads to idle time

during the arrival of the first competing frame which, in turn, delays the transmission of
all competing frames. Blocking and interference occur when the delay on the transmis-
sion of a frame is caused by the transmission of frames of lower (LP-frames) and higher
(HP-frames) priority, respectively. In the worst case scenario, the largest sum of those
effects occurs and results in the value for β∗.

β∗ = idle∗v + interf ∗v + block∗v (III.10)

where idle∗v, interf ∗v , block∗v represent the worst case scenario idle, interference and block-
ing time for any possible scenarios of a set of competing frames, respectively.

III.2.6.1.1.1 Worst case idle time and α∗ Store and forward switches used in AFDX net-
works intrinsically add idle time in the transmission of the competing frames. If we
neglect the switching latency (time required by the switch fabric to forward a frame
when there is no contention due to other frames), the delay imposed on the transmis-
sion of the first arriving competing frame f 1

i is equal to transmission time of this frame,
i.e. s(f1

i)

BW
. Recall that the start of transmission of the first egress frame defines α∗ (see

Figure III.6). Considering ω∗ = 0, the larger the first egress frame, the larger the initial
idle time, and consequently, the larger α∗. Bauer et al. defines the concept of “advance”
in [BSF12a] and proves that there exists no scenario in which the sum of idle times on
the output link is larger than the length of the largest frame (assuming no idle time
on the input links). Therefore, the largest idle time occurs when the first ingress (and
consequently first egress) frame is the largest. The worst case scenario presented in
Figure III.6 depicts such idle time from ω∗ until α∗. We define fmax as the largest
competing frame and present Equation III.11 to compute the largest idle time in the
worst case scenario:

idle∗v = α∗ = t(s(fmax)) (III.11)

where:

fmax = fk | s(fk) = max
∀fk∈CFv,o

s(fk)

III.2. Upper Bound Computation 45

III.2.6.1.1.2 Worst case interference The largest possible interference occurs when all HP-
frames delay the egress of P-frames stored in the P-buffer. Therefore, in the worst case
scenario, all HP-frames ingress from their respective input links and egress before the
first P-frame starts transmission. Equation III.12 computes the worst case interference.

interf ∗v = t(σHPALL) (III.12)
where:

σHPALL =
∑

∀fk∈CF v̄,o

∀v̄∈Vo,HP

s(fk)

For the analysis of virtual links with the highest priority among all competing frames,
no HP-frame exists and consequently interf ∗v = 0.

III.2.6.1.1.3 Worst case blocking Blocking may occur in three different combinations:

1. P-frame blocks a HP-frame

2. L-frame blocks a HP-frame

3. L-frame blocks a P-frame

For a P-frame to block a HP-frame, this P-frame must egress before β (we omit the
scenario index in order to not restrict the analysis to any type of scenario). According
to Properties ii) and iii) of Theorem III.1, no P-frame egresses before β∗ (in the worst
case scenario). Therefore, we do not account for blocking caused by P-frames in the
worst case scenario.
Blocking caused by an LP-frame implies the transmission of this frame. This trans-

mission occurs only when all the following conditions hold:

• no HP-frame or P-frame is completely stored in the respective buffer, and

• at least one LP-frame is completely stored in the respective buffer, and

• no frame occupies the output link, i.e. the output link is idle.

The largest blocking occurs when the largest LP-frame starts transmission a (negligibly)
small amount of time (ε) before a HP-frame or a P-frame is completely stored in the
respective buffers. The largest blocking time is equal to the time required to transmit
the largest LP-frame, as presented in Equation (III.13). We assume that in the worst
case scenario, the largest LP-frame blocks the first arriving HP-frame, which in turn
postpones the start of the transmission of the interfering frames (LP-frames).

block∗v = t(s(fLP,max)) (III.13)

For the analysis of virtual links with the lowest priority among all competing frames,
no LP-frame exists and consequently block∗v = 0.

46
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

III.2.6.1.2 Computation of θ∗P In order to compute the smallest value for θ∗P , we define
θ∗Pi as the arrival time of the last P-frame of each input link i . Consequently, the arrival
time of the last P-frame among all input links is:

θ∗P = max
∀i∈Io

θ∗Pi (III.14)

We use the term sequence (seqi) to define the set of competing frames that ingress
from the same input link i , and gap (gapi) to define the idle time on input link i from ω∗

until the start of arrival of the first frame on that input link. Equation (III.15) computes
the size of a sequence:

s(seqi) =
∑

∀fk∈CF v̄,o

∀v̄∈Vo,P̄ ,i

∀P̄∈Po

s(fk) (III.15)

For a scenario with no idle time on the input links, Equation (III.16) computes the
arrival time of the last frame on an input link (θ∗Pi) by adding the time required to
receive the sequence on this input link to the time when the first frame of this input
link starts transmission, as presented in Equation III.16:

θ∗Pi = gapi + t(s(seqi)) (III.16)

According to Equation (III.16), the only term on the computation of θ∗Pi that depends
on the arrival order of frames is gapi, and consequently the smallest value of gapi leads
to the smallest value of θ∗Pi . We recall that, in order to ensure the largest idle time,
the largest frame egresses first, which per definition ingresses at α∗. We assume that, if
more than one frame ingresses at the same time, the tie breaking rule always favors the
largest backlog accrual (see Section III.2.8). The value of gapi is equal to:

gapi = α∗ − t(s(fmaxi)) (III.17)

According to Equation (III.16) and (III.17), the larger s(f 1
i) the smaller θ∗Pi . Therefore,

in the worst case scenario, the largest frame of each input link is the first frame to
ingress on this input link.

III.2.6.2 Mutually Exclusive Characteristics

For a some combinations of the competing frames, some characteristics used to describe
the worst case scenario in the previous sections become mutually exclusive, i.e. they do
not occur in the same scenario. Next, we list these mutual exclusive characteristics and
show that they do not result in any optimistic computation of the P-buffer backlog upper
bound. In order to analyze the impact of these mutual exclusive characteristics on the
buffer backlog, we use “fabricated scenarios”, i.e., scenarios in which the egress of frames
does not strictly respect the dispatching policy of the output port, e.g., assuming that
a frame might be transmitted before its arrival or frames do not egress despite their
complete arrival. Notice that no additional computation needs to be carried out to
account for the impact of those mutually exclusive conditions on the P-buffer backlog
upper bound.

III.2. Upper Bound Computation 47

III.2.6.2.1 The first arriving frame is the largest among all frames vs. the first arriving frame is
a LP-frame In Section III.2.6.1.1.1 we show that, in order for the idle time to be the
largest, the largest frame among all competing frames must be the first arriving frame.
Similarly, Section III.2.6.1.1.3 shows that for the largest blocking time to occur, the
largest LP-frame must be the first arriving frame. However, there may exist sets of
competing frames, in which the largest frame among all competing frames and the largest
LP-frame are not the same frame. For such sets of competing frames, if the largest LP-
frame and the largest frame among all competing frames do not ingress from the same
input link, our method leads to no pessimism or optimism. In this case, our method
assumes that the LP-frame ingresses a negligible amount of time (ε) earlier and is thus
transmitted first. Figure III.8 depicts such a scenario. Conversely, if these two frames
ingress from the same input link, we assume a fabricated scenario in which the largest
frame is the first ingress frame and immediately after its complete arrival, the largest
LP-frame starts transmission. Figure III.9 depicts such a scenario. In this fabricated
scenario, both the largest idle and blocking time occur. This scenario imposes some
pessimism on the P-buffer backlog upper bound computation. This pessimism is less
than or equal to the difference between the size of the largest competing frame and the
largest LP-frame.

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω∗ α∗ β∗ θ∗ t

frames

HP

P

LP

fmax

fm

Figure III.8: Largest P-frame and largest frame among all competing frames egress from
different input links

III.2.6.2.2 No idle time occurs on the input links vs. idle time occurs before the arrival of the last
arriving frame For the computation of θ∗Pi , we assume in Section III.2.6.1.2 that no idle
time occurs on the input links during the arrival of competing frames. Property v) of
Theorem III.1, however, states that a frame of the virtual link under analysis must be the
last ingressing frame. Enforcing the latter property might require assuming some idle

48
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω∗ α∗ β∗ θ∗ t

frames

HP

P

LP

fmax

fm

Figure III.9: Fabricated scenario in which the largest P-frame and largest frame among all
competing frames egress from the same input link

time before the arrival of fm. This mutually exclusive condition occurs if the sequence
in which the virtual link under analysis ingress is not the one leading to the maximum
θ∗Pi . Figure III.10 depicts a worst case scenario with idle time in the input link IL 4.
Assuming idle time in the input link to enforce fm to be the last ingressing competing
frames does not lead to any optimism or pessimism if, by “adding” this idle time, θ∗P
does not change.

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω∗ α∗ β∗ θ∗ t

frames

HP

P

LP
fm

Figure III.10: Idle time on the input link enforcing fm to be the last arriving competing frame
does not impact the computation of the P-buffer backlog upper bound computation

III.2.6.2.3 A frame of the virtual link under analysis is the last arriving frame vs. a frame of the
virtual link under analysis is the first arriving frame For the same reasons presented in
Section III.2.6.2.2, a frame of the virtual link under analysis must be the last ingressing

III.2. Upper Bound Computation 49

frame. However, as presented in Section III.2.6.2.1, in order for the idle time to be the
largest, the largest frame among all competing frames must be the first arriving frame.
Therefore, if the set of competing frames is such that there exists only one frame of the
virtual link under analysis and this is the largest among all frames, we assume that this
frame is the last to ingress and that the values of θ∗Pi (for each input link) and α∗ do
not change. In this scenario, fm is the only competing frame of the virtual link under
analysis and is the largest frame among all competing frames. Notice that, to enforce α∗
and θ∗Pi , this fabricated scenario postpones the egress of the three first frames ingressing
from input link IL 2. This assumption adds some pessimism to the computation of the
upper bound for the backlog of P-buffer. This pessimism is less than or equal to the
difference between the size of the frame of the virtual link under analysis and the size
of the second largest frame.

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω∗ α∗ β∗ θ∗ t

t(s(fm))

frames

HP

P

LP

fm

Figure III.11: Fabricated scenario in which α∗ and θ∗Pi do not change for a set of competing
frames as described in Section III.2.6.2.3

III.2.7 Upper Bound Computation
The next two sections present the last steps in the computation of an upper bound
for the backlog of a buffer in an AFDX network: Section III.2.7.1 presents the upper
bound computation for the buffer backlog encountered by a frame of one virtual link,
and Section III.2.7.2 presents the computation of an upper bound for the backlog of the
buffer under analysis, taking into account all virtual links that egress an output port
through this buffer.

III.2.7.1 Buffer Backlog Upper Bound encountered by one Virtual Link

Recall that ∆∗P = d(θ∗P − β∗). The computation of the P-buffer backlog upper bound
is split into two cases. If ∆∗P ≤ 0, then there exists a scenario in which, at a given point

50
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

in time, all competing P-frames are stored in the buffer (Figure III.12).

P
-b

u
ff

e
r

b
a
c
k
lo

g

OL

IL 1
IL 2
IL 3
IL 4

ω∗ α∗ β∗θ∗ t

frames

HP

P

LP

fm

Figure III.12: Worst case scenario in which ∆∗P < 0

Consequently, the backlog upper bound is equal to the sum of the sizes of all competing
P-frames. If ∆∗P > 0, then ∆∗P represents the amount of data transmitted during the
single type 2 interval that occurs until θ∗P (Figure III.6). Therefore, the backlog upper
bound is equal to sum of the sizes of all competing P-frames minus ∆∗P .
Considering (∆∗P)+ = max(0,∆∗P), we compute the upper bound for the P-buffer

backlog encountered by a frame of the virtual link under analysis (line 5 of Algorithm 1)
as:

Bo,P,v,max = σPALL − (∆∗P)+ (III.18)

III.2.7.2 Backlog Upper Bound for the Buffer Under Analysis

The computations presented in Equations (III.10) - (III.18) provide an upper bound for
the backlog encountered by a frame of a virtual link with the same priority as the buffer
under analysis (line 5 of Algorithm 1). After considering the upper bounds encountered
by each egress virtual link with priority P (for each loop between lines 3 and 5 of
Algorithm 1), Equation (III.19) computes the upper bound for the P-buffer backlog on
a switch output port (line 6 of Algorithm 1):

Bo,P,max = max
∀v∈Vo,P

(Bo,P,v,max) (III.19)

III.2. Upper Bound Computation 51

III.2.7.3 Summary of Upper Bound Computation

Algorithm 2 P-buffer backlog upper bound encountered by a frame of virtual link v
1: function ComputeBacklog(N , CFv,o, P)
2: β∗ ← ComputeBetaWorstCase(N , CFv,o, P)
3: θ∗P ← ComputeThetaWorstCase(N , CFv,o, P)
4: ∆∗P ← d(θ∗P − β∗)
5: σPALL ← ComputeSumOfSizesOfCompetingP(N , CFv,o, P)
6: return σPALL − (∆∗P)+

7: function ComputeBetaWorstCase(N , CFv,o, P)
8: fmax = fk | s(fk) = max

∀fk∈CFv,o
s(fk)

9: idle∗v ← t(s(fmax))

10: σHPALL ←
∑

∀fk∈CF v̄,o

∀v̄∈Vo,HP

s(fk)

11: interf ∗v ← t(σHPALL)

12: s(fLP,max) = max
∀fk∈CF v̄,o

∀v̄∈Vo,LP,̄i

∀ī∈Io

s(fk)

13: block∗v ← t(s(fLP,max))

14: return idle∗v + interf ∗v + block∗v

15: function ComputeThetaWorstCase(N , CFv,o, P)
16:

s(seqi)←
∑

∀fk∈CF v̄,o

∀v̄∈Vo,P̄ ,i

∀P̄∈Po

s(fk)

17: fmaxi = fk | s(fk) = max
∀fk∈CF v̄,o

∀v̄∈Vo,P̄ ,i

∀P̄∈Po

s(fk)

18: gapi ← α∗ − t(s(fmaxi))

19: θ∗Pi ← gapi + t(s(seqi))

20: return max
∀i∈Io

θ∗Pi

21: function ComputeSumOfSizesOfCompetingP(N , CFv,o, P)

22: return
∑

∀fk∈CF v̄,o

∀v̄∈Vo,P,̄i

∀ī∈Io

s(fk)

52
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

III.2.8 Discussion
The analysis presented in Sections III.2.6 and III.2.7 assumes a switch implementation
in which data transfers from and to output buffers occur bit-wise, i.e., frames are copied
to output buffers as they ingress and removed from these buffers as they egress, bit
by bit. We name this implementation Design 1. Next we consider two other possible
implementation designs (Design 2 and Design 3) and show how the backlog upper
bound in these implementations relates with the results presented in Section III.2.7.
We assume, for Design 2, that ingress frames are first completely stored into an input

buffer and then copied “at once” to the respective output buffer. The output buffer
memory allocated to a frame is only freed after the complete transmission of this frame.
For Design 3, we assume that the amount of data required to store the complete frame

is reserved on the output buffer as soon as the first bit of the frame ingresses the switch.
Similar to Design 2, we assume that the memory allocated to a frame is only freed after
the complete transmission of this frame. Figure III.13 presents a graphic representation
of the buffer backlog behaviour for each implementation design: the upper part depicts
the ingress and egress of a P-frame and the lower part shows the respective P-buffer
backlog for each of the three previously described implementation designs.

IL

OL

D
es

ig
n

 1

O
u

tp
u

t
b

u
ff

er
 b

ac
k

lo
g

D
es

ig
n

 2

t

t

t

t

t

D
es

ig
n

 3

Figure III.13: P-buffer backlog behaviour of each implementation design during ingress and
egress of a P-frame

The buffer backlog accrual due to the ingress of frames, for Design 2 switches, is less
than or equal to the one presented in our paper. The optimism w.r.t. our method is
less than or equal to the sum of the largest competing frame of each input link. During
the egress of frames, Design 2 switches lead to more pessimistic backlog accrual than
the one presented in our paper. This pessimism is less than or equal to the size of the
largest competing frame. Considering that only one frame egresses at a time, we can

III.3. Experiments 53

compute an upper bound for the buffer backlog of Design 2 switches by adding the size
of the largest competing frame to the result from Equation (III.19).
The buffer backlog accrual for switches implemented according to Design 3 is, in

comparison to Design 1, larger both during ingress and egress of frames. During the
ingress of a frame, the pessimism of Design 3 is less than or equal to the size of this
frame. Considering that frames ingress from multiple input links, the total pessimism
due to ingress of frames is less than the sum of the largest competing frame of each input
link. Similarly, during the egress of any frame, the pessimism is less than or equal to
the size of this frame. Thus, we can compute an upper bound for the buffer backlog of
switches implemented according to Design 3 by adding the result from Equation (III.19)
to the sum of the size of the largest competing frame of each input link plus the size of
the largest competing frame among all frames.

III.3 Experiments
We implemented a tool to use our proposed method to compute the upper bounds for
the buffer backlog of AFDX networks with multiple priority traffic. This tool starts
by using the trajectory approach to compute the required competing frames. Then, it
computes an upper bound for the backlog of each buffer on the switch output port, as
presented in Section III.2.
In our experiment, we are interested in measuring the time required to compute the

buffer backlog upper bound applying our proposed method. We assume that the network
designer analyzes the end-to-end latency on the network using the trajectory approach,
or any similar method that computes the busy period of frames along their path. As
part of the end-to-end latency analysis, the trajectory approach computes most of the
values required by our method. Therefore, the time added for the computation of the
buffer backlog upper bound is minimum.
For our experiment, we created a set with 500 virtual links and 3452 paths. We

uniformly assign one out of three priority levels to the virtual links. The network
topology in this experiment resembles the topology of the Avionics Network Laboratory
at the chair of real-time systems in the University of Kaiserslautern, which in turn
is similar to the publicly available topology of the Airbus A380 [But10]. Considering
that the same traffic is present in the redundant AFDX networks, we do not consider
the redundant network in our analysis. The route of all virtual links obey the path
restriction assumed by the trajectory approach (see Section II.3.2.1.3).
In the aforementioned experiment, it takes our tool 60 minutes to compute the end-to-

end latency of 49 virtual links that egress the output port under analysis, and 20 seconds
to compute the upper bounds for the backlog of the three buffers (one per priority level)
on that output port. We observe from this experiment that the computational cost
required by our method is negligible.

54
Chapter III. Buffer Backlog Upper Bound for AFDX Networks with

Multiple Priority Traffic

III.4 Summary

In this chapter, we presented a method to compute an upper bound for the backlog
of every buffer on an AFDX network. We showed that contention occurs on a switch
output port every time multiple frames try to egress this port at the same time. The
contention issue is addressed by means of buffering in AFDX networks. Considering
that safety-critical applications of avionics systems exchange data via AFDX network,
overflow of these buffers must be avoided at all cost. Even though the AFDX standard
recommends a minimum amount of memory to be reserved for the output buffers, this
amount does not represent a safe bound for every network configuration. Further, this
recommendation does not specify how the reservation should be shared among buffers
of different priorities.
The current AFDX standard allows for the classification of network traffic in two

priorities: high and low. However, some existing commercial solutions extended the
number of used priorities allowing, for instance, frame scheduling according to the rate
monotonic policy, if the number of existing priorities is larger than or equal to the
number of used BAGs. In the approach presented in this chapter, we assumed an
AFDX network in which virtual links are classified with any number of priority levels.
We provided the computation of an upper bound for each buffer (one per priority level)
in the network.
We investigated, for each output buffer, the largest backlog encountered by probe

frames (called fm) of each virtual link with the same priority as that buffer. We an-
alyzed the largest busy period encountered by the probe frame of a virtual link and
presented the arrival properties of the frames in the busy period (called competing
frames) that lead to the largest backlog faced by the probe frame. In order to facilitate
the investigation of those properties, we introduced the concept of types of intervals.
Each type of interval has well defined properties w.r.t. ingress and egress of frames.
We showed that, according to the defined properties, only four types of intervals

exist. We used the four types of interval to describe the properties of the scenario
(ingress and egress order of frames in the largest busy period) leading to the largest
backlog encountered by a frame of a virtual link.
We formalized the worst case scenario description in Theorem III.1 and proved that

there exists no other scenario in which the probe frame encounters a buffer backlog larger
than the one in the worst case scenario. Once the worst case scenario is identified, we
showed how to compute an upper bound for the buffer backlog encountered by a frame
of one and then of all virtual links that egresses a switch through the output port in
which the buffer under analysis belongs to. This computation provided an upper bound
for the backlog of the buffer under analysis.
Our approach assumed that data transfers from and to output buffers occur bit-wise

inside the switches, i.e., frames are copied to output buffers as they ingress and removed
from these buffers as they egress bit by bit. Output buffers of switches that do not follow
this assumption may encounter different backlog upper bounds. Hence, we also discussed
in this chapter methods on how to apply the results achieved under our assumptions
onto switches in which internal data transfer occurs differently.

III.4. Summary 55

The results from our simulations showed that, the computation time required exclu-
sively by our method is negligible when compared to the time required to compute the
end-to-end delay in the same network by an state-of-the-art approach.

Chapter IV

TTEthernet Background and State-of-the-Art
in Time-Triggered Schedulers

This chapter describes the fundamental properties of Time-Triggered Ethernet (TTEth-
ernet) and the related work on the computation of schedules for time-triggered systems.
Section IV.2 presents the terminology used to address data transmission over TTEth-

ernet. In Section IV.3, we present the properties of TTEthernet required in Chapter V.
Then, in Section IV.4, we present the state-of-the-art methods used to generate sched-
ules for time-triggered systems. Section V.6 concludes this chapter with a summary.

57

58
Chapter IV. TTEthernet Background and State-of-the-Art in

Time-Triggered Schedulers

IV.1 Introduction
Time-triggered Ethernet [tim16] and [Kop08], is an extension of the switched Ethernet
(IEEE 802.3) that allows for deterministic data communication and standard Ethernet
traffic to coexist in the same network. According to the temporal guarantees, TTEth-
ernet defines three classes of messages: Best Effort (BE), Time-Triggered (TT), and
Rate-Constrained (RC).

Best Effort BE-messages are the “normal” Ethernet messages, and therefore have no
temporal guarantees.

Rate-Constrained RC-messages follow the AFDX standard, ensuring a minimum pre-
configured bandwidth for each RC-message. Chapter II presents details about
AFDX.

Time-Triggered TT-messages are transmitted strictly periodically, thus providing de-
terministic communication channels. The dispatching times of the frames of every
TT-message are defined off-line in a conflict-free schedule. In order to ensure
the correct dispatch time of TT-frames in every network node, all nodes involved
in the time-triggered communication must agree on a common time base. For
this reason, TTEthernet implements a transparent clock synchronization proto-
col. Section IV.3.1 describes the properties of TTEthernet clock synchronization
protocol relevant to the schedule of time-triggered messages.

IV.2 Terminology
In this dissertation, we use three terms to address the data transmission over TTEth-
ernet at different levels: frame, virtual link, and message. Notice that the following
terminology is slightly different from the one previously described in Section IV.1. Fig-
ure IV.1 depicts the relationship between these three terms.

Frame: We adhere to the OSI model and consider frame the Protocol Data Unit
(PDU) at the data link layer.

Virtual link: A time-triggered virtual link is a virtual communication channel be-
tween one source and one or multiple destination nodes providing not only band-
width reservation but also deterministic transmission for its frames. Frames of a
TT virtual link are transmitted strictly periodically.

Message: Message is the actual information generated at application level, e.g., a
sensor or an actuator value, the result of a computation or an encoded video
frame. A large message may span multiple frames (see the example in Figure IV.1).
Similarly, multiple messages might be merged into the single frame. In the simplest
case, one frame carries one message. The analysis of methods to group or segment
messages into frames is out of the scope of this dissertation.

IV.3. Relevant Properties of Time-Triggered Ethernet 59

Phase: We use the term phase, represented by φ, to refer to the dispatch time of
the first frame of a virtual link w.r.t. the start of a TTEthernet schedule. The
phase assigned to a virtual link defines the dispatching time of each frame of this
virtual link: due to the strictly periodic transmission of frames, the dispatching
time of the k-th frame of a virtual link v scheduled at phase φv occurs at a time
tkv = φv + (k − 1)× Tv, where Tv is the virtual link period. Figure IV.1 shows the
phase and the scheduled transmission windows of each frame of a virtual link.

Physical link: Physical link is the term used to refer to a unidirectional connection
between two nodes in the network. Hence, the full-duplex (bi-directional) connec-
tion between two nodes is modeled as two (unidirectional) physical links.

Schedule: We call schedule, the phases assigned to TT virtual links. Notice that,
whereas a scheduling table contains the transmission time of each TT-frame, a
schedule contains the phase of the virtual link.

phase ()φ

start of
schedule

Frames
transmission

TT virtual link
reservations

Messages
(application level)

Frames

t

t

Message1 Message2

f1,1 f2,1

f1,1 f1,2 f1,3 f2,1

f1,2 f2,2f1,3 f2,3

Figure IV.1: Relationship between message, frame, virtual link and phase.

IV.3 Relevant Properties of Time-Triggered Ethernet

IV.3.1 Clock Synchronization
TTEthernet allows the nodes connected to the network to have a common notion of time
by providing a transparent, fault-tolerant clock synchronization protocol. This protocol
is classified as transparent because, despite using the same medium (the network) to
exchange the clock synchronization messages, other types of traffic coexist in the same
network, e.g., rate-constrained, best effort.
The nodes involved in the clock synchronization protocol are divided into three cat-

egories: synchronization masters (SM), synchronization clients (SC), and compression

60
Chapter IV. TTEthernet Background and State-of-the-Art in

Time-Triggered Schedulers

masters (CM). These nodes exchange a special type of messages, called Protocol Control
Frames (PCF) to establish the clock synchronization. We divide the analysis of the clock
synchronization protocol in two steps, depicted in Figure IV.2. In a first steps, each SM
sends a PCF to the CM nodes (messages ID 1, ID 2, and ID 3 in Figure IV.2a). Then,
the CM nodes calculate an average value from relative arrival times of these PCFs and
send a PCF to all nodes involved in the clock synchronization protocol (messages ID
1, ID 2, and ID 3 in Figure IV.2b), i.e., SCs and SMs. This message exchange occurs
periodically, at time intervals called integration cycles. A set of integration cycles defines
the cluster cycle, which is the hyper period of the time-triggered schedule. Figure IV.3
presents the relationship between, cluster cycle, integration cycle, and the points in
time when the exchange of PCFs occurs. Notice that the exchange of messages used by
the clock synchronization protocol occurs in a time interval limited by the start of an
integration cycle and tsyncEnd.

Synchronization
Master (SM)

Synchronization
Master (SM)

Synchronization
Master (SM)

Compression
Master (SM)

Synchronization
Client (SC)

ID 1 ID 2

ID 3

(a) Synchronization masters send
PCFs to the compression master.

Synchronization
Master (SM)

Synchronization
Master (SM)

Synchronization
Master (SM)

Compression
Master (SM)

Synchronization
Client (SC)

ID 5 ID 5

ID 5 ID 5

(b) Compression master sends PCFs
to SM and SC.

Figure IV.2: Exchange of messages for the TTEthernet clock synchronization protocol
(adapted from [tim16]).

Integration Cycle 0

Cluster Cycle

Integration Cycle n Integration Cycle 1 ... Integration Cycle n

t syncStart

t syncEnd

Figure IV.3: Relationship between cluster cycle, integration cycle, and transmission of
PCFs.(adapted from [tim16])

For more details on the clock synchronization protocol used in the TTEthernet, we
refer the interested reader to the respective AES standard [tim16].

IV.3. Relevant Properties of Time-Triggered Ethernet 61

IV.3.2 Scheduling TTEthernet Transmission Windows
Scheduling a TT virtual link means reserving a time window (transmission windows)
at a scheduled point in time for the transmission of each frame of that virtual link on
each physical link in its path. The problem of scheduling TT-frames in a physical link is
similar to scheduling non-preemptive strictly periodic jobs in offset1 free systems [Goo03]
or independent operations strictly periodically [Kor92]. Next, we address the common
concepts of these two domains: job and frame scheduling.

Offset free systems Goossens describes periodic offset free systems in [Goo03] as sys-
tems in which jobs have no definite requirement about starting times. In such
systems, an off-line scheduler assigns these starting times. Earliest starting times
of jobs in such system are separated by task period. Similarly, definite transmis-
sion windows start times in TTEthernet networks are not requirements given by
applications, they are rather computed by the TTEthernet off-line scheduler.

Strictly periodic The separation between the start of execution of any two consecutive
jobs of a task in strictly periodic systems is equal to the task period. Similarly,
the reserved transmission windows of any two consecutive TT-frames of the same
virtual link is separated by the virtual link period.

Non-preemptive In this chapter, we assume that the transmission of a TT-frame is
not interrupted until the frame is completely transmitted. More specifically, we
assume that the frame integration strategy used by TTEthernet is timely block
(see Section IV.3.4). This strategy is similar to non-preemptive job scheduling.

A valid TT schedule for a given physical link shall not contain overlapping transmis-
sion windows. This property ensures no contention among frames of TT virtual links.
Nevertheless, contention might occur due to the transmission of ET-frames, since their
transmission times are not known in advance. Next section presents how TTEthernet
addresses this contention.

IV.3.3 Contention
TTEthernet defines in [tim16] and [Kop08] three strategies to address contention and
consequently, integrate the transmission of TT- and ET-frames:

Timely block This strategy ensures that, inside a transmission window, only the
scheduled TT-frame can be transmitted. Consequently, an ET-frame does not
start transmission if its (partial) transmission would occur inside a scheduled TT
transmission window. The transmission of such an ET-frame is deferred to a point
in time in which this frame can be completely transmitted outside the scheduled
TT transmission windows (see Figure IV.4). On the one hand, this strategy leads
to underutilization of network bandwidth: TT-frames might not completely oc-
cupy the reserved transmission window, or some idle time might be enforced to

1The term offset used in [Goo03] is called phase in this dissertation.

62
Chapter IV. TTEthernet Background and State-of-the-Art in

Time-Triggered Schedulers

avoid an ET-frame to be transmitted inside a transmission window. On the other
hand, this strategy allows TT-frames to be transmitted exactly at the scheduled
point in time ensuring low jitter for TT-frames.

Preemption This strategy allows for the transmission of ET-frames inside scheduled
transmission windows. If the scheduled TT-frame becomes ready for transmission
while another frame occupies the reserved transmission window, the transmission
of the ET-frame is preempted and the TT-frame starts transmission until comple-
tion. After the complete transmission of the TT-frame, the transmission of the
preempted ET-frame restarts. This strategy allows for high network bandwidth
utilization, since the reserved transmission window might be used by ET-frames.
An important issue to be addressed is, the need of a mechanism to allow the re-
ceivers to identify the preempted frame as a truncated one, and in case of resumed
preemption, to reconstruct the preempted frame.

Shuffling Similar to preemption, this strategy allows for the transmission of ET-frames
inside TT scheduled transmission windows. However, if the scheduled TT-frame
becomes ready for transmission while an ET-frame is transmitted, the latter is not
preempted and the scheduled TT-frame is delayed until the ET-frame completes
transmission. Under this strategy, in the worst case, a TT-frame is blocked by
the largest ET frame. On the one hand, the shuffling strategy allows for high
bandwidth utilization, since ET-frames can be transmitted whenever the network
is idle and is not preempted (and consequently, need not be retransmitted). On
the other hand, the major drawback of this strategy is the large jitter that might
be imposed on TT-frames.

IV.3.4 Transmission Window Implementations
Heilmann and Fohler describe in [HF17] two possible implementations for a valid trans-
mission of a TT-frame inside a scheduled window.

Last Bit Strict (LBS) This implementation requires the last bit of a TT-frame to
be transmitted inside the scheduled window. In this chapter, we assume a more
restrictive version of LBS in which TT-frames start and finish their transmission
inside the scheduled window.

First Bit Strict (FBS) This implementation requires the first bit of the scheduled
TT-frame to be transmitted inside the scheduled window. The point in time when
the scheduled TT-frame completes transmission is not relevant. Nevertheless, the
completion occurs not later than the point in time when the scheduled window
ends plus the time required to transmit the TT-frame.

Figure IV.4 depicts the relationships between integration strategies and transmission
window implementations. In this figure, arrows pointing up represent the moment when
an ET- or TT-frame is ready for transmission, and the light blue rectangles represent
the scheduled transmission windows for TT-frames.

IV.3. Relevant Properties of Time-Triggered Ethernet 63

t

ETTT

ET TT

(a) Last bit strict and timely block

t

ET ETTT

ET TT

(b) Last bit strict and preemption

t

ET ETTT

ET TT

(c) Last bit strict and resumed preemption

t

ET TT

ET TT

(d) First bit strict and shuffling

Figure IV.4: Impact of transmission window implementations on frame integration strategies.

In this chapter, we assume the implementation of timely block and the restrictive
version of last bit strict Therefore, we consider that the transmission window length is
computed by:

txlength =
Smax + Preamble+ SFD + IFG

BW
(IV.1)

where: Smax, representing the largest length of a frame of that virtual link, ranges from
64 to 1518 bytes; and preamble, start frame delimiter (SFD), and inter-frame gap (IFG)
have fixed length of 7, 1, and 12 bytes, respectively. We assume in this dissertation that
Smax in Equation (IV.1) is an input parameter to the scheduler, which might not be the
same for each virtual link in the system. The transmission window start time of the
first frame of a virtual link (phase) is stored into the TTEthernet scheduling table.

IV.3.5 TT Frames Latency
In order to achieve the minimum latency of TT-frames, a TT schedule is constructed
such that TT-frames need not to be buffered2 along their path, i.e., a transmission

2Except for the buffering required by store and forward. Due to the store and forward approach used
in TTEthernet, switches must store a complete frame before relaying this frame to an output port.

64
Chapter IV. TTEthernet Background and State-of-the-Art in

Time-Triggered Schedulers

t

t

t

h
o
p

i
h
o
p

i+
1

h
o
p

i+
2

sl

sl

(a) Minimum latency for TT-frames when
transmission windows are scheduled back-
to-back along the virtual link path.

t

t

t

in buffer

in buffer

h
o
p

i
h
o
p

i+
1

h
o
p

i+
2

sl

sl

(b) If TT-frames are not scheduled back-
to-back along their path, TT-frames must
be buffered, and hence the latency is not
minimum.

Figure IV.5: Transmission window schedule along a TT virtual link path.

Table IV.1: Transformation of sporadic task into periodic reservation.
Parameter Sporadic Task Reservation Periodic Task

Execution Time Ci C
′
i = Ci

Deadline di d
′
1 = Ci

Minimum Interarrival Time Ti T
′
i = min(li + 1, Ti), li = di − Ci

window starts immediately after the scheduled arrival of a frame. Nevertheless, this is
not a mandatory condition.
Heilmann and Fohler show in [HF17] that scheduling TT-frames “back-to-back” might

lead to large jitter on RC-frames. Although timing analysis of RC-frames is not part of
this dissertation, we describe in Appendix IV.3.6 an approach that converts temporal
requirements of RC-frames into TT virtual links thus allowing for RC reservations in
the generation of TT schedule.
Figure IV.5 shows two simple examples where a TT-frame is scheduled across three

consecutive links: Figure IV.5a depicts a “back-to-back” schedule where no buffering is
required and Figure IV.5b shows another valid schedule in which the TT-frame must be
buffered and consequently faces a larger latency.

IV.3.6 Converting RC Temporal Requirements into TT Reservations

We describe in this section a method to account for the temporal requirements of RC-
frames in the generation of a TT schedule. Mok presents in [Mok83], a method to
transform the requirements of sporadic into periodic tasks reservations. Table IV.1
summarizes this method.
Similarly, we convert the requirements of RC virtual links into reservation TT virtual

links and generate a schedule that accounts for these reservation virtual links. Obviously,
the computed phases for these reservation TT virtual links are not part of the schedul-

IV.4. Related Work 65

ing table, they are rather a guarantee that the RC virtual links meet their temporal
requirements at run-time.

IV.4 Related Work
The literature provides different approaches that can be applied to compute schedules
for TTEthernet networks. In this section we describe the most relevant ones, divided
into three types of solutions. Section IV.4.1 presents solutions based on satisfiability
modulo theories (SMT) and mixed integer programming (MIP) solvers. Section IV.4.2
presents a method based on the meta-heuristic tabu search. And finally, Section IV.4.3
shows the results of strictly periodic scheduling of non-preemptive systems which can
be used to schedule TT virtual links. We extend the description of the related work in
Section IV.4.3 in order to highlight the principles applied to STSTTN.

IV.4.1 SMT and MIP Solver Approaches
Steiner shows in [Ste10] a method to model the scheduling problem of TT virtual links
as a set of SMT constraints. These constraints account not only for the network (set
of virtual links, paths, etc.) but also the available memory resources in each traversed
switch. The solver provides the schedule for all TT virtual links on the network. How-
ever, the main drawback of this approach is the exponentially increasing computational
time required for the SMT-solver to synthesize a schedule. Steiner presents the re-
quired synthesis time as a function of frames in the system. For the examples presented
in [Ste10], depending on the distribution the number of destinations per virtual links,
it takes the SMT solver up to 30 minutes to schedule approximately 18.000 frames in a
tree topology.
Craciunas and Oliver present in [CO16] an extension to Steiner’s work in which they

propose a combined schedule of TT tasks and TT virtual links. Further, they propose a
MIP formulation which allows for the solver to find a combined schedule while optimizing
one(some) parameter(s), e.g., minimizing end-to-end latencies. The results of the tested
scenarios show that a SMT solver synthesizes a schedule for a large3 scenario in a tree
topology in approximately 1 minute. For a huge4 scenario however, the solver is not
able to find a solution after a time-out of 10 hours. Adding the optimization constraint
to minimize end-to-end latency seems not to increase the synthesis time significantly.
It is important to notice, however, that the conclusions regarding the required synthe-

sis time presented in both papers should be carefully considered: the presented synthesis
time values represent the result of the synthesis of one test set, i.e., another test set with
similar properties (period, utilization, etc.) could lead to a different result. Further, the
authors do not present details on the network utilization. Nevertheless, the numbers
presented in both papers show that these methods do not scale well.

3Mesh or ring topology with 8 switches and 48 end systems, or tree topology with 15 switches and 48
end systems

4Mesh or ring topology with 16 switches and 192 end systems, or tree topology with 43 switches and
432 end systems

66
Chapter IV. TTEthernet Background and State-of-the-Art in

Time-Triggered Schedulers

IV.4.2 Tabu Search Meta Heuristics
Selicean et al. present in [TPS15] a method based on the meta-heuristic tabu search to
schedule TT virtual links. This work also accounts for the temporal constraints of RC
virtual links. Their goal is to minimize the end-to-end delay of RC frames by modifying
the message packing/ fragmentation into frames, assignment of frames to virtual links,
routing of virtual links and the actual (feasible) schedule of TT frames.
The authors present an evaluation section which presents the results achieved after

running the proposed method (DOTTS) for 45 minutes in different scenarios with up
to 90% network load and up to 37 end-systems. This evaluation shows that, if the tabu
search modifies not only the schedule but also the route and packing/fragmentation
strategies, DOTTS increases the schedulability of all described message sets. All tested
message sets are deemed schedulable with DOTTS. Further, the average end-to-end
delay of RC messages notably decreases for some message sets. However, as in the
experiments mentioned in Section IV.4.1, each point in the results table represents one
message set with the described properties. Moreover, no details, except maximum and
minimum values, about the tested periods is mentioned in this paper. Nevertheless, the
results present a clear trend for all message sets showing that they are all scheduled
within 45 minutes.

IV.4.3 Strictly Periodic Scheduling
This section presents the related work on strictly periodically scheduling, which is used
as basis for our scheduler. We divide the scheduling analysis of a TTEthernet network
in two steps: first scheduling a pair of tasks, then multiple tasks.

IV.4.3.1 Scheduling a Pair of Tasks

Korst shows in Chapter 4 of his PhD thesis [Kor92] that scheduling non-preemptive
strictly periodic tasks in offset free uniprocessor systems (called in his thesis scheduling
independent operations strictly periodically) is an NP-complete problem in the strong
sense. Assuming some restrictions on the message sets however, drastically reduces com-
plexity. For example, Korst shows, also in [Kor92], that, if all tasks periods and execution
times are divisible, this scheduling problem can be solved in polynomial time. However,
according to the Time-Triggered Ethernet functionality described in the Society of Au-
tomotive Engineers standard SAE AS6802 [tim16], no such restrictions are mandates
for TT virtual links. Therefore, these restrictions are not assumed by STSTTN.
Goossens shows in [Goo03] that, for any pair of strictly periodic tasks vi and vk

with periods and worst case execution time Tvi , Cvi and Tvk , Cvk respectively, the largest
possible distance between the execution of a job of vi and the following job of vk is
equal to the greatest common divisor(gcd) of the two periods, i.e., gcd(Tvi , Tvk). We can
assume, without loss of generality, that one task is scheduled at time origin, e.g. φi = 0.
Figure IV.6 depicts an example with possible schedules (including infeasible ones) for
two tasks v1 and v2 such that Tv1 = 8, Cv1 = 2 and Tv2 = 12, Cv2 = 1. This figure further
depicts the concept of equivalent schedules, i.e., schedules in which the execution of jobs

IV.4. Related Work 67

are located at same relative points in time. Goossens summarizes in [Goo03] the concept
of equivalent schedules presented in [Kor92] as “schedules that lead to the same periodic
behavior”. Notice that Figure IV.6 shows that schedules are equivalent whenever φ2 is
displaced by gcd(8, 12) = 4 units of time. Korst shows in [Kor92] that, when scheduling
two strictly periodic operations(task), all non-equivalent choices for scheduling a task
τ2, considering τ1 is scheduled, are represented by the set {0, 1, 2, . . . , gcd(T1, T2) − 1}.
The presented example with two virtual links introduces the intuition behind the use of
the greatest common divisor of periods in the TTEthernet scheduling problem.

t

t

t

t

t

t

t

v1

φ1 = 0

v2

φ2 = 0

v2

φ2 = 1

v2

φ2 = 2

v2

φ2 = 3

v2

φ2 = 4

v2

φ2 = 5

Equivalent

Figure IV.6: Schedules for two virtual links on the same physical link. v1 scheduled at φ1 = 0
and six different schedules for v2. The number of non-similar schedules is 4.

For any a pair of strictly periodic tasks, Marouf and Sorel [MS10] present Equa-
tion (IV.2) to compute the set of feasible phases (Λk) for vk assuming that vi is scheduled
at φi.

Λk = φi + n× gcd(Tvi, T vk) +m (IV.2)
∀n ∈ N, ∀m ∈ [Ci, gcd(Tvi, T vk)− Ck]

Equation (IV.3) integrates the principle of non-equivalent schedules presented in [Kor92]

68
Chapter IV. TTEthernet Background and State-of-the-Art in

Time-Triggered Schedulers

into the computation of feasible phases proposed in [MS10]:

Λk = φi + n× gcd(Tvi, T vk) +m (IV.3)
∀n ∈ Z,∀m ∈ [Ci, gcd(Tvi, T vk)− Ck], such that:

min{Λk} ≥ 0,max{Λk} < gcd(Tvi, T vk)

Korst presents in [KALW91] a simple sufficient and necessary feasibility test that can
be applied if only two TT virtual links are to be scheduled:

Ci + Ck ≤ gcd(Tvi, T vk) (IV.4)

The following sections address the properties of scheduling multiple virtual links.

IV.4.3.2 Scheduling Multiple Tasks

The sufficient and necessary feasibility test presented by the Inequality (IV.4) does not
hold for multiple tasks. Inequality (IV.5) presents a straight forward modification of
that feasibility test which holds as a sufficient feasibility test.

n∑
i=1

Ci ≤ gcd(∀i, Tvi) (IV.5)

where n is the number of TT virtual links to be scheduled

This sufficient test is very restrictive. We refer the interested reader to [MS11], where
the authors present a less restrictive sufficient test.

IV.5 Summary
TTEthernet is an extension of the switched Ethernet (IEEE 802.3) which allows for Best-
Effort (BE), Rate-Constrained (RC) and Time-Triggered (TT) traffic to coexist in the
same communication system In this chapter, we presented the fundamental properties of
TTEthernet required to understand our scheduler proposed in Chapter V. Additionally,
we present in this chapter the state-of-the-art in the generation of a schedule for TT
virtual links in TTEthernet.
We started this chapter by presenting our terminology used to address the data trans-

mission over TTEthernet. Then, we showed how the TTEthernet clock synchronization
protocol impacts on the scheduling of TT-frames. In TTEthernet, scheduling a TT vir-
tual link means reserving a time window (transmission windows) at a scheduled point
in time for the transmission of each frame of that virtual link on each physical link in
its path. In Section IV.3.2, we showed the similarities of the problem of scheduling TT-
frames in a physical link and the problem of scheduling non-preemptive strictly periodic
jobs in offset1 free systems (or independent operations strictly periodically).
A valid TT schedule for a given physical link shall not contain overlapping transmis-

sion windows, and therefore no contention among TT-frames. Nevertheless, contention

IV.5. Summary 69

might occur due to the transmission of BE- and/or RC-frames, since their transmis-
sion times are not known in advance. We presented in Section IV.3.3 how TTEthernet
addresses contention.
We depicted in Section IV.3.5 how the end-to-end latency of a frame varies according

to the schedule on each physical link along the path of a virtual link, and presented
how to reach the minimum latency. And in Section IV.3.6, we described a method to
account for the temporal requirements of RC virtual links during the generation of a
TT scheduling table.
Section IV.4 presented the state-of-the-art approaches in the generation of scheduling

tables for TTEthernet.

Chapter V

Off-Line Scheduler for Time-Triggered
Networks

This chapter presents an off-line scheduler for Time-Triggered Ethernet networks. Our
scheduler, called Search Tree based Scheduler for Time-Triggered Networks (STSTTN),
searches for a set of phases for the time-triggered traffic on each traversed physical link
on the network, and ensures that the transmission time of time-triggered frames does
not overlap. This scheduling problem is known to be NP-complete in the strong sense.
Unless the optional preventive tree pruning approach is used, STSTTN is an optimal
scheduler, in the sense that, if a message set is schedulable, the scheduler finds a feasible
schedule. We start this chapter revisiting, in Section V.6, the reasons for the generation
of scheduling tables in TTEthernet. Section V.2 describes how the TTEthernet clock
synchronization protocol impacts on the scheduling table generation. We formalize
the scheduling problem description in Section V.3. Section V.4 presents our proposed
scheduler in detail and Section V.5 presents an empirical analysis of our scheduler based
on an extensive set of experiments. Section V.6 concludes this chapter with a summary.

71

72 Chapter V. Off-Line Scheduler for Time-Triggered Networks

V.1 Motivation
Real-time distributed systems are connected by networks providing real-time properties.
Such networks may apply two different paradigms for message transmission: event-
triggered (ET) and/or time-triggered (TT). This chapter focuses on the latter.
Time-Triggered Ethernet is an extension to standard Ethernet that allows for the

deterministic message transmission and offers both event-triggered and time-triggered
message transmission (see Chapter I). For time-triggered transmissions, “the sender and
receiver(s) agree a priori on a cyclic time-controlled conflict free communication schedule
for the sending of time-triggered messages” [Kop11]. Therefore, each sender connected to
a TT network requires a scheduling table containing the dispatching time of all frames1
transmitted by this sender. Additionally, a scheduling table with the arrival time of
frames, allows for a receiver to detect the late arrival of frames (or even missing frames)
and react accordingly.
In TTEthernet, frames of same TT virtual link2 are scheduled strictly periodically,

i.e., the dispatching time of frames of the same virtual link is separated by equal time
span. This chapter addresses the problem of generating a conflict free schedule for TT
virtual links in all the traversed physical links of a TTEthernet network.

V.2 Impact of Clock Synchronization Protocol Frames
We describe in Section IV.3.1 the TTEthernet clock synchronization protocol including
the relationship between protocol control frames (PCF), integration cycle and cluster
cycle. Figure IV.3 summarizes this relationship. Notice that no frame used by the clock
synchronization protocol (PCF) is transmitted after tsyncEnd in each integration cycle.
We assume that tsyncEnd is known. Hence, no TT frame is scheduled between the start
of an integration cycle and the respective tsyncEnd.

V.3 Scheduling Problem Formulation
We present in this section the formulation of the scheduling problem for TT virtual links
in a TTEthernet network. Given are:

1. Network topology (T) All connections between network nodes via unidirec-
tional physical links in the network. It is represented via a digraph T = 〈Nodes,L〉,
where Nodes and L represent the set with all nodes and physical links, respec-
tively.

2. Virtual links (VTT , VRC) Set with, respectively, all TT and RC virtual links in
the network. Each TT and RC virtual link (v) defines its:

1Frame is the scheduled entity used to transmit messages. Figure IV.1 shows the relationship between
frames and messages.

2Section IV.2 presents the definition of TT virtual link.

V.3. Scheduling Problem Formulation 73

a) Period (Tv) Interval of time between the start of the transmission windows
of two consecutive frames of an RC virtual link v. For RC virtual links, Tv
represents the bandwidth allocation gap (BAG), i.e., the minimum time span
between two consecutive frames of a TT virtual link, assuming no jitter.

b) Transmission time (Cv) Transmission window length of frames of virtual
link v computed according to Equation (IV.1).

c) Maximum Jitter (Jmaxv)Maximum allowed delay imposed to a RC frame
due to the dispatch of other frames at its source node. For TT frames,
Jmaxv = 0.

d) Path (Pathv) Set of ordered physical links, elements of L, traversed by vir-
tual link v. If the virtual link v has multiple, e.g. np, destinations, we consider
that one path for each destination exists (Pathv,1, Pathv,2, . . . , Pathv,np).
Each path Pathv,pa is represented by Pathv,pa = {hop1

v,pa, hop
2
v,pa, . . . , hop

nh
v,pa},

where {hop1
v,pa, hop

2
v,pa, . . . , hop

nh
v,pa} represents the ordered list of physical

links from the source to the destination. We assume in this dissertation
that the path (route) of each virtual link is also given as input.

V.3.1 Problem Statement
For every physical link in the network (∀ l ∈ L), the TTEthernet scheduler shall com-
pute a phase φv (see Section IV.2) for each traversing TT virtual link v such that no
transmission windows overlap on that physical link.

V.3.2 Example
Let us consider an example with a set of virtual links as described in Table V.1 travers-
ing one given physical link l. Notice that, the actual time unit of the task sets present
in the next examples is irrelevant. Therefore, we consider that all time related values
presented in all examples in this chapter, represent values in the same time unit. Fig-

Table V.1: Example virtual links set
VL Id Tv Cv

1 10 1
2 60 1
3 12 1

ures V.1 and V.2 present a graphical representation of two sets of phases for virtual links:
the first leading to an invalid and the latter to a valid schedule. Notice that the first
three rows on these graphs show the schedule of individual TT virtual links (v1, v2, v3)
and the fourth row shows the complete physical link schedule. The schedule presented
in Figure V.1 leads to an infeasible schedule: the 6th instance of v1 collides with the 5th
instance of v3 while in the schedule presented in Figure V.2, no transmission windows
overlap.

74 Chapter V. Off-Line Scheduler for Time-Triggered Networks

t

t

t

t

φ1 = 0

φ2 = 1

φ3 = 2

physical
link

Figure V.1: Invalid schedule. The 6th instance of v1 collides with the 5th instance of v3.

t

t

t

t

φ1 = 0

φ2 = 1

φ3 = 3

physical
link

Figure V.2: Valid schedule. No collision occurs

Finding a valid schedule might be trivial if the set of virtual links traversing a physical
link is small and their periods have special properties, e.g., harmonic periods, small
least common multiplier (lcm). Otherwise, computing a valid schedule might require
non-intuitive approaches.

V.4 Search Tree-based Scheduler for Time-Triggered Networks
(STSTTN)

This section presents our solution for scheduling TT virtual links, called Search Tree-
based Scheduler for Time-Triggered Networks (STSTTN). We refer to our solution,
interchangeably, as STSTTN and scheduler. The core of STSTTN is a search tree, as
described in Section V.4.2. STSTTN provides two (selectable) approaches to reduce
the search space while traversing the search tree: look back and look ahead. Further,
STSTTN allows for choosing multiple algorithms to select the edges while traversing
the search tree. We present these approaches in Section V.4.3.
Section V.4.4 shows how to assign TT virtual links to tree levels. Section V.4.5

presents an heuristic to prune the search tree. Finally, we show in Section V.4.7 how
to expand the scheduler in order to consider virtual links traversing multiple physical
links. First we revisit the network assumptions used as input to STSTTN.

V.4. Search Tree-based Scheduler for Time-Triggered Networks 75

V.4.1 Network Assumptions
Section V.3 presents the set of TTEthernet properties related to the scheduling of TT
virtual links. Next, we summarize the our network related assumptions.

• Frames of each TT virtual link v are transmitted strictly periodically, with pe-
riod Tv.

• Transmission of a TT-frame is non preemptive.

• Time reserved for the transmission of each frame of each virtual link v is computed
by Equation (IV.1).

• The time interval reserved for the clock synchronization protocol is not used to
transmit TT-frames, i.e., in each integration cycle(see Section IV.3.1), the TT
scheduler does not create any reservation window in the time interval from the
start of an integration cycle until the arrival of the last protocol control frame
(tsyncEnd) in that integration cycle.

V.4.2 Search Tree
We model the problem of scheduling virtual links traversing a physical link as a search
tree. In this dissertation we use the terminology described by Cormen et al. in [CLRS01]
to name the elements and properties of a rooted tree. Next, we present a summary of
the relevant terms:

Parent, child: For any pair of vertices, e.g., x and y, if the last edge of x is (y, x), then
y is a parent of x, and x is a child of y.

Ancestor: Any vertex on the unique simple path from the root until a vertex x is an
ancestor of x.

Leaf: A vertex with no child.

Depth of a vertex: The length of the simple path from the root to this vertex.

Level: All vertices at the same depth. Thus, we name each level in a search tree by the
corresponding depth.

Height of a vertex: Longest simple downward path from the vertex to a leaf.

Height of the tree: Height of the root vertex. Except if mentioned otherwise, in this
chapter we use the term height to refer to the height of the root vertex.

Figure V.3 depicts a search tree for the set of TT virtual links presented in Table V.2.
To improve readability, some vertices and edges do not explicitly appear in this (and
next) figure(s) and are replaced by dots.

76 Chapter V. Off-Line Scheduler for Time-Triggered Networks

Table V.2: Set with three virtual links
VL Id Tv Cv

1 16 2
2 8 3
3 20 1

Λ1,1

Λ2,1

Λ3,1

. . .

Λ3,2

. . .

Λ3,3

. . .

Λ3,4

. . .

Λ3,5

. . .

Λ3,6

. . .

Λ3,7

. . .

Λ3,8

. . .

0

0

0 1 18 19

1 2 3 4 5 6 7

0 1 18 19

Λ1,1 = {0}
Level 1

Level 2

Level 3

Schedule

Λ2,1 = {0, 1, 2, 3, 4, 5, 6, 7}

Λ3,1 = Λ3,2 = . . . =
Λ3,8 = {0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19}

Figure V.3: Complete enumeration of the search tree used to model the scheduling problem of
the three TT virtual links presented in Table V.2

Each level of the tree (except the deepest level) represents a virtual link. The example
depicted in Figure V.3 has three levels representing virtual links, plus the “Schedule”
level: in this example, virtual link ids correspond to tree levels.
Each vertex in a level represents a set of phases that can be used to schedule the

corresponding virtual link. We denote each vertex (except those at the “Schedule” level)
by the symbol Λl,c where the index l represents the level, and c represents a counter on
the number of vertices of that level, e.g., Λ3,1 represents the first computed set of phases
that can be assigned to the virtual link on level 3. Figure V.3 presents the elements of
these sets.
Each edge represents a phase selected to schedule the corresponding virtual link.

Notice that the value of an edge is equal to one element of the set represented by the
parent vertex.
The path leading to each vertex describes a schedule, i.e., selection of phases, for

the virtual links (represented by the tree levels) traversed by this path. The path to
vertices in the “Schedule” level represent a complete schedule. Notice that also infeasible
schedules are represented in this tree3.

3This figure does not distinguish feasible from infeasible schedules.

V.4. Search Tree-based Scheduler for Time-Triggered Networks 77

The search tree in Figure V.3 shows the complete enumeration of vertices, i.e., all
phases for each virtual link4. The total number of vertices in this example is equal to
(1+1+8+8×20 =)170. The number of vertices grows exponentially with the period of
each virtual link. Therefore, providing methods to reduce the search space drastically
reduces computation time.
A simple approach to reduce the search space is to execute a feasibility test for each

edge. If an edge surely leads to an infeasible schedule, then the scheduler deems this
edge infeasible, discarding this edge and the underlying tree branch. Figure V.45 depicts
the resulting search tree considering this simple approach. Notice that the total number
of vertices is almost the half of the ones presented in the tree of Figure V.3, i.e., (1 +
1 + 8 + 4 × 20 =)90. The applicability of such approaches depends on two conditions:
the computational cost required to run the necessary feasibility test, and the amount of
vertices that can be discarded in case the feasibility fails.

4Considering that one frame is transmitted per period, the largest valid phase value for a virtual link
is equal to its period minus one (unit of time).

5Notice that in Figure V.4 and next figures, we mark with red color the vertices which, based on the
current schedule, surely lead to infeasible schedules.

78
C
h
ap

ter
V
.
O
ff
-L
in
e
S
ch
ed

u
ler

for
T
im

e-T
riggered

N
etw

orks

Λ1,1

Λ2,1

Λ3,1 Λ3,2 Λ3,3

. . .

Λ3,4

.

Λ3,5

.

Λ3,6

. . .

Λ3,7 Λ3,8

0

0 1 2

0 19

3

0 6 7 10 11 14 15 18 19

4

0 7 8 11 12 15 16 19

5

0 19

6 7

Λ1,1 = {0}
Level 1

Level 2

Level 3

Schedule

Λ2,1 = {0, 1, 2, 3, 4, 5, 6, 7}

Λ3,1 = Λ3,2 =
Λ3,7 = Λ3,8 = ∅
Λ3,3 = Λ3,4 =
Λ3,5 = Λ3,6 =
{1, 2, . . . , 18, 19}

Figure V.4: Search space reduction after applying a simple feasibility test per edge.

V.4. Search Tree-based Scheduler for Time-Triggered Networks 79

Section V.4.3 shows how Equation (IV.3) provides a sufficient feasibility test with
reduced computational cost. Not only does this approach lead to lower computational
cost per schedulability test, but also to a smaller search space, when compared to the
simpler approach presented in the previous paragraphs. For instance, applying this
approach to the set of virtual links presented in Table V.2 leads to the search tree
depicted in Figure V.5. Notice the decrease on the number of vertices (14 vs. 90), when
compared to the search tree presented in Figure V.4.

Λ1,1

Λ2,1

Λ3,1 Λ3,2 Λ3,3 Λ3,4

0

2 3

6 10 14 18

4

7 11 15 19

5

Λ1,1 = {0}
Level 1

Level 2

Level 3

Schedule

Λ2,1 = {2, 3, 4, 5}

Λ3,1 = Λ3,4 = ∅
Λ3,2 = {6, 10, 14, 18}
Λ3,3 = {7, 11, 15, 19}

Figure V.5: Reduced search tree using the approach presented in Section V.4.3.

V.4.3 Traversing the Search Tree and Reducing Search Space
As STSTTN traverses a vertex, it selects one edge and computes the set of phases
represented by the child vertex. The scheduler continues traversing the tree until it
reaches a leaf. If STSTTN reaches a valid leaf, a feasible schedule is found and composed
by the phases represented by the edges on the path from the root to the leaf.
An invalid leaf is a vertex with an empty set of feasible phases. If an invalid leaf is

detected, the scheduler performs backtracking, i.e., revisits a valid ancestor vertex and
selects a different edge. If no further backtracking is possible, e.g., the scheduler back-
tracks to the root node, the set of virtual links is deemed unschedulable. Section V.4.3.4
presents backtracking in details.
Considering the schedule of only two virtual links vi and vk, Equation (IV.3) provides

the set Λk with all feasible phases for vk assuming that vi is scheduled at phase φi. One
can consider this set as a kind of sufficient and necessary feasibility test, i.e., assuming
that vi is scheduled at phase φi, a feasible schedule for these two virtual links exists if
and only if vk is scheduled at one of the phases contained in the set Λk. If Λk is empty,
then there exists no feasible schedule for vi and vk.

80 Chapter V. Off-Line Scheduler for Time-Triggered Networks

When scheduling multiple virtual links, the upper and lower bounds for feasible phases
of each virtual link presented in Equation (IV.3) do not hold. Goossens shows in [Goo03]
that, when scheduling multiple tasks in an offset free system, all non-equivalent choices
for scheduling a task τi, considering i − 1 tasks already scheduled, are represented by
the half-open interval [0, gcd{Ti, lcm{T1, . . . , Ti−1}}). Similarly, when scheduling a TT
virtual link vk, all non-equivalent choices for scheduling this virtual link are represented
by the half-open interval [0, gcd{Tk, lcm{T1, . . . , Tk−1}}). Next, we introduce Equa-
tion (V.1) which expands expands Equation (IV.3) to schedule multiple virtual links,
by accounting for those bounds.
Assuming that (k − 1) TT virtual links have been scheduled before vk, the set of

feasible phases of vk due to the schedule of vi is given by:

Λk = φi + n× gcd(Tvi, T vk) +m (V.1)
∀n ∈ Z,∀m ∈ [Ci, gcd(Tvi, T vk)− Ck], such that:

min(Λk) ≥ 0,max(Λk) < gcd
(
Tk, lcm{T1, . . . , Tk−1}

)
When scheduling multiple virtual links, the sets computed by Equation (IV.3), com-
paring virtual links pairwise, do not provide a necessary and sufficient test anymore.
Even though Equation (V.1) does not hold as sufficient test, the result obtained by
this equation provides a necessary feasibility test: the “only if” condition of the pairwise
computation still holds, i.e., assigning a phase which is not an element of Λk surely leads
to an infeasible schedule.
Section V.4.3.1 presents the look back approach: an approach for computing Λl,c at

each level of the search tree considering the properties of the virtual links which have
already been scheduled. Section V.4.3.2 presents an extension to this approach, called
look ahead, which further accounts for the properties of virtual links that have not been
scheduled yet.

V.4.3.1 Look Back Approach

Table V.3 shows an example with four TT virtual links. In this example, we assume
that virtual link Ids represent their respective levels in the search tree. Next, we analyze
how STSTTN traverses the search tree while reducing the number of vertices (w.r.t the
complete enumeration). Figure V.6 depicts part of the search tree until the detection of
an infeasible schedule and Table V.4 presents the computation of Λl,c as the scheduler
traverses the search tree.

Table V.3: Example with four TT virtual links.
VL Id Tv Cv

1 32 3
2 32 3
3 16 2
4 20 1

V.4. Search Tree-based Scheduler for Time-Triggered Networks 81

Λ1,1

Λ2,1

Λ3,1

Λ4,1

0

3

6

Level 1

Level 2

Level 3

Level 4

Λ2,1 = {3, 4, . . . 18, 19}

Λ3,1 = {6, 7, . . . , 13, 14}

Λ4,1 = ∅

Figure V.6: Partial schedule tree with look back.

Table V.4: Computation of Λl,c using the look back approach.
Edge Pairwise Computation Current Vertex

Λ1 = {0}
φ1 = 0 Λ2vs.1 = {3, 4, . . . , 28, 29} Λ2,1 = {3, 4, . . . , 28, 29}
φ2 = 3 Λ3vs.1 = {3, 4, . . . , 13, 14} Λ3,1 = {6, 7, . . . , 13, 14}

Λ3vs.2 = {6, 7, . . . , 13, 14}
φ3 = 6 Λ4vs.1 = {3, 7, 11, 15, 19} Λ4,1 = ∅

Λ4vs.2 = {2, 6, 10, 14, 18}
Λ4vs.3 = {0, 1, 4, 5, 8, 9, 12, 13, 16, 17}

The column Edge in Table V.4 presents the selected phase, at each level of the tree.
In the column Pairwise Computation, Table V.4 shows the sets computed by Equa-
tion (V.1). Notice that we name Λk vs. i the set of possibly feasible phases of vk con-
sidering vi scheduled at φi. The column Current Vertex shows the sets represented by
the corresponding vertex (Λl,c), i.e., the intersection of the sets presented in the column
Pairwise Computation.
STSTTN starts by assuming, without loss of generality, that v1 is scheduled at 0, i.e.,

Λ1 = {0} and φ1 = 0. Then, STSTTN computes Λ2vs.1, the set of feasible phases for v2

considering that v1 is scheduled at φ1 = 0. Considering that no other virtual link has
been scheduled so far, the next vertex is represented by this set, i.e., Λ2 = Λ2vs.1. Let us
assume that the scheduler selects φ2 = 3. Recall that, due to the “only if” (necessary)

82 Chapter V. Off-Line Scheduler for Time-Triggered Networks

property of the sets computed with Equation (V.1), phases for v3 that are not elements of
Λ3vs.1 and Λ3vs.1 surely lead to infeasible schedules. In other words, only phases present in
the set computed by the intersection of Λ3vs.1 and Λ3vs.2 may lead to a feasible schedule.
Thus, Λ3,1 = Λ3vs.1∩Λ3vs.2. The computation of these intersections provide the elements
of the sets presented in the column Current Vertex. The fourth row of Table V.4 shows
the computation of Λ4,1. Notice that the intersection Λ4vs.1 ∩Λ4vs.2 ∩Λ4vs.3 results in an
empty set, indicating that the phase selection (φ1 = 0, φ2 = 3, φ3 = 6), represented by
the path to this vertex, is infeasible. At this point, finding a feasible schedule requires
backtracking, i.e., revisiting an ancestor vertex and selecting a different edge.

V.4.3.2 Look Ahead Approach

The look ahead approach uses Equation (V.1) to compute intermediate values of Λl,c for
the virtual links which have not been scheduled yet. The main goal in this approach is
to detect infeasible phases as early as possible and thus decrease the search tree by not
selecting edges that would lead to an invalid vertex at deeper levels of the search tree.
Similar to the look back approach, after selecting a phase, the look ahead approach uses
Equation (V.1) for the pairwise computation of feasible phases. However, look ahead
computes the possibly feasible phases for all unscheduled virtual links.
We use the same example as in Section V.4.3.1 to present the look ahead approach.

Table V.5 shows the resulting sets of each step in this approach and Figure V.7 depicts
the part of the search tree until the detection of an infeasible schedule.

Λ1,1

Λ2,1

Λ3,1

0

3

Level 1

Level 2

Level 3

Λ2,1 = {3, 4, . . . 18, 19}

Λ3,1 = {6, 7, . . . , 13, 14}

Figure V.7: Partial schedule tree with look ahead.

V.4. Search Tree-based Scheduler for Time-Triggered Networks 83

Table V.5: Computation of Λl,c using the look ahead approach.
Edge Pairwise Computation Vertices Ahead Current Vertex

Λ1,1 = {0}
φ1 = 0 Λ2vs.1 = {3, 4, . . . , 29} Λ2,1 = {3, 4, . . . , 29}

Λ3vs.1 = {3, 4, . . . , 14} Λ3,1 = {3, 4, . . . , 14}
Λ4vs.1 = {3, 7, 11, 15, 19} Λ4,1 = {3, 7, 11, 15, 19}

φ2 = 3 Λ3vs.2 = {6, 7, . . . , 15} Λ3,1 = {6, 7, . . . , 14}
Λ4vs.2 = {2, 6, 10, 14, 18} Λ4,1 = ∅

The scheduler selects φ1 = 0, for the same reasons as presented in Section V.4.3.1.
It then computes the impact of φ1 into the set of feasible phases of each unscheduled
virtual link, i.e., Λ2vs.1,Λ3vs.1,Λ4vs.1. Considering that only virtual link v1 has been
scheduled, Λ2,1 = Λ2vs.1. We assume that the scheduler selects φ2 = 3. Then, the
scheduler computes the impact of φ2 = 3 into the feasible phases of v3 by computing the
intersection of Λ3,1 (presented in the Vertex Ahead column of the second row) and Λ3vs.2.
The resulting set is presented in the column Current Vertex. Similarly, the scheduler
computes the impact of φ2 = 3 into Λ4,1. Here, the intersection of Λ4,1 (from previous
row) and Λ4vs.2 is an empty set, which in turn means that selecting φ1 = 0, φ2 = 3 leads
to an infeasible schedule.
In comparison to the look back approach, the look ahead approach allows for detection

of infeasible phases, at earlier levels of the search tree. Figures V.6 and V.7 show this
property: the look back approach identifies an infeasible schedule after traversing 3
vertices while the look ahead approach identifies the same condition after traversing 2
vertices. Let us consider another example with 7 virtual links, as presented in Figure V.8.
In this example, the selection of φ3 leads to feasible phases for all virtual links except
for v7, i.e., Λ7,1 = ∅, independent of the selected phases φ4, φ5 and φ6. For the look
back approach, it takes the scheduler (2 + 3 + 4 + 5 + 6 =) 20 pairwise computations
(Equation (V.1)) to detect the phase selection that leads to the infeasible schedule.
When applying the look ahead approach to the same set of virtual links, detecting the
same condition takes (6 + 5 =) 11 pairwise computations.
Comparing the numbers presented in the previous paragraphs, look ahead appears to

be the preferable approach to be used by STSTTN. However, whenever an infeasible
leaf is found, the scheduler must backtrack. Section V.4.6 shows that, in many cases,
the computational backtracking cost is higher for look ahead than for look back.
Both look back and look ahead approaches assume that the assignment of virtual links

to tree levels is given.

V.4.3.3 Selecting Edges

For a feasible set of virtual links, if the scheduler selects the right phases from the root
to a valid leaf, a feasible schedule is found without any backtracking. Else, the scheduler
might visit an enormous amount of vertices before it reaching a valid leaf. Therefore,
the selection of edges in the search tree plays a major role. Figure V.9 shows two search

84 Chapter V. Off-Line Scheduler for Time-Triggered Networks

Λ1,1

Λ2,1

Λ3,1

Λ4,1

Λ5,1

Λ6,1

Λ7,1
. . .

. . .

. . .

. . .

. . .

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

(a) Look back

Λ1,1

Λ2,1

Λ3,1
. . .

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

(b) Look ahead

Figure V.8: Example comparing search trees with look back and look ahead.

trees for the set of virtual links presented in Table V.6. In Figure V.9a, edges are selected
sequentially from the smallest to largest element in the set of possibly feasible phases
represented by the parent vertex. In Figure V.9b, edges are selected randomly from
that set. In this example, selecting edges at random leads to a much smaller search tree.
Nevertheless, this observation (random better than sequential) cannot be extrapolated
to every set of virtual links. Section V.4.4 presents the effects on the search tree due to
different edge selection methods.

Table V.6: Example with same four TT virtual links presented in Sections V.4.3.1 and V.4.3.2.
Here with other Ids, sorted by decreasing utilization.

VL Id Tv Cv
1 16 2
2 32 3
3 32 3
4 20 1

V.4. Search Tree-based Scheduler for Time-Triggered Networks 85

Λ1,1

Λ2,1

Λ3,1

Λ4,1
. . . Λ4,9 Λ4,10

. . .
Λ4,22

Λ3,2

Λ4,23 Λ4,24

0

2

5 13 18 29

3

6 7

2

Λ1,1 = {0}
Level 1

Level 2

Level 3

Level 4

Schedule

Λ2,1 = {2, . . . , 13,
18, . . . , 29}

Λ3,1 = {5, . . . , 13,
18, . . . , 29}
Λ3,2 = {6, . . . , 13,
18, . . . , 29}

Λ4,1 = . . . =
Λ4,23 = ∅
Λ4,24 =
{2, 6, 10, 14, 18}

(a) Edges selected by increasing phases in Λl,c

Λ1,1

Λ2,1

Λ3,1

Λ4,1 Λ4,2

0

28

3 12

19

Λ1,1 = {0}
Level 1

Level 2

Level 3

Level 4

Schedule

Λ2,1 = {2, . . . , 13,
18, . . . , 29}

Λ3,1 = {0, . . . , 25, 31}

Λ4,1 = ∅
Λ4,1 = {3, 7, 11, 15, 19}

(b) Edges selected randomly from phases in
Λl,c

Figure V.9: Search tree for two edge selection methods.

V.4.3.4 Backtracking

After selecting an edge, STSTTN checks if the current path is feasible. Once STSTTN
detects an invalid schedule, it discards the latest vertex on this path, revisits an ancestor
vertex (usually the parent) and selects a different edge. Figures V.10a and V.10b show in
details the backtracking of the example presented in Figure V.9a, in which the scheduler
applies the look back approach. Remember that the index c of Λl,c represents a counter
for the number of vertices on a level of a tree, i.e., Λ1,1 on one tree might be different from
Λ1,1 on another tree. Notice that the scheduler traverses the vertices Λ1,1,Λ2,1,Λ3,1 until
detecting an invalid vertex (Λ4,1). After this point, the scheduler revisits Λ3,1 and selects
another edge, which again leads to an invalid vertex. After selecting all edges of Λ3,1,
the scheduler goes up another level and revisits Λ2,1(see Figure V.10b). Again, the first
edge leads to an invalid vertex (Λ4,23) and to another backtrack. Finally, the scheduler
reaches Λ4,24 and after the next edge, it reaches a valid leaf, i.e., a valid schedule.
We discuss in Section V.4.5 a tree pruning heuristic to decrease the number of back-

tracks in the search tree.
Figure V.11 shows the search tree for an example with the same parameters as those

of Figure V.10, except the scheduler applies the look ahead instead of the look back
approach. Notice that no child vertex of Λ3,1 leads to a feasible schedule. This condition
is detected by the look ahead approach and consequently Λ3,1 is deemed invalid. The
scheduler revisits Λ2,1, and selects another edge, which leads to an infeasible schedule,
triggering another backtrack. The new path finally leads to a valid leaf, i.e., a valid
schedule.

86 Chapter V. Off-Line Scheduler for Time-Triggered Networks

Λ1,1

Λ2,1

Λ3,1

Λ4,1
. . . Λ4,9 Λ4,10

. . .
Λ4,22

Level 1

Level 2

Level 3

Level 4

Schedule

(a) Backtrack from level four to level three

Λ1,1

Λ2,1

Λ3,1

Λ4,1
. . . Λ4,9 Λ4,10

. . .
Λ4,22

Λ3,2

Λ4,23 Λ4,24

Level 1

Level 2

Level 3

Level 4

Schedule

(b) Backtrack from level three to level two, and
later from four to three.

Figure V.10: Backtracking with look back approach.

Λ1,1

Λ2,1

Λ3,1 Λ3,2

Λ4,23 Λ4,24

Level 1

Level 2

Level 3

Level 4

Schedule

Figure V.11: Backtracking with look ahead approach: backtrack from level three to level two,
and later from four to three.

V.4. Search Tree-based Scheduler for Time-Triggered Networks 87

Λ1,1

Λ2,1

Λ3,1

Λ4,1
. . . Λ4,9 Λ4,10

. . .
Λ4,22

Λ3,2

Λ4,23 Λ4,24

0

2

5 13 18 29

3

6 7

2

Λ1,1 = {0}
Level 1

Level 2

Level 3

Level 4

Schedule

Λ2,1 = {2, . . . , 13,
18, . . . , 29}

Λ3,1 = {5, . . . , 13,
18, . . . , 29}
Λ3,2 = {6, . . . , 13,
18, . . . , 29}

Λ4,1 = . . . =
Λ4,23 = ∅
Λ4,24 =
{2, 6, 10, 14, 18}

(a) Virtual links sorted by decreasing utilization

Λ1,1

Λ2,1

Λ3,1

Λ4,1

0

1

5

9

Λ1,1 = {0}
Level 1

Level 2

Level 3

Level 4

Schedule

Λ2,1 = {1, 5, 9,
13, 17, 21, 25, 29}

Λ2,1 = {5, 9, 13,
17, 21, 25, 29}

Λ4,1 = {9, 10,
13, 14}

(b) Virtual links sorted by increasing utiliza-
tion

Figure V.12: Search tree for two assignments of virtual links to levels.

V.4.4 Assigning Virtual Links to Levels
The assignment of virtual links to levels is static and defined before the scheduler starts
traversing the tree. Depending on the method used for this assignment, a different search
tree is constructed. Next we show how two assignment methods lead to different search
trees and how these assignments impact the detection of feasible schedules. We use
the same set of virtual links used in Sections V.4.3.1 and V.4.3.2. However, in order to
improve readability, we change the virtual links Ids according to the assignment method,
as presented in Table V.7. We assume in this section that STSTTN applies the look
back approach and selects the edges by increasing order of phase.

Table V.7: Example with same four TT virtual links presented in Sections V.4.3.1 and V.4.3.2.
Here with other Ids, sorted by decreasing and increasing utilization, respectively.

Decreasing Utilization Increasing Utilization
VL Id Tv Cv Uv VL Id Tv Cv Uv

1 16 2 0.125 1 20 1 0.05
2 32 3 0.09375 2 32 2 0.0625
3 32 2 0.0625 3 32 3 0.09375
4 20 1 0.05 4 16 2 0.125

Figure V.15 depicts the search trees for virtual links sorted by decreasing and increas-
ing utilization. Notice that the number of vertices in Figure V.12a (28 vertices) is more
than five times larger than the one in Figure V.12b (5 vertices), i.e., considering the

88 Chapter V. Off-Line Scheduler for Time-Triggered Networks

Table V.8: Example with four TT virtual links to depict the preventive tree pruning.
VL Id Tv Cv

1 16 2
2 32 2
3 32 2
4 20 1

assumptions presented in the previous paragraphs, the scheduler finds a solution faster
if virtual links are sorted by increasing utilization. Unfortunately, this observation does
not hold for every set of virtual links, phase selection and virtual link sorting method.
Section V.5 presents an empirical analysis accounting for different methods to assign
virtual links to tree levels.

V.4.5 Preventive Tree Pruning

Examples presented in previous sections show that, depending on the properties of the
virtual links and the scheduler parameters (assignment of virtual links to levels, edge
selection, etc), many vertices on the search tree lead to infeasible schedules. Further,
selecting a “bad” edge at upper levels of the tree might lead to infeasible schedules
which can only be detected at deeper levels and consequently lead to a large number
of backtracks before the scheduler deems the vertex invalid. Section V.4.3.2 presents
the look ahead approach which addresses this issue and allows for earlier detection
of an infeasible phase by accounting for the impact of scheduled virtual links on all
unscheduled ones. Nevertheless, the impact of an unscheduled virtual link on another
unscheduled one is not taken into account by the look ahead approach. We present
in this section a preventive tree pruning heuristic, similar to the one presented in the
Chapter 3 of Fohler’s PhD Thesis [Foh94], to improve the early detection of invalid
vertices. Table V.8 presents an example with a set of virtual links used to explain our
preventive tree pruning approach.
Assuming that STSTTN applies the look ahead approach, selects the edges randomly

and assigns virtual links to levels by Ids, Figure V.13 presents the corresponding search
tree for φ1 = 0, φ2 = 3 and φ2 = 4 and all their children.
If the scheduler selects φ2 = 3, the probability to find a feasible schedule under the

next edge is 0.43 (10
23
). Else6, if φ2 = 4, that probability is 0.78 (18

23
). Consequently,

STNTTS should select φ2 = 4 as soon as possible in order to increase the probability
of finding a feasible schedule. The preventive tree pruning method addresses this issue
by allowing for a maximum number of backtracks (a threshold called branching factor
in [Foh94]) at each children of a vertex. Once this threshold is reached, the scheduler
invalidates the current vertex and backtracks.
Figure V.14 depicts the effect of applying the preventive tree pruning heuristic with

6Remember that the scheduler computes the set of possibly feasible phases only after visiting the
respective vertex. Consequently, these probabilities are not known until the scheduler visits the
respective vertices.

V.4. Search Tree-based Scheduler for Time-Triggered Networks 89

Λ1,1

Λ2,1

Λ3,1

Λ4,1
. . .

Λ4,13 Λ4,14
. . .

Λ4,23

Λ3,2

Λ4,24
. . .

Λ4,28 Λ4,29
. . .

Λ4,46

0

3 4

Level 1

Level 2

Level 3

Level 4

Schedule

13 invalid vertices 10 valid vertices 5 invalid vertices 18 valid vertices

Λ3,1 = {2, 6, . . . , 14, 18, . . . , 30} Λ3,1 = {5, . . . , 14, 18, . . . , 30}

Figure V.13: Search tree until level four.

threshold equals to two.

Initially, the scheduler selects φ1 = 0 and φ2 = 3. After two backtracks in level four (from
vertices Λ4,1 and Λ4,2), even though |Λ3,1| = 23, the scheduler reaches the backtrack
threshold and moves one extra level up in the tree (to Λ2,1) and selects φ2 = 4. A
feasible schedule is found once the scheduler reaches Λ4,4, after one more backtrack.
As presented in the previous example, preventive tree pruning indirectly guides the

scheduler to the vertices with higher probability of reaching a valid schedule. However,
applying this heuristic eliminates the scheduler optimality, i.e., in the worst case, pruning
the tree might remove all feasible schedules from the search space and the scheduler
would not find a feasible schedule, even though one exists.

V.4.6 Traversing Costs
This section analyzes the computational costs for traversing the search tree according
to the two approaches presented in Sections V.4.3.1 and V.4.3.2.

V.4.6.1 Look Back

Table V.4 shows the pairwise computations carried out while traversing the tree pre-
sented in Figure V.6. Notice that, at each level with depth d, the scheduler runs d
pairwise computations and d − 1 intersections to compute the set of possibly feasible
phases of the virtual link at that depth.

90 Chapter V. Off-Line Scheduler for Time-Triggered Networks

Λ1,1

Λ2,1

Λ3,1

Λ4,1 Λ4,2

Λ3,2

Λ4,3 Λ4,4

0

3 4

Level 1

Level 2

Level 3

Level 4

Schedule

Figure V.14: Search tree showing preventive tree pruning with threshold equals to two.

Compared to the downward traversing cost, backtrack cost is not high: for each
backtrack, the scheduler discards the edge leading to the invalid child vertex (at depth
d + 1), selects another edge from the upper depth and computes a new Λ(d+1),x, where
x represents a counter with the current number of vertices at depth d+ 1. Considering
the number of computations per visited vertex, the closer to a leaf vertex the higher are
the backtrack costs.

V.4.6.2 Look Ahead

In contrast to the look back approach, the cost of traversing vertices close to the root with
the look ahead approach is high and decreases as the scheduler approaches the “Schedule”
level. STSTTN executes (height−d) pairwise computations and intersections per visited
vertex at depth d (see Table V.5).
Backtracking also demands high computational costs at vertices close to the root: at

depth d, backtracking requires the re-computation of the sets Λl,c for all (height− d +
1) unscheduled virtual links, i.e., the lower d the larger the amount of computations.
Section V.5 presents an empirical analysis of the costs of look back and look ahead for
different sets of virtual links and scheduler parameters.

V.4.7 Crossing Multiple Physical Links
In a simple approach, a schedule for the complete set of TT virtual links is obtained,
if feasible, by running one instance of STSTTN for each physical link. Each of these
instances, generates a schedule for all virtual links that traverse that physical link. A

V.4. Search Tree-based Scheduler for Time-Triggered Networks 91

feasible schedule for a given set of TT virtual links exists if STSTTN reaches a valid leaf
for all physical links. Else, the set is deemed unschedulable. This approach, however
may lead to large transmission latencies for the TT-frames: since the schedule of each
physical link runs independently, in the worst case, the scheduled transmission of a
frame in each physical link hoph occurs a small amount of time before the scheduled
frame arrival time. In this case, the latency increases by the time length of one period
per traversed physical link.

V.4.7.1 Scheduling TT Virtual Links with Minimum Latency

In this section, we extend STSTTN to schedule the TT virtual links traversing the
physical links of the network with minimal latency.
STSTTN starts by sorting all virtual links globally7, i.e., applying the same algorithm

that assigns virtual links to levels, to all virtual links. In the next steps, STSTTN creates
one search tree for each physical link8 on the network, and traverses these search trees.
Once the scheduler reaches a valid leaf in all search trees, a valid schedule is found for
every TT virtual link on the respective physical links. If on the contrary, the scheduler
does not reach a valid leaf in a search tree, backtracking starts. In case STSTTN
backtracks up to the root vertex of the search tree representing the source node of the
first virtual link, this set of virtual links is deemed unschedulable.
The generated schedule allows for the transmission of TT frames with the minimum

latency (see Section IV.3.5): the transmission window of a frame on a physical link starts
as soon as this frame is ready for transmission. Figure V.15a depicts a schedule with this
property: Notice that, after its scheduled arrival, the frame is ready for transmission
sl (technological latency) units of time later. For the sake of simplicity and without
loss of generality, we assume in the following examples that virtual links have only one
destination and consequently one Pathv. For virtual links with multiple destinations,
the same methods apply.
Next, we make use of an example to present how we extend STSTTN to allow for the

scheduling with minimum latency. Let us assume that a virtual link v is scheduled at
its source physical link with phase equals to φhop1

v . The phases scheduled on the three
physical links in its path is depicted in Figure V.15a. In order to ensure the minimum
latency of frames, the phase at any h-th physical link, in the path of a virtual link v, is
computed by Equation (V.2).

φhophv =
(
φhop1
v + (Cv + sl)× (h− 1)

)
mod Tv (V.2)

where: sl represents the switching latency. Notice that the modulo function ensures
that the value of φhophv lays in the interval [0, Tv).
Next sections show how the look back and look ahead approaches address the schedul-

ing for minimum latency problem on multiple search trees. For the sake of simplicity,

7Sorting the virtual links globally ensures that they are sorted by the same algorithm also within each
search tree.

8Recall that each bi-directional network connection is modeled as two unidirectional physical links

92 Chapter V. Off-Line Scheduler for Time-Triggered Networks

t

t

t
h
o
p

1

Scheduled transmission

window

h
o
p

2
h
o
p

3

slsl

C +slv

2 (C +sl)x v

φv

hop1

φv

hop2

φv

hop3

(a) Scheduled phases on each physical link in the path of the virtual link v.

t

t

t

h
op

1

Set of possibly feasible

phases of ()v Λv

h
op

2
h
op

3

Λv

hop1

Λv

hop1

Λ Λ Λv

hop1
= v v v v

hop1 hop2

U U

()- (C +sl) mod T

()Λv v v

hop3
- 2 (C +sl) mod Tx

Λv

hop2

- (C(Λv v v

hop2
+sl) mod T)

Λv

hop3

- 2 (C(Λv v v

hop3
x +sl) mod T)

(b) Computation of the updated value for Λhop1
v .

Figure V.15: Relationship between Λ and latency along the path of the virtual link v.

we omit in the next sections the counter index from the notation of the sets of possible
feasible phases, e.g., Λhoph

v instead of Λhoph
v,1 .

V.4.7.1.1 Look Back We continue the analysis of the virtual link v, traversing the physical
links in its path Pathv = hop1, hop2, hop3. The scheduler computes the set of possibly
feasible phases for v on each physical link along its path (Λhop1

v ,Λhop2
v ,Λhop3

v) using the
same method as presented in Section V.4.3.1. Notice that these sets account only for
the impact of the already scheduled virtual links in each search tree.
In order to account for the relationship between transmission windows along the

virtual link path, STSTTN “integrates” the sets Λhop1
v ,Λhop2

v ,Λhop3
v into an updated set

V.4. Search Tree-based Scheduler for Time-Triggered Networks 93

Λhop1
v . This updated Λhop1

v provides the set of possibly feasible phases of v in its source
physical link.
Let us analyze the impact of Λhop2

v into Λhop1
v . Recall that Λhop2

v represents the set of
possibly feasible phases of v in the physical link hop2. Thus, the virtual link v might
only be scheduled in hop2 if a phase π2 exists such that φhop2

v = π2 ∈ Λhop2
v . However,

considering that the transmission window starts immediately after the frame arrival,
this schedule depends on the schedule of v in the source physical link. More specifically,
due to the transmission delay from hop1 to hop2, virtual link v must be scheduled at its
source physical link at a phase φhop1

v = π1 =
(
π2 − (Cv + sl)

)
mod Tv. Phase π1 is valid

only if π1 ∈ Λhop1
v . Considering only the two initial physical links in the path of v, we

conclude that φhop1
v = π1 is a feasible phase only if π1 =

(
π2− (Cv + sl)

)
mod Tv ∈ Λhop1

v

and π2 ∈ Λhop2
v , i.e., π1 ∈ Λhop1

v ∩
(
Λhop2
v − (Cv + sl)

)
mod Tv. Figure V.15b shows the

sets Λhop1
v ,Λhop2

v ,Λhop3
v , and the updated set Λhop1

v after accounting for the latency on
each physical link.
Equation V.3 presents the generalization of this analysis for a path with multiple (nh)

physical links providing the updated value for Λhop1
v .

Λhop1
v = Λhop1

v ∩
(

Λhop2
v − (Cv + sl)

)
mod Tv ∩

(
Λhop3
v − 2× (Cv + sl)

)
mod Tv ∩ . . .

∩
(

Λhopnh
v − (nh− 1)× (Cv + sl)

)
mod Tv (V.3)

If the set resulting from the computation of Formula (V.3) is not empty, then the sched-
uler inserts the vertices Λhop1

v ,Λhop2
v , . . . ,Λhopnh

v in the respective search trees, and con-
tinues traversing the search trees. Else, the vertices Λhop1

v ,Λhop2
v , . . . ,Λhopnh

v are deemed
invalid and the scheduler backtracks. Section V.4.7.1.3 presents backtracking in detail.

V.4.7.1.2 Look Ahead The computation of Λ presented in Section V.4.3.2 accounts not
only for the properties of scheduled virtual links, but also for those of not yet scheduled
virtual links: After selecting a phase, the scheduler computes the intermediate Λ (called
Vertices Ahead in Table V.5) for each unscheduled virtual link in each tree of Pathv.
Extending the approach presented in that section to a account for the relationship
between the transmission windows along the virtual link path, is done applying the
same method presented in Section V.4.7.1.2: STSTTN updates the set Λhop1

v applying
Formula (V.3). Notice that the sets Λhop1

v ,Λhop2
v ,Λhop3

v , . . . ,Λhopnh
v represent the Current

Vertex sets computed for the other trees.
If any intermediate value of Λ, Current Vertex, or the updated set Λhop1

v is empty, the
vertices Λhop1

v ,Λhop2
v ,Λhop3

v , . . . ,Λhopnh
v are invalidated and the scheduler backtracks (see

Section V.4.7.1.3). Otherwise, the scheduler inserts these vertices into the respective
search trees, and continues traversing the search trees.

V.4.7.1.3 Backtracking Section V.4.3.4 presents backtracking assuming that all virtual
links traverse one physical link. According to the description in that section, when
backtracking, the scheduler invalidates the current vertex (corresponding to the virtual

94 Chapter V. Off-Line Scheduler for Time-Triggered Networks

link to be scheduled), revisits one ancestor vertex and selects another edge. However,
considering that virtual links traverse multiple physical links, two questions arise.

Which vertices should be invalidated? In order to maintain a coherent schedule
state among all search trees, the scheduler invalidates the vertices corresponding
to the virtual link that triggered the backtrack in every search tree representing
the physical links on the path of this virtual link.

Which vertices should be revisited? Revisiting the latest scheduled virtual link
(latest added vertex), might lead to the exact same invalid vertices that triggered
the backtracking, if the path of the last scheduled virtual link and the virtual link
of the invalid vertex do not cross (directly or indirectly - see below). In order
to identify the vertices candidate to be revisited, we describe next three types of
relationship between virtual links and explain how they impact on the choice of
the vertex to be revisited in case of backtracking.

Direct crossing We say that a virtual link va directly crosses a virtual link vb
if any physical link in Pathva is also present in Pathvb , i.e., if their paths
overlap.

Indirect crossing We say that a virtual link va indirectly crosses a virtual link
vb if, even though the path of these two virtual links do not overlap, the
schedule of va might impact the schedule of vb.

No crossing We say that a virtual link va does not cross a virtual link vb if the
schedule of va does not impact the schedule of vb.

The scheduler selects the latest virtual link (vb) that directly or indirectly crossed
the virtual link (vb) of the invalid vertex, and revisits the corresponding vertex of
va in each search tree on its path. Finally, the scheduler selects another phase in
the source tree of the revisited virtual link.

In summary, once a vertex is deemed invalid, the scheduler backtracks executing three
steps. Assuming STSTTN finds an invalid vertex Λhop1

va , then STNTTS:

1. invalidates the vertices corresponding to va in all trees (Λhop1
va ,Λhop2

va , . . . ,Λhopnh
va)

2. selects the latest direct or indirect crossing virtual link, e.g., vb

3. selects another edge from Λhop1
vb

This strategy does not jeopardize the scheduler optimality, i.e., no valid schedule is
discarded.

V.5 Evaluation
Our experiments depict the performance of STSTTN when scheduling virtual links
traversing one physical link. We do not address here the schedule of multiple physical
links. Next we present how we generate the set of virtual links used in the experiments.

V.5. Evaluation 95

V.5.1 Generator of Virtual Links Set
We use our Virtual Links Set Generator (VLSG) to create the sets of virtual links used
as input to STSTTN. VLSG creates a set of virtual links according to the following
input parameters:

1. number of virtual links,

2. target utilization,

3. maximum utilization error,

4. minimum and maximum C per virtual link,

5. minimum and maximum period per virtual link, and

6. the base and exponent values used to compute the virtual link periods (explained
next).

In a first step, VLSG creates an array with a period for each virtual link. In order to
keep control over the least common multiplier of all periods, we use a modified version
the method presented in [GM01] to compute the period of the virtual links. Each period
is the result of a multiplication of factors obtained from the elements of a matrix, where
rows represent the bases, and the columns represent the respective exponent of a base
(see matrixM). In the method presented in [GM01] bases are prime numbers. In VLSG,
we relax this restriction. Next is an example of such a matrix.

M =

()0 1 1 2 3 7 Base 2
1 2 2 2 4 5 Base 3
0 1 2 4 6 8 Base 5

Each factor is calculated by randomly selecting a column representing the exponent
for each base. Then, the period is computed by multiplying all factors. For instance,
selecting columns 5, 1, 3 for rows 1, 2, 3 respectively, results in a period of: 23 × 31 ×
52 = 600. If a computed period is not within the boundaries defined by minimum and
maximum period, it is discarded and recomputed.
We can influence the probability of selecting a given exponent by increasing the num-

ber of times that this exponent appears in the matrix. For instance, the probability to
select the exponent 2 is three times larger than exponent 4 for base 3.
In a second step, VLSG applies the UUnifast [BB05] algorithm to ensure that the

utilization of the set of virtual links matches the specified target utilization. Further,
UUnifast ensures a uniform distribution among utilizations to each virtual link in the
set.
In a third step, VLSG computes C (transmission window length) for each virtual

link, such that the utilization computed in the second step is achieved using the period
computed in the first step. If the computed C is not within the boundaries defined by
minimum and maximum C, then the set of virtual links is considered valid, else VLSG

96 Chapter V. Off-Line Scheduler for Time-Triggered Networks

restarts from the first step. Notice that, due to non deterministic decisions taken in the
first and second step, restarting the generation of the set of virtual links might lead to
a valid set.
Finally, VLSG computes the difference between the actual utilization (sum of the

utilization of each virtual link) and the target utilization. If this value is lower than the
input parameter maximum utilization error, then the set of virtual links is considered
valid, else VLSG restarts from the first step.
Recall that a necessary and sufficient schedulability test for a set of TT virtual links is

a NP-complete problem. Therefore, even though the total utilization of the virtual link
sets generated by VLSG is less than one, these sets are not guaranteed to be feasible.

V.5.2 Experiments

We implemented STSTTN in a single threaded C++ application and executed the
experiments described in this section in the high performance computer Elwetritsch at
the Technische Universtät Kaiserslautern. Our experiments ran on a node with Intel
Xeon E5 2670 processor at 2.6GHz and 32Gb of RAM.
For each experiment, we select a group of sets of virtual links as described in Table V.9,

and one (or more) set(s) of configuration parameters for STSTTN, as described in
Table V.10. The properties shown in Table V.10 describe the name of a virtual link
set, the number of virtual link in the set, the utilization, the matrix used to generate
the periods, and transmission window boundaries for each virtual link. Notice that we
provide explicit lower and upper bounds for the periods (besides the matrix of bases
and exponents).
For each run, we set a timeout of one hour, i.e., we abort the execution of STSTTN

if no feasible schedule is found within this timespan. The name of each experiment is
formed by concatenating the name of the group of virtual link sets, and the STSTTN
configuration, e.g. Cra1u5_C1C2C3C4.

Table V.9: Input to the scheduler: set of virtual links
Name # VLs U Matrix Period Cmin Cmax

AFDXu8v200 200 0.8 MA1 2 122
AFDXu9v200 200 0.9 MA1 2 122
AFDXu9v400 400 0.9 MA1 2 122
Cra1u5 10 0.5 MC1 2 9
Cra1u8 10 0.8 MC1 2 9
Cra1u9 10 0.9 MC1 2 9
Cra2u5 10 0.5 MC2 2 9
Cra2u7 10 0.7 MC2 2 9
Cra2u8 10 0.8 MC2 2 9
Cra2u9 10 0.9 MC2 2 9

V.5. Evaluation 97

MA1 =

(
0 1 2 3 4 5 6 7
3

)
Base 2
Base 10

TA1min = 1000, TA1max = 128000

MC1 =

(
0 1 2
1 2

)
Base 2
Base 5

TC1min = 10, TC1max = unbounded

MC2 =

(
0 1
1 2

)
Base 3
Base 10

TC2min = 10, TC2max = 100

MC3 =

0 1
1 2
0 1

 Base 3
Base 5
Base 10

TC3min = 50, TC3max = 75

Table V.10: Input to the scheduler: set of configuration parameters
Name VL to Tree Level Traversing Approach Edge Selection
CONF1 U Descending Look Back Sequential
CONF2 U Descending Look Back Random
CONF3 U Descending Look Ahead Sequential
CONF4 U Descending Look Ahead Random

The goals of the experiments is to test the following hypothesis:

H1. Look ahead is more efficient than look back, i.e., it requires less backtracking and
consequently shorter time to compute a feasible schedule or to detect infeasibility
using look ahead instead of look back.

H2. For a similar set of periods, the higher the utilization of the virtual link set, the
harder it is for STSTTN to find a feasible schedule.

H3. The algorithms to assign virtual links to levels of the search tree, and to select
the edges have a large impact on the time required to compute a feasible schedule
and/or to detect infeasibility.

H4. STSTTN can rapidly compute a feasible schedule for a set of virtual links with
harmonic periods. The same applies for sets in which the smallest period is equal
to the greatest common divisor of all virtual link periods.

We start presenting the results collected from experiments using virtual link sets
of the super group Cra. These sets are based on the three set of periods presented
in [CO16]. For each group of periods, we generated generate virtual link sets with
utilization varying from 0.5 until 0.9. We generated 500 sets of 10 virtual links for

98 Chapter V. Off-Line Scheduler for Time-Triggered Networks

each combination of utilization and group of periods (see Table V.9 from Cra1u5 to
Cra3u9). For all experiments of the super group Cra, we execute STSTTN with the
configuration parameters CONF1, CONF2, CONF3, and CONF4. For all experiments of
the super group AFDX, we execute STSTTN with the configuration parameters CONF1,
and CONF3. Notice that, boxplots from configurations which have not been executed,
present -1 as result, e.g., Figure V.24d.
For all experiments of the super group Cra, we can observe that look ahead performs

better than look back, i.e., when compared to look back, look ahead requires a smaller
number of backtracks to compute a feasible schedule or to detect infeasibility. Fig-
ure V.21 shows that no set of virtual links requires more than 20 backtracks (3 seconds)
to compute a feasible schedule and no more than 800 backtracks (1 second) to detect
an infeasible set using look ahead with sequential selection of edges. Whereas look back
requires up to 300.000 backtracks (200 seconds) and up to 6.000.000 backtracks (3500
seconds) to achieve the same conclusion.
The number of backtracks presented in Figures V.19, V.20, V.21,and V.22, increase

with the utilization of the set of the virtual link, irrespective to the approach used
to traverse the search-tree. Notice that these numbers increase for both computing a
feasible schedule and to deem a set of virtual links infeasible.
The experiments conducted for the super group Cra show that, in comparison to the

sequential selection of phases, selecting edges (phases) randomly is disadvantageous if
virtual links are assigned to the levels of the search tree by decreasing order of utilization.
We observed, in another set of experiments, that assigning virtual links to the levels of

the search tree by increasing order of utilization, drastically reduces the schedulability
ratio a set of virtual links, i.e., a timeout occurs before STSTTN can find a feasible
schedule. Therefore we do not present those experiments here.
In the super group afdx, the periods of the virtual links are elements of the allowed

BAG values of AFDX networks, i.e., 1, 2, 4, 8, 16, 32, 64 and 128 ms, and the length of
their transmission windows are equivalent to the transmission time of frames in AFDX
networks at 100Mbps. Due to the harmonic characteristic of the periods in these sets,
STSTTN can compute feasible schedules in short time even for large utilizations. Fig-
ure V.26g depicts for instance that both look back and look ahead approach can compute
a feasible schedule for a set with utilization of 0.9 in up to 130 seconds and 80 seconds,
respectively, without backtracks.

V.5. Evaluation 99

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.16: Experiment Cra1u5: STSTTN runs for 500 sets of virtual links. Sets scheduled
by STSTTN on the left and not scheduled on the right. Data classified by traversing and edge
selection algorithms.

100 Chapter V. Off-Line Scheduler for Time-Triggered Networks

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.17: Experiment Cra1u8: STSTTN runs for 500 sets of virtual links. Sets scheduled
by STSTTN on the left and not scheduled on the right. Data classified by traversing and edge
selection algorithms.

V.5. Evaluation 101

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.18: Experiment Cra1u9: STSTTN runs for 500 sets of virtual links. Sets scheduled
by STSTTN on the left and not scheduled on the right. Data classified by traversing and edge
selection algorithms.

102 Chapter V. Off-Line Scheduler for Time-Triggered Networks

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.19: Experiment Cra2u5: STSTTN runs for 500 sets of virtual links. Sets scheduled
by STSTTN on the left and not scheduled on the right. Data classified by traversing and edge
selection algorithms.

V.5. Evaluation 103

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.20: Experiment Cra2u7: STSTTN runs for 500 sets of virtual links. Sets scheduled
by STSTTN on the left and not scheduled on the right. Data classified by traversing and edge
selection algorithms.

104 Chapter V. Off-Line Scheduler for Time-Triggered Networks

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.21: Experiment Cra2u8: STSTTN runs for 500 sets of virtual links. Sets scheduled
by STSTTN on the left and not scheduled on the right. Data classified by traversing and edge
selection algorithms.

V.5. Evaluation 105

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.22: Experiment Cra2u9: STSTTN runs for 500 sets of virtual links. Sets scheduled
by STSTTN on the left and not scheduled on the right. Data classified by traversing and edge
selection algorithms.

106 Chapter V. Off-Line Scheduler for Time-Triggered Networks

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.23: Experiment Cra3u5: STSTTN runs for 500 sets of virtual links. Sets scheduled
by STSTTN on the left and not scheduled on the right. Data classified by traversing and edge
selection algorithms.

V.5. Evaluation 107

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.24: Experiment afdx1u8v200c1: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data classified by traversing
and edge selection algorithms.

108 Chapter V. Off-Line Scheduler for Time-Triggered Networks

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.25: Experiment afdx1u9v200c1: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data classified by traversing
and edge selection algorithms.

V.5. Evaluation 109

(a) Number of scheduled sets. (b) Number of not scheduled sets.

(c) Boxplot with sum of backtracks per gen-
erated schedule.

(d) Boxplot with sum of backtracks until
deem unschedulable.

(e) Histogram with sum of backtracks per
generated schedule.

(f) Histogram with sum of backtracks until
deem unschedulable.

(g) Boxplot with time to generate a sched-
ule.

(h) Boxplot with time to deem unschedu-
lable.

(i) Histogram with time to generate a
schedule.

(j) Histogram with time to deem unschedu-
lable.

Figure V.26: Experiment afdx1u9v400c1: STSTTN runs for 500 sets of virtual links. Sets
scheduled by STSTTN on the left and not scheduled on the right. Data classified by traversing
and edge selection algorithms.

110 Chapter V. Off-Line Scheduler for Time-Triggered Networks

V.6 Summary

In this chapter, we proposed an off-line scheduler for Time-Triggered Ethernet called
Search Tree based Scheduler for Time-Triggered Networks (STSTTN). The goal of
STSTTN is to generate a schedule for the transmission of TT-frames in each physi-
cal link in the network, such that the time windows reserved for the transmission of
TT-frames do not overlap in any physical link. We called transmission window, the
timespan reserved for the transmission of a TT-frame. A phase represents the start
time of the transmission window used to transmit the first frame of a virtual link.
We modeled this scheduling problem as a search tree, in which each virtual link is

assigned to a level of the search tree. Each vertex in a level of the search tree represents
4 set with phases that can be used to schedule the virtual link on that level. Each edge
represents a phase. The path leading to each vertex describes a schedule. STSTTN
traverses the search tree until it reaches a leaf. If it reaches a valid leaf, the schedule
for all virtual links traversing a physical link is found. If, on the contrary, it reaches an
invalid leaf, the scheduler backtracks. If no further backtracking is possible, the set of
virtual links is deemed unschedulable.
We presented two approaches to decrease the search space of the search tree called

look back and look ahead. Both approaches compare, pairwise, the properties of virtual
links scheduled along the visited path and compute a set of possibly feasible phases for
the next virtual link. The difference between look back and look ahead is that the latter,
additionally checks for the properties of virtual links which have not been scheduled yet.
We presented an example showing that, even in a small set of virtual links, look back
and look ahead can decrease the search space by one order of magnitude (14 vertices in
Figure V.5 instead of 170 vertices in Figure V.3). We demonstrated that other criteria,
e.g., the algorithms to assign virtual links to levels, and to select the edges, also impact
the search space.
We showed that selecting a “bad” edge at upper levels of the tree might lead to

infeasible schedules which can only be detected at deeper levels, leading to a large
number of backtracks before the scheduler deems the vertex invalid. In order to allow
for STSTTN to earlier discard such “bad” vertices, we presented a preventive tree pruning
heuristic.
Traversing the search tree and backtracking imply different computational costs de-

pending on the approach used to construct the search tree. For the look back approach,
traversing and backtracking computational costs increase at deeper levels of the search
tree. The opposite is true for the look ahead approach: traversing and backtracking
computational costs decrease at deeper levels of the search tree.
The schedule of a virtual link, requires the selection of a phase in each traversed

physical link. We showed that, in order to achieve the minimum transmission latency, a
transmission window must start immediately after the frame is ready for transmission.
We presented an approach to schedule the TT virtual links which allows for the minimum
transmission latency.
Our experiments confirmed our hypotheses showing that: Look ahead is more efficient

than look back ; for a fixed set of periods, the higher the utilization of the virtual link set,

V.6. Summary 111

the harder it is for STSTTN to find a feasible schedule; the algorithms used to assign
virtual links to levels of the search tree impacts on the search space; and that STSTTN
can rapidly compute a feasible schedule for a set of virtual links with harmonic periods.

Chapter VI

Conclusions

For many years, most distributed real-time systems employed data communication sys-
tems specially tailored to address the specific requirements of individual domains: for
instance, Controlled Area Network (CAN) and Flexray in the automotive domain, AR-
INC 429 [FW10] and TTP [Kop95] in the aerospace domain. Recently, the number of
distributed real-time systems, as well as the number of nodes per system, have drastically
increased. Further, new types of applications have been implemented on distributed sys-
tems, requiring large network bandwidth, e.g., entertainment video streams and backup
cameras.
Ethernet (IEEE 802.3) [iee12] is a well established network standard. Further, it

is fast, easy to install, and the interface ICs are cheap [Dec05]. However, Ethernet
does not offer any temporal guarantee. Recently a number of protocols merging the
benefits of Ethernet and the temporal guarantees required by distributed real-time sys-
tems have been proposed recently. In the aerospace domain, two of these solutions are:
Avionics Full-Duplex Switched Ethernet (AFDX) [AFD09] and Time-Triggered Ethernet
(TTEthernet) [tim16].
AFDX is a rate-constrained network based on switched Ethernet, implemented in

most recent aircraft. Each AFDX communication channel defines a virtual link. The
properties of the frames of a virtual link are defined off-line. Each virtual link defines:
i) a static route, ii) a priority level, iii) a maximum frame size (Lmax), iv) a minimum
time between two consecutive frames (BAG), and v) a maximum jitter.
The unsynchronized message transmission of AFDX networks leads to data contention

on the output ports of the switches. AFDX addresses this data contention by means of
buffering. In order to avoid data loss caused by overflow of buffers on the output ports
of AFDX switches, a network designer should carefully specify the amount of memory
reserved for each output port buffer. Therefore, he/ she must compute an upper bound
for the backlog of each output buffer in the network. Note that, due to the safety
critical properties of avionics systems, buffer overflow and the resulting data loss must
be avoided at all cost. Yet, large overprovision of memory to buffers should be avoided.
Computing the exact largest buffer backlog value of each buffer in an industrial size

AFDX network is intractable: current methods to compute the exact largest buffer back-
log relies on checking all possible combinations of ingress and egress times of frames.
Considering the unpredicted dispatch time of AFDX frames, the computational require-

113

114 Chapter VI. Conclusions

ments of those methods explode as the network traffic increases.
Although the current AFDX standard allows for traffic with only two priority levels,

some AFDX commercial solutions allow for multiple priority traffic. The state-of-the-
art AFDX buffer backlog analysis does not provide a method to compute deterministic
upper bounds for buffer backlog of AFDX networks with multiple priority traffic.
TTEthernet is a real-time network based on switched Ethernet which allows for best-

effort, rate-constrained and time-triggered traffic to coexist in the same communication
system. TTEthernet provides a fault-tolerant transparent clock synchronization pro-
tocol, required to synchronize the nodes participating in the time-triggered message
communication. In time-triggered networks, the transmission time of each frame is
known to the sender and receiver(s) before run-time. A scheduling table stores the
transmission and reception time window for each frame. This table is computed off-line
and ensures that transmission windows (on a physical link) do not overlap.
The transmission (dispatch) time of each frame is defined by two parameters: period

and phase, where period represents the constant timespan between the transmission of
any two consecutive frames of the same message, and phase represents the amount of
time between the start of the schedule until the point in time when the first frame of a
message is scheduled.

VI.1 Overview of Contributions
We proposed in this dissertation, solutions for two problems faced during the design of
AFDX and TTEthernet networks, as described in the following sections.

VI.1.1 Computation of Buffer Backlog Upper Bounds for AFDX Networks with
Multiple Priorities

In this dissertation, we presented a method to compute an upper bound for the backlog
on each output buffer of AFDX networks with multiple priority traffic. Our method
is based on the largest busy period encountered by a frame of each virtual link that
egresses a switch through the output port in which the buffer under analysis belongs
to. Knowing which are the frames in the largest busy period, however, is not enough to
determine the largest buffer backlog. We showed that the buffer backlog depends not
only on the static properties (amount, size and priority) of the of the frames in the busy
period, but also the order and the point in time in which they ingress and egress the
buffers.
In order to simplify the analysis of the buffer backlog of AFDX networks with multiple

priorities, we introduced the concept of type of interval. The idea behind these intervals
is to analyze the ingress and egress of frames in the largest busy period, and identify
intervals of time with the same properties of one of the types of interval. We showed
that, according to the defined properties, only four types of intervals exist. Further, we
presented the buffer backlog accrual for each type of interval.
We used the four types of interval to describe the properties of the scenario (ingress

and egress order of frames in the largest busy period) leading to the largest backlog

VI.1. Overview of Contributions 115

encountered by a frame of a virtual link. We called this scenario worst case scenario.
Once the worst case scenario is identified, we compute an upper bound for the buffer
backlog encountered by a frame of one and then of all virtual links that egresses a
switch through the output port in which the buffer under analysis belongs to. This
computation provides an upper bound for the backlog of the buffer under analysis.
We further discussed how the results achieved by our method can be applied to AFDX

switches that do not conform with our assumptions on how the ingress and egress of
frames are handled by AFDX switches.
Our experiments showed that the computational cost of our method is negligible when

compared to the cost of computing the end-to-end delay using the trajectory approach.

VI.1.2 A Strictly Periodic Scheduler for Time-Triggered Ethernet
We proposed in this dissertation, an off-line scheduler for time-triggered networks, in
particular for TTEthernet, called Search Tree based Scheduler for Time-Triggered Net-
works (STSTTN). Our method formulates the scheduling problem as a set of search
trees, each of them representing one physical link. Vertices in a level of the search tree
represent the sets with phases that can be used to schedule the virtual link on that
level, Edges represent the phases selected by the scheduler, and a path leading a vertex
describes a schedule.
We presented two approaches to decrease the search space while traversing the search

tree, called look back and look ahead. Both approaches compare, pairwise, the properties
of virtual links scheduled along the visited path and compute a set of possibly feasible
phases for the next virtual link. The difference between these two approaches is that
look ahead additionally checks for the properties of virtual links which have not been
scheduled yet.
STSTTN traverses the search tree until it reaches a leaf. If it reaches a valid leaf, the

schedule for all virtual links traversing a physical link is found. If, on the contrary, it
reaches an invalid leaf, the scheduler backtracks. If no further backtracking is possible,
the set of virtual links is deemed unschedulable.
We further described how STSTTN allows to guide the selection of edges, and how to

assign virtual links to tree levels. Additionally, we presented an optional pruning tree
heuristic to reduce the search space.
Finally, in order to schedule the virtual links with minimum latency, we proposed to

create one search tree for each physical link, where each search tree contains the virtual
links that cross the corresponding physical link. We showed how to account for the
minimum latency while computing the sets of phases represented by the vertices.
Our experiments showed that look ahead is more efficient than look back. Further,

they showed that for a fixed set of periods, the higher the utilization of the virtual link
set, the harder it is for STSTTN to find a feasible schedule. We could also observe that,
the algorithms used to assign virtual links to levels of the search tree impacts on the
search space, and that STSTTN can rapidly compute a feasible schedule for a set of
virtual links with harmonic periods.

116

VI.2 Future Work
The contributions presented in this dissertation also show opportunities for future re-
search. One possible extension to the buffer backlog upper bound computation method
presented in this dissertation is to provide an upper bound on the number of frames, in-
stead of on the amount of memory, stored in the output buffers of AFDX networks with
multiple priority traffic, Similar analysis has been propose by Benammar in [BBRR],
however solely for single priority traffic. Another possible future work is addressing
the different switch designs during the analysis of the worst case scenario, instead of
adding the pessimism at the end of the upper bound computations, We believe that
this approach would lead to less pessimism. A third possible research opportunity is
to propose an alternative method to compute the competing frames, thus reducing the
intrinsic pessimism on the computation of the busy period introduced by methods like
the trajectory approach.
Our proposed search tree based schedule for time-triggered networks (STSTTN) also

provided some pointers for future research. A natural possible extension to STSTTN
is to relax the assumption that the schedule must provide the minimum traversal time.
For many applications, the traversal time need not to be minimum and the need for
buffering of TT-frames is acceptable. Certainly, providing auto tuning capabilities to
STSTTN is a challenging possible extension. For instance, depending on the properties
of the set of virtual links to be scheduled, STSTTN can decide on the most effective
algorithms for assigning virtual links to search tree levels, select edges, etc.

Appendix A

Proof of Theorem III.1

This appendix proves that the value computed by Equation (III.9) is larger than or
equal to zero for any value of τ such that ω� ≤ τ ≤ θ�P .
The amount of transmitted P-data from τ until θ∗P in the worst case scenario, is

represented by T ∗P(θ∗P−τ) and computed by Equation (A.1).

T ∗P(θ∗P−τ) =∆∗P − T ∗Pτ (A.1)

In the worst case scenario, no P-data is transmitted before β∗. Thus, for τ ≥ β∗, the
amount of data transmitted until τ is equal to (τ − β∗); otherwise it is equal to zero.
Therefore:

T ∗Pτ =d(τ − β∗)+ (A.2)

And, consequently:

T ∗P(θ∗P−τ) =∆∗P − d(τ − β∗)+

Let T �P
θ�P be the total amount of P-data transmitted until θ�P in scenario �. Considering

that the worst case scenario is the scenario in which less P-data is transmitted until the
transmission of the latest P-frame, we have:

∆∗P =T �P
θ�P −K | K ≥ 0

Thus:

T ∗P(θ∗P−τ) =T �P
θ�P −K − d(τ − β∗)+ (A.3)

After combining with Equations (III.4), (A.2) and (A.3), Equation (III.9) becomes:

B∗Pθ∗P −B
�P
τ =R�P

(θ�P−τ) − T
�P
θ�P +K + d(τ − β∗)+ + T �L

τ − d(τ − β∗)+

Considering:

T �P
(θ�P−τ) =T �P

θ�P − T �L
τ

then:

B∗Pθ∗P −B
�P
τ =R�P

(θ�P−τ) − T
�P
(θ�P−τ) +K (A.4)

We present the analysis of Equation (A.4) for two types of scenarios: first, for scenarios
in which β� > θ�P , then, for those scenarios in which β� ≤ θ�P .

117

118

A.1 Scenarios with β� > θ�P

According to Section III.2.6.1, the worst case scenario requires the largest β∗ and the
shortest θ∗P . Hence β� ≤ β∗ and θ∗P ≥ θ∗P .
If, in the worst case scenario, β∗ < θ∗P , then β� < θ�P . Consequently, there exists no

scenario � in which β� > θ�P for β∗ < θ∗P .
Otherwise, if in the worst case scenario, β∗ ≥ θ∗P , i.e., ∆∗P ≤ 0, then the buffer

backlog upper bound is equal to the total amount of P-data that ingress this buffer,
i.e, σPALL (see Equation III.18). Logically, there exists no scenario � in which the buffer
backlog is larger than σPALL. �

A.2 Scenarios with β� ≤ θ�P

We divide this analysis into two cases, according to the location of τ : β� ≤ τ ≤ θ�P and
ω� ≤ τ < β�.

A.2.1 β� ≤ τ ≤ θ�P

Assuming no idle time on the input links, and considering that the last frame with
priority other than P arrives at β� in scenario �, the interval [τ, θ�P] is of type 2. Per
definition, the amount of ingress P-data is larger or equal than the egress P-data in this
interval (see Section III.2.4) and therefore R�P

(θ�P−τ)
≥ T �P

(θ�P−τ)
. Thus Equation (A.4)

and consequently Equation (III.9) result in positive values for β� ≤ τ ≤ θ�P . �

A.2.2 ω� ≤ τ < β�

Let us analyze the terms R�P
(θ�P−τ)

and T �P
(θ�P−τ)

of Equation (A.4):

R�P
(θ�P−τ) =R�P

(θ�P−β�) +R�P
(β�−τ)

T �P
(θ�P−τ) =T �P

(θ�P−β�) + T �P
(β�−τ)

thus:

R�P
(θ�P−τ) − T

�P
(θ�P−τ) =R�P

(θ�P−β�) − T
�P
(θ�P−β�) +R�P

(β�−τ) − T
�P
(β�−τ)

Notice that, [β�, θ�P] is a type 2 interval and per definition R�P
(θ�P−β�)

− T �P
(θ�P−β�)

≥ 0.
To prove that R�P

(β�−τ)−T
�P
(β�−τ) ≥ 0, we analyze the interval [τ, β�[. The transmission

of all frames with priorities other than P, obviously including those that arrive in the
interval [τ, β�[, ends at β�. We can draw two conclusions from this observation: first,
the amount of HP-data and LP-data received in this interval is less than or equal to the
length of the interval; second, this amount of data is less than the sum of the amount
of HP-data plus the amount of LP-data transmitted in this interval. We express these

119

two conclusions in the next inequalities:

R�HP
(β�−τ) +R�LP

(β�−τ) <d(β� − τ)

R�HP
(β�−τ) +R�LP

(β�−τ) ≤T
�HP
(β�−τ) + T �LP

(β�−τ) (A.5)

Due to possible arrival of P-frames from multiple virtual links, the amount of P-data
arriving between τ and β� is larger than the length of this interval minus the sum of
the amount of HP-data and the amount of LP-data that ingress in this interval, i.e.:

R�P
(β�−τ) ≥ d(β� − τ)− (R�HP

(β�−τ) +R�LP
(β�−τ)) (A.6)

Since there is no idle time on the output link between τ and β�, the amount of trans-
mitted P-data in this interval is:

T �P
(θ�P−β�) = d(β� − τ)− (T �HP

(β�−τ) + T �LP
(β�−τ)) (A.7)

Subtracting (A.7) from (A.6) we have:

R�P
(β�−τ) − T

�P
(β�−τ) ≥ (T �HP

(β�−τ) + T �LP
(β�−τ))− (R�HP

(β�−τ) +R�LP
(β�−τ))

According to (A.5):

(T �HP
(β�−τ) + T �LP

(β�−τ))− (R�HP
(β�−τ) +R�LP

(β�−τ)) ≥ 0

thus:

R�P
(β�−τ) − T

�P
(β�−τ) ≥ 0

Consequently, Equation (A.4) and Equation (III.9) result in positive values for ω� ≤
τ < β�. �

Appendix B

Computing Competing Frames with Trajectory
Approach

The trajectory approach computes the busy period on every node visited by the virtual
link under analysis (v), and the maximum number of frames (competing frames) of each
virtual link that delays the latest arriving frame (fm) of the virtual link v . According
to [BSF10], the trajectory approach uses Equation (B.1) to compute an upper bound
for the end-to-end delay of a frame of any virtual link v :

Rv = max
t≥0

(W o
v,t + Cv − t) (B.1)

where: Cv is the transmission time of a frame of virtual link v and W o
v,t is an upper

bound on the latest arrival time of a frame of VL v generated at time t on node o.
Equation (B.2) presents the computation of W o

v,t.
W o
v,t = (B.2)

∑
j∈spv∪{v}
Pj∩Pv 6=∅

(
1 +

⌊
t+ Av,j
Tj

⌋)
× Cj (B.2.1)

+
∑
j∈hpv
Pj∩Pv 6=∅

(
1 +

⌊
W o
v,t +Bv,j

Tj

⌋)
× Cj (B.2.2)

+
∑
h∈Pv
h6=lastv

 max
h∈hpv∪spv∪[v]

h∈Pj

{Cj}

 (B.2.3)

+ (|Pv| − 1)× Lmax (B.2.4)

+
∑
h∈Pv

δhv (B.2.5)

+
∑
h∈Pv

h6=firstv

∆h (B.2.6)

− Cv (B.2.7)

121

122

Term (B.2.1) represents the delay accrual caused by all the competing frames with the
same priority as the virtual link under analysis, from its source to its destination node.
Term (B.2.2) is the counterpart of Term (B.2.1) for competing frames with priorities
higher than the virtual link under analysis. Av,j and Bv,j represent time windows that
define the earliest and latest generation time of a frame of VL j, respectively of same or
higher priority than VL v , that might delay fm on node o; δhv represents the size of the
largest low priority competing frame on node o; Term (B.2.5) represents the blocking
time (impact due to frames of priority lower than fm). Terms (B.2.3), (B.2.4) and (B.2.7)
represent the same properties as explained in Section II.3.2.2 Notice that, in order to
be consistent with the notation used in Chapter III, the indices of Equations (B.1) and
(B.2) are not the same as those used in [BSF12b].
Formula (B.3) computes the length of the competing LP-frame.∑

j∈Vo,LP,̄i

∀ī∈Io

max(fj) (B.3)

The competing frames of same and higher priority than the virtual link v can be ex-
tracted from terms (B.2.1) and (B.2.2), using formulas (B.4) and (B.5), respectively.
Notice that the value W o

v,t used in the computation of Formula (B.5) is the solution of
the respective fixed point iterated Equation (B.2).(

1 +

⌊
t+ Av,j
Tj

⌋)
| j ∈ Vo,SP,j,∀ j ∈ Io (B.4)(

1 +

⌊
W o
v,t +Bv,j

Tj

⌋)
| j ∈ Vo,HP,j,∀ j ∈ Io (B.5)

It is important to notice that, the values obtained by the trajectory approach might be
pessimistic. Nevertheless, the method presented in Chapter III can be used with any
other approach which computes the competing frames in the largest busy period en-
countered by frames of each virtual link. For further details on the trajectory approach,
we refer the interested reader to [MM06b] and [BSF10].

Bibliography

[AFD09] Aircraft Data Network Part 7. Avionics Full-Duplex Switched Ethernet Net-
work. ARINC Specification 664 P7-1. September 2009

[ASEF10] Adnan, M. ; Scharbarg, J. L. ; Ermont, J. ; Fraboul, C.: Model for
worst case delay analysis of an AFDX network using timed automata. In:
2010 IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), 2010, S. 1–4

[BB05] Bini, Enrico ; Buttazzo, Giorgio C.: Measuring the performance of
schedulability tests. 30 (2005), Nr. 1, S. 129–154

[BBRR] Benammar, Nassima ; Bauer, Henri ; Ridouard, FrÃ c©dÃ c©ric ;
Richard, Pascal: Tighter buffer dimensioning in AFDX networks. 13,
Nr. 4, 37–42. http://dl.acm.org/citation.cfm?id=3015043

[BMN11] Boyer, Marc ; Migge, Jörn ; Navet, Nicolas: A simple and efficient class
of functions to model arrival curve of packetised flows. In: 1st International
Workshop on Worst-case Traversal Time, in conj. with the 32nd IEEE Real-
Time Systems Symposium (RTSS 2011), Vienna, 2011

[BSF09] Bauer, H. ; Scharbarg, J. L. ; Fraboul, C.: Applying and optimizing
trajectory approach for performance evaluation of AFDX avionics network.
In: 2009 IEEE Conference on Emerging Technologies Factory Automation,
2009, S. 1–8

[BSF10] Bauer, Henri ; Scharbarg, Jean-Luc ; Fraboul, Christian: Improving
the Worst-Case Delay Analysis of an AFDX Network Using an Optimized
Trajectory Approach. 6 (2010), Nr. 4, 521–533. http://dx.doi.org/

10.1109/TII.2010.2055877. – DOI 10.1109/TII.2010.2055877. – ISSN
1551–3203, 1941–0050

[BSF12a] Bauer, H. ; Scharbarg, J.-L. ; Fraboul, C.: Worst-Case Backlog Evalu-
ation of Avionics Switched Ethernet Networks with the Trajectory Approach.
In: ECRTS, 2012, S. 78 –87

123

http://dl.acm.org/citation.cfm?id=3015043
http://dx.doi.org/10.1109/TII.2010.2055877
http://dx.doi.org/10.1109/TII.2010.2055877

124 BIBLIOGRAPHY

[BSF12b] Bauer, Henri ; Scharbarg, Jean-Luc ; Fraboul, Christian: Applying
Trajectory approach with static priority queuing for improving the use of
available AFDX resources. 48 (2012), Nr. 1, 101–133. http://dx.doi.

org/10.1007/s11241-011-9142-9. – DOI 10.1007/s11241–011–9142–9.
– ISSN 0922–6443, 1573–1383

[BSF12c] Bauer, Henri ; Scharbarg, Jean-Luc ; Fraboul, Christian: Worst-
Case Backlog Evaluation of Avionics Switched Ethernet Networks with the
Trajectory Approach, IEEE, 2012. – ISBN 978–1–4673–2032–0, 78–87

[But05] Buttazzo, Giorgio C.: Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. 2nd Edition. Springer Sci-
ence+Business Media, 2005

[But10] Butz, Henning: Open integrated modular avionic (ima): State
of the art and future development road map at airbus deutschland.
10 (2010), 1000. http://www.academia.edu/download/39499480/

ima-henning-butz.pdf

[CLRS01] Cormen, Thomas H. ; Leiserson, Charles E. ; Rivest, Ronald L. ; Stein,
Clifford: Introduction to Algorithms, Second Edition. The MIT Press, 2001.
– ISBN 0262531968

[CO16] Craciunas, Silviu S. ; Oliver, Ramon S.: Combined task- and network-
level scheduling for distributed time-triggered systems. 52 (2016), Nr. 2,
161–200. http://dx.doi.org/10.1007/s11241-015-9244-x. – DOI
10.1007/s11241–015–9244–x. – ISSN 0922–6443, 1573–1383

[Cru91a] Cruz, Rene L.: A calculus for network delay. Part I. Network elements
in isolation. 37 (1991), Nr. 1, 114–131. http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=61109

[Cru91b] Cruz, Rene L.: A calculus for network delay. Part II: Network Analysis. 37
(1991), Nr. 1, 114–131. http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=61109

[DBBL07] Davis, Robert ; Burns, Alan ; Bril, Reinder ; Lukkien, Johan: Controller
Area Network (CAN) schedulability analysis: Refuted, revisited and revised.
In: Real-Time Systems Journal vol. 35 (2007), S. 239 – 272

[Dec05] Decotignie, J.-D.: Ethernet-Based Real-Time and Industrial Communica-
tions. 93 (2005), Nr. 6, 1102–1117. http://dx.doi.org/10.1109/JPROC.
2005.849721. – DOI 10.1109/JPROC.2005.849721. – ISSN 0018–9219

[FFG06] Frances, Fabrice ; Fraboul, Christian ; Grieu, Jérôme: Using net-
work calculus to optimize the AFDX network. (2006). http://oatao.

univ-toulouse.fr/2159/

http://dx.doi.org/10.1007/s11241-011-9142-9
http://dx.doi.org/10.1007/s11241-011-9142-9
http://www.academia.edu/download/39499480/ima-henning-butz.pdf
http://www.academia.edu/download/39499480/ima-henning-butz.pdf
http://dx.doi.org/10.1007/s11241-015-9244-x
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=61109
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=61109
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=61109
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=61109
http://dx.doi.org/10.1109/JPROC.2005.849721
http://dx.doi.org/10.1109/JPROC.2005.849721
http://oatao.univ-toulouse.fr/2159/
http://oatao.univ-toulouse.fr/2159/

BIBLIOGRAPHY 125

[Foh94] Fohler, Gerhard J.: Flexibility in Statically Scheduled Real-Time Systems.
Wien, Österreich, Diss., April 1994. https://pdfs.semanticscholar.

org/c3e0/2fd96e588b8a4a8c6b479f8bca66e9a1b0de.pdf

[FW10] Frodyma, Pat ; Waldmann, B: ARINC 429 Specification Tutorial.
https://www.aim-online.com/pdf/OVIEW429.PDF. Version: 2010

[GM01] Goossens, Joel ; Macq, Christophe: Limitation of the Hyper-Period in
Real-Time Periodic Task Set Generation. In: In Proceedings of the RTS
Embedded System (RTS’01), 2001, S. 133–147

[Goo03] Goossens, Joël: Scheduling of Offset Free Systems. In: Real-Time Systems
24 (2003), S. 239–258. http://dx.doi.org/10.1023/A:1021782503695.
– DOI 10.1023/A:1021782503695. – ISSN 0922–6443

[GPGH14] Gutiérrez, J. J. ; Palencia, J. C. ; González Harbour, Michael:
Holistic schedulability analysis for multipacket messages in AFDX net-
works. 50 (2014), Nr. 2, 230–269. http://dx.doi.org/10.1007/

s11241-013-9192-2. – DOI 10.1007/s11241–013–9192–2. – ISSN 0922–
6443, 1573–1383

[Gro17] Group, Time-Sensitve Networking T.: IEEE 802.1 Time-Sensitve Net-
working Task Group. http://www.ieee802.org/1/pages/tsn.html.
Version: 2017

[HF17] Heilmann, Florian ; Fohler, Gerhard: Reducing the End-To-End Delay
of Rate-Constrained Traffic in TTEthernet Networks. In: 15th Workshop on
Real-Time Networks (RTN’17) in conjuction with 29th Euromicro Interna-
tional Conference on Real-time Systems (ECRTS’17), 2017

[iee12] IEEE Standard for Ethernet. In: IEEE Std 802.3-2012 (Revision to IEEE
Std 802.3-2008) (2012), Dec, S. 1–3747. http://dx.doi.org/10.1109/

IEEESTD.2012.6419735. – DOI 10.1109/IEEESTD.2012.6419735

[KALW91] Korst, Jan ; Aarts, Emile ; Lenstra, Jan K. ; Wessels, Jaap: Periodic
multiprocessor scheduling. Version: 1991. https://doi.org/10.1007/

BFb0035103. In: Aarts, Emile H. L. (Hrsg.) ; Leeuwen, Jan van (Hrsg.)
; Rem, Martin (Hrsg.): PARLE ’91 Parallel Architectures and Languages
Europe: Volume I: Parallel Architectures and Algorithms Eindhoven, The
Netherlands, June 10–3, 1991 Proceedings. Springer Berlin Heidelberg, 1991.
– ISBN 978–3–540–47471–5, 166–178. – DOI: 10.1007/BFb0035103

[KBR+15] Kemayo, Georges ; Benammar, N. ; Ridouard., Frédéric ; Bauer, Henri
; Richard, Pascal: Improving AFDX end-to-end delays analysis. In:
2015 IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA), 2015

https://pdfs.semanticscholar.org/c3e0/2fd96e588b8a4a8c6b479f8bca66e9a1b0de.pdf
https://pdfs.semanticscholar.org/c3e0/2fd96e588b8a4a8c6b479f8bca66e9a1b0de.pdf
https://www.aim-online.com/pdf/OVIEW429.PDF
http://dx.doi.org/10.1023/A:1021782503695
http://dx.doi.org/10.1007/s11241-013-9192-2
http://dx.doi.org/10.1007/s11241-013-9192-2
http://www.ieee802.org/1/pages/tsn.html
http://dx.doi.org/10.1109/IEEESTD.2012.6419735
http://dx.doi.org/10.1109/IEEESTD.2012.6419735
https://doi.org/10.1007/BFb0035103
https://doi.org/10.1007/BFb0035103

126 BIBLIOGRAPHY

[Kop95] Kopetz, H.: TTP/A - A Time-Triggered Protocol for Body Electronics
Using Standard UARTS. In: International Congress and Exposition, SAE
International, feb 1995. – ISSN 0148–7191

[Kop08] Kopetz, Hermann: The Rationale for Time-Triggered Eth-
ernet. In: Real-Time Systems Symposium, IEEE Interna-
tional 0 (2008), S. 3–11. http://dx.doi.org/http://doi.

ieeecomputersociety.org/10.1109/RTSS.2008.33. – DOI
http://doi.ieeecomputersociety.org/10.1109/RTSS.2008.33. – ISSN 1052–
8725

[Kop11] Kopetz, H.: Real-Time Systems - Design Principles for Distributed Em-
bedded Applications. Springer, 2nd ed., 2011

[Kor92] Korst, Jan H. M.: Periodic multiprocessor scheduling, phdthesis, 1992.
http://link.springer.com/chapter/10.1007/BFb0035103

[KRBR14] Kemayo, Georges ; Ridouard, Frédéric ; Bauer, Henri ; Richard, Pas-
cal: A Forward End-to-end Delays Analysis for Packet Switched Networks.
In: 22Nd International Conference on Real-Time Networks and Systems,
ACM, 2014 (RTNS ’14). – ISBN 978–1–4503–2727–5

[KRR13] Kemayo, Georges ; Ridouard, Henri Frédéric ; Richard, Pascal: Op-
timistic problems in the trajectory approach in FIFO context. In: 18th
Conference on Emerging Technologies & Factory Automation, ETFA 2013,
IEEE, 2013. – ISBN 978–1–4799–0864–6 978–1–4799–0862–2, 1–8

[LBT01] Le Boudec, Jean-Yves ; Thiran, Patrick: Network calculus: a theory
of deterministic queuing systems for the Internet. Springer, 2001 (Lecture
notes in computer science 2050). – ISBN 978–3–540–42184–9

[LCG14] Li, Xiaoting ; Cros, Olivier ; George, Laurent: The Trajectory ap-
proach for AFDX FIFO networks revisited and corrected. In: Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2014 IEEE
20th International Conference on, IEEE, 2014, 1–10

[MM04] Minet, Pascale ; Martin, Steven: Worst case end-to-end response times for
non-preemptive FP/DP* scheduling. Version: 2004. https://hal.inria.
fr/inria-00070588/document. 2004. – Forschungsbericht

[MM06a] Martin, Steven ; Minet, Pascale: Schedulability analysis of flows sched-
uled with FIFO: application to the expedited forwarding class. In: Proceed-
ings 20th IEEE International Parallel & Distributed Processing Symposium,
IEEE, 2006, 8–pp

[MM06b] Martin, Steven ; Minet, Pascale: Worst case end-to-end response times of
flows scheduled with FP/FIFO. In: International Conference on Network-
ing, International Conference on Systems and International Conference on

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/RTSS.2008.33
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/RTSS.2008.33
http://link.springer.com/chapter/10.1007/BFb0035103
https://hal.inria.fr/inria-00070588/document
https://hal.inria.fr/inria-00070588/document

BIBLIOGRAPHY 127

Mobile Communications and Learning Technologies (ICNICONSMCL’06),
IEEE, 2006, 54–54

[Mok83] Mok, Aloysius K.: Fundamental Design Problems of Distributed Systems for
the Hard-Real-Time Environment, Massachusetts Institute of Technology,
Diss., 1983

[MS10] Marouf, Mohamed ; Sorel, Yves: Schedulability conditions for non-
preemptive hard real-time tasks with strict period. In: Proceedings of 18th
International Conference on Real-Time and Network Systems, RTNS’10.
Toulouse, France, November 2010

[MS11] Marouf, Mohamed ; Sorel, Yves: Scheduling non-preemptive hard real-
time tasks with strict periods. In: Emerging Technologies & Factory Au-
tomation (ETFA), 2011 IEEE 16th Conference on, IEEE, 2011, 1–8

[RSF08] Ridouard, Frédéric ; Scharbarg, Jean-Luc ; Fraboul, Christian: Prob-
abilistic upper bounds for heterogeneous flows using a static priority queue-
ing on an AFDX network. In: 2008 IEEE International Conference on
Emerging Technologies and Factory Automation, 2008, 1220–1227

[SR90] Stankovic, John A. ; Ramamritham, Krithi: What is predictability for
real-time systems? 2 (1990), Nr. 4, 247–254. http://www.springerlink.
com/index/W847111315421W3K.pdf

[SRF02] Scharbarg, Jean-Luc ; Ridouard, Frédéric ; Fraboul, Christian: A
Probabilistic Analysis of End-To-End Delays on an AFDX Avionic Net-
work. 5 (2009-02), Nr. 1, 38–49. http://dx.doi.org/10.1109/TII.

2009.2016085. – DOI 10.1109/TII.2009.2016085. – ISSN 1551–3203

[Ste10] Steiner, Wilfried: An Evaluation of SMT-Based Schedule Synthesis for
Time-Triggered Multi-hop Networks, IEEE, 2010. – ISBN 978–0–7695–4298–
0, 375–384

[SV08] Schuster, Teresa ; Verma, Dinesh: Networking concepts comparison for
avionics architecture. In: Digital Avionics Systems Conference, 2008. DASC
2008. IEEE/AIAA 27th, IEEE, 2008, 1–D

[tim16] Time-Triggered Ethernet. http://www.sae.org/technical/

standards/AS6802. Version: 2016

[TPS15] Tǎmaş Selicean, Domiţian ; Pop, Paul ; Steiner, Wilfried: Timing
Analysis of Rate Constrained Traffic for the TTEthernet Communication
Protocol. In: 2015 IEEE 18th International Symposium on Real-Time Dis-
tributed Computing (ISORC), 2015, S. 119–126

[TTT] TTTech: AFDX Switch 3U VPX Rugged.
https://www.tttech.com/products/aerospace/flight-rugged-hardware/
switches/afdx-switch-3u-vpx-rugged/,

http://www.springerlink.com/index/W847111315421W3K.pdf
http://www.springerlink.com/index/W847111315421W3K.pdf
http://dx.doi.org/10.1109/TII.2009.2016085
http://dx.doi.org/10.1109/TII.2009.2016085
http://www.sae.org/technical/standards/AS6802
http://www.sae.org/technical/standards/AS6802

128 BIBLIOGRAPHY

[WW07] Watkins, Christopher B. ; Walter, Randy: Transitioning from federated
avionics architectures to integrated modular avionics. In: Digital Avionics
Systems Conference, 2007. DASC’07. IEEE/AIAA 26th, IEEE, 2007, 2–A

[ZLX+13] Zhao, Luxi ; Li, Qiao ; Xiong, Ying ; Zheng, Zhong ; Xiong, Huagang:
Using multi-link grouping technique to achieve tight latency in network cal-
culus. In: 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference
(DASC), IEEE, 2013, 2E3–1

Summary

Buffer Analysis and Message Scheduling for
Real-Time Networks

For real-time systems, not only is the correct value of the computation (logic cor-
rectness) important, but also the point in time when this value is available (temporal
correctness). In distributed real-time systems, logical and temporal correctness depend
on the interaction of the connected computer nodes. Therefore, communication in dis-
tributed real-time systems must be done via a real-time communication system. This
type of communication system should offer low message transport latency and low jitter,
and thus cause as little impact as possible on the response time of the tasks.
As described by Decotignie in [Dec05], Ethernet [iee12] is fast, easy to install, and

the interface ICs are cheap. However, Ethernet does not offer the temporal guarantees
required by a real-time communication system. In order to close this gap, research
groups from academia and industry have proposed a number of solutions. Two of these
solutions are: Avionics Full-Duplex Switched Ethernet (AFDX) [AFD09] and Time-
Triggered Ethernet [tim16].
In this dissertation we address two problems faced during the design of AFDX and

TTEthernet: data loss due to buffer overflow in AFDX networks with multiple priority
traffic, and generation of schedules for TT-frames in TTEthernet networks. Our con-
tributions in this dissertation solve these two problems. We solve the first problem by
proposing a method to compute an upper bound for the backlog of each buffer in an
AFDX network with multiple priority traffic. We solve the second problem by proposing
an off-line scheduler for the TT-frames of TTEthernet.

Chapter I – Introduction

We start this chapter with a brief introduction to the areas of research explored in this
dissertation. Additionally, we present the problems addressed and the contributions
of this dissertation. We conclude this chapter with the overview of the dissertation
structure.

129

130 SUMMARY

Chapter II – AFDX Background and State-of-the-Art in Buffer Backlog Analysis

In this chapter, we present the fundamental properties of AFDX networks and the
state-of-the-art approaches to compute upper bounds for end-to-end latency and buffer
backlog. We show in Section II.1, that AFDX networks can ensure predictable temporal
properties for frames traversing the network by means of AFDX-compliant switches
and end-systems. We describe the concept of virtual link and show how AFDX can
provide bandwidth isolation. Section II.1 further describes the contention issue in AFDX
networks, i.e., the condition when multiple frames try to egress an output port at the
same time. AFDX addresses the contention issue by buffering, which in turn raises two
important questions presented in Section II.2: What is the largest latency encountered
by a frame due to buffering? And, what is the largest backlog in an output buffer?
In Section II.3 we present the state-of-the-art methods to address these two questions.

Due to the unsynchronized nature of AFDX networks and the large number of virtual
links in commercial airplane’s avionics systems, simulating all possible combinations of
frames dispatching times is intractable. Nevertheless, we show in Section II.3.4, that
simulation is used in small networks to estimate the pessimism of other approaches.
Therefore, a number of methods have been proposed to compute upper bounds for the
worst case traversal time and largest buffer backlog. We divide the presentation of
these existing methods into two categories: the first, with methods that analyze the
traffic at flow level and bound the traffic and services on the network by means of
envelopes ; the second, with methods that analyze the network at a finer granularity by
investigating the effects of the network service and the cross-traffic on a given frame.
For most of the compared cases (see [BSF12b]), methods of the second category lead to
the computation of tighter upper bounds when compared to those achieved by methods
of the first category (including network calculus with serialization).
We show in Section II.3.5 that model checking has been used to compute the exact

worst case end-to-end latency in AFDX networks. This method however, does not does
not scale and is therefore not used for the upper bound computations in large avionics
networks. Yet, similar to simulation methods presented in Section II.3.4, this approach
can be used to evaluate the pessimism of the upper bounds achieved by other methods.
Despite the importance of avoiding buffer overflows in AFDX networks, most work on

upper bound computation targets the worst case end-to-end latency, not giving much
attention to the buffer backlog analysis. We show in this chapter that, the state-of-the-
art AFDX buffer backlog analysis does not provide a method to compute deterministic
upper bounds for buffer backlog of AFDX networks with multiple priority traffic.

Chapter III – Buffer Backlog Upper Bound for AFDX Networks with Multiple Priority Traffic

In this chapter, we present a method to compute an upper bound for the backlog of
every buffer on an AFDX network. We show that contention occurs on a switch output
port every time multiple frames try to egress this port at the same time. The contention
issue is addressed by means of buffering in AFDX networks. Considering safety-critical
nature of applications in avionics systems, overflow of these buffers must be avoided at
all cost. Even though the AFDX standard recommends a minimum amount of memory

SUMMARY 131

to be reserved for the output buffers, this amount does not represent a safe bound for
every network configuration. Further, this recommendation does not specify how the
reservation should be shared among buffers of different priorities.
The current AFDX standard allows for the classification of network traffic in two

priorities: high and low. However, some existing commercial solutions extended the
number of used priorities. In the approach presented in this chapter, we assumed an
AFDX network in which virtual links are classified with any number of priority levels,
and provided the computation of an upper bound for each buffer (one per priority level)
in the network.
For each output buffer, we investigate the largest backlog encountered by probe frames

of each virtual link with the same priority as that buffer. Our method is based on the
largest busy period encountered by a frame of each virtual link that egresses a switch
through the output port in which the buffer under analysis belongs to. We show that
the buffer backlog depends not only on the static properties (amount, size and priority)
of the of the frames in the busy period: also the order and the point in time in which
they ingress and egress the buffers impact on the buffer backlog computation.
In order to simplify the analysis of the buffer backlog of AFDX networks with multiple

priorities, we introduce the concept of type of interval. The idea behind type of intervals
is to analyze the ingress and egress of frames in the largest busy period, and identify
intervals of time with the same properties of one of the types of interval. Any time
interval that does not match the properties defined by our four types of interval can
be decomposed into smaller intervals until each of them adheres to properties of one
of these types. We show that, according to the defined properties, only four types of
intervals exist.
We use the four types of interval to describe the properties of the scenario (ingress

and egress order of frames in the largest busy period) leading to the largest backlog
encountered by a frame of a virtual link. We call this scenario worst case scenario. We
show that, in the worst case scenario, the probe frame is the last arriving competing
frame. Three effects might delay the dispatch of the probe frame and consequently
increase the backlog faced by it: blocking (due to lower priority frames), interference
(due to higher priority frames) and idle time on the output link. The worst case scenario
is the one in which the largest sum of these three effects occur.
Once the worst case scenario is identified, we compute an upper bound for the buffer

backlog encountered by a frame of one and then of all virtual links that egresses a
switch through the output port in which the buffer under analysis belongs to. This
computation provides an upper bound for the backlog of the buffer under analysis.
We further discuss how the results achieved by our method can be applied to AFDX

switches that do not conform with our assumptions on how the ingress and egress of
frames are handled by AFDX switches.
Our experiments showed that the computational cost of our method is negligible when

compared to the cost of computing the end-to-end delay using the trajectory approach.

132 SUMMARY

Chapter IV – TTEthernet Background and State-of-the-Art in Time-Triggered Schedulers

Time-triggered Ethernet (TTEthernet) is an extension of the switched Ethernet (IEEE
802.3) which allows for Best-Effort (BE), Rate-Constrained (RC) and Time-Triggered
(TT) traffic to coexist in the same communication system In this chapter, we present the
fundamental properties of TTEthernet required to understand our scheduler proposed in
Chapter V. Additionally, we present in this chapter the state-of-the-art in the generation
of a schedule for TT virtual links in TTEthernet.
We start this chapter by presenting our terminology used to address the data trans-

mission over TTEthernet. Then, we show how the TTEthernet clock synchronization
protocol impacts on the scheduling of TT-frames. In TTEthernet, scheduling a TT vir-
tual link means reserving a time window (transmission windows) at a scheduled point
in time for the transmission of each frame of that virtual link on each physical link in its
path. In Section IV.3.2, we show the similarities of the problem of scheduling TT-frames
in a physical link and the problem of scheduling non-preemptive strictly periodic jobs
in offset1 free systems (or independent operations strictly periodically).
A valid TT schedule for a given physical link shall not contain overlapping transmis-

sion windows, and therefore no contention among TT-frames. Nevertheless, contention
might occur due to the transmission of BE- and/or RC-frames, since their transmis-
sion times are not known in advance. We present in Section IV.3.3 how TTEthernet
addresses contention.
We depict in Section IV.3.5 how the end-to-end latency of a frame varies according to

the schedule on each physical link along the path of a virtual link, and presented how to
reach the minimum latency. And in Section IV.3.6, we describe a method to account for
the temporal requirements of RC virtual links during the generation of a TT scheduling
table.
Section IV.4 presents the state-of-the-art approaches in the generation of scheduling

tables for TTEthernet.

Chapter V – Off-Line Scheduler for Time-Triggered Networks

In this chapter, we propose an off-line scheduler for Time-Triggered Ethernet called
Search Tree based Scheduler for Time-Triggered Networks (STSTTN). The goal of
STSTTN is to generate a schedule for the transmission of TT-frames in each physi-
cal link in the network, such that the time windows reserved for the transmission of
TT-frames do not overlap in any physical link. We call transmission window, the times-
pan reserved for the transmission of a TT-frame. A phase represents the start time of
the transmission window used to transmit the first frame of a virtual link.
We model this scheduling problem as a search tree, in which each virtual link is

assigned to a level of the search tree. Each vertex in a level of the search tree represents
a set with phases that can be used to schedule the virtual link on that level. Each edge
represents a phase. The path leading to each vertex describes a schedule. STSTTN
traverses the search tree until it reaches a leaf. If it reaches a valid leaf, the schedule
for all virtual links traversing a physical link is found. If, on the contrary, it reaches an
invalid leaf, the scheduler backtracks. If no further backtracking is possible, the set of

SUMMARY 133

virtual links is deemed unschedulable.
We present two approaches to decrease the search space of the search tree called look

back and look ahead. Both approaches compare, pairwise, the properties of virtual links
scheduled along the visited path and compute a set of possibly feasible phases for the
next virtual link. The difference between look back and look ahead is that the latter,
additionally checks for the properties of virtual links which have not been scheduled
yet. We present an example showing that, even in a small set of virtual links, look back
and look ahead can decrease the search space by one order of magnitude (14 vertices in
Figure V.5 instead of 170 vertices in Figure V.3). We demonstrate that other criteria,
e.g., the algorithms to assign virtual links to levels, and to select the edges, also impact
on the search space.
We show that selecting a “bad” edge at upper levels of the tree might lead to infeasible

schedules which can only be detected at deeper levels, leading to a large number of
backtracks before the scheduler deems the vertex invalid. In order to allow for STSTTN
to earlier discard such “bad” vertices, we present a preventive tree pruning heuristic.
Traversing the search tree and backtracking imply different computational costs de-

pending on the approach used to construct the search tree. For the look back approach,
traversing and backtracking computational costs increase at deeper levels of the search
tree. The opposite is true for the look ahead approach: traversing and backtracking
computational costs decrease at deeper levels of the search tree.
The schedule of a virtual link, requires the selection of a phase in each traversed

physical link. We show that, in order to achieve the minimum transmission latency, a
transmission window must start immediately after the frame is ready for transmission.
We present an approach to schedule the TT virtual links which allows for the minimum
transmission latency.

Chapter VI

This chapter summarizes the main contributions of this dissertation and describes future
work.

Appendix A

We present in this appendix, details of the proof of Theorem III.1.

Appendix B

We present in this appendix, how to use the trajectory approach to compute these
competing frames.

Zusammenfassung

Puffer Analyse und Nachrichten Scheduling
für Echtzeitnetzwerke

Für Echtzeitsysteme ist nicht nur der korrekte Wert der Berechnung (logische Korrekt-
heit) wichtig, sondern auch der Zeitpunkt, zu dem dieser Wert verfügbar ist (zeitliche
Korrektheit). In verteilten Echtzeitsystemen hängt die logische und zeitliche Korrektheit
von der Interaktion der verbundenen Computerknoten ab. Die Kommunikation in ver-
teilten Echtzeitsystemen erfolgt daher über ein Echtzeit-Kommunikationssystem. Die-
se Art von Kommunikationssystem sollte eine niedrige Nachrichtentransportlatenz mit
möglichst niedriger Varianz bieten und somit die Reaktionszeit der laufenden Prozesse
so wenig wie möglich beeinflussen.
Ethernet [iee12] ist, wie von Decotignie in [Dec05] beschrieben, schnell und einfach zu

installieren. Außerdem sind die Schnittstellen-Bausteine günstig. Ethernet bietet jedoch
nicht die zeitlichen Garantien, die ein Echtzeit-Kommunikationssystem benötigt. Um
diese Lücke zu schließen, haben Forschergruppen aus Wissenschaft und Industrie eine
Reihe von Lösungen vorgeschlagen. Zwei dieser Lösungen sind: Avionics Full-Duplex
Switched Ethernet (AFDX) [AFD09] und Time-Triggered Ethernet [tim16].
Diese Dissertation befasst sich mit zwei Problemen, die beim Design von AFDX und

TTEthernet auftreten: Zum einen das Problem von Datenverlust durch Pufferüberlauf in
AFDX-Netzwerken mit mehr als zwei Prioritätsstufen für Datenverkehr und das Problem
der Erstellung eines Zeitplans für TT-Frames in TTEthernet-Netzwerken. Die Beiträge
in dieser Dissertation lösen diese beiden Probleme. Zur Lösung des ersten Problems
wird eine Methode vorgeschlagen, um eine Obergrenze für den Rückstand jedes Puffers
in einem AFDX-Netzwerk mit mehr als zwei Prioritäten für Datenverkehr zu berechnen.
Das zweite Problem wird mit dem Einsatz eines Offline-Scheduler für TT-Frames von
TTEthernet gelöst.

135

136 ZUSAMMENFASSUNG

Chapter I – Introduction

Dieses Kapitel beginnt mit einer kurzen Einführung in die in dieser Dissertation unter-
suchten Forschungsgebiete. Darüber hinaus werden die angesprochenen Probleme und
Beiträge dieser Dissertation vorgestellt. Dieses Kapitel schließt mit einem Überblick über
die Gliederung dieser Dissertation.

Chapter II – AFDX Background and State-of-the-Art in Buffer Backlog Analysis

Dieses Kapitel stellt die grundlegenden Eigenschaften von AFDX-Netzwerken und die
derzeitigen Ansätze zur Berechnung von Obergrenzen für Gesamtlatenz und Puffer-
rückstände vor. In Abschnitt II.1 wird gezeigt, dass AFDX-Netzwerke vorhersagbare
zeitliche Eigenschaften für Frames gewährleisten können, die das Netzwerk mit der Hilfe
AFDX-kompatibler Switches durchlaufen. Das Konzept von virtuellen Kommunikations-
kanälen wird beschrieben und es wird aufgezeigt, wie AFDX Bandbreitenisolation ga-
rantieren kann. Des Weiteren beschreibt Abschnitt II.2 das Problem “Konfliktsituation“
in AFDX-Netzwerken, d.h. die Situation, wenn mehrere Pakete gleichzeitig versuchen,
einen Ausgangsport zu nutzen. AFDX adressiert das Konfliktproblem durch Pufferung,
was wiederum zwei wichtige Fragen aufwirft, die in Abschnitt [sec: prop] vorgestellt
werden: Was ist die größte Latenz, der ein Paket aufgrund von Pufferung ausgesetzt ist
und was ist der größte Rückstand in einem Ausgangspuffer?
In Abschnitt II.3 werden die bestehenden Methoden vorgestellt, um die zuvor genann-

ten Probleme zu lösen. Aufgrund der unsynchronisierten Natur von AFDX-Netzwerken
und der großen Anzahl von virtuellen Kommunikationskanälen in den Avioniksystemen
kommerzieller Flugzeuge ist die Simulation aller möglichen Kombinationen von Sen-
dezeitpunkten für Pakete schwer zu bewältigen. Trotz alledem zeigt Abschnitt II.3.4,
dass Simulationen für kleine Netzwerke verwendet werden, um die Genauigkeit anderer
Ansätze abzuschätzen.Aus diesem Grund wurde eine Reihe von Methoden vorgeschla-
gen, um Obergrenzen für die höchste Gesamtlatenz und den größten Pufferrückstand zu
berechnen. Die Beschreibung dieser existierenden Methoden wird in zwei Kategorien auf-
geteilt: Die erste Kategorie zeigt Methoden, die den Datenverkehr auf Datenstromebene
analysieren und mit Obergrenzen für die Anforderungen an das Netzwerk und Unter-
grenzen für die bereitgestellte Leistung des Netzwerks arbeiten.Die zweite Kategorie
behandelt Methoden, die das Netzwerk detailliert analysieren, indem die Auswirkungen
der Netzwerkleistung und des übrigen Datenverkehrs auf einzelne Pakete untersucht wer-
den. Für meisten der betrachteten Fälle (siehe [BSF12b]) führen Methoden der zweiten
Kategorie zu niedrigeren Obergrenzen im Vergleich zu Methoden der ersten Kategorie
(einschließlich Netzwerk-Kalkulus mit Serialisierung).
Abschnitt II.3.5 zeigt, dass Modellprüfung zur Berechnung der höchsten Gesamt-

Latenz in AFDX-Netzwerken verwendet wurde. Diese Methode ist jedoch nicht skalier-
bar und wird daher in großen Avioniknetzwerken nicht zur Berechnung von Obergrenzen
verwendet. Ähnlich wie bei den in Abschnitt II.3.4 vorgestellten Simulationsmethoden
kann dieser Methode dazu verwendet werden, um die Genauigkeit der Obergrenzen ande-
rer Methoden zu bewerten. Obwohl es wichtig ist, Pufferüberläufe in AFDX-Netzwerken
zu vermeiden, konzentriert sich ein Großteil der bestehenden Forschung auf die Berech-

ZUSAMMENFASSUNG 137

nung der Obergrenze für die Worst-Case Gesamt-Latenz, wobei der Analyse der Puf-
ferrückstände wenig Beachtung geschenkt wird. Dieses Kapitel zeigt, dass die moderne
AFDX-Pufferrückstandsanalyse keine Methode zur Berechnung von deterministischen
Obergrenzen für Pufferrückstände von AFDX-Netzwerken mit mehr als zwei Prioritä-
ten für Datenverkehr liefert.

Chapter III – Buffer Backlog Upper Bound for AFDX Networks with Multiple Priority Traffic

Dieses Kapitel stellt eine Methode vor, um eine Obergrenze für den Rückstand jedes
Puffers in einem AFDX-Netzwerk zu berechnen. Das Auftreten einer Konfliktsituation
wenn zwei Pakete versuchen denselben Switch-Ausgangsport zu verlassen wird illus-
triert. Die Konfliktsituation wird mittels Pufferung in AFDX-Netzwerken adressiert. In
Anbetracht der sicherheitskritischen Natur von Anwendungen in Avioniksystemen muss
ein Überlauf dieser Puffer unbedingt vermieden werden. Obwohl der AFDX-Standard
empfiehlt, dass für die Ausgabepuffer ein Mindestmaß an Speicherplatz reserviert wird,
stellt dies keine sichere Grenze für jede Netzwerkkonfiguration dar. Außerdem wird in
dieser Empfehlung nicht angegeben, wie dieser Speicherplatz zwischen Puffern mit un-
terschiedlichen Prioritäten aufgeteilt werden sollte.
Der aktuelle AFDX-Standard ermöglicht die Klassifizierung des Netzwerkverkehrs in

zwei Prioritäten: high und low. Einige bestehende kommerzielle Lösungen erweiterten
bereits die Anzahl der verwendeten Prioritäten. In dem in diesem Kapitel vorgestellten
Ansatz wird ein AFDX-Netzwerk angenommen, in dem virtuelle Links mit einer belie-
bigen Anzahl von Prioritätsstufen klassifiziert werden können und die Berechnung einer
Obergrenze für jeden Puffer (einen pro Prioritätsstufe) im Netzwerk beschrieben.
Für jeden Ausgangspuffer wird der größtmögliche Rückstand ermittelt, den Pakete

jedes virtuellen Kommunikationskanals ,welcher dieselbe Priorität wie dieser Puffer ha-
ben, durchlaufen. Diese Methode basiert auf der längsten Busy Period, die von einem
Paket eines virtuellen Kommunikationskanals angetroffen wird, der einen Switch durch
den Ausgangsport verlässt, zu dem der zu analysierende Puffer gehört. Der Pufferrück-
stand hängt nicht nur von den statischen Eigenschaften (Menge, Größe und Priorität)
der Pakete in der Busy Period ab: Auch die Reihenfolge und der Zeitpunkt, in dem sie
in den Puffer ein- und austreten, beeinflussen die Berechnung des Pufferrückstands.
Um die Analyse des Pufferrückstands von AFDX-Netzwerken mit mehreren Prioritä-

ten zu vereinfachen, wird das Konzept des Intervalltyps eingeführt. Die Idee hinter den
Intervalltypen besteht darin, den Eingang und den Ausgang von Frames in der längsten
Busy Period zu analysieren und den Zeitintervallen mit denselben Eigenschaften einen
Intervalltyp zuzuordnen. Jedes Zeitintervall, das keinem Intervalltyp zugeordnet werden
kann, kann in kleinere Intervalle zerlegt werden, bis jedes von ihnen den Eigenschaften
eines dieser Typen entspricht. Es wird gezeigt, dass gemäß den definierten Eigenschaften
nur vier Intervalltypen existieren.
Die vier Intervalltypen werden verwendet, um das Szenario (Eingangs- und Ausgangs-

reihenfolge von Paketen in der längsten Busy Period) zu beschreiben, welches zu dem
größten Rückstand führt, den ein Paket eines virtuellen Kommunikationskanals antrifft.
Dieses Szenario wird das worst case scenario genannt. In diesem Worst-Case Szenario
ist das analysierte Paket das letzte der ankommenden, konkurrierenden Pakete. Drei Ef-

138 ZUSAMMENFASSUNG

fekte können den Sendevorgang eines Pakets verzögern und folglich den Pufferrückstand
erhöhen: Blockierung (aufgrund von Paketen mit niedrigerer Priorität), Interferenz (auf-
grund von Paketen mit höherer Priorität) und Leerlaufzeit auf der Ausgangsverbindung.
Das Worst-Case-Szenario ist dasjenige, bei dem diese drei Effekte maximiert werden.
Sobald das Worst-Case-Szenario identifiziert ist, wird eine Obergrenze für den Puf-

ferrückstand berechnet,zunächst für die Pakete eines einzelnen virtuellen Kommunika-
tionskanals, und anschließend für die Pakete aller virtuellen Kommunikationskanäle die
den analysierten Puffer durchlaufen. Diese Berechnung liefert eine Obergrenze für den
Rückstand des analysierten Puffers. Weiterhin wird untersucht, wie die Ergebnisse dieser
Methode auf AFDX-Switches angewendet werden können, die nicht unseren Annahmen
über das Empfangen und Senden von Paketen entsprechen

Chapter IV – TTEthernet Background and State-of-the-Art in Time-Triggered Schedulers

Time-triggered Ethernet (TTE) ist eine Erweiterung des Switched Ethernet (IEEE
802.3), die es Datenströmen der Klassen Best-Effort (BE), Rate- Constrained (RC)
und Time- Triggered (TT) erlaubt, im selben Netzwerk zu co-existieren. Dieses Kapitel
stellt die grundlegenden Eigenschaften von TTE vor, die zum Verständnis des in Kapi-
tel V vorgeschlagenen Schedulers erforderlich sind. Darüber hinaus wird der Stand der
Technik bei der Erstellung eines Ablaufplans für virtuelle TT-Links in TTE vorgestellt.
Dieses Kapitel beginnt mit der Terminologie, die verwendet wird, um die Datenüber-

tragung über TTE zu beschreiben. Es wird gezeigt, wie sich das TTE-Taktsynchroni-
sationsprotokoll auf das Scheduling von TT-Pakets auswirkt. In TTE ist das Schedu-
ling eines virtuellen TT-Kanals gleichbedeutend mit der Reservierung eines Zeitfensters
(Übertragungsfensters) zu einem geplanten Zeitpunkt für die Übertragung jedes Pakets
eines virtuellen Kommunikationskanals auf jeder physikalischen Verbindung auf dessen
Pfad. Abschnitt IV.3.2 zeigt die Ähnlichkeiten zwischen dem Scheduling-Problem von
TT-Paketen in einer physischen Verbindung und dem Scheduling-Problem von nicht-
preemptiven streng periodischen Jobs in offset-freien Systemen (oder unabhängigen
streng periodischen Operationen).
Ein gültiger TT-Zeitplan für eine bestimmte physikalische Verbindung darf keine

überlappenden Übertragungsfenster und daher keine Konflikte zwischen TT-Paketen
enthalten. Trotzdem kann ein Konflikt aufgrund der Übertragung von BE- und / oder
RC-Paketen auftreten, da deren Übertragungszeiten nicht im Voraus bekannt sind. Ab-
schnitt IV.3.3 zeigt, wie TTE diese Konflikte löst.
Abschnitt IV.3.5 stellt dar, wie sich die Gesamt-Latenz eines Pakets je nach Zeitplan

auf den physischen Verbindungen entlang des Pfades eines virtuellen Kommunikations-
kanals ändert und wie man die minimale Latenz erreicht. Abschnitt IV.3.6 beschreibt
eine Methode, um die zeitlichen Anforderungen von RC-Kommunikationskanälen wäh-
rend der Generierung einer TT-Schedulingtabelle zu berücksichtigen.
Abschnitt IV.4 zeigt die bestehenden Ansätze bei der Erstellung von Schedulingta-

bellen für TTE.

ZUSAMMENFASSUNG 139

Chapter V – Off-Line Scheduler for Time-Triggered Networks

In diesem Kapitel wird ein Offline-Scheduler für Time-Triggered Ethernet (TTE) be-
schrieben - genannt Search Tree-based Scheduler for Time-Triggered Networks (STSTTN).
Das Ziel von STSTTN besteht darin, einen Zeitplan für die Übertragung von TT-Frames
in jeder physikalischen Verbindung im Netzwerk zu erzeugen, so dass sich die für die
Übertragung von TT-Paketen reservierten Zeitfenster in keiner physikalischen Verbin-
dung überlappen. Diese für die Übertragung eines TT-Pakets reservierte Zeitspanne
wird Übertragungsfenster genannt. Eine Phase stellt die Startzeit des Übertragungs-
fensters dar, das zum Senden des ersten Pakets eines virtuellen Kommunikationskanals
verwendet wird.
Dieses Scheduling-Problem wird als Suchbaum modelliert, in dem jeder virtuelle Kom-

munikationskanal einer Ebene des Suchbaumes zugeordnet ist. Jede Kante stellt eine
Phase dar. Der Pfad durch den Suchbaum, der zu jedem Knoten führt, beschreibt einen
möglichen Zeitplan. STSTTN durchläuft den Suchbaum, bis er ein Blatt erreicht. Der
Zeitplan ist gefunden, wenn ein gültiges Blatt erreicht wurde und somit alle virtuellen
Kommunikationskanäle eine physische Verbindung durchlaufen haben. Wenn dagegen
ein ungültiges Blatt erreicht wird, beginnt der Scheduler erneut. Wenn kein weiterer
Durchlauf möglich ist, wird die Erstellung eines Zeitplans mit dieser Kombination aus
virtuellen Kommunikationskanälen als unmöglich angesehen.
Wir stellen zwei Ansätze vor, um den Suchbereich des Suchbaums zu reduzieren. Diese

Ansätze heißen Look Back und Look Ahead. Beide Ansätze vergleichen paarweise die
Eigenschaften von virtuellen Kommunikationskanälen, die entlang des bereits besuchten
Pfades geplant sind, und berechnen einen Satz von möglicherweise gültigen Phasen für
den nächsten virtuellen Kommunikationskanal. Der Unterschied zwischen Look Back
und Look Ahead liegt darin, dass letzterer zusätzlich die Eigenschaften von virtuellen
Kommunikationskanälen prüft, die noch nicht geplant wurden. An einem Beispiel wird
gezeigt, dass, selbst in einem kleinen Set aus virtuellen Kommunikationskanälen, Look
Back und Look Ahead den Suchraum um eine Größenordnung verkleinern (14 Knoten in
Abbildung V.5 statt 170 Knoten in Abbildung V.3). Es wird demonstriert, dass andere
Kriterien, z. B. Algorithmen zum Zuweisen virtueller Kanäle zu Suchbaum Ebenen und
zum Auswählen der nächsten Kante, ebenfalls den Suchbereich beeinflussen.
Die Auswahl einer ungünstigen Kante in den oberen Ebenen des Baums hat möglicher-

weise unmögliche Zeitpläne zur Folge, was nur in unteren Ebenen erkannt werden kann.
Dies führt zu einer großen Anzahl von Durchläufen, bevor der Scheduler den Knoten
für ungültig hält. Damit STSTTN solche Kanten früher verwirft, wird eine vorbeugende
Baum-Reduzierungs-Heuristik präsentiert.
Das Durchlaufen des Suchbaumes und die jeweiligen Rückzüge resultieren in unter-

schiedlichen Berechnungskosten, abhängig vom Ansatz, der verwendet wird, um den
Suchbaum zu konstruieren. Für den Look Back -Ansatz steigen die Kosten für Durchlauf
und Rückzüge bereits auf den unteren Ebenen des Suchbaumes an. Das Gegenteil trifft
auf den Look ahead -Ansatz zu: Die Berechnungskosten für Durchlauf und Rückzüge
nehmen in den unteren Ebenen des Search Trees ab.
Der Zeitplan eines virtuellen Kommunikationskanals erfordert die Auswahl einer Phase

in jeder durchlaufenen physikalischen Verbindung. Um eine minimale Übertragungsla-

140 ZUSAMMENFASSUNG

tenz zu erreichen, muss das Übertragungsfenster sofort starten, sobald das Paket zur
Übertragung bereit ist. Es wird ein Ansatz vorgestellt, um die virtuellen TT-Kanäle zu
planen, die eine minimale Übertragungslatenz ermöglichen.

Chapter VI

Dieses Kapitel fasst die wichtigsten Beiträge dieser Dissertation zusammen und be-
schreibt die zukünftige Arbeit.

Appendix A

Der Anhang stellt detailliert den Beweis des Theorems III.1 vor.

Appendix B

In diesem Anhang wird gezeigt, wie die konkurrierenden Frames mit dem Trajectory-
Ansatz berechnet werden können.

Rodrigo F. Coelho
Education
04.2012 – 11.2017 PhD in Electrical Engineering

Technische Universität Kaiserslautern at the Chair of Real-Time Systems,
Germany
Title: Buffer Analysis and Message Scheduling for Real-Time
Networks

04.2005 – 05.2008 MSc in Electrical Engineeringmajor in Automation and Control
Technische Universität Kaiserslautern, Germany
Thesis: Control Theory Approaches to Resource Adaptation in
Real-Time
Embedded Systems

07.1996 – 11.2002 BSc in Electrical Engineering major in Electronics - 10 semester
program
Centro Federal de Educação Tecnológica doRio de Janeiro CEFET-RJ, Brazil
Thesis: Design and Implementation of a Development Kit for the
Microcontroller PIC16F877.

Work Experience
04.2012 – 11.2017 Wissenschaftlicher Mitarbeiter (Research Assistant), PhD Candidate

Technische Universität Kaiserslautern, Chair of Real-Time Systems, Ger-
many

10.2008 – 03.2012 Wissenschaftlicher Mitarbeiter (Research Assistant)
Technische Universität Kaiserslautern, Chair of Real-Time Systems, Ger-
many

11.2006 – 05.2008 Wissenschaftliche Hilfskraft (Research student)
Technische Universität Kaiserslautern, Chair of Real-Time Systems, Ger-
many

11.2005 – 10.2006 Wissenschaftliche Hilfskraft (Research student)
Technische Universität Kaiserslautern, Chair of Electronic Design Automa-
tion Group, Germany

01.2002 – 12.2004 Head of the Closed-Circuit Television (CCTV) Department
3R Telecomunicações LTDA, (Panasonic Telecomunications Distributor in
Rio de Janeiro, Brazil)

01.1995 – 07.2000 Communications Electronics Technician
3R Telecomunicações LTDA, (Panasonic Telecomunications Distributor in
Rio de Janeiro, Brazil)

Exchange Programs
02.2001 - 08.2001 Bachelor Internship

BMW AG, Department for Electronic Control Unit Development (M-Engines
Electronic), Munich, Germany

08.2000 - 10.2000 DAAD-CAPES Funded Exchange Program
Fachhochschule Munich, Germany

Personal details
Name: Rodrigo Ferreira Coelho
Place of birth:Rio de Janeiro, Brazil

Contact
@ dr.rodrigo.f.coelho@gmail.com
B Chair of Real Time Systems

TU Kaiserslautern
Postfach 3049

67663, Kaiserslautern

Languages
German (fluent)
English (fluent)

Portuguese (mother tongue)

	Preface
	Publications
	Introduction
	Real-Time Systems
	Distributed Real-Time Systems

	Real-Time Data Communication
	Ethernet-Based Real-Time Communication

	Description of the Addressed Problems
	Avoiding Data Loss due to Buffer Overflow in AFDX Networks with Multiple Priority Traffic
	Scheduling of TTEthernet Networks

	Contributions
	Computation of Buffer Backlog Upper Bounds for AFDX Networks with Multiple Priorities
	A Strictly Periodic Scheduler for Time-Triggered Ethernet

	Dissertation Outline

	AFDX Background and State-of-the-Art in Buffer Backlog Analysis
	Introduction
	Devices
	Virtual Link
	Frame Relay, Contention and Buffering

	Predictable Properties
	Frame Delay
	No Message Loss

	Off-Line Analysis to Ensure Predictable Properties
	Network Calculus
	Arrival Curves
	Service Curves
	Delay and Backlog

	Trajectory Approach
	Assumptions
	Computations

	Forward End-to-End Delay Approach
	Simulation
	Model Checking
	Holistic Approach

	Summary

	Buffer Backlog Upper Bound for AFDX Networks with Multiple Priority Traffic
	Introduction
	Upper Bound Computation
	Terminology
	Assumptions
	Notations
	Method Overview
	Intervals
	Worst Case Scenario
	Computation of *, *, *P
	Mutually Exclusive Characteristics

	Upper Bound Computation
	Buffer Backlog Upper Bound encountered by one Virtual Link
	Backlog Upper Bound for the Buffer Under Analysis
	Summary of Upper Bound Computation

	Discussion

	Experiments
	Summary

	TTEthernet Background and State-of-the-Art in Time-Triggered Schedulers
	Introduction
	Terminology
	Relevant Properties of Time-Triggered Ethernet
	Clock Synchronization
	Scheduling TTEthernet Transmission Windows
	Contention
	Transmission Window Implementations
	TT Frames Latency
	Converting RC Temporal Requirements into TT Reservations

	Related Work
	SMT and MIP Solver Approaches
	Tabu Search Meta Heuristics
	Strictly Periodic Scheduling
	Scheduling a Pair of Tasks
	Scheduling Multiple Tasks

	Summary

	Off-Line Scheduler for Time-Triggered Networks
	Motivation
	Impact of Clock Synchronization Protocol Frames
	Scheduling Problem Formulation
	Problem Statement
	Example

	Search Tree-based Scheduler for Time-Triggered Networks (STSTTN)
	Network Assumptions
	Search Tree
	Traversing the Search Tree and Reducing Search Space
	Look Back Approach
	Look Ahead Approach
	Selecting Edges
	Backtracking

	Assigning Virtual Links to Levels
	Preventive Tree Pruning
	Traversing Costs
	Look Back
	Look Ahead

	Crossing Multiple Physical Links
	Scheduling TT Virtual Links with Minimum Latency

	Evaluation
	Generator of Virtual Links Set
	Experiments

	Summary

	Conclusions
	Overview of Contributions
	Computation of Buffer Backlog Upper Bounds for AFDX Networks with Multiple Priorities
	A Strictly Periodic Scheduler for Time-Triggered Ethernet

	Future Work

	Proof of Theorem III.1
	Scenarios with > P
	Scenarios with P
	P
	<

	Computing Competing Frames with Trajectory Approach
	Bibliography
	Glossary
	Summary
	Zusammenfassung
	Curriculum Vitae

