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The Fe65 protein family 

The conserved mammalian Fe65 multi-adaptor protein family consists of three 

members, namely Fe65, Fe65 like 1 and 2 (Fe65L1, Fe65L2). Thereby, Fe65 is 

enriched in brain (in dependence of its splice variant, see below) while Fe65L1 as 

well as Fe65L2 are more widely expressed (Bressler et al. 1996, Guénette et al. 

1996, Tanahashi & Tabira 2002). The first member of this protein family was initially 

identified by F. Esposito and co-workers and named after its discoverer and the clone 

number 65 of the cDNA library (Esposito et al. 1990). It was originally described as a 

transcriptional activator with homology to the DNA binding domain of retroviral 

integrases (Duilio et al. 1991). However, two database searches identified a WW 

domain and two phosphotyrosine-binding domains indicating a function in 

membrane- as well as receptor-associated signal transduction (Bork & Margolis 

1995, Bork & Sudol 1994). This assumption was further supported by the finding that 

Fe65 interacts with the amyloid precursor protein (APP) (Fiore et al. 1995, 

McLoughlin & Miller 1996), a type I transmembrane protein, which plays an important 

role in Alzheimers Disease (AD) (see below), placing Fe65 in the focus of AD 

research. Soon after this study, both homologues Fe65L1 and Fe65L2 were 

characterized and reported to bind to APP as well (Guénette et al. 1996, Duilio et al. 

1998, Tanahashi & Tabira 1999). Due to this interaction with APP, the Fe65 gene 

was called APBB (APP binding family B; APBB1,2,3 encoding for Fe65, Fe65L1 and 

Fe65L2, respectively (Blanco et al. 1998)). Intensive investigations during the last 20 

years mainly focused on Fe65. Studies of the Fe65 interactome revealed up to date 

more than 20 putative protein interaction partners (Nensa et al. 2013 and recently 

reviewed in Chow et al. 2015), which bind to the three domains of the Fe65 protein 

family and influencing a diversity of cellular functions including cytoskeletal 

remodeling (Ermekova et al. 1997, Ikin et al. 2007, Cheung et al. 2014), calcium 

homeostasis (Nensa et al. 2013), nuclear signaling (Cao & Südhof 2001) and 

synaptic vesicular loading and release (Nensa et al. 2013). 
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Structural properties of the Fe65 protein family 

The Fe65 protein family is evolutionary conserved from worms to human. In 

mammals it includes the two paralogs Fe65L1 and Fe65L2, harboring all three a WW 

domain and C-terminally two phosphotyrosine-binding domains 1 and 2 (PTB1 and 

PTB2), schematically illustrated in Figure 1 (Meiyappan et al. 2007, Radzimanowski 

et al. 2008a, Radzimanowski et al. 2008b). 

 

Figure 1: Schematic structure of the  human Fe65 protein family.  

The amino acid numbering for the WW (blue squares) as well as the PTB 1 and PTB 2 
(red oval) domain is depicted for all members of the Fe65 protein family. WW 
(tryptophan, tryptophan) protein interaction domain; PTB, phosphotyrosine binding 
domain. 

All three proteins share a remarkable amino acid as well as domain homology but 

diverge in their N-termini. Human Fe65 has an N–terminal 253 amino acid long 

sequence before the WW domain, while the according regions in Fe65L1 and 

Fe65L2 are 290 and 29 amino acids long. Additionally, Fe65L2 harbours a 23 amino 

acids longer C-terminus compared to its two paralogs.  

Fe65 expression is highly regulated during mouse brain development with increasing 

levels in early phase and declining levels in late phase of embryogenesis followed by 

an increased expression after postnatal day 10 (Kesavapany et al. 2002). Detailed 

analysis of Fe65L1 and Fe65L2 expression during development are lacking.  
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Splicing of Fe65 leads to different isoforms in mouse brain resulting in a full length 

isoform p97Fe65 mainly expressed in neuronal tissues or a shorter p60Fe65 isoform 

(Wang et al. 2004, Cool et al. 2010) occurring especially in non-neuronal cells of the 

cerebral cortex, cerebellum, hippocampus and the amygdala (Hu et al. 1999, 

Domingues et al. 2011). Furthermore, Fe65 undergoes proteolytic cleavage leading 

to the product p65Fe65 with an increased affinity for APP compared to full length 

p97Fe65 (Hu et al. 2005, Saeki et al. 2011). Moreover, further increasing the 

complexity, also polymorphisms of Fe65 have been identified leading to an altered 

PTB2 domain lacking the amyloid precursor protein (APP) binding site (Hu et al. 

2002) and is speculated to be responsible for resistance to the very late onset of AD 

(Hu et al. 2002). Similarly, for F65L1 and Fe65L2 different splice variants have been 

described, which have an influence on cell cycle control, DNA damage response and 

Aȕ production (a small peptide resulting after APP cleavage and main component of 

senile plaques, see below) (Penna et al. 2013, Tanahashi & Tabira 2002). Further, in 

a study of Golanska and co-workers a polymorphism of Fe65L1 was analyzed where 

an association with severe cognitive impairments in centenarians has been described 

(Golanska et al. 2013). How these different splice variants, polymorphisms and 

cleavage products exactly influence Fe65 protein family´s function or localization in 

vivo is still not well determined and needs to be examined in the future to shed light 

on the physiological relevance of the Fe65 protein family. 

Interaction partners and function of the Fe65 protein family 

The most prominent interaction partners of the Fe65 protein family are the amyloid 

precursor protein (APP) and its homologs, APP like protein 1 and 2 (APLP1, APLP2) 

playing an important function in diverse cellular processes, including cell adhesion, 

neurite outgrowth and synaptogenesis (recently reviewed in (Guénette et al. 2017, 

Sosa et al. 2017, Muller et al. 2017)). All Fe65 family members interact via their PTB2 

domains with the NPTY motif of the different APP/APLPs intracellular domains (ICDs) 

(Fiore et al. 1995, Borg et al. 1996, Bressler et al. 1996, Guénette et al. 1996, 

McLoughlin & Miller 1996, Duilio et al. 1998, Tanahashi & Tabira 1999). The precise 

interaction between Fe65 PTB2 and the intracellular domain of APP has been 

characterized in detail by co-crystallization of the Fe65 PTB2 domain and AICD, via 
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Nuclear Magnetic Resonance (NMR) experiments and Molecular Replacement 

methods, showing that the interaction is phophotyrosine independent 

(Radzimanowski et al. 2008b). Interestingly, the NPTY motif is recognized in a ȕ-

augmentation manner placing the PTB-relevant tyrosine in its binding pocket. 

Further, the AICD/Fe65- PTB2 complex is capped by the T668PEE-motif of the N-

terminal binding helix αN within the AICD (Radzimanowski et al. 2008b) whose 

threonine T668 phosphorylation was shown to regulate the interaction (Ando et al., 

2001). This interplay might lead to different functions in the aspect of processing and 

intracellular signaling/transactivation of genes by the APP family on the one hand 

and to cellular movement and actin cytoskeleton remodeling on the other hand (see 

below). The APP protein family members are all type I membrane glycoproteins and 

processed mainly by the α-,ȕ- and ɣ-secretases, resulting in the cytosolic release of 

the ICDs illustrated in Figure 2 (Eggert et al. 2004, Haass et al. 2012).  

 

Figure 2: Processing of human APP (adopted from Chen et al. 2017). 

Non-amyloidogenic and amyloidogenic processing of human APP. Non-amyloidogenic 
processing is initiated by the α-secretase, cleaving APP within the Aȕ-sequence leading 
to the release of sAPPα (soluble APP after α-secretase cleavage) and a membrane 
bound CTFα (C-terminal fragment after α-secretase cleavage). CTFα is further 
processed by Ȗ-secretases to generate extracellular P3 and the APP intracellular domain 
(AICD). The amyloidogenic pathway is initiated by the ȕ-secretase cleaving APP at the 
N-terminus of the Aȕ sequence leading to the release of sAPPȕ (soluble APP after ȕ -
secretase cleavage) and a membrane bound CTFȕ. CTFȕ is afterwards processed  by Ȗ-
secretases to generate extracellular the Aȕ peptide which in the case of Alzheimers 
Disease accumulates to Aȕ plaques and the APP intracellular domain (AICD). 
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Interestingly, only interconnected with Fe65 ICDs of APP and APLP2 can translocate 

to the nucleus, which was not observed for the ICD of APLP1 (Gersbacher et al. 

2013). Furthermore, although Fe65, Fe65L1 and Fe65L2 are mainly present in the 

nucleus (Bruni et al. 2002), solely Fe65 in complex with APP is capable to regulate 

gene expression (Cao & Südhof 2001, Telese et al. 2005). In contrast, co-expression 

of APP together with Fe65L1 or Fe65L2 prevents their nuclear translocation (Bruni et 

al. 2002).               

The Aȕ peptide arises only in the so called amyloidogenic pathway of APP 

processing especially by proteolytic shedding of the ȕ- and ɣ-secretase (Figure 2) 

resulting in the formation of senile plaques in AD patients (Aleksis et al. 2017, Chen 

et al. 2017). The influence of the Fe65 protein family on APP processing and Aȕ 

generation provided contradictory results. Initial in vitro studies showed that Fe65 

promotes Aȕ generation (Sabo et al. 1999), whereas following analysis reported an 

inhibition in Aȕ production (Ando et al. 2001). For Fe65L1 and Fe65L2 also an 

enhanced production of Aȕ species was reported (Tanahashi & Tabira 2002, Chang 

et al. 2003). Also in vivo as well as ex vivo analysis demonstrated inconsistent 

findings. Analysis of primary neurons of transgenic APPswe mice expressing human 

APP with a familiar Alzheimer causing mutation (swe, Swedish; carrying an APP 

mutation which leads to higher amounts of APP; for detailed overview of APP mouse 

models in AD research see (Sasaguri et al. 2017)) and a partial Fe65 Knock Out 

(KO) double mutant mice exhibited less Aȕ compared to neurons of APPswe mutant 

mice (Wang et al. 2004). Further, investigations of young male Fe65/Fe65L1 Double 

KO (DKO) mice showed a moderate reduction in the cerebral Aȕ amount (Guénette 

et al. 2006). On the other hand overexpression of Fe65 in APP transgenic mice leads 

to lowered levels of cerebral Aȕ (Santiard-Baron et al. 2005). Also the influence of 

Fe65 on sAPP secretion is yet unclear, as several studies reported contradictory 

results (Hu et al. 2005, Hoe et al. 2006). Possibly, to unravel the influence of the 

Fe65 protein family on APP processing and Aȕ production further studies will be 

necessary considering the different isoforms, splice and cleavage products as well as 

phosphorylation status of the APP and Fe65 protein family.  

Besides APP/APLPs that are bound by the PTB2 domain, several PTB1 domain 

interacting proteins were reported (Muller et al. 2017), including the histone 

acetyltransferase Tat-interacting protein 60 kDa (Tip60) and the transcription factor 

Alpha-globin transcription factor CP2/Late SV40 Factor/Lipopolysaccharide Binding 
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Protein 1 (CP2/LSF/LBP1) (Zambrano et al. 1998, Cao & Südhof 2001). Thereby, a 

tripartite complex of Fe65/AICD and one of the mentioned transcription factors might 

translocate to the nucleus regulating gene activation by forming nuclear aggregates, 

called spheres or speckles (recently reviewed in Bukhari et al. 2017). The precise 

mechanism of complex formation and translocation to the nucleus still remains 

elusive, but a general consensus has been built that initially Fe65 is tethered to the 

plasma membrane and membrane-bound AICD directly interconnects with Fe65 by 

forming an APP/Fe65 complex (Cao and Sudhof 2004, Goodger et al. 2009, Nensa 

et al. 2014, Bukhari et al. 2016). This interaction leads to a conformational change 

and subsequently to Fe65 activation. After activation, the AICD/Fe65 complex 

translocates to the nucleus, interacts with Tip60 and leads to the formation of a 

nuclear APP/Fe65/Tip60 complex (Cao and Sudhof, 2004).         

However, despite intensive examination various results have been described 

regarding the influence on gene regulation of the Fe65/AICD complex. For example, 

Hebert and co-workers showed in a luciferase-based reporter assay the activation of 

gene transcription of KAI, APP, Hes1 or SV40 (Hebert et al. 2006), while others could 

demonstrate that increased AICD/Fe65-complex formation does not influence gene 

activation of KAI and APP (Waldron et al. 2008).            

Another finding addressing the nuclear function of Fe65 is the interaction with the 

Bloom syndrome protein (BLM), which plays a role in DNA replication and repair 

mechanisms, by forming nuclear Fe65/BLM containing spheres exclusively occuring 

in neurons (Schrötter et al. 2013, Kolbe et al. 2016). These Fe65/BLM spheres are 

postulated to regulate cell cycle re-entry in neurons of AD patients (Schrötter et al. 

2013). Intriguingly, it was shown that Fe65 plays a pivotal role in DNA damage 

response in the cell after X-ray treatment of mouse embryonic fibroblasts isolated 

from Fe65 KO mice (Minopoli et al. 2007).              

Further, Fe65 PTB1 domain was shown to interact with members of the low density 

lipoprotein receptor (LDLR) family (Figure 3), for instance with the Low density 

lipoprotein receptor-related protein 1 (LRP1) (Trommsdorff et al. 1998), very-low-

density-lipoprotein receptor (VLDLR) (Dumanis et al. 2012), Megalin/LRP2 (Alvira-

Botero et al. 2010) and ApoEr2 (Hoe et al. 2006) which all of them harboring at least 

one NPxY motif in their intracellular domains (Pohlkamp et al. 2017). All members of 

the LDLR family are, likewise the members of APP protein family, type I 
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transmembrane proteins, mainly involved in lipid metabolism and take part in a broad 

range of pre- and post-developmental functions in brain (Pohlkamp et al. 2017).  

 

Figure 3: The low-density lipoprotein (LDL) receptor family (adopted from 
Pohlkamp et al. 2017). 

Schematic drawing of the domain structure of the LDL receptor family members grouped 
in “Core εembers”, “Distant εembers” and “The Far Side”. The seven “Core εembers” 
are LDL receptor (Ldlr), very-LDL receptor (Vldlr), Apolipoprotein E (ApoE) receptor 2 
(Apoer2/Lrp8), LDL receptor related protein (Lrp)-4 (Lrp4), Lrp1, Lrp1b and Lrp2 and are 
classified by at least one NPxY domain (asterix) and a combination of two LDL receptor 
domains, namely the ligand binding domain (blue) and an epidermal growth factor 
(EGF)-precursor homology domain (orange). Ldlr, Vldlr and Apoer2 contain an additional 
extracellular O-linked sugar (OδS) domain. The two “Distant εembers” include the 
NPxY-lacking Lrp5/Lrp6 and the hybrid SorLA with additional Fibronectin repeats (pink) 
and the VPS10p-sorting motif (green). The three “far side” proteins solely express ligand 
binding-type repeats. Lrp3, Lrp10 and Lrp12 also encoding a typical CUB-domain (binds 
Complement, Uegf and Bmp1). In addition alternative splicing of Apoer2 produces splice 
variants lacking N-terminal ligand binding type repeats. 

Beside this physiological relevant functions the LDLR family plays a key role in AD by 

influencing APP processing in neurons and astrocytes as well as Aȕ clearance in 

endothelial cells of the blood brain barrier (BBB) and ependymal cells of the blood 

cerebrospinal fluid (CSF) (Wagner & Pietrzik 2012, Lane-Donovan et al. 2014). 

Interestingly, the members of the LDLR family are processed by the same secretases 
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as the APP family thereby partially competing with the latter (Wasser et al. 2014, 

Nakajima et al. 2013, Zurhove et al. 2008, von Arnim et al. 2005, von Einem et al. 

2010, Irizarry et al. 2004). In this manner, Fe65 links the proteins of the LDLR family 

with APP forming a tripartite complex and regulates APP processing and/or Aȕ 

production by among others changing the endocytosis rates or trafficking of APP 

(Pietrzik et al. 2004,Dumanis et al. 2012, Alvira-Botero et al. 2010). Whether Fe65L1 

or Fe65L2 are also involved in modulating LRP1 function is yet unclear. However, 

due to the high homology between the different protein family members in the PTB1 

domain, an interconnection appears well feasible.       

ADP-ribosylation factor 6 (ARF6), an intriguing Fe65 PTB1 binding partner was 

recently described to influence the endocytosis and membrane trafficking of APP in 

neurons by probably forming a Fe65/APP/ARF6 complex (Cheung et al. 2014, Tang 

et al. 2015). Further, this interaction of Fe65 and ARF6 was reported to affect Rac1 

signaling, involved in regulation of spine formation as well as neurite outgrowth 

(Cheung et al. 2014). Both, ARF6 and Rac1 belong to the family of small Rho 

GTPases involved in synaptic function and plasticity during NMDA receptor mediated 

long term potentiation (LTP) and long term depression (LTD) (Haditsch et al. 2009, 

Oku & Huganir 2013, Scholz et al. 2017). The impact of Fe65 in LTP and 

hippocampus dependent learning and memory formation has already been described 

(discussed in more detail below) (Wang et al. 2009) and might partially include 

signaling via ARF6 or Rac1. Interestingly, a direct influence of the AICD on LTP was 

reported by controlling GluN2B-containing NMDA receptors at immature excitatory 

synapses including AICD/Fe65 binding (Pousinha et al. 2017). Further, Fe65 is also 

able to directly interact with Rac1 (Wang et al. 2011) and thereby possibly regulates 

actin skeleton remodeling. A recent study showed the influence of the Fe65/Rac1 

pathway and its impact on APP mediated axon guidance and neural circuit formation 

during mouse brain development by activating the intracellular Pak1 complex (Wang 

et al. 2017).  

Studies of Fe65 WW domain identified an interaction with the proline rich motif of 

mammalian enabled (Mena) (Ermekova et al. 1997) and thereby modulating actin 

polymerization and cell movement in complex with APP (Sabo et al. 2001). Indeed, 

recovery of the tripartite complex of Mena/Fe65/APP and the co-localization of these 

proteins in growth cones and synapses implies such a function in neurons (Sabo et 

al. 2003, Ikin et al. 2007). Consistent with this hypothesis that Fe65 might regulate 
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APP dependent neuronal growth and/or migration, Fe65/Fe65L1 DKO, 

APP/APLP1/APLP2 Triple KO (TKO) mice as well as Mena KO mice exhibit similar 

phenotypes regarding the occurrence of ectopic cortical neurons and axonal 

pathfinding defects (discussed in more detail below) (Herms et al. 2004, Guénette et 

al. 2006, Goh et al. 2002). Besides this role in actin remodeling via binding to Mena, 

the WW domain was found to interact with Abl tyrosine kinase and the nucleosome 

assembly factor SET, which plays an intriguing role in nuclear signaling and 

transcriptional activation (Zambrano et al. 2001, Perkinton et al. 2004, Telese et al. 

2005). Furthermore, it was shown to bind to the P2X2 receptor subunits at excitatory 

synapses and modulate receptor function (Masin et al. 2006). 

Here, only the best known Fe65 binding partners are introduced. In fact the current 

picture of the Fe65 interactome is much more complex, involving a variety of 

interaction partners with very diverse cellular functions (Muller et al. 2017), including 

regulation of gene expression, actin polymerization/remodeling and endocytosis. 

Most of the findings originated from in vitro experiments. However, to gain a deeper 

understanding of the function in vivo several mouse models were generated to 

examine its function in a complex living organism.  

Fe65 protein family KO mice  

Two independently generated Fe65 KO mouse models have provided a deeper 

understanding of the biological function of the Fe65 protein family (Wang et al. 2004, 

Guénette et al. 2006). Since Fe65 is mainly expressed in the cerebral cortex and 

hippocampus (Kesavapany et al. 2002) which are the brain regions important for 

memory acquisition and learning, the first described Fe65 KO mouse, a p97Fe65 

isoform specific KO, provided important evidences in this field. p97Fe65 KO mice are 

viable and showed no obvious physical or histopathological abnormalities, but 

revealed impairments in learning and memory (Wang et al. 2004). They showed 

deficits in the passive avoidance test and in the hidden platform task of the Morris 

Water Maze (MWM) test indicating disturbances in spatial learning properties. 

Interestingly, only older mice (>14 month) displayed the observed phenotypes 

whereas younger animals (2-4 months) performed normal in comparison to wildtype 

(WT) mice (Wang et al. 2004, Wang et al. 2009). Further analysis examining the LTP 
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features in vivo uncovered deficits only in the early phase of LTP after a single 

100 Hz train (Wang et al. 2009) implicating a potential role in short-term plasticity but 

affecting spatial memory formation only to a lower extend. However, these mice 

exhibit a five-fold upregulation of the N-terminal truncated isoform p60Fe65 which 

might compensate the loss of the p97Fe65 isoform and therefore reasoning the only 

minor detected defects. 

The second Fe65 KO mouse model was generated by Guénette and co-workers 

lacking both isoforms p97Fe65 as well as p60Fe65. Additionally, they generated the 

first Fe65L1 KO mouse model and by crossing with the Fe65KO mice the 

Fe65/Fe65L1 DKO mouse model (Guénette et al. 2006). Histological examination of 

both single KO mice revealed no gross defects in brain or organ formation. Also initial 

observations revealed no abnormal behavior in housing cages but detailed analyses 

are missing. However, deficits in the hanging wire task have been described for 

Fe65 KO as well as Fe65L1 KO mice (Suh et al. 2015). Moreover, in older 

Fe65L1 KO mice (>14 months) lens degradation and cataract phenotypes have been 

detected. In contrast to single KO mice Fe65/Fe65L1 DKO mice displayed abnormal 

circling behavior in housing cages, aggravated impairments in the hanging wire task 

as well as lens degradation and cataract phenotypes in all examined older mice 

(Guénette et al. 2006, Suh et al. 2015). In addition, centralized nuclei in muscle cells, 

an indication for muscle degeneration (Bassez et al. 2008), of the quadriceps were 

found possibly explaining the poor performance in the hanging wire test. The most 

remarkable observation has been made in the Fe65/Fe65L1 DKO mice brain after 

histological examination. Those brains displayed deficits in neuronal positioning and 

axon outgrowth in the cortex (Figure 4) as well as disruptions of the pial-meningeal 

basement membrane with altered laminin organization (Guénette et al. 2006). 
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Figure 4: Cortical abnormalities in Fe65/Fe65L1 DKO mice (adoptted from 
Guénette et al. 2006).  

H&E staining of coronal sections of embryonal stage E18.5 mouse cortices of WT 
littermates (A,C) and Fe65/Fe65L1 DKO (B,D) mice. Arrowheads point to ectopic cells 
on the surface of the E18.5 cortex of Fe65/Fe65L1 DKO mice (B) and arrows indicate 
ectopic neurons which have invaded the marginal zone (MZ) of E18.5 cortex (D). Scale 
bar, 100 mm. CP, cortical plate; IZ, intermediate zone; VZ, ventricular zone. 

Interestingly, similar phenotypes have been described in mice lacking all three 

members of the APP protein family (see below) (Herms et al. 2004). 
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APP protein family KO mice  

Single disruption of APP, APLP1 or APLP2 caused only minor abnormalities in 

APP KO mice, namely reduced body as well as reduced brain weights and no 

significant changes in APLP1 KO or APLP2 KO mice (Müller et al. 1994, Zheng et al. 

1995, von Koch et al. 1997, Heber et al. 2000, Weyer et al. 2011, Midthune et al. 

2012). However, aged APP KO mice showed impairments in behavior, LTP 

measurements and spine density (Müller et al. 1994, Ring et al. 2007, Seabrook et al. 

1999, Weyer et al. 2014). Recent studies of aged APLP1 KO mice revealed reduced 

spine density and impairments in synaptic transmission as well (Schilling et al. 2017).  

 

Figure 5: Cortical dysplasia in APP/APLP1/APLP2 TKO mice (adopted  from 
Herms et al. 2014) 

Cresyl violet staining of coronal sections of a triple knockout mouse brain (A,B) at E18.5 
in comparison to littermate control (APP -/-, APLP1-/+, APLP2-/-, C,D). Compared to the 
region of littermate controls boxed in (C) and enlarged in (D) a protrusion (P) of the right 
hemispheric cortical plate boxed in (A) and enlarged in (B) is shown. Ectopias were 
restricted to dorsal cortical areas as indicated in (A) and neurons disrupt the subplate 
(SP) and cortical plate (CP) by overmigrating into the marginal zone (MZ). Scale bars, 
500 mm. 

In contrast, combined KO mice with loss of APP and APLP2 or APLP1 and APLP2 

showed an early perinatal lethal phenotype (Heber et al. 2000), which might be 
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explained by deficits in neuromuscular junction (NMJ) formation, comprising improper 

positioning of the pre- and postsynaptic site (Wang 2005, Klevanski et al. 2014). An 

intriguing finding was made after crossing APPΔCT (lacking the last 15 amino acids 

including the Fe65 interaction motive YNPTY) mice with APLP2 KO mice thereby 

partially rescuing the lethal phenotype of the DKO mice without ameliorating the NMJ 

defects (Klevanski et al. 2015). This implies an important function of the binding 

partners of the intracellular domain of APP in NMJ formation and pre- and 

postsynaptic apposition. However, APP/APLP1 DKO mice are viable and show no 

aggravated phenotypes compared to single APP KO or APLP1 KO mice (Heber et al. 

2000), thus indicating an important key role of APLP2 in physiological function and a 

functional redundancy between the homologs. Interestingly, TKO mice lacking all 

three APP family members die directly after birth (Herms et al. 2004). In comparison 

to the lethal APP/APLP2 DKO or APLP1/APLP2 DKO mice histological examination 

of the brain of the TKO mice revealed cranial abnormalities like focal dysplasia and 

partial loss of Caja-Retzius cells, resembling human type II lissencephaly. Within the 

affected areas neuronal cells migrated beyond their usual position and disrupted the 

marginal zone layering (Figure 5). Compared to the observed cranial phenotype in 

brains of Fe65/Fe65L1 DKO mice a remarkable correlation is noticeable indicating a 

pivotal role for the APP protein family members in neuronal adhesion and positioning, 

very likely mediated by the members of the Fe65 protein family. 
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Outline of this thesis 

The main goal of my thesis was to characterize the Fe65 KO, Fe65L1 KO and 

Fe65/Fe65L1 DKO mouse model generated by Guénette and co-workers (Guénette 

et al. 2006) in various behavioral experiments focusing on locomotion, strength as 

well as learning and memory formation. Furthermore, I intended to examine the 

influence of the Fe65 protein family on LRP and/or APP fast axonal transport and 

checked the dimerization properties of Fe65 in vitro. 

My thesis comprises three main chapters, which are presented hereafter with the 

corresponding publications. 

I) The first part of my thesis, addressed the influences of the Fe65 protein 

family on mouse behavior by using different approaches measuring 

learning and memory consolidation as well as locomotion and grip 

strength. Furthermore I extended the NMJ analysis in Fe65 protein family 

KO mice during my diploma thesis (Strecker, 2012) by comparing the NMJ 

formation of Fe65/APLP2 KO and Fe65L1/APLP2 KO mice to NMJ of 

single Fe65 KO and Fe65L1 KO mice, respectively. 

Paul Strecker, Susann Ludewig, Marco Rust, Tabea A. Mundinger, Andreas Görlich, 

Elisa G. Krächan, Christina Mehrfeld, Joachim Herz, Martin Korte, Suzanne Y. 

Guénette & Stefan Kins. Scientific Reports | 6:25652 | DOI: 10.1038/srep25652 

II) Fe65 with its two phosphotyrosine domains interacts with a variety of 

intracellular proteins and builds a functional linker. A way to control this 

interaction is the phosphorylation of Fe65 or the binding partners. The 

dimerization of Fe65 as an additional control mechanism and thereby a 

possible influence on APP binding was analyzed in the second part of my 

thesis by in vitro co-immunoprecipitation experiments and Blue Native Gel 

analysis. 

Lukas P. Feilen, Kevin Haubrich, Paul Strecker, Sabine Probst, Simone Eggert, 

Gunter Stier, Irmgard Sinning, Uwe Konietzko, Stefan Kins, Bernd Simon & Klemens 

Wild. Front. Mol. Neurosci. 10:140. doi: 10.3389/fnmol.2017.00140 
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III) The third part of my thesis concentrated on the function of Fe65 as 

scaffolding protein linking APP and LRP1. Here, the influence of APP on 

LRP1 and LRP1 on APP in absence/presence of Fe65 was investigated. 

Moreover, the first characterization of LRP1 axonal transport was 

examined. 

Uta-Mareike Herr†, Paul Strecker†, Steffen E. Storck, Carolin Thomas, Verena 

Rabiej, Anne Junker, Sandra Schilling, Nadine Schmidt, C. Marie Dowds, Simone 

Eggert, Claus U. Pietrzik & Stefan Kins. Front. Mol. Neurosci. 10:118. doi: 

10.3389/fnmol.2017.00118 

† These authors have contributed equally to this work. 
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Chapter I 

 

Behavioral and electrophysiological analysis of Fe65 KO, Fe65L1 

KO and Fe65/Fe65L1 DKO mice and the influence of the Fe65 

protein family on neuromuscular junction formation  
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Background 

The members of the mammalian Fe65 protein family, consisting of Fe65 itself and its 

two homologues Fe65L1 and Fe65L2, are scaffolding proteins forming numerous 

complexes with a widespread range of proteins (Chow et al. 2015). The first identified 

Fe65 interacting protein was the Amyloid Precursor Protein (APP) (Fiore et al. 1995), 

which plays a major role in Alzheimers Disease (John & Gerald 1992). Few years 

later its homologues APP-like-proteins 1 and 2 (APLP1 and APLP2) were described 

to interact with Fe65 as well (Guénette et al. 1996, Duilio et al. 1998). To characterize 

the function of Fe65 in more detail different Fe65 knockout (KO) mouse models were 

generated, using different targeting vectors (Wang et al. 2004, Guénette et al. 2006). 

Behavioral analysis of the first KO, the isoform specific p97Fe56-KO, resulted in 

deficits in non-spatial learning tasks, classical fear conditioning and only in older (>14 

months) mice impairments in the Morris Water Maze Test, whereas younger animals 

(2-4 months) showed no changes (Wang et al. 2004, Y. Wang et al. 2009). Although 

deficits in the hanging wire task have been described for the second Fe65 KO, 

lacking both isoforms p97 and p60, and Fe65L1 KO mice (Suh et al. 2015) detailed 

behavioral analysis were missing. Furthermore no detailed electrophysiological 

analysis of both single Fe65 KO and Fe65L1 KO and the Fe65/Fe65L1 double-KO 

(DKO) had been performed. 

Interestingly, the lack of Fe65 and its homologue Fe65L1 leads to similar phenotypes 

observed in APP/APLP1/APLP2 triple-KO (TKO) mouse brains, exhibiting ectopic 

neurons and axonal pathfinding defects (Guénette et al. 2006, Herms et al. 2004).  

Therefore, the goal of this study was to perform a set of behavioral tests, 

electrophysiological and histochemical analysis of the central and peripheral nervous 

system to characterize single Fe65 KO and Fe65L1 KO as well as 

Fe65/Fe65L1 DKO mice in more detail on the one hand and to provide further 

information of the interplay of the Fe65 and the APP protein families at the 

neuromuscular junction (NMJ) on the other hand. 
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Methods 

According to the SHIRPA guidelines (Rogers et al. 1997) different behavioral tests 

were used to characterize the phenotypes of Fe65 KO, Fe65L1 KO and 

Fe65/Fe65L1 DKO mice in comparison to wildtype (WT) mice (C57BL/6j) at an age of 

4-6 months. In this study we focused especially on locomotor, learning and memory 

analysis. First evidences on phenotypical changes of Fe65/Fe65L1 DKO mice have 

been provided by Guénette and co-workers who described abnormal circling 

behavior of the Fe65/Fe65L1 DKO mice in home cages (Guénette et al. 2006) as well 

as deficits in the Hanging Wire test of older (>12 months) Fe65 KO and Fe65L1 KO 

mice (Suh et al. 2015). Therefore, first the general behavior and locomotion was 

analyzed by an Open Field experiment followed by a Rota-Rod test, a Hanging Wire 

test to verify the findings of Suh and co-workers and a grip strength test. Interestingly, 

during the Open Field analysis Fe65/Fe65L1 DKO mice showed no indication of 

anxiety which leads us to check the anxiety behavior via an Elevated Plus Maze 

experiment. To examine the spatial learning and memory behavior the Morris Water 

Maze (MWM) test was used which was originally invented to study the learning 

abilities of rats (Morris 1984).          

After the behavioral analyses the mice were subjected for electrophysiological 

studies. Field excitatory postsynaptic potentials (fEPSPs) from acute hippocampal 

slices were recorded in the CA1 region following stimulation of CA3 Schaffer 

collateral axons. The longterm potentiation (LTP), paired-pulse facilitation (PPF) and 

the basal synaptic transmission were measured. Furthermore, a detailed histological 

investigation of the spine density of the hippocampal CA1 region was performed. 

The triangularis sternii muscle with its thin structure of only five muscle layers and no 

sensory innervation, as all neurites branching into the muscle are motor axons, is a 

model tissue to study NMJ formation. Therefore, the triangularis sternii muscle of six 

to eight month old mice was dissected and analyzed by histochemical stainings of the 

NMJ to examine the area covered by the pre- and postsynapse, its apposition and 

postsynaptic fragmentation.  
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Results and Discussion 

Analyses of Fe65 KO, Fe65L1 KO and Fe65/Fe65L1 DKO mice showed impairments 

in locomotion, grip strength, anxiety, learning and memory as well as NMJ formation 

deficits in comparison to WT mice. Single Fe65 KO and Fe65L1 KO mice exhibited 

an overall mild phenotype in our experimental setups whereas Fe65/Fe65L1 DKO 

mice displayed a strongly aggravated phenotype. This shows that Fe65 or Fe65L1 

can functionally compensate each other, indicating redundant or overlapping 

functions. However, loss of both Fe65 and Fe65L1 has a dramatic influence on the 

performance in grip strength and Rota-Rod analysis. This finding was underpinned by 

the histological examination of the NMJs of triangularis sternii muscles, where the 

total area of the pre- and postsynapse and the apposition of the pre- and 

postsynapse of Fe65/Fe65L1 DKO mice was significantly reduced compared to 

single Fe65 KO and Fe65L1 KO mice. Interestingly, the putative loss of anxiety of 

Fe65/Fe65L1 DKO mice might be explained by the observed cataract phenotype in 

older Fe65/Fe65L1 DKO mice (Suh et al. 2015) thus leading to disorientated and 

increased movement in the Open Fiel and Elevated Plus Maze experiment. These 

findings weren´t detectable for single KO mice. 

In both probe trials as well as in the reversal paradigm of the Morris Water Maze test 

impairments in spatial learning and memory were observed for Fe65 KO as well as 

Fe65L1 KO mice which were exacerbated in Fe65/Fe65L1 DKO mice too. In 

contrast, for p97Fe65 KO mice none of the described phenotypes were detected 

(Wang et al., 2009). These findings suggest a compensatory influence of the 

p60Fe65 isoform which was upregulated in p97Fe65 KO mice (Wang et al., 2009). 

Intriguingly, electrophysiological analyses only partially reflect these results. While 

Fe65 KO mice showed only a trend towards post titanic potentiation (PTP) deficits 

and Fe65/Fe65L1 DKO mice exhibited significant impairments in the late phase of 

LTP measurements Fe65L1 KO mice displayed no differences compared to 

measurements of WT mice. This speaks against a redundant and overlapping 

function of Fe65 and Fe65L1 and the outcome of the Morris Water Maze experiments 

might depend on two different mechanisms for Fe65 and Fe65L1. However, limitation 

of interpretation of MWM data of Fe65/Fe65L1 DKO mice analyses due to altered 

anxiety, activity and possibly visual ability which have also been described for older 

Fe65L1 KO mice (Suh et al., 2015) cannot be directly linked to LTP deficits and the 
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impairments in the MWM experiments.               

Notably, no significant changes have been observed in the paired-pulse ratio, the 

basic synaptic transmission measurements and spine density analysis for all tested 

genotypes, arguing for a dominant postsynaptic function of Fe65/Fe65L1. 

Interestingly, impairments in grip strength of Fe65 KO as well as Fe65L1 KO mice 

described by Suh and co-workers (Suh et al., 2015) weren´t detectable in our 

analysis, which might be explained by the progressed age (>14 month old vs. 4-6 

month old mice) of mice examined. Only Fe65/Fe65L1 DKO mice displayed 

impairments in the grip strength as well as hanging wire test. Accordingly, analysis of 

the NMJ exhibited an aggravated phenotype of decreased pre- and postsynaptic 

areas as well as impairments in apposition of the pre- and postsynapse in 

Fe65/Fe65L1 DKO mice compared to single Fe65 or Fe65L1 KO mice which might 

correspond to the muscle strength deficits (Suh et al., 2015). Further a higher 

fragmentation of the postsynaptic area of the NMJs of Fe65 KO, Fe65L1 KO and 

Fe65/Fe65L1 DKO mice compared to WT mice were measurable. Thus, loss of Fe65 

and/or Fe65L1 which are present both at the pre- and postsynapse as well as in 

neurons and in muscle cells leading to NMJ defects and subsequently to muscle 

denervation indicated by centralized nuclei and subsequently to muscle strength 

deficits (Guénette et al., 2006, Suh et al., 2015). 

Testing the influence of the Fe65 protein family in dependence of APLP2 on NMJ 

formation showed a further decrease in size of the area of the pre- and postsynapse 

of NMJs of Fe65/APLP2 DKO and Fe65L1/APLP2 DKO mice compared to NMJs of 

Fe65 KO and Fe65L1 KO mice. This genetic interaction strongly suggests a 

functional role of the Fe65 protein family in APP protein family signaling required for 

NMJ formation. This finding is further affirmed by the analysis of knockin mice 

expressing APP lacking the Fe65/Fe65L1 interaction site on an APLP2 KO 

background, exhibiting similar defects of NMJ formation, in locomotion and grip 

strength (Weyer et al. 2011, Klevanski et al. 2015). Additionally it was shown that 

APP interacts with LRP4 (Choi et al. 2013), a key component of the 

LRP4/Musk/Agrin complex, which is involved in Acetyl-Choline Receptor (AChR) 

patterning and thereby stabilizing postsynaptic sites (Wu et al. 2012). A participation 

of the Fe65 protein family in this pathway appears well plausible. 
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Conclusion 

In this study we could show that the Fe65 protein family is involved in and essential 

for CNS and PNS function and formation as well as learning and memory 

consolidation. Moreover, we were able to demonstrate that the interaction with the 

APP protein family is crucial for NMJ formation. Together, these data suggest that the 

Fe65 protein family is the main interaction partner for the APP protein family in the 

CNS as well as PNS. 
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ABSTRACT 

The FE65 adaptor proteins (FE65, FE65L1 and FE65L2) bind proteins that function 

in diverse cellular pathways and are essential for specific biological processes. Mice 

lacking both FE65 and FE65L1 exhibit ectopic neuronal positioning in the cortex and 

muscle weakness. p97FE65-KO mice, expressing a shorter FE65 isoform able to 

bind amyloid precursor protein family members (APP, APLP1, APLP2), develop 

defective long-term potentiation (LTP) and aged mice display spatial learning and 

memory deficits that are absent from young mice. Here, we examined the central and 

peripheral nervous systems of FE65-KO, FE65L1-KO and FE65/FE65L1-DKO mice. 

We find spatial learning and memory deficits in FE65-KO and FE65L1-KO mice. 

Severe motor impairments, anxiety, hippocampal LTP deficits and neuromuscular 

junction (NMJ) abnormalities, characterized by decreased size and reduced 

apposition of pre- and postsynaptic sites, are observed in FE65/FE65L1-DKO mice. 

As their NMJ deficits resemble those of mutant APP/APLP2-DKO mice lacking the 

FE65/FE65L1 binding site, the NMJs of APLP2/FE65-DKO and APLP2/FE65L1-DKO 

mice were analyzed. NMJ deficits are aggravated in these mice when compared to 

single FE65- and FE65L1-KO mice. Together, our data demonstrate a role for FE65 

proteins at central and peripheral synapses possibly occurring downstream of cell 

surface-associated APP/APLPs. 
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INTRODUCTION 

The FE65 protein family members, FE65 and FE65 like proteins (FE65L1, FE65L2) 

are scaffolding proteins containing two PTB domains and a WW domain that mediate 

complex formation with a diverse set of proteins1. These include Amyloid Precursor 

Protein (APP) family members, lipoprotein receptors2–4, proteins that regulate cellular 

processes such as cytoskeletal remodeling5–7, synaptic vesicular loading and 

release8, calcium homeostasis8, signal transduction9,10, nuclear signaling11 and DNA 

repair12. 

Characterization of two FE65 knockout (KO) mouse models, generated using 

different targeting vectors, have provided insights into the biological roles of the FE65 

protein13,14. The isoform specific p97FE65-KO mice results in loss of the p97 isoform 

and a 5-fold upregulation of an N- terminal truncated soluble isoform (p60), believed 

to be derived from the same transcript, that is expressed in the cortex at low levels 

under normal physiological conditions13,14. Locomotor activity and behavior in the 

open field test were normal, but deficits in cognitive behavior using non-spatial 

learning tasks such as temporal dissociative passive avoidance13,15 and classic fear 

conditioning15 were noted for these mice. In the Morris water maze spatial learning 

test, only older p97FE65-KO mice (>14 months old) revealed a significant decline in 

task performance in the training phase and probe trial of the reversal paradigm, 

whereas young (2–4 months old) mice showed no impairments13,15. The p97FE65-

KO mice also display early-phase long-term potentiation (LTP) deficits elicited in vivo 

by a single 100 Hz train15. These data indicate that the p97 isoform of FE65 plays 

only a minor role in spatial memory formation and may be involved in short-term 

plasticity. Possible compensation by elevated p60 levels or shared function with 

related family members may obscure more severe cognitive deficits. 

The second FE65 knockout mouse model, lacking both the p97 and p60 isoforms 

displays deficits in the hanging wire task that are also observed in FE65L1-KO 

mice16. In contrast to the FE65/FE65L1 double knockout (DKO) mice, which exhibit 

deficits in neuronal positioning and axon outgrowth in the developing cortex, there 

are no overt morphological abnormalities present in FE65-KO and FE65L1-KO 

mouse brains14. 
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Thus, a systematic assessment of the contribution of FE65 protein family members to 

cognitive and motor functions is lacking. Here, we report severe deficits in motor and 

cognitive behaviors in mice lacking FE65 protein family members. These are 

associated with neuromuscular junction abnormalities and altered LTP, respectively. 

Thus, establishing FE65 family proteins as essential synaptic components in mice. 
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RESULTS 

Functional redundancy of FE65 and FE65L1 in motor behavior, control of 

anxiety and activity. 

For comparative analysis of FE65-KO, FE65L1-KO, and FE65/FE65L1 -DKO mice, 

we used offspring from FE65+/− and FE65L1+/− heterozygous mouse crossings. 

Behavior analyses were conducted with a cohort of male FE65-KO (n = 12), FE65L1-

KO (n = 1β) and FE65/FE65δ1-DKO (n = 10) mice aged 4–6-month. These 

behavioral studies initially included 12 FE65/FE65L1-DKO mice, but we found that 

two mice had developed unilateral eye lens opacity shortly after performing the 

behavioral tests. We did not detect eye lens opacity in any other mice by visual 

inspection. Therefore, only these two mice were excluded retrospectively from data 

analysis for all behavioral studies. 

Limb clasping in mice briefly held by the tail in an inverted position17 showed that the 

vast majority of FE65/ FE65L1-DKO mice (8/10) were unable to adopt the 

characteristic splayed limb position observed in WT mice (Fig. 1a). The intermediate 

phenotype, a single set of clasped limbs (position 1)17, was observed for the majority 

of FE65 (9/12) and half of the FE65L1 single KO mice (Fig. 1a). These data are 

suggestive of motor deficits that may be due to changes in the central nervous 

system (CNS)17, peripheral abnormalities in muscle spindle inner-vation18 or 

myopathy19 . No changes in limb position were observed when FE65/FE65L1-DKO 

mice were held in an inverted position for up to 30 seconds, nor did these mice have 

difficulty recovering once placed back on a horizontal surface (data not shown). 

Difficulty with the latter would also be suggestive of CNS deficits20. The rotarod test 

requiring balance and coordination, revealed statistically significant motor deficits 

only for the FE65/ FE65L1-DKO mice (Fig. 1b, p < 0.041). Furthermore in the 

hanging wire grip test requiring strength and coordination the FE65/FE65L1-DKO 

mice had a significantly lower latency to fall compared to WT mice, while single KOs, 

which also showed a trend towards a lower latency to fall, were not significantly 

different from WT mice (Fig. 1c, p = 0.0001). To directly assess whether motor 

deficits might involve a peripheral motor defect, the grip strength test was used. 

Significantly reduced grip strength was observed for the FE65/FE65L1-DKO mice 

when compared to WT mice, indicating a peripheral motor function deficit in these 
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mice (Fig. 1d, p = 0.0001γ). Single KO mice showed a trend towards reduced grip 

strength that was not significantly different from WT (Fig. 1d). 

Although FE65/FE65L1-DKO mice showed severe motor deficits, the total traveling 

distance measured during 1 hour in the open field arena was β-fold higher than in WT 

controls, FE65-KO or FE65L1-KO mice (Fig. 1e, DKO vs. WT, p = 0.01γ; DKO vs. 

FE65-KO, p = 0.00β; DKO vs. FE65δ1-KO, p = 0.0001). In contrast to the control and 

single KO mice, FE65/FE65L1-DKO mice failed to show habituation to this novel 

environment. Furthermore, FE65/FE65L1- DKO mice crossed the center region more 

often than the other three genotypes studied (Fig. 1f, DKO vs. WT, p = 0.0β4; DKO 

vs. FE65-KO, p = 0.000β; DKO vs. FE65δ1-KO, p = 0.0001) (Supplementary Video 

S1). Given that mice have a natural aversion to open spaces, open field behaviors of 

the FE65/FE65L1-DKO mice are suggestive of reduced anxiety. To further examine 

anxiety-like behaviors in these mice, the elevated plus-maze behavioral test was 

performed21. In this test, rodents are exposed to an approach–avoidance conflict 

between exploratory behavior and their aversion to heights and open spaces. The 

numbers of visits to the open arm were not significantly different between genotypes 

(Fig. 1g, p = 0.09). However, FE65/ FE65δ1-DKO mice displayed a 7-fold increase in 

the time spent in the open arm of the elevated plus maze compared to WT, FE65- or 

FE65L1-KO mice (Fig. 1h, DKO vs. WT, p = 0.0β6; DKO vs. FE65-KO, p = 0.00γ; 

DKO vs. FE65L1-KO, p = 0.118). Collectively, these data show that FE65/FE65δ1-

DKO mice have deficits in peripheral motor function and reduced anxiety. The data 

also clearly show that FE65 and FE65L1 are functionally redundant in these 

contexts. 
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Figure 1. Severe abnormalities in locomotor and anxiety behaviors for FE65/FE65L1-

DKO mice.  

Male FE65-KO (n = 1β), FE65δ1-KO (n = 1β) and FE65/FE65L1-DKO (n = 10) mice (4–6 
months-old) were used for all behavioral tests. (a) Paw-clasping response: Mice were 
lifted by the tail and the position of their limbs (normal limb position (Pos. 2), front or 
hind limb clasping (Pos. 1), front and hind limb clasping (Pos. 0) were recorded. (b) 
Mouse-rotarod: Mice were placed on a rotating cylinder with different speeds of rotation 
and the time to fall was measured. Shown is the significance between WT and 
FE65/FE65L1-DKO mice, since no difference was observed between WT and FE65- or 
WT and FE65L1-KO mice. (c) During the Hanging Wire Grip Test the time to fall was 
measured. (d) Grip strength measurements of all limbs with a Grip Strength Meter. (e,f) 
Open-field behavior recorded for 1 h. (e) The distance traveled and (f) the number of 
times mice crossed the center area were measured. (g,h) Elevated Plus Maze was used 
to assess anxiety levels. Mice were placed in the closed arm of the plus maze and (g) 
the number of visits in the open arms (OA) and closed arms (CA), as well as (h) the 
residence time was measured over a period of five minutes. Data were analyzed using 
Kruskal-Wallis-Test followed by Dunn´s Multiple Comparison Test due to differences in 
normal distribution. Error bars are given as s.e.m. *p < 0.05; **p < 0.01; ***p < 0.001; n.s. 
for not significant. 

Learning and memory deficits in FE65/FE65L1-DKO mice. 

To assess cognitive function, we used the Morris Water Maze (MWM) test. Male 

FE65-, FE65L1-KO and FE65/FE65L1-DKO mice (4–6-month-old) were initially 

assessed in the MWM with a visible platform to exclude confounding factors such as 
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deficits in visual perception or swimming performance (Supplementary Video S2). 

Under these conditions, no differences in procedural learning (Fig. βa, p = 0.34) or 

swim speeds (Fig. βb, p = 0.57) were observed between FE65 and FE65L1 single 

KOs when compared to WT controls. In contrast, FE65/FE65L1-DKO mice showed 

normal swim speed but did not learn the task (Fig. βa, p = 0.042) and appeared 

disoriented (Supplementary Video S2). We observed strong deficits for the 

FE65/FE65L1-DKO mice in the MWM tasks. Since interpretation of the cognitive 

deficits observed for these mice is confounded by altered anxiety, activity and 

possibly visual abilities16 the analyzed data are not further discussed, but are 

presented in Supplementary Fig. S1. 

The FE65- and FE65L1-KO mice were trained for 5 days (4 trials per day) and no 

significant changes in escape latencies were measured between genotypes 

(p = 0.56) (Fig. 2c). In the probe trial, WT mice showed a preference for the target 

quadrant, whereas both FE65- and FE65L1-KO mice lacked a respective preference 

(Fig. βd quadrant γ (target), WT, p = 0.0085; FE65-KO, p = 0.βγ; FE65δ1-KO, 

p = 0.46). These data show that genetic deletion of either FE65 or FE65L1 causes 

spatial memory deficits. After one day without training, the hidden platform was 

moved to the opposite quadrant of the MWM for the Reverse Hidden Platform test 

and mice were again trained for 4 days (4 trials per day). During this training phase, 

the times required to find the platform were now significantly longer for both FE65- 

and FE65L1-KO mice when compared to WTs (Fig. βe, p = 0.048). After removal of 

the platform, FE65- and FE65L1-KO mice lacked a preference for the new target 

quadrant (Fig. 2f, quadrant 1 (target), WT, p = 0.0γ5, FE65-KO, p = 0.09, FE65δ1-

KO, p = 0.15). These data indicate that loss of either FE65 or FE65L1 causes deficits 

in spatial memory retrieval and impaired learning or consolidation in the reversal 

paradigm. 
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Figure 2. Spatial learning is impaired in FE65-KO and FE65L1-KO mice.  

The Morris Water Maze (MWM) test was used to examine spatial learning. (a,b) FE65-
KO, FE65L1-KO and FE65/FE65L1-DKO mice (4–6 months-old) were first trained using 
a platform placed 0.5 cm beneath the water surface and marked with a black pencil in a 
pool filled with opaque water. (a) Time to find the platform was measured. (b) Swim 
speeds were measured for each mouse by dividing path length by escape time. Shown 
is the mean velocity of each genotype tested. (c) WT, FE65-KO and FE65L1-KO mice 
were trained for five days in the hidden platform test and the time to find the platform 
was measured. (d) On the 6th day the platform was removed for the probe trial and the 
time of residence in each quadrant was measured. (e) After one day without training, the 
platform was placed in the opposite quadrant for the reversal paradigm test and the mice 
were retrained for four days and the time to find the platform was measured. (f) On the 
last day, the platform was removed and the time of residence in each quadrant was 
measured. The number of male mice (4–6 months-old) is given in brackets. Statistical 
analysis: (a,b) one-way ANOVA with Bonferroni´s post-hoc test. (d,f) two-way ANOVA 
with Bonferroni´s post-hoc test. (c,e) two-way repeated measures ANOVA (Greenhouse-
Geisser correction). Error bars are given as s.e.m. *p < 0.05; **p < 0.01; n.s. for not 
significant.  



Strecker et al. (2016)  Chapter I 

42 
 

Pyramidal neuron spine densities are similar for all FE65 genotypes. 

 To investigate whether the observed cognitive deficits are due to altered spine 

density, we performed Golgi staining of brains isolated from 4–6 month-old WT, 

FE65-KO, FE65L1-KO, and FE65/FE65L1-DKO mice (see Fig. 3a for representative 

images). Spine density analyses of second-order CA1 pyramidal neuron dendrites 

showed a slight reduction compared to WT, but were not statistically significant (Fig. 

3b; WT vs. FE65-KO, p = 0.16; WT vs. FE65δ1-KO, p = 0.19; WT vs. DKO, p = 0.β1). 

These data suggest that loss of FE65 and/or FE65L1 does not substantially affect 

neuronal connectivity of hippocampal CA1 neurons. 

LTP, PTP and PPF deficits in hippocampi of FE65 protein family KO mice. 

 The possibility that impaired spatial learning and memory may be due to functional 

network deficits in the CA3-CA1 synapses was also explored. Extracellular field 

recordings were performed on acute hippocampal slices obtained from the same 

cohort of WT, FE65-KO, FE65L1-KO, and FE65/FE65L1-DKO mice used in the 

behavioral studies. Field excitatory postsynaptic potentials (fEPSPs) were recorded 

in the CA1 region upon stimulating Schaffer collateral axons in the CA3 at a 

frequency of 0.1 Hz. δTP was induced via theta burst stimulation (TBS) after β0 min 

of baseline stimulation and was recorded for 60 min. During these sixty minutes of 

LTP recording, acute slices of FE65/ FE65L1-DKO mice (n = 16/4, corresponding to 

16 slices from 4 mice) exhibited lower potentiation compared to WT (p = 0.023, 

n = 13/3) or FE65L1-KO mice (p = 0.0βγ, n = 25/6) (Fig. 3c). The overall shape of 

potentiation after TBS application (LTP curve) of FE65L1-KO was similar to that of 

WT mice (Fig. 3c). The post-tetanic potentiation values (PTP, 5 min after TBS) and 

the stable phase of LTP were averaged for each genotype. Significantly reduced PTP 

was observed in FE65/FE65L1-DKO mice when compared to WT mice (184.γ4 ± 

1γ.97% vs. β77,74 ± β9,15%, p = 0.01γ) Fig. γd). FE65-KO mice also showed 

reduced PTP compared to WT mice, but this was not statistically significant  

(β05.69 ± 10.5β% vs. β77,74 ± 29,15%). A significant reduction in the maintenance of 

δTP, obtained from the mean slope of field potentials during the last γ0 min of δTP 

recording, was observed for FE65/FE65L1-DKO mice in comparison to WT  

(1γ7.67 ±  4.5γ% vs. 17γ.4β ± 12.98%; p = 0.023) (Fig.3d). Importantly, for FE65-KO 

mice, only a reduction in PTP was observed, whereas the overall δTP level 60 min 
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after TBS application was only significantly affected in FE65/FE65L1-DKO mice, 

suggesting partial overlapping functions of FE65 and FE65L1 in synaptic plasticity. 

In order to further elucidate whether the LTP defect and lowered PTP observed in 

FE65/FE65L1-DKO and FE65-KO mice, respectively, were due to altered synaptic 

transmission, we probed the excitability of hippocampal neurons by increasing the 

fiber volley (FV) amplitude (Fig. 3e) or the stimulus intensity (Fig. 3f). Analyzing the 

Input- Output (IO) strength of FE65 protein family deficient mice yielded no 

alterations between genotypes at any FV amplitude. Although not significant, a trend 

towards hindered excitability was observed in FE65/FE65L1-DKO FV measurements, 

with the lowest IO curve of all genotypes (Fig. 3e). Pre-synaptic functionality and 

short-term plasticity was assessed using the paired-pulse facilitation (PPF) paradigm. 

Here, none of the analyzed genotypes exhibited any significant difference in PPF 

values (Fig. 3g). Collectively, these data show that aside from the FE65/FE65L1-

DKO mice none of the other FE65 genotypes display significant alterations in basal 

synaptic transmission. 
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Figure 3. FE65 family KO mice have impaired synaptic plasticity.  

Coronal slices (100 μ m) were used for spine density analysis. (a) Overview of Golgi 
stained neurons in the hippocampal CA1 region of a WT mouse brain. Scale bar 
represents 10 μm. (b) Quantification of total spine density on secondary dendrites of 
hippocampal CA1 neurons for all genotypes. More than 30 secondary dendrites from 
three male mice (4–6 months-old) were analyzed for each genotype. (c–g) Field 
excitatory postsynaptic potentials (fEPSPs) from acute hippocampal slices of indicated 
genotypes were recorded in the CA1 region following stimulation of CA3 Schaffer 
collateral axons at a frequency of 0.1 Hz. (c) δTP was induced by application of theta 
burst stimulus (TBS) after a β0 min baseline stimulation (arrowhead). The δTP induction 
rate is shown as percentage (%) of the mean baseline slope. Data points were averaged 
over 6 time points and error bars indicate s.e.m., n = number of recorded slices/ number 
of animals. (d) PTP values represent averaged potentiation values for the 5 minutes 
after TBS and the maintenance phase of LTP was calculated from the mean slope of 
field potentials during the last γ0 min of δTP recording. (e) Analysis of the Input-Output 
(IO) strength of FE65 protein family deficient mice. (f) Neuronal excitability was tested 
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for all genotypes at increasing stimulus intensities (50–β00 μA). (g) PPF behavior using 
50 ms inter-stimulus-intervals (ISI) was examined for all mouse genotypes. Male mice 
between four and six month of age were used for spine density analysis and between 8 
and 10 month of age for electrophysiology measurements respectively. Data were 
analyzed using one-way ANOVA with Bonferroni´s post-hoc test. Differences between 
FE65-KO and FE65L1-KO, between FE65L1-KO and FE65/FE65L1-DKO, and between 
WT and FE65/FE65L1-DKO mice are marked with #, +, and *, respectively. Error bars 
are given as s.e.m. */ + /#p < 0.05; ++p < 0.01; n.s. for not significant.  

FE65 and FE65L1 proteins are required for normal apposition and sizes of pre- 

and post-synaptic specializations at the NMJ. 

We observed deficits in motor behavior and more specifically in grip strength for 

FE65/FE65L1-DKO mice that may result from malformations in the motor cortex, 

spinal cord or NMJ. Heterotopic neurons were previously found in layer 1 of the 

motor cortex in the more severely affected adult mice (unpublished data). It is 

possible that this motor cortex phenotype contributes to the observed motor behavior 

deficits in a subset of FE65/FE65L1 DKO mice. In contrast, Nissl staining of spinal 

cord morphology revealed no gross morphological differences between genotypes 

(Supplementary Fig. S2). 

NMJ morphology was examined in the triangularis sterni. In comparison to other 

muscle types it offers several advantages: reproducible staining due to its thinness, 

with fewer than five muscle fiber layers, and the absence of sensory innervation i.e. 

all neurites branching into this muscle are motor axons22. FE65-KO, FE65L1-KO and 

FE65/FE65L1-DKO mice (6–8 month-old) were examined by staining the pre-

synaptic site with an anti-synaptophysin antibody and the post-synaptic site with 

bungarotoxin, which recognizes nicotinergic acetylcholine receptors (mAChR) 

(Fig. 4a). Quantification of the pre- and postsynaptic staining showed that the surface 

area covered by both synaptophysin and AChR were significantly reduced in FE65-

KO, FE65L1-KO and FE65/FE65L1-DKO mice compared to WT mice (Fig. 4b, WT 

vs. FE65 -KO, p = 0.0001; WT vs. FE65L1-KO, p = 0.0001; WT vs. DKO, p = 0.0001 

and 4c, WT vs. FE65-KO, p = 0.008; WT vs. FE65δ1-KO, p = 0.048; WT vs. DKO, 

p = 0.0008). Pre- and postsynaptic marker apposition was also reduced in the single 

KO and DKO mice (Fig. 4d, WT vs. FE65-KO, p = 0.002; WT vs. FE65L1-KO, 

p = 0.0006; WT vs. DKO, p = 0.0002). In addition, the relative number of fragmented 

NMJs were significantly increased in the FE65- and FE65L1-KOs, and very 

pronounced in FE65/FE65L1-DKO mice (Fig. 4e, WT vs. FE65-KO, p = 0.0006; WT 
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vs. FE65L1-KO, p = 0.0005; WT vs. DKO, p = 0.00001). Additive effects for FE65 and 

FE65L1 protein loss were noted for the presynaptic area and the post-synapse 

fragmentation (Fig. 4b,e). These data suggest that the NMJ morphological defects in 

FE65 family protein KO mice may be responsible for the muscle strength deficits 

described above. 

 

Figure 4.  Morphological abnormalities in FE65 family KO Neuromuscular 
Junctions (NMJs). 

WT, FE65-KO, FE65L1-KO, FE65/FE65L1-DKO mice were decapitated, the triangularis 
sterni muscle was dissected and the pre- and postsynaptic areas of NMJs were stained 
using antibodies against Synaptophysin as a presynaptic marker and Bungarotoxin as a 
postsynaptic marker, respectively. (a) Representative pictures of stained presynaptic 
(Synaptophysin, Syn, green) and postsynaptic areas (Bungarotoxin, BTX, red) in NMJs 
of triangularis sterni muscle for all mouse genotypes studied. Scale bar represents 
10 μm. (b) Quantification of synaptophysin positive presynaptic areas of triangularis 
sterni NMJs in all FE65 protein family mouse genotypes. (c) Quantification of 
bungarotoxin positive postsynaptic areas of triangularis sterni in NMJs of these mice. (d) 
Quantitative analysis of the apposition of synaptophysin and AChR covered areas of 
triangularis sterni NMJs for all FE65 genotypes studied. (e) Quantification of 
postsynaptic fragmentation in triangularis sterni NMJs for all FE65 genotypes studied. In 
total over 30 NMJs from four animals (6–8 months-old) of age of each genotype were 
analyzed. Statistical analyses were performed using one-way ANOVA followed with 
Bonferroni´s post-hoc test. Error bars are given as s.e.m. *p < 0.05; **p < 0.01; 
***p < 0.001; n.s. for not significant. 
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APLP2 deficiency aggravates NMJ deficits in FE65- and FE65L1-KO mice. 

APP, APLP1 and APLP2 single KO mice showed no changes in NMJ 

morphology23,24. δikewise, no change was described for NεJs of APPsα  or APP 

 CT15 KI mice25,26. However, when expressed on an APLP2-KO background, the 

APP, APLP1 null24,27 as well as APP mutant genotypes lacking the FE65 binding site 

all produced deficits at the NMJ24,28–30. To determine whether a similar genetic 

interaction can be found between APP and FE65 protein family members, we 

examined the NMJ morphologies in 8-month old FE65/APLP2- (Fig. 5a–d) and 

FE65L1/APLP2-DKO (Fig. 5e–h) mice. Staining of triangularis sterni muscles was 

performed as described above, with the addition that axonal tracks were visualized 

with an anti-Neurofilament H antibody (Fig. 5a,e). Quantitation of NMJ specializations 

revealed significantly smaller surface area staining for the pre- and post-synaptic 

sites of FE65/APLP2-DKO when compared to FE65-KO mice (Fig. 5b,c; 32%, 

p = 0.000071 and β8%, p = 0.000018, respectively) and for FE65L1/APLP2-DKO 

when compared to FE65L1-KO mice (Fig. 5f,g; γ0%, p = 0.000016 and 36%, 

p = 0.000011, respectively) . Apposition of pre- and post- synaptic markers (Fig. 5d,h) 

was also reduced in these mice when compared to WT (p = 0.044), but not when 

compared to FE65 or FE65δ1 single KO mice (p = 0.β7and p = 0.β5, respectively; 

data not shown). The existence of a genetic interaction between APLP2 and FE65 or 

FE65L1 null alleles for NMJ deficits suggests that the physical interaction of these 

proteins is physiologically relevant at the NMJ. 
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Figure 5.  Genetic interaction of FE65 and FE65L1 with APLP2 at the NMJ. 

FE65-KO, FE65/APLP2-DKO, FE65L1-KO and FE65L1/APLP2-DKO mice were 
decapitated, the triangularis sterni muscle was dissected and the pre- and postsynaptic 
areas of NMJs were stained using antibodies against synaptophysin as a presynaptic 
marker, bungarotoxin as a postsynaptic marker and neurofilament H as a marker for 
axonal tracks, respectively. (a) Representative images of stained presynaptic areas, 
axonal tracks (Synaptophysin and Neurofilament H, Syn-NH, green) and postsynaptic 
areas (Bungarotoxin, red) of FE65/APLP2-DKO NMJs of triangularis sterni muscle. 
Scale bar represents 10 μm. (b) Quantification of synaptophysin-positive presynaptic 
areas of triangularis sterni NMJs in FE65/APLP2-DKO and FE65-KO mice. 
(c) Quantification of bungarotoxin-positive postsynaptic areas of triangularis sterni NMJs 
in FE65/APLP2-DKO and FE65-KO mice. (d) Quantitative analysis of the apposition of 
synaptophysin and AChR covered areas of triangularis sterni NMJs in FE65-KO and 
FE65/APLP2-DKO mice. (e) Representative images of stained FE65L1/APLP2-DKO 
NMJs of triangularis sterni muscle. Scale bar represents 10 μm. (f) Quantification of 
synaptophysin-positive presynaptic areas of triangularis sterni NMJs in FE65L1/APLP2-
DKO and FE65L1-KO mice. (g) Quantification of bungarotoxin-positive postsynaptic 
areas of triangularis sterni NMJs in FE65L1/APLP2-DKO and FE65L1-KO mice. (h) 
Quantitative analysis of the apposition of synaptophysin and AChR covered areas of 
triangularis sterni NMJs in FE65L1-KO and FE65L1/APLP2-DKO mice. In total over 30 
NMJs from four animals (8 months-old) of each genotype were analyzed. Statistical 
analyses were performed using the Student´s t-test. Error bars are given as s.e.m. 
***p < 0.001; n.s. for not significant. 
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DISCUSSION 

In this study, we show that mice with genetic deletions of both FE65 and FE65L1 

exhibit severe neurological phenotypes, including motor deficits, reduced anxiety, 

NMJ malformations and LTP impairments. In addition, loss of either FE65 or FE65L1 

is sufficient to produce significant spatial learning deficits and NMJ abnormalities. 

These data suggest widely overlapping functions for FE65 and FE65L1 at central and 

peripheral synapses. Finally, we demonstrate a genetic interaction between APLP2 

and either FE65 or FE65L1 for pre- and post-synaptic NMJ sizes suggesting that the 

physical interaction of FE65 proteins with APLP2 has functional significance for 

peripheral synapse structure. 

In contrast to the p97FE65- KO, FE65-KO mice have impaired spatial memory15. 

These data suggest that the p60 isoform, which bears both PTB protein-protein 

interaction domains and a truncated WW domain, is able to compensate for loss of 

the FE65 protein function involved in spatial memory consolidation or retrieval. Thus, 

one or more of the 20 proteins with known binding sites in the WW, PTB1 and PTB2 

protein-protein interaction domains31, such as APP or LRP, may participate in FE65-

directed cognitive function (Fig. 6). 
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Figure 6.  Model summarizing putative  FE65/FE65L1 synaptic function. 

FE65 and FE65L1 are adaptor proteins that bind different receptors (APP, APLP1, 
APLP2, ApoER2, LRP1, LRP8, VLDLR, Alcadein/ calsyntenin, P2x2 and others) possibly 
linking these to pathways that impact synaptic function through molecular interactions 
with intracellular binding partners, such as calcium signaling (e.g. via DEXRAS1) or actin 
remodeling (e.g. via Mena) (for a recent review see Chow et al.

31). Based on the 
remarkable phenotypic similarity of FE65/FE65L1-DKO and APP/APLPs mutants lacking 
the Fe65 binding site as well as the genetic interaction between APLP2 and 
FE65/FE65L1 documented in this study, we hypothesize that FE65 and FE65L1 are key 
components of APP/APLPs synaptic function. 

FE65L1-KO mice also displayed spatial memory deficits in the MWM. Yet, only 

FE65/FE65L1-DKO mice showed deficits in the maintenance phase of LTP and only 

FE65-KO mice showed a trend towards PTP deficits. 

A subset of aged FE65L1 KO mice (16–20 months old) demonstrated cataract and 

corneal ulcerations16. Thus, we cannot formally exclude the possibility that younger 

FE65L1 KO mice have some visual acuity deficit that interferes with their 

performance in the MWM tasks. However, since FE65L1-KO mice behaved similarly 

to littermate controls in the visible platform task and in the initial training, it appears 
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more likely that loss of FE65L1 affects learning in a manner independent of LTP or 

visual ability. 

A significant difference in the stable phase of δTP (between 50 and 80 min) is only 

apparent for FE65/ FE65L1-DKO mice. Such deficits in the physiological correlate of 

memory (LTP) are often presented as a cellular mechanism for spatial memory 

deficits32, such as those observed in the MWM for all the KO mice examined in this 

study. However, since interpretation of the cognitive deficits of FE65/FE65L1-DKO 

mice is confounded by altered activity (Fig. 1e,f), anxiety (Fig. 1g,h), and possibly 

visual abilities16, LTP deficits in these mice cannot be unequivocally linked to the 

spatial memory deficits observed in the MWM. 

FE65 is reported to play a role in the nucleus that includes regulation of gene 

transcription1,11,33. Yet, FE65L1 is unable to induce the transcriptional activation of 

reporter constructs that served to demonstrate this role for FE6531,34. These data 

suggest that the molecular mechanism by which FE65 and FE65L1 mediate their 

effect on LTP is not dependent on gene transcription, since both deletion of FE65 

and FE65L1 is required to produce LTP deficits. 

A presynaptic role for FE65 and FE65L1 is supported by the observation that 

expression of both FE65 and FE65L1 is upregulated in mature cortical neurons 

lacking the three Mint/X11 proteins, which play a critical role in presynaptic 

neurotransmitter release35. However, neither PPF nor basal neurotransmission were 

significantly affected in FE65-KO or FE65/FE65L1-DKO mice, indicating that 

neurotransmitter release is unaffected. 

Impairments in several motor tasks, rotarod, limb clasping, hanging wire and grip 

strength tests, were observed in FE65/FE65L1-DKO mice (4–6 months old). FE65- 

and FE65L1-KO mice also showed a similar trend for deficits that did not reach 

statistical significance. Notably, significant impairments in the hanging wire test were 

found in a previous study of 14 months old FE65- and FE65L1-KO mice16. The 

difference between our results and those of Suh and co-workers16 may be explained 

by an additional impact of aging on motor abilities or may be due to different genetic 

backgrounds. Furthermore, we observed that the size and apposition of NMJ pre- 

and postsynaptic sites were significantly reduced in FE65- and FE65L1-KO mice and 

that these deficits were more pronounced in FE65/FE65L1-DKO mice. Thus, the 
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severity of morphological NMJ defects in FE65 family KO mice parallel the muscle 

strength deficits. Defects at the NMJ may result from loss of function of FE65 and/or 

FE65L1 at pre- or postsynaptic sites since FE65 and FE65L1 are expressed in 

neurons and skeletal muscle14,16,36. 

As FE65/FE65L1-DKO mice develop brain abnormalities that include cortical 

heterotopias and hippocampal malformations, which are absent in FE65- and 

FE65L1-KO mice, it is possible that the brain abnormalities in FE65/FE65L1 DKO 

mice contribute to the increased latency to fall in the rotarod task37, a phenotype 

unique to FE65/FE65L1 DKO mice. 

Histological analyses of the mouse quadriceps muscle from 14 month-old 

FE65/FE65L1-DKO mice showed an absence of severe muscle degeneration. 

Notably, 14% of the muscle fiber cells harbor centralized nuclei, usually found in 

immature myofibers16. The decreased apposition of pre- and post-synaptic terminals 

in FE65 family KO mice may produce partial denervation and subsequent myofiber 

regeneration that contributes to muscle dysfunction in these mice. Together, our data 

suggest that the observed motor deficits are predominantly due to NMJ 

abnormalities, particularly since the severity of NMJ deficits correlate with the extent 

of the motor deficits. 

The phenotypes of FE65/FE65L1-DKO mice resemble those observed for mice 

expressing APP lacking the FE65/FE65L1 interaction site or carrying a mutation in 

the FE65/FE65L1 binding site (APPY682G) on an APLP2-KO background26,28,38,39, 

namely impaired locomotor abilities associated with deficits in NMJ formation. Our 

data showing aggravation of NMJ defects in FE65/APLP2 or FE65L1/APLP2 

compound KO mice provide genetic evidence to support the hypothesis that the 

FE65/APP protein family interactions are essential for NMJ formation. Interestingly, 

APP interacts biochemically and genetically with LRP4, a key component of the post-

synaptic LRP4/MUSK/Agrin complex40 mediating signals essential for AChR 

patterning and stabilization at post-synaptic sites41–43. The FE65 protein family 

members may play a role in modulating LRP4/MuSK/Agrin complex function at the 

NMJ. 

The synaptic function of Mint/X11 proteins35 led others to propose a role for these 

proteins in the manifestation of APP- dependent NMJ phenotypes 28. However, since 
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the Mint/X11 knockout mice35 do not exhibit the same synaptic phenotypes as 

APP/APLP2 or APLP1/APLP2 knockout mice, and a genetic interaction exists 

between FE65 or FE65L1 and APLP2, we postulate that of the APP-binding proteins 

that bind the NPTY motif, it is the FE65 proteins that are primarily responsible for 

APP/APLP function at the NMJ. 

Together our data suggest a pivotal role for FE65/FE65L1 in the central and 

peripheral nervous systems, possibly downstream of APP/APLP-dependent signaling 

at the synapse (Fig. 6). These data now form a basis for determining which partners 

of the FE65/FE65L1 interactome31 are involved in these neuronal processes. These 

may include proteins implicated in nuclear signaling11,44, actin cytoskeleton 

regulation5,45,46, or those critically involved in FE65/FE65L1 synaptic function8. 

Alternatively, phosphorylation of FE65 which regulates proteasomal degradation of 

APP and possibly other binding partners may be responsible for its effects at the 

synapse31. 
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METHODS 

Animals. 

FE65- and FE65L1-KO mice14 were backcrossed a minimum of ten times on the 

C57/BL6J (Janvier) mouse background prior to this study. Mice were genotyped as 

previously described14. Ten to twelve male mice (4–6 month-old) of each genotype 

were used for behavioral studies. WT mice were littermates from crosses set up to 

generate FE65-KO or FE65L1-KO mice. Mouse husbandry was performed according 

to local and National Institutes of Health (NIH) guidelines using groups of 4–5 mice 

per breeding cage, maintained under constant temperature, humidity and a 12 h 

light/dark cycle, with food and water ad libitum. One week before behavioral studies 

were performed, mice were separated and kept single in breeding cages. Treatment 

of mice was in accordance with the German law for conducting animal experiments 

and followed the NIH guide for the care and use of laboratory animals. All 

experimental protocols were carried out in accordance with the European 

Communities Council Directive of 24 November 1986 (86/609/EEC). Animal housing, 

breeding, behavioral studies and euthanasia were approved by the 

Landesuntersuchungsamt Rheinland-Pfalz,Germany. 

 

Behavioral studies. 

All behavioral studies were performed in a blinded fashion. 

The Tail Hanging Test17 was performed by recording the limb position five seconds 

after suspending each mouse by the tail. Three different positions were distinguished: 

Position 2, all limbs were stretched out; Position 1, front or back limbs were tucked; 

Position 0, all limbs were tucked. 

For the Hanging Wire Test, the edges of a home cage wire lid were masked with tape 

to prevent mice from climbing over the rim onto the top of the wire lid during the 

experiment. Mice were placed on the middle of the wire lid, which was carefully 

inverted to ensure that mice had a proper grip on the wires and the latency to fall was 

measured. 

For each mouse, the grip strength was measured for all limbs using a Grip Strength 

Meter 303500 ®(TSE Systems, v.2.32). Mice were put on a special grip mounted on 
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a force sensor and slowly pulled by the tail. The maximum force exerted was shown 

on a connected control unit after the animals released their grip. 

Movement coordination was analyzed using the Mouse Rota Rod (Ugo Basil, type 

7600). εice were trained for two days at the slowest rotation speed (14 rpm). Two 

training sessions were performed on each day with a 15 min break in between. On 

the third day, mice were placed on the Rota Rod and tested using a stepwise 

increase in rotation speed from 14 to β8 rpm with β rpm increases every 60 s and 

time to fall was measured. 

For open field analysis mice were put in a box with an area of 60 cm × 60 cm 

(TSE Systems) for one hour. Their movement, traveled distance and residence time 

in the center and in the periphery of the open field were recorded and evaluated with 

the TSE Videoεot β software over the entire 60 min time period21. 

For the Elevated Plus Maze test21 mice were placed on a 50 cm high cross-shaped 

table (TSE Systems) with two closed and two open arms. Mouse behavior in the 

maze was recorded for 5 min and the time spent in the open arms was evaluated 

using the TSE VideoMot2 software. 

For Morris Water Maze experiments (TSE Systems)21,47, mice were first tested for 

their ability to climb onto the platform and become familiar with the task, mice were 

trained for one day using a visible platform, identified by a black pencil fixed to the 

platform in a vertical position. For each trial a single mouse was placed in the water 

at different locations. On the next day the platform was moved to another quadrant, 

the pencil was removed and four symbols of different shapes and color were placed 

on the pool wall for orientation. Mice were trained for five days, 4 trials/day, in a pool 

filled with opaque water containing a platform placed 0.5 cm beneath the water 

surface. The probe trial was performed on the sixth day and involved removing the 

platform and recording the residence time of mice in each quadrant for 60 s. Training 

for the reverse hidden platform test was started on the eight day after one day of rest. 

In this test the hidden platform was moved to the opposite quadrant and mice were 

trained for four days, 4 trials/day. The probe trial for this test involved removing the 

platform on day 12 and recording the residence time of mice in each quadrant over 

60 s. Training and probe trials were recorded and analyzed using the TSE VideoMot 
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2 Software. The time required for each mouse to find the platform and the residence 

time in each quadrant was evaluated for the two probe trials. 

Spine density analysis. 

Male mice (4–6 month old) were deeply anesthetized with 4% chloral hydrate/PBS 

with 100 μ l/10 g bodyweight and perfused with 50 ml PBS followed by 

50 ml 4% PFA/PBS to fix the tissues. Brains were dissected and fixed overnight at 

4 °C in 4% PFA/PBS. Golgi staining was performed with the FD Rapid Golgi-

StainingTM Kit on 100 μ m thick coronal slices obtained using a vibratome 

(Campden Instruments δtd.). Spines were counted on 10 μ m long secondary 

dendrites of hippocampal neurons of the CA1 basal and apical region. 

Histological analysis. 

Triangularis sterni muscle of male mice (6–8 months-old) were dissected as 

described22. Mice were decapitated after CO2 treatment and the muscle was 

dissected and stored in PBS for sub-sequent staining. Muscle tissue was incubated 

with an antibody against synaptophysin (Invitrogen) to stain pre-synaptic vesicles, 

anti-neurofilament H (Chemicon) to visualize axons and Alexa594 conjugated 

bungarotoxin (Invitrogen) to stain nicotinic acetylcholine receptors in the 

postsynapse. 

For spinal cord analysis mice (6–8 months old) were deeply anesthetized with 4% 

chloral hydrate/PBS using 100 μ l/10 g bodyweight and perfused with 50 ml PBS 

followed by 50 ml 4% PFA/PBS for tissue fixation. Spinal cords were carefully 

dissected as described 48 and fixed overnight at 4 °C in 4% PFA/PBS followed by 

another incubation overnight in γ0% Sucrose/PBS at 4 °C. γ0 μ m thick frozen coronal 

sections of the ~C8-C6 region were prepared according to Harrison and co-workers49 

using a freezing microtome (Microm KS 34, Thermo Scientific) and mounted on 

slides for further analyses. Sections of the spinal cord were Nissl stained for 

morphological evaluation or sections were immunostained with an antibody against 

choline acetyltransferase (#178850, Abcam) according to the manufacturer´s protocol 

to visualize motor neurons in the mouse cervical spinal cord anterior horn48. 

Images of Nissl stained spinal cord sections were generated with an Olympus SZX7 

microscope, an Olympus DP20 camera and the CellF software (Olympus, Hamburg, 
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Germany). Microscopic images for NMJ and spine density analysis were recorded 

using a Zeiss Axio Observer Z.1 and the corresponding Axio Vision Rel.4.8 software. 

For quantification of areas, apposition and fragmentation ImageJ software was used. 

Electrophysiology. 

Acute hippocampal transversal slices were prepared from individual 8 to 10 month-

old mice. Mice were anesthetized with isoflurane and decapitated. The brain was 

removed and quickly transferred into ice-cold carbogenated (95% O2, 5% CO2) 

artificial cerebrospinal fluid (ACSF) containing 1β5 mε NaCl, β mε KCl, 1.β5 mε 

NaH2PO 4, β mε εgCl2, β6 mε NaHCO3, β mε CaCl2, β5 mε glucose. Hippocampi 

were dissected and cut into 400 μ m thick transversal slices with a vibratome (Leica, 

VT1200S). Slices were maintained in carbonated ACSF at room temperature for at 

least 1.5 h before transferred into a submerged recording chamber. Slices were 

placed in a submerged recording chamber and perfused with carbonated ACSF 

(γβ °C) at a rate of 1 to 1.5 ml/min. Field excitatory postsynaptic potentials (fEPSPs) 

were recorded in stratum radiatum of CA1 region with a borosilicate glass 

micropipette (resistance 3–15 εΩ) filled with γ ε NaCl at a depth of ∼ 150–200 μ m. 

Monopolar tungsten electrodes were used for stimulating the Schaffer collaterals at a 

frequency of 0.1 Hz. Stimulation intensity was adjusted to ∼ 40% of the maximum 

fEPSP slope for the β0 minutes baseline recordings. δTP was induced by applying 

theta-burst stimulation (TBS: 10 trains of 4 pulses at 100 Hz in a β00 ms interval, 

repeated 3 times). Properties of baseline synaptic transmission were analyzed via 

input-output (IO) -measurements and short -term plasticity was probed via paired 

pulse facilitation (PPF). The IO- measurements were performed either by application 

of a defined current values (25–β50 μ A) or by adjusting the stimulus intensity to 

certain fiber volley (FV) amplitudes (0.1–0.8 mV). PPF was performed by applying a 

pair of two closely spaced stimuli in different inter-stimulus-intervals (ISI) ranging 

from 10 to 160 ms. 

All experiments were performed in a blinded manner. Electrophysiological data were 

collected, stored and analyzed with LABVIEW software (National Instruments, Austin, 

TX). The initial slope of fEPSPs elicited by stimulation of the Schaffer collaterals was 

measured over time, normalized to baseline and plotted as average ± SEM. Analysis 
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of the PPF data was performed by calculating the ratio of the slope of the second 

fEPSP divided by the slope of the first one and multiplying by 100. 

Statistical analyses. 

In general one-way ANOVA (Microsoft Office, Excel 2010) was used to assess 

statistical differences between the four genotypes given that data were normally 

distributed (Shapiro-Wilk -Test) and variance (Levene-Test) was not significantly 

(α= 0.05) different. The Bonferroni method was used as a post hoc test (GraphPrism 

Software, www.graphpad.com). The Kruskal-Wallis- Test followed by Dunn´s Multiple 

Comparison Test was used to assess statistical differences between the four 

genotypes given that data weren´t normally distributed or variance was significantly 

different. MWM probe trials data were analyzed using two-way ANOVA (Microsoft 

Office, Excel 2010) to compare residence times in different quadrants for all tested 

genotypes. Escape latencies data during Visible, Hidden and Reversed Platform 

trials were analyzed by two-way repeated measures ANOVA (Greenhouse-Geisser 

correction, α = 0.05) using the Real Statistics Resource Packsoftware (Release 3.8, 

Copyright (2013–2015) Charles Zaiontz. www.real- statistics.com) for comparison of 

learning over time for all tested genotypes. The unpaired two-tailed Student’s t-test 

(Microsoft Office, Excel 2010) was used when comparing only two sets of data with 

normal distributions. All data are shown as standard error of the mean (s.e.m.). 

Significance was set at *p < 0.05 **p < 0.01 and ***p < 0.001, n.s. for not significant. 
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Background 

The conserved eukaryotic Fe65 protein family contains C-terminal two 

phosphotyrosine-binding domains (PTB) followed by an N-terminal WW domain. 

These adaptor proteins are involved in many cellular pathways acting as a functional 

linker among various interaction partner (McLoughlin & Miller 2008, Chow et al. 

2015). The WW domain was shown to bind proline riche sequences, e.g. Mena and 

thereby influencing actin cytoskeleton remodeling, cell movement and cell adhesion 

(Sabo et al. 2001). Based on its interaction via the PTB2 domain with the APP 

intracellular domain (AICD) (Russo et al. 1998), Fe65 was shown to play an essential 

role in the pathogenesis of Alzheimers Disease by modulating APP processing and 

Aȕ generation (Müller et al. 2008). Fe65-PTB1 domain was mainly shown to bind to 

the histone acetyltransferase Tip60, forming a trimeric complex of Fe65/Tip60/AICD 

involved in nuclear signaling and influencing transcriptional activity (Cao & Südhof 

2001). Interaction of the PTB1 domain with the transcription factor CP2/LSF/LBP1 

further underlines the importance of Fe65 in regulating transactivation of a yet not 

well characterized set of genes (Zambrano et al. 1998).  

The Fe65-PTB2 domain binds to the NPTY motif within the AICD in a 

phosphotyrosine-independent (Uhlik et al. 2005) maner capturing the canonical PTB-

relevant tyrosine in the hydrophobic binding pocket (J Radzimanowski et al. 2008a).  

Here we analyzed the structure and functions of the Fe65-PTB2 in more detail and 

could show in vitro as well as ex vivo that the Fe65-PTB2 domain is capable to form 

homodimers. Interestingly, dimer formation leads to an unfolding of the C-terminus of 

one Fe65 molecule (donor) and thereby mimicking the AICD NPTY motif by binding 

in a competitive fashion to the second Fe65 molecule (acceptor).  
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Methods 

Human Fe65-PTB2 domain was expressed and purified via size exclusion 

chromatography (SEC) followed by multi angle light scattering (MALS) 

measurements and finally crystallized in liquid nitrogen for X-ray structure analysis. 

X-ray data, collected at the European Synchrotron Radiation Facility, was 

subsequently integrated, merged and the structure was solved by molecular 

replacement method using known monomeric Fe65-PTB2 structure out of Fe65-

PTB2/AICD complex (Radzimanowski et al. 2008). For dimer analysis in solution, 

purified proteins were spin labeled with 3-(2-Iodoacetamido)-proxyl or 15N- or 13C/15N 

respectively and further examined by small angle X-ray scattering (SAXS) as well as 

Nuclear magnetic resonance (NMR) and Paramagnetic Relaxation Enhancements 

(PRE) measurements. 

To verify Fe65 dimer formation ex vivo, pull down experiments were carried out by 

transfecting HEK cells with vectors co-expressing either m-cherry tagged full length 

Fe65 or deletion mutants lacking Fe65-PTB2 domain, -PTB1 domain, -WW domain 

or lacking the Fe65PTB2 and WW domain together with full length Fe65 harboring a 

streptavidin-binding peptide and a myc-tag. The influence of APP on Fe65 

dimerization was analyzed by Co-Immunoprecipitation studies via cells lysates of co-

transfected HEK cells expressing HA- and Flag-tagged Fe65 as well as myc-tagged 

APP and by subcellular fractionation experiments. 
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Results and Discussion 

During purification of the Fe65-PTB2 domain via size exclusion chromatography 

(SEC) monomeric as well as dimeric and even trimeric complexes of Fe65-PTB2 

domain were detected. Further, multi-angle light scattering measurements (MALS) 

and analysis via SDS-Page confirmed the finding of oligomerized PTB2 domain. X-

ray structure analysis and molecular replacement modeling using the known Fe65-

PTB2/AICD complex (Radzimanowski et al. 2008b) revealed that Fe65-PTB2 can 

form a dimer of dimers induced by structural transformation of the C-terminal αγ-helix 

into a ȕ-strand. To exclude possible artificial properties leading to dimer formation in 

crystal, small angle X-ray scattering (SAXS) measurements in solution were 

performed. Model refinement and fitting of the acquired data by calculating the 

theoretical scattering curves of monomers, dimers and tetramers revealed that most 

of Fe65-PTB2 is dimerized corroborating the results of the crystal structure analysis.  

High resolution structural information was gained by detailed NMR characterization. 

Thereby, incorporated 15N, achieved during protein assembly by growing E.Coli in 
15N-containing M9 media, leads to chemical shifts during NMR spectroscopy 

predicting a partially stable αγ-helix and increasing flexibility of the c-terminus of the 

latter. Interestingly, analysis of the 15N relaxation experiments suggest higher 

percentage of monomers than dimers in solution by comparing the rotational 

correlation time of 10.6 ns to 8.9 ns (for complementing subunit) and 15.7 ns (for 

crystallographic dimer). However, since the flexible part of the αγ-helix mediates the 

dimer formation and is further supported by observed quickly reducing backbone 

order parameters S2 for the C-terminus of the αγ-helix a dimeric form of Fe65-PTB2 

seems to be favorable. This dimer formation in solution was afterwards characterized 

by measuring paramagnetic relaxation enhancements (PREs) after introducing nitro-

oxide spin labels which covalently bind cysteine residues. A prerequisite for the PRE 

analysis is a solely single spin-label attached to each peptide. Therefore, a series of 

consecutive mutation of all six cysteines harboured in the Fe65-PTB2 was performed 

to define the available solvent exposed cysteine which was afterwards 

paramagnetically labeled. The C663E mutant with its uniquely labeled cysteine on 

position 661 was used for further detailed PRE measurements. Due to the correlation 

of the induced relaxation and bleaching (Clore 2015), the structure and the specific 

complex could be determined. 
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Exploring the dimer formation of two Fe65-PTB2 peptides and comparing the binding 

between the AICD and Fe65-PTB2 (Radzimanowski et al. 2008) we found an 

interesting correlation. While in AICD (GYENTPY)/Fe65-PTB2 complex formation the 

glycine at position 681 plays an essential role in placing the αN-helix in a vertical 

position to the αγ-helix of Fe65-PTB2 it is the cysteine at position 661 of F65-PTB2 

which takes over this binding without introduction of a similar hinge. In Addition, an 

intramolecular salt bridge between Glutamate E683 of AICD and a lysine K688 

(following the GYENTPY sequence) is replaced by Fe65-PTB2 leucine L662 and 

arginine R665 forming an identical AICD-Fe65-PTB2 intramolecular salt bridge. Thus, 

the Fe65-PTB2 dimer formation mimics the AICD/Fe65-PTB2 complex by effectively 

capping the binding region and shielding the AICD binding. 

Having shown that Fe65-PTB2 dimer formation occurs in vitro in crystal as well as in 

solution we analyzed in a next step the dimerization properties of Fe65 ex vivo using 

pull down and co-immunoprecipitation experiments. Thereby analysis of different 

deletion mutants revealed that Fe65 indeed is able to form dimers ex vivo and that 

the PTB2 domain is responsible for the dimer formation. Interestingly, although 

deletion of the WW domain alone leads to no significant change in dimer formation, 

loss of the WW and PTB2 domain further decreased dimerization properties of Fe65. 

Further, examination of the native state of Fe65 via Blue Native Gel analyses of 

cytosolic and membrane fractions of transfected HEK cell lysates revealed that Fe65 

migrates in the gel as a single band at a molecular weight of approximately 240 kDa 

underlining a mostly dimerized form of Fe65. While solely expressed Fe65 was 

prominently detected in the cytosolic fraction, co-expression of APP caused a shift of 

Fe65 localisation from the cytosol to the membrane fraction. Furthermore, the 

influence of APP expression on Fe65 dimer formation was analyzed via co-

immunoprecipitation studies. These experiments indicated that Fe65 can still 

dimerize in the presence of APP and that even trimeric complexes might be formed. 

The details of this complex are yet unknown, but might involve besides intermolecular 

interactions between two PTB2 domains also Fe65 dimerization via the WW and 

PTB1-PTB2 linker domain, previously described as an intramolecular interaction 

(Cao & Südhof 2004). 
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Conclusion 

In our study we could show that Fe65 is able to form dimers in vitro as well as ex vivo 

via its PTBβ domain. Further, we could demonstrate that the flexible αγ-helix of 

Fe65-PTB2 mimics AICD/Fe65 complex formation leading to efficient shielding of 

AICD binding to Fe65 suggesting a regulatory function of the multiprotein-adapter 

protein in intracellular APP signaling pathway. 
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ABSTRACT 

Physiological function and pathology of the Alzheimer’s disease causing amyloid 

precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing 

a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 

binds a large portion of the APP intracellular domain (AICD) including the GYENPTY 

internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an 

intramolecular interaction causing a structural change and altering Fe65 activity. Here 

we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution 

and determine its crystal structure at 2.6 Å resolution. Dimerization involves the 

unwinding of a C-terminal α-helix that mimics binding of the AICD internalization 

sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is 

validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses 

reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for 

dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP 

interaction site, suggesting that besides intra- also intermolecular interactions 

between Fe65 molecules contribute to homeostatic regulation of APP mediated 

signaling. 
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INTRODUCTION 

The Fe65s (Fe65, Fe65L1 and Fe65L2) are a family of conserved eukaryotic adaptor 

proteins involved in a variety of biological processes (Russo et al., 1998; McLoughlin 

and Miller, 2008; Minopoli et al., 2012). Special attention has been given to the brain-

enriched Fe65 as its expression pattern parallels the amyloid precursor protein (APP; 

Guenette et al., 2006). Accordingly, the physiological functions of the two proteins are 

interdependent and knockout studies resulted in markedly similar phenotypes 

(Zambrano et al., 2002; Guenette et al., 2006; Strecker et al., 2016). APP is a single-

spanning type-1 transmembrane protein (Coburger et al., 2014) with numerous 

neuronal functions especially in the developing brain (Müller and Zheng, 2012). 

Sequential regulated proteolysis of APP by different secretases (Lichtenthaler et al., 

2011; Haass et al., 2012) results in multiple break-down products including soluble 

ectodomains, the Aȕ-peptides forming the amyloids in Alzheimer’s disease, and the 

APP intracellular domain (AICD) that is released into the cytosol (Selkoe and Hardy, 

2016). The AICD is an intrinsically disordered peptide of 47 residues (Ramelot et al., 

2000) and includes the GYENPTY internalization sequence that besides Fe65 binds 

also to many other adaptor proteins (Russo et al., 1998) with a variety of 

physiological functions and pathological implications (Müller et al., 2008; Pardossi-

Piquard and Checler, 2012). 

Fe65 determines localization and nuclear signaling of APP and modulates APP 

processing and Aȕ-peptide generation (McLoughlin and Miller, 2008). Fe65 is a 

multidomain protein including an N-terminal α-helical domain and three protein-

protein interaction modules: a WW domain and two consecutive C-terminal 

phosphotyrosine-binding (PTB) domains (Figure 1A). The WW domain binds to the 

Mena protein (Ermekova et al., 1997) involved in actin dynamics and cell motility thus 

regulating neuronal positioning in the developing brain. Fe65-PTB1 has been mainly 

implicated as central module of a ternary AICD/Fe65/Tip60 complex responsible for 

transcriptional activity of APP (Cao and Südhof, 2001), with the histone 

acetyltransferase Tip60 being a key regulator of genome expression and stability. 

Further data suggested Fe65 to provide a dominant role for nuclear signaling (Yang 

et al., 2006). The analysis of the AICD/Fe65/Tip60 interaction revealed that only 

membrane-bound AICD in context of APP and not on its own is a potent 

transactivator of transcription (Cao and Südhof, 2004). The distinction had been 
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interpreted by a membrane association dependent transition of Fe65 from a closed to 

an open and active conformation, involving its WW and PTB2 domain. 

Most attention has been given to Fe65-PTB2 as it directly interacts with the AICD and 

thus functionally joins the two proteins (Borg et al., 1996). The interaction is 

phosphotyrosine-independent and untypically for PTB-interactions (Uhlik et al., 2005) 

includes an extended interface of 28 AICD residues including two α-helices (αN and 

αC; Figure 1B; Radzimanowski et al., 2008c). The GYENPTY internalization 

sequence is recognized in a rather hydrophobic crevice with GYE involved in a PTB-

typical ȕ-augmentation manner and NPTY starting helix αC and placing the canonical 

PTB-relevant tyrosine in its binding pocket. Unique for the AICD/Fe65-PTB2 complex 

is the N-terminal binding helix αN within AICD that is capped by the T668PEE-motif. 

Phosphorylation of threonine T668 regulates the interaction and has been identified as 

sensitive checkpoint switching between physiological and pathological APP related 

pathways (Ando et al., 2001).  
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FIGURE 1 | Fe65 and amyloid precursor protein (APP ).  

(A) Domain architecture of human Fe65 with numbering of domain boundaries. (B) 
Schematic for Fe65-mediated APP-signaling by the APP intracellular domain 
(AICD)/Fe65-phosphotyrosine-binding domains 2 (PTB2) complex at the cell membrane. 
Structural details for the interaction are depicted as follows: αN and αC: AICD helices; T 
and Y: AICD sequence fingerprints (T: T668PEE, Y: N684PTY) as part of AICD helices, 
GYE: AICD region involved in ȕ-augmentation with Fe65-PTB2. APP-cleavage sites by 
secretases are indicated by Greek symbols. (C) X-ray structure of the Fe65-PTB2 dimer 
of dimers. The dimer is constituted by a “complementing” subunit (blue) with a transition 
of the C-terminus to strand ȕct (dark blue), while the “accommodating” subunit (yellow) 
contains the entire helix α3 (orange). The second dimer symmetrically attached by ȕ-
augmentation is shown with gray subunits. The central disulfide bond connecting the 
dimer of dimers is shown in magenta. (D) Close-up on the C-terminal Fe65-transition. 
According regions (L656-D663) of the complementing (dark blue, ȕct) and accommodating 
(orange, α3) subunits are given with side chains and numbering. 

Here we present structural and functional data on Fe65-PTB2 revealing the domain 

as flexible module forming a homodimer in vitro and ex vivo in the absence of APP. 

Dimerization mimics the AICD-interaction and at the same time shields the 

hydrophobic crevice. The interaction competes with AICD binding and therefore with 

APP signaling depending on its cellular context. 
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MATERIALS AND METHODS 

Protein Production and Characterization for X-ray Structure Analysis 

Human Fe65-PTB2 (residues 534-667; UniPROTKB: APBB1_HUMAN, O00213) was 

expressed and purified for crystallization as described previously (Radzimanowski et 

al., 2008a). To avoid precipitation of concentrated and pure Fe65-PTB2, 5% (v/v) 

glycerol was added in the final size exclusion chromatography (SEC) buffer. Multi 

angle light scattering (MALS) was performed in line with SEC and monitored by 

refractive index measurements (Wyatt technology). The protein (5–20 mg/mL) was 

crystallized within 3 days in an automated platform at 18 C by mixing equal amounts 

(200 nL) of protein solution and a reservoir containing 1.6 M ammonium sulfate, 0.08 

M sodium acetate pH 4.6 and 20% (v/v) glycerol in a sitting drop setup. The high 

glycerol concentration allowed direct flash-cooling in liquid nitrogen for X-ray 

structure analysis. X-ray data collection was done at beamline ID29 of the European 

Synchrotron Radiation Facility (ESRF). Data was integrated with program XDS 

(Kabsch, 2010) and scaled and merged with program AIMLESS (Evans and 

Murshudov, 2013) from the CCP4-package (Winn et al., 2011). The structure was 

solved by the Molecular Replacement method (PHENIX package; Adams et al., 

2010) using a monomeric Fe65-PTB2 molecule taken out of the Fe65-PTB2/AICD 

complex (PDB entry: 3dxc). Iterative model building, refinement and validation were 

performed with programs COOT (Emsley et al., 2010) and PHENIX. All structural 

figures were prepared using PyMOL 

(Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC).  

NMR Measurements 

Sequences for wildtype (wt) Fe65-PTB2 and the C633E mutant were cloned into a 

pETHis vector using NcoI/BamHI restriction enzymes. The proteins were expressed 

in E. coli BL21(DE3) Rosetta pLysS grown in LB media or for 15N- or 13C/15N-labeling 

in M9 media by induction with 0.5 mM IPTG overnight at 22 C. Pellets were lysed by 

sonication in 20 mM Tris pH 8.0, 150 mM NaCl, 0.2% (v/v) Nonidet P-50 and 2 

mM DTT, and the proteins purified by nickel affinity chromatography. Spin-labeling of 

the C633E mutant was performed by incubation with a five-fold molar excess of 3-(2-

Iodoacetamido)-proxyl free radical dissolved in methanol over night at 4 C. Free spin-
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label was removed by buffer exchange or SEC into 20 mM Na2HPO4 pH 6.5 and 

150 mM NaCl. Nuclear magnetic resonance (NMR) spectra were acquired on Bruker 

Avance III 600 and 800 spectrometers with a cryogenic triple resonance probe and a 

Bruker Avance III 700 with a triple resonance probe at concentrations of 0.1–0.5 mM 

in the same buffer at 300 K. Data where processed with NMRPipe (Delaglio et al., 

1995) and analyzed using NMRView (Johnson and Blevins, 1994). The transfer of 

backbone assignment from the wt protein (Dietl et al., 2014) was confirmed by 

analyzing HNCA, HNCACB and CBCA(CO)NH spectra of the C633E mutant. 

Chemical shift based secondary structure predictions and structure based chemical 

shift predictions where done using the programs TALOS+ (Shen et al., 2009) and 

SPARTA+ (Shen and Bax, 2010). Model-free Liparai-Szabo parameters derived from 

the 15N relaxation data of the C633E mutant were analyzed and compared to 

hydrodynamic diffusion tensors using the programs ROTDIF and ELM (Berlin et al., 

2013). Paramagnetic Relaxation Enhancements where measured and analyzed as 

described (Simon et al., 2010). SAXS measurements were carried out at the BM29 

beamline at ESRF in Grenoble (Pernot et al., 2013). Samples were measured in 

NMR buffer (20 mM Na2HPO4 pH 6.5, 150 mM NaCl, 2 mM DTT) at concentrations 

between 0.25 and 6 mg/mL, a temperature of 300 K and a wavelength of 1 Å. Data 

was processed using the ATSAS suite (Petoukhov et al., 2012). 

Pull-Down Experiments 

The coding sequence for full-length human Fe65 was inserted into the pUKBK vector 

system (Kohli et al., 2012) by standard cloning techniques in order to attach either a 

streptavidin-binding peptide (SBP) together with a myc-tag or a mCherry (mChe)-tag 

to the protein N-terminus. Thereof, the following deletion constructs were generated: 

ΔPTB2 (Fe65(1-532)-(665-710)), ΔWW (Fe65(1-253)-(286-710)), and ΔWW-DPTB2 

(Fe65(1-253)-(286-532)-(665-710)). After transfection with Lipofectamine 2000 

(ThermoFisher Scientific) for 22 h, HEK293 cells were lysed in homogenization buffer 

consisting of 140 mM KCl, 20 mM HEPES pH 7.2, 10 mM NaCl, 5% (v/v) glycerol, 

2 mM MgSO4, 1% (v/v) Triton-X100, 2 mM DTT, EDTA-free Protease-Inhibitor 

Cocktail (Roche), and 2 mM Phenantrolen. Pull-down assays were performed with 

Dynabeads® M-280 Streptavidin (ThermoFisher Scientific) and bound proteins were 

eluted with biotin and further separated on NovexTM 10%–20% Tricine Protein Gels. 

Antibodies used for detection were the c-myc antibody (1:1000, 9E10, Roche), 
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mCherry antibody (1:1000, 5F8, Chromotek), and GAPDH antibody (1:5000, Meridian 

Life Science). ECL detection was performed with the ImageQuant LAS 4000 (GE 

Healthcare Life Sciences). Quantification was done on the latest exposure before 

saturation of the brightest band on the blot, using the ImageQuant TL software. 

Co-Immunoprecipitation 

Co-Immunoprecipitation (Co-IP) experiments were performed as described before 

(Baumkotter et al., 2014). Briefly, HEK293 cells were transfected with pcDNA3.1 

constructs containing FE65-HA, FE65-Flag or APP-myc using JetPRIME (Polyplus 

transfection). Twenty to twenty-two hours after transfection cells were harvested and 

lysed in 150 mM NaCl2, 50 mM Tris/HCl pH 7.5, 2 mM EDTA, 1% (v/v) NP40 and 

freshly added Complete Protease Inhibitor mix (Roche) for 20 min on ice. After 

centrifugation at 16,000 g for 10 min the supernatant was pre-cleared with protein A 

Sepharose beads (GE Healthcare). Then the supernatant was incubated over night 

with anti-HA agarose beads (Roche) to allow binding of HA-tagged FE65. After 

washing bound proteins were eluted by denaturation with SDS sample buffer at 95 C. 

Samples were separated on 8% Tris/glycine gels and probed via immunoblotting for 

HA-, Flag-and myc-tagged constructs. 

Subcellular Fractionation 

Subcellular fractionation was performed according to Abcams subcellular 

fractionation protocol. HEK293 cells were transfected as described before. Twenty to 

twenty-two hours post transfection cells were resuspended in 1 mL of fractionation 

buffer (250 mM Sucrose, 20 mM HEPES, 10 mM KCl, 2 mM MgCl2, 1 mM EDTA and 

1 mM EGTA with freshly added Complete Protease Inhibitor mix (Roche)) and 

passed 10 times through a 27 gauge needle. After differential centrifugation at 720 g 

and 10,000 g for 5 min and 100,000 g for 1 h the supernatant (cytosolic fraction) was 

transferred and kept on ice for further analysis. The sediment (membrane fraction) 

was resuspended by pipetting and pass through 10 times a 27-gauge needle. Protein 

concentration of membrane and cytosolic fraction was determined using the BCA 

assay (Sigma). 

  

http://loop.frontiersin.org/people/418069/overview
http://loop.frontiersin.org/people/418068/overview
http://loop.frontiersin.org/people/393640/overview


Lukas P. Feilen , Kevin Haubrich , Paul Strecker et al. (2017)  Chapter II 

79 
 

 

Blue Native Gel Electrophoresis 

For Blue Native Gel analysis 100 mg protein of the cytosolic and membrane fraction 

was diluted in 1.5 M amino caproic acid, 0.05 M Bis-Tris, pH 7, 1.25% (w/v) dodecyl 

maltosidase and 5% (w/v) Coomassie Brilliant Blue G250, as described in detail 

before (Eggert et al., 2009). Afterwards, samples were separated on a 4%–15% (w/v) 

Tris-HCl gel (Biorad), transferred on a PVDF membrane and probed via 

immunoblotting for HA- and myc-tagged constructs. 
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RESULTS 

Fe65-PTB2 Dimerization 

Recombinantly expressed human Fe65-PTB2 (residues 534-667) is difficult to purify 

as it precipitates at higher protein concentrations in the mg/mL range. Instability is 

related to the exposure of a hydrophobic crevice that corresponds to the AICD 

binding site and complex formation dramatically enhances solubility about a 100-fold 

(Radzimanowski et al., 2008c). When purified via SEC, Fe65-PTB2 partitions in 

monomeric, dimeric and tetrameric species as validated by multi-angle light 

scattering (MALS) and on SDS-PAGE the protein appears as detergent-resistant 

dimer (Supplementary Figure S1). Unspecific aggregation of Fe65-PTB2 at 

concentrations in the mg/mL range can be prevented by the addition of glycerol and 

we subsequently crystallized the domain and solved its crystal structure by molecular 

replacement at 2.6 Å resolution (Table 1). 
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Fe65-PTB2 crystallizes as dimer of dimers with a continuous central ȕ-sheet (Figure 

1C). Dimerization occurs via a structural transition of the C-terminal α-helix α3 within 

one Fe65-PTB2 subunit (the ‘‘complementing’’ subunit) in respect to the conformation 

as seen in the previously solved AICD/Fe65-PTB2 complex (rmsd of 0.85 Å for 123 

Cα-atoms; Figure 1D, Supplementary Figure S2; Radzimanowski et al., 2008c). The 

last two helical turns dissolve (starting at L656) and adopt an extended ȕ-conformation 

that complements the ‘‘accommodating’’ subunit in trans (dimer interface: 585 Åβ). 

The interface is classified just about stable (Krissinel and Henrick, 2007). The newly 

formed ȕ-strand (defined here as ȕct) quasi-symmetrically mediates also the dimer of 

dimer contact with the tetrameric assembly being stabilized by a disulfide bridge 

between respective cysteine (C661) residues (Figure 1C). 
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Fe65-PTB2 Dimer Structure in Solution 

Having solved the crystal structure of Fe65-PTB2, we had to make sure that the 

observed interactions did not represent a crystallographic artifact and are also 

present in solution. We therefore first performed concentration dependent          

(0.25–6 mg/mL) small angle X-ray scattering (SAXS) measurements under reducing 

conditions to avoid the covalent and likely non-physiological cysteine bridge. The 

data showed a sharp increase in intensity at very small scattering angles that 

becomes more pronounced with higher concentrations and thus confirming the 

observation of the presence of aggregation (Figure 2A). Accordingly, the deduced 

molecular masses showed a strong concentration dependence that reflects the 

monomer-dimer transition. Calculating the theoretical scattering curves of the 

monomer, dimer and tetramer structures and fitting them against the experimental 

data, revealed the best fit to correspond to the crystallographic dimer (Supplementary 

Figure S3A), which holds true for the whole concentration range and also when the 

data are interpolated to zero concentration. Calculations of monomer and dimer 

content based on fitting linear combinations of two structures range from more than 

20% of monomer to almost exclusively dimer at higher concentrations, but should be 

taken as rough estimates with the given data quality and the insecurity of especially 

the dimer structural model. In accordance with these data, a dissociation constant 

could be estimated by preliminary isothermal titration calorimetry (ITC) 

measurements to be in the low micromolar range (data not shown). In order to obtain 

high resolution structural information for Fe65-PTB2 dimerization in solution, we 

performed an extended NMR characterization. Overall, we observe a high 

consistency between the backbone chemical shift data and the dihedral angles 

observed in the crystal structure (Figures 2B, Supplementary Figure S3B). For the C-

terminus, the chemical shifts predict the existence of a helix until Y658 and indicate an 

increase in backbone flexibility starting from M655. Interestingly, the observed 

secondary Cα-Cȕ chemical shift differences for the C-terminus are in between the 

values predicted for the accommodating (long C-terminal α-helix) and complementing 

(ȕ-sheet augmentation) subunits of the crystal structure. 

A more detailed picture for the internal dynamics and dimerization was obtained by 

the analysis of 15N relaxation data. The average ratio of transverse and longitudinal 

relaxation rates measured at 300 K indicated a rotational correlation time 
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Ƭc of 10.6 ns. This value compares to 8.9 ns (for complementing subunit) and 15.7 ns 

(for crystallographic dimer) as calculated from the coordinates. Assuming a rapid 

exchange between rigid monomers and dimers the experimental value would suggest 

a high percentage of monomers in solution. However, since the intermolecular 

interaction is mediated by the flexible C-terminus, we envision a dimer with a rather 

flexible connection between the monomers and thus with faster effective rotational 

correlation time than expected for a rigid dimer. This model is supported by the 

observation of quickly reducing backbone order parameters S2 for the C-terminal 

residues starting from Y658 (Figure 2C, Supplementary Figure S3C). 

To further characterize the oligomerization in solution, we introduced nitroxide spin-

labels covalently attached to cysteine residues to measure paramagnetic relaxation 

enhancements (PREs). The presence of the electron spin leads to signal broadening 

of nuclear spins in spatial proximity (less than ~ 20 Å) to the nitroxide and can assist 

NMR protein structure determination. Due to the r-6 dependence of the induced 

relaxation, the signal bleaching can also be used to structurally and dynamically 

characterize specific encounter complexes (Clore, 2015). Since Fe65-PTB2 contains 

six native cysteines and the evaluation of the experiment requires a single spin-label 

attached to each molecule, we performed an extensive mutational analysis to 

determine the accessibility and structural importance of all native cysteines. In the 

end, only two cysteines (C633 and C661) were solvent exposed to be efficiently 

paramagnetically labeled. Of particular interest are the PRE results for the C633E 

mutant, which positions the spin-label solely on C661 at the C-terminus in the center of 

the oligomerization region. We measured the intensity ratios in 15N-1H heteronuclear 

correlation spectra (HSQC) between the paramagnetic and diamagnetic state of the 

molecule (Supplementary Figures S3D,E). Due to the instability and precipitation of 

the molecule in solution during the measurements, a number of intensity ratios larger 

than one for residues that are not in proximity of the nitroxide were observed. 

Therefore, and because of the difficulties to accurately model the spin-label being 

attached to a flexible C-terminus, we resign from a detailed quantitative analysis of 

the data. A qualitative picture however can be obtained by plotting the experimental 

Ipara/Idia ratios onto the X-ray structure. The lowest ratios are observed for residues in 

the C-terminal helix and the loops and secondary structure elements in the vicinity of 

the C-terminus. To disentangle intra- and inter-molecular contributions, we performed 

a second experiment with a mixed sample of 14N-paramagnetic and 15N-diamagnetic 
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molecules. The observed PREs are exclusively due to inter-molecular proximity of 

the radical. Bleaching was observed for patches adjacent to the hydrophobic crevice 

and on surface loops consistent with the presence of the dimer and tetrameric 

species in solution (Figure 2D). Strongest bleaching with Ipara/Idia ratios below 0.3 

occurred for residues L609 and F611 that also are in closest contact within the 

crystallographic dimer and for C661 itself that also bridges the observed dimer of 

dimers.  

 

FIGURE 2 | The Fe65-PTB2 dimer in solution.   

(A) Small angle scattering data measured at three different protein concentrations. The 
presence of self-aggregation leads to a pronounced increase in scattering intensity at 
low angles. The radius of gyration extracted from the Guinier plot (inset) is slightly 
higher than expected for a dimer and the initial intensity values almost reaches the 
expected value for the dimer. (B) Secondary structure predicted from backbone chemical 
shifts with positive blue bars indicating ȕ-sheets and negative red bars α-helices. The 
secondary structure of the accommodating subunit (long α3 helix) is shown below for 
comparison.(C) Backbone order parameters S2 derived from 15N nuclear magnetic  
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FIGURE 2 continued 

resonance (NMR) spin-relaxation data. The decrease of the order parameter for the C-
terminal residues indicates the unfolding of the α-helix in this region resulting in a rapid 
reorientation of the N-H bond vectors on a ns to ps timescale. (D) Residues 
experiencing paramagnetic relaxation enhancements at the backbone NH when a 
nitroxide spin-label is attached to C661. The protein surface of the complementing subunit 
is shown in color if the average intensity ratio of the observed 1H-15N peak in the 
paramagnetic and diamagnetic NMR spectra of the corresponding residue and its two 
neighbors is smaller than 0.7 and thus identifies amino acids that are close to the 
paramagnetic center. Residues in yellow are bleached for molecules that are 
simultaneously 15N and nitroxide labeled, while residues in red are also bleached when 
exclusively 15N and nitroxide labeled proteins are mixed. The spin-label carrying C661 
residues are highlighted for the monomer (on the C-terminal α-helix) and the 
crystallographic dimer (on the extra ȕ-strand). 

Taken all NMR measurements together, a transient dimer formation as seen in the 

crystal structure is validated as homotypic interaction in solution. The tetrameric and 

covalent linkage of two dimers seems to be favored only under high concentrations 

and oxidizing conditions as seen in the crystallographic array. 

Fe65-PTB2 Mimics the AICD 

The central part within the AICD/Fe65-PTB2 interface has been previously shown to 

be constituted by antiparallel ȕ-augmentation of the PTB domain with the G681YE 

sequence fingerprint of the AICD (APP695 numbering; Figure 3A, left panel; 

Radzimanowski et al., 2008c). The glycine presents an essential hinge that places 

the N-terminally located helix αN of the AICD almost perpendicular to the C-terminal 

helix α3 of Fe65-PTB2 whereas the tyrosine residue (Y682) is imbedded in a 

hydrophobic pocket formed by residues of helix α3. Glutamate E683 is involved in an 

intramolecular salt bridge with a lysine (K688) following the NPTY687 sequence. In the 

crystal structure of the Fe65-PTB2 dimer, the induced strand ȕct with the C661LD 

sequence directly matches to the AICD strand (Figure 3A, right panel). Cysteine C661 

occupies the glycine position although due to the restrained main chain flexibility it 

does not introduce a similar hinge. The hydrophobic leucine L662 superposes with the 

tyrosine and aspartate D663 forms an AICD-equivalent intramolecular salt-bridge with 

arginine R665. Thus, the complementing Fe65-PTB2 mimics the interacting AICD in 

space and charge. Of note, the accommodating Fe65-PTB2 subunit does not show 

the structural transition. The hydrophobic crevice of the complementing subunit is 

therefore still available, however, the adjacent C-terminal binding site for helix αC of 
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the AICD is destroyed by the helical unwinding and the respective space is occupied 

by the accommodating subunit (Supplementary Figure S2C). In summary, Fe65-

PTB2 dimerization results in a structural change that blocks the AICD binding site 

either fundamentally in the accommodating subunit or partially in the complementing 

subunit.  
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FIGURE 3 | Fe65 mimicry of AICD binding.   

(A) Left: X-ray structure of the AICD/Fe65-PTB2 complex (PDB: 3dxc; Radzimanowski et 
al., 2008c). The central interacting part of the AICD is detailed: G681YE in dark blue, 
N684PTY in cyan. Right: same view and coloring of the Fe65 dimer with the AICD 
replaced by the accommodating subunit. The geometry and type of interactions mimic 
the AICD/Fe65-PTB2 complex. Matching sequences are given in the alignment. Coloring 
as in Figure 1D. (B) Surface potential (5 kBT/e; blue: positive, red: negative) of the 
Fe65-PTB2 dimer. Dimerization results in an extended positively charged groove with 
tightly bound sulfate ions originating from crystallization. (C) Coordination and electron 
densities (2mFo-DFc, 1.0 s) for the centrally bound sulfate ions (magenta). Binding 
occurs next to strand bct and the N-terminus of Fe65-PTB2 (green). Same orientation as 
in Panel B as indicated by the red rectangle. 

A Basic Cluster Next to the Dimerization Site 

In order to evaluate changes of the surface properties due to dimerization we 

calculated surface charge potentials. The analysis revealed a pronounced positively 

charged patch (R605,R607, R657, K660 and R665) in the center of the dimer directly 

located at the transition site of the C-terminal helix (Figures 3B,C). Due to its location, 

the shape of the patch differs between an extended (complementing subunit with 

extended strand ȕct) and a condensed form (accommodating subunit with folded C-

terminal helix; Supplementary Figure S4). Fe65-PTB2 was crystallized in sulfate 

conditions and we find sulfate ions bound to both the condensed and extended 

patches. Most strikingly, in the elongated patch next to the dimer interface we find 

three adjacent sulfate ions (Figures 3B,C). The spatial arrangement of the ions 
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perfectly match to the three phosphoryl-groups of the head-group (IP3) of 

phosphatidyl-inositol-4,5-bisphosphate (PIP2; Supplementary Figure S4), which has 

been found earlier to bind to Fe65 by liposome flotation assays (Cao and Südhof, 

2004). PIP2-binding is a recurrent and functionally important feature of many PTB 

domains due to their juxtamembrane location and always occurs in similar basic 

clusters (Uhlik et al., 2005). Of note, also the N-terminus of Fe65-PTB2, and thus the 

PTB1-PTB2 linker region implicated in the intramolecular closure by binding to the 

WW-domain (Cao and Südhof, 2004), locates next to the basic cluster. 

Fe65 Dimerization In Vivo 

All structural studies have been performed in vitro with isolated Fe65-PTB2 at rather 

high protein concentrations and they do not necessarily reflect the in vivo situation in 

context of the full-length protein and the cellular environment. We therefore set out to 

determine its relevance by testing Fe65 dimerization in the cellular context. HEK293 

cells expressing Fe65 full-length protein fused N-terminally to a SBP and deletion 

variants missing either the WW domain (Fe65ΔWW), the PTB2 (Fe65ΔPTB2) domain 

or both (Fe65ΔWW/PTB2; Figure 4), were subjected to streptavidin-based isolation. 

Indeed, all precipitates of SBP-tagged Fe65 also recovered mCherry-tagged Fe65 in 

the eluate, and thus proving Fe65 dimerization in a cellular context (Figures 4A,B). 

Deletion of exclusively the PTB2 domain resulted in a strong reduction of the 

interaction with full-length Fe65 and the same was true for a Fe65 deletion mutant 

lacking the PTB2 and WW domains. In contrast, deletion of solely the WW domain 

did not significantly interfere with Fe65 dimerization. The negative control of the input 

of SBP- and mCherry-tagged Fe65 validates the dimerization event (Figures 4C,D). 

These results show that Fe65 dimerization takes place in a cellular environment and 

implement the PTB2 domain being mainly responsible for dimer formation.  
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FIGURE 4 | Deletion of the PTB2 domain impairs Fe65 dimerization in cells.  

(A) HEK293 cells expressing streptavidin-binding peptide (SBP)-myc-Fe65 (SBP-Fe65) 
and mCherry-Fe65 (mChe-Fe65) as wildtype (wt) or deletion constructs were subjected 
to pulldown analyses. Total cell lysates (L) and eluates (E) were analyzed with 
antibodies against myc, mCherry and GAPDH. (B) Levels of co-precipitated mChe-Fe65 
constructs in the eluate are significantly reduced in both constructs harboring a deletion 
of the PTB2 domain. (C) Confirmation of similar levels of mChe-Fe65 in the lysate. (D) 
Similar amounts of SBP-Fe65 are eluted in all experiments. No GAPDH signal is seen in 
the eluate (not shown). Mean SEM of n = 3 are shown ( p < 0.05, p < 0.01, t-test). 

Furthermore, we tested via Blue Native Gel analyses, if Fe65 migrates as a dimer. 

The analyses revealed a single band with a molecular weight of about 200 kDa 

pointing indeed to a full-length Fe65 dimer (Figure 5A). In HEK cells, Fe65 partitions 

into a major cytosolic and a minor membrane-bound fraction, whereas co-expression 

of APP caused a strong repartitioning of Fe65 towards the membrane fraction. Co-

expression of APP did not alter electromobility of Fe65 in the native gel analysis. 

However, as APP and Fe65 have very similar molecular weights, the native gel 

analysis does not allow for differentiating homotypic from heterotypic complexes. In 

the next step we tested, if APP co-expression might affect Fe65 dimerization. For this 

purpose, we analyzed HEK293 cells expressing Flag- and HA-tagged Fe65 and myc-

tagged APP and performed co-immunoprecipitation studies with anti-HA antibodies 
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from total cell extracts (Figure 5B). For control we used cells expressing Flag-Fe65 

and myc-APP only. The analyses revealed interactions of HA-Fe65 with both Flag-

Fe65 and myc-APP. 

 

FIGURE 5 | Influence of APP on Fe65 dimerization.   

HEK cells expressing exogenous Fe65-HA, Fe65-Flag or APP-myc were subjected for 
subcellular fractionation. (A) The cytosolic and membrane fractions were separated on a 
BlueNative-Gel and analyzed by Western Blotting using 3F10 (anti HA) and SC789 (anti 
myc) antibodies. Note the shift of Fe65 from the cytosolic to the membrane fraction 
when co-expressed with APP. (B) Co-Immunoprecipitation (Co-IP) analysis of whole cell 
lysates (upper panel) and whole cell lysates and membrane fraction (lower panel) of 
HEK293 cells expressing Fe65-HA and Fe65-Flag alone or together with APP-myc. Cells 
expressing Fe65-HA and APP-myc served as positive and cells lacking Fe65-HA as 
negative control. For direct load 4% of the total extracts were loaded. 
Immunoprecipitation was carried out with anti-HA antibody covered beads. 
Immunoprecipitates were eluted by denaturation and probes were subjected for PAGE 
(8% Tris/glycine gels) and Western analysis using 3F10 (anti HA), SC789 (anti myc) and 
M2 (anti Flag) antibodies. 
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No clear reduction was observed for HA-Fe65/Flag-Fe65 interaction upon co-

expression with myc-APP. However, these data again did not allow for differentiating 

between a trimeric complex of APP with dimeric Fe65 and two separate dimeric 

complexes either consisting of HA-and Flag-tagged Fe65 or HA-Fe65 and myc-APP. 

Therefore, we repeated the Co-IP of Fe65-HA, Fe65-Flag and mycAPP from HEK293 

cell extracts from the membrane fraction. In this fraction only minor Fe65 amounts 

are present and we could not detect any Fe65 dimer. Upon co-expression of APP, 

Fe65 was shifted into the membrane fraction as expected from the known and strong 

APP-Fe65 interaction (Radzimanowski et al., 2008c). Interestingly, under these 

conditions we succeeded to precipitate the two differently tagged Fe65 molecules 

(HA and Flag) and APP (Figure 5B). These data show that Fe65 at least to some 

extend can still dimerize in presence of APP and even a trimeric species might be 

formed.  
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DISCUSSION 

Fe65 is a versatile protein-adaptor with an interactome list of increasing size and 

complexity. It participates in various neuronal processes, including neurogenesis, 

neuronal migration and positioning, neurite outgrowth, synapse formation and 

plasticity, and finally in learning and memory (McLoughlin and Miller, 2008; Minopoli 

et al., 2012; Strecker et al., 2016). The most studied function concerns the gene 

transactivation complex together with APP and the histone acetyltransferase Tip60, 

although the pathway that at least in parts parallels Notch signaling and its gene 

targets are far from being understood (Cao and Südhof, 2001; Pardossi-Piquard and 

Checler, 2012). However, it is possible that in ageing and sporadic Alzheimer’s 

disease there is an increase of nuclear signaling concomitant with amyloidogenic 

processing of APP and the accumulation of the Aȕ-peptide (Fukumoto et al., 2002; 

Yang et al., 2003; Goodger et al., 2009). Inline, it was found that an alternate splice 

variant of Fe65 (Fe65a2 isoform) lacking the last exon confers resistance against 

very late onset of AD (Hu et al., 2002). The exon codes for residues starting at the C-

terminal end of helix α3 of Fe65-PTB2 and therefore is impaired in AICD binding. 

Soon after the first description of the signaling pathway, it was found that complex 

formation with APP includes a membrane-associated initiation process that enables 

Fe65 to act as transactivator of transcription once the AICD is cleaved-off (Cao and 

Südhof, 2004). This process was associated with an opening of Fe65 by the release 

of a WW-PTB2 domain interaction eventually triggered by a membrane-associated 

factor. 

The AICD/Fe65-PTB2 contact is of hydrophobic character and recombinant 

expressed Fe65-PTB2 is aggregation prone (Radzimanowski et al., 2008a). Here we 

show by X-ray crystallography and extended NMR measurements including spin-

labeling PRE techniques that homotypic dimerization of the Fe65-PTB2 domain 

mimics AICD binding and effectively shields the hydrophobic surface. The shielding 

may reflect the physiological need of chaperoning this surface in case the binding 

partner is not present or binding is to be prevented for functional reasons. This 

intermolecular protection does not contradict the predicted intramolecular WW-PTB2 

interaction, which involves the PTB1-PTB2 boundary and could occur at the same 

time inhibiting downstream signaling via the WW-domain (Cao and Südhof, 2004). 

Interestingly, the interaction of the Fe65 WW domain and full length Fe65 is inhibited 
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by excess of AICD, indicating that AICD binding to the PTB2 domain affects the 

interaction of PTB1-PTB2 boundary with the WW domain (Cao and Südhof, 2004). 

Homotypic dimerization might also impact pathological pathways including the 

AICD/Fe65 interaction. Of note, the Fe65a2 isoform conferring very late onset AD 

resistance (Hu et al., 2002) lacks the dimerization sequence and thus excludes the 

self-association. However, all interactions of Fe65 distinct to the dimerization site and 

independent of APP binding are likely to be unaffected by the homotypic Fe65-PTB2 

interaction. 

We demonstrate by co-immunoprecipitation assays performed in transfected HEK293 

cells in the presence of Fe65/APP overexpression that at the membrane a Fe65-

dimer complex still co-exists with APP, which could correlate with the previously 

described Fe65-activating state of a ‘‘primed complex’’ (Cao and Südhof, β004). 

While there is no indication yet for an additional membrane-associated protein factor, 

activation seems to be guided by the lipid PIP2, which plays an important role in 

many endocytic events. PIP2-binding most likely occurs via the epitope identified by 

multiple sulfate ion binding in our dimeric Fe65 crystal structure and/or via Fe65-

PTB1 (Radzimanowski et al., 2008b). As the epitope is in direct proximity to the dimer 

interface, membrane association could also have a direct influence on the monomer-

dimer equilibrium. As also the PTB1-PTB2 linker region is directly adjacent, the WW-

domain is likely be involved in this process as also indicated by our pull-down assays, 

which show at least some influence of the WW-domain on Fe65 dimerization. The 

WW-domain recognizes polyproline stretches (Meiyappan et al., 2007) and might 

bind to two proline residues close to Fe65-PTB2 and therefore to the PIP2-epitope. 

Inline, it had been found that the AICD and the WW-domain cannot bind 

simultaneously to the PTB-domains including the linker (Cao and Südhof, 2004). 

We therefore propose the following integrated scenario for Fe65-mediated gene 

transactivation (Figure 6): Fe65 is the central adaptor for APP nuclear signaling as 

validated earlier. Without its upstream signal, consisting of the AICD in context of 

membrane-associated APP, Fe65 resides in a closed conformation. This 

conformation occurs in the cytosol and might avoid futile cycles and ensure efficient 

recycling of Fe65 pools from the nucleus back to the endomembrane system or the 

cell membrane. The closed conformation favors homotypic dimerization via the 

structural transition of the C-terminal helix α3 to strand ȕct that performs substrate-
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mimicry. At the membrane, APP and potentially other protein and lipid factors like 

PIP2, induce an opening of Fe65 and the homodimer finally dissociates. Therefore, 

membrane association via the basic cluster and subsequent APP binding would also 

result in the opening and activation of Fe65. Similarly, it appears well feasible that 

other functions of Fe65, involving interaction via the WW-domain with Mena or via the 

PTB1 domain with other surface receptors such as LRP1 might also go along with 

changes in the Fe65 monomer/dimer equilibrium. Further research will be required to 

understand these processes in more detail. 

 

FIGURE 6 | Physiological function of Fe65 dimerization.  

In a schematic model Fe65-mediated APP signaling is divided into four steps: (1) In the 
cytosol Fe65 forms a closed dimer by mimicking the AICD and thereby shielding the 
binding epitope. (2) APP binding at the cell membrane, putatively induced by 
phosphatidyl-inositol-4,5-bisphosphate (PIP2)-mediated recruitment, opens the dimer 
and the AICD/Fe65-PTB2 interaction is formed. The AICD changes from a disordered to 
a structured conformation. (3) Upon secretase cleavage of APP, AICD-Fe65 signaling 
complexes translocate to the nucleus. (4) Respective transcription activation processes 
are initiated. 

Upon ɛ-cleavage of APP by ɣ-secretase, the AICD is released from the membrane 

into the cytosol and the Fe65-AICD complex translocates to the nucleus. Very recent 

results indicate that the PTB2 rather than the WW domain is important for the nuclear 

localization of Fe65 (Koistinen et al., 2017). Secretase cleavage is influenced by 
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various aspects like APP cellular localization (Haass et al., 2012), APP dimerization 

(Winkler et al., 2015) and APP and Fe65 phosphorylation (Bukhari et al., 2016). Due 

to the tight and extended interaction involving 2/3 of the AICD (Radzimanowski et al., 

2008c) and co-localization studies (von Rotz et al., 2004), we favor co-migration 

without degradation of the AICD. Fe65-PTB1 then binds to Tip60 or other 

transcription factors like CP2/LSF/LBP1 (Zambrano et al., 1998). The WW-domain in 

the open Fe65 conformation could finally engage with downstream components as 

found for the nucleosome assembly factor SET (Telese et al., 2005) or the AICD 

might interact with Med12 from the transcriptional mediator complex (Xu et al., 2011) 

essential for starting transcriptional activation processes. 

In summary, our structural and biochemical dissection of the molecular properties of 

the multiprotein-adapter Fe65 reveal the details of an essential regulatory circuit of 

APP signaling. The importance of APP signaling in health and disease make it worth 

revisiting Fe65 and its different functional conformations as target for further 

pharmacological investigations.  
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Background 

Generation of the toxic amyloid ȕ (Aȕ) peptide, which is one of the hallmark of AD 

(Masters et al. 1985) or non-toxic fragments depends mainly on the processing of 

APP by the α-, ȕ- and ɣ-secretases (Jacobsen & Iverfeldt 2009). The localization of 

the secretases differs within the cell, while the α- and ɣ-secretases are prominently 

localized at the cell surface (Chow et al. 2010) the ȕ-secretase primary cleaves APP 

within the Trans Golgi Network (TGN) (Huse et al. 2002). Hence, intracellular sorting 

and transport of APP is crucial for its processing and Aȕ generation. Sorting proteins 

like SorLA, SorCS1 and LRP1 have been implicated to play an import role in APP 

allocation and thereby potentially influencing the Aȕ generation (Pietrzik 2002, 

Waldron et al. 2008, Schmidt et al. 2012, Hermey et al. 2015). Furthermore, it was 

shown that mutated LRP1 which retains in the endoplasmic reticulum (ER) leads to a 

decrease in Aȕ secretion and C-terminal fragments of APP at the plasma membrane 

(Waldron et al. 2008). 

LRP1 belongs to the low density lipoprotein receptor (LDLR) family (Krieger 1994) 

and interacts with APP via the N- and C-terminus assuming to have an impact on 

endocytosis (Ulery et al. 2000, Pietrzik et al. 2004). Interestingly, this C-terminal 

interaction of LRP1 and APP is mediated by Fe65 whose PTB domains consolidate 

both proteins leading to increased APP secretion which was only detectable in the 

presence of LRP1 indicating that Fe65 forms a functional linker between APP and 

LRP1 (Pietrzik et al. 2004). 

In addition, it was shown that APP is able to interact in cis- as well as in trans-

orientation (Soba et al. 2005) which also has an influence on its processing and 

thereby the formation of Aȕ (Eggert et al. 2009, Jung et al. 2014). Interaction of APP 

in trans-orientation is supposed to modulate synapse formation (Wang et al. 2009, 

Klevanski et al. 2014, Stahl et al. 2014) while cis-dimerization, which already occurs 

in the ER (Isbert et al. 2012), seems to affect the processing of APP by α-, ȕ- and ɣ-

secretases (Eggert et al. 2009, Jung et al. 2014).  

The precise mechanism of APP intracellular processing and transport in dependence 

of its monomeric or dimeric state and which role LRP1 and Fe65 might play in these 

processes remained until yet elusive and were addressed in this study. 
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Methods 

Analysis of monomeric and dimeric APP was conducted by comparing the generation 

and processing of APP in Human Embryonic Kidney cells (HEK) and primary cortical 

neurons (PCN). Transport characteristics of monomeric or dimeric APP and LRP1 as 

well as co-expressed APP and LRP1 were quantitated via live cell imaging of 

transfected PCN or primary hypocampal neurons (PHN), respectively, followed by 

analysis of corresponding kymographs. Following constructs were used to obtain live 

cell imaging data: APP-GFP, LRP1-GFP, APP-RFP and APP-F1 (see below). 

Furthermore, the influence of the Fe65 protein family was analyzed by using neurons 

of Fe65 KO, Fe65 KO and Fe65/Fe65L1 DKO mice. In addition, we examined the 

loss of LRP1 on APP transport rates by treating PCN of Lrp1flox/flox mice with Cre-

recombinase fused to a basic protein translocation peptide derived from HIV-TAT 

(Tat-Cre). In human brain APP is present 30-50% in its dimerized form (Schmidt et al. 

2011) and we therefor increased the dimerization ratio by using an APP construct 

with inducible FK501-binding-protein (FKBP) – tag (APP-F1) (Eggert et al. 2009) or 

by using stable transfected Chinese Hamster Ovary (CHO) cells expressing mutated 

human APP bearing an amino acid exchange (Lysin to Cystein at position 587 of 

APP695, APP695 K587C). The influence of LRP1 on generated APP dimers was 

determined based on pulse chase experiments using CHO cells lacking LRP1 (CHO 

13-5-1 (Pietrzik 2002)). Further, the amount of processed dimeric and monomeric 

soluble APP (sAPP) in absence of LRP1 was studied using CHO 13-5-1 cells 

overexpressing APP695 K587C or PCN of 5xFAD/Lrp1flox/flox mice treated with Tat-

Cre, respectively. In HEK APP695 K587C or CHO 13-5-1 APP695 K587C cells we 

determined cleavage properties of meprin ȕ and the α-secretase depending on the 

dimerization status of APP as well as in absence of LRP. Finally, we checked the 

amount of sAPP dimers in 5xFAD/Lrp1BE−/− mice (Storck et al. 2015) lacking LRP1 in 

brain endothelial and choroid plexus epithelial cells. 
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Results and Conclusion 

Analysis of the dimerization and processing properties of APP in HEK cells as well as 

in PCN revealed that disulfide-bound sAPP dimers are present in the conditioned 

media indicating that sAPP dimers, probably already formed in the ER, are 

transported and cleaved by secretases in a dimerized status. Interestingly, 

quantification of kymographs of our live cell imaging data showed no influence of 

APP dimerization on transport characteristic. We found no significant difference in 

vesicle distribution or mean velocities of monomeric or dimeric APP. Both forms were 

transported by the same kinesin-dependent transport machinery at an average speed 

of 1.5µm/s, which is line with previous findings (Hermey et al. 2015). Via pulse chase 

experiments using CHO 13-5-1 cells lacking LRP1 and stably overexpressing 

APP695 K587C we could demonstrate that LRP1 is important for the transport of 

dimeric APP to the cell surface, as it was shown for monomeric APP before (Waldron 

et al. 2008). Since LRP1 influences the transport of APP, we wondered how LRP1 

itself is transported and how APP might affect LRP1 transport. We studied LRP1 

transport in PHN again by usage of live cell imaging. LRP1 positive vesicles were 

transported with a velocity of 1-2µm/s in anterograde as well as retrograde direction. 

In contrast, APP containing vesicles moved with velocities >2µm/s assuming that 

LRP1 and APP are mostly transported in distinct transport vesicles, associated with 

different fast axonal transport machineries. Most interestingly, co-expression of LRP1 

and APP altered the transport velocities of APP containing vesicles both in 

anterograde and retrograde direction to velocities similar to LRP1 containing vesicles. 

However, reduced levels of LRP1 in PCN of Lrp1flox/flox mice treated with Tat-Cre 

increased the transport velocities of moving APP containing vesicles and the vesicle 

distribution to decreased amounts of stationary vesicles which underline the 

assumption that LRP1 causes a sorting of APP into LRP1 membrane bound 

organelles (Waldron et al. 2008). Furthermore, we compared the transport properties 

of APP and LRP in dependence of the Fe65 protein family utilizing PHN of Fe65 KO, 

Fe65L1 KO and Fe65/Fe65L1 DKO mice. Surprisingly, we found no consistent 

influence of the Fe65 protein family neither on LRP1 nor APP transport expressing 

LRP1 or APP alone (Figure 3.1) or co-expressing LRP1 and APP (Figure 3.2). These 

data are currently difficult to understand and require more detailed analysis, including 
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deletion of Fe65L2. Therefore, we decided to not include these data in this 

manuscript. 

 

Figure 3.1: No influence of the Fe65 protein family on APP or LRP1 
transport characteristics.  

Primary hippocampal neurons (PHN) (DIV6) of C57BL/6J wild type (WT), Fe65 KO, 
Fe65L1 KO or Fe65/Fe65L1 DKO mouse embryos expressing APP or LRP1 were 
subjected for live cell imaging 18–20 h post transfection. Time lapse series were plotted 
as kymographs and used for determination of individual transport vesicle velocities. (A) 
Anterograde and (B) retrograde transport velocity profiles and (E) vesicle distribution of 
APP-RFP in WT (black columns), Fe65 KO (dark grey columns), Fe65L1 KO (light grey 
columns) and Fe65/Fe65L1 DKO (white columns) neurons. (C) Anterograde and (D) 
retrograde transport velocity profiles and (F) vesicle distribution of LRP1-GFP in WT  
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Figure 3.1 continued 

(black columns), Fe65 KO (dark grey columns), Fe65L1 KO (light grey columns) and 
Fe65/Fe65L1 DKO (white columns) neurons. For quantification of transport velocities 
7 kymographs from different cells were analyzed (APP-RFP in WT neurons: n = 254 
vesicles; in Fe65 KO neurons: n = 378 vesicles; in Fe65L1 KO neurons: n = 410 
vesicles; in Fe65/Fe65L1 DKO neurons: n = 228 vesicles; LRP1-GFP in WT neurons: 
n = 534 vesicles; in Fe65 KO neurons: n = 746 vesicles; in Fe65L1 KO neurons: 
n = 708vesicles; in Fe65/Fe65L1 DKO neurons: n = 675 vesicles). Bars represent mean 
values ± SEM; Kruskal-Wallis-Test followed by Dunn’s εultiple Comparison Test. 

 

Figure 3.2: No influence of the Fe65 protein family on APP and LRP1 co -
transport characteristics.  

Primary hippocampal neurons (PHN) (DIV6) of C57BL/6J wild type (WT), Fe65 KO, 
Fe65L1 KO or Fe65/Fe65L1 DKO mouse embryos expressing APP and LRP1 were 
subjected for live cell imaging 18–20 h post transfection. Time lapse series were plotted  
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Figure 3.2 continued 

as kymographs and used for determination of individual transport vesicle velocities. (A) 
Anterograde and (B) retrograde transport velocity profiles and (E) vesicle distribution of 
APP-RFP in WT (black columns), Fe65 KO (dark grey columns), Fe65L1 KO (light grey 
columns) and Fe65/Fe65L1 DKO(white columns) neurons co-expressing LRP1-GFP. (C) 
Anterograde and (D) retrograde transport velocity profiles and (F) vesicle distribution of 
LRP1-GFP in WT (black columns), Fe65 KO (dark grey columns), Fe65L1 KO (light grey 
columns) and Fe65/Fe65L1 DKO (white columns) neurons co-expressing APP-RFP. For 
quantification of transport velocities >3 kymographs from different cells were analyzed 
(APP-RFP in WT neurons: n = 175 vesicles; in Fe65 KO neurons: n = 161 vesicles; in 
Fe65L1 KO neurons: n = 228 vesicles; in Fe65/Fe65L1 DKO neurons: n = 199 vesicles; 
LRP1-GFP in WT neurons: n = 196 vesicles; in Fe65 KO neurons: n = 201 vesicles; in 
Fe65L1 KO neurons: n = 253 vesicles; in Fe65/Fe65L1 DKO neurons: n = 228 vesicles). 
Bars represent mean values ± SEM; Kruskal-Wallis-Test followed by Dunn’s εultiple 
Comparison Test 

After revealing via live cell imaging analysis that LRP1 overexpression leads to a shift 

of APP containing transport vesicles towards retrograde transport direction we further 

hypothesised that a partial reduction of LRP1 might increase dimeric sAPP secretion 

due to reduced internalization and in turn providing more APP dimers at the plasma 

membrane. To test this assumption, we first analyzed the sAPP dimer formation in 

CHO 13-5-1 cells and CHO wt cells stably overexpressing APP K587C. After 

comparing the sAPP dimer to total APP dimer ratio we could show that in cells 

lacking LRP1 the sAPP dimer secretion is increased. Further examination of sAPP 

dimer secretion in cells overexpressing the internalization deficient APP K587C 

NGYE construct (with mutated NPTY internalization motif) in presence or absence of 

LRP1 leaded to an interesting finding. In wt CHO cells transfected with the 

internalization deficient APP construct, the sAPP dimer level were increased and 

which have also been shown for monomeric APP (Perez et al. 1999), while the 

internalization deficiency showed no significant increase in sAPP in cells lacking 

LRP1. To investigate wheather LRP1 has a similiar effect in neuronal cells, we 

analyzed PCN of Lrp1flox/flox mice treated with Tat-Cre and found a comparable 

increase in sAPP dimer secretion after reducing LRP1 levels. The increased sAPP 

secretion is mainly mediated by shedding of APP by meprin ȕ as further analyzed in 

transfected HEK cells expressing APP K587C alone or co-expressing meprin ȕ. 

Interestingly, meprin ȕ shows a higher affinity to dimeric APP whereas the α-

secretase cleaves preferentially monomeric APP, which is in line with previous 

findings exhibiting that α-secretase is mainly involved in cleavage of monomeric APP 

(Jorissen et al. 2010, Kuhn et al. 2010). The higher affinity of meprin ȕ to dimeric 
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APP is not well understood but might be linked to the fact that the secretase itself 

exists in form of a dimer (Kruse et al. 2004).              

Several results exhibited that in brain a large fraction of APP is present as a dimer 

(Munter et al. 2007, Schmidt et al. 2012). To determine the possibility that LRP1 also 

may have a regulatory effect on APP dimer processing in vivo we analyzed the 

cerebrospinal fluid (CSF) of 5xFAD mutant mice and 5xFAD/Lrp1BE−/− mice lacking 

LRP1 in the brain endothelial and choroid plexus epithelial cells. Quantification of the 

western blot analysis showed indeed an increase of sAPP dimers in the CSF of 

5xFAD/Lrp1BE−/− mice which is likely caused by the reduced internalization of APP. 
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Conclusion 

Intracellular sorting of APP determines the fate of generating pathogenic Aȕ peptides 

initiated by the cleavage of the ȕ-secretase or non-pathogenic fragments by meprin ȕ 

or α-secretase cleavage. Here we could show that the sorting protein LRP1 

modulates APP distribution intracellularly independently of its monomeric or dimeric 

state. Interestingly, LRP1 expression shifts APP in a different slow moving transport 

vesicle type, indicating that it acts as an APP sorting molecule, recruiting APP in 

LRP1 positive transport vesicles. Consistently decreased levels of LRP1 accelerated 

the secretion rate of APP. In turn its increased availability at the surface leads to 

elevated cleavage by meprin ȕ and the α-secretase. Further, in context of this thesis, 

it is worth mentioning, that Fe65 is not required for the LRP1 mediated recruitment of 

APP. 
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ABSTRACT 

The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and 

affects its processing. This is assumed to be mostly caused by the impact of LRP1 on 

APP endocytosis. More recently, also an interaction of APP and LRP1 early in the 

secretory pathway was reported whereat retention of LRP1 in the ER leads to 

decreased APP cell surface levels and in turn, to reduced Aȕ secretion. Here, we 

extended the biochemical and immunocytochemical analyses by showing via live cell 

imaging analyses in primary neurons that LRP1 and APP are transported only partly 

in common (one third) but to a higher degree in distinct fast axonal transport vesicles. 

Interestingly, co-expression of LRP1 and APP caused a change of APP transport 

velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport 

vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further 

show that monomeric and dimeric APP exhibit similar transport characteristics and 

that both are affected by LRP1 in a similar way, by slowing down APP anterograde 

transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in 

CHO cells and in primary neurons caused an increase of monomeric and dimeric 

APP surface localization and in turn accelerated shedding by meprin ȕ and ADAε10. 

Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of 

sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, 

our data show that LRP1 functions as a sorting receptor for APP, regulating its cell 

surface localization and thereby its processing by ADAε10 and meprin ȕ, with the 

latter exhibiting a preference for APP in its dimeric state.  
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INTRODUCTION 

The amyloid precursor protein (APP) is a type I transmembrane protein that has first 

been identified related in association with Alzheimer’s disease (AD) as representing 

the precursor of amyloid ȕ (Aȕ) peptides (Kang et al., 1987). Those peptides 

generated by sequential cleavage of APP by ȕ- and Ȗ-secretases were shown to be a 

major component of senile plaques found in the brains of AD patients (Merz et al., 

1983; Masters et al., 1985). Besides its role in AD pathogenesis, APP has been 

implicated in physiological functions including intracellular signaling, trophic activity in 

neurons and synapses as well as in synaptic and cell adhesion processes 

(Baumkötter et al., 2012; Müller and Zheng, 2012). Recent studies revealed that APP 

can dimerize or oligomerize in cis- as well as in trans-orientation (Scheuermann et 

al., 2001; Soba et al., 2005; Munter et al., 2007; Kaden et al., 2009; Wang et al., 

2009; Isbert et al., 2012; Baumkötter et al., 2014; Klevanski et al., 2014; Stahl et al., 

2014). Remarkably, APP dimers were detected in mouse brains (Soba et al., 2005; 

Schmidt et al., 2012), indicating that dimer formation occurs in vivo under 

physiological conditions. Trans-cellular APP dimerization is assumed to modulate 

synapse organization (Soba et al., 2005; Wang, 2005; Wang et al., 2009; Isbert et al., 

2012; Baumkötter et al., 2014; Klevanski et al., 2014; Stahl et al., 2014). In contrast, 

APP cis-dimerization, that has been shown to occur as early as in the endoplasmic 

reticulum (ER) (Isbert et al., 2012), has been implicated in processing of APP by α-, 

ȕ-, and Ȗ-secretases (Munter et al., 2007, 2010; Kaden et al., 2008; Eggert et al., 

2009; Libeu et al., 2012; Schmidt et al., 2012; So et al., 2012; Jung et al., 2014). 

Recently, it has been claimed that efficient processing of APP by α- and ȕ-

secretases may depend on its oligomerization state that results in cooperative effects 

for these allosteric enzymes, influenced by SorLA and possibly also LRP1 (Schmidt 

et al., 2012). However, whether sAPP dimers are generated in vivo in neurons, which 

secretases are required and what might be the role of LRP1 in this context, is 

unknown yet. 

LRP1, a member of the low density lipoprotein receptor (LDLR) family (Krieger and 

Herz, 1994), was shown to interact with APP via the N- and C-terminal domain and to 

affect its processing (Ulery et al., 2000; Pietrzik et al., 2002, 2004). This effect is 

presumably based on the impact of LRP1 on APP endocytosis (Knauer et al., 1996; 

Ulery et al., 2000; Pietrzik et al., 2002; Cam et al., 2005). In addition, APP can 
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interact with LRP1 before it is cleaved by furin in the TGN, implying an interaction of 

APP with LRP1 early in the secretory pathway (Pietrzik et al., 2004). This hypothesis 

was confirmed in 2008 (Waldron et al., 2008), by using a truncated LRP1-construct 

(LRP-CT) (Pietrzik et al., 2002) containing a dilysine ER-retention motif (KKAA) 

capable of binding to APP. The retention of LRP1 in the ER leads to a decrease in 

Aȕ secretion as well as to a decrease in full length APP and CTF levels at the plasma 

membrane (Waldron et al., 2008). 

Here, we extend the analysis of APP transport characteristics and show that LRP1 

plays a crucial role in trafficking and processing of monomeric as well as dimeric 

APP.  
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MATERIALS AND METHODS 

 Cell Culture 

Human Embryonic Kidney cells (HEK β9γT) were cultured in Dulbecco’s εodified 

Eagle’s εedium (DεEε; Thermo Fisher Scientific) supplemented with 10% fetal calf 

serum (FCS), 1 mM sodium pyruvate (Sigma-Aldrich), 100 units/ml penicillin and 

0.1 mg/ml streptomycin (Thermo Fisher Scientific). 

Chinese Hamster Ovary cells, either CHO K1 or LRP-deficient CHO 13-5-1 

(FitzGerald et al., 1995), were grown in Alpha εinimum Essential εedium (α-MEM; 

Lonza) supplemented equally. 

Primary neurons were extracted from cortices of C57BL/6J or 5xFAD/Lrp1flox/flox 

mouse embryos at embryonic day 14 as described previously (Maier et al., 2013). 

Cells were seeded on poly-L-ornithine (100 µg/ml; Sigma-Aldrich) coated 6-well 

plates or 6 cm dishes, respectively, in a density of 600,000 cells per well or 1,000,000 

cells per dish. They were cultured in Neurobasal Medium (Thermo Fisher Scientific) 

complemented with 100 units/ml penicillin and 0.1 mg/ml streptomycin, 1 x B27 

supplement and 1 x GlutaMAX (all Thermo Fisher Scientific). 

Primary cortical neurons (PCN) were prepared using E14 embryos from C57BL/6J 

mice (Janvier) or 5xFAD/Lrp1flox/flox mice as described before (Stahl et al., 2014; 

Hermey et al., 2015). PCN dissolved in DB1 medium [DMEM with 10% FBS, 0.79% 

D-glucose and 1 x GlutaMAX (Thermo Fisher Scientific)] were plated on poly-L-lysine 

(Sigma-Aldrich) coated fluorodishes in a density of 6∗105/cm2. Six hour post plating 

DB1 was changed and PCN were cultivated in neurobasal medium supplemented 

with B27 and GlutaMAX (Thermo Fisher Scientific). 

Primary hippocampal neurons (PHN), used for APP/LRP live cell imaging, were 

prepared from P0 pups of C57BL/6J mice and treated in the same way as described 

for PCN. 

All cell types were cultivated at 37◦C in an incubator maintaining a relative humidity of 

over 80% and a CO2 level of 5%. 
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DNA Constructs and Cloning 

For analyzing the properties of APP cis-dimers a human APP695 construct with a 

dimer-bearing amino acid exchange from lysine (K) to cysteine (C) at position 587 

(APP695 K587C) was generated for transient and stable transfections. The plasmid 

consisting of the human APP695 CDS with the triplet mutation (AAG to TGT) at 

position 1,761 as well as a C-terminal myc-tag in the vector pLBCX was developed 

by an overlap extension PCR as described by Isbert et al. (2012). The restriction 

sites for HindIII and ClaI, which are flanking the myc-tagged, mutated APP sequence, 

enabled the subcloning of this DNA fragment into the vector pLHCX resulting in the 

pLHCX-APP695 K587C construct. Hence this construct has the same vector 

backbone as the also used pLHCX-APP695 wt plasmid (Jäger et al., 2009). APP 

dimer constructs exhibiting a mutation in the APP internalization motif “YENPTY” (δai 

et al., 1995; MarquezSterling et al., 1997) were generated performing a standard 

PCR followed by restriction and ligation into the pLHCX vector backbone. The 

plasmid pLHCX-APP695 K587C served as template for PCR using the forward 

primer 5′-CCCAAGCTTATGCTGCCCGGTTTG-γ′, which contains a 5′ HindIII 

restriction site and the reverse primer 5′-

CCATCGATGGTTACAGATCCTCTTCTGAGATGAGTTTTTGTTCGTTCTGCATCTG

CTCAAAGAACTTTTCGTAGCCGTTTTCGTAG-γ′ exhibiting the mutation in the 

internalization motif, the myc-epitope and a γ′ ClaI restriction site. The described 

mutation results in an amino acid exchange from NPTY to NGYE at the C-terminus of 

the expressed APP695 K587C protein. The amplified DNA fragment was subcloned 

in frame into the pLHCX vector backbone via the HindIII and ClaI restriction sites. 

Sequencing of the generated construct authenticated its accuracy. To study the 

processing of monomeric and dimeric APP by meprin ȕ, HEK β9γT cells were co-

transfected with either APP695 wt or APP695 K587C and the meprin ȕ HA construct 

in pLBCX (Schönherr et al., 2016). 

For generation of the expression construct encoding the LRP1-GFP fusion protein, 

the EGFP cDNA was amplified from pcDNA3.1 APP-GFP (Szodorai et al., 2009) 

using the oligos 5′-TGAGCAGATGCAGAACGTCG-γ′ and 5′-

GCACAGTCGAGGCTGATCAGC-γ′. The PCR product was cloned via flanking 

BamHI/NotI sites in frame into pLBCX myc-LRP1 and the resulting construct, pLBCX-

myc-LRP1-GFP, was validated by sequencing. 
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Infections and Transfections 

The infection of primary cortical neurons (PCN) with an adenoviral vector encoding 

human APP695 (Yuan et al., 1999) was performed at DIV 7. Cells were incubated 

with 100 plaque-forming units per cell for 6 h. In contrast, for live cell imaging, PCN or 

PHN were transiently transfected at DIV 6 using calcium phosphate transfection. A 

neurobasal medium containing 2% B27 (transfection medium) was prepared and 

incubated for at least 30 min at 37◦C and 5% CO2. Meanwhile, the following 

transfection mix was pipetted (sufficient for two fluorodishes): Solution A containing 

75 µl H2O dd, 9.5 µl 2.5 M CaCl2 and 20 µg DNA; Solution B containing 75 µl 2 × 

HBS pH 7.07 (274 mM NaCl, 10 mM KCl, 1.4 mM Na2HPO4, 15 mM D-Glucose, 42 

mM HEPES pH 7.1). Solution A was added to Solution B, immediately vortexed for 

10 s at maximum speed and incubated for 20 min at RT. Meanwhile, the medium of 

the cultured neurons was replaced by 2 ml of the previously prepared transfection 

medium. The old medium was collected for later usage. Afterwards, 89.75 µl of the 

transfection mix were added per neuronal culture dish. The neuronal cells were 

incubated for 3 h at 37◦C until precipitates were formed. To remove the precipitates, 

the cells were washed twice with 2 × HBS. Therefore 1 ml prewarmed 2 x HBS was 

added to the transfected neurons before 1 ml was removed. This step was repeated 

once and the medium-HBS mix was afterwards removed completely. To provide 

important growth factors for neuronal growth, 2 ml of the collected old medium were 

added to each dish. The cells were incubated at 37◦C for 18–20 h and analyzed by 

live cell imaging. For transient transfection of HEK and CHO cells with different  

APP695 constructs or the meprin ȕ construct a transfection mixture containing 8 µg 

polyethylenimine (PEI) and 2 µg DNA in 120 µl serum-free medium was added to the 

cells for 4 h. Stable CHO cells were generated as described previously (Isbert et al., 

2012) using pLHCX-APP695 K587C and 350 µg/ml Hygromycin B (Thermo Fisher 

Scientific) for selection.  

Antibodies 

The antibody mix 1G75A3 of the two monoclonal antibodies 1G7 and 5A3, both 

directed against the APP ectodomain, was provided by Dr. Koo (UC San Diego 

School of Medicine, USA) and enabled the detection of all forms of full-length APP 

(mature, immature or dimerized) in cell lysates as well as soluble APP in the 

conditioned medium. This antibody mix was used for Western Blotting and for 
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immunoprecipitation of APP. For detection of LRP1 in Western Blotting the polyclonal 

antibody 1704 (Pietrzik et al., 2002) directed against the C-terminus of LRP1 was 

used. Y188 (Abcam) directed against the C-terminus of APP was used to detect 

monomeric and dimeric APP in Blue Native Gel Electrophoresis. Aȕ was detected by 

IC16, a monoclonal antibody recognizing the amino acids 1 to 16 of the human Aȕ 

sequence (Jäger et al., 2009). The polyclonal anti-actin antibody and the secondary 

HRP-conjugated goat anti-rabbit antibody were purchased from Sigma-Aldrich. The 

secondary donkey antibody against mouse, also HRP-conjugated, was obtained from 

Jackson ImmunoResearch 

Western Blotting 

After collecting the conditioned medium cells were harvested and lysed either in 

RIPA (50 mM Tris-Cl (pH 8), 150 mM NaCl, 0.1% SDS, 1% Nonidet P-40, 10 mM 

NaF, 1 mM ȕ-glycerophosphate, 0.5% sodium deoxycholate) regarding neurons or, 

concerning HEK and CHO cells, in NP-40 lysis buffer (500 mM Tris (pH 7.4), 150 mM 

NaCl, 5 mM EDTA, 1% Nonidet P-40, 0.02% NaN3) both containing 1 x protease 

inhibitor cocktail (PI; Roche). Debris were pelleted by centrifugation with 18,600 × g 

for 20 min at 4◦C. The protein concentrations were measured using the PierceTM  

BCA Protein Assay Kit (Thermo Fisher Scientific) to determine equal amounts of total 

protein for lysate analysis. For comparable protein amounts of the conditioned media 

volumes were adjusted to the protein concentration in the corresponding lysates. 

After addition of 4 x SDS sample buffer with (Roti R -Load 1; Roth) or without (40% 

glycerol, 200 mM Tris-HCl (pH 6.8), 0.08% bromphenol blue, 8% SDS in VE-H2O)   

ȕ-mercaptoethanol (ȕεE) samples were boiled for 5 min at indicated temperatures. 

Proteins were separated by gel electrophoresis in 6 or 7% Bis-Tris gels and 

transferred onto nitrocellulose membranes (GE Healthcare Life Sciences) via wet 

blot. To block non-specific binding membranes remained for 1 h in 5% (w/v) non-fat 

dry milk dissolved in TBS containing 0.05% Tween 20 (Roth) before incubation with 

the appropriate primary and secondary antibodies. The protein detection was carried 

out using the Immobilon Western HRP Substrate (Millipore) resulting in 

chemiluminescence, which was recorded by the LAS-3000 mini (Fujifilm). 
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Immunoprecipitation and Detection of Aβ 

The immunoprecipitation of Aȕ peptides was performed as described by Schönherr 

et al. (2016). Proteins were separated by Urea SDS-PAGE corresponding to the 

approach of Klafki et al. (1996) and transferred to PVDF membranes via semi-dry 

Western Blotting (Biorad) at 47 mA per gel. Afterwards membranes were boiled for 3 

min in 1 x PBS before blocking non-specific binding in 5% (w/v) non-fat dry milk in 

TBST for 30 min. Membranes were incubated over night at 4◦C with IC16 antibody 

(1:500). After washing with TBST the secondary HRP-conjugated mouse antibody 

was added for 1 h at room temperature. Protein detection and recording were 

performed as described above. 

Blue Native Gel Electrophoresis 

Blue native gel electrophoresis was performed as described before (Eggert et al., 

2009). Briefly, transfected cells were resuspended in 1 ml of homogenization buffer 

(250 mM sucrose in 20 mM HEPES, pH 7.4, with protease inhibitors) and then 

sheared by passing through a 27 gauge needle. Postnuclear supernatant was 

collected after a centrifugation step at 1,000 × g for 15 min. After sedimentation at 

100,000 × g for 1 h the membrane fraction was washed once with 200 µl of 

homogenization buffer followed by another centrifugation at 100,000 × g. The pellet 

was resuspended in 200 µl homogenization buffer. 100 µg of protein were solubilized 

with Blue Native sample buffer (1.5 M amino caproic acid, 0.05 M Bis-Tris, 10% n-

dodedecyl-D-maltoside, and protease inhibitor at pH 7). The samples were separated 

on gradient gels. Thyroglobulin (669 kDa), apoferritin (443 kDa), catalase (240 kDa), 

aldolase (158 kDa), and bovine serum albumin (66 kDa) were used as molecular 

weight standards. 

Live Cell Imaging 

Fluorophore tagged LRP1 and APP fusion proteins were tracked by imaging of living 

cells, as described before (Szodorai et al., 2009; Hermey et al., 2015). Briefly, during 

live cell imaging transfected cells were temperature-controlled (37◦C) and CO2-

controlled (5%). Images were taken every 200 ms over a period of 30 s. GFP-tagged 

proteins were excited with 470 nm and RFP fusion proteins with 550 nm wave length 

using a matching filter and fast changing δED’s. Kymographs were created using 

Image J software (1.46r) in combination with the Multiple-Kymograph plugin. The 
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slope of the traces is a direct measure for the velocity of the vesicles (v = cotan(α), 

where α is the angle relative to the x-axis). Single tracks with an angle 0◦ < α < 90◦ 

were defined as anterograde, and tracks with a slope 90◦ < α < 180◦ were defined as 

retrograde transport vesicles. Tracks with slopes of 90◦ (parallel to the time axis) 

were determined as stationary vesicles. For vesicle distribution all lines of one 

kymograph were counted as individual transport vesicles and the sum of all 

anterograde, retrograde and stationary vesicles was set to 100% (given as relative 

amount of vesicles). For calculation of total amount of vesicles per neurite segment, 

again all traces of individual kymographs were counted as single vesicles (stationary, 

anterograde and retrograde vesicles) and related to a neurite length of 1 µm. 

Immunocytochemistry 

Primary cortical neurons (PCN) were differentiated for 7 days in vitro and then 

subjected for immunocytochemical analysis. PCN were fixed for 10 min at γ7◦C in 

4% (w/v) PFA with 4% (w/v) sucrose and permeabilized for 10 min with 0.1% (v/v) 

NP40 in 1 x PBS. For detection of LRP1 and APP we used the polyclonal antibody 

1704 and monoclonal antibody C1/6.1, respectively. Secondary antibodies were 

Alexa Flour 488 and Alexa Flour 594 (1:1,000, Invitrogen). Hoechst (33258, Thermo 

Fisher Scientific) was used as nuclear counterstaining. Imaging was performed with 

microscope Axio Observer Z.1 (Zeiss with apotome) and z-stacks were taken in 0.2 

µm steps. 

Pulse-Chase Assay 

To examine the expression and stability of APP dimers, a pulse-chase assay was 

performed with CHO K1 and CHO 13-5-1 cells 48 h after seeding on 6 cm dishes. 

Cells were starved in DMEM without methionine and cysteine complemented as 

described above, which was replaced after 1 h by 1 ml of the same medium 

containing 150 µCi35S/ml (EasyTagTM EXPRESS35S Protein Labeling Mix; 

PerkinElmer). Following 15 min incubation at 37◦C the medium was substituted to 2 

ml α-MEM supplemented as outlined above but with addition of 40 mM HEPES 

(Lonza). Cells were maintained in this medium at 37◦C for indicated time spans 

before being harvested and lysed in NP-40 buffer with 1 x PI as detailed previously. 

For immunoprecipitation of APP, lysates and conditioned media were incubated over 

night at 4◦C with protein G agarose beads (Roche) and the 1G75A3 antibody mix 

http://loop.frontiersin.org/people/393639/overview
http://loop.frontiersin.org/people/393640/overview


 Uta-Mareike Herr 1†, Paul Strecker β† et al. (2017) Chapter III 

123 
 

against the APP ectodomain. Beads were washed as described above, pelleted and 

finally boiled in 4 x SDS sample buffer at 80◦C for 5 min. The accordingly recovered 

proteins were separated on 4–12% NuPAGE gradient gels (Invitrogen). After 

electrophoresis gels were incubated in fixation buffer (10% acetic acid and 20% 

ethanol in VE-H2O) for 15 min and washed for 1 h with VE-H2O thereby renewing the 

water every 20 min. Gels were dried onto chromatography paper (Whatman) for 2 h 

at 65◦C using the Model 583 Gel Dryer (Bio-Rad). Exposure of the film was carried 

out over night at room temperature in an exposition cassette. Radioactivity was 

detected by a phosphor imager (Cyclone Plus Storage Phosphor System; 

PerkinElmer) and visualized via the OptiQuant software. 

Tat-Cre Treatment 

PCN of 5xFAD/Lrp1flox/flox mouse embryos (E14) were treated with Cre-recombinase 

fused to a basic protein translocation peptide derived from HIV-TAT (Tat-Cre) 

(provided by Dr. Roosmarijn E. Vandenbroucke; Inflammation Research Center, VIB, 

Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 

Ghent, Belgium) at DIV 4. Therefore, the culture medium was reduced to 2 ml and 

the recombinase was added in a final concentration of 200 nM. As control, PCN were 

treated with the Tat-Cre buffer (20 mM HEPES, 0.6 M NaCl, pH 7.4). Cells were 

incubated with the Tat-Cre recombinase or the vehicle alone for 48 h at 37◦C before 

cell lysis at DIV 6. 

Inhibitor Treatment 

The surface levels of APP dimers were examined 24 h after reduction of the medium 

and inhibitor treatment. After collecting the conditioned medium cells were rinsed 3 

times with ice-cold PBS. Surface proteins were biotinylated by addition of 0.25 mg/ml 

Sulfo-NHS-LC-LC-Biotin (Thermo Fisher Scientific) dissolved in 1 x PBS for 40 min at 

4◦C thereby refreshing the biotin solution after 20 min. To quench unconjugated 

biotin, cells were washed 4 times with 50 mM NH4Cl in ice-cold 1 x PBS. Cells were 

lysed in NP-40 buffer containing 1 x PI. Equal protein amounts were incubated over 

night at 4◦C with NeutrAvidin Agarose Resin (Pierce). Unbound proteins were 

removed in 3 washing steps with NP-40 buffer and centrifugation at 4◦C with 24 × g 

for 2 min. Beads were boiled at 80◦C in 4 x SDS sample buffer for 5 min to elute 

proteins, which were separated on 6% Bis-Tris gels. 
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CSF Isolation 

Cerebrospinal fluid (CSF) was harvested from 4 months old 5xFAD/Lrp1flox /flox and 

5xFAD/Lrp1BE−/− mice by puncture of the cisterna magna as described previously 

(Vandenbroucke et al., 2012; Storck et al., 2016). Cell free CSF was obtained by 

centrifugation at 800 × g for 10 min at 4◦C. 2 µl of CSF were diluted in water and 

mixed with equal amounts of 2 x loading dye (0.72 M Bis-Tris, 0.32 M Bicine, 30% 

(w/v) sucrose, β% SDS, 0.0β% bromophenol blue without ȕεE). Samples were 

denatured at 70◦C for 5 min to maintain putative dimerization of sAPP. Samples were 

separated by SDS-PAGE on 7% polyacrylamide SDS gels, transferred onto 

nitrocellulose membranes (Amersham Hybond ECL) and then blocked in 5% (w/v) 

non-fat dry milk in TBST (20 mM Tris, 137 mM NaCl, 0.1% (v/v) Tween-20). The 

antibody mix 1G75A3 (1:300) was used to detect sAPP. 

Animals 

In vivo analyses were performed with tamoxifen-inducible 5xFAD mice lacking Lrp1 in 

brain endothelial and choroid plexus epithelial cells (5xFAD/Lrp1BE−/−) (described in 

detail in Storck et al., 2016). 5xFAD mice, which represent a well-established AD 

model harboring 3 APP mutations and 2 PSEN1 mutations that are linked to FAD, 

served as LRP1 expressing controls. All animal studies were conducted in 

compliance with European and German guidelines for the care and use of laboratory 

animals and were approved by the Central Animal Facility of the University of Mainz 

and the ethical committee on animal care and use of Rhineland-Palatinate, Germany. 

Mice were housed on a 12-h-light cycle and had ad libitum access to water and a 

standard laboratory diet. To induce knock-out of Lrp1 in CSF-secreting epithelial cells 

of the choroid plexus in 5xFAD/Lrp1BE−/−, 12-week-old animals were injected i.p. with 

2 mg tamoxifen (T5648, Sigma-Aldrich) for 7 consecutive days as described in Storck 

et al. (2016). After tamoxifen injection the standard laboratory diet was changed to 

chow supplemented with 400 mg tamoxifen citrate per kilogram dry weight (CRE 

Active TAM400, LASvendi) to maintain Cre-mediated recombination. 
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Quantification and Statistical Analysis 

Western Blots and phosphor imager results were quantified by densitometry using 

ImageJ (1.44 or 1.46r) or Multi Gauge V3.0, respectively. The Graph Pad Prism 4 

software (Graph Pad; La Jolla) provided the basis for compilation of the shown 

graphs and for statistical analysis. Data were analyzed by Student’s t-test or one-way 

ANOVA followed by Tukey’s post-hoc test. For live cell analysis at least 5 

kymographs were analyzed. Student’s t-test was used when comparing only two sets 

of data or one-way ANOVA followed by Bonferroni post-hoc test when comparing 

three sets of data and given the data were normaly distributed, respectively. The 

Kruskal-Wallis-Test followed by Dunn’s εultiple Comparison Test was used to 

assess statistical differences between three sets of data given that data weren’t 

normally distributed or variance was significantly different. The level of significance 

was set at p < 0.05 (∗), p < 0.01 (∗∗) and p < 0.001 (∗∗∗).  
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RESULTS 

APP Dimers Are Generated and Processed in Cortical Neurons 

As described before 30–50% of APP are present in a dimerized form in human brain 

(Munter et al., 2007; Schmidt et al., 2012). To investigate, whether APP695 dimer 

formation can be analyzed in a neuronal system, we infected primary cortical neurons 

of C57BL/6J mouse embryos (E14) with an adenovirus driving expression of human 

APP695. Indeed, we were able to detect APP dimers in the lysate of DIV 8 mouse 

neurons (Figure 1A) comparable to the expression of human APP dimers in HEK 

cells (Figure 1B). Likewise, by analyzing the supernatant of the same cells, we 

observed soluble APP dimers in the conditioned medium suggesting that APP dimers 

are not only generated but also processed in neuronal cells as well as in human 

kidney cells (Figures 1A,B). 

 

FIGURE 1 | APP dimer generation and processing takes place in primary 
cortical neurons.  

(A) Murine primary cortical neurons (DIV 7) were infected with an adenoviral vector 
encoding human APP695 while (B) HEK 293T cells were transiently transfected with the 
pLHCX-APP695 wt construct. 24 h post infection or transfection, respectively, 
conditioned media (CM) were collected and cells were lysed in RIPA (PCN) or NP-40 
(HEK) lysis buffer. Via the antibody mix 1G75A3 (1:3,000) APP was detected in lysates 
(upper blots) and conditioned media (lower blots). PCN show similar APP dimer 
expression in the lysate as HEK cells and also generate soluble APP dimers. Under 
reducing conditions using ȕ-mercaptoethanol (ȕεE) and heating at 95◦C the dimer band 
disappeared. All lanes of lysate or conditioned medium are on the same blot but were 
rearranged for better presentation. 
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To verify the existence of APP dimers linked by disulfide bridges as we have 

described before (Isbert et al., 2012), the samples were boiled in sample buffer 

containing ȕ-mercaptoethanol (ȕεE). Note, that in the samples under reducing 

conditions the disulfide bonds were dissolved and the dimer band signal decreased, 

whereas the signal intensity for monomeric APP increased (Figures 1A,B). These 

data show that disulfide-bound sAPP dimers, formed most likely in the ER, are 

anterogradely transported and shed by secretases in a dimerized status. 

Monomeric and Dimeric APP Show Similar Transport Characteristics 

As we found that neurons secrete disulfide-bound dimerized sAPP, we wondered if 

monomeric and dimeric APP are transported along the secretory pathway in the 

same or diverse types of transport vesicles. For this purpose we used an inducible 

FK501-binding-protein (FKBP) -based dimerization system (Rollins et al., 2000), 

previously used for analysis of APP processing in dependence of APP dimerization 

(Eggert et al., 2009). For live cell imaging expression constructs encoding for           

C-terminal tagged GFP APP-FKBP fusion proteins were generated (APP-F1-GFP) 

(Video in Supplementary Material 1). For control, we first verified that APP-GFP and 

non-dimerized APP-F1-GFP exhibit identical transport characteristics (Figure 2A). 

Furthermore, as GFP has a weak tendency to self-dimerize (Chalfie and Kain, 2005), 

we tested if APP-GFP might exhibit in comparison to APP altered dimerization 

properties, by using the blue-native gel system (Eggert et al., 2009). Notably, we 

observed for APP-GFP no increase in dimerization properties (Supplementary Figure 

1). In the next step, the transport of non-dimerized (APP-F1-GFP + EtOH) and 

dimerized APP (APP-F1-GFP + dim.) was compared (Figure 2A). Surprisingly, the 

induction of APP dimerization had no significant influence on APP transport velocities 

in anterograde or retrograde direction, respectively (Figures 2B,C). The majority of 

APP vesicles moved with a velocity between 0.5 and 2.5 µm/s in both directions, 

independent of their dimerization status. These data suggest that monomeric and 

dimeric APP are transported by the same kinesin dependent transport machinery. 
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FIGURE 2 | APP dimerization does not affect its transport characteristics.  

Murine cortical primary neurons (DIV 6) were transiently transfected with expression 
constructs encoding APP-GFP or APP-F1-GFP. After 18–20 h and 1 h prior live cell 
recording of axonal vesicle movements, APP-F1-GFP expressing neurons were either 
treated with 100 nM AP20187 (dimerizer) or for control with the vehicle of the dimerizer, 
ethanol (negative control). (A) Representative primary neuron and kymographs of cells 
expressing APP GFP or APP-F1-GFP treated with dimerizer or ethanol respectively. The 
ROI is marked by a rectangle. Bar: 20 µm. (B) Vesicle distribution and (C) anterograde 
and retrograde transport velocities of APP-GFP, non-dimerized APP-F1-GFP (ethanol 
control) and APP-F1-GFP dimerized vesicles. No differences among APP variants could 
be observed (one-way ANOVA followed by Bonferroni post hoc test). Bars represent 
mean values ± SEε, n = γ (≥16 cells per approach).  
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LRP1 Deficiency Leads to Accelerated Trafficking of APP Dimers 

Since APP cis-homodimers and monomers show similar transport characteristics, we 

assumed that both follow the same principle. Previously, we demonstrated that LRP1 

influences monomeric APP transport along the secretory pathway (Waldron et al., 

2008). Therefore, we wanted to analyze now, whether a lack of LRP1 may also affect 

trafficking of APP dimers. For this purpose, we generated a cDNA construct 

providing the continuous expression of SDS-stable APP cis-dimers. The expression 

construct exhibits a triplet mutation in the coding sequence of APP695, which leads 

to an amino acid exchange from lysine (K) to cysteine (C) at position 587 (APP695 

K587C) (Figure 3A). This mutation enabled the formation of APP cis-dimers by 

disulfide bridges between the cysteine residues in the E2 domain of two mutant APP 

molecules. According to our expectation a stepwise increase of temperature up to 

95◦C showed only a slight decrease of APP K587C dimers, indicating that most of the 

APP K587C dimers are stabilized by intramoleclular disulfide bonds (Figures 3B,C). 

To get further insights on the generation and processing of APP cis-dimers in regard 

to LRP1, we performed a pulse-chase assay with CHO K1 and LRP1-deficient CHO 

13-5-1 cells stably expressing APP695 K587C dimers. This assay revealed that 

sAPP dimers were already immunoprecipitated after a 30 min chase in CHO 13-5-1 

cells while in CHO K1 cells shed APP dimer fragments were first detectable after a 

1 h chase (Figure 3D). Quantification of the sAPP dimer/APP dimer ratio showed an 

increase of this ratio in LRP1-deficient cells (Figure 3E) suggesting an earlier 

availability of APP dimers for shedding at the cell surface. Thus, these results point to 

an accelerated trafficking of APP dimers in the absence of LRP1 

http://loop.frontiersin.org/people/393639/overview
http://loop.frontiersin.org/people/393640/overview


 Uta-Mareike Herr 1†, Paul Strecker β† et al. (2017) Chapter III 

130 
 

 

FIGURE 3 | Faster trafficking of SDS- and heat-stable APP cis-dimers 

in LRP1-deficient cells.   

(A) Schematic representation of the APP Cys-mutant encoded by the pLHCX-APP695 
K587C construct and its resulting cis-dimerization state. (B,C) CHO K1 cells were 
transiently transfected with the APP695 K587C construct. (B) 24 h post transfection 
monomeric as well as dimerized APP were detected by the antibody mix 1G75A3 
(1:γ,000) in cell lysates. (B,C) Heating of samples up to 95◦C shows a negligible 
reduction of the APP dimer signal with a comparable increase in monomeric APP. (D) 
CHO K1 and LRP1-deficient CHO 13-5-1 cells both stably expressing the dimer bearing 
APP construct were pulsed with radiolabeled sulfur (35S) for 15 min. Chase was 
performed after stated time spans prior to immunoprecipitation of APP with the antibody 
mix 1G75A3 (1:300) and SDS-PAGE. Exposure of the film revealed an earlier 
occurrence of soluble APP dimers in the conditioned medium of LRP1-deficient CHO 13-
5-1 cells (30 min chase) than in CHO K1 cells (1 h chase). (E) Comparison of the sAPP 
dimer to APP dimer ratio of both cell types shows a significant elevation for CHO 13-5-1 
cells beginning after a 1 h chase. Bars represent mean values ± SEε, n = γ; Student’s t -
test; p < 0.05 (*), p < 0.001 (***). 
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LRP1 Alters APP Transport Characteristics 

We observed that anterograde transport of monomeric and dimeric APP is affected 

by LRP1, suggesting that LRP1 and APP might be sorted in common transport 

vesicles and that LRP1 might be required for APP sorting. To address this 

hypothesis, we performed co-stainings of endogenous APP and LRP1 in primary 

cortical neurons (PCN) and used again a live cell imaging approach. 

Immuncocytochemical analysis of PCN differentiated for 7 days in vitro using anti-

APP and anti-LRP1 antibodies revealed a strong cytoplasmic staining within the cell 

body and a punctate staining of LRP1 and APP in neurites, at least in part 

representing transport vesicles (Supplementary Figure 2). Interestingly, we observed 

only a low co-localization rate, arguing that LRP1 and APP are mostly transported in 

different transport vesicle types. 

An expression construct encoding an N-terminal myc tagged LRP-mini-receptor 

(Rabiej et al., 2015) was used for generation of a C-terminally GFP tagged LRP-mini-

receptor (LRP1-GFP). After verification that the newly generated LRP1-GFP fusion 

protein was expressed as full-length protein and that the GFP-tag did not alter the 

subcellular localization (data not shown) the construct was used for live cell imaging. 

First, we wanted to analyze transport velocities of APP-RFP and LRP1-GFP in single 

transfected primary hippocampal mouse neurons (PHN). Time lapse series of 30 s 

were recorded at an interval of 200 ms/frame and vesicle movement was quantified 

based on the analysis of kymographs (Figures 4A,B; Video in Supplementary 

Material 2). Quantification showed that the largest fraction (68%) of anterograde 

LRP1-GFP-positive vesicles was transported with a velocity of 1–2 µm/s in contrast 

to APP-RFP that was mostly (66%) transported in vesicles faster than 2 µm/s (Figure 

4C). Also for retrograde moving vesicles, a clear difference in transport 

characteristics was observed (Figure 4D). Although most of the retrograde transport 

vesicles containing APP-RFP and LRP1-GFP moved with a velocity of 1–2 µm, a 

fraction of APP-RFP positive transport vesicles showed retrograde transport 

characteristics with velocities >2 µm/s, which was not observed for LRP1-GFP 

containing vesicles. These data suggest that the majority of LRP1 and APP are 

transported in distinct anterograde transport vesicles, whereas a larger fraction of 

LRP1 and APP is co-transported in retrograde transport vesicles. 
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FIGURE 4 | LRP1 recruits APP in common transport vesicles.  

Primary hippocampal neurons from mice (P0) were differentiated for 6 days in vitro, 
expressing either (A) only LRP1-GFP, (B) APP-RFP or (E,F) alternatively co-expressing 
both, APP-RFP and LRP1-GFP were subjected for live cell imaging 18–20 h post 
transfection. Time lapse series were plotted as kymographs (representative 
kymographs, single transfection: A,B; co-transfection: E,F) and used for determination of 
individual transport vesicle velocities. For quantification of transport velocities >5 
kymographs from different cells were analyzed [(C,D) LRP: n = 5 cells, n = 534 vesicles; 
APP: n = 7 cells, n = 254 vesicles; (G,H) n = 5 cells, n = 371 vesicles]. (C) Anterograde 
and (D) retrograde transport vesicles containing APP-RFP (white columns) or LRP-GFP 
(black columns). Note the change of APP-RFP transport characteristcs in (G) 
anterograde and (H) retrograde direction (light gray columns) upon co-expression of 
(G,H) LRP1-GFP (dark gray columns). Bars represent mean values ± SEε, n > 5 (≥β54 
vesicles); Student’s t-test, p < 0.05 (*), p < 0.01 (**). 

Further, we tested if LRP1 and APP co-expression might affect APP transport 

characteristics and vice versa. For this purpose, we performed live cell imaging 

analyses of PHNs co-expressing LRP1-GFP and APP-RFP 18 to 20 h post 

transfection, as described above (representative kymographs Figures 4E,F). 

Quantification revealed that LRP1-GFP and APP-RFP are co-transported in common 

anterograde and retrograde transport vesicles (Figures 4G,H). Most interestingly, co-

expression of LRP1-GFP caused a change of APP-RFP transport characteristics, 

that was highly similar to those observed in single transfected cells for LRP1-GFP 

(Figures 4A–D), whereas LRP1-GFP transport upon co-expression of APP remained 

unchanged (Figures 4G,H). This holds true for APP/LRP1 anterograde (Figure 4G) 

as well as retrograde (Figure 4H) transport. Accordingly, also the mean velocities 

were strongly reduced upon co-expression of LRP1 (Figure 5E). Notably, the relative 
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amount of anterograde, retrograde and stationary vesicles remained unchanged, 

arguing that LRP1 not simply holds back APP in the Golgi. Instead, our data indicate 

that co-expression of LRP1 may cause a recruitment of APP into common transport 

vesicles, that exhibit different transport characteristics. 

To further validate that LRP1 modifies APP intraneuronal transport, we analyzed 

APP-RFP transport in primary neurons with reduced LRP1 levels. For this purpose, 

we used PCN of Lrp1flox/flox mouse embryos, treated with 200 nM Cre-recombinase 

fused to a basic protein translocation peptide derived from HIV-TAT (Tat-Cre) for 48 

h prior live cell imaging. Reduced LRP1 expression of about 2-fold was validated by 

Western Blot analysis (Figures 5A, 7A).  

 

FIGURE 5 | Loss of LRP1 leads to increased transport vesicles rates.  

Primary cortical neurons (PCN) (DIV4) of C57BL/6J wild type or Lrp1flox/flox mouse 
embryos were treated with 200 nM Tat-Cre recombinase or vehicle control for 48 h. (A) 
Representative blots of PCN from 5xFAD/LRP1flox/flox mouse embryos treated with Tat -
Cre showed a decrease in LRP1 CT (1704 antibody) expression by approximately 2-fold 
compared to vehicle treated control. Anti-actin staining served as loading control. (B) 24 
h prior live cell imaging analysis, PCN were transiently transfected with cDNA encoding 
APP-RFP. Time lapse series from live cell imaging were plotted as kymographs 
(representative kymograph, B) and used for determination of individual transport vesicle  
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FIGURE 5 | Continued.  

velocities. (C) Anterograde and (D) retrograde transport velocity profiles of APP-RFP in 
wild type (white columns) and LRP1 deficient PCN (black white columns). Normalized 
transport velocities (E) and relative distribution (F) of APP-RFP in wild type PCN (white 
columns), LRP1 deficient PCN (black white columns) and PCN co-expressing LRP1. 
Note the lower amount of stationary vesicles in LRP1 deficient neurons. For 
quantification of transport velocities >5 kymographs from different cells were analyzed 
(APP-RFP in neurons of C57BL/6J mice: n = 7 cells, n = 254 vesicles; APP-RFP in 
LRP1 deficient neurons: n = 6 cells, n = 573 vesicles; APP-RFP in LRP1-GFP co-
expressing neurons: n = 5 cells, n = 371 vesicles). Bars represent mean values ± SEM, 
n > 5 (≥β54 vesicles); (C,D) Student’s t-test, (E,F) Kruskal-Wallis-Test followed by 
Dunn’s εultiple Comparison Test, p < 0.05 (*), p < 0.001 (***). 

Interestingly, we observed in contrast to LRP1 co-expression only a tendency toward 

increased APP transport velocity in anterograde direction (p = 0.051) (Figures 5C,F) 

and no change in retrograde direction or for the amount of stationary vesicles 

(Figures 5D,F). In contrast, LRP1 deficiency caused a significant (p = 0.011) 

decrease of stationary and an increase   (p = 0.011) of moving transport vesicles 

(Figure 5F). Separation of moving vesicle data into anterograde and retrograde 

transport revealed due to lower n-number not the significance levels (p = 0.06) 

(Figure 5F).  

Together, our data show that elevated LRP1 expression causes a decrease of APP 

transport rate whereas reduced levels of LRP1 cause an increase of APP transport 

rates. 

LRP1 Expression Affects Processing of APP695 K587C Dimers 

Showing that the expression of LRP1 alters trafficking of monomeric as well as 

dimerized APP, we assumed that LRP1 may also affect processing of APP dimers. 

We previously demonstrated that internalization of APP (mostly monomeric and 

possibly also dimeric) from the cell surface is reduced in the absence of LRP1 

resulting in an increase in sAPPα secretion (Pietrzik et al., β00β). To investigate, 

whether a similar effect is obtained also for covalently bound APP homodimers, we 

used CHO K1 and LRP1-deficient CHO 13-5-1 cells both expressing APP695 K587C 

exogenously. In Western Blot analyses we first compared APP dimer expression and 

sAPP dimer secretion of both cell lines (Figure 6A).  
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FIGURE 6 | Reduced internalization of APP dimers leads to increased sAPP 
dimer generation.  

Lysates and conditioned media were probed (24 h post transfection, B) with antibodies 
specific for APP (1G75A3 antibody mix, 1:3,000) or actin (1:1,000). LRP1-deficiency in 
CHO cells (A) stably or (B) transiently transfected with pLHCX-APP695 K587C lead to 
increased sAPP dimer production. (A) The ratio of sAPP dimers to APP dimers is 
significantly increased in CHO 13-5-1 cells (n = 7) compared to CHO K1 cells (n = 5). 
Bars represent mean values ± SEε; Student’s t-test; p < 0.05 (*), p < 0.01 (**), p < 
0.001 (***). (B) Expression of the APP dimer construct additionally exhibiting the NGYE 
mutation in the APP internalization motif partially mimicked the LRP1 deficiency in CHO 
K1 cells while sAPP dimer secretion in CHO 13-5-1 cells remained unaffected. Note that 
sAPP dimer to APP dimer ratio increased significantly in CHO K1 cells expressing 
APP695 K587C NGYE compared to those transfected with APP695 K587C. Bars 
represent mean values ± SEM, n = 4; one-way ANOVA with Tukey’s post-hoc test; p < 
0.01 (**), p < 0.001 (***). 

Here, we detected lower APP dimer expression in the lysate of CHO 13-5-1 cells 

compared to CHO K1 despite a comparable total protein load. However, the ratio of 

sAPP dimers to dimeric APP of LRP1-deficient CHO cells was approximately 3-fold 

stronger than in CHO K1 cells. To test, if this difference may be explained by 

increased processing due to decreased internalization of APP dimers from the cell 
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surface in LRP1-deficient CHO 13-5-1 cells, we transfected CHO K1 and CHO 13-5-1 

cells with an APP695 dimer construct, exhibiting a mutation in the APP internalization 

motif “YENPTY” (δai et al., 1995; εarquezSterling et al., 1997). The amino acid 

exchange from NPTY to NGYE leads to a reduced internalization of APP dimers from 

the cell surface mimicking LRP1 deficiency. We expected that exogenous expression 

of APP695 K587C NGYE compared to APP695 K587C should increase sAPP dimer 

secretion in CHO K1 cells, whereas expression in CHO 13-5-1 cells, that already 

show reduced APP dimer internalization due to the absence of LRP1, should cause 

no further increase in sAPP secretion. According to our expectation, we detected 

higher amounts of soluble APP dimers in the conditioned medium of CHO K1 cells, 

but no significant difference in sAPP dimer secretion in CHO 13-5-1 cells (Figure 6B). 

This further supports the hypothesis that LRP1 affects internalization of APP 

monomers and dimers in a comparable manner. 

Lrp1 Knock-Out in PCN Affects APP Dimer Processing 

As we could show that APP dimers are formed and processed in primary cortical 

neurons (Figure 1), we wanted to analyze the effect of a Lrp1 knock-out on APP 

dimer processing in neuronal cells. Hence, PCN from 5xFAD/Lrp1flox/flox mouse 

embryos (E14) were treated with Tat-Cre recombinase to induce the excision of Lrp1 

via recombination of the loxP recognition sites flanking this gene. Western Blot 

analysis revealed a 2-fold reduction of LRP1 expression in PCN treated with Tat-Cre 

for 48 h compared to neurons incubated with the vehicle (Figure 7A). We assume 

that the incomplete reduction of LRP1 was due to its long half-life (24 h) (Reekmans 

et al., 2010). Interestingly, the sAPP dimer/APP dimer ratio of neurons with a partial 

Lrp1 knock-out showed a more than 2-fold increase in comparison to the buffer 

treated PCN (Figure 7B). These observations are similar to the effects seen in LRP1-

deficient CHO 13-5-1 cells and might be explained by a faster transport rate of APP 

dimers to and/or less internalization from the cell surface. This may result in an 

elevated APP processing by the active secretases at this site due to earlier and/or 

prolonged substrate availability.  
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FIGURE 7 | Partial LRP1 knock-out affects APP processing in PCN.  

PCN of 5xFAD/LRP1flox/flox mouse embryos were treated with either 200 nM Tat-Cre or 
vehicle for 48 h. Lysates and conditioned media were probed with specific antibodies for 
APP (1G75A3 antibody mix, 1:300), for LRP1 CT (1704 antibody, 1:10,000) and actin 
(actin antibody, 1:1,000). (A) Representative blots of PCN from two different 
5xFAD/LRP1flox/flox mouse embryos (E1 and E2) treated with Tat-Cre showed a decrease 
in LRP1 CT expression by approximately 2-fold compared to vehicle treated controls 
(normalized to actin). Bars represent mean values ± SEε, n = 6; Student’s t-test; 
p < 0.001 (***). (B) Representative blot showing a slight APP decrease in lysates and an 
increase of soluble APP fragments in the conditioned medium of Tat-Cre treated PCN. 
Partial Lrp1 knock-out resulted in an increased sAPP dimer to APP dimer ratio by more 
than 2-fold in comparison to buffer treated PCN. Bars represent mean values ± SEM, n = 
5; Student’s t-test; p < 0.001 (***). 

Processing of APP Cis-Dimers by Meprin β and ADAM10 

The presence of soluble APP dimers indicates that APP cis-dimers are enzymatically 

cleaved thereby releasing soluble dimerized fragments. Thus, we wanted to 

investigate, whether processing of APP cis-dimers can be attributed to the same 

secretases known to be responsible for cleavage of monomeric APP. Regarding the 

processing of monomeric APP at the cell surface, the metalloproteinases ADAM10 

(Weidemann et al., 1989; δammich et al., 1999) and meprin ȕ (Jefferson et al., 2011; 

Bien et al., 2012; Schönherr et al., 2016) are implicated. As the metalloproteinase 

meprin ȕ itself occurs in a dimerized form (Bertenshaw et al., β00γ; Kruse et al., 

β004), we first focused on the role of meprin ȕ in APP dimer cleavage. To address 
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this point, we co-transfected HEK 293T cells with either APP695 K587C or 

APP695 wt and the meprin ȕ construct to analyze processing of APP cis-dimers in 

comparison to monomeric APP cleavage by this secretase. As a control for meprin ȕ 

activity, cells were solely transfected with the wt APP or the dimer-bearing APP 

construct. As expected, analysis of the conditioned medium of transfected HEK 293T 

cells revealed higher sAPP dimer levels in cells expressing the dimer-bearing APP 

construct, compared to those transfected with wildtype APP695 (Figure 8A). Co-

transfection with meprin ȕ resulted in a decrease in the signal for monomeric as well 

as dimerized soluble APP irrespective of the APP construct used for transfection. 

Interestingly, the reduction of sAPP dimers was considerably stronger than that of 

monomeric sAPP.  

 

FIGURE 8 | Meprin β cleaves sAPP dimers with a higher affinity than 
monomeric sAPP.  

HEK 293T cells were transiently transfected with the APP695 wt or the APP695 K587C 
construct either alone or in co-transfection with meprin ȕ. (A) Conditioned medium was 
probed 24 h post transfection with the antibody mix 1G75A3 (1:3,000) directed against 
the APP ectodomain. εeprin ȕ expression resulted in a reduced signal intensity of 
soluble APP, especially prominent for sAPP dimers in cells expressing the APP Cys-
mutant (APP695 K587C). (B) For quantification the ratio of sAPP monomers and sAPP 
dimers, respectively, was calculated as the quotient of signal intensities in cells just 
transfected with an APP construct (w/o meprin ȕ) to appropriate cells co-expressing 
meprin ȕ (with meprin ȕ). This analysis revealed a similar reduction in dimerized and 
monomeric sAPP for cells transfected with APP695 wt. In contrast, HEK cells expressing 
the dimer bearing construct show a significant increase in the sAPP dimer ratio 
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FIGURE 8 continued 

compared to sAPP monomer ratio. Bars represent mean values ± SEM, n = 4; one-way 
ANOVA with Tukey’s post-hoc test; p < 0.001 (***). 

To quantify these observations, we calculated the ratio of sAPP dimers secreted from 

APP/meprin ȕ expressing cells to sAPP dimer secretion of solely APP expressing 

cells as well as APP K587C/meprin ȕ to APP K587C expressing cells. APP695 wt 

expressing cells showed no significant difference in the ratio for monomeric and 

dimerized sAPP, possibly due to the weak signal for sAPP dimers (Figures 8A,B). 

In contrast, processing of APP695 K587C by meprin ȕ was significantly increased 

compared to cleavage of monomeric sAPP (Figures 8A,B). In line with this, meprin ȕ 

co-transfection resulted also in an increase of Aȕ secretion (Supplementary Figure 

3). Together, these data suggest a higher affinity of meprin ȕ for dimerized than for 

monomeric APP695. 

To investigate the role of α-secretase cleavage in APP cis-dimer processing, CHO 

K1 and CHO 13-5-1 cells expressing APP695 K587C were treated with the ADAM10 

inhibitor GI254023X (Ludwig et al., 2005). Quantification of APP dimer expression in 

the lysates of CHO K1 and CHO 13-5-1 cells after incubation with GI254023X 

revealed an increase of APP dimers of 50 or 56%, respectively (Figure 9A). In line 

with this, we detected an average decrease in sAPP dimer secretion of 38% for 

inhibitor treated CHO K1 cells compared to those incubated with the vehicle DMSO 

alone (Figure 9B). A similar result (55% reduction of sAPP dimers after ADAM10 

inhibition) was observed in CHO 13-5-1 cells (Figure 9B). As ADAM10 cleaves APP 

at the cell surface (Lammich et al., 1999), we expected an accumulation of the 

mature cell surface exposed APP, after treatment with GI254023X. Indeed, cell 

surface biotinylation assays using APP695 K587C expressing CHO cells revealed 

after ADAM10 inhibition an increase of mature cell surface APP dimers of 43% in 

comparison to DMSO controls (Figure 9C). In CHO 13-5-1 cells treated with 

GI254023X the surface expression of APP dimers was increased by 54% compared 

to DMSO controls (Figure 9C), underlining our assumption that LRP1 deficiency 

accelerates availability of APP dimers for processing by ADAM10.  
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FIGURE 9 | LRP1 deficiency affects APP dimer processing at the cell 
surface by ADAM10.  

Treatment of APP695 K587C-stable CHO cells (CHO K1 and LRP1-deficient CHO 13-5-
1) with the ADAM10-inhibiting compound GI254023X or DMSO (control) was performed 
24 h prior to surface biotinylation (sbio) and analysis of lysates and conditioned media 
(CM) with the APP specific antibody mix 1G75A3 (1:3,000) or the actin antibody 
(1:1,000), respectively. Bars represent mean values ± SEε, Student’s t -test; p < 0.01 
(**), p < 0.001 (***). (A) Inhibition of ADAM10 resulted in an increase of APP dimers in 
the lysate by 50% for CHO K1 (n = 7) and by 56% for CHO 13-5-1 (n = 7) cells 
compared to the corresponding DMSO controls. (B) In the conditioned medium the 
decrease of sAPP dimers by ADAM10 inhibition in comparison to DMSO treatment was 
more substantial in LRP1-deficient cells (55%; n = 7) than in CHO K1 cells (38%; n = 7). 
(C) The inhibitory effect of the GI254023X compound resulted in an elevation comparing 
surface expression of APP dimers to DMSO controls. This increase amounted to  43% for 
CHO K1 and 54% for CHO 13-5-1 cells. 

Together, these data indicate that processing of APP cis-dimers can be attributed to 

the same secretases (meprin ȕ and ADAε10) with meprin ȕ shedding APP 

preferentially in the dimeric form.  
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LRP1 Expression Affects sAPP Dimer Secretion In vivo# 

As secretion of monomeric sAPP fragments into the cerebrospinal fluid (CSF) of AD 

patients has been shown previously (Van Nostrand et al., 1992; Sennvik et al., 2000; 

Olsson et al., 2003; Brinkmalm et al., 2013), we wanted to study the generation of 

dimeric sAPP in vivo. To investigate, whether LRP1 expression also affects 

processing of APP dimers in vivo, we analyzed the cerebrospinal fluid of 5xFAD mice 

expressing LRP1 and of 5xFAD mice with a tissue-specific Lrp1 knock-out in brain 

endothelial cells and the choroid plexus epithelial cells. In 5xFAD mice only very little 

amounts of sAPP dimers could be detected (Figure 10A). However, in 5xFAD mice 

lacking LRP1 in CSF-secreting epithelial cells of the choroid plexus an about 4-fold 

stronger immunoreactivity for sAPP dimers was observed (Figure 10B). In line with 

our previous results showing preferred clavage of APP dimers by meprin ȕ (Figure 

8), the immense increase in dimerized APP fragments may be explained by the 

involvement of meprin ȕ besides ADAε10 in APP cleavage at the surface of 

epithelial cells. These in vivo data underline that LRP1 preferentially affects sAPP 

dimer secretion. 

 

FIGURE 10 | sAPP dimers in CSF of 5xFAD/Lrp1 f lox/ f lox and 5xFAD/Lrp1BE−/− 
mice.  

(A) Representative Western Blot of 2 µl CSF from 5xFAD/Lrp1 flox/flox and 
5xFAD/Lrp1BE−/− mice. Immunostaining with the 1G75A3 antibody mix (1:3,000) 
revealed (B) an about 4-fold stronger immunoreactivity for sAPP dimers in the CSF of 
5xFAD mice exhibiting an Lrp1 knock-out in brain endothelial and choroid plexus 
epithelial cells (n = 3) than in 5xFAD mice expressing LRP1 (n = 5). p < 0.001 (***).  
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DISCUSSION 

Our data show that LRP1 recruits APP into common fast axonal transport (FAT) 

membrane bound organelles (MBOs), suggesting that LRP1 functions as a sorting 

receptor. Thereby, increased levels of LRP1 slow down APP anterograde transport 

and decrease its endocytosis rate. This in turn causes an increase of surface APP 

and thus accelerates secretion of sAPP. Interestingly, we observed the same 

influence for APP monomers and dimers. However, Lrp1 knock-out in choroid plexus 

cells increased sAPP monomer secretion, but much more pronounced sAPP dimer 

secretion in the CSF. This is likely explained by different processing properties of cell 

surface APP monomers/dimers, as we found that meprin ȕ preferentially cleaves 

APP dimers.  

Our live cell imaging analyses in primary neurons show that LRP1 is anterogradely 

transported with a median velocity of 1–2 µm/s, (Figure 4), indicating that LRP1 

anterograde transport is mediated by the fast axonal kinesin dependent transport 

(FAT) machinery. Time lapse analysis of APP from our group and others revealed 

transport velocities of 2–10 µm/s (Figures 2, 4; Kaether et al., 2000; Szodorai et al., 

2009; Hermey et al., 2015). Those types of transport vesicles with velocities above 

2 µm/s have only been observed very rarely for LRP1 positive vesicles. In line with 

the low extend of co-localization of LRP1 and APP in neurites, these data indicate 

that APP and LRP1 are transported in distinct membrane bound organelles (MBO), 

associated with different FAT machineries. Interestingly, reduced levels of LRP1 in 

primary neurons caused an increase of APP transport vesicles (Figure 5), whereas 

co-expression of LRP1 and APP caused an approximation of both transport 

characteristics, changing APP transport toward velocities observed for LRP1. These 

data corroborate our previous assumption that LRP1 causes a sorting of APP into 

LRP1 bearing MBOs (Waldron et al., 2008). As monomeric and dimeric APP are 

transported with very similar transport characteristics (Figure 2), and as a knock-out 

of Lrp1 caused an increase of monomeric as well as dimeric sAPP (Waldron et al., 

2008; Figure 3) we assume that LRP1 affects monomeric and dimeric APP in a 

similar way. In contrast, other sorting receptors of APP, such as SorLA are assumed 

to affect the equilibrium of APP dimerization, causing different processing kinetics of 

monomeric and dimeric APP, as indicated by elegant mathematical modeling 
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(Schmidt et al., 2012). Notably, these analyses were performed in cells lacking LRP1. 

Thus, it would be interesting for future studies to investigate the interplay of LRP1, 

SorLA and APP dimerization in more detail. 

Since LRP1 recruits APP to transport vesicles and the velocity of vesicles carrying 

APP dimers is similar to APP monomer carrying vesicles we wondered whether APP 

dimers are released in a similar LRP1 dependent manner as APP monomers 

(Waldron et al., 2008). In a pulse-chase analysis of LRP1 expressing CHO K1 and 

LRP1-deficient CHO 13-5-1 cells both stably expressing APP dimers, we detected 

faster sAPP dimer release in LRP1-deficient cells (Figure 3D). As APP dimerization 

already takes place in the ER and as those dimers remain stable throughout their 

transport to the plasma membrane (Isbert et al., 2012; Khalifa et al., 2012), an 

interaction of dimeric APP with LRP1 early in the secretory pathway may lead to a 

decelerated APP dimer trafficking, similar as shown for monomeric APP (Waldron et 

al., 2008). Thus, cell surface processing may be affected, resulting in the delayed 

occurrence of dimerized sAPP in LRP1 expressing cells. 

The interaction of APP with LRP1 also plays an important role at the cell surface as 

monomeric APP is internalized in a complex with LRP1 by clathrin-mediated 

endocytosis, thereby affecting its processing (Knauer et al., 1996; Ulery et al., 2000; 

Pietrzik et al., 2002, 2004; Cam et al., 2005). Hence, we estimated that the 

accelerated generation of soluble APP dimers in LRP1 deficient cells compared to 

LRP1 expressing cells (Figure 6A) may result from a reduced APP dimer 

internalization due to LRP1 deficiency that in turn causes higher APP levels for 

processing at the cell surface. This assumption is strengthened by the fact that APP 

dimer constructs, harboring a mutated internalization motif caused an increase in 

sAPP levels (Figure 6B), as shown before for internalization deficient monomeric 

APP (Perez et al., 1999). Importantly, the sAPP dimer levels of the internalization 

deficient mutant were not increased in LRP1 lacking cells. To investigate, whether 

the LRP1 regulatory effects are similar in neuronal cells, we analyzed PCN with a 

knock-out of Lrp1 by Cre recombination. Similar as shown for LRP1-deficient CHO 

13-5-1 cells we observed a decrease of APP in the lysates accompanied by an 

accelerated sAPP generation for monomeric as well as dimeric APP (Figure 7), when 

LRP1 expression was knocked out in primary neurons. The more than 2-fold increase 

of the sAPP dimer to APP dimer ratio further supports our hypothesis that LRP1 
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regulated effects on APP dimer transport and internalization take place in neuronal 

cells. A resulting earlier and/or prolonged availability of APP may therefore provide 

more substrate for the cell surface-active shaddases ADAε10 and meprin ȕ. Thus, 

our data strongly suggest that monomeric and dimeric APP trafficking is equally 

affected by LRP1 (Ulery et al., 2000; Pietrzik et al., 2002; Cam et al., 2005) and that 

this process is also important in the neuronal system. 

Due to the similar characteristics of monomeric and dimeric APP transport we 

assumed that APP dimers might also be processed by the same secretases as 

monomeric APP. Here, we concentrated on cell surface APP. It has been well 

documented over the last decade that ADAM10 is the most prominent sheddase of 

APP at the cell surface (Weidemann et al., 1989; Lammich et al., 1999; Jorissen et 

al., β010; Kuhn et al., β010). Recently, the metalloproteinase meprin ȕ was identified 

to be also capable to process APP at the cell surface (Jefferson et al., 2011; Bien et 

al., β01β; Schönherr et al., β016). Here, we show that meprin ȕ as well as ADAε10 

are implicated in dimer processing (Figures 8, 9). Inhibition of ADAM10 resulted in a 

surface accumulation of APP dimers as shown by protein surface biotinylation. This 

was accompanied by an increase of APP dimers in the lysate and a decrease in 

soluble APP dimers in the conditioned medium of the tested cells (Figures 9A–C) as 

shown for monomeric sAPPα (Woods and Padmanabhan, β01γ). The role of δRP1 in 

APP dimer processing is again highlighted by ADAM10 inhibition in LRP1-deficient 

cells as the demonstrated effects (in CHO K1 cells) were considerably stronger in 

CHO 13-5-1 cells (Figures 9A–C). 

To investigate the role of meprin ȕ in cleavage of APP dimers, we analyzed the sAPP 

monomer and dimer ratios of HEK cells transfected with APP alone to cells co-

expressing meprin ȕ. Interestingly, the sAPP dimer ratio was significantly increased 

compared to the sAPP monomer ratio (Figure 8) when the stabilized APP homodimer 

was generated. This indicates that meprin ȕ processes APP, with a preference for 

APP dimers. Although we do not understand the underlying molecular mechanism 

yet, it appears reasonable that the higher affinity of meprin ȕ for dimeric vs. 

monomeric APP is connected to the fact that this secretase itself exists in form of a 

dimer (Bertenshaw et al., 2003; Kruse et al., 2004). Thus, dimerized APP may offer a 

cooperative effect on enzymatic activity of meprin ȕ, as recently postulated for α- and 

ȕ-secretase for APP dimer processing (Schmidt et al., 2012). 
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Due to the fact that a large fraction of APP occurs in a dimerized form in the brain 

(Munter et al., 2007; Schmidt et al., 2012) and that APP dimers are processed in 

PCN of C57BL/6J mice (Figures 1, 7), we asked whether the regulatory effect of 

LRP1 in APP dimer processing does also play a role in vivo. Therefore, we analyzed 

the CSF of 5xFAD mice and 5xFAD mice with an induced Lrp1 knock-out in brain 

endothelial and choroid plexus epithelial cells. Indeed, we were able to detect sAPP 

dimers to an about 4-fold greater extent in the CSF of mice with the tissue-specific 

Lrp1 knock-out than of 5xFAD control littermates (Figures 10A,B). As the choroid 

plexus epithelial cells express APP (Kalaria et al., 1996; Bergen et al., 2015) and are 

the main producers of CSF (Brown et al., 2004), sAPP dimers in the CSF presumably 

originate from these cells. Thus, the increased amount of sAPP dimers in the CSF of 

5xFAD/Lrp1BE−/− mice is likely due to reduced internalization of APP from the 

surface of the choroid plexus epithelial cells. This may provide more APP dimers for 

enzymatic cleavage at the cell surface. We could show that ADAM10, the main 

sheddase of APP at the cell surface (Weidemann et al., 1989; Lammich et al., 1999; 

Jorissen et al., 2010; Kuhn et al., 2010), is also implicated in the cleavage of APP 

dimers (Figure 9). Thus, the processing of APP dimers in epithelial cells of the 

choroid plexus may be at least partially performed by this secretase. Furthermore, 

the especially high levels of sAPP dimers may point to a prominent role of meprin ȕ 

in this context as we could show that this protease exhibits a preferred activity for 

dimeric vs. monomeric APP (Figure 8). 

Altogether, our studies show that LRP1 affects trafficking of APP monomers and 

dimers and that APP dimers are preferentially cleaved by ADAε10 and meprin ȕ. 

Hence, dimerized APP may affect physiological as well as pathogenic functions of 

APP by different transport and processing characteristics and should be included in 

future studies regarding the interplay with other sorting receptors than LRP1 or the 

generation of Aȕ species.  
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The results of this thesis provide deeper insights into the Fe65 protein family function 

by giving clear in vivo evidence for a role of Fe65/Fe65L1 in synaptic plasticity in the 

CNS and development of the neuromuscular junction. Furthermore, the results of this 

thesis allowed insights in the structural features of Fe65, relevant for a better 

understanding of its pathophysiological function. Finally, the influence of LRP1 on 

monomeric and dimeric APP trafficking was analyzed which might affect 

physiological and pathogenic properties of APP regarding its interplay with LRP1. 

The results described in the first chapter of my thesis demonstrate that the Fe65 

Fe65 and Fe65L1 are important for learning and memory as well as locomotor 

activity in mice by utilizing different behavioral approaches. Furthermore, Fe65 and 

Fe65L1 are necessary for synaptic plasticity and neuromuscular junction formation as 

shown by electrophysiological and histochemical examinations. Similar phenotypes 

have already been described for several APP protein family KO mice leading to the 

assumption that the Fe65 protein family is the main interaction partner of the APP 

protein family in the central as well as peripheral nervous system acting downstream 

of the latter. Further, I could show that Fe65 and Fe65L1 have partly overlapping or 

redundant function, but are also involved in distinct signaling pathways, as revealed 

from analyses of Fe65 and Fe65L1 KO mice in short term plasticity paradigms. 

With an interdisciplinary team we could reveal the intramolecular structure of the 

PTB2 domain of Fe65 forming an intermolecular dimer which is provided in chapter II. 

Thereby I could verify the dimer formation in vivo and analyzed the influence of APP. 

Co-immunoprecipitation experiments and Blue Native Gel analysis further exhibited 

evidence for a trimeric complex, composed of two Fe65 and one APP molecule. An 

interesting finding of the study is that dimerization of Fe65, which most likely occur in 

the cytosol, effectively shields the APP binding region of Fe65-PTB2 by mimicking 

the AICD/Fe65-PTB2 interaction. This mimicking might be of peculiar interest in 

developing new therapeutic approaches in up- or down regulating APP signaling in 

the case of AD. 

Although it has been shown in previous studies that Fe65 links APP and LRP1, a 

member of the low density lipoprotein receptor family, i couldn´t reveal any influence 

of Fe65 and/or Fe65L1 on fast axonal transport of solely expressed LRP1 or APP or 

co-expressed LRP1 and APP in primary neurons. However, these data encompassed 
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a detailed analysis of LRP1 transport characteristics, documented in chapter III. 

Importantly, these data showed that LRP1 is transported in axonal membrane 

organelles distinct from APP bearing transport vesicles and further show that LRP1 

causes a recruitment of APP in LRP1 transport vesicles. Nevertheless, a possible 

participation of the Fe65 protein family on LRP1 mediated APP endocytosis has to be 

considered as it was shown to interact with ARF6, which is an important protein in 

endocytosis. Furthermore, the influence of Fe65L2 on APP endocytosis should be 

incorporated, which might compensate the loss of Fe65 and Fe65L1 and has not 

been addressed in course of this thesis.  

In conclusion, the three chapters of this thesis extend our understanding of the Fe65 

protein family function by different in vivo, in vitro and ex vivo analyses as well as its 

intra- and intermolecular binding properties with possible affect on physiological and 

pathogenic function regarding its interplay with APP and LRP1 in Alzheimers Disease 

research. 
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The cytosolic Fe65 adaptor protein family, consisting of Fe65, Fe65L1 and Fe65L2 is 

involved in many intracellular signaling pathways linking via its three interaction 

domains a continuously growing list of proteins by facilitating functional interactions. 

One of the most important binding partners of Fe65 family proteins is the amyloid 

precursor protein (APP), which plays an important role in Alzheimer Disease.  

To gain deeper insights in the function of the ubiquitously expressed Fe65 and the 

brain enriched Fe65L1, the goal of my study was I) to analyze their putative synaptic 

function in vivo, II) to examine structural analysis focusing on a putative dimeric 

complex of Fe65, III) to consider the involvement of Fe65 in mediating LRP1 and 

APP intracellular trafficking in murine hippocampal neurons. By utilizing several 

behavioral analyses of Fe65 KO, Fe65L1 KO and Fe65/Fe65L1 DKO mice I could 

demonstrate that the Fe65 protein family is essential for learning and memory as well 

as grip strength and locomotor activity. Furthermore, immunohistological as well as 

protein biochemical analysis revealed that the Fe65 protein family is important for 

neuromuscular junction formation in the peripheral nervous system, which involves 

binding of APP and acting downstream of the APP signaling pathway. Via Co-

immunoprecipitation analysis I could verify that Fe65 is capable to form dimers ex 

vivo, which exclusively occur in the cytosol and upon APP expression are shifted to 

membrane compartments forming trimeric complexes. The influence of the loss of 

Fe65 and/or Fe65L1 on APP and/or LRP1 transport characteristics in axons could 

not be verified, possibly conditioned by the compensatory effect of Fe65L2. However, 

I could demonstrate that LRP1 affects the APP transport independently of Fe65 by 

shifting APP into slower types of vesicles leading to changed processing and 

endocytosis of APP. 

The outcome of my thesis advanced our understanding of the Fe65 protein family, 

especially its interplay with APP physiological function in synapse formation and 

synaptic plasticity. 
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Die zytosolische Fe65 Adapterprotein Familie, zu der Fe65, Fe65L1 und Fe65L2 

gehören, ist an einer Vielzahl an intrazellulären Signalwegen beteiligt, wobei sie 

durch ihre drei Interaktionsdomänen eine stetig wachsenden Anzahl an Proteinen 

verbindet und deren funktionelle Wechselwirkung erleichtert. Einer der wichtigsten 

Bindungspartner der Fe65 Protein Familie ist das Amyloid-Vorläuferprotein 

(engl.:Amyloid-Precursor-Protein, APP), dass in der Alzheimer Demenz eine 

bedeutende Rolle spielt. 

Um einen tieferen Einblick in die Funktion des ubiquitär exprimierten Fe65 und des 

hauptsächlich im Gehirn vorkommenden Fe65L1 zu erhalten, war das Ziel dieser 

Arbeit I) die Untersuchung ihrer putativen synaptischen Funktion in vivo, II) 

strukturelle Analysen durchzuführen mit dem Fokus auf einen möglichen dimeren 

Komplex von Fe65, III) die Beteiligung von Fe65 am intrazellulären Transport von 

LRP1 und APP in murinen hippocampalen Neuronen zu überprüfen. Unter 

Anwendung verschiedener Verhaltensanalysen an Fe65 KO, Fe65L1 KO and 

Fe65/Fe65L1 DKO Mäusen konnte ich zeigen, dass die Fe65 Protein Familie für das 

Lern- sowie das Gedächtnisvermögen als auch für die (Greif-)Kraft und die 

lokomotorische Aktivität essentiell ist. Weiterhin haben immunhistologische als auch 

protein-biochemische Untersuchungen gezeigt, dass die Fe65 Protein Familie für die 

Bildung der neuromuskulären Endplatte im peripheren Nervensystem entscheidend 

ist, wobei Fe65 an APP bindet und unterhalb der APP Signalkaskade wirkt. Anhand 

von Co-Immunpräzipitationsstudien konnte ich nachweisen, dass Fe65 in der Lage 

ist ex vivo Dimere zu bilden, welche ausschließlich im Zytosol enstehen, bei APP 

Expression in Membrankompartimente verlagert werden und dabei trimere Komplexe 

bilden. Ein Einfluss bei Fehlen von Fe65 und/oder Fe65L1 auf die axonalen 

Transporteigenschaften von APP und/oder LRP1 konnte nicht nachgewiesen 

werden, welcher wahrscheinlich durch den kompensatorischen Effekt von Fe65L2 

bedingt ist. Allerdings konnte ich zeigen, dass LRP1, unabhängig von Fe65, einen 

Einfluss auf das Transportverhalten von APP aufweist. APP wird dabei in langsamere 

Vesikel umverteilt und es findet eine Veränderung in der Prozessierung und 

Endozytose statt. 

Die Erkenntnisse meiner Doktorarbeit erweitern unser Verständnis über die Fe65 

Proteinfamilie, insbesondere dessen Wechselwirkung mit der physiologischen 

Funktion von APP bei der Synapsenbildung und Synapsenplastizität. 
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Supplementary Figure S1: Morris Water Maze analysis of FE65/FE65L1 -DKO 
mice.  

(a) Mice were trained for five days in a pool filled with opaque water. The platform was 
located 0.5 cm beneath the water surface and the time to find the platform was 
measured. (b) On the 6th day the hidden-platform probe trial was performed by 
removing the platform and measuring the time of residence in each quadrant. (c) After 
one day without training, the platform was placed in the opposite quadrant and the mice 
were trained in this new setting for four days. (d) On the last day the platform was 
removed for the reversal learning probe trial and the time of residence in each quadrant 
was measured. The number of mice is given in brackets. Data from learning phases 
(Hidden Platform and Reverse Hidden Platform) were analyzed by two-way repeated 
measures ANOVA (Greenhouse-Geisser correction). Probe trial data were analyzed by 
two-way ANOVA followed by Bonferroni´s post-hoc test. Error bars are given as s.e.m..  
* p< 0,05; ** p< 0,01; *** p< 0,001; n.s. for not significant. 
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Supplementary Figure S2: No obvious morphological and neuronal changes 
in spinal cord stainings of FE65 family KO mice.  

(a) Nissl staining of coronal sections of spinal cord segment ~C8-C6 of 6-8 month old 
WT, FE65-KO, FE65L1-KO and FE65/FE65L1-DKO mice. (b) Choline acetyltransferase 
staining (#178850, Abcam) of motor neurons in the anterior horn of coronal sections of 
spinal cord segment ~C8-C6 of 6-8 month old WT, FE65-KO, FE65L1-KO and 
FE65/FE65L1-DKO mice. 
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Supplementary Video S1: Open-field behavior of WT and FE65/FE65L1-DKO 
mice.  

The behavior of WT, FE65-KO, FE65L1-KO and FE65/FE65L1-DKO mice was recorded for 
1h. In this video several sequences (after 30 seconds as well as 10, 30  and 50 minutes) 
of the recording (1h) from a representative WT and FE65/FE65L1-DKO mouse in the 
open field is shown. 

 

Supplementary Video S2: Behavior of WT and FE65/FE65L1 -DKO mice in the 
visible platform version of the Morris water maze test.  

FE65-KO, FE65L1-KO and FE65/FE65L1-DKO mice (4-6 months-old) were trained using 
a platform placed 0.5 cm beneath the water surface and marked with a black pencil in a 
pool filled with opaque water. This video shows behavior of a representative WT and 
FE65/FE65L1-DKO mouse in the visible platform version of the MWM test during the 4th 
trial. Notable, FE65/FE65L1-DKO mice appeared disoriented. 

 

Supplementary Video S1 and S2 are provided in the supplemental CD-ROM of this 

thesis.
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Figure S1. Biochemical evidence for Fe65 oligomerization.  

(A) Elution diagrams for size exclusion chromatography (SEC, S75 16/600) of Fe65-
PTB2 and according SDS-PAGE. The protein elutes in two major peaks and appears in 
the gel as partially detergent-resistant dimer indicating a very hydrophobic interaction of 
the subunits. (B) Re-chromatographed peaks I. and II. (S75 10/300 coupled with multi-
angle light scattering (MALS)) reveal partitioning in monomeric (MW: 18 kDa, theoretical: 
15.4 kDa), dimeric (MW: 33 kDa), and tetrameric (MW: 56 kDa) species.  
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Figure S2. Structural superpositions.  

(A) The two subunits of the Fe65-PTB2 dimer. The subunits adopt identical 
conformations except the C-terminus. The C-terminus is flexible and in the 

complementing subunit forms strand ȕ
ct

 (dark blue). (B) The accommodating Fe65-
PTB2 subunit superposed on Fe65-PTB2 from the AICD/Fe65-PTB2 complex (PDB code 
3dxc; (Radzimanowski et al., 2008)). In the complex, the C-terminal helix is fully formed 
and stabilized by the AICD (not shown). (C) The AICD and the Fe65-PTB2 dimer. Left 
panel: The binding site for the central ȕ-strand of the AICD (GYE sequence) in the 

accommodating subunit is blocked by strand ȕ
ct

 of the complementing subunit. Right 
panel: The binding site for helix αC of the AICD in the complementing subunit is blocked 
by the accommodating subunit. The superpositions are based on the respective Fe65-
PTB2 subunits with Fe65-PTB2 (not shown for clarity) of the AICD/Fe65-PTB2 complex. 
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Figure S3. Biophysical characterization of the Fe65 -PTB2 dimer in solution. 

(A) Fit of the experimental SAXS data extrapolated to infinite dilution to monomer (chain 
A, complementing), dimers (chain A+C, C: accommodating; A+B, B: alternative 
accommodating subunit) or dimer of dimers of the X-ray structure suggest that the 
protein is not monomeric in solution. The best fit is achieved for dimer (A+C). The 
experimental radius of gyration of 24.4±3.4 Å compares to theoretical values of 17.1 Å 
(monomer chain A), 23.2 Å (dimer chain A+C), 29.6 Å (dimer chain A+B) and 25.7 Å 
(dimer of dimers). (B) Secondary chemical shift differences of carbon Cα and Cȕ atoms 
(ΔįCαȕ-Cȕ). The experimental values for the C-terminal helix (black) are in between the 
values predicted from the coordinates of the complementing and accommodating 
subunits. (C) Color representation of the 

15
N spin-relaxation data derived backbone 

order parameters S
2
 (Fig. 2C) on the structure of the superimposed chains A and C of 

the X-ray structure, with a color gradient from cyan (high S
2
) to red (low S

2
) and 

residues with no experimental data in gray. Fast timescale backbone motions are 
present for the N-terminus, two loop regions and the C-terminal helix. (D) Plot of the 
peak intensity ratios of 

1
H-

15
N HSQC spectra with reduced and oxidized nitroxide spin 

label for the 
15

N/nitroxide labeled sample (yellow) and the mixed 
15

N-only and nitroxide 
proteins (orange). The continuous line corresponds to a three-point average of the data 
points and the colored boxes correspond to the colors used for the protein surface plot in 
Fig. 2D. (E) Typical HSQC spectra of Fe65-PTB2 C633E with reduced (blue) and 
oxidized (red) spin labels. 
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Figure S4. A basic patch for PIP2 binding.  

(A) The spatial arrangement of three sulfate ions bound to a highly basic surface patch 
in the Fe65-PTB2 dimer interface perfectly match to the three phosphoryl-moieties of the 
IP3 head-group of phosphatidyl-inositol-4,5-bisphosphate (PIP2). In the complementing 
subunit, strand ȕct is part of the extended patch. Of note, also the N-terminus of Fe65-
PTB2 (green) and thus the PTB1-PTB2 linker region locates next to the basic cluster. 
(B) Within the AICD/Fe65-PTB2 complex, the C-terminal AICD helix αC would 
complement the now condensed PIP2-binding binding site. A solvent exposed 
phenylalanine (F690) of the AICD would be perfectly located to interact with the inositol 
ring, a structural motif characteristic for protein-carbohydrate complexes                   
(Hsu et al., 2016). Condensing of the patch results in the contribution of in total three 
charges (R657, K660, and R665) from the C-terminal helix α3 of Fe65-PTB2 to the cluster. 
While in the extended patch arginine R665 is involved in the intramolecular salt-bridge in 
strand ȕct (Fig. 3a, right panel), it would contribute to PIP2-binding in the condensed 
state. 
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Supplementary Figure 1: Blue native gel analysis of APP -GFP in 
comparison to APP-F1.  

APP-GFP or APP-F1 (containing one FKBP domain fused to the C-terminus of APP) 
were heterologously expressed in N2a cells. 18-20 hours after transfection and 1 hour 
prior harvesting, APP-F1 expressing cells were treated with 100 nM AP20187 
(dimerizer), which binds two FKBP molecules to induce dimerization of APP as 
described in Eggert et al. (2009). Treatment with the vehicle of the dimerizer, ethanol, 
served as a negative control. Membrane fractions of indicated cells were analyzed via 
blue native gel analysis (Eggert et al., 2009). Antibody Y188 (Abcam) directed against 
the C-terminus of APP was used to detect monomeric and dimeric APP. Note the 
predominantly monomeric state of APP-GFP and ethanol treated APP-F1 cells in 
comparison to APP-F1 cells treated with dimerizer. 
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Supplementary Figure 2: Co-localization of LRP1 and APP in primary 
cortical neurons. 

Immunocytochemical analysis of primary cortical neurons differentiated for 7 days in 
vitro. Endogenous APP (red) and LRP1 (green) were stained with C1/6.1 and 1704 
(Pietrzik et al., 2002), respectively. Hoechst 33258 was used for nuclear counterstaining 
(blue). Co-localization is indicated in yellow. The outlined region in the overlay is 
enlarged in the upper right panels. Please note the high degree of co-localization of APP 
and LRP1 immunoreactivity in the cytoplasmic region and the low partial overlap in 
neurites (indicated by arrow heads). Scale bar: 5 µm. 
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Supplementary Figure 3: Meprin β overexpression affects Aβ generation.  

Urea SDS-PAGE of immunoprecipitated Aȕ from the conditioned medium of HEK 293T 
cells 24 hours after transfection. Peptides were detected by the IC16 antibody (1:500). 
Cells were transiently transfected with either APP695 wt or APP695 K587C or co-
transfected with meprin ȕ. Transfections with the APP constructs alone served as 
controls. In APP695 K587C transfected cells additionally expressing meprin ȕ, levels of 
truncated Aȕ species (2-40 and 2-42) were raised to the same amount as deserved for 
cells transfected with APP695 wt and meprin ȕ. Note, that in the corresponding controls 
Aȕ generation from the APP dimer bearing construct was reduced compared to that 
derived from wildtype APP. 
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Supplementary Video 1: Live Cell imaging of APP -F1-GFP transfected 
primary cortical neuron. 

Murine cortical primary neurons (DIV 6) were transiently transfected with an expression 
construct encoding APP-F1-GFP. After 18–20 h live cell recording of vesicle movements 
were performed. 

 

Supplementary Video 2: Live Cell imaging of LRP1 -GFP transfected primary 
hippocampal neuron. 

Murine hippocampal primary neurons (DIV 6) were transiently transfected with an 
expression construct encoding LRP1-GFP. After 18–20 h live cell recording of vesicle 
movements were performed. 

 

Supplementary Video 1 and 2 are provided in the supplemental CD-ROM of this 

thesis. 
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