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I 

Zusammenfassung 

Die Steuerungsentwicklung als Teil der Planung von automatisierten Produktionsanlagen 

nimmt einen immer größeren Stellenwert ein. Dies ist zum einen begründet durch den 

Anstieg der Automatisierungsgrade von Produktionsprozessen und Betriebsmitteln 

innerhalb der letzten Jahrzehnte [Vyat13]. Zudem werden immer mehr Innovationen durch 

Automation getrieben, um höhere Verfügbarkeiten, Flexibilität und Anpassungsmöglich-

keiten von Produktionsprozessen bei gleichzeitiger Verringerung von Kosten und Marktein-

führungszeiten für neue Produkte zu ermöglichen [Häst11]. Darüber hinaus werden von 

strategischen Initiativen wie Industrie 4.0 grundlegende Änderungen im Produktionsumfeld 

hinsichtlich zunehmender Vernetzung und Autonomie von Produktionsanlagen postuliert, 

die durch den steigenden Einsatz von Informationstechnik generiert werden [Kage13]. 

Allerdings kommt die heutige Situation der gestiegenen Bedeutung der Steuerungs-

entwicklung nicht nach. Innerhalb der Anlagenplanung, die stark vom mechanischen Design 

dominiert wird, kommt der Steuerungsentwicklung eine eher untergeordnete Rolle zu 

[Lukm13]. Sie wird typischerweise als letzter Schritt vor der Realisierung begonnen und 

zieht sich oft noch bis in die Inbetriebnahme der Produktionsanlage [Li12][Mend11]. Zudem 

fehlt es an etablierten Entwicklungsmethoden und Werkzeugen, welche die Entwicklung 

der Steuerungsprogramme ideal unterstützen [Vyat13]. Als Konsequenz entstehen heute 

in der Regel komplexe, unstrukturierte Programme mit geringer Wiederverwendbarkeit 

[Zühl10]. 

Diese Arbeit adressiert diese Situation, indem eine neue Entwicklungsmethodik für 

Steuerungsprogramme vorgestellt wird. Die Grundlage dafür wird durch Konzepte aus der 

Informatik gelegt, um den Softwareentwicklungsprozess mit Hilfe von Abstraktion, 

Modularisierung und Modellierung zu verbessern. Hierbei stellt das Konzept der Service-

orientierten Architektur die Grundlage für die Strukturierung der Steuerungsprogramme und 

einen systematischen Softwareentwicklungsprozess dar. Zudem werden Ansätze aus der 

modellgetriebenen Entwicklung aufgegriffen, um den Entwicklungsprozess durch das 

Festhalten der Planungsergebnisse in Modellen durchgängig und anwenderfreundlich zu 

unterstützen. Um die Steuerungsentwicklung besser in die gesamte Anlagenplanung zu 

integrieren, werden zudem Ansätze zur Stärkung der interdisziplinären Planung untersucht. 

Insbesondere Ideen des System Engineerings werden verwendet, um die neue 

Entwicklungsmethodik in den Anlagenplanungsprozess zu verankern. 

Das Ziel dieser Arbeit ist eine modellbasierte Methodik für die Entwicklung von 

serviceorientierten Steuerungsprozeduren für automatisierte Fertigungsprozesse zu 
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entwickeln, welche die Effizienz der Steuerungsentwicklung verbessert sowie die 

Anpassungsfähigkeit und Wiederverwendbarkeit der Steuerungsprogramme erhöht. Die 

modellbasierte Entwicklungsmethodik umfasst die funktionale Spezifikation der 

Steuerungsprozeduren und ist unabhängig von bestimmten Technologien. Um diese in der 

Praxis anwendbar zu machen und zudem ihre Praxistauglichkeit zu demonstrieren, wird ein 

Implementierungskonzept vorgestellt, das an einem industrienahen Anwendungsfall 

eingesetzt wird. Die Durchführung verschiedener Anwendungsszenarien soll zudem zur 

Bewertung der Ergebnisse der Arbeit dienen. 

Zu den Ergebnissen dieser Arbeit zählen: 

• Referenzarchitektur für SOA-AT: Das Paradigma der Serviceorientierten 

Architektur wird zunächst auf die Domäne der Produktionsautomatisierung 

transferiert und mit der ursprünglichen Anwendungsdomäne der IT-basierten 

Geschäftsprozesse verglichen. Es werden zwei Ebenen von SOA-AT Services als 

Betriebsmittel-Services und Steuerungs-Services definiert, die weiterhin in 

Kategorien von Services mit spezifische Eigenschaften und Aufgaben unterteilt 

werden. 

• Vorgehensweise zur Spezifikation von Services: Für beide Service-Ebenen 

werden Vorgehensweisen zur Spezifikation der Services vorgestellt. Hierbei werden 

unterschiedliche Designaspekte bestimmt, die innerhalb von zwei Planungsschritten 

konkretisiert werden. Zudem werden Bibliothekskonzepte eingeführt, um eine 

effiziente Wiederverwendbarkeit der Planungsergebnisse zu ermöglichen. 

• PESCOP Prozess: Für die Entwicklung von SOA-AT Services wird ein 

systematischer und durchgängiger Entwicklungsprozess definiert, welcher die vier 

Phasen Analyse, Design, technische Spezifikation und Implementierung beinhaltet. 

Diese neue Vorgehensweise zur Steuerungsentwicklung wird dann in den 

Gesamtprozess der Anlagenplanung eingebettet. 

• MDE for SOA-AT: Das Hauptresultat dieser Arbeit ist eine modellbasierte Methodik 

für die Entwicklung von serviceorientierten Steuerungsprozeduren, die auf den bereits 

genannten Teilergebnissen basiert. Für die Darstellung der Planungsergebnisse 

werden verschiedene Planungsmodelle mit Hilfe von Metamodellen beschrieben. 

Eine durchgängige Vorgehensweise mit definierten Planungsschritten wird 

vorgestellt, welche die Erstellung der einzelnen Planungsmodelle beinhaltet. 

• Anwendungskonzepte und Machbarkeitsnachweis: Die Anwendbarkeit der neuen 

Entwicklungsmethodik soll mit einem Konzept zur standardisierten Benamung der 

Services und einem Implementierungskonzept erhöht werden. Auf deren Basis wird 

die modellbasierte Methodik für die Entwicklung von serviceorientierten Steuerungs-

prozeduren an einem praxisnahen Demonstrationssystem angewendet. 
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1  Introduction 

The present situation of control engineering in the context of automated production can be 

described as a tension field between its desired outcome and its actual consideration. On 

the one hand, the share of control engineering compared to the other engineering domains 

has significantly increased within the last decades due to rising automation degrees of 

production processes and equipment [Vyat13]. This trend is even intensified since more 

and more enhancements and innovations are enabled by automation and controls. 

Manufacturing companies seek for higher performance, flexibility, and adaptability of 

production processes to produce more product variants in shorter time frames and in a more 

cost-effective way whereby automation constitutes the key enabler [Häst11]. Moreover, 

fundamental changes of the manufacturing environment are postulated by strategic 

initiatives like Industrie 4.0 which are mainly driven by the use of information technology 

permitting a stronger networking within production systems and more intelligent, 

autonomous production equipment [Kage13]. 

On the other hand, the control engineering domain is still underrepresented within the 

production engineering process, which is primarily dominated by the mechanical design 

[Lukm13]. This situation is expressed by the mainly sequential execution of the engineering 

domains where control engineering is the very last step [Li12][Mend11]. Mature application 

concepts for an interdisciplinary design are missing to realize faster production engineering 

processes and an overall shorter time-to-market for product innovations [Voge14a].  

Another limiting factor is the control engeering itself. Control programs are usually 

characterized as rigid monolithic software architectures with high complexity and poor 

reusability [Zühl10]. Obviously, there’s a lack of methods and tools to decrease the amount 

of software engineering efforts and to permit the development of innovative automation 

applications that ideally support the business requirements [Vyat13].  

This thesis addresses this challenging situation by means of the development of a new 

control engineering methodology. The foundation is built by concepts from computer 

science to promote structuring and abstraction mechanisms for the software development. 

In this context, the key sources for this thesis constitute the paradigm of Service-oriented 

Architecture and concepts from Model-driven Engineering. To mold these concepts into an 

integrated engineering procedure in accordance with the overall production engineering 

process, existing approaches from software engineering and comprehensive production 

engineering are examined. 
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The overall objective is to develop an engineering methodology to improve the efficiency of 

control engineering by a higher adaptability of control software and decreased programming 

efforts by reuse. For making the engineering methodology generally applicable without 

dependencies to certain technologies, it is specified as a theoretical concept. A further goal 

of this thesis is to demonstrate the applicability of the methodology and its relevance 

regarding real automation applications. Therefore, a set of implementation concepts are 

needed that support the transfer from the theoretical concept into best practices for the 

efficient application. The proof of concept is to be carried out at an industry-related use 

case, which builds the basis for an evaluation regarding the initial objective targets. 
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2 Engineering of Manufacturing Control Systems 

For the realization of automated production processes, control systems are needed that 

comprise the hardware and software to connect, operate, and control the production 

equipment. In the following, the demands on automated production systems deriving from 

today’s challenges are examined. Furthermore, the characteristics and properties of 

industrial automation systems and the control system engineering as a part of the whole 

factory planning are presented. Thereby, the focus is placed on production plants and their 

control systems for discrete production processes. 

2.1 Automated Production – Definition, Historical Development 

and Today’s Challenges 

According to Helbing production is defined as the collectivity of technology, organization, 

and tasks to create usable products [Helb10]. The term manufacturing is often used 

interchangeably but usually refers to production in an explicit industrial manner. Industrial 

production processes can be characterized as discrete, continuous, or batch production 

depending mainly upon the appearance of the process output [John99][Voge09a]. 

Continuous production processes produce in a continuous flow, like textiles or fluid 

chemicals, whereas discrete production processes create individual units like cars or 

computers. Batch processes have characteristics from both continuous and discrete 

production, since their output appears as lots or quantities of materials and are popular in 

chemical, food, and pharmaceutical industries [John99]. 

Today, many sectors of industrial production are characterized by a high degree of 

automation, particularly in high-wage countries such as Germany [VDI13]. The term 

automation can be generally interpreted as the capability of causing a machine to carry out 

a specific operation on command, which implies operating or acting independently without 

human intervention [Nof09]. The biggest automation domain constitutes the production 

automation, which includes the planning, design, and realization of automated production 

facilities. In terms of an engineering discipline, production automation comprises software 

and hardware concepts, methods, tools, products, and solutions for controlling fully or partly 

self-running processes [VDI13].  

The history of automated production is closely linked to historical phases known as 

Industrial Revolutions (see Figure 2-1). The first one encompasses the industrialization 

during the 19th century based on mechanization and mechanical drives with steam as the 

main power source [Nof09]. Enabled by electrical power the second Industrial Revolution 
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took place in the beginning of the 20th century leading to Taylorism and mass production 

[Leit04]. The immense progress in information and communication technology (ICT) and 

microelectronics heavily affects automation technology (AUT) in a third revolution since the 

1970s [Kage13]. By means of digital technology the realization of control logic has 

developed from hard-wired electronic components to a much more flexible implementation 

in software. During the last decades increasing automation degrees and steadily developed 

automation technologies led to significant improvements of the productivity, safety, 

feasibility, and quality of production [Nof09]. 

 

Figure 2-1: Industrial revolutions [Kage13] 

In recent times, the production domain constitutes an increasingly dynamic environment for 

manufacturing companies, which have to deal with manifold and steadily changing 

demands to stay competitive. Concerning the automation of production processes, the 

following trends are the main drivers for future developments [Abel11]: 

• Globalization: Most industry sectors operate internationally so that markets, 

business partners, and production sites over the world can emerge. However, these 

new opportunities also imply an intense competition. Particularly, manufacturing 

companies in high-wage countries like Germany are confronted with strong cost and 

innovation pressure. 

• Shorter product life cycles and customization: Enabled by faster technological 

progress and innovation cycles, the time between product generations is decreasing. 

For example, the development cycles in the automotive industry have been reduced 

from seven to five years within the last decade [Drat09]. Simultaneously, a stronger 
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customization increases the amount of product variants. Manufacturing companies 

can gain competitive advantage by entering the market first with new products and by 

offering individual product features. Therefore, new or changed production processes 

with a higher flexibility have to be set up in shorter time. 

• Technological innovation: The engineering of production systems, which stems 

traditionally from the mechanical engineering field, increasingly includes other 

disciplines from electronics and computer science. Besides deep knowledge in single 

disciplines and technologies, an increasing interdisciplinary understanding becomes 

important to establish new innovations. Through this technological progress the 

product to be manufactured as well as the production equipment become more 

sophisticated leading to a rising complexity of production plants and processes. 

• Shortage of resources: The growing demand for resources and their limited 

quantities lead to a shortage of raw materials and consequently, to cost increase. 

Manufacturing companies have to react on this trend with new production strategies 

and technologies for the optimization of resource consumption and minimization of 

waste. Besides economically motivated reasons, the desire for more sustainable 

production affects also ethical and ecological topics. 

The consequence for manufacturing companies is the need to empower their production 

systems to produce a high diversity of product variants, to rapidly adapt to new or optimized 

production processes, and to quickly react on current order or resource situations whilst 

handling a growing complexity of processes and equipment at the same time. Based on 

this, a number of requirements on automated manufacturing systems can be derived. In 

literature, a set of well-known terms are used to describe these. However, their exact 

meaning differs a lot sometimes. In the following, unambiguous definitions of the most 

important requirements are given for this thesis: 

• Flexibility: Flexible manufacturing systems are able to execute different production 

processes or process variants in a predefined scope of action that are determined a 

priori by design [ElMa05][West09]. 

• Adaptability: The capability to adapt the manufacturing system concerning its 

hardware structure and control system due to new or changing requirements is 

defined as adaptability [West09]. A related term is reconfigurability defined as the 

ability to add, remove, and/or rearrange the components and functions of a system in 

a timely and cost-effective manner [Fari08]. 

• Robustness and fault tolerance: To reach a high degree of availability, 

manufacturing systems need to withstand the influence of disturbances or faults 

without essential changes in the system’s behavior [Schr11][Vánc11]. 

• Reusability: The possibility to set up a new or changed manufacturing system by 

reusing existing engineering results, production equipment, and control procedures 

rises the efficiency of plant engineering tasks [Voge09a]. 
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• Agility: The combination of the above mentioned aspects to reach effectively the 

target objectives both in a business and a technical dimension [Tren09]. 

Empowering manufacturing systems to meet these requirements in a proper way, 

necessitates new demands on the control technology [Sünd06]. One of the most important 

ones is allowing an open and transparent communication between all interacting 

components of the automation system. This constitutes a key concept to enable flexible, 

robust, and easy adaptable production processes [Pohl08]. Besides the application of 

automation technology itself, the planning and realization tasks play a major role to set up 

such automated production facilities, which constitute highly complex systems. One goal is 

the application of effective and productive engineering processes to lower the overall efforts 

for developing production systems [Walt13]. Another factor which is gaining in importance 

is the period of time needed to put a production system in the desired operational mode 

[Nof09]. By time-saving, which leads to a reduced time-to-market, an immense competitive 

advantage can be gained. Efficient engineering strategies lowering costs and time for 

realizing advanced automation degrees are required accordingly. 

In summary, manufacturing companies have to handle a rising complexity concerning 

external demands, production technology, and engineering concepts in order to keep pace 

in the globalized market. 

2.2 Industrial Automation Systems 

Typical industrial automation systems are organized in a hierarchical structure 

characterized by a layered system structure containing a variety of heterogeneous devices, 

networks, protocols, and applications [Grob08]. The global control problem is split into 

hierarchically dependent sub-problems with decreasing time ranges (i.e., strategic, tactic, 

operational) assigned to hierarchically dependent decisional entities [Tren09]. There are 

significant differences between the automation of continuous and discrete production 

processes due to their physical conditions and the traditional separation of the domains 

[Mers11a]. Consequently, particular engineering tools, engineering strategies, controllers, 

and partly different field devices are used according to the kind of production process. 

Furthermore, there exist different terms describing the control tasks to automatically 

execute a production process. The term manufacturing control typically refers to the control 

of discrete production processes, whereas process control is used for continuous 

production processes and batch control correspondingly for batch processes. 

A well-known representation of this hierarchical structure is the Pyramid of Automation, also 

known as CIM (Computer Integrated Manufacturing) pyramid, which comprises four layers 

that realize particular automation tasks (see Figure 2-2). The lowest layer (i.e., Layer 1) 

contains the field devices that constitute the interface between the production equipment 

on the shop floor and the automation system. Therefore, electrical signals are transformed 
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into physical values (e.g., mechanical motion, air pressure) and measured quantities are 

translated back to electrical signals. Thus, field devices are separated in sensors that 

receive information about the production process and actuators that manipulate the 

technical process again [Dels12]. The scope of complexity of different types of field devices 

can considerably differ ranging from simple devices with one simple output like a proximity 

switch to servo drives with thousands of inputs and outputs (I/Os). 

 

Figure 2-2: Pyramid of Automation [IEC08] 

Layer 2 comprises different types of controllers that control and monitor the actions of the 

field devices to execute a certain technical production process (see Figure 2-3). The most 

widely used technology used here are Programmable Logic Controllers (PLCs) that are 

particularly applied for manufacturing control [Sünd06]. They execute a control procedure 

implementing the dedicated process sequence and the commands to communicate with the 

actuators and sensors on the shop floor of the production plant. The production process is 

usually subdivided into several disjunctive manufacturing steps, each executed by a 

production cell which is controlled by a PLC [Math09b]. For complex machine functionality, 

other controllers are used subordinated to the PLC; particularly for Motion Control (MC), 

Computerized Numerical Control (CNC), or robot control. For process control applications 

Distributed Control Systems (DCS) are common instead of PLCs. DCS organize a set of 

distributed controllers, which are typically feedback controllers, and often provide additional 

visualization options. Since their technology evolved very similar as PLCs over the years, 

the differences to PLCs in their functionality have become less straightforward [Nof09]. 

Besides the well-established PLCs and DCS, more and more Industrial Personal 

Computers (IPCs) gain in popularity [Voge09a]. They often run a Soft PLC which acts as a 

conventional PLC running on a PC platform. Often other systems are also included in this 

layer to supervise and monitor the production process like HMIs (Human Machine 



 

8 Dissertation 

Interaction) and SCADA (Supervisory Control and Data Acquisition) systems. Typical are 

also superior PLC levels where cascaded PLCs exercise local area control of various 

production cells and interact with the controllers beneath [Bolt09].  

The connection between the controllers among each other and the production equipment 

is realized by a direct wiring to their I/Os or by field buses using a wide variety of 

communication standards [Seit08]. The integration of controllers to higher layers is typically 

realized with the communication standards OPC (OLE for Process Control), OPC UA (OPC 

Unified Architecture), or conventional Ethernet and TCP/IP protocols [Seit08]. 

 

Figure 2-3: Hierarchy of controllers (layer 2) 

Manufacturing Execution Systems (MES) can be found on the third layer and represent the 

link between enterprise systems and the controllers on production level [Souz08]. Their 

major task constitutes manufacturing scheduling, which contains translating production 

orders into concrete control commands for the controllers on layer 2 and assigning 

manufacturing resources [Shen06]. Additionally, a MES supplies and processes information 

from the automation systems to superior business management systems [Math09b]. These 

are located on the highest layer, i.e., layer 4, which is particularly characterized by 

Enterprise Resource Planning (ERP) systems that organize the production planning among 

other things. They link all aspects from the bill of material required from suppliers to 

incoming custom orders and utilize different algorithms in order to efficiently schedule the 

production programs that are passed to the MES [Nof09]. 

According to the IT technologies that are used in the respective layer, two main areas can 

be identified with fundamentally different requirements. The business and production 

planning tasks on layer 3 and layer 4 are realized with wide-spread and cost-effective office 

IT systems and standard IT applications like PCs, Ethernet, and TCP/IP [Bang08]. On the 

two lower layers specific IT technologies are used because of the special characteristics of 

the environment they control [Marc08]. Thus, automation technologies are realized with 

specific equipment, like PLCs, field buses, and I/O devices, that are optimized for the high 
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requirements regarding reliability, availability, response times, safety, etc. [Bang08]. This 

leads to highly vendor-dependent properties of the equipment so that control equipment 

vendors usually offer engineering tools for programming and configuration based on 

proprietary software architectures and programming techniques [Esté12]. 

2.3 Control Engineering within the Production Life Cycle 

The development of industrial control systems is one of numerous tasks that are necessary 

for building an automated factory system. Control engineering is one essential task where 

the control applications are developed and the automation system is configured. To 

comprehend the typical characteristics of control engineering, its position in the overall 

factory planning process and its main tasks are described. Afterwards, today’s situation of 

control engineering is discussed and its deficits are assessed. 

2.3.1 Factory Planning 

Factory planning is the systematic, objective-oriented process for planning a factory. It is 

structured into a sequence of phases, extending from the setting of objectives to the start 

of production, also including supervision of the realization [VDI11]. It constitutes a part of 

the whole corporate planning so that dependencies to other planning processes exists, such 

as the product planning [Berg06]. 

Generally, factory planning processes are structured according to two principles: the 

temporary dimension in terms of planning phases and the functional dimension in terms of 

functional systems of the factory. The factory planning process is subdivided into seven 

sequential phases (see Figure 2-4) [VDI11]: 

• Setting of objectives: Tasks relating to factory planning are clarified including the 

analysis of the corporate and factory objectives and they are structured into work 

packages. 

• Establishment of the project basis: The data and information required for the 

planning work are gathered and generated. 

• Concept planning: The factory is planned as a totality with the objective to specify a 

feasible factory concept which best meets the factory objectives. The result is a rough 

layout of the factory concept and the factory building. 

• Detailed planning: The selected factory concept is planned out comprising a detailed 

description of the individual elements and the specification of services, which are 

required by suppliers. 

• Preparation for realization: The award of contracts to suppliers and the planning of 

the implementation are organized based on the specifications of the factory elements. 

• Monitoring realization: Securing and documenting the correct and proper 

construction of the building, its outdoor facilities, the factory equipment, and the 

expansion of personnel specified in the plan. 
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• Ramp-up support: The factory is put into operation including the ramp-up to the level 

of its intended performance and the evaluation with reference to the factory objectives. 

 

Figure 2-4: Phases of the factory planning process 

The factory planning process comprises the design of numerous different planning details 

that can be grouped to a number of functional systems [Pawe08]: procurement, production, 

logistics, technical support areas, internal organizational areas, distribution, and disposal. 

Each functional system depends on the following planning aspects characterizing the 

overall production process: product, technology, equipment, organization staff, and finance. 

The functional system and the planning aspects can be arranged in a matrix so that the 

exact design area of a certain planning task can be visualized (see Figure 2-5) [Pawe08]. 

Different types of factory planning can be derived from the life cycle of a factory [VDI11]. 

Development planning is the planning of a completely new factory on a so-called greenfield 

site. Modifications or extensions of existing factories are realized during replanning or 

reconfigurations. The shutdown of a factory is performed during demolition and revitalization 

applies when an industrial wasteland site is made available again. Since the production 

domain is an increasingly dynamic environment—with changing products, product variants, 

order margins, etc.—reconfiguration tasks are increasingly becoming important [Nof09]. 

For an efficient planning of an agile factory, methodologies are required that define the 

procedure steps and instructions to develop a suitable solution in the form of a plan of the 

factory and the implementation of the plan to reality [Berg06]. Therefore, three building 

blocks are necessary [Schn92]: 

• Modeling and structural concepts: Rules that define how information is 

represented as models (i.e., meta-models). 

• Design concepts and architectures: Fundamental design blueprints and alternative 

solutions (i.e., reference models/architectures). 

• Procedures, methods, and tools: Specification of the sequence and content of 

planning steps and support of single planning tasks with libraries, standards, mapping 

rules, etc. 
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2.3.2 Production Engineering 

Production engineering or production planning is a subset of the whole factory planning 

comprising all activities to specify, design, realize, modify, and start-up of the technical 

production plant [VDI08]. Since the details of the technological realization of the plant 

depending on the factory concepts are designed here, production engineering usually starts 

during the detailed factory planning phase. According to the functional classification of 

planning tasks, it comprises the functional system “production” (see Figure 2-5). Since the 

design of the plant depends heavily on the product itself and the product quantity, the 

planning aspect “product” has to be considered. Furthermore, the aspects “technology” and 

“equipment” are determined by designing the production equipment and the technologies 

used for realizing the desired operation mode like automation systems. 

As input of plant engineering mainly act two sources that can be regarded as results of a 

preceding analysis phase before the production system is planned: The product design and 

the results of the factory planning phases beforehand including descriptions of required 

production workflow and a rough layout of the required production lines [VDI08]. Production 

engineering requires the cooperation of different disciplines, particularly those involving 

processing, mechanical engineering, electrics, and automation engineering [VDI10]. 

 

Figure 2-5: Functional classification of production engineering within factory 

planning 

The production engineering process is also structured in several sequential phases (see 

Figure 2-6) [Drat09][Schm05][VDI08]: 

• Rough planning: The rough workflow logic comprising a sequence of the production 

steps is described in process plans that are usually depicted as Gantt charts. Based 
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on this, a detailed system concept considering the required production equipment is 

developed. 

• Detailed planning: The specifics of each individual workstation are worked out in 

respect of several engineering disciplines, which are usually performed sequentially. 

Today’s typical sequence starts with the design of the mechanical structure including 

pneumatic and hydraulic systems, followed by a planning of the circuit diagrams for 

the electrical components. It is concluded by the development of the control systems 

during control engineering. 

• Realization: The individual components of the production facility are assembled and 

built up to form the real production plant based on the planning results. 

• Commissioning: The correct wiring and functional capability of actors and sensors 

is checked. After that the interaction between mechanics, electrics, and the control 

software is tested. Usually, adjustments and tests are iteratively executed to establish 

and ensure the required behavior of the plant. Finally, the completely assembled and 

mechanically reviewed production system is put into operation. 

• Start-up of production: The approved plant is set into a stable operational mode 

according to the desired quantities and cycle times. 

 

Figure 2-6: Phases of production engineering 

Usually, several stakeholders are involved in a production engineering process [Schm05]. 

The most obvious one is the manufacturing company requiring a suitable production plant 

to produce a designated product and operating the plant. The realization and often already 

the detailed planning are executed by general contractors that are specialized in production 

facility development. Besides this first-tier supplier, other second-tier and third-tier suppliers 

are commissioned to provide special services. Both manufacturing companies and 

suppliers experience production engineering as a crucial task which is under a growing 

competition pressure regarding cost and time [Fay09][Schl08a].  
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A successful execution of a production engineering process depends more and more on its 

efficiency. This is mainly driven by the following three demands [Frag09]:  

• Quality assurance: Meeting the quality specification is fundamental to successfully 

realize engineering projects. 

• Shortening of development time: Shorter development times enable an earlier 

time-to-market for new or changed products and are essential to gain a competitive 

advantage over competitors. Furthermore, the time needed for reconfiguration and 

the preceding restart tasks have to be minimized to keep downtimes low. 

• Reduction of efforts: The reduction of development time accompanied by reduced 

efforts already leads to a lowering of costs. Besides this, cost reductions are applied 

to all cost drivers in terms of production equipment, development systems, and 

personnel. 

Two measures supporting these demands during production engineering are parallelization 

and lowering efforts for the execution of planning tasks. Today, the individual engineering 

disciplines within the detailed planning are normally executed sequentially. However, slight 

temporal overlappings are already found in practice and further parallelization is desired in 

order to save overall development time. The efforts that are needed for executing the 

individual planning tasks are heavily influenced by planning methods and tools supporting 

their application. Altogether, challenges to realize these measures have an organizational 

dimension concerning the optimization of the engineering methodology and a technical 

dimension asking for a flexible and reusable system architecture [Frag09]. 

2.3.3 Control Engineering 

The last task of the detailed planning is the control engineering after the development of the 

workflow logic and the mechanical and electrical subsystem [Thra05]. It comprises the 

software development for controlling and monitoring the production process executed by 

PLCs, HMIs, SCADA systems, etc. and the configuration of the communication systems like 

field bus systems [Eppl10]. The major part constitutes the development of the control 

software implementing the correct manufacturing control strategy, normally realized as PLC 

programs [Marc08]. The engineering of these control procedures is a key factor during the 

development of automated production systems. It is the connecting link for a correct 

cooperation of all disciplines and the last step before commissioning [VDI10]. 

A PLC is a special form of microprocessor-based controller that uses programmable 

memory to store instructions and to implement control functions [Bolt09]. Therefore, various 

logic, sequencing, timing, counting, and arithmetic operations are used to realize programs 

for controlling processes. Through its I/O system a PLC is able to connect to a certain 

number of machines and to control them in hard real-time [Paol05]. The well-established 

standard IEC 61131-3 defines a model and a set of five programming languages for the 

development of industrial automation software [IEC13][Thram11a]. It defines that a PLC 
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program is organized in several modules called program organization units (POUs) that can 

call each other with or without parameters. There exist three types of POUs [Tieg09]: 

Function (FUN), Function Block (FB), and Program (PROG). A POU may consist of other 

POUs and multiple expressions in one of the defined programming languages [Math09a]. 

Furthermore, the standard defines data types and standardized functions like timer, counter, 

and functions for type conversion. The IEC 61131-3 defines five PLC programming 

languages to program the POUs: Instruction List (IL), Ladder Diagram (LD), Structured Text 

(ST), Function Block Diagram (FBD), Sequential Function Chart (SFC). 

PLC programs for manufacturing control applications comprise typically two main parts: the 

implementation of the process logic and the integration of the field devices. The process 

logic implements the required sequences of operations in order to execute the desired 

process sequence. Usually, several routines implement different modes of the production 

equipment. Besides the logic for the normal operational mode, routines for start-up, shut-

down, safety functions, and fault handing are necessary [Gütt08]. Within the process logic 

the functions of the production equipment have to be accessed in the respective process 

steps. Therefore, functions of the field devices are used that are typically implemented in 

individual FBs. Inside a FB the functionality of a field device has to be implemented, which 

is normally described in their instruction manuals. Therefore, the programmer has to be well 

versed with the functionality of the field device and the respective functional roles of its 

individual I/Os in order to obtain the intended functionality [Yu11]. 

 

Figure 2-7: Reusability concept for PLC programming 

Usually, manufacturing companies use field devices of the same type multiple times in a 

production plant and deploy similar production processes or sub-processes for related 
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products or product variants. This makes it desirable to develop control programs with a 

high degree of reusability. A widely-used concept to promote reusability is the separation of 

device-specific program parts from device-independent control logics (see Figure 2-7). 

Therefore, the control logic for each field device is implemented in an own FB. In case of 

an exchange of devices, the high-level control logic remains unaffected and hence, 

modification efforts are kept low. To further increase the reusability of device FBs being 

suitable for similar field devices of the same device category, the device logics can be split 

up again in a common functional part and a hardware-dependent device driver. The device 

driver connects the generally implemented device functions with the specific I/Os of the 

respective field device type. Initially, the programming effort might be higher to apply these 

reusability concepts for developing modularized PLC programs. Despite this fact, the more 

often a program module is reused, the lower is the total programming effort. 

Besides the programming concept, the degree of reusability of PLC programs heavily 

depends on the chosen target platform. By means of the wide distribution of the IEC 61131 

standard, the transfer of PLC programs from one PLC system to another one is at least 

partially possible. An additional task of PLC engineering is the bus and hardware 

configuration and the assignment of the variables of the I/O image table to internal variables 

of the PLC program. In contrast to the programming languages, these configuration tasks 

are not standardized and heavily dependent on the respective PLC and its configuration 

tools.  

2.3.4 Situation of Control Engineering Today 

Today, the control engineering discipline is now more than ever a crucial phase of the whole 

plant engineering resulting from a growing amount of software. A survey of the Mechanical 

Engineering Industry Association VDMA from 2012 indicated that 30% of the production 

costs for engineering products already accounts for IT and AUT with a current growth rate 

of 11% [VDMA12]. One reason for this situation is the strongly risen amount of machine 

functionality implemented in software because of the higher flexibility and adaptability of 

software compared to pure electromechanical solutions [Rein07]. An example for the 

replacement of mechanics through software is the use of coordinated servo axes instead of 

mechanical cam disks for the realization of automated motion sequences [Walt13]. 

Additionally, the amount of software-based automation functions has significantly increased 

like monitoring, HMI, or complex control functions. These basically cannot be realized by 

mechanics to fulfill rising demands on system flexibility, performance, and cost reduction 

[Fant11][Voge09a]. Since these trends will probably continue during the next years, the 

importance of an efficient control engineering providing software with a high quality will 

further increase [Voge09a]. 

Despite its great significance, control engineering is located as the last planning task 

depending on all previous planning disciplines. Due to the historical development of 
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production technology, control engineering is rather underrepresented in the production life 

cycle, which still is dominated by the mechanical design [Zäh05]. Thus, an early 

consideration of control tasks and the linking of control engineering with the other planning 

disciplines are missing [Wüns07]. Additionally, control engineering is usually executed 

under a great time pressure. The delays that occurred during the previous planning 

disciplines have to be compensated during the control engineering in order to still meet the 

time schedule. Thus, the control software has often a low degree of maturity when 

commission starts with the consequence of further “development on site” [Drat09]. An 

investigation for the German Association of Machine Tool Builders (VDW) showed that 90% 

of the commissioning time is used for delays and activities related to electric and control 

devices and that 70% of this time delay was associated with errors in control software (see 

Figure 2-8) [Rein07][VDW97]. The high impact of erroneous software can be related to an 

inadequate consideration of software engineering within the plant engineering process 

regarding its increased importance [Kief08]. Due to shortening development cycles and 

thus, decreasing time periods for control engineering, the situation will be even aggravated 

in future. These deficits are mainly due to organizational issues that consider the role of 

control engineering within the production engineering process. 

 

Figure 2-8: Contribution of control software to project delay [Rein07] 

Besides this, the applied methods and technologies for the development of control software 

are responsible for its quality and particularly for the degree of its reusability. Today, the 

development of well-structured control programs providing clarity is often hindered by a lack 

of time and missing development guidelines, like the application of the presented reusability 

concepts (see Chapter 2.4.3). There exist no standards for the design and realization of 

industrial production processes so that control engineers usually rely on best practice 

solutions developed over the years [Math09a]. 

Another crucial point constitutes the PLC programming techniques according to the IEC 

61131 standard. Since control engineering was originally realized with hard-wired electrical 
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circuits, it is still associated to the domain of electrical engineering and mainly executed by 

engineers and technicians. Thus, the programming languages are very low-level and the 

programming takes place on signal level with poor abstraction mechanisms [Zühl10]. The 

low programming level requires a high degree of expert knowledge about the functionality 

of the field devices and how the provided functions can be accessed via the I/Os of the 

device [Yu10]. Additionally, profound knowledge about the hardware, the communication 

technologies, and the development environment of the PLC is necessary so that many 

hardware-specific details have to be considered. However, the FB concept already enables 

the encapsulation of application parts in FBs to modularize control applications and foster 

the reuse of application parts. Despite the support of some high-level programming 

features, decisive features of object-orientation such as inheritance are still rarely used 

[Zoitl09b].  

Although the IEC 61131 standard is well-established, a reuse of PLC code between different 

PLC systems is severely restricted by the use of vendor-specific extensions or only partial 

support of the IEC 61131-3 and proprietary engineering tools [Zoitl09b][Marc08]. Even if 

PLC manufacturers declare their systems compliant with the IEC 61131-3 standard, usually 

far-reaching differences exist between the implementation of PLC code in PLCs of different 

vendors [Fant11]. This is due to vendor-specific programming functions (e.g., object-

oriented concepts, pointers) and hardware-specific implementation details like the 

declaration of variables and I/O configurations which are not part of the standard. Besides 

the PLC programming, the configuration and parameterization of field devices is typically 

done via their own special engineering software which leads to increasing engineering costs 

[Mers10]. 

Moreover, the low-level programming induces a significant gap between process planning 

in previous planning phases and process implementation [Thra11a]. Input for the control 

engineering phase are usually very rough process plans defining the sequence of the 

control logic as simple graphical representations [Leit06]. These planning results cannot be 

used directly due to their insufficient detailing degree and the divergent representation of 

information. Hence, the process model is manually detailed and transformed to the 

corresponding implementation. Thereby, code is usually written from scratch or existing FBs 

from previous projects are individually adapted according to the “Copy and Modify” principle 

[Voge09a]. Today’s typical situation is the direct design of control procedures in the IEC 

61131 standard, specifically for the respective target platform leaving most of the work to 

the control code developers [Frey11]. 

In sum, the mentioned circumstances describe an inadequate situation of control 

engineering today, which is characterized by the following drawbacks [Favr06][Sünd06]: 

• Rigid monolithic architectures of control programs and variable structures 
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• High complexity of control programs due to insufficient clarity and abstraction 

mechanism inducing error-prone code 

• Limited reusability and adaptability of poorly structured and hardware-dependent 

code 

• Lack of an integrated information flow leading to an inadequate use of results from 

previous planning phases 

• High efforts for the initial programming, maintenance, and adaptations to existing 

programs 

Thus, control engineering has a huge potential for improvement to increase its efficiency 

leading to less efforts and shorter commissioning and overall project durations. This action 

field comprises two main aspects: 

• Early organizational integration of control engineering with other planning disciplines 

enabling integrated information flows and a stronger consideration of control aspects. 

• Methods and technologies for the development of control programs supporting 

modularization and abstraction to promote reusability, comprehensibility, and 

adaptability. 
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3 Design Concepts for Distributed Control Systems 

Production systems are increasingly expected to be more agile due to frequently changing 

market demands and shorter product life cycles [Feld09]. A promising approach to fulfill 

rising demands towards flexibility, adaptability, and reusability is the idea of modular and 

collaborative production systems. These would consist of distributed, autonomous, and 

reusable units, which operate as a set of collaborating entities [Mend08a]. Besides 

mechanical aspects, particularly the properties of the automation system are affected by 

the realization of such modular production systems. Therefore, distributed and modular 

control components are required that interact in order to accomplish control activities 

[Mend08a]. In this chapter, the trend towards a higher degree of distribution in the area of 

industrial automation is investigated and design concepts for the realization are reviewed. 

3.1 Trends in Industrial Automation 

Current requirements for industrial automation systems will entail far-reaching changes to 

the traditional properties of industrial automation systems portrayed as the automation 

pyramid (see Chapter 2.2). The main factors impelling this change are a rising amount of 

automation tasks and a heavily increasing networking through interconnecting different 

types of automation devices [Kage13]. The growing automation degree leads to a rising 

number of IT applications supporting the production process in different ways (maintenance, 

optimization, HMI, positioning systems, etc.). Additionally, on the lower automation layers 

the functions of field devices and, consequently, control procedures are getting more 

complex and increasingly diverse. Since automation devices exchange information and 

thus, run dependently on each other, the ability of a seamless connection of different 

automation devices is required. The term horizontal integration describes the 

interconnection of automation devices on the same automation level, whereas vertical 

integration means to link automation systems on different automation levels [Gerb14]. 

Since the 90’s it becomes more and more important to link PLCs with various field devices 

on lower automation levels and with production planning on higher automation levels 

[Seit08]. At the same time, current manufacturing control systems are often fragmented and 

isolated from higher level business systems [Jamm05a]. Usually, connections spanning 

several levels are realized via inflexible proprietary communication technologies, which 

results in an integration gap between field- and business-level [Feld09][Karn07]. Although 

standardized IT technologies are already common on business level, connectivity is mainly 

restricted through the use of specialized hardware and software on the manufacturing layer 

[Nguy08]. The mixture of different technologies leads to numerous breaks in the 
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communication paradigm due to a lack of standardized interfaces between these two worlds 

[Grob08][Math09a]. 

To overcome these drawbacks the interaction of various automation devices and 

applications needs to be managed by bridging the integration gaps to leverage flexibility 

and interoperability [Grob08]. The vision of future automation systems can be described as 

a distributed system capable of integrating a variety of heterogeneous devices into an 

interoperable and easily configurable network [Jamm05a]. Within this network automation 

devices act as intelligent, autonomous, and collaborative entities to provide flexibility and 

automatic reconfigurability [Mend11][Mend08b]. Functionality that is traditionally 

programmed within the PLC or DCS will be carried out by these devices directly [Bang09]. 

In the research context, they are often referred to as smart, intelligent, or mechatronic 

devices (see Chapter 4.11).  

The biggest driver for transferring this vision into reality is a strong IT-driven change in 

automation technology by making use of modern ICT [Mend11]. Increasingly, automation 

platforms, which have been fully proprietary systems in the past, use common IT technology 

today [Nof09]. Thereby, two major developments in information technology are decisive: the 

progress in semiconductor technology and the propagation of internet technologies. The 

rapid development of semiconductors led to low cost, high-performance computational 

components paving the way for the dissemination of embedded systems. The trend is still 

continuing towards significantly enhanced functionality, complexity, scalability, and 

connectivity enabling wired and wireless networks of large-scale distributed real-time 

embedded systems [Pere07]. The success story of the internet during the last decades 

provides software technologies dealing with highly distributed information [Paol05]. Adapted 

by automation technology, common internet technology like TCP/IP and Ethernet are 

becoming widely accepted among automation systems. 

Today, several research initiatives try to formulate frameworks and solutions to raise 

automation technology to the next level by adapting these IT trends. One of the most 

popular initiatives originating from Germany is the high-tech strategy Industrie 4.0. Its name 

declares the fourth industrial revolution by introducing the Internet of Things and Services 

into the manufacturing environment to create networks of physical devices incorporating the 

entire manufacturing process [Kage13]. The propagated achievements are profitable 

production of highly individualized products, dynamic business and engineering, optimized 

decision-making, and creation of novel business models [Kage13]. Similar concepts outside 

the German-speaking world exist like the U.S. initiative Advanced Manufacturing 

Partnership (AMP) announced in the USA in early 2012, which is followed by Nationwide 

Network for Manufacturing Innovation (NNMI) program, the Industrial Internet consortium 

(IIC) founded by General Electric, Intel, Schneider Electric, IBM, and SAP, and the EU 
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funding program Horizon 2020 initiated 2014 under the topic Factories of the Future 

[Maju11][Herm15].  

One general vision of these initiatives is the conversion of the traditional automation pyramid 

to an automation network of interacting and independently acting devices, which are often 

referred to as smart devices. The mentioned IT trends drive this change since they 

constitute the foundation to equip more and more production equipment with some 

computational power enabling the realization and dissemination of such next-level 

automation devices [Când09b]. As soon as hardware devices have their own embedded 

computers, each device can implement various programmable control functions and also 

provide some network interfaces and memory capacity [Vyat03]. 

In the scope of Industrie 4.0 these ideas are covered under the term Cyber-Physical 

Systems (CPS) describing a network of physically distributed embedded sensors and 

actuators equipped with computing and communication capabilities [Lee15]. The individual 

entities are capable of autonomously exchanging information, triggering actions, and 

controlling each other independently [Tabu06]. The scientific basis for describing the 

interaction of various independent computing devices within a CPS stems from the research 

field distributed systems. 

3.2 Distributed Automation Systems 

In computer science, systems with various cooperating software components are referred 

to as distributed systems. Such computing systems are subject of the research field of the 

same name, which constitutes the scientific basis for CPS. According to [Tane06] a 

distributed system is defined as a collection of independent components (i.e., computers) 

that appears to its users as a single coherent system. This definition implies the 

interconnection of autonomous and interoperable components and their collaboration to 

achieve a common objective. The main goals of distributed systems are making resources 

easily accessible, enabling distribution transparency, openness, and scalability [Tane06].  

The application of the principles of distributed systems to automation is considered as a 

promising approach for handling the increasing complexity and dynamics of automated 

manufacturing systems [Vall09]. A distributed automation system can be defined as an 

assembly of logical and, where necessary, spatially divided modules which cooperate to 

achieve automatic control functions and communicate over a network [Fran11]. Since the 

1990s, various research activities took place in this topic. Most of them propagate an 

increased agility and reactivity by means of bringing the intelligence and autonomy closer 

to the production equipment [Thom12]. 

To achieve the expected benefits, the adequate organization of the system as a collection 

of relatively small and easily replaceable or adaptable components is necessary [Tane06]. 

Therefore, a distinction is made between the software architecture and the system 
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architecture of a distributed system. The software architecture defines the logical 

organization of distributed systems into software components. The realization of a 

distributed system requires a system architecture to instantiate and place the software 

components on computing machines. As a result, the design of distributed systems is 

mostly about the layout of software components and the way they interact with each other. 

Their architectural style can be hierarchical, fully heterarchical, or semi-heterarchical (also 

called hybrid) [Tren09]. A hierarchical system is multi-tiered in several control levels 

distributing the decision-making to superior levels. In contrast, a fully heterarchical 

architecture promotes control by distributing each decision capacity to autonomous entities, 

without any centralized decisional control [Thom12]. The hybrid or semi-heterarchical 

architectures comprise both characteristics of hierarchical and heterarchical relationships 

by adding the interaction between modules at the same hierarchical level [Leit09].  

Today, control systems are typically hierarchical systems containing several automation 

levels (see Chapter 2.2). However, the individual automation functions are realized as 

centralized solutions characterized by a single decision node [Leit09]. For manufacturing 

control, the PLC concentrates all processing functions for executing the technical 

manufacturing process leading to complex control programs (see Chapter 2.3.4). Applying 

the idea of a distributed control system, the control software can be split up in several 

software components so that a complex control problem can be divided into several smaller 

ones. By dividing the overall automation task in several partial problems the handling of the 

rising complexity of the automation environment is supported, where single components 

can be developed more independently of each other [Mers10]. Additionally, software 

components enable an application of the Black Box principle where complex or specific 

code can be hidden to improve scalability and clarity. Instead of re-programming large 

monolithic control procedures, the individual software components can be easily rearranged 

and accessed via their interfaces [Grob08]. This saves efforts, when a system needs to be 

reconfigured or extended, and reduces the complexity so that the control software is easier 

to adapt and to maintain [Jamm05b].  

3.3 Concepts for Distributed Control Architectures 

The development of distributed control applications to enhance the complexity, flexibility, 

scalability, and reconfigurability of control software is a promising approach that reached 

considerable popularity in research [Leit09]. For the realization, a concrete design concept 

comprising design guidelines, behavior models, best practices, etc. are necessary. Three 

distributed control concepts that have gained relevance for manufacturing control 

applications are the IEC 61499 standard, Multi-agent Systems, and Service-oriented 

Architecture. In the following, their basic properties and existing applications for 

manufacturing control are presented.  



3 Design Concepts for Distributed Control Systems 

 23 

3.3.1 IEC 61499 

Basics of IEC 61499 

The international standard IEC 61499 defines an architecture for distributed controllers and 

guidelines for its implementations [IEC05]. The basic idea is to distribute control applications 

on various cooperating devices that today are usually executed in one centralized controller 

(i.e., a PLC) [Ivan09]. Thereby, the control application is divided in several FBs that can be 

deployed on different platforms. 

Based on the well-established PLC standard IEC 61131 the FB concept in IEC 61499 is 

expanded with event-triggered behavior. Besides the common data I/Os, FBs also comprise 

event I/Os that affect how and when data is processed (see Figure 3-1 left). By connecting 

the event inputs and outputs of FBs the execution sequence is specified explicitly [Zoitl09b]. 

Thus, a FB is divided in a head capturing the dynamics and the event ports and a body 

comprising the functionality and the data ports [Thra13]. An incoming event triggers the 

execution of the FB functionality by means of algorithms, which produce output events and 

data in respect of the current input and internal data.  

The standard defines three types of FBs: Basic FB (see Figure 3-1 middle), Composite FB 

(see Figure 3-1 right), and Service Interface FB. The internal behavior of a Basic FB is 

described by a Moore automaton, which is called Execution Control Chart (ECC). An 

incoming event can effect a state transition of the ECC so that a new state gets active and 

its associated algorithms are executed. The algorithms may be programmed in any 

programming language, including the languages of the IEC 61131, but also Java, C++, and 

others [deSo10]. 

An application is built by interconnecting FBs to a Function Block Network so that the 

execution order is explicitly specified [Ivan09]. Thereby, event ports can be exclusively 

connected to other events ports and accordingly, data ports just to data ports. By wrapping 

a function block network to a Composed FB, applications can be designed in a hierarchical 

way and new functionality can be generated by aggregating already available functionality. 

Service Interface FBs represent the interface to sensors and actuators by containing device 

specific execution control.  

 

Figure 3-1: Inputs and outputs of an FB (left), Basic FB (middle), and 

Composed FB (right) [Chri12] 
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The application design is done by interconnecting the respective FBs in a platform 

independent way represented in the Application Model. To execute the application later on 

a distributed network of control devices, the properties of the computing platforms have to 

be taken into account [Zoitl09b]. The control devices of the network are modeled in the 

Device Model. Each device can comprise Resources that are functional units with an 

independent controller. The deployment of the control application is depicted in the 

Distribution Model, where each Function Block is assigned to a Resource so that connected 

FBs of the same application can run on different devices (see Figure 3-2). 

 

Figure 3-2: FB Network and distribution of FBs on devices [Chri12] 

There exists several engineering tools supporting the development of IEC 61499 

applications [Preu11][Vyat11]. A commercial tool is ISaGRAF which combines IEC 61499 

and IEC 61131 development. Two IEC 61499 development environments for Java 

implementations are the wide-spread Function Block Development Kit by HOLOBLOC Inc. 

and Rockwell Automation and the open-source software tool FBench Project. Another open-

source initiative provides the 4DIAC-IDE engineering environment based on Eclipse and 

the FORTE runtime environment for small embedded devices implemented in C++. The 

CORFU Framework provided by the University of Patras uses Borland’s Delphi IDE for 

implementation. Despite the number of different tools, most automation projects using these 

tools have just been applied in academic and research labs because an acceptable level of 

maturity for industrial use is not reached yet [Vyat11]. 
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IEC 61499 Based Manufacturing Control 

Since the IEC 61499 aims on automation as application field, there exist a great number of 

research activities concerning manufacturing control. A good overview of the state of the 

art is given in [Vyat11] and [Thra13]. However, the adaption of IEC 61499 in industry-related 

projects and by control system vendors is rather low to even nonexistent [Mend11]. This is 

in particular due to unresolved semantic issues, a lack of clear application and development 

guidelines, and missing industrial-grade implementation platforms [Zoitl09b]. To this end, a 

large set of research works deals with modeling and realization aspects, since the standard 

leaves many questions about the application design and the implementation open [Vyat11]. 

Various approaches make use of model-driven engineering methods using particularly UML 

but also other modeling languages (see Chapter 4.2.3). 

Many research activities deal with the application of IEC 61499 in comparison with 

traditional solutions like PLCs and IPCs or migration paths between both worlds [Vyat11]. 

Hussain and Frey presented the migration of a PLC controlled centralized laboratory 

application into an IEC 61499 compliant distributed control application [Huss05]. In [Gerb08] 

a similar transformation of a customer-related test bed is presented and rules are defined 

to convert IEC 61131 function blocks to IEC 61499 compliant function blocks. Dai and 

Vyatkin describe three different design patterns to migrate IEC 61131 systems to IEC 61499 

[Dai12]. How the IEC 61131 and IEC 61499 standard can be harmonized to integrate both 

approaches in one automation system is investigated in [Zoitl09a]. 

However, industrial adoption could not yet gained since the number of actual 

implementations, even prototypes, is very limited [Häst11][Thra09]. Two case studies to 

investigate the implementation and application of IEC 61499 to industry-related setups were 

done for a shoe manufacturing plant managed by ITIA-CNR [Coll06] and a laboratory 

manufacturing plant of the TORERO consortium [Ferr05]. 

3.3.2 Multi-agent Systems 

Basics of Multi-agent Systems 

Multi-agent Systems (MAS) is a recognized field in computer science since its inception in 

the 1980s [Müll14]. Originating from the research field Distributed Artificial Intelligence 

(DIA), MAS are being characterized by decentralization and parallel execution of activities 

executed by agents [Leit04]. An agent is defined as a software artifact (i.e., computer 

system) that is capable of autonomous actions in its environment in order to meet its design 

objectives [Jenn98]. Therefore, an agent senses its environment as an input and produces 

output actions that affect it (see Figure 3-3) [Wool99]. 
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Figure 3-3: Interaction between agent and environment [Wool99] 

A MAS is a network of cooperating agents, which are autonomously and intelligent acting 

entities [Lepu11]. The main characteristics of agents in a MAS are [Paol05][Wool95]: 

• Autonomy: Agents perform most of their tasks without the direct intervention of 

humans and should have a degree of control over their own actions and their own 

internal state. 

• Interaction: The capability of an agent to interact with its environment and other 

agents is the basis for achieving a joint global objective. 

• Responsiveness: Agents perceive their environment and respond in a timely fashion 

to changes occurring there. 

• Proactiveness: When responding to their environment, agents should exhibit 

opportunistic, goal-directed behavior and take the initiative when appropriate. 

• Adaptability: An agent should be able to modify its behavior over time in response 

to changing environmental conditions. 

Experience has shown that the realization of all of the characteristics is very demanding. 

For this reason, the minimum requirements for a software artifact to be an agent are 

autonomy and interaction, whereas the other three characteristics being responsible for 

intelligent behavior can be seen as optional [Beck13]. 

There exist several ways of how an agent makes the decisions to select the next action to 

perform. Four different categories of agents according to the way of decision-making can 

be distinguished [Wool99]: logic-based, reactive, belief–desire–intention (BDI), and layered 

agents. Logic-based agents act as the result of a symbolic reasoning through logical 

deduction. Reactive agents simply map perceptual input directly to actions depending on 

their current state. The decision making of BDI agents is based on an internal deliberating 

behavior. First, they identify the goal they see to achieve, being in a certain state and 

receiving a certain input, and then use their knowledge to reach it [Paol05]. In layered 
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agents, decision-making is realized via various software layers, each of which is more or 

less explicitly reasoning about the environment at different levels of abstraction. 

Implementation methodologies and development environments are needed for the 

systematic development and implementation of MAS applications. The Foundation for 

Intelligent Physical Agents (FIPA) is an international organization with the goal to create 

agent standards promoting inter-operable agent applications and agent systems [FIPA02]. 

The work of the FIPA focuses mainly on the definition of a physical infrastructure named 

agent platform in which agents can be deployed [Paol05]. Since the FIPA standards 

describe an abstract architecture that cannot be directly implemented, additional 

implementation frameworks are needed. Various different MAS frameworks exist providing 

some predefined agent models and tools to develop MAS in compliance with the FIPA 

specifications [Fons02]. A well-known Java implementation platform for MAS is JADE (Java 

agent development framework) [Bell99]. 

Agent-based Manufacturing Control 

Many different approaches arose that apply the MAS concepts to a wide range of production 

automation tasks, particularly production scheduling and planning [Lepu11]. Detailed state-

of-the-art surveys regarding agent-based manufacturing are given in [Leit09], [Babi06], and 

[Shen06]. In the following, the most important research results regarding agent-based 

manufacturing control are summarized. 

A manufacturing paradigm that is heavily influenced by MAS is Holonic Manufacturing 

Systems (HMS) (see Chapter 4.3.4). Despite large similarities between both concepts, they 

differ in the fact that holons can be composed of other holons. Thus, HMS control 

architectures often mix hierarchical und heterarchical control structures [Chri94]. 

Furthermore, holons can also comprise hardware parts of the system in contrast to agents. 

Although some approaches for agent-based manufacturing control are not explicitly called 

HMS but make use of these extended properties so that MAS with a mix of heterarchical 

and hierarchical structures emerge. 

A well-known reference architecture for HMS called PROSA was developed at the university 

Leuven [Brus98]. It defines three types of holons: order holons, product holons, and 

resource holons. They are structured by using the object-oriented concepts of aggregation 

and specialization. Another HMS architecture is ADACOR (Adaptive Holonic Control 

Architecture for Distributed Manufacturing Systems) developed by Leitão [Leit04]. Within 

this architecture, manufacturing control is realized with supervisor holons that control 

operational holons representing the production equipment. This hierarchical control 

structure is supplemented by heterarchical interaction of the operational holons in order to 

dynamically react to disturbances and emergencies [Leit08]. 

Substantial research activities have also been performed at the Automation and Control 

Institute of the Vienna University. In [Vall09] an agent architecture is defined where each 
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automation agent is composed of a physical component and a software component. The 

software part is further decomposed in a low-level control (LLC) part controlling the 

mechatronic component and high-level control (HLC) part being responsible for the global 

behavior of the agent. Based on this architecture a framework for autonomous 

reconfiguration processes is developed in [Lepu11]. Thereby, the HLC determines the 

reconfiguration process and introduces new functionalities to the LLC. In prototypic 

implementations the IEC 61449 standard is used to implement the LLC agents [Hegn08]. 

Another active research group in the field of agent-based automation is the chair of 

Automation and Information Systems at the TU Munich (Prof. Vogel-Heuser). They propose 

a MAS architecture with two layers that differ in their functions and requirements, especially 

their real-time behavior [Ulew12]. The high level is located at MES level and the low level 

represents the field device level. For the realization of the field level agents a concept exists 

to implement agents directly on a PLC in the languages of the IEC 61131 [Schü11]. 

Moreover, a first approach for the model-based development of an agent-based automation 

system using SysML has been presented [Fran13]. Thereby, hardware-specific and 

software-specific planning information is separated in order to manage the complexity of 

the system design. 

The EU project PABADIS (Plant Automation Based on Distributed Systems) and its follower 

PABADIS'PROMISE (PABADIS Based Product-oriented Manufacturing Systems for Re-

configurable Enterprises) dealt with the development of distributed control architectures 

using MAS in order to increase the flexibility of manufacturing systems [Feld09]. The basic 

principle for the design of control applications is based on predefined building blocks 

encapsulated as control agents [Pesc05]. A distinction is made between order agents that 

are responsible for the processing of a dedicated product and stationary agents 

representing the resources of the production system towards the agent world and enabling 

the access to the traditional control level. 

Although a lot of research activities regarding MAS and HMS took place over more than 20 

years, industrial applications are very rare and the implemented functionalities of existing 

ones are considerably restricted [Lepu11]. An analysis of this situation by Leitão particularly 

blames missing methodologies for the development of such distributed manufacturing 

systems and for the integration of physical devices with the control software [Leit09].  

3.3.3 Service-oriented Architecture 

Basics of Service-oriented Architecture 

A concept for distributed computing that found its application particularly in the business 

process domain is Service-oriented Architecture (SOA). In this context, the main objective 

of SOA is to increase the capability of an enterprise to react to new requirements by reusing 

existing logic and providing a flexible IT infrastructure [Kraf05]. For this purpose, SOA 
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pursues synergies between the business and IT groups in an organization to offer greater 

flexibility [Bieb05]. 

There exist various definitions of SOA focusing different aspects; most of them refer to 

enterprise IT systems. A general definition according to Bieberstein defines SOA as a 

software architecture in which application functions are built as components (services) that 

are loosely coupled and well-defined to support interoperability and to improve flexibility and 

reuse [Bieb05]. A complementing definition with a more application-centric view by Erl 

describes SOA as a model in which the automation logic for executing a process is 

decomposed into reusable units of logic that are known as services (see Figure 3-4) [Erl05]. 

The operating principle within a SOA works according to the client-server-principle where 

the service is provided by a server (or service provider) and can then be used by a client 

(or service consumer). Therefore, each service needs a defined service interface and a 

service description to make the functionality of the service accessible. 

 

Figure 3-4: Encapsulation of a logic to services [Erl05] 

Accordingly, the major items of SOA constitute services that are the building blocks for 

realizing a certain process. Services encapsulate versatile, different applications in a 

reusable and openly accessible way enabling a platform and implementation independent 

usage [Melz08]. The size and scope of the application represented by a service can vary. 

When building an automation solution consisting of services, each service can encapsulate 
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a task performed by an individual step, a sub-process comprised of a set of steps, or even 

the entire process logic (see Figure 3-4) [Erl05]. 

The main properties of services are [Bieb05][Erl05]: 

• Abstraction: The implementation of the service is encapsulated, hidden from the 

outside, and wrapped by a service interface. This enables to focus on the most 

significant characteristics in a system and to manage complexity. 

• Autonomy: Services have control over the logic they encapsulate. 

• Composability: Composite services can be built by aggregation of existing services 

to form different levels of granularity and promote reusability. 

• Loose coupling: Services are designed to interact without the need for tight cross-

service dependencies. 

• Reusability: SOA encourages services to be reusable so that new high-level 

functionality can be generated by using existing services. 

• Service contract: The service interface and the terms of information exchange are 

described in an open-accessible service contract. 

• Statelessness: Services should minimize the amount of state information they 

manage and the duration for which they hold it. 

• Integration capability: Open-standard formats for communication protocols and 

service interfaces should be used to enable an interoperable service network. 

The expected advantages of SOA are manifold. From a technical view, the SOA paradigm 

permits a high interoperability and reusability of software components based on the 

encapsulation principle. Focusing the software engineering, SOA decouples the design of 

the software architecture from the system architecture. By this means, the services can be 

independently designed from the system architecture so that they can be deployed very 

flexible on a the available resources [Kraf05]. So far, SOA has been widely adopted by ERP 

solutions to enable a horizontal integration of the enterprise with its business partners and 

the flexible adaptation to new market conditions [Math09b].  

SOA for Manufacturing Control 

Despite being the youngest of the three concepts regarding the application in automation, 

SOA gained a great popularity in research activities concerning industrial automation during 

the last years. Several research projects dealt with the development of comprehensive 

service-oriented automation systems, whereas very few research activities focus the 

application of SOA for manufacturing control. 

There are a couple of related EU projects that dealt with the application of SOA in 

automation. During the SIRENA (Service Infrastructure for Real time Embedded Networked 

Applications) project pioneering activities took place concerning the application of the SOA 

paradigm on device level [Jamm05a]. A service-oriented framework was created for 

specifying and developing distributed applications in diverse real-time embedded 
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computing environments including industrial automation [Bohn06][Jamm05b]. Based on the 

results of SIRENA the SODA (Service-Oriented Device Architecture) project developed an 

ecosystem for the implementation of SOA on embedded devices [Souz08]. Using emerging 

standards from both the embedded-device and IT domains the SODA distributed software 

integrates physical devices into distributed IT enterprise systems [deDe06].  

In parallel to SODA, the SOCRADES (Service-Oriented Cross-layer Infrastructure for 

Distributed Smart Embedded devices) project issued new methodologies, technologies, 

and tools for the development of networked systems for automation applications [Souz08]. 

One core task of SOCRADES dealt with SOA as an enabler for the vertical integration of 

enterprise systems with smart embedded devices [Karn07][Spie09]. The objective was the 

direct connection of enterprise systems and manufacturing devices on shop floor so that 

enterprise applications can be empowered to use shop floor data directly to dynamically 

report trends, causes, and analysis [Nguy08]. Therefore, concepts were developed to 

integrate existing legacy devices without SOA interfaces into the SOCRADES network 

[Bang09][Died08]. Furthermore, SOCRADES investigated the model-based development 

of control applications using High-level Petri Nets (see Chapter 4.2.2). 

The follow-up project IMC-AESOP (Architecture for Service-Oriented Process-Monitoring 

and -Control) envisions SOA-based monitoring and control applications for batch and 

continuous production processes [Jamm14]. The objective is to create a new SCADA/DCS 

ecosystem where components can be dynamically added or removed and dynamic 

discovery for enabling the on-demand information combination and collaboration is provided 

[Dels12][Karn10]. A substantial role in all of these projects plays the SOA technology 

Devices Profile for Web Services (DPWS) (see Chapter 3.4.5). It is also used in other 

projects dealing with SOA for physical devices like LOMS (Local Mobile Services) and 

OSAMI (Open Source Ambient Intelligence) [Dohn10][Zeeb08]. 

Besides these collaborative projects, other research activities also work on concepts for 

realizing SOA-based factory automation. The chair of Process Control Engineering at the 

RWTH Aachen (Prof. Epple) works on concepts for applying SOA in process control 

systems. They investigate how the implementation of services for existing automation 

devices can be realized by the specification of communication and resource description 

models [Mers10][Merb11b][Merc12]. The approach Service-oriented Process Control 

(SOPC) was introduced that describes an implementation concept of services providing 

process control functions called Process Control Units (PCUs) [Yu10][Yu11]. The approach 

distinguishes among different types of PCUs: Single Control Units (SCUs) for individual 

actors, Group Control Units (GCUs) for actor groups or plant sections, and Action Control 

Units (ACUs) which represent the process-specific control sequences [Yu10]. The SCUs 

encapsulate the capabilities of the field devices so that their services can be used to build 

high-level functions in GCUs and ACUs by means of orchestration [Yu10]. 
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Furthermore, Tan and Yi suggest an architecture to expose device services to enterprise 

systems based on the technologies DPWS and OPC UA [Tan10]. Feldhorst et. al. 

introduced the approach SOA for Devices for building control and monitoring applications 

that are built upon device services [Feld09]. Their work focuses on the integration of legacy 

devices that do not have the sufficient computational resources for exposing services by 

means of an integration layer. Another approach by Groba et al. proposes an SOA-based 

integration layer between control and MES layer to establish flexible maintenance 

applications [Grob08]. The doctoral thesis of Mathes describes a framework for Time-

Constrained Services (TiCS) that focused the execution of Web Services (see Chapter 

3.4.5) in industrial automation [Math09a]. Based on this framework a real-time SOAP engine 

with a low memory footprint for PLCs was developed [Math09b].  

3.3.4 Comparison of the Concepts 

Generally, all three presented concepts for distributed systems have in common that their 

purpose is to provide flexibility by decomposing an overall problem in various encapsulated 

components that interact with each other. Nevertheless, they have different characteristics 

and certain dedicated fields of application due to their respective origin. The IEC 61499 

standard is clearly assigned to the automation domain because it is based on the 

established IEC 61131 standard extending it with an event-based function block 

specification [Mend11]. Its main purpose is the definition how distributed FBs on several 

executing devices can be synchronized in a heterarchical way. On the contrary, MAS and 

SOA are concepts from computer science for distributed computing. Agents originate from 

Artificial Intelligence and focus strongly on autonomy, self-organization, and proactivity 

describing the behavior of an agent [Ribe08]. Due to these characteristics, the adaption for 

automation applications is difficult due to the missing predictability of the system behavior. 

Driven by the domain of business IT systems SOA concentrates on generating high-level 

processes by using loosely coupled and reusable services. Whereas the IEC 61499 is a 

standard describing a behavior model tailored to automation tasks, the other two concepts 

are more general paradigms with a wide range of existing definitions. How agent systems 

and SOA have to be implemented is heavily dependent on the respective definition as well 

as the selected implementation concepts and technologies. Regarding this matter, the IEC 

61499 has to be classified on a different concretization level. 

Even if the concepts differ in objectives and characteristics in theory, their application in 

manufacturing control is often very similar. Concerning the definition of the basic 

components on the lowest granularity level—as FBs, agents, or services—all existing 

applications have in common that these represent the functionality of the field devices. This 

is due to the fact that a device is the last frontier where high level process workflows are 

transformed into a structured collection of physical actions to be invoked in a particular 

sequence [Când09a]. Additionally, the concepts don’t generally exclude each other so that 
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several approaches combine the concepts. An example is the use of IEC 61499 as an 

implementation concept of MAS or SOA [Lepu11]. An approach to combine the 

characteristics of service-oriented and multi-agent methods is called Service-oriented Multi-

Agent Systems (SoMAS) [Mend09b]. This shows that the interpretation of the concepts and 

their application can be very overlapping so that their commonalities reinforce regarding 

certain fields of applications. 

All three concepts have not arrived in industrial practice of automation technology yet. For 

practical applicability mature technologies and proper reference models for the analysis, 

design, debugging, validation, deployment, and verification of the system are needed 

[Leit09][Thra06]. Besides this, a migration path is needed to enable a gradual introduction 

of new technologies starting from traditional PLC-based automation concepts [Preu11].  

An often neglected aspect with huge impact on applicability is the availability of engineering 

methods to bridge the gap typically separating theory from practice [Paol05]. Today, well-

integrated design methodologies facilitating component-based design throughout the entire 

design cycle of automation systems are still missing [Pang10]. The application of these 

emerging concepts and their technologies need to be accompanied by engineering 

methodologies to enable more flexible and reconfigurable production systems [Preu11]. A 

structured approach for the development of distributed control systems is necessary for 

assisting the control engineer in programming and in understanding the control programs 

[Sünd06].  

In contrast to the other two concepts, SOA provides a methodological foundation supporting 

the design of software applications in a service-oriented manner. This is due to the fact that 

its objective is to generate adaptive business IT systems by a process-oriented composition 

procedure [Heut07]. Consequently, there already exist design principles and patterns that 

could help to overcome this lack of design methodologies for distributed control procedures.  

3.4 Design and Implementation of SOA Systems 

The SOA paradigm does not address design specification aspects nor implementation 

aspects [Bohn09]. Hence, the prerequisite to develop service-oriented architectures are 

methods for the design of collaborating services and technologies for implementation 

[Mend08b]. A firm set of design standards is critical to achieve a successful SOA providing 

reusability, composability, and agility [Erl05]. Since SOA has its origins in the business 

process domain, most of the existing approaches, literature, and best-practices focus on 

the design of business-driven IT systems. A selection of well-known methods for generally 

designing SOA applications, concepts for composition and specification of services, and 

technologies for realizing SOA are presented below. 
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3.4.1 Process-oriented Design Strategy 

Today’s enterprise IT systems require a flexible architecture that focusses on the business 

process in order to adapt processes quickly and with low efforts [Melz08]. SOA provides the 

foundation for adopting a process-oriented application design, which is particularly desired 

for business process management (BPM) [Kraf05]. This is reflected by the far-reaching goal 

of SOA to bridge the gap between analysis and implementation by linking the views 

regarding the desired behavior of the system (outer view) and the technological 

implementation of this behavior (inner view) [Erl05]. In the context of BPM this fact is 

expressed by the mismatch between business-related and technical concepts [Kraf05]. To 

improve this situation, a mapping of the business requirements documented as business 

logic and the IT organization comprising the applications for realizing the business process 

is required [Erl05]. By means of its abstraction and composition principles, SOA provides 

favorable capabilities to ease the mapping procedure. The services provide the backend 

functionality that is required to implement the desired process functionality [Kraf05].  

The general process-oriented approach starts with the definition of the required process in 

form of a process description (see Figure 3-5) [Erl05]. Therefore, the business process is 

broken down into a series of granular process steps that are part of a workflow logic defining 

the sequence of the steps [Erl05]. A well-known modeling language to represent the 

process description is BPMN (Business Process Modeling Notation) that has been defined 

in order to support a standardized, graphical representation of business process diagrams 

[Kraf05]. 

 

Figure 3-5: SOA mapping procedure 

Since the individual process steps are supposed to be realized by services, the demanded 

functionality needs to be specified. To design a solution how the process can be realized, 

an executable process logic defining a concrete control flow by using control structures is 
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developed from the process description [Erl05]. To make the process steps executable, 

suitable services have to be bound to the process logic. This task can be described as a 

mapping between the specified requirements and available services forming the building 

blocks of the solution. 

The most advanced mapping procedure with the highest degree of flexibility can be 

achieved by dynamic binding of services [Mend11]. In this case, services are discovered, 

selected, and bound dynamically during runtime. Therefore, sophisticated methods and 

tools are necessary that determine automatically the services needed from the abstract 

process description and the selection of the most suitable ones regarding current 

requirements. Eventually, a more common solution, which is sufficient for most purposes, 

is development-time binding where suitable services for enabling the desired process are 

selected before runtime [Kraf05]. 

3.4.2 Service Specification 

Since a service works according to the Black Box principle, two aspects are required for its 

full specification: The external view represented by the service description and the internal 

details for implementing its behavior. The link between both views constitutes the service 

interface, which comprises a set of related operations to access the functionality of the 

service in a designated way (see Figure 3-6). Each operation represents a certain control 

logic to perform a unit of work and sends and receives messages to exchange input and 

output information [Erl05]. Thus, the control logic of the service implements the internal 

functionality of the service, which is hidden by the service interface (see Figure 3-6). 

 

Figure 3-6: Structure of a service and its service description 

The service description is needed so that potential service users are aware of the 

functionality of the service and how they interact correctly with it [Melz08]. For accessing a 

service the required operation and the exchanged information within the input and output 

messages have to be specified. Besides such general information about the functional 

properties of a service, a service description can comprise a wide range of further 
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information like details about the communication technology and non-functional 

requirements [Melz08]. 

Service descriptions are needed to find suitable services for current demands so that they 

constitute the enabler to execute a mapping from required functionality to services. The way 

how the service functionality is described mainly influences how convenient matching 

services can be found. For this reason, the name of the service and its operations should 

meaningfully express the functionality they provide. In [Erl05] guidelines for the naming of 

services are given. Dependent on the type of service a consistent naming scheme using a 

noun or verb or a combination of both is proposed (e.g., “Invoice”, “SalesReporting”, 

“VerifyID”) [Erl05]. The concrete expression should ideally be derived from an existing 

company standard or even better an industry standard. 

3.4.3 Composition Principles 

A composition principle specifies how services are aggregated to obtain new functionality 

that can be encapsulated to a high-level service again. Generally, there exist two different 

composition principles. The first one is denominated orchestration and constitutes the 

central coordination of process logic by sequencing and synchronization (see Figure 3-7 

left) [Când09a]. Thus, each service is independent of the respective process logic where it 

is used within and all knowledge about the process flow is centralized in one master. To 

implement the desired order of execution, the control flow has to be implemented according 

to an executable orchestration language and it has to be executed with an orchestration 

engine. For business processes a process description in BPMN is then often combined with 

a service orchestration with the executable languages BPML (Business Process Model 

Language) or BPEL4WS (Business Process Execution Language for Web Services) 

[Bohn09]. 

 

Figure 3-7: Service orchestration (left) and choreography (right) 

In contrast, a complete decentralized workflow of cooperating services is called 

choreography (see Figure 3-7 right) [Bohn09]. Therefore, every service must know its own 

role within a process, i.e., what the service supports and how it reacts in a particular context 

[Când09a]. In fact, the complete process information is distributed over the services. The 
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absence of a central controller can help to make choreographies more robust and flexible 

than orchestrations because single services act more autonomously. Nevertheless, the 

major advantage concerning adaptability of the orchestration principle is that the 

orchestration logic is concentrated in one place and can therefore easily be changed 

[Kirk08]. Consequently, services can be designed independent of each other and the 

respective process leading to a loose coupling of services. On this account, the use of the 

orchestration principle is much more popular in practice than choreography, since the 

services are more flexible and reusable. Both principles do not mutually exclude each other 

so that software architectures mixing orchestration and choreography are also possible. 

3.4.4 Reference Architecture for Services 

By means of the mentioned composition methods, various levels of services can be created. 

The question arises how services are specified in an optimal way so that the mapping 

procedure between process description and available services runs as smoothly and 

straightforward as possible. Thereby, the determination of the optimal granularity of a 

service is a crucial task because a too high abstraction level is often contradictory to the 

reusability of a service [Bieb05]. However, fine-grained services increase the complexity of 

the superior process and the gap between process and implementation [Melz08]. The 

definition of a general service structure within a SOA is a precondition for the effective 

design of SOAs in order to break a complex application landscape down into manageable 

parts [Kraf05]. A basic concept for structuring the functionalities within a SOA constitutes 

the separation of concerns to enable reusability and clarity [Erl05]. This is enabled by means 

of the introduction of services layers and service types for defining a reference architecture 

(see Chapter 4.2.1) according to the respective application domain.  

By means of composition of services to high-level services various specialized service 

layers can be built, whereby each layer can abstract a specific aspect of the overall solution 

[Erl05]. A four-layered SOA architecture is described by Krafzig (see Figure 3-8 left) 

[Kraf05]: 

• Enterprise layer: contains application frontends to communicate with the user and 

public enterprise services to enable cross-enterprise integration. 

• Process layer: comprises process-centric services 

• Intermediary layer: consists of services that act as facades, technology gateways, 

adapters and services that add functionality to existing services. 

• Basic layer: represents the foundation of the SOA providing core business logic and 

data. 

A further subdivision can take place by the classification of services with the same 

characteristics as service types according to their kind of functionality and their properties 

(see Figure 3-8 right). In this instance, Krafzig defines several service types for each service 

layer, such as the basic layer contains data-centric services and logic-centric services 
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[Kraf05]. The specification of these basic services is particularly critical, since they are not 

composed of other services and therefore constitute the fundament of a SOA. 

 

Figure 3-8: Classification of services according to layers (left) and types (right) 

3.4.5 SOA Technologies 

How these fundamental concepts and principles of SOA are realized in a respective 

software architecture depends on many implementation details. Several SOA technologies 

exist for making software components available as services in a network. Each of them 

provide a different set of features and uses distinct communication technologies. The most 

common SOA technology are Web Services that helped SOA to distribute and establish 

[Bobe08]. A lot of SOA definitions and application concepts consider Web Services 

synonymous with service-orientation so that this assumption often limits SOA as a purely 

technical concept [Luth12]. Still other technologies exist besides of Web Services for 

realizing SOA. In the domain of automation technology notably emerged DPWS and OPC 

UA [Kirk08][Souz08][Leit07].  

Web Services 

A Web Service can be defined as a software system designed to support interoperable 

machine-to-machine interaction over a network [W3C04]. This implies a family of 

technologies that consist of specifications, protocols, and industry-based standards that are 

used by heterogeneous applications to communicate, collaborate, and exchange 

information among themselves in a secure, reliable, and interoperable manner [Bieb05]. 

The World Wide Web Consortium W3C defines a basic set of technologies which consists 

of WSDL (Web Service Description Language), HTTP (Hypertext Transfer Protocol), and 

SOAP (originally Simple Object Access Protocol, not an acronym anymore) [W3C04]. 

Additionally, XML (Extensible Markup Language) serves as basic description language. A 

service description is represented by WSDL  specifying the service interface as a machine-

processable and human-readable XML file [Bobe08]. A WSDL file contains an abstract part 

for defining the service operations, message formats, and data types and a concrete part 

determining the technological details including transport protocols and network locations 
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[Melz08]. Other systems interact with the Web Service in a manner prescribed by this 

description using SOAP messages, typically conveyed using HTTP [W3C04]. SOAP is a 

XML-based messaging protocol that is used to encode the information in Web Service 

request and response messages before sending them over a network [Bieb05]. 

A basic W3C Web Service can be extended and specialized for different applications by 

various technologies that are summarized as WS-* specifications. Therefore, a Web Service 

profile defines the subset of protocols used for implementing a specific application, required 

adaptions of the protocols, and the way they should be used in order to achieve 

interoperability [Bohn09]. 

DPWS 

The Devices Profile for Web Services defines a Web Service profile based on the W3C Web 

Service standard extending it with several WS-* specifications and profile-specific adaptions 

[Bohn09]. The objective of DPWS is to implement Web Services on small devices to enable 

Web Services on embedded systems [Bony11]. The research project SODA promoted 

DPWS as an OASIS (Organization for the Advancement of Structured Information 

Standards) standard and other projects like SOCRADES made use of it [OASI09]. 

The additional WS-* protocols are: WS-Discovery, WS-MetadataExchange, WS-Transfer, 

WS-Eventing, WS-Security, WS-Policy, and WS-Addressing (see Figure 3-9 left). The WS-

Discovery protocol enables the dynamic publication and discovery of services during 

runtime [Bobe08] . After the discovery process WS-MetadataExchange and WS-Transfer 

are used to gather more information (i.e., meta data) about a DPWS device besides the 

pure endpoint address [Bohn09]. WS-Eventing offers mechanisms for event-based 

messaging so that events can be provided by services and subscribed by other services 

[Tan10]. A secure transfer of SOAP messages going beyond the capability of HTTP is 

enabled by WS-Security. WS-Policy is used to describe mandatory and alternative 

properties for interacting with a service in a generic way [Math09a]. By means of WS-

Addressing a transport-neutral addressing scheme is provided so that the addressing of 

services and messages does not depend on the underlying transport protocol [Math09a]. 

DPWS defines the concept of a DPWS device and distinguishes between a hosting service 

of a device and a hosted service (see Figure 3-9 right) [Bobe08]. Each device can provide 

a number of hosted services—corresponding to normal Web Services—which are managed 

by the hosting service of the respective device. The hosting service offers metadata that 

describes the DPWS device and its properties like manufacturer, model name, model 

number, and serial number. The development of DPWS itself and tools for the application 

and implementation of DPWS were subject of various research projects. As a result, the 

initiatives SOA4D (SOA for Devices) and WS4D (Web Service for Devices) were initiated 

for providing open source DPWS development toolkits [Mens11][Zeeb10]. 
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Figure 3-9: DPWS protocol stack (left), hosting and hosted service (right) 

OPC Unified Architecture 

OPC UA is mentioned here since it is currently gaining in popularity and acceptance in 

automation technology. Its basis is OPC, a wide-spread technology standard specified in 

1996 for the uniform access from control and supervisory systems to field devices 

independent of the different field bus systems [Drat09]. Working on the server-client-

principle OPC is mainly used for the horizontal and vertical integration of different 

automation systems like PLCs and high-level IT systems. A common application scenario 

is the visualization of shop floor data in HMIs. Since OPC has some drawbacks, such as 

the dependency on Microsoft Windows, the new standard OPC UA was developed and 

published 2006. OPC UA claims to offer a platform independent, secure, and performant 

data transmission between software applications [Leit07].  

Apart from mere data exchange OPC UA can realize function calls with the concepts 

Methods and Programs. Programs model complex, stateful functionality that can be 

managed by calling methods. Methods represent basic functions that affect the behavior of 

a Program by causing specified state transitions [OPC07]. With these features OPC UA is 

able to realize encapsulated functions as services in terms of SOA.  

The OPC UA stack defines how the OPC UA clients and servers have to be implemented. 

For coding and encoding of data UA XML and UA Binary are supported that are either used 

with the transmission protocol HTTP/SOAP for XML-based massages and TCP for binary 

messages [Kyus11]. There exist different implementations of the OPC UA stack in C/C++, 

.NET, and Java that are developed by the OPC Foundation and other companies. The 

detailed OPC and OPC UA specification can be achieved from the OPC Foundation. 
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4 Concepts for Efficient Control Engineering 

The development of control software constitutes today a highly complex task with growing 

importance and great room for improvement within the production engineering process (see 

Chapter 2.3.4). Besides engineering of traditional control systems, the establishment of 

mature engineering methods is still an open action item to leverage innovative distributed 

control architectures into industrial practice (see Chapter 3.3.4). Thus, innovative methods 

are needed to enable an optimal design and to lower the efforts of control engineering. 

From computer science emerged numerous concepts, methods, and tools to improve the 

efficiency of software engineering. Some of them constitute a promising foundation to 

improve the control engineering in terms of the overall efficiency and clarity for the user. 

Since control engineering has special requirements and prerequisites compared to purely 

IT-related software solutions, software engineering methods need to be transferred and 

adjusted to fit the needs of automation technology. Special characteristics of control 

software are its strong dependency on the physical devices they control and stringent 

demands on the behavior of the system regarding real-time and reliability [Berg06]. 

Moreover, a basic difference between pure IT software and control software is the fact that 

IT software is already the desired result whereas control software is used as a means to 

execute a physical process [Berg06]. 

This chapter presents several existing approaches that can help to improve control 

engineering by integrating it with other planning domains, providing clarity for the design, 

and making engineering results continuously available and reusable. Besides some general 

concepts from software engineering the method of Model-driven Engineering is introduced. 

Furthermore, some comprehensive engineering concepts and helpful engineering 

standards are presented. 

4.1 General Concepts from Software Engineering 

Software engineering comprises methodologies for the analysis, design, and modeling of 

software according to existing requirements [Alva13]. Two major aspects of software 

engineering are programming paradigms to design software and procedure models that 

guide through the single phases of the software life cycle. Both have already successfully 

been applied for developing control software. 
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4.1.1 Programming Paradigms  

There exist numerous programming paradigms representing a certain style with defined 

characteristics of the programs. Two well-known paradigms with growing impact on control 

engineering are modularization and object-orientation (OO). 

A proven remedy to manage the rising complexity of software systems is modularization 

(see Figure 4-1). By means of a well-defined segmentation of the overall problem into single 

aspects, modularization improves the flexibility and comprehensibility of a system while 

allowing the shortening of its development time [Parn72]. The latter is enabled by reusable 

software modules that can be applied as partial solutions within various projects. 

Furthermore, encapsulating software to modules decreases the overall complexity for the 

user by hiding the implementation details of the module [Frie09]. Such an encapsulated 

software unit is then called module or software component, accessible via defined inputs 

and outputs, and its functionality is as a rule suggestible via parameters. A related concept 

is Component-based Development standing for a design approach that assembles software 

components from a variety of sources to software applications [Bieb05].  

In control engineering, modular design principles are already widely accepted and 

established. The procedural IEC 61131 programming concepts FUNs and FBs provide tools 

to realize modular PLC programs to a certain degree (see Chapter 2.3.3) [Frie09]. Apart 

from applications on conventional control systems, advanced modularization concepts 

constitute the fundament for distributed control applications with collaboration of various 

modules running on different devices (see Chapter 3.3) [Fran11].  

 

Figure 4-1: Encapsulation of software to modules 

The second paradigm object-orientation is one of the most important programming 

paradigms and is based on a modular design [Berg06]. The single entities of an OO system 

are called objects which have their unique identity, own local state, and operations that can 

change this state [Wehr09]. Besides objects the core elements of OO are classes. A class 

represents a type of objects with the same characteristics and describes their structure and 

behavior [Weil08]. By instantiation a new object is generated with properties specified in the 

respective class. A basic concept of OO is inheritance indicating a hierarchical relation 
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between two classes whereby one subclass takes over the properties of a superior class 

[Berg06]. 

During the last decade many activities have been ongoing to establish object-oriented 

concepts for PLC programming [Wern09][Wits09]. Although the IEC 61131-3 already 

comprises some basic encapsulation concepts with Functions and Function Blocks, 

important characteristics of OO like inheritance have been missing for a long time [Thra11a]. 

The release of 3rd edition of the IEC 61131-3 introduces some object-oriented programming 

(OOP) features like interfaces and methods for FBs [IEC13][Vyat13]. For the time being, 

the PLC tool CoDeSys is the only known programming environment supporting these 

extensions [Ober15]. Until now, some PLC manufacturers also provide their PLC 

programming tools with object-oriented extensions, like IndraLogic from Bosch and TwinCat 

from Beckhoff, since most of them are based on the tool CoDeSys. 

Apart from mentioned possibilities of modular and object-oriented programming of PLC 

programs, there exist numerous approaches that make use of OO as a general engineering 

paradigm. Since automation control is heavily dependent on the production equipment they 

control, these approaches are gathered under the term mechatronic systems design where 

physical devices and software are regarded as one unit (see Chapter 4.3.2). 

4.1.2 Life Cycle Models 

Life cycle (or procedure) models specify the single steps during a software development 

process from specification to testing and maintenance. They determine activities with the 

required input and output information and facilitate a structured process, which optimizes 

the engineering and data workflow and the resource utilization [VDI10]. The two most 

popular life cycle models are the Waterfall model and the V-model [Kleu10]. 

 

Figure 4-2: The Waterfall model (left), V-model (right) 
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The Waterfall model is a simple linear sequence of the phases evaluation, requirements 

specification, analysis, design, development, validation, and deployment (see Figure 4-2 

left) [Royc70]. It is the oldest life cycle model and constitutes the foundation for all upcoming 

models by defining the general phases of software development [Rupa10]. Initially, all 

phases were arranged in a strict sequential manner from the first phase to the last phase. 

Later on, the model has been extended by arrows allowing to go back to previous phases 

to carry out improvements [Kleu10]. 

The V-model comprises similar phases as the Waterfall model but arranges them in the 

shape of a V (see Figure 4-2 right). The left leg of the V represents the evolution of 

requirements into ever smaller components through the process of decomposition and 

definition, whereas the right leg comprises the integration and verification of the system 

components into successive levels of implementation and assembly [Rupa10]. Thus, 

development phases are confronted with their related testing phases to enable an iterative 

development procedure. If problems occur during testing, all dependent design results need 

to be improved and tested again [Holz07]. The vertical axis depicts the level of 

decomposition so that the more complex a system is, the deeper the V shape gets with 

correspondingly larger number of stages [Rupa10]. 

 

Figure 4-3: V-model for mechatronic system design [VDI04] 

In opposition to normal IT software, the development of control software is a part of 

production engineering and dependent on other engineering disciplines, such as 

mechanical design (see Chapter 2.3.2). Thus, lifecycle models are used for the overall 
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engineering process and constitute usually of a temporary sequence of planning phases 

like the Waterfall model. Besides this, the V-model has also gained in popularity for 

application in production engineering processes due to its adaption for the development of 

mechatronic systems (see Chapter 4.3.2). With the guideline VDI 2206 a general design 

methodology is specified that can be applied, among others, to production systems [VDI04]. 

This V-model represents the logical sequence of the sub-steps: requirements, system 

design, domain-specific design, system integration, and product (see Figure 4-3). The 

methodology is inspired by Systems Engineering where the system as a whole is 

interdisciplinarily specified first (see Chapter 4.3.5). Afterwards, the domain-specific details 

are worked out in a preferably parallel way. One of the domains is information technology 

where control engineering tasks can be assigned to. During system integration, a 

continually assurance of properties takes place to check if the actual system properties 

coincide with the desired system properties. This cycle can be run multiple times for 

stepwise concretization of the product. 

4.2 Model-driven Engineering of Control Procedures 

From computer science emerged the concept Model-driven Engineering (MDE) for the 

specification, design, and implementation of software applications by using models. In 

literature, the term Model-driven Development (MDD) is mainly used in the same context 

as MDE so that for this thesis their equivalence is expected. 

4.2.1 Basic MDE Concepts 

MDE stands for software development methods promoting models as primary engineering 

artifacts that are gradually refined towards the running application based on design 

decisions made by engineers [Häst11]. Models enable a higher level of abstraction by hiding 

or masking details, bringing out the big picture, or by focusing on different aspects [OMG05]. 

Developers are empowered to concentrate on the required functionality and the overall 

architecture of the system instead of spelling out every detail of the implementation [Atki03]. 

Therefore, MDE technologies combine modeling languages to formalize the properties of 

the software and transformation engines to generate platform-dependent code [Schm06]. 

The usage of models continues the stepwise increasing abstraction degree for software 

development during the last decades (see Figure 4-4). Low-level programming languages 

like assembler languages and machine code are close to the respective computer hardware 

and require just few or even no compilation or interpretation for generating an executable 

program. Much more abstraction from the underlying controller architecture is given by 

procedural or object-oriented languages. A further step constitutes the use of graphical 

modeling languages where programs are designed graphically. 
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Figure 4-4: Increasing abstraction of programming languages [Weil08] 

Since models help to understand a complex problem and its potential solutions by 

concentrating on certain facts, the major advantage of MDE is that the models are less 

bound to the underlying implementation technology and closer to the problem domain 

[Seli03]. This allows designing an application once and targeting it towards distinct software 

and hardware platforms that are still unknown during the initial development [Hovs06]. 

Applied to the control system development modeling promotes a better handling of the rising 

size and complexity of control software and a consideration of growing safety and quality 

requirements [Preu11]. 

The key foundations for the support of MDE are visual modeling languages, meta-level 

description techniques, and OO [Atki03]. Modeling languages, also referred to as 

description languages, serve for the representation of modeling aspects and consist of a 

syntax, grammar, and semantics [VDI10]. In particular, visual modeling languages with 

graphical notations support effectively human visual perception and thus, can be simply and 

intuitively applied by the engineer. The rules for creating a model are specified in 

metamodels, which presents the conceptual entities, their attributes, and the relations that 

comprise the vocabulary of a type of model [Clem10]. A distinction is made between 

general-purpose and domain-specific modeling languages. In contrast to general-purpose 

modeling languages like UML and SysML, domain-specific modeling languages are subject 

to a particular problem domain or field of application [Henn10]. Such domain-specific 

concepts can be defined by using OO, since it enables flexible language extensions by 

letting developers extend the set of available types that can be used for modeling [Atki03]. 

These concepts are captured in specific metamodels, which define the relationships among 

concepts in a domain and precisely specify the key semantics and constraints associated 

with these domain concepts [Schm06].  

A formal approach for creating a generic modeling infrastructure that is able to describe 

different kinds of metamodels is the specification of a meta-metamodel. It comprises the 
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concepts, how they relate to one another, and which rules govern their existence and 

behavior for the definition of a metamodel [Hovs06].  

A well-known meta-modeling architecture is the Meta-Object Facility (MOF), which is an 

OMG standard [OMG06]. It consists of four hierarchical levels where each represents the 

instance of the level above [Atki03]: The bottom level M0 holds the user data which 

comprises the actual data objects (instances) of a model as representatives of the real-

world objects. On the next level M1 user concepts classes of the user data are defined so 

that customized models for a certain domain can be created. The M2 level defines 

metamodels that specify rules for the generation of models. The most prominent 

representative for this level is the specification of UML (see Chapter 4.2.2). Finally, level M3 

holds meta-metamodels that represent the rules to define metamodels and furthermore, 

iteratively define their own structure. 

 

Figure 4-5: Meta-modeling architecture [Atki03] 

Two further concepts supporting the applicability of MDE are reference models and 

reference architectures. Reference models provide an abstract framework using guidelines 

or specifications to enable the development of models within a certain environment 

[OASI06]. Whereas reference models rather describe the generic rules of the modeling 

process, reference architectures act like design patterns [OASI06]. The structures of the 

respective elements and their relations of a reference architecture provide templates for 

concrete architectures in a particular domain [Clem10]. 

4.2.2 Modeling Languages for Control Engineering 

There exist various different modeling languages that can be used to support control 

engineering. They differ in their scopes and formalization degree so that they serve for 

different tasks starting with specifying the automated production process, over designing 

and testing automation systems and software, right up to generate executable control 

procedures. 
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UML and SysML 

UML is a general-purpose modeling language based upon fundamental OO concepts 

standardized by the OMG [OMG11]. It uses a graphical notation and can be used for 

analysis, design, and implementation of software-based systems as well as for modeling 

business and similar processes [Bieb05]. The concepts of UML are based on MOF which 

serves as the UML metamodel (see Chapter 4.2.1). The OMG also defines the XML 

Metadata Interchange (XMI) standard, which is a data format for UML models using XML 

[OMG15]. 

Since UML is independent of the programming language, it is widely used in early 

development phases for requirements specification and structural design of the software 

system [Bell03]. To derive executable software, the platform-independent UML models 

have to be mapped and specified in detail to obtain platform-specific applications [Secc07]. 

An UML-related MDE standard for translating UML to code is the Model-driven Architecture 

(MDA) [OMG03]. The MDA process starts with the Platform-independent Model (PIM) for 

modeling the application, followed by the Platform-definition Model (PDM) for modeling the 

target system which is needed for designated technologies [Esté12]. Furthermore, a 

Platform-specific Model (PSM) assigns the PIM elements to the devices and platform-

specific configurations for automatically generating the target-specific code [Zoitl09b]. 

 

Figure 4-6: UML Class Diagram displaying all types of UML diagrams 

UML supports a number of diagrams for representing different aspects of the modeled 

system (see Figure 4-6). They can be divided in two categories: diagrams that model 

structural information including the static properties of a system and diagrams that model 

behavior to depict functional capabilities of a system [Will07]. The backbone of each UML 

model is the Class Diagram depicting the static software structure with classes and their 

properties and relations to each other [Katz09]. An example for a behavior diagram is the 
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Activity Diagram which shows a process as a sequence of steps performing actions 

[Clem10]. Arrows and other control structure elements between the actions indicate the flow 

of control whose semantics operation principle is heavily inspired by Petri nets. By offering 

the profile mechanism customized extensions derived from the basic UML metamodel 

elements can be developed by adding new kinds of language elements or restricting the 

language [OMG03]. New elements are defined within a profile by stereotypes [Weil08]. As 

an instance the profiles SoaML and UML4SOA extend the UML by providing the possibility 

for behavioral specifications of services and focusing on transforming orchestrations down 

to code service orchestrations [Maye10][OMG09]. 

A standardized UML profile for Systems Engineering (see Chapter 4.3.5) applications is 

SysML (Systems Modeling Language). The intention of SysML is to unify the diverse 

modeling languages currently used on large systems projects with focus on the specification 

of requirements, structure, and behavior on systems properties [OMG12]. SysML defines 

language extensions for UML targeted to transform the base UML to a full-fledged, systems-

centric language [Will07]. The biggest difference between SysML and UML constitute the 

concepts that represent single elements. In UML software entity classes and entities are 

modeled as class, object, or component. In contrast to this all structural elements—whether 

physical or logical, abstract or instance—are modeled in SysML as block [Weil08]. 

Modeling of Manufacturing Processes 

Knowledge about the technical process is essential to support the planning, engineering, 

and commissioning of production systems in an appropriate way [Fell09]. In this regard, 

graphical process models specifically depicting manufacturing processes are a helpful tool 

to specify the system’s behavior according to the planned objectives [Pint09].  

The guideline “VDI 3682 Formalized Process Descriptions” specifies a notation with the aim 

to describe all information about a technical process necessary for engineering and normal 

operation throughout the life cycle of the system in a clear and structured layout [VDI05]. It 

contains essential symbols for different objects: product (P), energy (E), process operator 

(O), technical resource (T), and flow for connecting these objects (arrow) (see Figure 4-7). 

Generally, products and energies act as input and output values of a process step 

represented by a process operator. Technical resources facilitate the conversion of 

products and energies into new products and energies by a process operator. The process 

can be detailed in a top-down manner by decomposition of the process operators up to a 

final functional level where each object can be defined in a more detailed way. 
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Figure 4-7: VDI 3862 Process model with two decomposition levels [VDI05] 

Modeling of Sequential Control Procedures 

The execution of manufacturing processes is usually characterized by sequential behavior 

where devices are turned on and off according to the current state [John99]. For automation 

control this behavior needs to be implemented in sequential control procedures. Instead of 

using text-based programming languages, graphical programming languages that are 

directly executable help to handle complexity and increase comprehensibility of the 

programs.  

The most common modeling language for sequential control is GRAFCET (Graphe 

Fonctionnel de Commande Etapes/Transitions) which is specified in the standard IEC 

60848 [IEC02]. GRAFCET is widely used since it constitutes the basis for the PLC 

programming language Sequential Function Charts (see Chapter 2.3.3), which is part of the 

IEC 61131 standard. A GRAFCET diagram consists of steps with associated actions, 

transitions with associated conditions, and oriented lines (see Figure 4-8) [Alva13]. The 

steps represent the states of the system and the transitions indicate which state changes 

are possible based on the current state of the system. An active step contains a token which 

is passed to the next step if the respective transition is active. The basic behavior of 

GRAFCET is inspired by Petri Nets, a formal modeling and analysis language for discrete-

event and asynchronous systems with a graphical representation [Nof09]. There exist 

numerous variants and extensions of Petri Nets which increase its basic functionality by 

certain features. One of them are SIPNs (Signal Interpreted Petri Nets) that are based on 

Condition Event Petri Nets and enable processing of inputs and outputs [Frey02]. Therefore, 

transitions are associated with input signals and states specify the output signals [Huss05]. 

This feature makes it possible to use SIPNs as control procedures that can be formally 

verified and validated in contrast to common PLC programs [Frey06]. 
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Figure 4-8: GRAFCET  

Another graphical language with support for formal analysis is Grafchart aiming at 

supervisory control applications and batch control at process cell level [Arzé02][John98]. 

Grafchart is based on GRAFCET/SFCs and incorporates features from High-level Petri Nets 

and object-orientation [John08]. Available modeling features are steps, transitions, macro 

steps, alternatives, and parallel paths according to Grafcet [John99]. Furthermore, high-

level programming features are defined like procedural steps, process steps, and the use 

of multiple tokens with attributes and methods (see Figure 4-9) [John99]. A tool for designing 

and executing Grafchart is the Java-based JGrafchart developed at Lund Institute of 

Technology [Olss05]. 

 

Figure 4-9: High-level concepts of Grafchart: Procedure call (left) and tokens 

with attributes and methods (right) [John99] 
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4.2.3 Existing Approaches for MDE of Control Procedures 

Various approaches emerged for developing manufacturing control applications in a model-

driven way. The subsequent sections give an overview of existing approaches of model-

driven development of control procedures in IEC 61131 and for distributed control systems. 

MDE of IEC 61131 Control Procedures 

For designing PLC programs modeling can help to abstract from the low-level and platform-

dependent PLC code to provide a better usability, portability, and clarity. By means of an 

automatic generation of executable PLC programs based on models engineering efforts 

can be reduced. Additionally, validation and verification tasks can be performed for the 

control procedures when formal modeling languages are used. Consequently, the 

application of model-driven engineering principles for developing automation control 

systems has become very popular so that various approaches emerged. For the 

development of control procedures, the IEC 61131-3 already comprises two graphical 

programming languages for designing the behavior of the control software, FBS and SFC. 

They constitute a good foundation but their abstraction level is rather low and they do not 

allow to design all aspects in a graphical way [Thra11b].  

Especially UML and SysML are gaining in popularity for MDE for control systems design. 

At the University of Kassel and TU Munich substantial projects took place for generating 

executable PLC projects from UML/SysML models [Voge11][Wits10]. In this context the 

UML/SysML profiles UML-PA and the newer SysML-AT have been developed for the design 

of automation systems [Katz09][Voge14b]. A code generator was developed that transfers 

PLC projects as UML models from the tool Artisan Studio to the PLC programming 

environment TwinCAT from Beckhoff Automation [Voge05]. In a similar project a UML editor 

was developed for the development of UML/SysML-based PLC projects in the vendor-

independent PLC engineering tool CoDeSys [Voge9a][Voge14b]. 

Another domain-specific UML profile, UML AP (UML Automation Profile), for modeling of 

automation and control applications based on UML was developed at the Tampere 

University of Technology [Häst11]. The profile extends UML and SysML concepts and 

covers requirements, automation concepts, distribution and concurrency, automation 

resources, and device interfaces [Rita07]. 

Thramboulidis and Frey examined how the IEC 61131 FB concept can be used in 

combination with UML and SysML for a MDE process [Thra11b]. They investigated which 

UML/SysML diagrams are suitable to represent different aspects of the control application, 

e.g., the Class Diagram for the PLC infrastructure and Activity Diagrams for the behavior 

between FBs. Furthermore, UML and SysML profiles were defined that contain certain 

stereotypes for the main key constructs of IEC 61131. Based on these results, a concretized 

model-driven development procedure for process control applications using Piping and 
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Instrumentation Diagrams as source of requirements was introduced [Thra11a]. For this 

purpose, the process control engineering requirements are represented in the CAEX 

(Computer Aided Engineering Exchange) format (IEC 62424) and transformed to SysML 

requirements diagrams. The requirements constitute an input for the SysML-based design 

process using the SysML4IEC61131 profile whose results are automatically transformed to 

the PLC program represented in the general PLC programming language PLCopenXML 

[Drat09]. In subsequent work, extensions for the IEC 61131 standard are proposed as a 

meta-model for a better support of MDE and the deployment of 61131 FB diagrams in 

distributed execution environments [Thra12].  

Besides UML/SysML other modeling languages are used as well for generating PLC code. 

As part of the research activities on SIPNs the tool SIPN Editor was developed, which 

supports the graphical implementation of SIPNs and the translation of SIPN to the model 

checker SMV as well as the PLC language IL [Klein03]. Apart from Petri Nets another formal 

model from computer science is Finite Automata that is used for PLC code generation as 

timed-message state graphs [Thap09] or PLC Statecharts [Wits10]. Moreover, the concept 

MeiA (Methodology for Industrial Automation) combines GRAFCET and UML Use Case 

Diagrams with GEMMA (Guide d'Étude des Modes de Marches et d'Arrêts), a model 

depicting all states of an automated system, for assisting the designer during the analysis, 

design, and coding phases [Alva12]. A XML-based method by Marcos and Estevez 

combines three different views (control engineering, electric engineering, and software 

engineering views) within one XML model for designing industrial control systems [Marc08]. 

Apart from these MDE approaches emerging from academia, the commercial modeling and 

simulation tool MATLAB provides PLC code generation with its Simulink PLC Coder 

[Math12]. 

Model-driven Development of Distributed Control Systems 

Besides the engineering of classical control systems, a lot of research activities deal with 

the development of distributed control applications in a model-driven way (see Chapter 3.3). 

Since distributed control systems consist of various separated software modules, the higher 

abstraction level given by this modularization supports to close the gap between model and 

implementation and thereby, enables a high design performance [Vyat11]. Thus, the 

combination of model-driven engineering and distributed control concepts is a very 

promising approach for future control systems engineering. 

UML is a popular modeling language for the design of distributed control systems. There 

exist numerous approaches that combine IEC 61499 system’s design with UML. Dubinin 

and Vyatkin defined the UML profile UML-FB (UML for Function Blocks) to model the 

system’s hierarchy as a class diagram [Dubi05]. The workgroup of Prof. Georg Frey 

delivered substantial results on model-driven engineering, automatic deployment, and 

validation of IEC 61499 control software resulting in the dissertations of Panjaitan [Panj07] 
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and Hussain [Huss09]. Their work makes use of the transformation of UML diagrams to an 

IEC 61499 representation: The external part including the interfaces and interconnections 

of a FB is described by Component Diagrams and Class Diagrams, the behavior of a FB’s 

ECC is depicted as a State Diagram, Activity Diagrams are used to describe the algorithms 

of a FB, and the execution sequence of Devices is specified by using Sequence Diagrams 

[Panj06][Panj05]. Based on these modeling rules a development process following the V-

model (see Chapter 4.1.2) is proposed including the automatic test case generation for 

formal verification (see Figure 4-10) [Huss06]. 

From the University of Patras emerged relevant contributions to MDE of IEC 61499 with 

engineering support systems, architectures, and development strategies in the context of 

CORFU (Common Object-oriented Real-time Framework for Unified Development) 

[Soft06]. The CORFU architecture 4LCA comprises four levels [Thra04]: The industrial 

process layer represents the real-world plant components. The layer above, i.e., the system 

layer, includes the software artifacts of the system on which the CORFU framework is 

implemented. The application layer comprises the software constructs of the automation 

applications and the HMI layer for developing HMI subsystems. For designing IEC 61499 

control systems the CORFU development process adopts best practices from component-

based development and therefore, utilizes specific UML diagrams that integrate with the FB 

concept [Thra07a]. The prototype system CORFU Engineering Support System provides 

tool support to demonstrate the applicability of the proposed process [Tran06]. 

 

Figure 4-10: Process model for UML-based development of IEC 61499 

software [Huss06] 
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Another common approach is to use existing process modeling languages for designing the 

control application and deriving the required FBs from the process model. The previously 

mentioned concept of Panjaitan was extended in a joint collaboration with the University of 

Sofia by using the ISA-88 standard (see Chapter 4.4.1) [Ivan09]. The batch procedures are 

specified as Procedure Function Chart that are transformed to SIPNs for formal verification 

and finally, translated to an implementation according to IEC 61499. Other approaches map 

the ISA-88 procedure models directly to an IEC 61499 implementation [deSo10][Pelt07] 

[Thra07b]. Lepuschitz and Zoitl combined the concept of Automation Components (see 

Chapter 4.3.2) with the ISA-88 for developing process control applications in IEC 61499 

[Lepu08]. Thereby, considerations concerning the equipment and the physical structure of 

the production plant are taken into account during the design of the procedural elements 

executed by Automation Components. Pang and Vyatkin describe an engineering process 

of Intelligent Mechatronic Components implemented in IEC 61499 by using CAEX as design 

language [Pang10].  

The working group Automation Technology of the University of Halle-Wittenberg defined a 

hierarchical multi-layer architecture for distributed control systems. By software 

components controlling the plant elements (tasks) from process algorithms determining the 

functionality of the plant, the conflict between reusability and flexibility can be defused 

[Miss07]. In further works a methodology for a model-driven controller design based on a 

formal plant model was developed. Thereby, the control algorithms of IEC 61499 FBs are 

derived directly from the specified plant behavior [Hani09]. 

Leitão and Colombo developed a methodology for the design of agent-based automated 

production systems using High-Level Petri Nets (HLPN) [Leit06]. First, the dynamic 

behavior of the automated manufacturing component is modeled in a top-down manner. 

Thereby, the system is decomposed in reusable units by means of exploding transitions 

that represent encapsulated Petri Nets again. After the design the model is validated and 

implemented either according to IEC 61131-3 for low-level control or JADE for high-level 

control.  

In subsequent work HLPN were also used for the design of control architectures based on 

SOA within the SOCRADES project [Mend08b]. Therefore, different types of components 

were defined that interact in a service-oriented manner. Four types of components are 

defined: Mechatronic Components that provide atomic services, more complex Smart 

Mechatronic Components with a build-in logic control, Process Control Components (PCC) 

for coordinating processes, and Intelligent Support Components for supporting the control 

activities like exception handling [Mend08a]. To execute the desired production process, 

the logic controller of the PCC interprets a process model represented as a HLPN and calls 

the necessary services according to the orchestration principle [Mend08c]. For 

implementing the services of the control components the DPWS technology was used (see 
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Chapter 3.4.5). A prototypical software, the Continuum Development Tool, was developed 

to design and execute the HLPN control processes including a DPWS interface for calling 

the services [Mend09a]. 

4.3 Comprehensive Production Engineering Concepts 

One of the discussed deficits of today’s situation of control engineering is its insufficient 

representation and integration in the production planning process (see Chapter 2.3.4). 

Despite this fact, there already exist concepts for a more comprehensive engineering 

process by expressing interdisciplinary views and connections among the planning 

disciplines. 

4.3.1 Integrated Engineering 

The term integrated engineering collects methods that permit seamless and lossless 

information exchange between different planning disciplines and phases. Each discipline 

focuses on the design of certain engineering aspects of the overall system. Due to 

dependencies between planning disciplines information has to be exchanged between them 

to coordinate interdisciplinary engineering tasks [Fay12]. Besides classical input and output 

relations of sequentially executed engineering phases, more and more tasks are done in 

parallel calling for continuous information exchange [Drat11]. The exchange of engineering 

data can either happen manually or with a much higher efficiency in a semi-automatic or 

fully automated way. 

Today, engineering IT structures are heterogeneous so that tool chains are characterized 

by various different engineering tools with specific and often proprietary data formats 

[Schl08b]. The control engineering already comprises the planning of various hardware and 

software properties where special tools for designing control strategies, programming, 

hardware configuration, testing, etc. are used [Esté12]. Usually, the individual tools—

especially those from different vendors—have no common interfaces for data exchange so 

that the user must perform manual transformations from one tool to another [Esté12]. This 

so-called “paper interface” is error prone and requires high efforts [Nof09][Voge05]. 

Consequently, information exchange between planning disciplines is characterized by 

inconsistent information, information losses, additional effort, and time losses. 

To reduce efforts, electronic data files are more and more used to save planning results in 

a machine-processable way. However, the data formats are usually not standardized so 

that the information has to be transferred to the respective input format. Mechanisms for a 

consistent data exchange are required in order to ensure a smooth workflow during the 

whole production engineering [Pang10]. A fully automatic data exchange enables the direct 

exchange of engineering data so that the consistency of data within a tool chain is 

guaranteed, no additional efforts are necessary, and conversion failures can be avoided. 

This can be achieved by agreeing on data standards to ease the cooperation of different 
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engineering tools (see Figure 4-11). Recently, the most common approach goes towards 

XML-based data formats [Nof09]. A vendor-neutral solution for the standardized data 

exchange based on open XML data formats is proposed by the AutomationML standard 

[Drat09]. 

Nevertheless, standardization of data formats does not solve the problem when 

contradictions appear during a parallel design of different engineering domains. A more 

wide-ranging approach for an integrated engineering to optimize the coordination of the 

disciplines involved and to ensure consistency and interoperability between them, are 

cross-discipline planning models [VDI10]. This implies that uniform information models exist 

that include all disciplines and interfaces between them, resulting in a cross-discipline view 

of the plant. This kind of modeling constitutes the fundament for an integrated digital 

production engineering, which enables the simultaneous work of mechanical, electrical, and 

control engineers using up-to-date, complete, and consistent data sets [Schm05]. 

Approaches to realize such integrated engineering models are presented in the following 

sections.  

 

Figure 4-11: Data exchange between tools by standardized data format 

[Drat11] 

4.3.2 Mechatronic Systems 

A mechatronic system is an aggregation of mechanics, electrics, and software parts 

[Vall11]. This interdisciplinary combination is typical for today’s automation technology to 

realize technical processes with production equipment consisting of mechanical and 

electrical hardware which is controlled by software [Voge09a]. A concept becoming 

increasingly popular is the design of production systems as a structure of mechatronic 

components by combing component-based automation with a modularized hardware 

structure. Thus, the key feature of a mechatronic component is a combination of physical 

and functional modularization. Vyatkin defines Intelligent/Smart Mechatronic Components 

that are equipped with their own embedded computers (see Figure 4-12) [Vyat03]. The 

general idea is that physical components come with pre-programmed software 
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implementing various programmable control functions and also providing some network 

interfaces and memory capacity [Pang10]. A similar concept by Sünder introduces 

Automation Components (AC), which comprise production equipment, embedded devices, 

and software to implement the logic and diagnostics for the functionality it provides 

[Sünd06]. 

By means of modularization, similar advantages for the development process as those for 

software systems can be leveraged (see Chapter 4.1.1). The complexity of engineering can 

be reduced by combining and reusing mechatronic production modules that can be selected 

from a pre-defined repository and adapted by distinct parameters [Voge09b]. Thereby, the 

development can be driven from a functional-oriented design where the physical details of 

the system are specified in a later concretization step [Weyr11]. There exist numerous 

approaches following this principle.  

 

Figure 4-12: The elements of mechatronics in general (left) and of a 

mechatronic production component (right) 

A mechatronic engineering process using mechatronic units was developed at the 

University of Magdeburg [Lüde10]. It starts with the process planning and the specification 

of the manufacturing functions, followed by a mapping of these functions to physical 

manufacturing resources. A mechatronic-oriented digital production engineering process for 

the automotive industry developed by Kiefer uses a central planning and data platform by 

a mechatronic plant model [Kief08]. This model promotes parallel execution of different 

planning activities and validation of the planning results with digital simulation tools [Kief06]. 

Another development process for mechatronic systems (MTS) specified by Thramboulidis 

adopts the typical phases from software engineering [Thra05]. The whole production system 

is designed as an aggregation of interconnected MTSs that collaborate to provide the 

required system behavior implemented as distributed FBs according to IEC 61499 (see 

Chapter 3.3.1).  
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4.3.3 Object-oriented Engineering 

Primary, OO is a known as a programming paradigm (see Chapter 4.1.1). However, it is a 

general principle that allows the design of any modular system architecture promoting high 

reusability [Secc07]. Furthermore, object-orientation can be applied to describe systems 

consistently in several abstraction degrees so that the system can be concretized step-by-

step [Voge09a].  

Applied to the engineering of production plants, object-orientation is heavily related to 

mechatronic design, since objects are well suited to represent mechatronic units in an 

abstract way (see Chapter 4.3.2). This permits a functional description of the system across 

all planning disciplines to promote an integrated system design on multiple abstraction 

levels and a high reusability of planning aspects [Schü09]. In lower detail levels certain 

planning aspects can be handled as individual objects that represent physical or logical 

planning entities like a robot or a function block of a PLC program [Drat09]. For planning a 

concrete production system, the individual objects can be first designed in an abstract way 

and stepwise concretized by allocating respective classes from a library (see Figure 4-13) 

[Drat09]. 

 

Figure 4-13: Principles of object-oriented engineering 

Several approaches exist that use aspects of OO for plant engineering methods, often in 

connection with UML (see Chapter 4.2.2). As an instance, the German research project 

“Increasing Efficiency and Quality in PLC Programming by Object Orientation and UML” an 

object-oriented engineering method for control applications in CoDeSys V3 was developed 

where classes represent mechatronic units [Voge09a]. Another example is the dissertation 

of Bergholz which defines object-oriented factory planning by structuring production 

systems in interacting and encapsulated objects that represent production units [Berg06]. 

The concept of OO is used to promote reusability and gradual planning by designing and 

instantiating hierarchical factory objects represented as classes that are created and 
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connected by applying the OO principles of inheritance and association. The fundamental 

architecture of the object-oriented modeling is based on the PROSA architecture stemming 

from holonic control design (see Chapter 4.3.4). 

The existing approaches have in common that the object-oriented engineering is strongly 

driven by the physical structure of the plant consisting of similar or even identical 

components [Preu11]. This is expressed in the fact that objects mainly represent hardware 

components (e.g., “machine”) that dispose several functions as the objects methods (e.g., 

“machine.method”). 

4.3.4 Holonic Manufacturing Systems (HMS) 

In 1968, the Hungarian author and philosopher Koestler described the concept of Holonic 

Systems [Babi05]. He observed that most biological or social systems are built on a 

hierarchical structure so that he describes the units of these systems as holons. The world 

“holon” stems from Greek combining the two words “holos” and “on” meaning “whole part” 

as a composed term. In the 1990’s the paradigm of Holonic Manufacturing Systems (HMS) 

was developed by a consortium in the framework of the Intelligent Manufacturing (IMS) 

program. The aim was to improve the understanding of the requirements for future-

generation manufacturing systems and to enable easy configurations, extensions, 

modifications, and higher flexibility to satisfy these requirements [Brus98]. Regarding 

manufacturing a holon is an autonomous and cooperative building block of a manufacturing 

system that consists of an information part and often a physical processing part [Chri94]. A 

holon acts autonomously, cooperates with other holons within a holarchy and can be part 

of another holon. The aggregation principle and the combination of hardware and software 

enable an interdisciplinary view on manufacturing systems similar to mechatronic systems. 

 

Figure 4-14: Basic elements of the PROSA architecture [Brus98] 

Existing applications of HMS focus on the design of distributed control systems. Since most 

approaches use agents (see Chapter 3.3.2) to implement HMS, research activities 

regarding HMS and MAS are strongly related [Babi05]. A well-known reference architecture 
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for HMS named PROSA comprises three different types of holons and their relationships 

(see Figure 4-14) [Brus98]. An overview of other existing HMS activities is given in a 

summary of Babiceanu and Chen [Babi06]. Two very similar concepts to HMS are Bionic 

Manufacturing and Fractal Factories [Thar98]. Bionic Manufacturing is inspired by biological 

systems and uses parallels between cells in an organism and manufacturing units. The 

Fractal Factory concept invented by Warnecke describes a manufacturing company as 

composed fractal entities that collaborate in a dynamic and self-organized way [Warn93]. 

4.3.5 Systems Engineering 

Systems Engineering (SE) is a multidisciplinary approach to develop balanced system 

solutions in response to diverse stakeholder demands including the application of both 

management and technical processes [Frie11]. It focuses on the initial development of 

complex products based on the definition of customer needs and required functionality early 

in the development cycle [Brec11]. Thereby, the development process starts with the 

definition and documentation of system requirements and ends with the verification of the 

system to check the compliance with these requirements [Weil08]. During the development, 

all the disciplines and specialty groups are integrated into one team forming a structured 

development process. 

 

Figure 4-15: The SIMILAR process [INCO15] 

A SE process describes the interacting activities which transform the inputs, i.e., the 

requirements, into outputs, i.e., the dedicated system [Ramo10]. It usually comprises the 

following seven tasks: state the problem, investigate alternatives, model the system, 

integrate, launch the system, assess performance, and re-evaluate, abbreviated as 

SIMILAR process (see Figure 4-15) [INCO15]. Thereby, the whole SE development process 

is strongly driven by the requirements on the system. A requirement describes one or more 

properties or behaviors of the system that always have to be met [Weil08]. A distinction is 

made between functional and non-functional requirements like usually done in software 
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engineering [Gals08]. Functional requirements define how a system reacts to certain inputs 

and how it should behave in particular situations [Wehr09]. In contrast, non-functional 

requirements contain all requirements that are not directly dealing with the function of the 

system but which influence them, for example modularization, performance, safety, 

security, etc. [Fran11]. 

The International Council on Systems Engineering (INCOSE) initiated an effort with the 

OMG to extend the UML for full-lifecycle systems engineering resulting in the modeling 

language SysML (see Chapter 4.2.2) [Bock06]. 

4.3.6 Planning of Service-oriented Factory Control Systems 

The paradigm of SOA has already been applied in many research activities in the field of 

production automation (see Chapter 3.3.3). The dissertation of Pohlmann also makes use 

of a service-oriented automation approach as the basis of a methodology for process-

oriented planning of factory control systems [Pohl08]. Hereby, a factory system consists of 

loosely coupled services in order to achieve a high degree of adaptability and 

interoperability.  

The methodology defines three types of services: 

• Device service: represents the functions of the sensors and actuators in order to 

couple the system design to the technical equipment 

• System service: enables the development of system individual automation software 

• User service: provides functions for the interaction between users and the factory 

system, which can be used for the development of human-machine interfaces 

 

Figure 4-16: Service-oriented factory planning method [Pohl08] 

The description of a service consists of an abstract and a concrete part to support a planning 

procedure with two abstraction levels (see Figure 4-16). During the abstract planning the 

production process is described in a process model using the mere functionality of a service. 

This functional planning of the production process takes place in various levels of detail 

according to the top-down principle and is independent of the specific hardware. Later on, 
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the actual hardware realized as production modules is allocated so that the services are 

concretized with device-specific information during the concrete planning. 

The expected outcome of this methodology is a reduction of planning efforts by employing 

reusable production modules represented as services and a reduction of planning time 

through the parallelization of planning tasks during the detailed planning phase. 

Furthermore, the process-orientation supports a better integration of business planning with 

production engineering, which also leads to a higher planning efficiency. However, the 

prerequisite to leverage these benefits is an already modularized production equipment that 

provides its functionality as encapsulated services. Additionally, the services have to be 

implemented directly on the production hardware with a standardized SOA technology. 

Since these prerequisites have yet to be established, the methodology needs to be further 

developed and detailed for gaining practical suitability. So far a prototypical implementation 

of the planning methodology has been realized in form of an experimental demonstrator of 

the SmartFactoryKL with Web Service technologies [Pohl08]. 

4.4 Engineering Standards and Guidelines 

In the following, a selection of engineering standards and guidelines are presented that can 

be supportive to apply the before mentioned concepts for an efficient production planning 

and control engineering. 

4.4.1 Reference Architectures According to ISA-95 and ISA-88 

To support the modeling of automated production processes, reference architectures are 

helpful to provide blueprints for the structure for an instance model. The international 

standard ISA-95 „Enterprise-Control System Integration“ defines hierarchical models of 

production organizations and provides concepts for the integration of control systems with 

business IT systems of the enterprise [Vrba09]. Thereby, an equipment hierarchy model 

represents classes of physical assets involved in the manufacturing of an enterprise 

[ISA00]. The model depicts how equipment entities from lower levels are combined to form 

entities on higher levels in the hierarchy. The terminology of entity types on the lower levels 

varies depending upon the type of industry they apply to (see Figure 4-17) [John08]. 

A related standard is ISA-88, which particularly addresses batch control and aims to 

standardize batch control systems [ISA95]. The standard describes batch control from 

different viewpoints [Olss05]. The functional view is represented via a process model and 

the hardware view specified by a physical model. Additionally, recipes uniquely define the 

manufacturing requirements for a specific product [Virt10]. One aspect of the recipe is the 

procedure that defines how the production equipment needs to be controlled to produce the 

desired product. 
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Figure 4-17: The ISA-95 equipment hierarchy [ISA00] 

The reference architectures for the models, recipes, and procedures have several 

hierarchical layers representing different degrees of granularity. Thereby, recipes (recipe 

model) correlate with production equipment (physical model) on several layers to deliver 

functionality for executing a dedicated process (see Figure 4-18). Furthermore, the standard 

defines the relations between single classes of the reference models. Hence, the ISA-88 

standard combines different views on a batch system and points out the dependencies 

between physical equipment, control procedures, and the batch process to execute. 

 

Figure 4-18: ISA-88 recipe model, physical model, and process model [ISA95] 
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4.4.2 Standards Providing Uniform Terms for Modeling 

During modeling the question usually arises which terms for the objects to be modeled 

should be picked, in this instance of the previous chapter terms for manufacturing 

equipment and functions. Unfortunately, a general and open standardized terminology 

covering the whole automation domain is missing. Big companies often have their specific 

terms defined by their own automation standards like the Integra standard of Daimler 

[Siem04]. In contrast to these proprietary standards, some universal and publicly accessible 

automation standards exist that could provide at least a foundation for a standardized 

terminology. 

   

  transport  order  guide  manufacturing function 

Figure 4-19: Example of a graphical representation of a manufacturing 

process according VDI 2860 

The German standard DIN 8580 “Manufacturing processes — Terms and definitions, 

division” defines types of manufacturing functions to produce geometrically defined solid 

objects [DIN03]. It contains six main groups of manufacturing processes: primary forming, 

deforming, cutting, joining, treating, and change of material property. Each main group 

refers to a number of groups that are divided into subgroups again. Altogether, the standard 

defines manufacturing functions on three detail levels and links to other standards that 

describe respective sub groups in detail. 

Within the VDI guideline 2860 assembly and handling functions are defined including 

graphical symbols for them [VDI90]. The main function “assembly and handling” is divided 

in five sub functions: store (keeping quantities), modify quantities, move (generating or 

change spatial arrangements), lock/maintain (keep spatial arrangements), and check. A 

further subdivision of these sub functions takes place with elementary functions and 

composed functions. The elementary functions act as atoms that have no further sub 

functions, whereas composed functions can be subdivided into elementary functions. The 

guideline also proposes to model manufacturing processes by using the assembly and 

handling functions in combination with the manufacturing functions of DIN 8580 and 

specifies the graphical representation for the single types of functions and manufacturing 

processes (see Figure 4-19). 

The PLCopen standard “Motion Control” provides a concept for realizing standard PLC 

libraries for motion control applications that are reusable for multiple hardware platforms 



 

66 Dissertation 

[PLCo11a]. Part 1 of the standard “Function Blocks for Motion Control” specifies a 

standardized IEC 61131 FB library and a state diagram defining eight individual states and 

how FBs lead to change of state [PLCo11b]. The input variables, output variables, and the 

behavior of each FB is explained and examples of interaction of various FBs are given. 

 

Figure 4-20: eCl@ss example for the group “Servo motor” 

For naming production equipment in a uniform way, the eCl@ss standard provides an 

extensive library of product classes and properties. Besides automation technology and 

manufacturing equipment eCl@ss comprises many more domains like commerce, crafts, 

and food. Its main purpose is to be a cross-industry product data standard for classification 

and clear description of products to support company-wide applications such as 

procurement, controlling, supplier management, and engineering [eCl@14]. The 

classification system is structured in four hierarchy levels: segment, main group, group, and 

sub-group. 

4.5 Assessment of the Concepts 

Several concepts have been reviewed to promote and support new methods for a more 

efficient control engineering. A promising proposal is to combine innovative concepts for a 

more comprehensive production engineering with well-established concepts from computer 

science to enhance the actual programming. By this, an ideal connection between existing 

IT concepts and their application for the AUT domain can be generated. 

For this purpose, the two well-known and proven programming paradigms modularization 

and OO have been presented. They provide important principles for encapsulation of code 

so that a higher abstraction degree for the development of control procedures can be 

achieved. Moreover, life cycle models for the software development have been introduced. 

They can help to transfer today’s typical bottom-up development of control procedures to a 

structured top-down development method with defined development steps. A further 
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concept from software engineering for rising abstraction is MDE. It promotes models for 

capturing the modularized engineering results in a comprehensible way, which can be 

detailed in several concretization steps to support the top-down development. For general 

modeling purposes, particularly UML and SysML constitute widely accepted modeling 

languages. 

For linking the development of the control procedures with the overall production 

engineering, several approaches for a more comprehensive and integrated design have 

been reviewed. The concept of Systems Engineering provides ideas how the requirements 

on the overall production system can be specified and the properties for the individual 

planning domains can be derived during the early design phases. Thus, the control 

engineering can start in an earlier point in time and in parallel with the other engineering 

domains. This strengthens the consideration of the control engineering within the production 

engineering process.  

A popular and promising interdisciplinary design concept is the mechatronic system design. 

A production system as mechatronic system is split up in a number of mechatronic 

components that comprise mechanical, electrical, etc. hardware and automation functions. 

Such a modular system architecture can be well combined with an object-oriented design 

principle. Thereby, mechatronic components are represented as objects that are 

concretized within several steps. Moreover, the application of library concepts enables a 

high degree of reusability of planning results. Since control programs are characterized by 

a strong dependency on the production equipment they control, the engineering domains 

cannot be executed completely independent from each other. However, existing 

mechatronic engineering approaches mainly focus on the modularization of the hardware 

to build mechatronic components whereby the automation functions are defined 

subsequently for each mechanical module. This impairs a parallel execution of the domains 

as described by the V-model for mechatronic system design [VDI04]. In contrast, a strong 

functional-driven planning approach is given by the methodology for a process-oriented 

planning of control systems [Pohl08]. The combination of this methodology with the other 

mentioned concepts seems promising to develop an enhanced control engineering process 

that considers also its dependencies to early design phases and to other engineering 

domains like the mechanical design. 
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5 Problem Statement, Objective Target, and Procedural 

Method 

5.1 Problem Statement 

The ability to build and adapt production systems quickly and efficiently according to today’s 

agile market conditions constitutes a major competitive advantage of producing companies 

(see Chapter 2.1). This demand requires advanced production engineering processes 

which allow a lowering of efforts for design and realization as well as parallelization of 

planning tasks for a shorter time-to-market (see Chapter 2.3.2). One engineering domain 

with much room for improvement regarding both requirements and with a simultaneously 

increasing importance is the domain of control engineering (see Chapter 2.3.3). Today, it is 

typically executed at the very end of the detailed planning phase sequentially after the 

hardware design (see Chapter 2.3.2). Efforts for developing and changing control software 

are high due to a low implementation level and monolithic program structures (see Chapter 

2.3.3). Furthermore, missing abstraction mechanism and methodological design 

procedures lead to a bottom-up development of the program code with an insufficient 

integration with other engineering domains. Altogether, a mix of inadequate engineering 

methods and the technical restrictions of conventional control systems lead to this 

inadequate situation of control engineering (see Chapter 2.3.4). 

A promising approach to improve today’s situation is the further development of control 

systems by applying concepts from distributed systems. This implies component-based 

software architectures enabling highly flexible and adaptable control architectures and a 

better handling of complexity through encapsulation as an abstraction mechanism (see 

Chapter 3.2). Three concepts for realizing distributed control architectures are the IEC 

61499 standard (see Chapter 3.3.1), Multi-agent Systems (see Chapter 3.3.2), and Service-

oriented Architecture (see Chapter 3.3.3). Although research applications exist, all three 

concepts have not arrived in industrial practice yet. This is particularly due to the lack of 

mature technologies and design methods that support the specific requirements of 

automation applications (see Chapter 3.3.4). SOA offers good prerequisites since its 

fundament is strongly characterized by a process-oriented design pattern, which enables a 

straightforward top-down development (see Chapter 3.4). Moreover, detailed design 

methods and guidelines to develop business IT applications as SOA already exist.  

This reflects that besides the characteristics and the accompanying technical possibilities 

of the control system itself, the development methodology is of crucial importance. Thus, a 

systematic design method considering the integration of control engineering within the 
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overall production planning process is essential to optimize the overall development time 

and efforts. There exist several promising engineering approaches supporting a more 

comprehensive view and consistent planning of production systems (see Chapter 4.3). 

However, those concepts describing concrete engineering methods—especially 

mechatronic systems and object-oriented engineering (see Chapter 4.5)—focus on 

designing the mechanical structure by focusing less on the software development.  

Most of those comprehensive approaches have in common that they make use of proven 

software engineering concepts. Particularly model-driven engineering and object-

orientation are very promising concepts to improve the development of control procedures 

(see Chapter 4.1 & 4.2). Although these concepts have already gained a lot of attention, the 

use in practice is often restricted, which is in turn due to today’s technical conditions of 

control systems. For example, a seamless model-driven engineering is hindered by the gap 

between the modeling of the application and the final implemented and executable control 

application [Tran06]. 

Altogether, many potentials to enhance control engineering are already available but not 

fully utilized yet. A holistic and systematic engineering method for control procedures 

making use of the advantages of distributed control systems in combination with 

comprehensive engineering concepts and software development methods is still missing. 

5.2 Objective Target 

The objective of this thesis is the development of a model-driven engineering methodology 

for the development of service-oriented control procedures for automated manufacturing 

processes. Therefore, the basic principles and design methods of SOA are applied to 

control engineering and combined with concepts from software engineering, specifically, 

MDE. 

To overcome today’s gaps for an improved efficiency for control engineering the following 

requirements are derived: 

• Reduced programming effort: Control procedures are created on a higher 

abstraction level according to the building block principle with services as pre-

programmed components. Additionally, a high reusability of services enables the use 

of the same services for different use cases. 

• Better handling of complexity: A clear separation of logic for the production 

equipment and logic for the process logic as well as the possibility to create various 

granularity levels enhance the comprehensibility and scalability of control software. 

• Increased adaptability: Modular program structures can be changed and extended 

much more straightforward than monolithic programs. Thus, control procedures built 

as service compositions are highly adaptable and permit reconfigurations of the whole 

production system with lower efforts. 
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• Top-down engineering: Applying SOA principles enables control system 

development according to a process-oriented design driven by the specification of the 

production process. Control procedures can then be first specified in a solution-neutral 

way and gradually refined with hardware-specific details. This top-down approach 

facilitates various concretization steps with an integrated information flow. 

• Parallelization of engineering domains: The before mentioned top-down 

engineering can act as the enabler to parallelize tasks during production engineering. 

First, the specification of the production process determines the functional 

requirements on the whole production system and constitutes the starting point for 

the detailed planning phase. Afterwards, the details of the respective engineering 

disciplines are specified. A parallel execution of the domain-specific design according 

to the V-model for mechatronic design can be obtained by determining the 

dependencies and defining concrete links between the individual disciplines (see 

Figure 5-1). 

 

Figure 5-1: Sequential vs. parallel domain-specific design 

These potentials are leveraged by a methodology that defines how service-oriented control 

procedures are developed. The process-oriented design and orchestration concept of SOA 

are key drivers to enable a top-down design with several concretization steps. To obtain an 

integrated design procedure with respect to the overall production planning process, the 

links of control engineering to other planning phases and domains need to be considered. 

Therefore, the basic ideas of Pohlmann’s concept for developing service-oriented factory 

control systems (see Chapter 4.3.6) are picked up and are further developed with focus on 

manufacturing control procedures. Therefore, innovative aspects of other comprehensive 

production engineering concepts—particularly Systems Engineering—are used to define a 

systematic development process. 

Combining these design concepts with proven software engineering methods enables a 

structured engineering process with a comprehensible presentation of planning results. 

Especially the consequent use of models hereby improves the clarity and comprehensibility 
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of complex design tasks. The abstraction principles provided by SOA permit exploiting the 

capabilities of those concepts.  

The overall focus of this thesis is the generic design of the software architecture. Thus, the 

methodology is independently defined on specific tools, data formats, or the technical 

properties of the control system. In order to show its applicability, an implementation 

concept is developed that proposes how the individual development steps can be realized 

and how the designed software architecture can be transferred to a respective system 

architecture. The concluding proof of concept is executed in an exemplary use-case where 

the achievements are evaluated. 

Altogether, the expected result of this thesis comprises the following aspects inspired by 

the three criteria of an efficient factory planning process (see Chapter 2.3.1): 

• Modeling and structural concepts: The general development procedure is 

described as reference model which defines the planning steps and the meta-models 

defining how the planning information is depicted. 

• Design concepts and architectures: Reference architectures specify structural 

blueprints of the models according to the scope of application, namely control 

procedures for manufacturing processes. 

• Procedures, methods, and tools: An application concept defines how the 

theoretical concept can be applied for concrete problems by using existing standards, 

guidelines, modeling languages, and software tools. 

5.3 Procedural Method 

The scientific content of this thesis is structured within six chapters (see Figure 5-2). The 

chapters 2, 3, and 4 constitute the technical foundation for the methodology to be 

developed. Since the field of application constitutes control engineering of automated 

manufacturing processes, an introduction into automated production, industrial automation 

systems, and specifically programmable logic controllers is given in Chapter 2. The second 

half of the chapter explains the position of control engineering in the factory/production 

planning process and how is it is characterized. At the end of the chapter an analysis is 

given about today’s situation of control engineering, current drawbacks, and existing 

potentials for improvement.  

Chapter 3 addresses the research topic of distributed design systems. Current trends in 

automation are described leading to the idea of distributed automation systems. Three 

concrete design principles for distributed control architectures are described and 

subsequently compared with each other. After that the concrete design and implementation 

concepts provided by Service-oriented Architecture are described in more detail. 

Many research activities deal with the development and application of new concepts for an 

efficient control engineering described in Chapter 4. First of all, this includes methods from 



5 Problem Statement, Objective Target, and Procedural Method 

 73 

software engineering like programming paradigm, life cycle models, and particularly model-

driven development. Furthermore, there exist several concepts for a more comprehensive 

production engineering with the goal of a better integration of the individual engineering 

domains. Finally, a selection of engineering standards and guidelines is presented which 

can support the before mentioned concepts. 

 

Figure 5-2: Structure of the thesis 

The core of this thesis constitutes Chapter 6 which specifies the theoretical concepts of the 

engineering methodology. Its fundament is created by first transferring the paradigm of SOA 

from the business IT domain to automation. Based on this a reference architecture for 

service-oriented manufacturing control is defined considering the key requirements on 

developing industrial control procedures. By means of a process-oriented design concept 

an approach for a service-oriented engineering is developed which describes a top-down 

specification of control procedures and, moreover, an integrated production engineering 

workflow. Finally, the engineering methodology is particularized in terms of a reference 

model by describing how each planning step is executed by using which model. 

To execute the engineering methodology for real problems an application concept is 

described in Chapter 7. In the first part, recommendations for the standardized naming of 

planning objects is given. The second part deals with a suitable system design to implement 

the service-oriented control architecture on running platforms. 

A proof of concept is given in Chapter 8 where the methodology is applied according to the 

presented application concepts. Therefore, a use case with reference to real industrial 

applications is realized and the results of this thesis are evaluated. 
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6 Methodology for the Model-driven Development of 

Service-oriented Control Procedures 

Within this chapter the methodology for a model-driven development of service-oriented 

control procedures—MDE for SOA-AT—is developed. The basis for the methodology is 

provided by the definition of general principles of service-oriented automation, concepts and 

reference architectures for the design of services, and a procedural model for the 

engineering process. 

6.1 Service-oriented Automation 

In production automation, the paradigm of SOA is already established within the highest 

automation layer where the automation tasks are integrated to the overall business 

processes of a company. Extending the application of SOA to all levels of the automation 

domain provides the opportunity to create innovative automation systems where each 

automation function is encapsulated in a service. Each participant provides its functionality 

as services and makes these publicly available to others. High-level automation applications 

can then be generated by composing existing services according to the current demands 

and conditions. An automation system featuring these properties can be seen as a Network 

of Automation rather than the traditional, hierarchical pyramid (see Figure 6-1).  

 

Figure 6-1: The Network of Automation according to the SOA paradigm 
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The drawbacks of traditional automation systems can be eliminated by strengthening the 

following properties: 

• Flexibility: Automation applications can be composed according to the building block 

principle. 

• Reusability: The individual services constitute reusable modules that can be used in 

various automation applications. 

• Scalability: Service composition enables the abstraction on multiple levels of 

granularity. 

• Interoperability: Open-accessible service interfaces and standardized 

communication technologies enable both horizontal and vertical integration. 

Although these general ideas make the application of SOA in automation appear very 

promising, applying established implementation methods, tools, and technologies one to 

one is rarely sensible. Automation tasks differ from IT applications in considerably different 

characteristics and requirements so that the application of SOA in production automation 

(SOA-AT) needs to be distinguished from those for business IT processes (SOA-IT) (see 

Figure 6-2).  

In SOA-IT services encapsulate pure software functionality, whereas SOA-AT services 

represent or influence mechatronic functionality that triggers the physical actions of a piece 

of hardware. Generally, the location where the service is executed doesn’t matter as long 

as existing requirements are met. For pure software, this means that the service can be 

executed on any processor within the SOA network, if demands on computational 

properties, time response, etc. can be fulfilled. In case of mechatronic services, the purpose 

of a service within a process is bound to the respective physical device executing the 

service. For instance, there can be multiple motors of the same motor type within a 

production line providing the same services but driving different axes. The impact on the 

production process can even be heavily dependent on the exact position of the equipment 

executing the service, for example when a cylinder extends from a starting point to a 

destination point. If a service is suitable for the current demands, it will therefore not only 

depend on the service description specifying its functionality but also on hardware-related 

properties of the physical device like geometric dimensions and the location of the device. 

Moreover, the hardware dependencies lead to the fact that multiple and simultaneous use 

of a service of the same hardware are often restricted, as in the case of a valve that cannot 

open and close simultaneously [Yu10]. Furthermore, dependencies between hardware and 

software influence how far loose-coupling can be obtained. For software systems, loose 

coupling can be acquired by software modularization and a high degree of cohesion. 

Besides designing the software according to these principles, SOA-AT systems additionally 

need to be aligned with the hardware structure in terms of a mechatronic design (see 

Chapter 4.3.2). In conclusion, a general difference can be noted in the overall objective. 
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The final product of SOA-IT is a software application which is realized as a collaboration of 

distributed modules within a network. Although the goal of SOA-AT is also to generate 

software for implementing automation tasks, the main objective is the execution of a 

technical process which is indeed controlled by the corresponding software. 

 

Figure 6-2: Comparison between SOA-IT and SOA-AT 

Altogether, the general SOA concepts constitute the fundament for each SOA application 

but for a realization specific development methods are needed. Thereby, existing ones 

should be transferred to the new application domain with adaptions to its special needs.  

6.2 Reference Architecture for SOA-AT  

The first step to introduce a systematic and optimal design method constitutes a SOA 

reference architecture that defines a service structure for SOA-AT with focus on 

manufacturing control. Regarding the pyramid of automation this reference architecture 

comprises the functionality of the field devices in layer 1 and the control procedures in 

layer 2 for implementing the manufacturing process. Today, the implementation of the 

functionality in software of both layers happens within the controllers on layer 2, particularly 

in the programs of PLCs and contingently with subordinate controllers (see Chapter 2.2 & 

2.3.3). The reference architecture explicitly splits up the control functions into two service 

layers according to the automation layers. Furthermore, it defines the characteristics of both 

service layers, their service categories, and the composition strategy according to general 

SOA design principles (see Chapter 3.4). 

6.2.1 Equipment Services 

The fundament of service-oriented automation is built by a service layer that comprises the 

services of the production equipment and is defined as equipment layer. Services of this 
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layer—named equipment services—represent the electrical, mechanical, pneumatic, 

sensory, etc. functionality of the equipment and thus, constitute the interface between the 

automation network and the technical production process. A basic conceptual question is 

how these services and their operations are defined regarding the physical devices they 

belong to. 

Generally, a service bundles a set of related operations to carry out a specific functionality. 

Thus, an equipment service represents the technological functionality of a hardware 

component that can be accessed via the operations of the service. Within the SOA-AT 

network the service interface makes the service accessible and hides its implementation 

details. To make the operations executable, the internal details of the service need to be 

implemented. Each operation represents a logic that realizes a certain function of the 

hardware component (see Figure 6-3). The implementation of the logic is equivalent to the 

programming of the field device functions in PLC code (see Chapter 2.3.3) and thus, it also 

depends heavily on the respective field device and its communication interface. To control 

a field device by the logic of a service, a direct information exchange is needed so that 

actions of the device can be triggered by the logic and the device can give feedback to the 

logic respectively. 

 

Figure 6-3: Characteristics of a basic service 

Equipment services can be defined in several levels of granularity regarding the scope of 

the functionality they encapsulate by making use of the service composition principle (see 

Chapter 3.4.3). Thereby, the specification of the services on the lowest level is a crucial 

task, since they act as the atoms the whole SOA-AT system is built upon. These services 

are defined as basic services and are characterized by a direct interaction with the 
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production equipment (see Figure 6-3). Thus, each basic service implements the functions 

as described above and communicates directly with a certain hardware component to 

influence or access the technical process. Due to this, equipment services are strongly 

linked to the production equipment so that resulting dependencies to the hardware need to 

be considered. 

From the engineering point of view, the smallest active hardware units are the field devices, 

which are offered by field device manufacturers. By applying the mechatronic design 

principle (see Chapter 4.3.2), it makes sense to encapsulate the functionality of each field 

device to a basic service so that the smallest mechanical units (field devices) match with 

the smallest functional units (basic services). According to the characteristics of the field 

device, a basic service either represents an actuator function in order to influence the 

production process or a sensory function to collect information about the process. As an 

instance for an actuator, a cylinder provides its functionality of translational motion as a 

service which comprises operations for moving the cylinder in and out. An example for a 

sensory function is a service of a temperature sensor for receiving the current measured 

value (see Figure 6-4 left). Depending on the respective application, it can make sense to 

deviate from this guideline and to create basic services for bigger equipment units 

comprising several field devices. 

 

Figure 6-4: Relationships between equipment services and hardware 

components 

Besides the obvious relation between basic services and the hardware components that 

execute their functionality, additional relationships to other field devices can exist. This 

occurs particularly for actuators that cannot be directly controlled via control signals of PLCs 

or other controllers. This implies that intermediate devices are needed that process the 

control signals and operate the actuator by physical quantities like compressed air or 

electrical power. In this case, the service would be still executed by the actuator but the 

functionality itself is implemented by the intermediate device. Since the related devices are 
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both required for executing a certain function, such a collection of field devices is defined 

as a functional group. Well-known examples of functional groups are pneumatic devices 

like a pneumatic cylinder that is supplied and controlled by a valve terminal or a servo drive 

which consists of the motor and a servo controller (see Figure 6-4 center & right). 

Besides basic services, another category of equipment services is introduced which is 

based on the composition of other equipment services. Field devices and manufactured 

components are typically assembled to bigger physical units as special machines, 

production modules, etc. These units are built to generate a certain high-level production 

functionality, which can be also carried out as a service again. Such high-level equipment 

services are defined as composed services (see Figure 6-5). Since the production 

equipment can be physically structured as hardware components with several granularity 

levels, multiple levels of composed services can be created. Generally, composed services 

break the functions of the overall production equipment down for a better handling of 

complexity and to make special functions of production equipment reusable. This 

constitutes the prerequisite for realizing highly modularized production systems which 

consist of mechatronic units combining physical and functional encapsulation (see Chapter 

4.3.2). Consequently, composed services can increase the reusability of single production 

modules as well as the reconfigurability of the complete production system. 

 

Figure 6-5: Basic and composed equipment services 

Composed services don’t interact with the production equipment directly but via basic 

services of the field devices the unit comprises. This necessitates a control strategy 

determining how several services work together to create added value in form of a more 

complex service [Când09a]. Thereby, a general question is if equipment services should 

comprise knowledge about the process they are used within. This would be required when 

new functionality is built according to the choreography composition principle (see Chapter 

3.4.2). In this case, the control strategy is distributed among the involved services. This 
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implies that each time the context changes within which the service is used, the logic of the 

services needs to be adapted as well. 

Obviously, this contradicts the desire for universal services that are defined and that are 

independently applicable on the current application. Equipment services are hardware-

oriented so that they should provide the functionality of the production equipment as 

independent as possible of the application they are used for. Thus, high-level functionality 

needs to be composed in a central way via service orchestration in order to empower the 

reusability of the single services. This implies that only the composed service contains the 

knowledge about the scope of the functionality it represents. The internal logic of a 

composed service implements the orchestration logic for calling the services that are 

needed to execute the single actions in the right point of time (see Figure 6-6). 

 

Figure 6-6: Generation of high-level services via service orchestration 

6.2.2 Control Services 

Apart from the equipment layer a second superordinate service layer for building the control 

procedures is defined as the control layer. Services on this layer—named control services—

generate control procedures for executing the desired production process. In contrast to an 

equipment service, a control service is rather process-oriented than hardware-related. 

However, control services can also be assigned to hardware components, like a production 

line or cell, which is controlled by the very fact. 
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The main task of a control service is to implement a process logic which calls equipment 

services in the desired sequence and with the right parameters for executing the technical 

process. This internal logic of a control service is realized as a service orchestration of 

equipment services similar to composed services (see Figure 6-6). Therefore, the control 

logic establishes bindings to the equipment services to make the orchestration logic 

executable. This implies a mapping between the two service layers where suitable 

equipment services fulfilling the demanded functionality of the control procedure are 

allocated to the respective process steps (see Chapter 3.4.1). 

Obviously, there is a relation between the granularity of equipment services and the 

orchestration logic of control services. The lower the granularity of equipment services is 

the more detailed the control logic of the control service needs to be (see Figure 6-7). A 

coarser control logic can be sufficient, if equipment services with a high granularity have 

been generated. The question about the ideal granularity level is indeed complex and the 

right answer depends on the specific case. However, in the ideal case both granularity levels 

fit with a minimal information gap so that the mapping between services on both layers can 

happen as seamlessly as possible. 

 

Figure 6-7: Granularity of the logic of equipment services and control services 

Besides calling equipment services, control services are responsible for all other control 

functions to ensure a stable production process. This includes particularly the configuration 

of the production process according to various product variants, managing the material flow, 

startup and shutdown routines, supervisory control tasks to synchronize all production units, 

safety routines, and SCADA and HMI functions. Implementing all of these functions into one 
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service would result in a complex and rather monolithic control program similar to today’s 

PLC programs excluding the device functions (see Chapter 2.3.4). 

For enabling a better scalability, more flexible control logics, and a higher reusability of 

services also on the control layer, it makes sense to split the control procedure into several 

services. Besides the well-known advantages of modular software design (see Chapter 

4.1.1), outsourced control logics can be designed on a higher abstraction level. Therefore, 

concepts for a late or even dynamic service binding are applied (see Chapter 3.4.1). First, 

the bindings to equipment services within the separated service are determined in an 

abstract way. Thereby, an abstract service is defined in terms of specifying the requirement 

on the functionality of the service (see Chapter 6.3.3). Later, the main control logic takes 

care of establishing the service bindings to suitable equipment services. As an instance, a 

separated control service “sub control” requires the use of a drilling service but leaves open 

which hardware component executes the service (see Figure 6-8). The main control service 

calls the “sub control” service and determines that the abstract service is realized by the 

currently available equipment service “drilling_3M”. 

This brings the advantage that control services can be defined independently of the 

concrete equipment services that will be available during runtime. Furthermore, the binding 

can be decided globally in the main control service or even dynamically based on current 

circumstances. This procedure of assigning abstract services within a control service is 

defined as abstract service allocation. The prerequisite for exploiting its full potential is a 

standardized procedure to determine service names and their types as well as a service 

library for collecting possible service templates (see Chapter 6.3.3). 

 

Figure 6-8: Late binding through abstract service allocation 
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Regarding the automation pyramid, there exist numerous different functions implemented 

on the control layer (see Chapter 2.2) that can be structured according to certain service 

sub-categories. For the scope of this thesis three service categories of design control 

procedures are defined: 

• Process services: For realizing a service-oriented control procedure, the control 

layer has to contain at least one mandatory process service. It directly implements 

the above-mentioned control functions or it acts as a master for managing all 

underlying control functions that are outsourced to other services. Furthermore, it 

determines all bindings of its own service orchestration and those who have been 

specified via abstract service allocation in other control services it uses. Subordinate 

process services can also be generated to split complex control logics into several 

services. 

• Product services: The demand on flexible production systems being able to produce 

diverse product variants or even different product types with similar production 

processes is continuously rising. Control functions that depend on the respective 

product type can be outsourced to product services. The process service calls the 

respective product service according to the current production order. 

• Supporting services: Any pure software function that is needed for the overall 

control procedure and that is easy separable from the main control logic can be 

outsourced to supporting services. 

 

Figure 6-9: Reference architecture for service-oriented manufacturing control 
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The above defined control service categories can be complemented with others of course, 

if a reasonable distinction of characteristics is necessary. Altogether, the service categories 

of the control layer and the before mentioned services of the equipment layer form together 

a reference architecture for service-oriented manufacturing control applications (see Figure 

6-9).  

6.3 Specification of Equipment Services 

The fundament of a SOA-AT system constitutes the equipment layer, which comprises the 

building blocks of the services on the control layer. Hence, the specification of equipment 

services is a crucial task influencing heavily the later design of the control application. For 

this reason, the individual aspects to specify an equipment service are investigated and 

guidelines are presented to ensure an efficient control engineering. 

6.3.1 Service Description 

The service description comprises the service name and the specification of the service 

operations. Furthermore, a service description can comprise several attributes to express 

certain characteristics of the service. Generally, any additional information that is important 

for potential service users should be captured within such attributes. Attributes can be used 

to specify the functionality of the service or to describe details regarding the communication 

technology the service interface is using. 

How the service description is specified influences heavily the usability of a service and how 

seamless the mapping processes between requirements and matching services can be 

executed (see Chapter 3.4.2). Within a service-oriented control architecture this particularly 

concerns basic services, since they act as the atoms within the service architecture that are 

responsible for controlling the production equipment. 

 

Figure 6-10: Naming scheme for basic services 
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Based on the recommendation from Erl (see Chapter 3.4.2) a naming scheme is defined to 

enable meaningful and comprehensible service names for basic services (see Figure 6-10) 

[Erl05]. The first building block is the verb which stands for the encapsulated technological 

functionality of the field device, for example, the function of a sensor as “detect.” In some 

cases, the function can be described more exact by a noun, for example, a translational 

motion of a cylinder represented by “translation” instead of the much more general “move.” 

The second part of the name further specifies the function by an adjective or noun. In case 

of the basic service of an actuator, the information about the form of energy for executing 

the function is added by an adjective or noun, for example, “translation” would be further 

detailed to “translationPneumatic” for a pneumatic cylinder or “translationElectric” for an 

electrically operated cylinder. For sensors, it is essential to know how the sensory function 

is realized according to the operating principle. Thus, the respective information is added, 

as instance “detect” is extended to “detectInductive” for an inductive sensor or 

“detectMagnetic” for a reed switch. The scope of composed equipment services is more 

specific and depends on the particular application domain so that their naming scheme is 

more general. Similar to basic services the first part consists of a verb or noun representing 

the function that can be combined with an adjective or noun for additional information. 

Besides the service name another important item of the service description are the 

operations. Since they represent the access points to the individual functions encapsulated 

by the service, their names can be derived from the first part of the service name. As 

instance, for the service “translationPneumatic” the operations “translationDirection1” and 

“translationDirection2” are defined to move the cylinder in each possible direction. For 

devices of high complexity, such as servo controllers, additional operations can be added 

to make the complete functionality available. To exchange information operations can 

comprise input and output variables. For example, the service “translationPneumatic” could 

also have just one operation “translation(in: direction)” with an input variable specifying the 

direction (see Figure 6-11 left).  

 

Figure 6-11: Examples of services descriptions with service operations and 

attributes 
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The usual working principle of a service works according to a request-response pattern. 

When an operation is called, its task is executed once and the result is handed over as soon 

as the task is finished. Besides this, the introduction of another working principle is useful 

known as eventing (see Chapter 3.4.5). Calling operations that work according to the 

eventing principle trigger the subscription of a certain event. Each time the event happens 

the operation gives feedback as long as the event is subscribed. In this way, a steady polling 

of sensor values can be avoided when a certain event within the production process is of 

interest. This applies for example when a temperature limit causing an alarm is observed or 

when the material flow is triggered by the presence of an object at a certain position. 

Eventing operations are characterized by the additional attribute “type: event” (see Figure 

6-11 right). 

6.3.2 Design Aspects of Equipment Services 

To specify an equipment service, several aspects have to be considered during the design. 

Generally, a service is specified by its external and internal properties in terms of the service 

description and control logic (see Chapter 3.4.2). Besides these items, additional aspects 

have to be taken into account to design a service for manufacturing control.  

In contrast to basic services, composed services make use of external services (see 

Chapter 6.2). Thus, their functionality is composed of the functionality of the external 

services that are called within their service orchestration. Since the availability of the 

respective services is essential to execute the service orchestration, the dependencies 

between an orchestrated service and the external services it uses have to be depicted. 

Moreover, the relationships between services and production equipment need to be taken 

into account (see Chapter 6.2). Similar to services, the hierarchical dependencies between 

hardware modules on different granularity levels have to be considered. Superior hardware 

components, for example production cells or lines, are composed of smaller hardware 

components like field devices. 

These design aspects have to be determined for each equipment service of the control 

system. To permit a better handling of complexity the aspects can be divided into three 

separated views on the production system for which the control system is developed (see 

Figure 6-12): 

• Functional view: The services of the control system are designed as components 

that represent the individual functions of the production system. For each service a 

number of operations and attributes are defined regarding a service description. 

Relationships between services indicate when one service uses another service for 

its execution. In this way, a functional modularization of the production system in 

several granularity levels is obtained. 
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• Dynamic view: The behavior of each service is specified as control logic. Therefore, 

the operations of the service components defined in the functional view are linked to 

the respective control logics that are executed as soon as the operation is triggered. 

• Hardware view: The physical modularization of the production system is depicted as 

hardware components on several granularity levels that are related via containment 

relationships. Links to the functional view illustrate which hardware components 

execute which services. 

 

Figure 6-12: Design aspects of an equipment service 

6.3.3 Library Concepts 

A library collects templates of any kind of planning objects that can be used for different 

applications. Thus, they constitute a tool to enhance reusability and standardization of 

engineering results. By an efficient use of a service library, the efforts for designing control 

services can be drastically decreased. Previously defined equipment services can be 

collected and stored as service templates, which can then be reused for other applications. 

Furthermore, these templates can be systematically arranged within several levels of detail 

so that the engineer is optimally supported on finding the right service.  

The concept of a service library enables an object-oriented design approach (see Chapter 

4.1.1). Thereby, the elements of the library represent service templates which act as 

classes. For a specific design task, a suitable service template is chosen from the library 

and instantiated as a respective planning object (see Figure 6-13). Services are connected 

to the service templates from which they are instantiated via the is type of relationship. 

According to the defined design aspects of a service, the elements of the service library 

represent primarily the service descriptions. However, the service templates can also 

comprise a control logic and information about the type of the related hardware component. 
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Figure 6-13: Service design by using a service library 

The definition of service types and the application of the standardized naming scheme (see 

Chapter 6.2 & 6.3.1) support a consistent structure of the library that comprises several 

levels of detail. Generally, each element takes over the properties of an element on a higher 

level of the library and adds further details so that the concretization degree increases on 

lower library levels (see Figure 6-14). In object-orientation this task is known as inheritance 

(see Chapter 4.1.1) which is applied here in a weakened way, since the adopted properties 

can also be modified, for example the name, inputs, and outputs of the service operations. 

This kind of concretization of one element to another is indicated by the is concretization of 

relationship. All elements having this relationship to the same superordinate element belong 

to the same category. The elements on the highest level of the library represent the service 

categories of the reference architecture. The service library particularly makes sense for 

basic services, since the demand on their degree of reusability and standardization is 

explicitly high. Thus, the structure of the service library for basic services is defined in 

greater detail in several hierarchical levels (see Figure 6-14). 

The mother element of all basic services is the service template “basic service”, which has 

the two child elements “sensor service” and “actuator service.” Below these the service 

templates are distinguished according to the technological functionality they represent. This 

is indicated by the first part of the full service name regarding the naming scheme like 

“detect” or “translation” (see Chapter 6.3.1). Until this level all library elements are indicated 

by an additional attribute “type: abstract” because they serve purely for structuring purposes 

and cannot be instantiated. Below this level the service templates are fully specified by 

adding the respective form of energy or the operating principle and can be instantiated as 

planning object for a certain design task. Another level of detail can be generated when 

services need to be adapted to certain devices. For example, “detect” has among others 

the child elements “detectInductive” which has again “detectInductive_P+F” as child with 

special features. 

Similar library concepts are already common for hardware components that are listed in 

device catalogs. This is particularly applied by device manufacturers or device vendors to 



 

90 Dissertation 

present which commercial parts they offer to potential customers. The customer can then 

choose from this catalog and buys a respective instance of the catalog item. Bigger 

manufacturing companies often have internal device catalogs to standardize the equipment 

they use for their production lines. Today, there exist already initiatives for standardized 

cross-vendor equipment catalogs like eCl@ss (see 7.1.2). During the design of services for 

manufacturing control such device catalogs are useful to determine hardware components 

that execute the respective services. 

 

Figure 6-14: Service hierarchy for structuring basic services 

6.3.4 Abstract and Concrete Specification of Services 

Like for all planning tasks a stepwise proceeding with several concretization steps supports 

the engineer’s way of thinking and is beneficial for the comprehensibility and reusability of 

planning results. This applies particularly during the design of the control services wherefore 

suitable equipment services need to be determined. For the specification of the required 

equipment services, two major concretization steps are defined by using OO principles (see 

Figure 6-15): 

• Abstract Specification: First, the service is specified independently on the concrete 

device that is used later. A suitable service template is picked from the service library 

and instantiated as planning object. If an appropriate service template is not available, 

a new one is created. Besides this, a hardware component is generally determined in 

terms of a device category like “inductive sensor” or “pneumatic cylinder.” Moreover, 

a general control logic is designed with instructions how the functionality of the service 

has to be implemented.  
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• Concrete Specification: The results from the abstract design are detailed regarding 

the concrete device that will be used. Therefore, a suitable device will be chosen from 

a device catalog of a certain vendor and the control logic is worked out accordingly. 

For instance, the inductive sensor from Pepperl+Fuchs with the type identifier “NBB0” 

will be picked. If the service description doesn’t cover all functions of the device, the 

service description is adapted to a device-specific one like “detectInductive_P+F.”  

Generally, adapting the service description regarding device-specific details should be 

avoided and just be applied with caution. Preferable are vendor-independent and uniform 

service descriptions to make the control application more independent of the respective 

hardware. Besides a higher reusability of the services, this brings the advantage that the 

hardware can be exchanged more flexibly without changing the service orchestration of the 

control services. However, field device manufacturers usually want to obtain a competitive 

advantage by providing products with unique selling propositions to stand out against other 

products from competing companies. This fact makes it often necessary to deviate from a 

vendor-independent standardization of service descriptions to cover special features of the 

device. 

 

Figure 6-15: Abstract and concrete specification of an equipment service 
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6.4 Development of Control Services 

After discussing how equipment services are specified, the development of control services 

is investigated next. First, some guidelines for their specification are defined and afterwards, 

a process-oriented development method is presented. Therefore, principles of the process-

oriented design strategy for SOA systems (see Chapter 3.4.1) are applied to define an 

integrated design method to determine control services and their required equipment 

services. 

6.4.1 Specification of Control Services 

The conditions for the specification of control services can be decided more loosely 

compared to equipment services because they are more independent of the production 

equipment and the demands on their reusability is lower. Moreover, they highly depend on 

the respective application scenario and characteristics of the production process which 

leads to a more individual design. Nevertheless, some guidelines for their design are helpful 

for a well-structured engineering so that the same design aspects of equipment services 

(see Chapter 6.3) are examined for control services. 

Control services also have to be specified via a service description. A similar naming 

scheme as for equipment services (see Chapter 6.3.1) can be applied that starts with a verb 

to describe the main action and that gets combined with adjectives or nouns to add further 

information, for example “assembleCarDoor.” The operations of a control service trigger the 

execution of the control tasks. Which operations are needed depends heavily on the type 

of control service and its individual properties (see Chapter 6.2.2). Usually, the main 

process service is continuously executed as long as the respective production process is 

running so that the operations reflect the control mode changes like “startAutomaticMode”, 

“startStepMode”, and “stop.” Product services and supporting services are called by the 

process service just in certain events so that their control logic is usually executed one time. 

Hence, their operations trigger the single execution of a certain control logic, for example 

“calculateSettingsCarX.” 

The design aspects of equipment services that are displayed within the three defined views 

(see Chapter 6.3.2) can also be applied for control services. Generally, product and 

supporting services do not directly relate to hardware components so that the hardware 

view can be neglected. In contrast to this, the hardware view is applied for process services. 

They are allocated to the hardware components that execute the production process which 

is implemented by them. Due to this relation to hardware it can make sense to develop 

process services according to the two concretization steps (see Chapter 6.3.4). This is 

particularly beneficial to enable a parallel design when the technical details of the hardware 

are not determined yet, but the design of the control process can already be started. Also 

adding control services to the service library is recommended for any service that is 
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potentially reusable. In the ideal case, each control service can be directly reused within 

other applications. However, the adaption to a certain use case is probably needed for many 

services so that the library items are used as templates that are modified according to the 

current use case. 

6.4.2 Process-oriented Development of Control Procedures 

A service-oriented control procedure is implemented in form of multiple services on the 

control layer. This includes the design of the individual control services and their service 

orchestrations which specify the control logic and the bindings to the equipment services. 

The prerequisite is that the required equipment services have been determined based on 

the requirements on the desired production process. Thus, an essential question for the 

development of control services is how the required equipment services can be directly 

derived from these requirements. By applying principles of the process-oriented design 

strategy (see Chapter 3.4.1) a seamless design method including the mapping between the 

control layer and the equipment layer can be achieved. The design process is divided into 

seven steps that can be partly executed in parallel (see Figure 6-16). 

  

Figure 6-16: Overview of the steps for the process-oriented design 

The determination of the required equipment services is covered by step 1-4 (see Figure 

6-17): 

1. Process description: First, the requirements on the control procedure are formulated 

that act as input for the further design steps. Since the objective of the control system 

is the execution of a certain production process, the basic requirement can be 

formulated as a description of it. Therefore, the individual steps and their time 

sequence need to be specified that are needed to produce a certain product. This 
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should be done by focusing on “What needs to be executed?” without already 

including technical solutions. The process description can comprise several detailing 

levels. Process steps are decomposed in more fine-grained process steps until the 

lowest level of elementary process steps is reached. For example, a process step on 

the lowest detail level is defined as “Stopping bin in front of lidding device.” (see Figure 

6-18). 

2. Functional realization: The challenge to derive the required equipment services 

from the process description is solved by this intermediate design step. After the 

process description, has been elaborated, the functional realization of each 

elementary process step is determined. Thus, the designer needs to answer “Which 

functions are needed to execute the process step?” in terms of individual functions 

that are still independent of a technical realization. For example, the process step 

“Stopping bin in front of lidding device” requires the functions “detect” for making the 

production system aware that the bin has reached the position and “stop” for stopping 

the motion of the bin (see Figure 6-18). After that, functions that will be executed by 

the same hardware component are bundled to a group. For this function bundling the 

functions of all process steps need to be considered because different process steps 

can be executed by the same production equipment. 

 

Figure 6-17: Process-oriented development of equipment services 
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3. Equipment services: For each group of related functions and each standalone 

function a technological realization is defined as an equipment service. Therefore, the 

service is specified regarding the question “How is the function technologically 

realized?”. This task comprises two sub steps according to the abstract and concrete 

specification of a service (see Chapter 6.3.4). Furthermore, the operations of the 

service are selected to execute the respective functions. For example, the function 

“detect” will be realized by sensing the bin via an induction loop so that the service 

“detectInductive” is chosen with its operation “detect.” Ideally, the services are already 

defined and can be chosen from the service library (see Chapter 6.3.3). Otherwise, 

the services need to be defined first according to the design guidelines and then be 

included into the library. 

4. Service allocation: Until the end of step 3 the services are defined as pure planning 

objects so that in a last step an implemented service instance needs to be allocated. 

This implies a unique address or identifier to access the respective service and refers 

to the question “Where is the service executed?”. For example, the service 

“detect.inductive” is implemented as a is Web Service and accessible under a certain 

IP address. 

 

Figure 6-18: Example for the determination of an equipment service 

In parallel or after the specification of the required equipment services (see Figure 6-16), 

the control services and their orchestration logic are specified within the steps 5 to 7. Also 
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here the process description provides a suitable starting point followed by three design 

steps (Figure 6-19): 

5. Control services: The individual process, product, and supporting services are 

specified for realizing a desired control strategy. Thereby, requirements regarding 

product and process variants, overall complexity, and additional automation functions 

have to be considered. If the process description is already complex, this indicates 

that a separation of the control logic in several services on control layer should be 

introduced. 

6. Orchestration logic: For each control service an orchestration logic is specified to 

implement its behavior. Enabled by the higher abstraction degree of service 

orchestrations in contrast to PLC code, a rough control logic can already be derived 

from the process description. Therefore, the individual process steps from the process 

description that belong to the particular control service are transferred to the 

orchestration logic. The required equipment services to be called within the logic can 

be derived from step 3. In this step the equipment services have already been 

determined for the piece of process logic which is realized by the respective control 

service. The obtained rough control logic then needs to be detailed and adapted 

according to the requirements on the control service.  

 

Figure 6-19: Process-oriented development of control services 
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7. Service binding: To make the control services executable the service bindings 

between the service orchestrations and the equipment services need to be 

established. Therefore, information about the accessibility of the service is required 

which is delivered by step 4 where the allocation of the service instances took place.  

How straightforward and seamless the flow from the process description to the 

determination of suitable services can be executed, depends heavily on guidelines for the 

definition of the functions and of the service descriptions (see Chapter 7.1). 

6.5 Engineering Process 

The prerequisite to efficiently develop service-oriented control procedures is a consistent 

and systematic engineering process. Therefore, a control engineering process is defined 

with distinct planning phases that are based on the general methods for the design of 

equipment and control services (see Chapter 6.3 & Chapter 6.4). Furthermore, this control 

engineering process is included within the overall production engineering process. Thereby, 

effects on the planning phases are analyzed and opportunities for improvements of existing 

drawbacks are pointed out. 

6.5.1 Control Engineering Process 

To support the fluent development of service-oriented control procedures an engineering 

process according to the Waterfall model (see Chapter 4.1.2) is defined. Four phases with 

dedicated planning results describe the development process for the process-oriented 

engineering of service-oriented control procedures, abbreviated as PESCOP (see Figure 

6-20): 

• Analysis: During the analysis phase the preliminary work is executed for providing 

the required input to design the control system. The results constitute the process 

description (step 1 of Chapter 6.4.2) and the functional realization of the elementary 

process steps (step 2 of Chapter 6.4.2). Although the planning should be initially as 

independent of hardware properties as possible, several requirements on the 

production equipment can exist and thus, should be also considered during the further 

planning steps. For example, a rough plant design can already assign certain 

production cells to process steps. 

• Design: The design phase comprises the definition of the services of the control 

system (step 3, 5 & 6 of Chapter 6.4.2) and the determination of the required 

production equipment. It is divided in two phases according to the principle of abstract 

and concrete specification of services (see Chapter 6.3.4): 

o Abstract Design: First, the abstract specification of services is executed based on 

the results from the analysis phase. In this stage, the planning objects represent 

abstract services and components that are hardware-independent and act as 

requirements for the following concretization. According to the three design 
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aspects of a service, the planning results are represented in three parts. The 

service structure comprises the single services as components, which contain their 

service descriptions. Another static view is given by the equipment structure, which 

depicts the modularization of the hardware components. The last part illustrates 

the dynamic behavior of each service as control logics. Relationships of planning 

objects are represented via links between the respective objects. 

o Concrete Design: After the abstract design is completed, the service design is 

detailed according to the concrete specification of the services. Thereby, the 

services are specified by committing on concrete devices of the production 

equipment. The service structure, equipment structure, and control logic are 

modified in case if the chosen hardware requires any changes or detailing of the 

results from the abstract design. 

 

Figure 6-20: Phases and results of the PESCOP process 

• Technical Specification: In terms of distributed systems the design phase defines 

the software architecture, whereas the technical specification phase determines the 

system architecture of the control system (see Chapter 3.2). This happens by deciding 

on all technical details that are needed to implement the services with respect to the 

non-functional requirements on the control system. This includes among other things 

the selection and configuration of the hardware components where the services are 

running on, the communication technology, and an implementation concept of the 

services. 
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• Implementation: Finally, the planning results are transferred into realization. The 

individual services are implemented and the controllers and communication systems 

are set up. After that, the service bindings can be established (step 4 & 7 of Chapter 

6.4.2) so that the control procedure is executable. 

6.5.2 Placement within the Production Engineering Process  

So far, the development of service-oriented control procedures has been regarded 

autonomously. However, control engineering is typically not executed standalone but in 

association with the planning of a production system. Hence, the applicability of the 

previously defined PESCOP process can be granted by embedding it into the production 

engineering process (see Chapter 2.3.2). Thereby, the planning phases of today’s common 

planning process are adapted as much as necessary to integrate the new concepts 

provided by PESCOP as optimal as possible (see Figure 6-21). Furthermore, potential 

effects and opportunities for improvement regarding the planning phases and other 

engineering disciplines are analyzed. 

The starting point to link the new engineering method to today’s common production 

planning process constitutes the rough planning phase. Process plans and the formulation 

of requirements on the production equipment are already common deliverables based on 

the input from product design and factory layout. Hence, these process plans are further 

developed to the more detailed process description. Additionally, the functional realization 

is determined and possibly existing hardware requirements of each process step are 

reflected. 

 

Figure 6-21: Adapted planning phases of the production engineering process 

Between the rough planning and detailed planning an additional planning phase is 

introduced called system planning which covers the tasks of the PESCOP design phase. 

Inspired by the principles of systems engineering, it comprises a holistic planning of the 

production system based on existing requirements (see Chapter 4.3.5). Therefore, the 
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planning results are divided into the three views on the production system according to the 

planning aspects of services (see Chapter 6.3.2 & 6.5.1): the hardware view with the 

equipment structure, the functional view with the service structure, and the dynamic view 

with the control logics. These planning results are worked out in two concretization steps 

following the sub-phases of the PESCOP design phase. During each concretization step 

the three views can be developed in parallel whereby dependencies between planning 

objects imply planning sequences decided on a case-by-case basis.  

The last planning task constitutes the detailed planning phase where all technical details of 

the individual engineering disciplines are specified based on the results from system 

planning. For control engineering this signifies the tasks of the PESCOP technical 

specification phase. The preliminary work of the system planning provides the prerequisite 

for the engineering disciplines to start on deeper detail level in contrast to today’s 

conventional planning procedure. Since the specific details of the different engineering 

disciplines are mainly independent of each other, the disciplines can be executed in parallel 

by experts of the respective domain. Nevertheless, additional dependencies can come up 

and need to be reflected accordingly. 

 

Figure 6-22: The PESCOP process as V-model 

The PESCOP process constitutes an enabler to integrate innovative concepts from systems 

engineering (see Chapter 4.3.5) and mechatronic systems (see Chapter 4.3.2) into the 

production engineering process. Thus, the pure sequential arrangement of the production 

engineering phases can be easily transferred to the shape of a V-model for mechatronic 

systems (see Chapter 4.1.2). The analysis phase acts then as input for the left leg of the V 

which covers the design phase. The technical details of the single engineering domains are 

detailed during the technical specification phase, which constitutes the bottom of the V. The 
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right leg of the V supplements the previously defined phases with the implementation phase 

where the system is realized from bottom to top and continuously tested against its 

specification. The final result is the production system. 

This proposed production engineering process shows significant differences to today’s 

typical engineering procedure. Usually, the planning of a production system is strongly 

directed by the mechanical design. In contrast to this, the integration of PESCOP implies a 

strong functional-driven instead of a hardware-driven design with the service structure as a 

central delivery. Together with the equipment structure and control logic, it represents a 

holistic system design on an abstract level. Obviously, these additional or extended 

deliverables necessitate the spending of increased efforts for the pronounced process 

planning and the new system planning phase. However, these additional efforts pay off by 

numerous potential benefits: 

• Time savings: The major part of the additional efforts is anticipated from the detailed 

planning phase where efforts can be reduced. Simultaneously, these efforts constitute 

the basis for the parallelization of planning tasks during detailed planning which allows 

a shorter time-to-market at the end. 

• Seamless design: The planning process describes an integrated procedure from a 

detailed process planning to a holistic system design, which finally merges into the 

domain-specific design. Explicit instructions to link the individual planning phases 

permit a seamless planning procedure. As a result, the current gap between the 

production process planning and the implementation of control procedures can be 

eliminated by the mapping between process description and service structure. 

• Dealing with complexity: The step-by-step concretization of the production system 

as a whole enables an engineering in an easy to follow top-down manner. Moreover, 

the separation of planning results according to the individual perspectives on the 

production system provides an improved comprehensibility. Both aspects permit a 

systematic structuring of planning tasks and help to deal with the growing complexity 

of production engineering. 

• Higher flexibility and reusability: The new rough planning phase and the system 

planning phase allow the reduction of the dependencies on hardware-specific details 

in the early planning phases. For this reason, a higher flexibility for possibilities of the 

concrete realization is given. Moreover, the planning results from the new rough 

planning phase and system planning phase provide a considerably higher reusability 

so that reconfigurations of an existing production system or similar planning tasks for 

a new one can be executed with less effort. 

6.6 Model-driven Engineering Methodology 

The concepts about SOA-AT, the design of equipment and control services, and the 

PESCOP process are now put together to form an integrated model-driven engineering 
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methodology for service-oriented control procedures. In the following, it is abbreviated by 

the term MDE for SOA-AT. This thesis explicitly concentrates on the functional specification 

of the control system so that the methodology covers the analysis and design phases of the 

PESCOP process.  

A reference model determines the modeling workflow in accordance with the engineering 

process (see Chapter 6.5.1). The planning models are formally specified by meta-models 

and their development within the engineering process is examined in detail. Thereby, the 

models are specified in a general way so that they neither depend on specific modeling 

tools nor on certain technologies for the implementation. Moreover, structural blueprints are 

defined for the equipment model and the service model as reference architectures. 

6.6.1 MDE for SOA-AT Reference Model 

The general methodology of MDE for SOA-AT is represented by a reference model (see 

Chapter 4.2.1). It defines which models are generated in which development steps to enable 

an integrated proceeding and a seamless information flow (see Figure 6-23). It is separated 

into seven sections that are arranged in the vertical dimension and the horizontal dimension. 

The workflow is horizontally arranged in three sequential planning phases: analysis, 

abstract design, and concrete design. The two latter phases are additionally split up in 

vertical orientation according to the three different design aspects (see Chapter 6.3.2) that 

can be simultaneously developed. As a result, four planning models are introduced (see 

Figure 6-23): 

• Process model (1) 

• Equipment model (2a + 2b) 

• Service model (3a + 3b) 

• Control logic model (4a + b) 

Since planning results of adjacent sections depend on each other, information needs to 

be shared between the models. During the development, the information exchange 

between two sections happens either by a direct information flow indicated with an arrow 

or by a mapping task between model elements of different models depicted as diamonds. 

In the latter case the mapping describes an additional planning step which is necessary 

to develop one model based on the results of a model from another section. The model-

driven methodology comprises three mapping tasks (see Figure 6-23): 

• Functions to services (A) 

• Services to hardware components (B) 

• Abstract hardware templates to concrete hardware templates (C) 
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Figure 6-23: Reference model for MDE for SOA-AT 

6.6.2 Modeling Concepts 

Already today, modeling is a common tool to depict planning results in a user-friendly and 

comprehensible way. Thereby, the rules and features for modeling are usually defined by 

the modeling tool that is used for a specific engineering discipline, for example, a CAD 

application provides a set of modeling features for the mechanical design. To make the 

model-driven engineering methodology generally applicable without the dependence on a 

certain modeling language or modeling tool, metamodels as an abstract syntax define the 

set of modeling concepts, their attributes, and their relationships (see Chapter 4.2.1). Before 

these are determined in the upcoming sub chapters, a general framework with modeling 

concepts is given. It is based on OO and basic MDD concepts (see Chapter 4.1.1 & Chapter 

4.2.1). 

Four levels of modeling are defined according to the MOF levels M0, M1, M2 and M3 (see 

Figure 6-24). The planning model itself is built up by elements from level M0 and level M1 
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whereby the actual planning objects are represented by M0 elements being instances of 

libraries or catalogs elements from level M1. To define the rules for building the individual 

planning models, metamodels are defined that are represented by level M2. The general 

rules to build the metamodels are defined within the concept model which expresses the 

meta concepts of level M3 (see Figure 6-25). 

 

Figure 6-24: The four modeling levels with exemplary elements 

The concept model comprises the element entity metatype which represents certain classes 

of entities according to the respective model like “service” or “hardware component”. The 

basic concept to depict elements of level M0 and level M1 is an entity which can either 

represent a planning object as an entity instance or a class of objects as an entity templates 

(see Figure 6-25). The actual planning objects are depicted on level M0 as entity instances. 

During the PESCOP process entity templates are used as elements of the service library 

that are instantiated to services of the planning model. The same holds true for concrete 

hardware components that are determined by assigning a device from the device catalog. 

Entities can have one or more attributes to describe certain characteristics. 

Furthermore, entities can have dependencies to other entities which is expressed via a 

relationship between two entities. Relationships are unidirectional so that a target and a 

source needs to be determined. General relationships between entities are defined as 

relationship metatypes that are connected between two entity metatypes. Three relationship 

metatypes are already used within the concept model to express object-oriented modeling 

concepts. The first one is particularly needed to create instances of classes. If an element 

of a certain modeling level is a sample of a class on a higher modeling level, the sample 

element is linked to the class element via the is type of relationship. The second one 

indicates when a class is a generalization of another class. Therefore, the specialized class 
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is connected to the class whose properties it adopts via the inherits from relationship (see 

Chapter 4.1.1). Strongly related is the third relationship metatype which applies the 

inheritance principle in a looser way as is concretization of relationship. It is used between 

elements on the same modeling level and creates several categories and sub-categories of 

elements in the service library or device catalog (see Chapter 6.3.3). Another common 

relationship metatype indicates when an element is part of another element to present 

composition or modularization of elements. Beyond this, any other type relationship of 

between two elements can be introduced to express certain dependencies of model 

elements for the particular meta models. 

 

Figure 6-25: Concept model 

 

Figure 6-26: Graphical notation of the metamodels and models 
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The graphical representation of the metamodels and planning models are put in a similar 

way as the modeling concepts with some deviations (see Figure 6-26). All entities and entity 

metatypes are represented as rectangles. To provide a better overview and to make the 

graphical representation more comprehensive all attributes are depicted inside the 

rectangle and the relationships are presented as arrows. The most common relationships 

are indicated with a certain format; others can be introduced by normal arrows with labels 

to indicate their type. 

6.6.3 Process Model 

The process model depicts the results from the analysis phase. This primarily includes the 

description of the production process as production steps and the functional realization of 

the elementary process steps. Furthermore, it should be possible to depict potential 

requirements on the production equipment and information about the product states for 

each process step in order to adequately consider results from earlier planning phases.  

 

Figure 6-27: Metamodel of the process model (M2 level) 

All concepts to create a process model of the PESCOP process are defined within a 

metamodel (see Figure 6-27). The overall production process is represented by the element 

process. Each process model is depicted by a number of process steps that can be 

arranged in several granularity levels. Thus, high-level process steps are decomposed to 

sub processes that contain process steps again (see Figure 6-28). The decomposition is 

continued until elementary process steps are reached that are assigned to function 

elements which define their functional realization.  



6 Methodology for the Model-driven Development of Service-oriented Control Procedures 

 107 

 

Figure 6-28: Exemplary instance of a process model (M0 & M1 level) 

To determine the process flow order, the process steps are connected by control flow 

relationships that indicate which process step is followed as soon as another process step 

has been completed. Two further elements that are inspired by concepts from the VDI 3682 

(see Chapter 4.2.2) help to enrich the process steps with further information. Since the 

product is formed by the production process, several states of the product can be defined 

as product elements that are input to or output of certain production steps. This additional 

information helps to connect the process planning with the previous product design. If 

certain types of machines or field devices are already determined to execute actions of the 

production process, this information is represented as hardware component elements which 

are assigned to the respective process steps. 

6.6.4 Equipment Model 

The abstract and concrete equipment structure are displayed within the equipment model. 

It illustrates the composition structure of the physical parts as individual hardware 

components (see Figure 6-29). Each hardware component can consist of a number of other 

hardware components according to the modularization principle. An additional relationship 

between hardware components shows which component is needed to operate another 

component. This illustrates functional dependencies in terms of a functional group (see 

Chapter 6.2.1) and is required for the correct implementation of equipment services. A 

component extends another component when its purpose is to exclusively serve the 

component. This would be the case when sensors are added in order to check certain states 

of a field device, for example, a cylinder with sensors that detect whether it is extended or 

not. The entity instances of the equipment model are hardware component instances. They 
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can be specified directly or created by instantiation of hardware component templates which 

represent entity templates and are collected within the device catalog. 

 

Figure 6-29: Metamodel of the equipment model 

A reference architecture defines categories of hardware device templates that represent 

four granularity levels (see Figure 6-30). It specifies four categories of hardware 

components that are inspired by the ISA-88 (see Chapter 4.4.1). For manufacturing control 

the highest interesting equipment level concerns the scope of a production line. Each 

production line is separated into work cells with defined physical dimensions that execute 

sequential production steps. Work cells comprise a number of field devices that are the 

smallest self-contained hardware components. In many cases, certain field devices within 

one working cell strongly relate to each other when they build a functional group or a 

reusable hardware unit. To depict their coherence, the hardware component template 

module is used.  

 

Figure 6-31: Reference architecture and example of an equipment model 
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To determine the individual elements of an equipment model, the usage of a device catalog 

is recommended. Library elements can represent elements of each level of the reference 

architecture and are particularly beneficial on the lower levels where the reusability is high. 

To pick suitable and available field devices for realizing the functionality of a work cell, 

commercial parts from an internal or external device catalog can be picked (see Chapter 

6.3.3). On the higher levels a device catalog is rather applied to capture already defined 

work cells or modules in order to reuse them for other applications. 

6.6.5 Service Model 

The service model depicts the composition structure of the services, which define the 

functional structure of the production line (see Figure 6-32). Since the composition is 

realized through service orchestration, the service model indicates whenever a service uses 

other services to execute its functionality. Furthermore, the model defines the service 

operations as attributes of the respective services. The entity instances of the model are 

service instance elements, which represent the services are to be implemented according 

to a defined implementation concept to make the control program executable (see Chapter 

7.2). They can be built directly or by instantiating a service template which is listed in the 

service library (see Chapter 6.3.3). 

Besides the specification of the services, the service model also presents the dependencies 

between services and hardware components. Therefore, it defines two relationships that 

connect services with hardware components of the equipment model. The relationships 

indicate which hardware component executes the functionality of a service and if another 

hardware component is required to implement its functionality (see Chapter 6.2.1). 

 

Figure 6-32: Metamodel of the service model 

Similar to the equipment model, the entity metatype service template can have sub-

categories to define a reference architecture for the service model (see Figure 6-33). Its 

structure can be directly derived from the reference architecture for service-oriented 

manufacturing control (see Chapter 6.2). Thus, a first division takes place in accordance 
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with the two service layers equipment services and control services. Equipment services 

can be further distinguished into basic services and composed services. For control 

services the sub-categories process service, product service, and supporting service exist. 

 

Figure 6-33: Reference architecture of the service model 

6.6.6 Control Logic Model 

The dynamic behavior of the services is specified within the control logic model. The 

element control logic symbolizes the complete logic that implements the functionality of a 

certain service operation which is executed as soon as the operation is called (see Figure 

6-34). Thus, each control logic element is connected to a service operation entity of the 

service model that represents the control logic externally. Generally, the control logic is 

realized with logical instructions which can be defined by using pseudocode in an informal 

way independently of the technical realization. Later on, the instructions need to be 

implemented conforming to a respective implementation language.  

In case of service operations making use of other services, the control logic can comprise 

an orchestration logic which can be modeled graphically in more detail than pure logical 

instructions. An orchestration logic is composed of process steps similar to the process 

model, which constitutes a direct input for the control logic model by providing a rough 

process flow. For the development of a control logic based on the process model, the 

process steps have to be detailed and alternately be connected to control structure 

elements. The control structures define in which logical order the process steps are 

executed, for example, as sequential process flow, conditional branches, or loops. When a 

process step is active the execution of associated logical instructions and external services 

can be triggered. In the latter case, another link to the service model is required to indicate 

which service operation is called by the process step. 
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Figure 6-34: Metamodel of the control logic model 

6.6.7 Model-driven Engineering Workflow 

Now that the individual models for the different kinds of information have been defined, the 

detailed workflow for MDE for SOA-AT can be described (see Chapter 6.5.1). Therefore, 

the individual execution steps are examined with emphasis on the information flow and the 

mappings between the individual models (see Appendix A). 

 

Figure 6-35: Mappings 

During the analysis phase the process model is developed. The model represents the 

process description consisting of a number of process steps. The process steps are detailed 

in several levels until the functional realization can be determined for each step. They can 

be optionally enriched with information about the related product state and the required 

hardware component. The design phase comprises the parallel development of the 

equipment model, the service model, and the control logic model. These models are 



 

112 Dissertation 

developed in two concretization steps according to the degree of dependence on the 

production equipment. First of all, the development of the service model is initiated with the 

first mapping where services are determined that execute the functional realizations of the 

process steps (mapping A in Figure 6-35). After that, the service structure is detailed which 

includes the specification of the control strategy by defining all required equipment services 

and control services.  

For the equipment model the first input about required hardware components is directly 

transferred from the process model. During the second mapping task the remaining 

hardware components are determined that are required to execute the services (mapping 

B in Figure 6-35). If the picked hardware components provide further services to those that 

are needed for the current process, these services are also included into the service model. 

The control logic model also receives direct input from the process model in terms of the 

process steps and the process flow order which serves as a first rough control logic. The 

control logics need to be detailed according to the desired control behavior of the system 

and the services that have been defined in the service model. The concrete design phase 

begins with the third mapping which refines the abstract hardware components to concrete 

hardware components wherefore commercial parts have to be chosen (mapping C in Figure 

6-35). Based on this refinement, the service structure and the control logic need to be 

adjusted as well. As a last step, the final details of all models are worked out. 

 

Figure 6-36: Reconfiguration process 
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So far, the general engineering workflow (see Chapter 2.3.1) and the above described 

workflow for MDE for SOA-AT focus on development planning tasks where the production 

system and its control system are defined from scratch (see Chapter 2.3.1). This is due to 

the fact that this scenario represents the most general case where the models are 

developed from the bottom up. However, reconfiguration tasks of existing systems occur 

much more often than complete replanning. Since the type and scope of the reconfiguration 

can vary within a wide range, the respective workflow for reconfigurations depends on the 

specific case. Nevertheless, the existing planning models provide an ideal basis to support 

the execution of any reconfiguration task because the dependencies between planning 

results are explicitly defined as relationships or mappings. 

The starting point constitutes the changes that call for a reconfiguration, for example, new 

or exchanged hardware components or a modified control logic (see Figure 6-36). First, the 

affected planning objects are identified and the impact on other planning objects are 

analyzed by checking step by step the effects of the change on related planning objects in 

a bottom-up manner. After that, the consequences for all affected planning results need to 

be defined so that the change can be realized in the desired way. This happens like the 

general engineering process in a top-down manner starting with the planning objects on the 

highest granularity level. By these two steps, the scope of the reconfiguration is precisely 

defined and required modifications are specified. 
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7 Application Concepts 

MDE for SOA-AT is defined as a general concept (see Chapter 6) detached from special 

development tools, IT technologies, programming languages, etc. In order to lift its 

relevance and expediency, this chapter describes application concepts for the standardized 

naming of planning objects and an implementation concept to transfer the concept into 

practical applications. 

7.1 Standardized Naming of Planning Objects  

During the execution of MDE for SOA-AT numerous planning objects are determined that 

are indicated by their name. Thus, the name stands for the meaning of the individual 

planning object and is directly connected to a set of information. This supports the 

cooperation of different peer groups that are involved in the engineering process by 

reducing information gaps through a common understanding. 

Furthermore, naming standards are the fundament to effectively apply library concepts and 

thus, to fully support reusability of planning results (see Chapter 6.3.3). Consequently, the 

mapping tasks (see Chapter 6.6.7) benefit from standardized names by defining certain 

rules how an object A from a library would be mapped to an object B from another library. 

These rules could be stored and reapplied to support the engineer in finding suitable 

mapping partners. 

However, the establishment of standardized names of planning results is complicated due 

to different interests and perspectives of various peer groups (e.g., OEMs, equipment 

suppliers, device manufacturers) that potentially are economic competitors. Additionally, the 

broad variety of production processes with different characteristics would lead to extensive 

efforts for the definition of generally applicable naming standards. Nevertheless, there 

already exist engineering standards that can help to establish company standards or even 

domain-specific standards. In the following, concrete proposals are given how existing 

naming standards can be used and how the mapping procedures can be executed based 

on them. 

7.1.1 Naming of Functions 

The determination of the functional realization of process steps constitutes a tool to link the 

elementary process steps of the process description with services for their execution (see 

Chapter 6.4.2). The possibility to choose from a certain pre-defined set of functions supports 

the development of the process description. As soon as a process step can be realized by 
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one or more functions from the standardized library, it can be ensured that an elementary 

process step is reached and the decomposition is finished. 

A suitable source to fill such a library for manufacturing processes are the functions that are 

defined within the standards VDI 2860 and DIN 8580 (see Chapter 4.4.2). Beyond this, the 

library can be extended by special functions that are repeatedly used. For this thesis, two 

elements are added: an element for reading and writing information via RFID and a 

placeholder element which can be chosen if no other library element fits. As a result, the 

library with functions of manufacturing processes comprises 43 elements (see Appendix B). 

The graphical representation of the functions supports the design with graphical models for 

a high comprehensibility so that the symbols can be directly attached to the respective 

process steps within the process description (see Figure 7-1). 

 

Figure 7-1: Exemplary functional realization of a process description by using 

the function library 

7.1.2 Naming of Services and Service Operations 

Standardized naming of services is highly important to leverage the full potential of SOA; 

particularly to permit reuse of services and support the binding of services (see Chapter 

3.4.1 & Chapter 6.2.2). To apply the naming scheme for services (see Chapter 6.3.1) the 

verb/noun and adjective/noun combinations have to be chosen to express the function of 

the service and its form of energy or operating principle. Therefore, the eCl@ss standard is 

used to serve as a source to deliver standardized terming (see Chapter 4.4.2). 

 

Figure 7-2: Service naming based on eCl@ss 
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For defining a term for the function the third eCl@ss level “group” provides the input to 

determine a standard term for the function of a device. For instance, for the “synchronous 

motor” the function “rotate” and for the “optoelectric sensor” the function “detect” are 

assigned. The second level “main group”, the third level “group”, and the fourth level “sub 

group” often contain terms that describe the operating principles for sensors or form of 

energy for actuators. The examples above would then be extended to “rotateElectric” and 

“detectOptic” (see Figure 7-2). Although a direct derivation of appropriate terms is not 

always possible, it provides a viable basis on which a service library with consistent naming 

of the services can be created.  

Each service comprises a number of service operations, which also needs to be 

determined. For simple services, the operations can be directly derived from the term of the 

function of the service, for example, the services “detectOptic” and “detectMagnetic” have 

the operation “detect”. More complex services are characterized by a broader set of 

operations with a higher amount of input and output data. This set of operations with certain 

inputs and outputs needs to match with the control interface of the device. Generally, the 

more complex the functionality of a field device is, the more specific is its control interface. 

Consequently, deviations between the general service of an abstract hardware component 

and the service of the concrete hardware component become more likely with rising 

complexity of the functionality of the hardware component (see Chapter 6.3.4). This requires 

the adaption of the service after executing the mapping task C (see Chapter 6.6.7). In 

accordance with the service hierarchy defined for the service library (see Chapter 6.3.3) a 

further subdivision of a hardware-independent service into hardware-specific services 

would be needed in this case. 

 

Figure 7-3: Refinement of a service with master service templates 
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Although hardware-specific services make the standardization and reuse of services more 

difficult, the situation can be improved by the concept of master service templates (see 

Figure 7-3). Such a master service template can be applied for certain device categories 

with complex functionality and comprises all possible operations. In contrast to this, the 

abstract service template comprises just a minimal set of general service operations. For 

defining the concrete service, the abstract service is extended by device-specific operations 

taken from the master template. This enables a compromise between standardized service 

templates, the handling of complexity, and an application of the SOA concept to all possible 

device functions. In the ideal case the master services are also derived from automation 

standards. For example, the PLCopen “Motion Control” standard (see Chapter 4.4.2) is 

suitable to define a master service template for motion control applications.  

7.2 Implementation Concept 

In the following, one possible implementation concept is presented, which describes how 

existing modeling languages, modeling tools, and technologies can be combined to turn the 

MDE for SOA-AT method into a real control application (see Figure 7-4). The focus is laid 

on the optimal support of the design phase of the PESCOP process with a suitable 

representation of the sub models with all cross-model dependencies. Moreover, a suitable 

representation of the process model and a proposal for the realization of the services is 

given. 

 

Figure 7-4: Implementation concept 



7 Application Concepts 

 119 

7.2.1 Representation of the Process Model  

The analysis phase is executed with a general-purpose process modeling tool to gather the 

input information for the design phase in a graphical way. The types of modeling objects 

like process steps, hardware components, relationships, etc. are distinguished by different 

shapes (see Figure 7-5). The format of the shapes is inspired by the graphical modeling 

language defined in the VDI 3682 guideline (see Chapter 4.2.2). For this thesis, Microsoft 

Visio is used to execute this task, but similar modeling programs can be used to achieve 

the same representation. 

For splitting up high-level process steps into sub processes, several levels of the process 

model can be developed. The highest granularity level is level 0 which comprises high-level 

process steps that are detailed in level 1 and so on. The number of levels should be chosen 

depending on the complexity of the overall production process. Each process step gets a 

process step ID as a number so that it can be clearly identified. The numbering is applied 

according to the granularity level so that the process steps within a sub process start with 

the number of its high-level process step which is extended by a consecutive number. 

 

Figure 7-5: Process model example with MS Visio 
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7.2.2 Representation of the Design Phase Models 

Since the planning models of the design phase are the core result of MDE for SOA-AT, a 

formal representation of the equipment model, the service model, and the control logic 

model is chosen. A proper modeling language for this constitutes SysML/UML which is 

applied in this thesis by means of the UML modeling tool Altova UModel (see Chapter 4.2.2). 

In the following, a definition is given how SysML/UML modeling elements are used to create 

the modes in accordance with the metamodels (see Chapter 6.6). 

Generally, the overall system is designed as one SysML/UML model, which comprises 

several diagrams to implement the sub models (equipment, service, control logic). Having 

all information within one model allows to link modeling elements from different sub models 

to show their dependencies (e.g., services to hardware components). The entity instances 

representing the individual objects of the system are designed with SysML blocks. Entity 

template elements taken from the device catalog or the service library are depicted as UML 

classes. The relationships between entities can be partially represented by pre-defined 

SysML/UML relationships that are provided by UModel. Other relationships are realized by 

using the general dependency relationship which is then enhanced by a certain stereotype. 

The categories of hardware devices and services of both reference architectures are also 

implemented as stereotypes that can be assigned to the respective blocks and classes.  

 

Figure 7-6: Presentation of the equipment model as Block Definition diagram 

The equipment model is realized as Block Definition Diagram with the following elements 

(see Figure 7-6): 

• Blocks represent hardware component instances. 

• Classes represent hardware component templates. 

• Class property “Manufacturer” indicates the name of the manufacturing company 

of the field device. 
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• Class property “Type identifier” indicates the type identifier under which the device 

can be found in the device catalog of the manufacturer. 

• Relationship “containment” (solid line with a “plus” sign at the end) represents the 

“is part of” relationship between two hardware components. 

• Relationship “realization” (dashed line with a hollow triangle) between blocks and 

classes represents the “is type of” relationship between an instance and template of 

a hardware component. 

• Relationship “realization” (dashed line with a hollow triangle) between two classes 

depicts the “is concretization of” relationship between two hardware component 

templates within the device catalog. 

• Stereotypes “operates” and “extends” refine the “dependency” relationship 

between two hardware components. 

• Stereotypes “field device”, “module”, “work cell”, and “production line” indicate 

the category of the hardware component according to the reference architecture (see 

Chapter 6.6.4). 

 

Figure 7-7: Presentation of the service model as Block Definition diagram 

The service model is also depicted as a Block Definition Diagram (see Figure 7-7): 

• Blocks represent service instances. 

• Classes represent service templates. 

• Operations of blocks and classes represent the service operations that belong to a 

service. 

• Relationship “use” implements the “uses” relationship between two services. 
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• Relationship “realization” (dashed line with a hollow triangle) between blocks and 

classes represents the “is type of” relationship between an instance and the template 

of a service. 

• Relationship “realization” (dashed line with a hollow triangle) between two classes 

depicts the “is concretization of” relationship between two service templates within the 

service library. 

• Stereotypes “executed by” and “implemented by” refine the “dependency” 

relationship between services and the hardware components to indicate the 

“executed by” and “implemented by” relationships. 

• Stereotype “event” tags a service operation in case it works according to the evening 

principle (see Chapter 6.3.1). 

• Stereotypes “basic service”, “composed service”, “process service”, “product 

service”, and “supporting service” tags the service blocks with the respective 

category of the service reference architecture (see Chapter 6.2.2). 

 

Figure 7-8: Presentation of the control logic model as Activity Diagram 

The control logic models, which define the control logic of services, are depicted as Activity 

Diagrams (see Figure 7-8): 

• Activities encapsulate the control logic of a service operation that is modeled as an 

Activity Diagram. The “is part of” relationship of process steps and control structures 

to the control logic is indirectly realized by including the elements into the diagram. 

• Hyperlinks from service operations to activities express the “represents” 

relationship to connect a service operation with its control logic. 

• Actions represent process steps that can have pre/post conditions to trigger or end 

their activation. Three different kind of actions are used: 
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o CallOperationActions represent the process steps that have a “calls” relationship 

to another service operation which is linked by the “operation” property of the 

action. 

o CallBehaviorActions comprise the property “behavior” which links to another 

activity. This allows to split one control logic into several parts. 

o AcceptEventActions (rectangular with arrow shape on the left side) wait for a 

certain event from a service operation for continuing the control flow. The 

respective service operation is connected via a hyperlink. 

• Control/object flow, initial/final/decision/fork/join nodes, exception handler, etc. 

realize the control structures to design the flow of control within the Activity Diagram. 

• Object nodes represent sources or pieces of information that are needed to execute 

the control logic (e.g., “order client” in Figure 7-8). 

• Input pins of actions illustrate that the action receives information from outside that 

is needed to execute the action. 

• Stereotype “dynamic service” of an input pin indicates an abstract service 

allocation (see Chapter 6.2.2) so that the service which is called by the action is 

dynamically determined. 

• Stereotype “dynamic parameter” of an input pin expresses that the input of a 

service operation which is called by the action is dynamically determined. 

7.2.3 Realization of Services-oriented Control Procedures 

To apply and evaluate the MDE for SOA-AT methodology on real use cases the execution 

of the subsequent PESCOP phases technical specification and implementation are 

necessary to develop an executable control procedure from the design model (see Chapter 

6.5.1). Therefore, a control system is required where the services can be deployed to (see 

Chapter 3.3.3). The system architecture can be realized in different ways from 

implementation of the services in a conventional PLC system to more innovative solutions 

as distributed control system (see Chapter 3.2). In the following, a concept is presented 

which describes how the equipment services and control services are realized whereby 

non-functional requirements on the control application like response time, availability, 

security, etc. are neglected. 

Implementation of Equipment Services 

The way how equipment services as elementary building blocks of SOA-AT are deployed 

has an impact on the flexibility and adaptability of the production system. A common 

approach of innovative control concepts is to bring the intelligence as near as possible to 

the physical system to provide autonomous entities [Thom12]. For SOA-AT systems this 

matters particularly for the equipment services due to their strong dependency on the 

production equipment. This can be obtained in terms of mechatronic components (see 
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Chapter 4.3.2) that are built by modularized hardware components with embedded 

controllers that deploy the services. The embedded controller serves as a service gateway, 

since it executes the software for implementing the service and provides the interface 

between the production equipment and the control system. 

 

Figure 7-9: Service gateway [FigDigi01] 

The “Digi ME 9210” embedded system is selected as a suitable technology for service 

gateways (see Figure 7-9). It comprises a 32-bit processor with 75MHz and 8MB SDRAM, 

has small dimensions (36.7mm x 19.05mm x 18.67mm), and supports a range of 

communication interfaces like Ethernet, SPI, and I²C, and general-purpose inputs and 

outputs [Digi16]. To make the Digi ME 9210 universally applicable, an additional I/O board 

has been developed which provides eight digital inputs, eight digital outputs, and a RS232 

communication interface to connect the field devices and the power supply. The Ethernet 

interface constitutes the connection to the control system. 

For the implementation of the services, the SOA technology DPWS is chosen (see Chapter 

3.4.5) because it already provides a package with some extended functions which make 

the usability for equipment services convenient. Especially the functions to discover the 

services, to realize eventing operations (see Chapter 6.3.2), and the transport-neutral 

addressing are important features. Furthermore, the available toolkits SOA4D and WS4D 

can be used to develop the DPWS services as C programs for the embedded controllers. 

Implementation of Control Services 

The main emphasis of the services on the control layer is the implementation of a certain 

control logic making use of services on the equipment layer. Thus, the main requirements 

for their realization are the representation of the logic in an easily comprehensible and well-

structured graphical modeling language and an available tool for design and execution. Both 

are fulfilled by the process modeling language Grafchart in combination with the tool 

JGrafchart (see Chapter 4.2.2). Furthermore, the semantics of SysML/UML Activity 

Diagrams and Grafchart are similar because both modeling languages are inspired by Petri 

Nets and State Charts. Thus, the control logic models can be transferred straightforward 
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from the Activity Diagrams into a JGrafchart program with some simple mapping rules (see 

Figure 7-10).  

The basis for a seamless data transfer constitutes the XMI representation of the design 

model in SysML/UML (see Chapter 4.2.2). Since JGrafchart also uses a XML-based data 

format, a transformation tool SysML2JG has been developed that executes the 

transformation automatically without loss of information (see Appendix J) [Adle13]. After 

importing the control logic, some further concretization of the JGrafchart program is required 

in order to make the control logic executable and robust in terms of exception handling, the 

connection to uplink control systems, etc. 

 

Figure 7-10: Transformation of an Activity Diagram to a Grafchart 

The identification of the potential of JGrafchart to serve as an engineering tool and runtime 

environment for service-oriented control procedures led to a cooperation between the 

SmartFactoryKL and the Lund Institute of Technology. The result of this cooperation are new 

functions to connect and operate external DPWS services that have been introduced to 

JGrafchart Version 2.1.0 [Theo13]. With these extensions, a direct connection between 

equipment services implemented in DPWS on embedded devices and the control logic 

realized by JGrafchart can be established during runtime. 
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8 Proof of Concept 

The last step of this thesis constitutes the proof of concept of the elaborated concepts from 

the previous chapters. Therefore, a use case is described where the MDE for SOA-AT 

methodology and its application concepts are applied for several application scenarios. 

Besides the illustration of the practical relevance of the new methodology, the scenarios 

provide the base to assess the new methodology against the state of the art. 

8.1 Description of the Use Case 

8.1.1 Demonstration System 

The SmartFactoryKL is a legal non-profit association and acts as a multi-vendor research, 

development, and demonstration center for innovative, industrial automation technologies 

[Zühl10].  By means of several demonstration systems, the practical applicability of new ICT 

concepts and technologies is shown and proven at installations with industrial production 

equipment. One demonstration system represents a production line that produces an 

electronic key finder. It can be connected from a smartphone via Bluetooth and be triggered 

to flash a light or generate a signal tone. The individualization of the product is possible by 

a customized product cover with an individual engraving. The line comprises four work cells 

(see Figure 8-1 from right side to left side): milling unit, commissioning unit, assembly unit, 

and manual work unit. 

 

Figure 8-1: The SmartFactoryKL demonstration system 
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The product consists of a product base, a product cover, and a circuit board which is placed 

inside (see Figure 8-2). The product cover contains a RFID chip that acts as a product 

memory. It contains information about the current status of the product during the production 

process and product-specific information like the details about the customized engraving. 

Moreover, a data matrix code with the Bluetooth address is attached to the circuit board, 

which is read and afterwards written into the product memory before the product is 

assembled. 

 

Figure 8-2: Product parts (left) and final product (right) 

8.1.2 Assembly Unit 

The concepts of this thesis have been applied at the key finder production line with focus 

on the assembly unit, which comprises more than 50 field devices with actuators, sensors, 

and controllers. The purpose of this work cell is the assembly of the three product parts to 

the final product. The process taking place in the assembly unit starts with the handover of 

the product cover from the commissioning unit to the assembly unit via a product carrier 

transported on a conveyor belt. Previously, the product cover is processed within the milling 

unit. The other two product parts are hold in storages within the assembly unit (storage 

product base and storage circuit board). The unit comprises three assembly modules that 

assemble the final product by joining the product parts. One uses electrical energy to 

operate the actuators whereas the other two have pneumatic devices. A pick-and-place 

module realizes the main material flow to transport the product parts within the unit and the 

final product to the slide which hands it over to the manual work unit. Additionally, some 

safety equipment, a valve terminal, a RFID reading/writing (R/W) device, and a data matrix 

reader are part of the work cell. 

The production process within the assembly module can be executed in several varieties. 

Since the assembly modules differ in the form of energy they are using, they have a different 

set of field devices leading to individual properties. Furthermore, the product carrier can 

host up to three covers at once. Depending on the current process order, the process in the 

assembly unit is started with one, two, or three product covers in the queue and a certain 

assembly station is picked for each product. These decisions are taken by a supervisory 
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application called order client which initiates the orders and transmits the information to the 

PLCs of the work cells. 

In the initial state the assembly unit was controlled by a Siemens Simatic S7 PLC which 

executes the program to implement the assembly process and connects the work cell to the 

order client (see Figure 8-3). The field devices are connected via a fieldbus or conventional 

I/O wiring to the PLC. 

 

Figure 8-3: Conventional control architecture [FigSim01] 

8.2 Application Scenarios 

In the following, the MDE for SOA-AT methodology (see Chapter 6.6) is applied to the 

assembly work cell of the SmartFactoryKL demonstration system by following the application 

concepts (see Chapter 7). According to the types of factory planning (see Chapter 2.3.1) 

the two scenarios development planning and reconfiguration will be investigated because 

they comprise the planning tasks that are covered by the engineering methodology.  

8.2.1 Execution of the Development Planning 

The development planning scenario covers the design of the assembly unit from scratch. 

Since the mechanical and the electrical equipment of the work cell is already there, it is 

assumed that the design of the hardware is executed in similar concretization steps that 

have been passed through during the actual development of the demonstration system. 
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This concerns particularly the fact that the detailing of the pick-and-place module takes 

place in a later point in time after all other hardware devices have been defined.  

Analysis 

The basis for the analysis phase are the product specification (see Chapter 8.1) and a rough 

layout of the production line. The rough layout depicts the four work cells contained by the 

production system and the stages of the product (see Appendix C.1). 

The process model is developed with three granularity levels. The superior level 0 describes 

the overall production process of the production line (see Figure 8-4 and Appendix C.2). 

The process step “Automated assembly” is then detailed on level 1 (see Appendix C.3). 

Three process steps require another detailing level on level 2 to decompose all high-level 

process steps into elementary process steps (see Appendix C.4). Afterwards, functional 

realizations are determined by assigning functions to each elementary process step. As far 

as possible, hardware components are added to the process steps to reflect the 

requirements on the production equipment. This makes it apparent that the pick-and-place 

module is a very central component because it is used by many process steps. 

 

Figure 8-4: Top level of the process model 

Design 

First, the abstract design models are developed based on the analysis phase. By executing 

the mapping A, the services for the single process steps are derived from the process model 

(see Appendix D.1). Based on this the service model is developed (see Appendix G). One 

supervisory process service “AutomatedAssembly” is defined which accesses four basic 

services and seven composed services which represent the functions of several modules 

of the equipment model (see Appendix G.1). Each of these composed services consists of 

several basic services and in some cases also another level of composed services. For 

example, the composed service “AssemblyPneumatic1” uses the basic service 

“DetectOptic5” and two other composed services “VerifyingTranslatePneumatic1” and 

“VerifyingGripPneumatic1” (see Appendix G.4). In total nine composed services and 39 

basic services are specified within the service model. The basic services are enriched with 
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the relationships “executed by” and “implemented by” to the respective hardware 

components.  

In parallel, the hardware components defined in the process model are transferred to 

hardware component instances of the equipment model. It depicts the 

“AutomatedAssemblyUnit” as work cell (see Appendix E) and comprises a valve terminal 

as a single field device and eight modules: the three assembly modules, both storages, the 

pick-and-place module, the conveyor belt module, and a safety equipment module. Each of 

the modules consists of a number of field devices so that in sum 54 field devices are defined 

for the complete work cell. The individual field devices are determined based on the service 

design by means of mapping B (see Appendix D.2). Besides the “is part of” relationship also 

the “operates” and “extends” relationships are determined between the field devices. 

The control logic model details the control flow of the process service “AutomatedAssembly” 

(see Appendix H). Due to its complexity it is divided into a high-level control part (see 

Appendix H.1) and a sub process (see Appendix H.2) which comprises the execution of the 

actual process steps. Thus, the process model is transferred to a separate SysML activity 

“AutomaticAssembly” where the control logic is detailed with control structures and the 

service calls. Since composed services also implement their service orchestration by a 

certain logic, it might be worth to model their control logic, too. In this case, the logic of the 

storages is considerably more complex compared to the other composed services so that 

it is designed in detail in a separate model (see Appendix H.3). 

The concrete design starts with mapping C where hardware component templates are 

assigned to the hardware component instances within the equipment model (see Appendix 

F). Therefore, templates of commercial parts are picked that can be bought from certain 

vendors. The detailing of the equipment model also comprises the concrete definition of 

how the pick-and-place module is realized (see Appendix D.3). Based on the concrete 

equipment model the other models are detailed accordingly. For the service model the 

services of the pick-and-place module are added or modified (see Appendix D.3). Moreover, 

the abstract services “translateElectric” and “gripPneumatic” are split up in several device-

specific services, for example, “translateElectricStep” of the stepping motor and 

“translateElectricFesto” for the Festo cylinder. These changes have to be taken over to the 

control logic model. Additionally, the high-level control part of the “AuomaticAssembly” 

process is specified with start-up and exception routines and the communication to the order 

client. 
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Technical Specification and Implementation 

For the realization of the service-oriented control system the assembly unit is first extended 

by a number of service gateways (see Chapter 7.2.3). Each of the modules receive one 

service gateway with the exception of the RFID R/W device and the matrix code reader that 

get their own service gateway. This makes in total 10 embedded devices which are installed 

with respective I/O boards and connected to the field devices (see Figure 8-5 showing the 

pneumatic assembly module as an example).  

 

Figure 8-5: Hardware extensions with embedded devices [FigDigi01] 

The equipment services are then implemented on these service gateways as DPWS 

services. In sum 48 DPWS hosted services are programmed and deployed on the 

embedded devices. A conventional Windows PC serves as the execution platform of the 

control services that are implemented as a JGrafchart program (see Chapter 7.2.3). 

Therefore, the control logic model is transferred to a Grafchart and the DPWS interfaces to 

the equipment services are established. Additionally, the connection to the order client, 

which is running on the same PC, is realized via a socket connection. After a last detailing 

and testing phase for the services the complete assembly unit is integrated into the entire 

production line with its new service-oriented control architecture (see Figure 8-6). 
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Figure 8-6: Service-oriented control architecture 

8.2.2 Execution of Reconfiguration Tasks 

Since the scenario of reconfiguration can happen in many different ways, three sub 

scenarios are investigated in the following. 

Reconfiguration 1: New process variant 

A new process variant is introduced where the assembly of the product is executed within 

the manual work unit instead of the assembly unit. This scenario could occur when the 

assembly modules are not available due to maintenance tasks or similar events. To 

understand the required changes, the starting point of the change is reflected within the 

planning models (see Figure 8-7). In this case, the initial change is made in the process 

model which gets extended by a branch in parallel to the process step “Automated 

assembly” with the process steps “Prepare manual assembly” and “Manual assembly” (see 

Figure 8-8).  

For this process variant, the assembly unit forwards the single product parts directly to the 

manual work unit which doesn’t require any additional functionality of the production 

equipment. Thus, the equipment model and service model remain the same. The only 

modification is executed within the control logic model where a second sub process “Manual 

Assembly” is added as another SysML activity “PrepareManualAssembly” (see Appendix 

I.1). For the implementation, the logic of the process service “AutomatedAssembly” has to 

be extended in JGrafchart accordingly. 
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Figure 8-7: Reconfiguration process for scenario 1 

 

Figure 8-8: Extended process model for process variant 

Reconfiguration 2: Introduction of new functionality 

One of the assembly modules is extended by an additional function to verify that the 

assembly of the product is executed correctly. Therefore, a new operation “qualityCheck” is 

added to the existing composed service “AssemblyPneumatic2” (see Appendix I.2). Since 

the set of operations then differs from the “AssemblyPneumatic1” service, the service is 

renamed to “AssemblyPneumaticQC1”. First, the new functionality needs to be reflected 

within the service model and then the impact on the process model is determined (see 

Figure 8-9). For that reason, the sub process “Automated Assembly” is extended by a 
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process step “Check quality” (see Figure 8-10). It is decided that the required check can be 

executed after the process step “Assemble” by verifying the height of the assembled 

product. If the assembly is not executed successfully the detected height of the product 

cover would be either too low or too high. 

 

Figure 8-9: Reconfiguration process for scenario 2 

 

Figure 8-10: Additional process step in sub process "Automatic Assembly” 

After that, the required changes to the other models are considered (see Figure 8-9). Since 

the existing equipment is not capable of this particular function, a new basic service and a 

new field device need to be introduced. For the equipment model the new field device 

“InductiveProximiltySensor” is added to the module “PneumaticAssemblyModulePnP” 

which comes from the equipment supplier Pepperl & Fuchs (see Appendix F.4). The service 
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model is extended by the basic service “DetectInductive3” which is used by the modified 

composed service “AssemblyPneumaticQC1” (see Appendix I.2). The control logic model 

is changed in accordance with the process model by adding a process step where the new 

service operation is called (see Appendix I.3). Within the detailing of the concrete control 

logic model, it is decided that the results of the quality check are send to the order client. 

Reconfiguration 3: Replacement of field device 

The last scenario covers the replacement of a field device in case of a failure and the exact 

type of field device is not available any more. Thus, the initial change is made in the concrete 

equipment model where the respective hardware component template is updated (see 

Figure 8-12). Since the internal control logic of an equipment service depends on the 

respective device, the service implementation has to be exchanged in any case. This needs 

to be adequately considered within the technical specification and implementation phases. 

 

Figure 8-11: Reconfiguration process for scenario 3 

If other changes within the design models are required, depends on the service of the 

obsolete device. In case the service can be reused by the new device with the same service 

operations, no further changes are required within the models. For example, both devices 

are inductive sensors and have the service “detectInductive”. The service description then 

remains the same and thus, also the service interface. 

If the service of the obsolete device is device-specific, for example as “detectInductiveP+F”, 

then the service needs to be updated within the service model (see Figure 8-11). In this 

case the service interface is updated to another device-specific service which provides 

slightly different operations. For this example, the new device comes from the supplier Sick 
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so that the new service would be “detectInductiveSick”. If the service is not available yet in 

the service library, it must be created first. Moreover, the service calls to this modified 

service have to be updated within the control logic model. This example illustrates the 

disadvantage of device-specific services, which lead to higher dependencies between 

control programs and the field devices and thus, to higher programming and software 

management efforts.  

 

Figure 8-12: Replacement of an inductive sensor [FigPF01][FigSick01] 

Similar changes are needed if the new service comes with a new operating principle or uses 

a different form of energy. In the given example, this would be the case if the inductive 

sensor is replaced by a light barrier so that the service is replaced by “detectOptic”.  

8.3 Evaluation 

For an evaluation of the new engineering methodology the efficiency of the control 

engineering is assessed based on the application scenarios (see Chapter 8.2). Therefore, 

the three factors for the efficiency of engineering processes (see Chapter 2.3.2) are 

investigated for today’s conventional control engineering (see Chapter 2.3.4) and for the 

new methodology MDE for SOA-AT. 

Quality Assurance 

Today, control procedures are usually developed from bottom-up without a concrete 

formulation of the requirements or high-level design of the control logic. The quality is 

indirectly verified during commissioning when the control programs are tested at the 

production equipment. Methods to check and assure the quality during the development are 

still rarely used.  

MDE for SOA-AT supports a seamless engineering flow inspired by Systems Engineering 

principles. It concentrates on the left leg of the V-model and doesn’t yet include any 

verification methods for linking the integration of the system back to the planning phases 

(see Chapter 6.5.2). However, the foundation for a systematic quality assurance is already 
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provided by the planning models that constitute a detailed documentation of the system 

planning. Thus, the properties of the system can be compared with its specified design. If a 

requirement is not fulfilled or a property is not satisfactory, it can be tracked which 

requirement led to which function, service, or hardware component to specifically improve 

the design. 

Development time 

The total development time depends on the sequence of the individual planning tasks. For 

an assessment, the development planning of the assembly unit with both procedures is 

investigated. During the initial development, the time schedule has been tracked and took 

in total 23 weeks (see Figure 8-13). It could be observed that the engineering domains have 

been executed partially in parallel but generally according to the traditional sequence (see 

Chapter 2.3.2). The hardware design first focused completely on the mechanical design 

items and detailed the electrical items afterwards. Thus, the electrical realization also 

started two weeks after the mechanical realization tasks. After the hardware design was 

finished the control engineering has been executed last. Due to delays in the mechanical 

and electrical design phases, the control engineering has started later than planned so that 

the programming was still ongoing during the commissioning. 

 

Figure 8-13: Development planning with CE 

For the assessment of the duration for applying MDE for SOA-AT, the efforts for the 

individual tasks is assumed to be the same (see next section “Efforts” below for further 

investigation). The main difference here is the earlier start of the control engineering which 

runs in parallel with the hardware design (see Figure 8-14). The electrical design can run in 

parallel to the mechanical design as soon as the equipment model and service model have 

been developed. It is assumed that the realization phase starts a bit later due to the fact 

that the production system is first planned in an abstract way. However, this gets 

compensated by a greater parallel execution of the mechanical and electrical realization. 
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Since the control engineering is advanced, the commissioning including the refinement of 

the control software can be executed in parallel to the construction. An additional week of 

commissioning is assumed after all constructions tasks are done to verify the functionality 

of the complete system. In this case the time saving would be three weeks or 13% of the 

total duration of the production engineering. Consequently, MDE for SOA-AT can be 

considered as an enabler for shorter development timings and thus, an accelerator of time-

to-market. 

 

Figure 8-14: Development planning with MDE 

Efforts 

The exact efforts required for MDE for SOA-AT depend on several influencing factors. 

These can cause both higher and lower efforts compared to today’s conventional control 

engineering procedure depending on the respective planning case. 

Additional efforts: 

• Generation and maintenance of models: The planning models need to be initially 

created and afterwards maintained to reflect each change that is made during 

reconfigurations or other tasks. 

• Development of a service library and device catalog: The elements of the service 

library and device catalog need to be initially created before they can be used. 

• Definition and implementation of new services: If a function cannot be realized by 

existing services of the service library, a new service needs to be created. This 

includes the service interface according to the standardized naming principles (see 

Chapter 7.1.2) and the implementation of the service in software. 
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Reduced efforts: 

• More efficient engineering: The top-down planning approach enables the seamless 

transfer of the planning results from the early planning phases to the control 

engineering. Moreover, dependencies of planning objects between different 

engineering domains are pointed out within the models. This prevents multiple 

development of the same information and contradicting planning results leading to 

reduced engineering efforts. 

• Modular process logic: The process logic is implemented as service-orchestration 

whose rough structure can be derived from early process planning results. The 

significant reduction of low-level programming and the derivation of a rough control 

logic reduces the required efforts to develop the control services. Furthermore, 

modular program structures have a higher degree of adaptability and makes the 

complexity more manageable which supports the reconfiguration of control programs. 

• Less commissioning efforts: Since MDE for SOA-AT enables an early start with the 

control engineering, it is expected that the control software has a higher degree of 

maturity when commissioning starts. This leads to less efforts for troubleshooting or 

further development of the control software during commissioning. 

• Reuse of control software: Once a service has been defined and put into the service 

library, it can be used for any other application. If the same technical realization is 

chosen, the services implementation can also be reused so that programming efforts 

are significantly reduced. 

• Optimized execution of reconfiguration tasks: The required modifications for a 

reconfiguration task can be exactly derived from the models. Additionally, changes to 

the control logic can be easier implemented by means of the SOA principles. 

• Simplified testing and troubleshooting: The comprehensibility of control software 

is considerably risen by the planning models providing a precise documentation. 

Moreover, the decomposition of control logic into several services enables a better 

handling of complexity. Both aspects help to apply testing procedures and to identify 

and fix problems. 

A quantitative comparison of the efforts for a certain engineering task between both control 

engineering approaches is just possible when the outer circumstances are clear and all 

influencing factors can be considered. However, a universal assessment can be made 

based on the previous analysis of factors for additional and reduced efforts for MDE for 

SOA-AT and their classification relative to the life cycle of a production line. Generally, it 

can be ascertained that the factors for additional efforts are mainly tasks that occur onetime 

events in the beginning. This particularly concerns the generation of the models during the 

development planning and the introduction of the service library and the device catalog. 

Thus, the initial efforts for MDE for SOA-AT are estimated as being higher than for 

conventional engineering due the greater significance of the additional efforts (see Figure 
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8-15). However, if library concepts are consequently maintained and the software of the 

implemented services can be optimally reused from previous projects even these initial 

efforts can be lower. 

 

Figure 8-15: General comparison of engineering efforts 

The overall engineering efforts over the complete life cycle heavily depend if and how 

frequently reconfigurations are executed. The effect of lower efforts by reuse is noticeable 

for both approaches. For MDE for SOAT-AT the additional efforts for ongoing 

reconfigurations is estimated as significantly lower, since reconfiguration tasks can be 

executed more efficiently. Thus, the curve representing the efforts over time is still 

increasing but it is estimated as considerably flatter that the effort curve for the conventional 

control engineering. In total, it is expected that in most cases the initial efforts for MDE for 

SOAT-AT are higher but that the total effort becomes lower than for the conventional control 

engineering after a number x of reconfigurations (see Figure 8-15).  
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9 Conclusions and Outlook 

9.1 Conclusions 

The core result of this thesis is the development of a model-driven engineering methodology 

for service-oriented control procedures to overcome certain drawbacks of today’s typical 

control engineering process. The adoption of the SOA paradigm for manufacturing control, 

called SOA-AT, enables the design of control procedures as modular software architectures 

which generate high-level control functionality by the composition of elementary automation 

functions. Transferring general SOA design principles to control engineering additionally 

provides key principles for a systematic design process of these control architectures. This 

comprises first of all the process-oriented development approach which permits a top-down 

engineering procedure of the service structure and the control logic. A specific feature of 

SOA-AT is the dependency of services from the production equipment so that this 

particularly needs to be reflected as additional design aspect.  

To develop an efficient and user-friendly methodology, the SOA design principles are 

combined with other proven concepts from software engineering. Object-orientation helps 

to define two concretization steps during the design phase and promotes reusability by 

libraries for planning objects. Furthermore, modeling facilitates a seamless and 

comprehensible design by representing planning results in a graphical way and pointing out 

dependencies between planning objects. All planning results are depicted as models whose 

modeling rules are specified within metamodels for the individual domains. SOA can be 

seen as enabler to effectively apply these OO and MDE principles by permitting a higher 

level of abstraction for the design of software.  

The outcome of these considerations is the methodology MDE for SOA-AT. It is formulated 

as theoretical concept so that it can be applied independently on specific modeling 

languages, software tools, or operating systems. To show its practical relevance and to 

assess its effects on control engineering, an implementation concept is elaborated and 

applied to a real use case. Several application scenarios are investigated whose results 

constitute the basis to evaluate the outcome of this thesis against the initial targets (see 

Chapter 5.2). 

Generally, the basic principles of MDE for SOA-AT are modularization and abstraction to 

promote reusability, comprehensibility, and adaptability of control software. A modular 

structuring of control procedures and the generation of high-level control functionality by 

means of composition enables the reduction of programming efforts. This is particularly 

enabled by the consequent reuse of control software. The prerequisite for a high degree of 
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reusability of services is a standardized naming concept and a systemic use of a service 

library. Although existing automation standards can serve as a base (see Chapter 7.1.2), 

the establishment of naming standards is challenging and the effective use of a service 

library heavily depending on an adequate tool support [Niss08]. 

Besides reusability another factor for effort reduction is a more comfortable generation and 

modification of control software. The decomposition into individual services according to the 

separation of concerns rises the abstraction degree of the process logic and therewith, the 

overall comprehensibility and adaptability. This permits an appropriate handling of 

increasingly complex control software for software engineers and users. Moreover, 

reconfigurations of modular software can be executed smoothly by either modifying 

individual services to add or change certain automation functions or by adapting the service 

orchestration. 

The degree of adaptability is directly related to how and where the services of the designed 

SOA software architecture are deployed in a system architecture [Bieb05]. One aspect 

refers to the separation or encapsulation of hardware and software components. The 

realization of mechatronic components coming with hardware and software as one unit 

enables overall adaptive production systems whereas the implementation of the services in 

a separate controller enables adaptability just for the control software. Another aspect is 

associated with the implementation of the services in software. The proposed application 

concept chooses the SOA technology DPWS without focusing on non-functional control 

requirements like real-time and reliability. However, the services can also be implemented 

as PLC program when consequent modularization principles are applied (see Chapter 

2.3.3). The benefits and limitations of the individual possibilities have to be carefully 

considered regarding the requirements of the respective application to choose the best 

implementation strategy. 

The engineering methodology precisely describes the development steps starting with the 

specification of the requirements. Abstraction and stepwise concretization of control 

programs constitutes the enabler to close the gap between early phases of the production 

engineering process and the control engineering. By integrating the development 

methodology into early stages of the overall production engineering process and linking it 

to other engineering domains, an adequate consideration of control engineering according 

to its rising importance is enforced. Furthermore, the application of Systems Engineering 

principles allows to parallelize the concrete design of the individual engineering domains 

after the functional requirements on the whole production system are determined and 

dependencies between the domains are identified. 

For the transfer into practice, the concepts of MDE for SOA-AT can be extended to meet 

the needs of specific application domains or certain company standards. The SOA-AT 

reference architecture can be further specified with additional service categories and even 
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service layers. The structure and content of the service library and device catalog can be 

derived from vendor catalogs or internal company libraries for devices and automation 

functions that especially big manufacturing companies established already. Moreover, the 

required design aspects can be enriched by other system properties, which need to be 

reflected within the modeling concepts. 

The most crucial aspect for a successful application are mature implementation concepts 

that enable a seamless transfer of engineering results without media breaks and the 

instantiation of the design into a control system. The degree of how well the targets can be 

achieved heavily depends on whether a suitable IT infrastructure can be established to 

execute the MDE method and to transfer the designed service architecture into control 

software. 

9.2 Outlook 

The results of this thesis provide an engineering methodology and application concepts to 

improve the situation of control engineering regarding its execution and its position within 

the production engineering process. Further fields of work can be identified that are directly 

connected to these results. Several topics constitute a direct continuation of this thesis to 

improve the applicability of MDE for SOA-AT and to establish the required acceptance and 

trust for an adoption in industry: 

• Development of further control tasks: So far MDE for SOA-AT covers the 

development of the control programs for the ideal process execution. However, to 

guarantee a robust and safe process execution, routines for the handling of fault 

states are required. Furthermore, software functions are needed to visualize and 

influence the production process for HMI applications and other uplink automation 

systems. An extension of the SOA-AT reference architecture by safety, HMI, SCADA, 

etc. services is proposed. 

• Additional functions of equipment services: Within this thesis the definition of the 

equipment services concentrates on the description of the functions of field devices 

that are needed during run-time to execute the production process. It is conceivable 

that an equipment service comprises additional functions, for example for setting 

alarms, parametrization, testing or resetting. Moreover, functions for providing 

information about the device itself are considered helpful like information about the 

current internal state, its power consumption, and the retrieval of manuals, drawings, 

etc. Hereby, authorization concepts are required to regulate which functions are 

accessible and which data can be retrieved by certain user groups and in which state. 

Concepts like field device profiles and the “administration shell” defined by the 

Industrie 4.0 platform can help to define a standardized set of service operations for 

different purposes and with certain properties regarding access permissions [Plat16]. 
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• Detailed design of other engineering domains: The PESCOP process provides 

the foundation for the parallel execution of the engineering domains during the 

detailed planning phase. Since MDE for SOA-AT targets the control engineering, 

development procedures for the other domains and guidelines for the coordination of 

interdisciplinary design questions have to be determined. 

• Standardization of services: The application concept of this thesis tries to apply 

existing standards to derive standardized names for services and service operations. 

However, the establishment of one general, cross-vendor, and cross-domain service 

standard is unrealistic. Thus, methods are needed to transfer device-specific 

functions directly into a user-specific library. Another step forward can be achieved by 

semantic descriptions of services to efficiently discover appropriate services by 

means of semantic technologies [Losk11]. 

• Tool chain: In order to minimize efforts and to provide a high usability, a proper tool 

chain is required that supports the development from the analysis to the realization 

phase. The defined modeling rules need to be reflected within a design tool which 

ideally supports the engineer during the development steps. Furthermore, a fully 

seamless MDE procedure can be achieved by translating the models into software 

skeletons of the chosen implementation technology. A first approach has been 

realized where the service descriptions of the DPWS services (i.e., WSDL files) have 

been automatically generated based on the design model in UModel [Olli13]. 

• Implementation of designed services: For the application concept of this thesis the 

realization of the designed services as distributed DPWS services on embedded 

devices is proposed. Since this realization concept doesn’t meet the strict 

requirements on automation applications regarding real-time, reliability, etc. an 

adaption for industrial use cases is excluded. A rather conservative but much more 

practical realization concept uses conventional PLCs as execution platform where the 

designed SOA-AT system is translated into a modular PLC program. To establish 

more innovative implementation approaches where the services are deployed in a 

distributed way, a suitable migration path from today’s common technologies (i.e., 

PLCs) is required. Within a collaboration with Phoenix Contact a prototype of a so-

called “SOA-PLC” has been developed which implements DPWS services as PLC 

routines [Olli14].  

• Quality Assurance: The engineering methodology comprises the left leg of the V-

model for the development of control systems in several concretization steps. An 

extension by quality assurance methods represented by the right leg of the V-model 

is logical and reasonable. Therefore, the engineering results captured in models have 

to be verified by means of fault analysis, test runs, or simulation and the verification 

results need to be fed back into the design again. 
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• Education: The new way of control engineering needs to be adapted by engineers 

as well as technicians. Today, PLC programmers are usually specialized electricians 

who have little knowledge of software engineering. On this occasion, a more holistic 

and interdisciplinary view on a production system needs to be taught so that engineers 

of all disciplines understand the connection points and dependencies between the 

engineering domains. 

A second group of further working items considers the integration of the results into other 

research topics for innovative advancements in automation and production engineering: 

• Realization of distributed automation systems: The MDE for SOA-AT 

methodology exclusively deals with the software design and not the system design. 

The benefits of a SOA-AT regarding flexibility and adaptability can be fully leveraged 

when the software can be flexibly deployed within a distributed automation system. 

Thereby, the SOA-AT services are executed on several controllers that are 

interconnected as proposed in the application concept (see Chapter 7.2.3). To 

establish distributed control systems in practice, mature methods and technologies 

are required to ensure critical non-functional requirements on run time behavior like 

performance, reliability, maintainability [Fran11]. 

• Vertical integration of automation and IT systems: By making automation 

functions available as encapsulated services via standardized communication 

interfaces, the connection of lower and higher automation levels is simplified. A 

promising use case for this is the coupling between automation processes and the 

business software system for a transparent and flexible allocation of Key Performance 

Indicators (KPIs) of the production process [Gerb14]. To ensure that the service 

execution for process control is not interrupted, access permissions for individual user 

groups have to be managed for each automation service. 

• Cyber-physical production systems: The technical base for the new high-tech 

strategy Industrie 4.0 is the adoption of CPS for production systems (see Chapter 

3.1). SOA-AT constitutes a promising approach to realize CPS on control and field 

level [Zühl12]. The before mentioned working items to establish distributed 

automation systems and the integration of SOA-AT with uplink automation and 

enterprise IT systems can be regarded as two key enablers to approach the 

realization of a production system as CPS. Moreover, an important factor constitutes 

the development and distribution of vendor-independent communication standards to 

enable the individual components of the CPS to communicate with each other 

independently from how and where their services are deployed [Weye15]. 

• Digital Factory: A great potential is expected by coupling SOA-AT for MDE with 

Digital Factory tools to execute simulations for verifying the planning results (see item 

“Quality assurance” above). Depending on the planning phase and the respective 

engineering domains other methods and tools are appropriate [VDI08]. For the MDE 
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for SOA-AT particularly methods to test the control logics are of interest like material 

flow simulation and virtual commissioning. Through the increasing use of modeling a 

big challenge constitutes the maintenance of the digital models. This situation can be 

improved by coupling the digital world and with the physical world by means of CPS 

to synchronize changes in both directions.  

• Organizational aspects: The introduction of new engineering methods like MDE for 

SOA-AT and particularly distributed automation structures comprises, besides 

technical questions, also a number of organizational questions. During the complete 

production life cycle several different stakeholders are involved like manufacturer, 

plant constructors, and device suppliers. Their cooperation and responsibilities might 

change due to new engineering processes and deliverables. By defining 

encapsulated functions for production equipment and equipping the production 

equipment with more intelligence, an important topic constitutes also the protection of 

intellectual property of the individual parties. 
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10 Summary 

In this thesis, a model-driven engineering methodology for the development of control 

procedures according to the SOA paradigm has been elaborated. The field of application 

for the methodology focusses the control engineering of discrete automated manufacturing 

processes. The theoretical methodology and the presented application concepts comprise 

all three criteria of an efficient factory planning process: 

• Modeling and structural concepts: The general development procedure is 

described as reference model which defines the planning steps and the meta-models 

specifying how the planning information is depicted. 

• Design concepts and architectures: Reference architectures specify structural 

blueprints of the models according to the scope of application, namely control 

procedures for manufacturing processes. 

• Procedures, methods, and tools: An application concept defines how the 

theoretical concept can be applied for concrete problems by using existing standards, 

guidelines, modeling languages, and software tools. 

First, an introduction into the topic of the thesis has been given in Chapter 1. A detailed 

examination of the state of the art in three chapters formed the basis for the methodology. 

In Chapter 2 today’s situation of control engineering as being a part of the overall factory 

planning has been investigated. A lack of advanced software engineering methods of 

control software and the inadequate consideration of control engineering within the 

production planning have been identified as the main drawbacks of the state of the art. As 

a result, control programs are today typically characterized as highly complex, low-level 

software implementations with poor adaptability and reusability.  

Chapter 3 dealt with academic concepts for distributed control systems for building modular 

and collaborative production systems. Three concepts have been examined: the IEC 61499, 

Multi-Agent Systems, and Service-oriented Architecture. Since Service-oriented 

Architecture already brings a methodological foundation supporting the design of software 

applications, methods for generally designing SOA applications and technologies for its 

implementation have been presented in greater detail.  

Existing concepts for a more efficient control engineering have been reviewed in Chapter 4. 

Besides some general concepts from software engineering like object-orientation, the 

method of Model-driven Engineering has been introduced and applications for production 

automation have been examined. Moreover, some comprehensive engineering concepts 

and helpful engineering standards have been presented. 
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Based on these three chapters capturing the state of the art, the problem statement, the 

objective target, and the procedural method of this thesis have been specified in Chapter 5. 

The following three chapters comprised the content to meet the objectives set. The theory 

of the model-driven engineering methodology for service-oriented control procedures has 

been elaborated in Chapter 6. First, the basis for the methodology has been built by 

transferring principles from Service-oriented Architecture to the domain of production 

automation. After that, concepts for the design of services for manufacturing control and the 

PESCOP process as control engineering process have been defined whereby helpful 

paradigms like object-orientation and Systems Engineering have been applied. These 

concepts have then been integrated into a Model-driven Engeering methodology comprising 

the functional specification of the control system. It is described by a reference model which 

specifies a seamless modeling workflow with certain planning models and dedicated 

planning tasks. The individual planning models have been formally defined by meta-models 

serving as an abstract syntax to define a certain set of modeling concepts including their 

attributes and their relationships. 

Chapter 7 defined application concepts for the theoretical methodology including a proposal 

for the standardized naming of planning objects and an implementation concept to transfer 

the planning concept into practical applications by using existing modeling languages. For 

the realization of service-oriented automated control architectures an innovative approach 

is proposed in terms of the creation of a distributed control system. It is built by mechatronic 

components as modularized hardware components of the production equipment with 

embedded controllers that deploy the services. 

In Chapter 8 the proof of concept of the elaborated concepts has been given. Here, the 

model-driven engineering methodology has been applied for several application scenarios 

at an industry-typical use case. The application scenarios built the foundation for a 

succeeding assessment of the new methodology against the objective targets. Finally, 

Chapter 9 discussed the conclusions of the contents of the thesis and gave an outlook to 

further fields of work. 
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Acronyms and Abbreviations 

AC: Alternating Current 

ACU: Active Control Unit 

AUT: Automation Technology 

BDI: Belief Desire Intention 

BPEL4WS: Business Process Execution Language for Web Services 

BPML: Business Process Model Language 

BPMN: Business Process Modeling Notation 

CAEX: Computer Aided Engineering Exchange 

CIM: Computer Integrated Manufacturing 

CNC: Computerized Numerical Control 

CPS: Cyber-Physical System 

CPU: Central Processing Unit 

DC:  Direct Current 

DCS: Distributed Control System 

DPWS: Devices Profile for Web Services 

DIA: Distributed Artificial Intelligence 

ECC: Execution Control Chart 

EEPROM: Electrically Erasable Programmable Read-only Memory 

ERP: Enterprise Resource Planning 

FB: Function Block 

FIPA:  Foundation for Intelligent Physical Agents 

FUN: Function 

GCU: Group Control Unit 

GEMMA: Guide d'Étude des Modes de Marches et d'Arrêts 

I/O:  Input/Output (relating to interfaces of a controller or program) 

IL: Instruction List 

ICT:  Information and Communication Technology 

IEC: International Electrotechnical Commission 

IMS: Intelligent Manufacturing System 

IPO: Input Processing Output (relating to PLC cycle) 

IT: Information Technology 
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HMI: Human Machine Interface 

HMS:  Holonic Manufacturing System 

HTTP: Hypertext Transfer Protocol 

IP: Internet Protocol 

JADE: Java Agent Development Framework 

KPI: Key Performance Indicator 

LAN: Local Area Network 

LD: Ladder Diagram 

MAS:  Multi-agent System 

MBD: Model-based Development 

MC: Motion Control 

MDA: Model-driven Architecture 

MES: Manufacturing Execution System 

MDD: Model-driven Development 

MDE: Model-driven Engineering 

MeiA: Methodology for Industrial Automation 

MTS: Mechatronic System 

OASIS: Organization for the Advancement of Structured Information Standards 

OLE: Object Linking and Embedding 

OO: Object-orientation 

OPC: OLE for Process Control 

OPC UA: OPC Unified Architecture 

OOP: Object-oriented Programming 

PCC: Process Control Component 

PCU: Process Control Unit 

PDM: Platform-definition Model 

PESCOP:  Process-oriented Engineering for Service-oriented Control Procedures 

PID: Proportional Integral Derivative (relating to PID controller) 

PIM: Platform-independent Model 

PLC: Programmable Logic Controller 

POU: Program Organization Unit 

PROG: Program 

PSM: Platform-specific Model 
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RAM: Random-access Memory 

RFID: Radio Frequency Identification 

SCADA: Supervisory Control and Data Acquisition 

SCU: Single Control Unit 

SE:  Systems Engineering 

SIPN: Signal Interpreted Petri Net 

SOA: Service-oriented Architecture 

SOA4D: SOA for Devices 

SOA-AT. SOA in Production Automation 

SOA-IT: SOA for Business IT 

SOPC: Service-oriented Process Control 

SysML: Systems Modeling Language 

TCP: Transmission Control Protocol 

UML: Unified Modeling Language 

UML AP: UML Automation Profile 

UML PA: UML Process Automation 

WS4D: Web Service for Devices 

WSDL: Web Service Description Language 

XMI: XML Metadata Interchange 

XML: Extensible Markup Language 
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Appendix B: Function Library 

 

 

  

Assembly and handling functions according to the VDI 2868

store:

store oriented

store partially oriented

store disoriented 

modify quantities:

divide

unite

partition

apportion

branch

join

sort

 move:

rotate 

shift

displace 

orientate

position 

order

guide

pass

convey

 lock/maintain:

hold

release

clamp 

release

check:

check

check presence

check identity

check shape

check size

check color

check weight

check position

check orientation

measure

count 

measure orientation

measure position 
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placeholder for new function

write RFID

read RFID

Functions defined in this thesis

Manufacturing process according to the VDI 8580

forming

deform

treat

join/fit
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Appendix C: Process Model of Use Case 

C.1: Rough line layout 
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C.2: Process model level 0 
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C.3: Process model level 1 
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C.4: Process model level 2 
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Appendix D: Mappings of Use Case 

D.1: Mapping A 

 

 

  

1 HC1

2 HC2

3 HC3

4 HC4

3.1 / /

guide HC3.1 translateElectric

check presence / detectInductive

3.3 / /

3.4 guide HC3.2 pickAndPlace

3.5 HC3.3, HC3.4, HC3.5 /

3.6 guide HC3.2 pickAndPlace

3.7 check identity / identifyOptic

3.8 / /

3.9 guide HC3.2 pickAndPlace

3.10 guide HC3.2 pickAndPlace

3.11 write information HC3.6 identifyRFID

3.12 guide HC3.2 pickAndPlace

3.13 / /

3.14 guide HC3.2 pickAndPlace

3.15 / /

3.16 guide HC3.1 translateElectric

Process 

step ID
Function Abstract Service

/

/

/

/

Abstract Hardware 

Component

Le
ve

l 0
Le

ve
l 1

3.2

/

/

/

/

/

/
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3.3.1 check presence HC3.8 detectOptic

3.3.2 position / translateElectric

3.3.3 check presence HC3.9 detectOptic

3.3.4 check presence HC3.8 detectOptic

indicate status / lightElectric

push button / detectHaptic

3.5.1 check position / detectOptic

3.5.2 clamp HC3.7
gripPneumatic

gripElectric

3.13.1 join /
translatePneumatic

translateElectric

3.13.2 release HC3.7
gripPneumatic

gripElectric

Process 

step ID
Function

Abstract Hardware 

Component
Abstract Service

3.3.5

Le
ve

l 2
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D.2: Mapping B and Refinement of Abstract Service and Hardware Structure 

 

 

 

conveyor belt

conveyor belt

servo controller

detectInductive1 inductive proximilty switch

detectInductive2 inductive proximilty switch

handling system

portal module

identifyOptic1 matrix code reader

identifyRFID1 RFID RW

detectOptic1/3 one-way light barrier

translationElectric6/7 stepping motor

detectOptic2/4 fork sensor

lightElectric1/2 indicationsignal lamp

detectHaptic1/2 pushbutton

detectOptic5 one-way light barrier

gripPneumatic1 angular air gripper

detectMagnetic1
magnetic field sensitive 

proximity switch

detectMagnetic2
magnetic field sensitive 

proximity switch

translationPneumatic1 compact cylinder pneumatic

detectMagnetic3
magnetic field sensitive 

proximity switch

detectMagnetic4
magnetic field sensitive 

proximity switch

as
se

m
b

ly
P

n
eu

m
at

ic
1

Composed Services

verifyingTranslate

ElectricBelt1

pickAndPlace1 pick-and-place module

identification system

storage product base/

storage circuit board
control storage 1/2

Basic Services

translationElectric1

conveyor belt module

pneumatic assembly 

module

VerifyingGrip

Pneumatic1

verifyingTransla

tation

Pneumatic1

tbd

Hardware Component

Field Devices

Hardware Component

Modules
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detectOptic6 one-way light barrier

compact cylinder pneumatic

valve terminal

detectMagnetic5
magnetic field sensitive 

proximity switch

detectMagnetic6
magnetic field sensitive 

proximity switch

detectInductive3 inductive proximity switch

detectOptic7 one-way light barrier

gripElectric1 electric gripper

translateElectric1 compact cylinder electric

as
se

m
b

ly
P

n
eu

m
at

ic
2

assemblyElectric1
electric assembly 

module

Composed Services
Hardware Component

Field Devices

Hardware Component

Modules

pneumatic assembly 

module PnP

verifyingTransla

tation

Pneumatic1

Basic Services

translationPneumatic2
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D.3: Refinement of Concrete Services based on Mapping C 

 

Refinement of Composed Service “pickAndPlace1”: 

 

 

Refinement of device-specific concrete services: 

 

rotatePneumatic1

gripVacuumEject1

DetectMagnetic9

DetectMagnetic10

TranslateElectricLinMot2 linear servo motor

TranslateElectricLinMot3 linear servo motor

handling 

system

Hardware Component

Modules

pick-and-place modulepickAndPlace1

Composed Services Basic Services

TranslateElectricLinMot1

Hardware Component

Field Devices

rotation module

vacuum pad

magnetic field sensitive proximity switch

magnetic field sensitive proximity switch

linear motion module

servo controller

conveyor belt

conveyor belt

servo controller

translationElectric6/7 translationElectricStep1/2 stepping motor

gripElectric gripElectricRoehm1 electric gripper

translateElectric1 translateElectricFesto1 compact cylinder electric

Abstract Services

translationElectric1

Concrete Services
Hardware Component

Field Devices

translationElectricBelt1
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Appendix E: Abstract Equipment Model of Use Case 

Abstract equipment model in SysML: “AutomatedAssemblyUnit” 

Section 1 
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Section 2 
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Appendix F: Concrete Equipment Model of Use Case 

F.1: Concrete equipment model in SysML: StorageProductBase  

(StorageCircuitBoard is equivalent) 
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F.2: Concrete equipment model in SysML: PneumaticAssemblyModule  
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F.3: Concrete equipment model in SysML: ElectricAssemblyModule  
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F.4: Concrete equipment model in SysML: PneumaticAssemblyModulePnP 
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F.5: Concrete equipment model in SysML: PneumaticAssemblyModulePnP  

Section 1 
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Section 2 
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F.6: Concrete equipment model in SysML: ConveyorBeltModule 
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F.7: Concrete equipment model in SysML: Other hardware components of  
AutomatedAssemblyUnit 
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Appendix G: Service Model of Use Case 

G.1: Service model in SysML: Process service and the services it uses 
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G.2: Service model in SysML: “ControlStorage1” 
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G.3: Service model in SysML: “ControlStorage2” 
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G.4: Service model in SysML: “AssemblyPneumatic1” 
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G.5: Service model in SysML: “AssemblyElectric1” 
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G.6: Service model in SysML: “AssemblyPneumaticPneumatic2” 
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G.7.: Service model in SysML: “PickAndPlace1” 
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G.8.: Service model in SysML: “VerifyingTranslationElectricBelt1” 
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G.9: Service model in SysML: Other basic services 

 



 

204 Dissertation 



Appendix H: Control Logic Models of Use Case 

 205 

Appendix H: Control Logic Models of Use Case 

H.1: Control logic model in SysML: Process Service “AutomatedAssembly” 
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H.2: Control logic model in SysML: Sub process “AutomaticAssembly” 
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H.3: Control logic model in SysML: Composed Service “ControlStorage1/2” 
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Appendix I: Configuration Tasks 

I.1: Modified control logic model of Process Service “AutomatedAssembly” 
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I.2: Modified service “AssemblyPneumatic2” to “AssemblyPneumaticQC1” 
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I.3: Modified control logic model of sub process “AutomaticAssembly” 
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Appendix J: SysML2JG Transformation Rules 

Source: XMI file of a SysML/UML Activity Diagram 

Target: JGrafchart file 

1. The XMI node element of the type “uml:CallOperationAction” is represented by a 

GCStep element in JGrafchart. 

1.1 The value of the name attribute of a XMI node element of the type 

“uml:CallOperationAction” is copied to the name attribute of the corresponding 

GCStep element. 

1.2 If a XMI node element of the type “uml:CallOperationAction” has a child of the type 

“uml:InputPin”, the value of the name attribute of the child element is noted in the 

actionText attribute of the corresponding GCStep element and is reported as a 

“recommended input value” 

1.3 If a XMI node element of the type “uml:CallOperationAction” has a child of the type 

“uml:InputPin”, a RealVariable element is created in the JGrafchart document. 

The value of the name attribute of the child element is copied to the name attribute 

of the RealVariable element. 

1.4 If a XMI node element of the type “uml:CallOperationAction” has an attribute named 

operation that contains the ID of an operation of a service, the service name and 

the operation name are stored in the ActionText attribute of the corresponding 

GCStep element and are reported as “recommended services”, respectively 

"recommended operation”. 

1.5 If a XMI node element of the type “uml:CallOperationAction” has an attribute named 

operation that contains the ID of an operation of a service, a DPWSObject 

element is created and added to the Grafchart. The name of the service is copied to 

the name attribute of the DPWSObject element. 

1.6 If a XMI node element of the type “uml:CallOperationAction” has a child element 

localPostcondition that has a child element specification, a 

GCTransition element is added to the Grafchart as a follower of the 

corresponding GCStep element. The content of the value attribute of the 

specification element is copied to the actionText attribute of the 

GCTransition element. 

2. The XMI node element of the type “uml:CallBehaviorAction” is represented by a 

MacroStep or a ProcedureStep element in JGrafchart. If a stereotype “product_service” 

or “supporting_service” is attached to the behavior of an element of the type 

“uml:CallBehaviorAction”, the corresponding JGrafchart element is a ProcedureStep, 

otherwise the corresponding JGrafchart element is a MacroStep. 
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2.1 If a node element of the type “uml:CallBehaviorAction” is represented by a 

MacroStep element in JGrafchart, the corresponding behavior model is 

implemented in the MacroStep element. 

2.2 If a node element of the type “uml:CallBehaviorAction” is represented by a 

ProcedureStep element in JGrafchart, a Procedure element is added to the 

Grafchart and the corresponding behavior model is implemented in the 

ProcedureStep element.  

2.3 If a node element of the type “uml:CallBehaviorAction” is represented by a 

ProcedureStep element in JGrafchart, the value of the name attribute of the 

corresponding behavior is copied to the name attribute of the ProcedureStep 

element. 

2.4 If a node element of the type “uml:CallBehaviorAction” is represented by a 

ProcedureStep element in JGrafchart, a JGrafchart-confirm call to the 

corresponding procedure element is implemented in the grafcetProcedure 

attribute of the ProcedureStep element. 

3. The content of the name attribute of a XMI element of the type “uml:AcceptEventAction” 

is interpreted as a condition for the transition between the prior element of the 

“uml:AcceptEventAction” element and its follower. Therefore the content of the name 

attribute is copied to the actionText attribute of the GCTransition element that is located 

between the follower and ancestor elements of the “uml:AcceptEventAction” element.    

4. The XMI node element of the type “uml:ForkNode” is represented by a ParallelSplit 

Element in JGrafchart. 

5. The XMI node element of the type “uml:JoinNode” is represented by a ParallelJoin 

Element in JGrafchart. 

6. The XMI node element of the type “uml:DecisionNode” is represented by two 

GCTransition elements in JGrafchart. 

6.1 If the XMI edge elements of the type “uml:ControlFlow” that connects the 

“uml:DecisionNode” element and its followers have a guard element as child, the 

content of the value attribute of the child element is copied to the actionText 

attribute of the corresponding GCTransition elements. 

7. The XMI group element of the type “uml:InterruptableActivityRegion” is represented by 

a MacroStep element in JGrafchart.   

7.1. All XMI node elements referred by the group element of the type 

“uml:InterruptableActivityRegion” are modeled within the workspace of the 

MacroStep element in JGrafchart. 

7.2. If the group element of the type “uml:InterruptableActivityRegion” contains a node 

element of the type “uml:AcceptEventAction” that is connected to another node 

element outside the interruptible activity region represented by an edge element of 
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the type “uml:ExceptionHandler”, an ExceptionTransition element is added to 

the Grafchart. 

8. The XMI node element of the type “uml:InitialNode” is represented by a 

GCInitialStep element in JGrafchart, if the model is transformed to the top-level 

Grafchart or by an EnterStep element or if the model is transformed to a sub-grafchart 

(e.g., Grafchart of macro step or procedure).  

9. The XMI node element of the type “uml:ActivityFinalNode” is represented by an 

ExitStep element in JGrafchart, if the model is transformed to a sub-grafchart. 

Otherwise it is not mapped to the Grafchart. 

10. The control flow of the SysML Activity Diagram, which is represented by edge elements 

of the type “uml:ControlFlow” in the XMI file, is transformed to JGrafchart by using 

GCLink and Stroke elements.  

11. If no GCTransition element is located between two GCStep, MacroStep or 

ProcedureStep elements, a GCTransition element must be added in order to 

ensure the executablity of the JGrafchart. In this case the value of the actionText 

attribute created GCTransition element is set to “0”. 
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