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Abstract

In this thesis we address two instances of duality in commutative algebra.

In the first part, we consider value semigroups of non irreducible singular algebraic curves
and their fractional ideals. These are submonoids of Z" closed under minima, with a conductor
and which fulfill special compatibility properties on their elements. Subsets of Z" fulfilling
these three conditions are known in the literature as good semigroups and their ideals, and
their class strictly contains the class of value semigroup ideals. We examine good semigroups
both independently and in relation with their algebraic counterpart. In the combinatoric setting,
we define the concept of good system of generators, and we show that minimal good systems
of generators are unique. In relation with the algebra side, we give an intrinsic definition of
canonical semigroup ideals, which yields a duality on good semigroup ideals. We prove that this
semigroup duality is compatible with the Cohen-Macaulay duality under taking values. Finally,
using the duality on good semigroup ideals, we show a symmetry of the Poincaré series of good
semigroups with special properties.

In the second part, we treat Macaulay’s inverse system, a one-to-one correspondence which
is a particular case of Matlis duality and an effective method to construct Artinian k-algebras
with chosen socle type. Recently, Elias and Rossi gave the structure of the inverse system of
positive dimensional Gorenstein k-algebras. We extend their result by establishing a one-to-one
correspondence between positive dimensional level k-algebras and certain submodules of the
divided power ring. We give several examples to illustrate our result.
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Layout of the thesis

First we introduce the notations used throughout the dissertation, with references to the definitions
in the text. Then the thesis is divided in two independent parts. Each part has an introduction to
the concerned topic, which contains motivation, overview of the literature, and a summary of the
results.

The first part illustrates the work done in the first two years of PhD in Kaiserslautern and treats
value semigroups of one-dimensional semilocal Cohen—Macaulay rings and their combinatorial
counterpart, i.e. good semigroups. It contains parts of two papers, [KST17] and [DGSMT17]],
in which the candidate was coauthor. The proofs included in this part, unless clearly stated,
are original work of the author. The main results are the existence and uniqueness of a good
generating system for good semigroup ideals, the compatibility of the dual operation with taking
values and the symmetry of the Poincaré series of a good semigroup.

The second part illustrates the work done in the last year of PhD in Genoa and treats a
generalization of the classical Macaulay inverse system to level k-algebras of every dimension.
This is a joint work with S. Masuti, [MT17], and the proofs here contained are the outcome of
common efforts. The main result is a one-to-one correspondence between level local algebras
and particular submodules of the divided power ring.

The appendix contains a collection of basic facts used to prove the results of the thesis, in
order to make the manuscript self-contained. The appendix does not contain original work.

vil






Notations

Throughout this thesis we will use the following notations.

e General:

L R R

If T is an ordered set, min{7} denotes the minimum element of T’;
if T'is an ordered set, max{7'} denotes the maximum element of 7',
1, 7, k are indices in N;

i, j, k,n are multi-indices in N’ for some [.

e For commutative unitary rings and their ideals:

k is a field;

Ris aring. If R is local (resp. *local) then m is the (resp. homogeneous) maximal
ideal;
I,J € R are ideals of R;

o A = R/I is the quotient ring of R by the ideal /. If A is local (resp. *local), then n

(R R > B > B e TR SR R R S R S R

is its (resp. homogeneous) maximal ideal;

Max(R) is the set of maximal ideals of R;

()r is the total ring of fractions of R (Definition[A.3));

R is the integral closure of R inside @) (Definition ;

T°# is the set of all regular elements of 7" for any subset 7" of )z (Notation [A.T]);
&, F C Qg are (regular) fractional ideals of R (Definition [A.5](a));
Ce = R g, £ is the conductor of & relative to R (Definition [A.5](d));
MR, is the set of all regular fractional ideals of R (Notation [A.6));

R}, is the set of invertible R-submodules of () (Lemma[A.TT);

D is the divided power ring (Equation (6.1));

wg is the canonical module of R (Definition [E.2);

K is a canonical ideal of R (Definition [E.10);

if A is Artinian, Soc(A) is the socle of A, and socdeg(A) is the socle degree of A
(Definition [6.25]).

e For valuations:

<

O

V' is a valuation ring of (), where () is a ring with large Jacobson radical (see
Definition [B.1]) which is its own ring of quotients (Definition [B.4);

my is the regular maximal ideal of the valuation ring V' (Definition B.4));

iX



o

o

o

o

Iy =V : Q is the infinite prime ideal of the valuation ring V' (Definition B.12));
vy is the valuation associated to the valuation ring V' (Definition [B.7));
U, is the set of all valuation rings of Qg over a ring R (Definition[I.1));

V, is the valuation ring associated to the valuation  (Definition [B.9);

e For modules over a ring R:

S 000

<

o

&

&

M, N are R-modules;
E is an injective R-module (Definition [D.T));
Hompg(M, N) is the set of R-homomorphisms between M and N;

Ext% (M, N) is the k-th right derived functor of the left exact functor T(N) =
Hompg(M, N);

M ®pg N 1is the tensor product of M and N over R;
If M has finite length, (M) is the length of M (Definition |C.1));

HFy(—) is the Hilbert function of M, and HS)y(t) is the Hilbert series of M
(Definition [C.2));

depth (M) is the depth of M as R-module (Definition |C.6);

7(M) is the type of M as R-module;

e For semigroups:

&

<

<&

<

&

<&

<

Lo =7 U {0},

a, 3,9,7, €, C are elements in N?;

S C N*is a semigroup, i.e. a subset of N° closed under sum and containing 0;
Dg C Z¢ is the set of differences of S (Definition [1.16));

E, F are (good) semigroup ideals of S’ (Definition 2.2));

G is the set of all good semigroup ideals of S (Notation[2.3));

(g is the conductor ideal of a semigroup ideal E (Definition [2.8));

~F is the conductor of a semigroup ideal £ (Definition ;

K is a canonical semigroup ideal of S' (Definition |4.5);

['g (resp. I'¢) is the value semigroup of a ring R (resp. a fractional ideal £ (Definition

[L.4));
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Value and good semigroups






Introduction

Value semigroups of curve singularities have been widely studied by several authors over the
years. Waldi [Wal72, WalO0] showed that any plane algebroid curve is determined by its value
semigroup up to equivalence in the sense of Zariski. Value semigroups do not reflect only the
equivalence class of their corresponding ring, but also Gorensteinness. For this reason value
semigroups are interesting objects.

We first show how value semigroups (see Definition[I.4)) can be defined for admissible rings
(see Definition [I.15)), a class of rings which strictly contains algebroid curves. Then we give
detailed proofs of their compatibility with localization, and results about their compatibility with
completion. Afterwards, we concentrate on the axioms satisfied by value semigroups and their
ideals, which define the class of good semigroups and their ideals (see Definition [2.1). These
axioms were already considered in [BDFOOb, CDGZ99, I(CDK94, ID’A97, IDdIM&7, IDdIMS8S|,
Gar82], but it was in [BDFQOa] that the notion of good semigroup was defined and it was proved
that not all good semigroups are value semigroups. Hence, such semigroups are relevant by
their own and they form a natural generalization of numerical semigroups. However, they are
harder to study, mainly because they are not finitely generated as monoids, and not closed under
finite intersections. In spite of this, there are several approaches in the literature to describe
good semigroups which are value semigroups of algebroid curves by means of a finite set of
data. In [Gar82, |Wal72]], the authors describe the value semigroup of singularities with two
branches through the finite set of maximal elements. This approach has been generalized to
the case of more than two branches in [DdIM&7]]. An alternative can be found in [CDGZ99],
where the authors introduce w-generators for planar algebroid curves: the value semigroup can
be described by a finite set of these w-generators (not necessarily belonging to the semigroup)
and a boolean expression. In [CF02], the authors compute the value semigroup of plane curves
using Hamburger-Noether expressions. For the non planar case, we refer to [BDF00a, BDFOOb),
CDK94, DdIMST7].

Our approach differs from the ones cited above, and takes advantage of the algebraic structure
of good semigroups, therefore including the class of value semigroups. First we consider the set
Small(S) of small elements of a semigroup S, that is, elements of S which are smaller or equal
to the conductor of the semigroup with the usual partial order. It is easy to see that Small(5)
determines the semigroup. Therefore, it is natural to consider subsets G C Small(.S), from
which is possible to recover completely the semigroup S. We define such a subset G to be a
good generating system. We call G minimal if none of its proper subsets is a good generating
system. We prove that minimal generating systems are unique in the local case (Theorem [3.13)),
as happens in the setting of cancellative monoids. The same is not true in general for the non
local case, but it is possible to reduce to the local case. We then prove that good semigroup
ideals of good semigroups also can be minimally generated by a unique system of generators. In
particular, this is true for value semigroups of fractional ideals. Also, we take inspiration from
the work of Carvalho and Hernandes [[CH17]] to show that the closure of a good semigroup is
always finitely generated as a semiring.

Good semigroups also have interesting duality properties. In the numerical case, corre-



sponding to semigroup rings, Kunz [Kun70] was the first to show that the Gorensteinness of an
analytically irreducible and residually rational local ring R corresponds to a symmetry of its
numerical value semigroup I'z. Under the same assumptions, Jiger [Jag77]] used this symmetry
to define a semigroup ideal K such that (suitably normalized) canonical fractional ideals X of
R are characterized by having value semigroup ideal I'x = K°. Waldi [Wal72] was the first to
give a symmetry property for non-numerical semigroups, and he showed that value semigroups
of plane curves with two branches are symmetric. Garcia [[Gar82], using a similar approach,
defined the concept of symmetric points. In analogy with Kunz’s result, Delgado [DdIM&7]
then proved that general algebroid curves are Gorenstein if and only if their (non-numerical)
value semigroup is symmetric. Later Campillo, Delgado and Kiyek [CDK94] extended Delgado
result to analytically reduced and residually rational local rings R with infinite residue field.
D’Anna [D’AY97] broadened Jédger’s approach under the preceding hypotheses. He used the
definition of symmetry given by Delgado to give an explicit formula for a semigroup ideal K°
(see Definition such that any (suitably normalized) fractional ideal IC of R is canonical if
and only if 'y = K°.

Afterwards, Barucci, D’ Anna and Froberg [BDFOOa] included in their setup the case of
semilocal rings, which are the objects considered in this manuscript. Recently Pol [PollS5,
Theorem 2.4] gave an explicit formula for the value semigroup ideal of the dual of a fractional
ideal for Gorenstein algebroid curves.

We extend and unify D’ Anna’s and Pol’s results for admissible rings 2. We give a simple
definition of a canonical semigroup ideal K of a good semigroup (see Definition §.5)). It turns
out that this definition is equivalent to K being a translation of D’Anna’s K, and to K inducing
aduality £ — K — E on good semigroup ideals, i.e. K — (K — E) = F for any good semigroup
ideals (see Corollary 4.13). In particular, D’ Anna’s characterization of canonical ideals in terms
of their value semigroup ideals persists for admissible rings (see Corollary 4.17). We show that

Iee=Tx—T¢

for any regular fractional ideal £ of R (see Theorem[.16). This means that there is a commutative
diagram

{regular fractional ideals of R} —<=~%__ {regular fractional ideals of R}

5'—)1—‘5‘ O ‘5}—>F5

{good semigroup ideals of I'g} ot {good semigroup ideals of I'g}
relating the Cohen—Macaulay duality £ — K : € on R to our good semigroup duality £ +— K—F
onl'p for K = T'k.

Canonical ideals are not the only way to detect duality properties, for rings as well as
for good semigroups. In [Sta/7], the author showed that Gorenstein graded algebras have
symmetric Hilbert series. In particular, this holds for semigroup rings which have symmetric
value semigroup. Others studied the properties of the Hilbert series and modifications of it
to understand properties of curves. Campillo, Delgado and Gusein-Zade in [[CDGZ03]] gave a
definition of Poincaré series for a plane curve singularity, and they showed that it coincides with
the Alexander polynomial, which is a complete topological invariant of the singularity. More
recently, Poincaré series were studied in relation with value semigroups. Moyano-Fernandez in
[MFE15], using a definition inspired by the above, analyzed the connection between univariate
and multivariate Poincaré series of curve singularities and later on, together with Tenorio and
Torres [METT17]], they showed that the Poincaré series associated with generalized Weierstrass



semigroups can be used to retrieve entirely the semigroup. Then Pol [Poll6] considered a
symmetry problem on Gorenstein reduced curves. She proved that the Poincaré series of the
Cohen—Macaulay dual of a fractional ideal £ is symmetric with respect to the Poincaré series of
&, therefore generalizing Stanley’s result to fractional ideals of Gorenstein rings. Pol’s result
strongly uses the fact that it is always possible to define a filtration on value semigroups (see
Definition [I.8)), as done first in [CDK94]. To deal with this filtration an important tool is the
distance d(E\F) between two good semigroup ideals E' C F' (see Definition [2.23)). Using the
notion of distance and our new-found duality on good semigroups, we are able to show that
under suitable assumptions the Poincaré series of the dual of a good semigroup £ is symmetric
to the Poincaré series of E. In particular, if £ := I'¢ for some fractional ideal £ of an admissible
ring R, this symmetry is always true.

The contents of this part are divided as follows.

In Chapter [I] we review the definition of value semigroups and their ideals, based on the
notion of valuation rings over a one-dimensional Cohen—Macaulay ring. We give a proof of the
properties satisfied by value semigroups of local admissible rings (see Proposition|l.21)), and we
show that they are compatible with localization, i.e. for any £ € PRy there is a decomposition
into value semigroup ideals

Fe= [ Te..
meMax(R)
We recall results from [KST17] which show that value semigroups are also compatible with
completion.

In Chapter 2] we give the definition of good semigroup, and we show that such semigroups are
completely identified by the set of their small elements. Then we analyze some of their properties,
also in connection with value semigroups. We define the distance d( E'\ F') between two good
semigroup ideals £ C F' (already introduced by D’ Anna in [D’A97]). This quantity plays the
role of the length ¢(£/F) of the quotient of two fractional ideals £ C F on the semigroup side.
In fact, the two quantities agree in case I/ = I'¢ and I’ = 'z (see Proposition , that is,

(r(F/€) = d(TA\Te).

We give a proof of the fact that d(E'\ F') = 0 is equivalent to F = F’ (see Proposition , as
stated by D’ Anna in [D’A97, Proposition 2.8]. In particular, this implies £ = F in case E = I'¢
and FF =Tz,

In Chapter [3] we give a definition of good generating system for good semigroups starting
from the set Small(.S), as already mentioned before, and we prove that if .S is a good local
semigroup, then is has a unique minimal generating system. Then we give a notion of good
generating system for good semigroup ideals and we show that there is a unique minimal such
generating system.

In Chapter [ we give a new definition of canonical semigroup ideal, and we state some results
regarding its duality properties and its relation with D’ Anna’s canonical ideal. In Section 4.2 we
show that of E := I'¢ for some fractional ideal £ € R, the dual if F with respect to a canonical
semigroup ideal K is the value semigroup ideal of the Cohen—Macaulay dual K : £, where K is
a canonical ideal of R with value semigroup K.

In Chapter[5| we give some technical results on the distance between good semigroup ideals.
Then we generalize the definition of Poincaré series given in [CDGZ03]] to good semigroup
ideals and we show that, under suitable assumptions, if £ is a good semigroup ideal, then the
Poincaré series of K — E is symmetric to the Poincaré series of £. In particular, the symmetry
holds if E := I'¢ for some fractional ideal £.






Value semigroups of rings and their ideals

This chapter treats the definition of value semigroups for rings and their ideals and the study of
their compatibility with common algebraic operations. Any one-dimensional semilocal Cohen—
Macaulay ring R has a value semigroup. In case R is also reduced, such semigroup is the direct
product of the value semigroups of the localizations. If instead R is analytically reduced with
large residue fields, its value semigroup coincides with the one of the completion. Furthermore,
if R is admissible, i.e. it is analytically reduced and residually rational with large residue fields,
then its value semigroup satisfies the same properties which are fulfilled by value semigroups of
algebroid curves. All of this is shown in this chapter, which is part of a joint work with P. Korell
and M. Schulze (see [KST17]]).

1.1 Value semigroups of one-dimensional semilocal rings

Let R be a commutative and unitary ring, and let Max(R) be the set of maximal ideals of R.
Assume that m N R™8 2 () for all m € Max(R).

We denote by g the total ring of fractions of R. We assume )y satisfies (A.T)) and abbreviate
F & :=F g, € forany subsets £, F C Qp.

In order to give a definition of value semigroup of R, we have to deal with zero-divisors, and
hence we need a general notion of valuation ring over the ring R.

Valuations and valuation rings of () are defined in Appendix B Recall that Iy = V' i, Qr
is the intersection of all regular principal fractional ideals of V.

Definition 1.1. A valuation ring over R is a valuation ring V' of Qg such that R C V. We
denote by *Up the set of all valuation rings of () over R.

Proposition 1.2. Let R be a Noetherian one-dimensional integrally closed local ring. Then R is
a discrete valuation domain.

Proof. See [AM69, Proposition 9.2]. []

From now on, we consider R to be a one-dimensional semilocal Cohen—Macaulay ring. In
general, the set Uy of valuation rings over R is described in the following theorem.

Theorem 1.3. Let R be a one-dimensional semilocal Cohen—Macaulay ring with total ring of
fractions Qg.

(a) The set Uy is finite and non-empty, and it contains discrete valuation rings only.



1. Value semigroups of rings and their ideals

(b) Max(Qgr) = {Iy | V € Ug}, and for any I € Max(Qr), there is a bijection

{VeBr| Iy =1} < Vr/unr)
Vs VI

where QR/(IHR) = QR/]
(c) Let R be the integral closure of R. Then
(1) R=Nyex, Vs

(2) The set of regular prime ideals of R agrees with Max(R);
(3) Any regular ideal of R is principal.

(d) There is a bijection

MaX(R) — Ypr
n— (R\n)) 'R
ny :==my N R« V.

In particular, R/ny = V/my and myy N R = ny N R € Max(R).

Proof. See [KV04, Chapter II, Theorem 2.11]. Lying over impliesny N R =my " RN R =
my N R € Max(R) in part (d)). O

Recall that 2Ry is the set of regular fractional ideals of R (see Notation |[A.6). By Theo-
rem[1.3](c).(3) and Lemma we have

Ry = R,

Then there is an injective group homomorphism

w:¢R:9{5—> H 9%}*/

Velr

E— (EV)VEQ]R (11)
n Ev < (Ev)vewy.

Velr

reg

In fact, writing & = ¢ R for some t € Q5°,

(| E&V= () tV=t ) V=tR=E

Velg VelUr Velr
by Theorem [I.3](c]).(I). Recall now that for any V' € U we have a diagram (see (B.3)):
Qr

1%

% =
V,00 oy ZOO

where vy is the discrete valuation associated to V. Taking this diagram component-wise with

V=vp= H vy and ¢ = ¢ = H Pv

Velg Vel



1.1. Value semigroups of one-dimensional semilocal rings

gives rise to the commutative diagram

e (1.2)

e
=
/

1R
1R

Rp—— [ Ry —— 7%,
Velr

<
<

Then surjectivity of y, and hence of v, follows from the Approximation Theorem for discrete
valuations [B.16](c). Thus ¢ is an isomorphism and both ¢ and ¢ preserve the partial orders
(reverse inclusion on Ry and [[ycy, R} and natural partial order on Z¥%).

Hence we can give the following definition:

Definition 1.4. Let R be a one-dimensional semilocal Cohen—Macaulay ring, and let Uy be the
set of (discrete) valuation rings of () over R with corresponding valuation

V=VRr = (VV)VEQTR: QR — Z?OR.
To each £ € R we associate its value semigroup ideal
[e :=v(E8) C Z7~.

If £ = R, then the monoid Iy is called the value semigroup of R. The semigroup I'y is called
local if the 0 is the only element of I'; with a zero component in Z¥%,

Example 1.5. Consider the irreducible curve (i.e. one-dimensional local Cohen—Macaulay
ring) R = Cl[z,v, 2]]/(2® — yz,y® — 2%) = C[[t*,1°,¢°]]. The value semigroup I'g of R is
I'r=(5,6,9)={0,5,6,9,10,11,12,14... }, like the figure below illustrates. The element -,
as we will see later, is called conductor, and is such that v + N C I'g. We will also see that it has
a close relation with the conductor of the ring.

01234567289101112137

Example 1.6. Consider the curve with two branches R = C|[x,y]]/y(x® + y°). The value
semigroup ' of Ris ' = ((1,5),(2,9), (1, 3) + Ney, (3, 15) 4+ Ney), which is illustrated in
the figure below.

O O e e o o o
O O e o ¢ o o
O O e o o o o
O O e o o o o
O 0 e o o o o
OQ(;OO o O
O e e o o o o
O e e o o o o
O 0O O O O O O
O e e o o o o
® O O O O O O
O 0O O O O O O
e 6 6 o o o o
o O O O O O O
O O O O O O O




1. Value semigroups of rings and their ideals

Remark 1.7. Let R be a one-dimensional semilocal Cohen—Macaulay ring, and let V' € ‘Ur. We
have
Vi ={z Q" |vy(zx)=0and R = {z € Q" | v(z) = 0}.

In particular
R*=R NR={xecR|v(x)=0}

The first equality follows by definition, as x € V* if and only if xV = V if and only if

vy () = oy (uy(x)) = ¢y (V) = 0 (see (B.I)) and Diagram (B.3)). For the second, by Theorem
, R =Nyey V. Hence R = (Nyew,V)*. Then the claim follows directly from the fact
that units commute with intersections, i.e. (Nyey,V)* = Nyey, V™.

Definition 1.8. We define a decreasing filtration Q° on () by
Q% :={reQr|v(z)>a}
for any a € 7°% . For any R-submodule £ of ()i, we denote £°* = £ N Q° the induced filtration.

Lemma 1.9. Let R be a one-dimensional semilocal Cohen—Macaulay ring. Then
(@) Q= ($0 ) (a) = Nyew, MY € R forany a € 297,
(b) xR = Q"™ for any x € Q%® and, in particular, R = Q°.
(c) Tgo = a+ N¥% for any o € Z % and, in particular, T = NVE,

(d) if € is a (regular) fractional ideal of R, then £% is also a (regular) fractional ideal for any
o € ZPr,

Proof. (a) By Diagram[B.5] for x € Qg, v(x) > « if and only if ¢y o py () > ay for any
V' € Uy if and only if, by definition of uy, = € (¢y o uy )~ («) for any V' € Ug, if and only if
x € (¢ o )~ !(cr). Hence the first equality is true. By definition of the isomorphism ¢y in

¢ (@)= I ov'(e)= [ mi.

Velgr Velr

Then
P o Ha) =7 ( II m“v) = [ my €Ny
Veln Velr

by (I.1I), and hence we have the second equality.
(b) Let z € Q°. By part (&), Diagram1.2]and Theorem[1.3](c).(1),

Q"W = (¢pop) (w(x) = v ¢ (v(2)) = ¢ (p(x)) = ( xv)
VeTR
= () 2V=z () V=zR

Velgr Velr

In particular, by Theorem.@) we have R = Nyey, V = Nyvew,{y € Qr | vv(y) > 0},
so that R = Q°.



1.1. Value semigroups of one-dimensional semilocal rings

(c) Let us first prove the particular claim. By Theorem [1.3](c).(T)) and equation (B.T)

R =Nvey,V = Nvew,{v € Qr | vv(y) > 0}. By Remark B.8/(B) vy (z) < oo for any
V € YUrand x € Q*. Thus

I'z =v((R)®) = v({z € QF® | v(z) > 0}) C N~
The other inclusion follows by surjectivity of v in Diagram (T.2)), and hence I'; = Nz,
Let now o € Z¥%. By surjectivity of v in Diagram (T.2), o = v(z) for some x € Q’z°. Then by
part (b)), definition of I" (Definition [1.4)) and properties of v (see (VI))), we have

Fon = g = Ty = W(@R)™) = v() + v((R)*%) = v(x) + T = a + N7,

(d) By part (a), £ is an R-module. By Definition[A.5](b), £ is a fractional ideal if there is
anr € R such that € C R. Then clearly r€* C r&€ C R. If moreover £ is regular, then there
exists z € £™°¢. By surjectivity of v in Diagram[1.2]and equation (B-I)), there is a y € (R%)™®
for arbitrarily large 3 € Z%%. Then zy € (%)™ for 8 > a — v(x) and hence £* € Rp. [

The following result was stated without proof in [DdIMS8S, (1.1.1)] and [BDFO0Oa, §2].

Proposition 1.10. Let R be a one-dimensional semilocal Cohen—Macaulay ring with value
semigroup I'r. Then the following are equivalent:

(i) The ring R is local.
(ii) The semigroup 'y is local.

Proof.
= Assume R is local, and let m be its maximal ideal. Then Theorem[I.3](d), Lying

Over and Equations (B.2)) and (B.3) give
m C ﬂ my = ﬂ {.TEQR’I/\/(.CE)>O}.

Vel Ve
Thusm = RN (Nyewpir € Qr | vv(z) > 0}) ={z € R|vy(z) > 0forany V € Yr}. Now
let z € R™ be such that v/ (z) = 0. Then z € R\ m = R* and by Remark[1.7} v(z) = 0.

= (i) [KST17, Proposition 3.1.7]. O

In the following we will show that, under suitable hypotheses, semigroups £ = I'¢ of
fractional ideals £ of R have certain properties. We will use these properties in order to define
the notion of a good semigroup in Chapter [2]

Definition 1.11. A semilocal ring R is analytically reduced if its completion is reduced.
Analytically reduced rings are often referred to as analytically unramified.

Proposition 1.12. Let R be analytically reduced. Then the integral closure R of R in Qg is a
finitely generated R-module.

Proof. See [HS06, Corollary 4.6.2]. L]

Remark 1.13. In the literature analytically reduced rings are usually defined in the local case. In
this special case, the following are equivalent:

(i) R is analytically reduced;

(i) R is a finitely generated R-module.
See [KV04, Chapter II, Theorem 3.22] for a proof.



1. Value semigroups of rings and their ideals

Recall that the conductor of a fractional ideal & is the (fractional) ideal C¢ := £ : R (see

Definition [A.5](d))).

Lemma 1.14. Let R be a one-dimensional semilocal Cohen—Macaulay ring. If R is analytically
reduced, then Ce € Rr N Ry for any € € Rg. In particular, Ce = xR = Q") for some
r € QRE withv(z) + NPr C Tg.

Proof. See [KST17, Lemma 3.1.9] OJ
Definition 1.15. Let R be a one-dimensional semilocal Cohen—Macaulay ring.
(1) R is residually rational if R/n = R/(n N R) for any n € Max(R) or, equivalently (see
Theorem[L.3|(d)), V/my = R/(my N R) for any V € V.
(2) R has large residue fields if |R/m| > |Upg, | for any m € Max(R).

(3) R is admissible if it 1s analytically reduced and residually rational with large residue fields.

Definition 1.16. Let S C Z/ be a partially ordered cancellative commutative monoid. The group
of differences of S is
Ds={a—-pB|a,B €S}
We define the difference of two subsets E, F' C Z! by
E—F:={a+Z'|a+FCE}.
While the value semigroup operation preserves inclusions, there is no obvious counterpart of
multiplication and colon operation on the semigroup side.

Remark 1.17. Let R be a one-dimensional semilocal Cohen—Macaulay ring, and let £, F € Rp.
(a) IfE C F,thenI's C I'~.

This follows easily from £¢ C F™& and from v being a group homomorphism.

(b) The inclusion I'¢ x O I'¢ 4+ '~ is not an equality in general.

Let a € I'g 4+ I'z. We can write o = v(z) + v(y) with x € £™¢ and y € F*¢. Consider
zy € (EF)™8. Then a = v(z) + v(y) = v(zy) € Pez. Thus the inclusion. Example|[I.18§]
shows that it is not an equality in general.

(¢c) The inclusion I'¢.x C I'¢ — I' £ 1s not an equality in general.
Letv(x) € Te.r. Thenz € Q* and 2 F C E. Lety € F*&. Then there is a z € £ such
that zy = z. Inparticular, v(zy) = v(z)+v(y) = v(z),ie. v(z) = v(z)—v(y) € Te—Tx.
The example [BDFOOa, Example 3.3] shows that it is not an equality in general.

Example 1.18. Consider the ring
R = C[[(ti 0)7 (téllv O)’ (ti 0)7 (07 tQ)]] - CHtl]] X C[[tQH =R.

Then R is a one-dimensional complete reduced Cohen—Macaulay ring. Hence in particular it is
analytically reduced. As U = {C|[[t1]], C|[[t2]]}, it is clear that R residually rational. Moreover,
the residue field C is infinite and therefore large. Thus R is admissible. The value semigroup of
R is S :=I'g. Consider the R-submodules of Q)r

£ = <(t17 0)? (ti 0)7 (tzfv t%)? <07 t3)>R, F o= <<t1; t2>7 (tfa 0)? (07 t%»R-

Then the corresponding value semigroup ideals are £/ := ['¢ and F' := I'z. Clearly £, F,EF €
Rr, and hence E, F,I'cr € &5 by Remark @) We show S, E, F and E + F in Figure
I.1] Tt can be easily seen that (E2) fails for £ + F', and hence E + F ¢ ®&g. It follows that
Pg]: g Fg + F]:.

10



1.1. Value semigroups of one-dimensional semilocal rings

Figure 1.1: The value semigroup (ideals) in Example

The following definition was given also in [DdIMS88, §1] and [D’A97, §2].

Definition 1.19. Let S be a partially ordered monoid, isomorphic to N’ with its natural partial

order, where I is a finite set. Let E C Dg = Z'. Then we consider the following properties for
E:

(EO) There exists & € Dz suchthata + S C E.
(El) If o, 5 € E, then min{a, B} := (min{«;, 5;})icr € E.

(E2) Forany o, 8 € Fand j € I such that o; = f3; there exists an e € E such thate; > o; = 3;
and ¢; > min{w;, 5;} forany i € I\ {j} with equality if o;; # ;. We call E good if it
satisfies (EO),(ET)) and (E2).

Figure 1.2: The following subset of Z? satisfies (E0), and (E2):

FE satisfies (EO)

FE satisfies (E1) E satisfies (E2)
O @€ O e o o o o o o o [ ]
O @€ O e o o o o o
(0] s O ©e e o o o o
c @€ O e e o o o o
gin{‘a,ﬂi 8 O O O O O

Lemma 1.20. Any group automorphism @ of Z° preserving the partial order is defined by a
permutation of the standard basis.

11



1. Value semigroups of rings and their ideals

Proof. See [KST17, Lemma 3.1.8]. O
In the following, we collect results from [D’A97] and provide a detailed proof.

Proposition 1.21. Let R be a one-dimensional semilocal Cohen—Macaulay ring with value
semigroup S := 'y, and let &/ := T'¢ for some £ € Rp.

(a) We have E + S C E.
(b) If R is analytically reduced, then E satisfies (EQ) with S = I'.

(c) If R is local analytically reduced with large residue field, then E satisfies with S =Tz
and I = Up.

(d) If R is local and residually rational, then E satisfies (E2).
In particular, if R is local admissible, then E is good.

Proof.
(a) Since £ is an R-module and Q'®* = Q% a group, R™8E™8 C £8. Then since v in
Diagram (1.2)) is a group homomorphism which preserves inclusions we obtain:

E+ 8 =T¢+ g = v(R") + v(E7F) = v(R™EE™E) C p(£78) = [ = E.

(b) By Lemmal|l.9| . ), Tz = N¥%, so we need to find an a such that o + N¥= C E By
Lemma-Cg = = 2R C & for some x € Q'5%. Lemma|1.9 .@ yields Cc = Q"®), and

Lemma [I.9](c) gives

AsCe CE,T¢e, CTe = E. Thus v(z) = a € Dg = Z”* satisfies (E0).

(¢) Letz,y € £8 with v(z) = a and v(y) = 3. By Theorem [1.3](c).(3) all regular ideals
of R are principal, so that (z,y)z = zR for some z € Qz%. By Lemma we may assume
z € (x,y)z® C €. Then by Lemma 1.9 we obtain

v((z,y)5) = v(2R) = v(z) + N,
Now and imply v(z) > min{v(z),v(y)} > v(2), and hence
min{«, f} = min{v(z),v(y)} = v(z) € E.

(d) Denote by m be the maximal ideal of R. Let o, € E and W € Upg such that
aw = Pw. Pick z,y € &8 such that v(x) = « and v(y) = . Then z/y € Q%® and

v (z/y) = aw — Bw = 0. Therefore z/y € W \ my by (B-I)) and (B-2). By Theorem 1.3](d),
R/ny = V/my, and by hypothesis, R/m = R/ny for any V € Up. In particular, we
can consider the class z/y = @ € W/my = R/m for some u € R\ m. It follows that
vw(u — z/y) > 0 and v(u) = 0, again by and (B.2). Then, being £ a fractional ideal,
uy —x € £ with

wuy — ) = vw(y(u — z/y)) = vw(u—z/y) + vw(y) > vw(y) = Bw

and

vy (uy — x) =vy(uy + (—z)) > min{vy (uy), vy (=)} = min{vy (u) + v(y), vv(z)}
=min{ay, By}

12



1.2. Value semigroups and localization

for any V € g \ {W}, with equality if o # Sy (see Remark B.8](c)). Notice that the above
inequalities remain true after replacing u by any element u’ € u + m. It is left to show that,
for some v/, vy (u' — z/y) < oo forany V' € Yy with ayy = Sy . Since R is Cohen—Macaulay,
there is an m € m*® C my;?, and hence (oo, ...,00) > v(mF) > k- (1,...,1). Then any
u' = u+mP with k > max{vy(u—z/y) < oo | V € Ug with ay = By} gives

vo(u = a/y) = vy(u+m® —a/y) > min{vy (m*), v (u - z/y)}

Jwu—=z/y) ifry(u—ax/y) <oo
R otherwise

for any V' such that oy, = Sy. Thus

vw (u'y — x) = vw(u' — 2 /y) + vw(y) = min{vw (m®), v(u - 2/y)} +vw(y) > bw

and
00 > vy (u'y — x) = min{vy (u'y), vy (=)} = min{wy (u) + vv(y), vv (2)}
= min{ay, By }.
Hence € = v(u'y — x) gives the claim. O

1.2 Value semigroups and localization

In the following we often identify objects which are canonically isomorphic.

Lemma 1.22. Let R be a reduced semilocal ring. Then
(a) Qr = Ilyeminr) @ryp and Qr,, = [lnopeMin(r) @R /pRa for any m € Max(R).
(b) Qr, = (Qr)m for any m € Max(R).
(c) Ry = (R)w for any m € Max(R).

(d) R = yenin(r) B/p-

Proof. (a) As R is reduced, the total ring of fractions () is the zero-dimensional ring
obtained from R by inverting all elements of R that are not in any minimal prime ideal. Thus, by
the Structure Theorem for Artin rings (see [AM69, Theorem 8.7]), it is the finite direct product
of the ()r/,. For the second part, it is enough to observe that with 12 also I, is reduced for any
m € Max(R).

(b) Let p € Spec(R). Then R/p is a domain, and hence (R/p); C Qg for any q €
Spec(R/p). Thus Q(rp), = Qryp- In particular, for any m € Max(R) with m 2O p, we have
Q(R/p)m = Qryp- From (@) it follows that

Qro= I  Qruprn= Il Qwwe= 11 Q&n

mDpeMin(R) mOpeMin(R) mOpeMin(R)
= ( H QR/p) = (QR>m- L
peMin(R) m

(c) See [HSO06, Proposition 2.1.6].

13



1. Value semigroups of rings and their ideals

(d) See [HSO6, Corollary 2.1.3].

Lemma 1.23. Let R be a reduced one-dimensional semilocal Cohen—Macaulay ring. For any
m € Max(R) the localization map 7 : Qr — (Qr)m = Qr,, induces a bijection

pm:{VE‘BR]mVﬂR:m}%%Rm
ViV,
T (W) = W.

In particular, (my )y = myy if Vi W.

Proof. Let m € Max(R) and V € Up withmy N R = m. Then R\ m C V \ my. Since
localization is exact (see [AM69, Proposition 3.3]), and my is regular, (my ), C Vi, contains a
regular non-unit and hence V;; C (Qr)m. Thus

=

Rm g Vm _,C«_ (QR)m - QRm' (13)

Let z/y, 2’ /Yy € (QRr)m \ V. Then z,z € Qg \ V, which is a multiplicatively closed set
(see Theorem [B.3|({)). Hence 22’ € Qpr \ V. Asy,y € (Qr)k, also yy' € (Qg)i. Thus
zz'/yy € (Qr)m \ Vi Therefore (Qr)m \ Vi is multiplicatively closed. Hence, by Theorem
and Definition Vi is a valuation ring, and (1.3) implies V,, € Ug,. Hence the
map is well-defined. Moreover, since V' C @ is a maximal subring by Theorem [B.14](d), and
7 (V) 2V, we get V = 7~ 1(V;,). Therefore the map is injective.

Let now W € Uy, form € Max(R), and set V := 7~ (W). Then V,, = W C Qg,, and
R CV C Qr. Letnow z,y € Qr \ V. Then n(z),7(y) € Qg, and since V = 7~ 1(W),
m(x),m(y) € W. As Qg, \ W is multiplicatively closed, 7(zy) = 7w(z)n(y) € Qr, \ W,
and hence zy ¢ 7' (W) = V,ie. zy € Qg \ V. Therefore Qr \ V = Qr \ 7 1(W) is
multiplicatively closed too. Hence, by Theorem [B.14](d) and Definition[I.1, V' € Up. Consider
the commutative diagram of ring homomorphisms

V—=W
R—— R,.
Commutativity of the diagram yields
Tl my)NR=1"(myNRy) =1 (mg,)=m (1.4)

where myy N R, = mp, by Theorem [1.3/(d). In particular, as m is regular, 7~ (my,) is too.
But 7! (myy) is a prime ideal of the discrete valuation ring V' (see Theorem|[1.3|(@)), which by
Proposition has only one regular prime ideal, i.e. my,. Hence 7~ (my ) = my and by
my N R = m. Thus the map is surjective. O

By Theorem|[1.3|(d), the sets {V € Uy | my N R = m}, withm € Max(R), form a partition
of Up. By Lemma|[[.23] there is a bijection

p:Vr — |_| Vg,
meMax(R)
V= puyrr(V) = Vaynr.

14



1.2. Value semigroups and localization

Using this, we define an order preserving group isomorphism
&I ®— I 11 %
Velr mEMax(R) WGmRm

(&v)veu, — ((5p—1(W))m)meMax(R),WemR

. . k,— .. . .
Since it maps (m]‘“,")venR = (myp 1(W))m€MaX(R)7WG@R, it is an isomorphism thanks to the
map oy of (B3).

Combined with Diagram (I1.2) for R and R,, for m € Max(R), it fits into a commutative
diagram

reg
R

IR |

I % %

5 F m} l

M ol [ 1 oy 2 [ 29

meMax(R) meMax(R) WeUr, meMax(R)

R|s

1%

I o I, v

meMax(R)

where £(£) = [Tnemax(r) Em for any £ € NRg. Observe that if £ € MRy, then by Lemma
and since localization and integral closure commute (see Lemma @), En € %(E)m = Rg—.
Hence ¢ is well-defined. This implies

X

v(z) = (VR‘“ (1>>m€Max(R) 15

reg

forany z € QQy°.
The first part of the following theorem was stated and partly proved in [BDFOOa, § 1.1].

Theorem 1.24. Let R be a one-dimensional reduced semilocal Cohen—Macaulay ring. Then
there is a decomposition into local value semigroups

Tr= [] Tan

meMax(R)

for any € € Ry there is a decomposition into value semigroup ideals

Te= [[ Ten

meMax(R)

Proof. By Proposition ['g, is local for m € Max(R). Hence we can prove directly the

15



1. Value semigroups of rings and their ideals

second statement. By equation (I.5]), we have

Pe = (&%) = {v(x) | x € £}

= {<1/Rm <$)> ‘ x € Ereg}
1 meMax(R)

= (I/Rm (x)) ‘ Te &8 for any m € Max(R)
1 meMax(R) 1

C II ve.&x®)= ] Ten

meMax(R) meMax(R)

For the other inclusion, let o = (am)meMaX( R) € [nemax(r) I'e. (each of the ay, is a vector in
general). Then there exists elements =, /y, € En, m € Max(R), such that vg_(2m/Ym) = an
for any m € Max(R). By equations and Remark [1.7] if y, = u € R}, then vp, (Tm/ym) =
VR, (2') — Vg, (u) = Vg, (') — 0 = vg, (2'). Hence we may clear denominators and assume
Ym = 1 for any m € Max(R). for any m € Max(R) pick an element 2z, € (MneMax(R)\{m}1) \ M.
Note that such a z, exists by Chinese Remainder Theorem. Then by Theorem [I1.3](d) the sets
{V € Yg | my N R = m} form a partition, i.e. vg,(2u/1) = [lvey, ¥v(2s/1) and, as
Zm € R\ m C V \ my for any V such that my, N R = m, by equations (B.I)) and (B.2),

vy (zm/1) =0 forany V € Up, (1.6)
and hence v, (2m/1) = 0. Using the same tools, we obtain
Vv (2zm/1) > 0 for any V' € Up, for any n € Max(R) \ {m}. (1.7)
Let
kw > max{vy(z,/1) — vy (xn/1) | V € Bg,,n € Max(R) \ {m}}.
Then z = Y nemax(r) TmZa € & since 2y, € € and z, € R for any m € Max(R). By choice of
ky and (1.7)), we have inequalities
vy (Tm/1) + knvy (2m/1) > vv(2m/1) + kn > vy (z,/1) (1.8)
for any V' € Up, for any n € Max(R) \ {m}. Therefore, using and (1.8),

m a T ka
(/1) = oy (Z eM X(lR) mZm )

> min {VV (Mfﬁ]ﬂ) ‘ m e MaX(R)}
= min {vy(xn/1) + kavv(zn/1) | m € Max(R)}
= min {vy(2,/1) + kavyv (20/1), vy (20 /1) + knvy (2a/1) | n € Max(R) \ {m}}
(
)

To/1), vy (20 /1) + kuvy (2a/1) | n € Max(R) \ {m}}

= vy (z,/1).

= min {vy

forany V € Up, forany n € Max(R). Asvy(x,/1) = vy (I“f‘lf“> # vy (T /1) +hkavy (2n/1) =

vy (zmz‘l’]‘:‘m) for n # m € Max(R), the inequality is actually an equality. Thus
vro(2/1) = [ wiz/)= I wiw/1)=vp,(2a/1) = as.
VeDR, VEDR,

Thus v(z) = « by equation (I.5)), and o € I'¢ as z € €. Hence the claim. O
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1.3. Value semigroups and completion

Corollary 1.25. Let R be a one-dimensional reduced semilocal Cohen—Macaulay ring with
large residue fields, and let E := T'¢ for some £ € Rp.

(a) If R is analytically reduced, then E satisfies (ETJ).
(b) If R is residually rational, then E satisfies (E2).
In particular, if R is admissible, then E is good.

Proof. Using Theorem[I.24] this follows from Proposition[I.21}(c) and (d). Note that to prove
property for elements «, 5 € I'¢ which are different in all components in ['¢, for some
m € Max(R) we need to apply (EI) in I's,. O

1.3 Value semigroups and completion

For some results in this section we refer to [KST17], as the proofs are not original work of the
author.

The compatibility of value semigroup ideals with completion is due to D’ Anna (see [D’A97,
§1]). We give results including the semilocal case.

In the following, = stands for the completion at the Jacobson radical of R.

Lemma 1.26. With R also R is a one-dimensional semilocal Cohen—Macaulay ring.

Proof. By LemmalA.T6|(e]), we can reduce to the local case. Then the claim follows from [BH93|
Corollary 2.1.8]. 0

Theorem 1.27. Let R be a one-dimensional local Cohen—Macaulay ring with total ring of
fractions Q. Then there is a bijection (see Lemma

’BR — Q]ﬁ
Vi VR
W n QR — W.
In particular, my R = my, ifvV—Ww.
Proof. See [KST17, Theorem 3.3.2]. OJ

Corollary 1.28. Let R = (R,m) be a one-dimensional local Cohen—-Macaulay ring. Then
R=TRR. In particular, R=R if R is finite over R.

Proof. From Lemma , R is also a one-dimensional Cohen-Macaulay ring. Then by The-
orem R= Nwey~ W and and R = Nyey, V, by Theorem [1.27{W € Uz} = (VR |
V € Yg} and by Lemma (d) intersection commutes with completion. Hence we can write

R=N W= (V}?):(ﬂ V)f%:RR

WG‘B;%\ Velr Velr

If R is finite over R, then by Lemma (i) RR = ﬁ (see also [KV04, Chapter II, Theorem
(3.19).(3)]), and hence the claim. L]
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1. Value semigroups of rings and their ideals

Let R be a one-dimensional local Cohen—Macaulay ring. By Theorem there is an order
preserving group homomorphism

I %= 11 %
Velr WE%E

(Ev)ven, — (50—1(W)§)WEQ]§

. K,
mapping (mfY )y ex, — (myy )

Diagram (T.2) for R and R (see Lemma|1.26)), it fits into a commutative diagram

wew-~, which is an isomorphism with (B.3). Combined with

R (1.9)

Ry = II % ~ AL

3
Il
<
m
=
Il ®
Il

where n: € — &£ R and n~t: F N Qg < F. The homomorphisms 1 and n~* are well-defined
due to Lemma[A.T6](b) and (c).

The following lemma relates value semigroup ideals to jumps in the filtration induced by QO°
(see also [[CDK94, Remark (4.3)]).

Lemma 1.29. Let R be a one-dimensional analytically reduced local Cohen—Macaulay ring
with large residue fields. Let o € Z°F. Then the following are equivalent:

(i) a €lg;
(ii) E>/EFeV £ (0 for any V € Vg, where ey is an element of the canonical base of NV&,
If R is residually rational, then {g(E“/E*TeV) < 1 forany V € Y.

Proof. Assume « € I'¢. Then there exists x € £™8 such that v(z) = o < a + ey for any
V € Yr. Then z € £*\ £*T°V, and hence £~/ETeV # (.

Conversely, assume £*/E*TV £ (. Then by definition of £ (see Definition and by
Lemma[1.9/(d), £* € M. Since R is a Marot ring by Lemma [B.2] £ is generated by regular
elements. Thus there is an x € £*\ £*T®V C & such that o + ey > v(zy) > «. Since
['¢ satisfies property by Proposition [I.21}(c), there exists an element z € £ such that
v(z) = min{r(zy) | V € Yr} = a. Hence a € Tg.

Let us prove now the second statement. By Diagram (1.2)), the map v is surjective, so that
there exists = € Q';® such that v/(z) = «. Then Lemma[1.9](c) yields Q* = 2R and Q° = R. By
Lemma[l.9@ Q° = Nycy,m{¥ = my N R and by Theorem [1.3/(d), R/(my N R) = V/my.
Thus there is an isomorphism

gejeotev C Q/Qtev « 2 QV/Q% = R/(my N R) = V/my
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1.3. Value semigroups and completion

for any V' € Up. If R is residually rational, then V/m,, = R/m, and hence
EY/EXTSY — R/m.
Thus (r(E*/ETeV) < lr(R/m) = 1. O
We obtain the following theorem:

Theorem 1.30. Let R be a one-dimensional analytically reduced semilocal Cohen—Macaulay
ring with large residue fields. Then

le =Tz

forany £ € Rp.

Proof. See [KST17, Theorem 3.3.5].
O

Remark 1.31. Let R be an analytically reduced one-dimensional local Cohen-Macaulay ring.
Then Lemma _ 6| gives R is a one-dimensional reduced local Cohen—Macaulay ring. By
Theorem [1.27}, U, is in one-to-one correspondence with U, and by Theorem 1.3 [1.3{d), V5 is in
one-to-one correspondence with MaX(R) Moreover, Corollary|1.28|yields Max(R) « Max(ﬁ),

and Lemma m@ gives MaX(R) <> Min(R). Since R, is a domain for any m € Max(R)
(see Proposition[I.2)) we get a sequence of bijections

Vp ¢ V= ¢ Max(R) < Max(R) <> Min(R) ¢ Min(R) > Min(R)

sending V' to g;;. If in addition R = R, then R /p is a one-dimensional local integrally closed
Cohen—Macaulay ring, and hence by Proposition [I.2] it is a discrete valuation domain. By
Theorem |1 @ then it has to be V/I;; = R/p with p = I, N R. Moreover, vy = Vg7 © TV,

where 7y : QR — Qrjpy = Qr/Iv (see Theorem [1.3] .@) for any p € Min(R). Since R
is complete, it is reduced, and therefore by Lemma [I.22](a) we can write ()i as a product:

Qr = Ilpeminr) @r/p = Ilvew, @r/(1ynr)- Thus, the map
(Vi vesn: Qr — Z3F

yields the same semigroup as in Definition This approach is often used in the literature (see
(KW84, DdIMSE7, DdIMSS, D’ A97]).
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Good semigroups and their ideals

Our interest in this chapter is the class of objects which contains value semigroups and their
ideals, i.e. good semigroups and good semigroup ideals. If S is a good semigroup, the set
Small(S) of small elements of S, that is, elements of S which are smaller or equal to the
conductor with the usual partial order, determines the semigroup. A similar statement is true for
any I good semigroup ideal of S. We will see in the next chapter that this property can be used
to define a good system of generators. Another interesting property satisfied by good semigroups
and their ideals is the fact that the distance between two elements is well-defined, i.e. it doesn’t
change following different paths. This allows to define a concept of distance d(F'\ F) between
two good semigroup ideals £ C F'. We give a proof of the fact that this distance detects equality,
that is, d(E'\F') = 0 is equivalent to £ = F'. Not only, but in case £ := I'¢ and F' := I'# for
some &, F € Ry and some admissible ring R,

(r(F/E) = d(L'r\I¢).

In particular, if £ C F, then £ = F if and only if £ = F.
The contents of this chapter are partly contained in [KST17] and partly in [DGSMT17].

2.1 Good properties

Let S be a cancellative commutative monoid. Then S embeds into its (free abelian) group of
differences Dg (see Definition|1.16). If S is partially ordered, then Dg carries a natural induced
partial order.

Definition 2.1. Let S be a partially ordered cancellative commutative monoid such that o > 0
for any a € S. We always consider S # (). Let S be of finite rank. Then Dy is generated by a
finite set I such that the isomorphism Dg = Z! preserves the natural partial orders. Note that [
is unique and contains only positive elements by Lemma[1.20] If |I| = 1, such an S is called
numerical semigroup. We set

?::{aeDs\a20}§NI.

We call S a good semigroup if properties (EO), and (E2) hold for E' = S (see also Definition
1.19). If O is the only element of S with a zero component in Dg, then we call S local.

Definition 2.2. A semigroup ideal of a good semigroup .S is a subset £/ C Dg such that

E+SCE.
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2. Good semigroups and their ideals

We always require that it is finitely generated, that is there exists a € Dg such that
a+ECS.

If E satisfies (ET), then its minimum is denoted by

pP = min E.

If £ satisfies (EI)) and (E2), then we call E a good semigroup ideal of S. The following lemma
clarifies why we do not require (EQ).

Notation 2.3. The set of good semigroup ideals of S is denoted by & .
Lemma 2.4. Let S be a good semigroup.
(a) Any semigroup ideal E of S satisfies property (E0).

(b) If S C 8" C S are good semigroups, then Dg: = Dg and hence S' = S. It follows that
Bg C Bg. In particular, S" € Gg.

(c) For any semigroup ideal E of S satisfying (E1)), u¥ = 0 is equivalentto S C E C S.

(d) Let R be an admissible (local) ring. Then S := 'y is a good (local) semigroup, and
I'e € Bg forany £ € Ry

Proof. (a) Since S satisfies (EQ), there is an o € Dz suchthat a+S C S. Then f+a+S C
f+SCE+SCEforany e E.

(b) Let E € &g. Then E C Dgy = Dgand E+S C E+ S’ C E. Moreover, a+E C S" =
S. Hence E is a finitely generated semigroup ideal of S. To prove that it is a good semigroup
ideal, consider first property (EQ). If E satisfies it for S, as S = S’, E satisfies it for S too.
Property (ET) does not depend on the semigroup, and the same holds for property (E2). Hence
Ec®5. AsS' +SC S and S C 5 =8, 5 is also a semigroup ideal of S, and as it is a good
semigroup, it belongs to &.

() f u# =0,then S =0+S =puf+S5S C E,anda > pP = 0 forall « € F implies
E C S. Conversely, if S C E C S, then 0 = p > pf > p% = 0.

(d) By Proposition [1.10]if R is local I'g is local too. Then the statement follows from

Proposition [[.21] and Corollary [I.25]
[

Lemma 2.5. Let S be a good semigroup, o € Dg and E, E', F, F' be semigroup ideals of S.
Then

(a) Forany F € 65, E — S = E.

(b) If E € s, a+ E € &g.

(c) (a+E)—F=a+(E-F)=E—(—a+F).

(d) For any two inclusions E C E'and FF C F', wehave E — F' CE—-F CE — F.

Proof. (a) As £+ S C E by definition of semigroup ideal, clearly £ C E' — S. On the
other hand, if &« € Dg is such that « + S C FE, then in particular« + 0 = a € F.
(b) If E satisfies (EQ),(ETI)) and (E2), then o + E satisfies them too.
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2.1. Good properties

© (a+E)—F={peDs|B+FCa+FE}={yeDs|yv+a+FCE}
=a+{v€Ds|y+FCE}=a+(F-F)={8€Ds|f—a+FCE}=FE—(—a+F).

d E-F ={a€Ds|la+F CE}C{a€Ds|a+FCE}=FE—-F
Clae€eDs|a+FCFE}=FE—-F O

Although & g is neither a monoid nor closed under difference (see Remark|1.17])), the following
result gives some positive properties.

Lemma 2.6. For any two semigroup ideals E and F of S also E — F' is a semigroup ideal of S.
If E satisfies (EI)), so does E — F, and C, € 5N Gx.

Proof. See [KST1/7, Lemma 4.1.4]. O

Remark 2.77. Observe that for two semigroup ideals E and F' of a good semigroup S satisfying
(EI), the sum E + F does not even need to satisfy (ET).
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Definition 2.8. Let £/ and F' be semigroup ideals of a good semigroup S. We write
E—-F:={ae€Dg|a+FCFLE},

and we call
Cp=E—-S={a€Dsg|a+SCE}

the conductor (semigroup) ideal of E. We set C' := Cs.

Definition 2.9. Let S be a good semigroup, and let E be a semigroup ideal of .S satisfying (ET).
Then
vE = % =min{a € Dg | a+ S C E}.

is called the conductor of E. Equivalently (see Lemma[2.6),

We abbreviate 77 := v¥ — 1,y := % and 7 := 7°, where 1 = (1,...,1) € Dsg.
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2. Good semigroups and their ideals

Figure 2.1: Let E be the semigroup ideal in Example The following figure illustrates the conductor
of I.

Lemma 2.10. Let E and F be semigroup ideals of a good semigroup S satisfying property (ETJ.
Then vF=1 = ~% — iF,

Proof. See [KST17, Lemma 4.1.9]. O

The following result decomposes good semigroups and their ideals into local components as
we proved already for value semigroups in Theorem (1.24

Theorem 2.11. Every good semigroup S decomposes uniquely as a direct product

S=1[ su.

meM

of good local semigroups S,,, where {1, | m € M?} is a partition of 1. Every semigroup ideal
E of S satisfying (EI) decomposes as

E= ][ E.

meM

where E;_ is the image of E C Dg = Z! under projection to Ds, = ZIm. In particular, if
E € &g, then E,, € &g, foranym € M.
Let R be an admissible ring. Then there is a bijection ¢: Max(R) — M such that

(Te)pm) = e,
for any £ € Rpg.

Proof. In [BDF0OOa, Theorem 2.5] they prove that every good semigroup is a direct product of
good local semigroups, and such representation is unique (see [BDF0Oa, Remark 2.6]). Moreover,
by [BDF0Oa, Proposition 2.12], the representation of S as product of good local semigroups
induces a representation of every semigroup ideal satisfying as a product. If R is an
admissible ring, by Proposition I'g,, 1s a local semigroup. Hence, the unique decomposition
given by Theorem ie. I'p = [lnemax(r) 'R, has to coincide with the decomposition
[Tmenrs(TR) 1, up to a rearrangement of the coordinates (see Lemma|[1.20). Thus for any £ € R
there is a bijection p: Max(R) — M such that

(Fe)pm) = e, [l

The following objects were introduced by Delgado [DAIMS7, IDAIMS&S]] to investigate the
Gorenstein symmetry. They measure jumps in the fitration Q“ (see Definition [I.8) from the
proof of Theorem [[.30] (see [CDK94, Remark 4.6]).

Definition 2.12. Let S be a good semigroup, and £ a semigroup ideal of S. Let « € Dg and
J C I. We define:
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2.2. Small elements

(@ Aj(o):={fe€Dg|a;=pforje Janda; < f;fori eI\ J}
If J = {i}, then A () =: A;(av).

b) Asj(a):={B€Ds|aj=pforje Janda; < B;foriel\ J}.
If J = {i}, then A () =: Aj(a).

(©) A(@) := User Ai(a), and AF(a) := A(a) N E.
(d) Aa) := Uses Ai(a).
Notice that A;(a) = Ar(a) = a.

Figure 2.2: The figure gives an example of the sets A in Z2.

We provide now some technical preliminaries which will be used later. The statement of the
following lemma was proved in [DdIMS88|, Corollary 1.9] in case £ = S.

Lemma 2.13. Let S be a good semigroup. Then AF(7F) = () for any E € &g.

Proof. See [KST17, Lemma 4.1.8]. O

2.2 Small elements

From now on we assume |/| = s and we fix an order preserving isomorphism Dg = Z°.
Let S C N* be a good semigroup and let ¥ € &g. The set of small elements is defined as

Small(E) :={a € E | a <"}.
In particular, if £ = S, we have
Small(S) :={a € S| a <~}

Clearly, v* € Small(E) for any E.
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2. Good semigroups and their ideals

Figure 2.3: Let S be the good semigroup {(0,0)} U {(2, 1) + N?}. The figure illustrates the set of small
elements of a good semigroup ideal E of S.

Notation 2.14. Let J C I. Then we denote
H;={(ay,...,a5) e N* |y =0forie I\ J}.

In particular, when J = {j}, H; coincides with the j-th semiaxes.

Notation 2.15. Let S be a good semigroup and let F be a good semigroup. Let ) # J C I.
(1) 0;(E) = {a € Small(E) | o; =~ forany j € J}.

(2) O(E) = Upzscr 0(E).

Figure 2.4: The following figure illustrates the notation O(E), for E as in Figure

Notice that
(OZ+HJ) :{BGZS | Bj ZO&ijI‘jE J,ﬂi:OzifOI'Z'EI\J}:ZI\J(CY).

The following Lemma was proven in case £ = S in [DdIM88| Lemma 1.8]. It can be found
in a slightly different fashion in [KST17, Lemma 4.1.7].

Lemma 2.16. Let S be a good semigroup and let E € GSIs. Let o € E. If a € 0;(F) for
some J C I, thena+ H; C E.

Proof. Choose 6 € o+ H ;. Then 6 € Z*° with

6j2ajzvfforanyj€(],
d; =«;foranyi e I\ J

by definition of H; and 0;(F).
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2.2. Small elements

Let us now choose a 5 € Z° such that

p; = aj forany j € J,
B; > max{yF, o;} foranyi € I\ J.

Then 3 > ¥, and hence 3 € E. Now applying property (E2) to o and 3 we obtain for any
j € Jando € E with o > a + e;. Therefore, repeating the process substituting o with o’ and
taking again a 8 with the above properties, we obtain an element @ such that

(n)
J
a; = min{3;, max{7”, a;}} = max{y”, a;} > d; foranyi € I\ J.

a; > o’ > ojforany j € J,

For n big enough, we can suppose @ > 4.
Pick € € Z° such that

€ =0; > %E forany j € J,
¢; > max{y”, 0;} foranyi € I\ J.
In particular, ¢ > v¥, and hence ¢ € E. Thus, 6 = min{e, a} € F since E satisfies (EI). [
Once we know ¥ and Small(E) we can easily check membership to E.

Proposition 2.17. Let S be a good semigroup and E € &g. Let « € N°. Then o € E if and
only if min{c, v*} € Small(E).

Proof. First, there are the two easy cases. If a > ¥, then clearly o € E, by definition of
conductor. On the other hand, if @ < ¥ then a = min{a, v} € Small(E) implies o € E. If
none of the two is the case, then let 3 = min{a,y*}. Then 3 € 9;(E) for some J C I and
a € f+ H;. By Lemma[2.16] we have o € E. N

From this follows that a good semigroup is fully determined by its small elements.

Corollary 2.18. Let S and S’ be two good semigroups. Then S = S’ if and only if v° = v%' and
Small(S) = Small(5").

The same is true for good semigroup ideals.

Corollary 2.19. Let S be a good semigroup and E, E' € &g. Then E = E' if and only if
¥ = vF" and Small(E) = Small(E").

As a consequence, we can see a good semigroup ideal as the union of its small elements,
its conductor, and then a finite number of quadrants starting from points that have at least one
coordinate equal to the conductor:

E=SmallE)U("+N)uU | (a+Hy). (2.1)
aG(‘)J(E),Jg]

Notice that this notation is redundant, since if J' C J C [ and a € 0,(E), then a € 0;/(E).
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2. Good semigroups and their ideals

2.3 Length and distance

As a combinatorial counterpart of the relative length of two fractional ideals, we describe the
distance of two good semigroup ideals.

Definition 2.20. Let S be a good semigroup, and let £ C 7Z° be a subset. Let o, § € F with
a < (. Then « and 3 are consecutive in E if a < § < [ implies 6 ¢ FE for any § € Z°.
A chain
a=a%<...<aW=p (2.2)

with oY) € F is said to be saturated of length n if o and a"*!) are consecutive in E for any
ie{0,...,n—1}.

Let us now consider the following property of a subset & C Z°:

(E4) For fixed and comparable «, 5 € F, any two saturated chains (2.2)) in £ have the same
length n.

Definition 2.21. Let S be a good semigroup and F a semigroup ideal satisfying (E4). Assume
there is a saturated chain of length n between o and § with o < g € F. We call

dg(a, B) :==n
the distance of a and 3 in E.
Proposition 2.22. Let S be a good semigroup. Then any E € & satisfies property (E4).
Proof. See [D’A97, Proposition 2.3]. [

Definition 2.23. Let S be a good semigroup, and let £ C F' be two semigroup ideals of S
satisfying properties and (E4). Then we call

d(F\E) := dp(u",7") — dg(u”,7")
the distance between E and F'.

Example 2.24. In this example the figures illustrate a good semigroup ideal £, contained in the
good semigroup S. The red points indicate chains of consecutive points in S (resp. F), going
from 0 = p° to v¥ (resp. from p” to ).

S

Then
d(S\E) = ds(0,7") —dp(p” ") =4—-2=2.

Remark 2.25. Let S be a good semigroup and let £ C F be two semigroup ideals satisfying
properties and (E4).
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2.3. Length and distance

(a) By (2.2), dg is additive with respect to composition of chains.
(b) forany o, € F with a < (3, we have dg(«, ) < dp(a, 5).
(c) d(F\E) =d(a+ F\a+ E) forany o € Z'.

(d) Using notations from Theorem [2.11]

d(F\E) = }_ d(F1,\Er,).

meM

See [BDFOOa, Proposition 2.12.(iii1)].

(e) If e > ~F, then

d(F\E) = dp(n",~+") — dg(u®,7")
= dp(p",7") + dp(v", €) — dp(n”,~+") — dp(v" . €)
= dF(:LLFv 6) - dE(:U’Ev 6)

by additivity of d(—, —) and since dp(v¥, €) = dg(v¥, €).

In the following, we collect the main properties of the distance function d(—\—). We begin
with additivity.

Lemma 2.26. Let E C ' C G be semigroup ideals of a good semigroup S satisfying properties

(ET) and (E4)). Then
d(G\E) = d(G\F) + d(F\E).

Proof. This can be seen using Remark [2.25](€), but it was already proven by D’Anna in [D’A97,
Proposition 2.7]. O

The following lemma is needed to prove that the distance function detects equality as
formulated in [D’A97, Proposition 2.8].

Lemma 2.27. Let & C F' be two semigroup ideals of a good semigroup S, where E € &g and
F satisfies property (EI)). Let « € F\E be minimal. Then any 3 € E maximal with § < « and
B € E minimal with o < 3" are consecutive in E.

Proof. Suppose < € < [’ for some ¢ € E. By maximality of § and minimality of ',
a £ € £ «, and hence min{a, e} < a. By property (EI) of F', min{a,e} € F. Thus
min{«, e} € F by minimality of « € F'\ E. Then it has to be § = min{«, €} by maximality of
B. In particular,

Bj=¢€ <a; <

for some j € I. As E € &g, we can apply property to 5,e € E. Thisyieldsan €’ € £
with 3; = ¢; < € and 8 < €. The element ¢’ may not be comparable with 3’. We may however
replace ¢ by min{¢’, 5’} € E using property (EI) of F, and keep the above properties. Moreover,
after this substitution, 3 < ¢’ < (’. Hence again by maximality of 5, § = min{«, ¢'}. But this
is a contradiction since 3; < a; and 3; < €;. Thus 3 and 3’ must be consecutive. [

Proposition 2.28. Let S be a good semigroup, and let E, F € &g with E C F. Then E = F if
and only if d(F\E) = 0.
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2. Good semigroups and their ideals

Proof. For the non-trivial implication, assume that d(F\E) = 0but £ C F. As d(F\E) = 0,
by Definition dp(pf,~F) = dp(pf',+F). Since E C F, " < u. Then Remark [2.25](a)
yields

dp(p®, ") = dp(p", 1) + dp(p®,7") > de(p", 1%) + dp(u®, 7).

Thus dp(u, u¥) < 0 and p¥ = p¥. Pick o € F\F minimal. In particular, u¥ < o < +¥.
In fact, assume that o £ ~v*. Then applying property of F to awand v¥ yieldsa § € F
with § < a,d < 7F, and hence § € E by minimality of «. But then there is an i € I such that
6 = < oy, sothat§ € 9;(E) and o € 6+ H;. Then Lemma[2.16|implies o € E, contradicting
the assumption on .

By Lemma there are 3, 5 € E which are consecutive in F but not in /' such that
pf < B < a< B <~F. Since F satisfies property (E4) (see Proposition and & C F, by
additivity of the distance we obtain

dp(p®, ") = dp(u®, 8) + de(8, 5') + dE(ﬁ ")
< dp(p”, B) +dr(8,8) + dr(8',7")
= dp(p®,~7") = dp(p" ")
But dE(ﬂaﬂ,> = 1’ while dF(ﬂaﬂl) = dF(ﬂaoé) + dF(Oé?ﬂl) 2 2. Hence dE(:uEaﬂyE) <
dp(u*,+F), contradicting the assumptions. O

Finally, we show that the distance function coincides with the relative length of fractional
ideals when evaluated on their value semigroup ideals.

Proposition 2.29. Let R be an admissible ring. If £, F € R such that £ C F, then
(r(F/E) =d(I#\Te).

Proof. See [D’A97, Proposition 2.2] for part of the following proof in the local case. By
Corollary [1.25] £ := T'¢ and F' := I'z are good semigroup ideals of I'; and hence satisfy

property (E4) by Proposition [2.22]
Let t be the Jacobson radical of R. By Theorem [1.3](d), my N R Max(R) for any V €
Ur. Thus v C Nuemax(ry ™ € Nyvey, My and hence v(z) > (1,...,1) for any x € t by

equation (B-2). By Lemma Ce = xR for some x € Q'x%, and by Lemma[1.9/(B) and (d),
zR = Q"® and I'gu) = v(z) + N¥R. Hence C¢ = Q° for some ¢ € Z¥% with ¢ > ¥ It
follows that, for sufficiently large k € N, u*" + k- (1,...,1) > ¢ and so

F C ( N m’@) FoQuttebc g =c Cé

This turns F /£ into a module over the ring R /t*. The power of the Jacobian ideal can be written
t* = TlmeMax(r) M*. As any two maximal ideals are coprime, by [Mat89, Theorem 1.4] the ring
R/t* can be written as a product

R/¥= [ Rm'= T[] Ra/m'= ] R/t"n

meMax(R) meMax(R) meMax(R)

where R/mF = R, /m* as R/mF is already local (see proof of [Mat89, Thm. 8.15]). It follows
that /€ = [lnemax(r) (F /€ )m» and hence

(r(F/E) = Z CR (Fin/Em)-

meMax(R)
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2.3. Length and distance

Due to Theorem|(1.24} 'z = [Inemax(r) I 7,.- By Theorem this is equal to [,,ca;(T'#) 1, -
And the same holds for I'c. Thus, by Remark (), (r(F/E) = d(I's\I'¢) if and only if

Cr (Fu/En) = d((T£)r, \(Te)1, ). We may therefore assume that R is local.

Let o, 3 € E be consecutive in £. Then dg(«, 3) = 1 by definition. For any § € ZVr
witha < § < 3,6 ¢ E as a and 3 are consecutive, and hence ((£°/E°+v) = 0 for some
V € Ui by Lemma[1.29] If 6y = By for some W € Dy, then £ /EFtew C £9/gFew
and hence (R(E°/E0TeW) > (p(EP/EPTew) = 1 since 3 € E, again by Lemma|1.29, Since
(R(E°/E%%ev) = 0 for some V € Vg, it has to be dyy < By for some V € Ur. Thus by
additivity of length

(r(EXIEP) = > (R(E°/E7TV) = 1.
a<dé<f

By additivity of length and distance it follows that

dp(p )= > dp(e,B)= Y (R(E7/E%) = tr(e” /£

pP<a<p<e pP<a<p<e
«,3 consec. «, 3 consec.
€
= (r(£/E°),

Recall that Ce = Q° C £ C F,sothatCe = EN Q° = £ = F N Q° = F°. Hence, using
Remark [2.23] (€],

d(F\E) = dp(p",¢) — dp(u",¢)
= Lr(F/F) = Lr(E/E)
= (r(F/E) = Lr(E/E7) = lr(F/E). H

As a consequence, the value semigroup ideals detect equality of regular fractional ideals (as
stated already by D’ Anna in [D’A97, Corollary 2.5]).

Corollary 2.30. Let R be an admissible ring, and let £, F € Ry be such that £ C F. Then
E=FifandonlyifT¢ =T

Proof. Since £ C F, also I'¢ C I'» by Remark The equality £ = F holds if and only
if (r(F/E) = 0. Due to Proposition this is true if and only if d(I'z\I's) = 0 which, by
Propositions [2.28| is equivalent to I'x = I'¢. ]
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Good generating systems

An abelian semigroup A is finitely generated if there exists a finite set G = {ay,...,ay} of
elements of A such that each element of A is a sum of elements of G' (with repeated summands).
This is true if A is the image of the semigroup NV under a semigroup homomorphism.

Campillo, Delgado and Gusein-Zade in [CDGZ99] prove that plane curves have a value semi-
group which is w-finitely generated, and they give a correspondence between the w-generators
and the components of the exceptional divisor. For a reducible curve, they also find a minimal
set of generators. For non-plane curves, it is not known a correspondence between w-generators
of the value semigroup and objects related to the curve.

In [CDGZ99, Statement 1], the authors state without a proof that a semigroup is w-finitely
generated if and only if it is the image of a coordinate semigroup under a semigroup homomor-
phism NV — N¢.

If the statement is true, then it is not difficult to see that every good semigroup is w-generated.
However, even if so, it is not possible to choose a unique minimal system of generators. In fact,
one can define different systems of w-generators which are minimal with respect to inclusion.

For this reason we give a different definition of generating system. Taking advantage of
the fact that Small(.S) determines a good semigroup S, and analogously Small( F) determines
a good semigroup ideal F of S, we define good generating systems as sets of elements which
generate Small(.S) through sums and minima. Then Small(.S) (resp. Small(E)) is always a good
generating system of S (resp. F) according to our definition, but it does not need to be minimal.
We develop techniques to reduce any good generating system to a minimal one, and then we
show that, in case S is local, such minimal system of generators is unique for S (resp. for £).
This is part of a joint work with M. D’ Anna, P. Garcia-Sanchez and V. Micale [DGSMT17]]. All
the proofs are original work, as the author generalized results by D’ Anna, Garcia-Sanchez and
Micale in the two-dimensional case to any dimension.

3.1 Good generating systems of good semigroups
For a subset A of a monoid M, we denote by
(A) ={a1+---+a, | n€eNay,...,a, € A}

the submonoid of M generated by A.

Let s > 1. For a set G C N* let [G] be the smallest submonoid of N* containing G which
is closed under addition and minima (i.e. [G] D (G) and [G] satisfies (EI))). Such a [G] exists.
In fact, the set 4 = {submonoids of N* containing G which are closed under addition and
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3. Good generating systems

minima} O {N*} # () and, moreover, the intersection of submonoids of (N°, +) closed under
minima is again a submonoid of (N°, +) closed under minima. Thus [G] = N ¥ satisfies the
requirements.

Proposition 3.1. Let G C N°. Then

|G] = {min{g1,...,95} | g: € (G)}.

Proof. First of all, let us prove that
(G] = {min{g1,..., 9.} | n €N, g, € (G)}.

The inclusion {min{g,...,g,} | n € N, g; € (G)} C [G] is clear by definition of [G]. So let
g € [G] and assume

g= Zgi, with g; = min{h§i)}jeji.
Then, since for o, 5,7 € N*

min{a, 5} +7 = minfa + 7, 5+ 7}.

we have

r . r—2 .
g=> min{hﬁl)}jeﬁ =) min{hg'l)}jeji + min{hy U}jeJT_l + min{hgf)}j,ejr
i—1 i=1

r—2 .
=Y min{h;Z)}jeji + min{min{hgrfl) + h;-f)}j/EJr Yiedy
i=1

r—2 .
= Y min{A{"} e, + min{h 0+ 1Y e e,
=1

@ J(@)e;

Thus g € {min{g1,..., 9.} | n € N, g; € (G)}. Moreover, the intersection of submonoids of
(N*, +) closed under minima are again submonoids of (N*, +) closed under minima. Since the

minimum of two elements is taken component-wise, for any set A = {«;, ..., a,} in N°, the
minimum min A = min{ay, ..., a,} is the minimum of at most s elements of A. Hence the
claim. ]

Remark 3.2. Observe that [A] = [B] does not imply (A) = (B). In fact, let A = [A’] \ {m},
where A’ is a subset of N° and m is a smallest element of [A’] obtained as a minimum of other
elements. Consider B = [A’]. Then clearly [B] = [A] = [4/], but (A) = A C B = (B). The
following figure shows an example of this fact.

34



3.1. Good generating systems of good semigroups

A=A\ {m}

Notation 3.3. Given a d € N° and a set B C N°® we denote

Gls := {min{d, g} | [g € G]}
and
B(§) ={a e N° | a < §}.
We are interested in in finding out when [G] covers Small(,S) for a good semigroup S.

Definition 3.4. Let G C N*, and S a good semigroup with conductor . Then G is said to be a
good generating system for S' if

[G], U {0} = Small(S).

We say that G is minimal if no proper subset of GG is a good generating system of .S. In particular,

0¢G.

Remark 3.5. Let S be a good semigroup with conductor . Since [G], = [B(7)],, we can always
assume that good systems of generators are contained in B(v). In particular, [Small(S)], =
Small(.9), so that Small(S) is always a good generating system. Therefore a good generating
system always exists.

Taking Remark [3.5]into account, our goal is to remove redundant elements in Small(S) in
order to find a minimal system.
The following lemma is trivial, considering the definitions.

Lemma 3.6. Let S be a good semigroup. Let GG be a good generating system for S and let
a€G. Ifae |G\ {a}],, then G\ {a} is a good generating system for S.

We now give some technical lemmas o characterize elements belonging to [G] for some
G C N°.

Lemma 3.7. Let G C N° and o € N°. Then o € [G] if and only if Ai(a) N (G) # O for any
1€ 1.
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3. Good generating systems

Proof. Suppose a € [G]. If a € (G), then A;(a) N (G) > a forany i € I. So let us suppose
a € [G]\ (G). By Proposition [3.1| we know that « € [G] if and only if it is the minimum of s
elements of (G), {3®},c, and since we are assuming o € (G) we have a # 3@ for any i € I.

Since « is the minimum of the /s, we have a; < 5]@ for any j € I. Moreover, for any j € [

there exists an ¢; € I such that a; = BJ(-” ). This means that for any ¢ € [ there is an index j; with
3U) belonging to A;(«). In particular, for any i € I, 3U9) € A;(a) N (G).

Conversely, suppose A;(a) N (G) # O forany i € I. If o € (G) then of course a € [G].
Hence suppose a ¢ (G), and let 3@ € A;(a) N (G) for any i € I. Then clearly a =

min{3®};c;. Therefore a € [G]. O
Substituting [G] with [G]; we can be more precise.

Lemma 3.8. Let 0 € N° and G C B(0). Let « € B(9) \ {0} and let J be maximal (w.r:t.
inclusion) with the property o € A;(3) (J can also be empty). Then o € [Gls if and only if
Ai(a) N (G) #0 foranyi eI\ J.

Proof. Suppose a € [G]s. Then a = min{a’, §} for some o’ € [G]. By Lemma[3.7} A; (/) N
(G) # 0 for any i € I. From the assumptions we have o; = ¢, for j € J and o; < 0; for
i € I\ J. Therefore is has to be o, > a; for j € Jand o) = «; fori € I'\J. So Ay(of) C Ay(a)
foranyi € I\ J,and A;(a) N (G) # O foranyi € I\ J.

Conversely, suppose A;(a) N (G) # () forany i € I\ J. Let 8% € A;(a) N (G). Then
o = min{5, {6(1)}161\J} S [G](; L]

3.1.1 The local case

From now on we will assume S to be a good local semigroup, i.e. zero is the only element with
zero components (see Definition [2.1)). Theorem [2.11]tells us that every good semigroup can be
decomposed uniquely as a product of good local semigroups. We will observe later how we can
use this decomposition to generalize our results to non-local good semigroups.

Lemma 3.9. Let S be a good local semigroup. Let G C Small(S) be a good generating system
for S and let o # 3 € Z° be such that o € A;(5) N (G) for some i € I. Then o € (G \ {B}).

Proof. Assume
a:5+6(1)+...+5(l)

for some ¥) € G C S. As o; = 3;, we have
S A O

Since 5®*) > 0, this implies Bfk) = 0forany k € {1,...,l}. But a # 3, so there exists k such
that 3%) = 0. This is a contradiction to S being local. Hence the claim. [

The following lemma will be used to prove Theorem [3.12]

Lemma 3.10. Lez S be a good local semigroup. Let G be a good generating system for S and
a € G\ O(S). Assume G C Small(S). If there exists § € A(a) N (G \ {a}), then G\ {a}isa
good generating system for S.
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3.1. Good generating systems of good semigroups

Proof. Since a € G'\ 9(S) C Small(S) \ 9(5), we have o; < ; forany i € [. If a = < v,
then we are done, since then clearly a € [G \ {a}],.

So let us suppose a # 3. Since 3 € A(a), there exists an i € I such that 3; = a;. Then,
applying (E2)), one can finda d € S\ {«, 8} such that & = min{f, d}.

Eventually substituting ¢ with min{éd,y} we can assume § € Small(S) = [G],. Since
a & 0(S) after this substitution we still have 0 # « # 3.

By Proposition we can write

6 = min{y, {6 },c;}, with 69 € (G).

Asé # aand o < 6 < 6%, we also have a # 6@ for any i € I. Let J C I be the maximal set
of indices such that § € A ;(«) (which implies 3 € Zl\ s(a)). Then for any j € J there exists

an i; € I such that 5575) = 0; = a;. Hence for any j € J, §%) € Aj(a) and moreover

o = min{B, {(5},0.).
Now ' B
00 € Aj(a) N {(G)
but §(5) # a. Thus by Lemma 3.9} for any j € .J,

0 € (G \{a})

and a = min{3, {6 },c;} € [G\ {a}],. =

Remark 3.11. Let S be a good local semigroup. Let G be a good generating system such that
G # {~}. Then G contains an element o with v > « > 0. Thus there is a positive integer k such
that v < ka. Hence v € [G],. Therefore, we can always assume v & G.

Due to Remark [3.11] unless G = {~}, from now on we always assume v ¢ G.
The next theorem provides a characterization of good minimal generating systems for good
local semigroups.

Theorem 3.12. Let S # () be a good local semigroup and let G be a good generating system
for S. For a € G, let J, be the maximal set of indices (w.r.t. inclusion) with the property
a € 0y,(95). Then G is a minimal good generating system if and only if for any o € G

g — JA@ NG\ {a}) if Jo =10
Ap(a) N {G\{a}) for some k € I\ J, if Jo # 0.

Proof. In order to simplify notation, if there is no possible misunderstanding with «, let us write
J instead of J,.

Necessity. Assume that G is a minimal good generating system for S and let « € G. If J = 0,
that is, « € G \ 9(S), then the claim follows by Lemma[3.10} Now assume that .J is not empty
and that for any ¢ € I \ J there exists an

o € Ay(a) N (G {a}).

Then ,
o = min{% {Oé(l)}ie]\J}y

and consequently o € [G \ {a}],, which is a contradiction.
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3. Good generating systems

Sufficiency. If G = {a}, then G is minimal. Assume therefore |G| > 2 and G not minimal.
Then there exist an o € G such that a € [G'\ {a}],. By Proposition there exist {aV};¢; C
(G \ {a}) such that

o = min{y, {O‘(i)}iel}'
Since S is local, « is a positive element in N°®. Let J be the set of indexes maximal with the
property a € 9;(5). Then o < 7 forany k € I\ J. Hence for any k € I\ J there is an
ir with o\ = oy and o) > q, ie. o) € Ay(a) N (G \ {a}) forany k € I\ J. Thisisa
contradiction. [

Minimal good generating systems are unique for good local semigroups.

Theorem 3.13. Let S be a good local semigroup. Then S has a unique minimal good generating
system.

Proof. Let v be the conductor of S. Let A and B be two minimal good generating systems for S,
and let 3 be minimal in (AU B) \ (A N B). Without loss of generality, we can assume € B.
Let us prove that

B & {min{y,a} | a € (A)}. 3.1)

Assume there are {aV}; C A with 8 = min{y, >, «¥}. The sum has more than one term.
Otherwise, f = min{y,aM} = a(!) € A which is a contradiction to 3 ¢ A. In particular,
al) #£ Bforany I. As o) < 3,0 and oV < +, we have ¥ < min{y,>,a¥} = 3.
Together with the considerations above, this gives oY) < /3 for any . But then oY) € B for any [
by minimality of 5 and thus § € [B \ {{}],, which contradicts the minimality of B. Thus we

obtain (3.1).
Let now J C I be maximal (possibly empty) such that 5 € 9,(S). As § € B C [A],, by
Lemmathere exist {¢V};cp s € (A) such that

€D e Ay(B)N (A) foranyi € I\ J

such that 4 ‘
B = min{y, {e”}icn s} with e = g foriel \ J.

As € do not need to be in [B],, let us consider (V) = min{~, ¢} forany i € I \ J. Then
¢ e Ay(B) N {min{y,a} | o € (A)} foranyi e I\ J

and
3 = min{y, {¢D}ien s} with ¢7 = g, fori e I\ J. (3.2)

Let K; C I be the maximal set of indices such that () € Ok, (S) forany i € I\ J. As
¢® € [A], = [B],, again by Lemmathere exist {60} ;c\x, € (B) such that

60D € A; (¢ N (B) forany j € T\ K;

such that A N o .
¢ = min{y, {6} jen i} with 6 = (Y for j € I\ K.

forany i € I\ J. Since (" = ; < ~; and hence i € K, forany i € I \ J, and §(:) > () > 3
forany j € I\ K;andanyi € I\ J, foranyi € I\ J there exists j; such that 57 = ¢”). Thus

007 € Ai(¢W) N (B) € Ai(B) N (B).
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3.1. Good generating systems of good semigroups

So by (3.2) we can write
B = min{y, {609}, p s} with 609 = 3, fori e I'\ J.
By Theorem [3.12] this implies that there exists ai € I \ J such that

0= 010 € (B)\ (B\ {5}).

This means § = §+n, with n € (B). Since 6; = (;, ; = 0. But S is local, and this forces 7 = 0.
So 6 = $. But by B.1)), () # $3, so in particular § > (¥ > /3. This is a contradiction. So the
claim is proved. 0

3.1.2 The non-local case

We already remarked that every good semigroup is a product of good local semigroups (see
Theorem[2.TT). The good generating system given by the product of the minimal good generating
systems of the single components is uniquely determined, but in general it will not be a minimal
generating system of the semigroup according to Definition [3.4]

Unfortunately, there is no analogous of Theorem [3.13]in the non-local case, as minimal good
generating systems of non-local semigroups do not need to be unique.

Example 3.14 ([DGSMT17, Example 8]). Let S be the numerical semigroup S := (3,5, 7), and
let 7" be the numerical semigroup 7" := (2, 5). Consider their cartesian product W = S x T'. It
is easy to verify that

Small(W) = {(0,0), (0,2), (0,4), (3,0), (3,2), (3,4), (5,0), (5,2), (5,4) }.

Then both
{(0,4),(3,2),(5,0)}
and

{(0,4),(3,4),(5,0),(5,2)}

are minimal good generating systems for .

3.1.3 Good semigroups as semirings

In [[CHI17]], the authors show that value semigroups of algebroid curves determine (and are
determined) by semirings, called semiring of values, which are finitely generated.

While their discussion makes use of the algebraic structure coming from the algebroid curve,
and hence is particular to the case of value semigroups, we want to show that the "closure" of a
good semigroup is always finitely generated as semiring.

In the following we will use the following concept of semiring.

Definition 3.15. A semiring with respect to the operations min and + is aset T'C (NU {o0})?
equipped with two binary operations:

min{«, 8} = (min{ay, f1},...,min{as, Bs}) € T forany a, € (NU {o0})*
where min{n, co} = n for any n € N, and

a+ = (o +p,...,as+ ) € Tforany o, f € (NU {oo})’
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3. Good generating systems

where n+o00 = oo forany n € N. Then (R, min) is a commutative monoid with identity element
0 := (00,...,00), and (T, +) is a commutative monoid with identity element 0. Moreover, +
distributes over min, i.e.

a+ min{s,v} = min{f, v} + a = min{a + B, a + v}

A semiring T is finitely generated if there exists a finite set G C (N U {co})® such that for any
aeT

a:min{Zalgg,...,ngg} (3.3)

geG geG
with a;, € Nand r < s (see Proposition 3.1)).

Notation 3.16. We denote:
Ny := NU {oc}.

Definition 3.17. For a semiring 7" as in Definition consider the following property:

(E2) Forany o, f € T and j € I such that a; = 3; there exists an ¢ € F such that ¢; > a; = 3;
ore; = o = 3; = oo and ¢; > min{ey, 5;} forany ¢ € I\ {j} with equality if o; # ;.

Definition 3.18. Let S be a good semigroup. For any « € 9,(5), let & be such that
aj=ooforany j € Jand &; = o; forany i € I\ J.

Then the closure of S'is .
S:=Su{a|aecd;(9)}.

It is clear that S is a semiring according to Definition [3.15] and in particular it satisfies

property .

We want to show that S is a finitely generated semiring.

In the following we give results analogous to the ones given in [[CH17], translating their
operations in the value semigroup of a curve to operations on good semigroups. For this reason,
we keep notations and definitions similar to their.

We will use the following notations:

e forany a € S , we denote
I,={iel|a; # oo}

e M =5)\1{0}.
e forany o, 3 € S with a; = f3; for some i € I,
é(;‘(a,ﬁ) = {C S S | CZ > oy = BZ OI'CZ‘ = o = OO,gj > min{ozj,ﬁj} forj S I\{Z}}
o S;:=m(S).
e Q' =m({a€S|aj=ocoforanyje I\ {i}}).

Definition 3.19. Let S be a good semigroups, and let () ## G C M. We call G-sum an element
of S of the type
nG :=n(G) = > n,g, where n € N.

geG
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3.1. Good generating systems of good semigroups

Observe that, in our notation, a G-sum is just an element belonging to (G).

Definition 3.20. Let S be a good semigroup, o € S\ {oc},and k € . Letalso G C M. We
say that 3 € S'is a k-reduction of o modulo G if there exists a G-sum nG such that

ar = nGyg and o; < nG; forany i € I\ {k},
and § € E2;(«, nG). In particular,
Br > ay and 5; > min{«a;, nG;} = «; forany i € I\ {k}

where the equality holds if «; # nG;. We say that g is a reduction of a modulo G if ( is a
k-reduction of o modulo G for some k € 1,,.

Remark 3.21. If a; = oo for any i € I \ {k} and « has a reduction modulo G, then [, = {k}
and the reduction has to be a k-reduction. Then there exists nG such that o, = nGj and
oo = a; < nG;foranyi € I\ {k}. Hence nGG; = oo forany i € I \ {k}, and a = nG.

Definition 3.22. Let S be a good semigroup and G C M. We say that G is a standard basis for
S if forany a € S\ {0}, o has a reduction modulo G.

Proposition 3.23. Let S be a good semigroup and let G be a non-empty and finite subset of
M \ {x}. The following are equivalent:

(i) Every o € S\ {o0} has a k-reduction modulo G for any k € 1,;
(ii) Every o € S\ {co} has a reduction modulo G.

Proof. Clearly (i) implies (ii). Hence let us prove the converse. Let a € S\ {o0}, and k € I,,-
Let .J,, be the maximal subset of /,, \ {k} such that « has a j-reduction for any j € .J, and assume
J # (. Let /3 be obtained from « via a finite chain of reductions modulo G. For any j € J,,
we can assume that either 3 has no j-reduction or v; < 3; < oo, where v is the conductor of
S. Note that § # oo because k ¢ J, and 3; = «a; for any i € I\ J, since an i-reduction of
B is an i-reduction of o. Then, by maximality of .J,, also 5 does not admit an ¢-reduction for
any i € I, \ J,. Let L C J, be minimal such that 3 does not admit an i-reduction for any
i€l,\L2DI,\ Jy Theny, < f5; < oo (otherwise k ¢ L by choice of 3 and L) for any | € L.
If L = (), then 3 does not have a reduction modulo G, which is a contradiction to G being a
standard basis, as 3 # oo. On the other hand, if L # (), since min{/3,v} € 9.(S), the definition
of S implies that there is BesS \{x} (k& Jsok ¢ L and 5, = oy, < o0) such that B = B
forany i € [\ L and 3, = oo for any [ € L. But then 3 does not admit a reduction modulo G,
which is a contradiction to GG being a standard basis. [

Corollary 3.24. Let G be a non-empty and finite subset of M \ {oc}. The following statements
are equivalent:

(i) G is a standard basis for S.

(ii) for any o € S\ {o0} and for some k € 1,, there exists a G-sum nG (which depends on
k), such that o; < nG; for any i € I and oy = nGy.

(iii) for any o € S\ {00} and for any k € 1., there exists a G-sum nG (which depends on k),
such that o; < nG; for any i € I and oy, = nGj.

Theorem 3.25. S admits a standard basis.

41



3. Good generating systems

Proof. Let
BOZ{OéeM|Oéi§’yiifiE]a}.

In our notations, By = Small(S). for any i € I, let B., B C S such that 7;(B!) and 7;(B') are
respectively standard bases for S; and for (, which can be computed because they are numerical
semigroups. Since m;(B!) is a standard basis of Q, we can assume «; = oo forany j € I \ {i}
for any o € BY. Setting B, = B; U B/, we want to show that G = U, B; is a standard basis
for S.Letav € S \ {x}. If a; < 7; for any ¢ € I, then there is a G-sum nG (more specifically
a By-sum) such that & = nG. If v, < ay, for some k € I, then o, € Q*. As the projections
of By, By are standard bases of Sk and Q" respectively, there exists a G-product nG (indeed, a
By -product B andaf € By with nG = B™ 3) such that oy, = nGy, and o; < nG; = oo for
any i € I\ {k}. By the above corollary, we conclude that G is a standard basis for S. O

Theorem 3.26. S is generated by G as semiring.

Proof. First of all, notice that 0 = Y, 0 - g = 0G. By Remark [3.21], for any a®) # 0 € Q,
there exists a G-sum such that & = n(k)G. Hence

0 =aV +a® = n(1)G +n(2)G = (n(1) +n(2))G.
Now, given o € M \ {oo}, by Corollary for any k € I, there is a G-sum n(k)G such that
ar = n(k)Gr and o; < n(k)G; forany i € I\ {k}.

In this way, for k& € I, we have
ay = IIGI}H{Q(Z)Gk}

Therefore
a = min{n(i)G}
that is, the semiring S is finitely generated by G. [

3.2 Good generating systems of good semigroup ideals

Let S be a good local semigroup. For a generic G C N* let {GG} be the smallest semigroup ideal
of S containing G which is closed under minimums (i.e. {G} 2 G + S and {G'} satisfies (ET)).

The proof of the following proposition is analogous as the proof of Proposition [3.1] (substitut-
ing “submonoids” with “semigroup ideals”).

Proposition 3.27. Let G C N°. Then
{G} ={min{g1,...,9:} | 9 € G+ S}.
Notation 3.28. Given a 0 € N° we denote
{G}s = {min{0, g} [ g € {G}}.

Definition 3.29. Let G C N*, and let S be a good semigroup. Let £ € &g with conductor vZ.
Then G is said to be a good generating system for E if

{G} e = Small(E).

We say that GG is minimal if no proper subset of GG is a good generating system of E.
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Since {G},z = {B(7")},#, we can always assume that good systems of generators are
contained in B(yF).

Remark 3.30. [G] is quite different from {G}. In fact, G = {0} is a good generating system for
S as good relative ideal of itself (i.e. {{0}}, = Small(.S)) but it is clearly not a good generating
system for S as a good semigroup.

Remark 3.31. Notice that with this definition we only consider relative ideals contained in N°.
However this is not restrictive, since by definition of relative ideal there is always an « such that
a+ F C S C N° Moreover, if we consider S to be local, we can consequently assume that the
relative ideal so generated does not have any element on the axes. An alternative would be to
consider £/ C Z° bounded from below.

The following are the exact equivalent of Lemmas[3.7|and [3.§]

Lemma 3.32. Let G C N* and o € N°. Then o € {G} if and only if Ai(a) N (G + S) # 0 for
anyt € 1.

Proof. Suppose a € {G}. If a € (G + S), then A;(a) N (G + S) > aforany i € I. So let
us suppose o € {G} \ (G + S). By Proposition we know that o € {G} if and only if it
is the minimum of s elements of (G + 5), {3 };c;, and since we are assuming o §Z (G +5)

we have a # 319 for any i € I. Since « is the minimum of the f3s, we have «; < B for any

J € 1. Moreover, for any j € I there exists an i; € I such that a; = 6( 7). This means that for
any ¢ € I there is an index ¢; with 3 () belonging to A;(«). In particular

BU) € Ay(a)N (G + 8).

forany i € I.

Conversely, suppose A;(a) N (G + S) # @ forany i € I. If o € (G + S) then of course
o € {G}. Hence suppose o ¢ (G + S), and let for any i € I, 3% € A;(a) N (G + S). Then
clearly o = min{ 3 },c;. Therefore o € {GY}. O

Substituting {G'} with {G}s we can be more precise.

Lemma 3.33. Let § € N* and G C B(9). Let o« € B(6) \ {0} and let J be maximal with the
property § € Aj(). Then o € {G}s if and only if Ai(a) N (G + S) # 0 foranyi € I\ J.

Proof. Suppose o € {G}s. Then a = min{c/,4d} for some o/ € {G}. By Lemma [3.32]
Ai(a/)N (G + S) # 0 for any i € I. From the assumptions we have o; = §; for j € J and
a; < 9; fori € I'\ J. Therefore is has to be o} > «; for j € J and o} = «; fori € I\ J. So
A;i(o) C Ay(a) forany i € I\ J,and so A;(a) N (G + S) # (@ foranyi eI\ J.

Conversely, suppose A;(a) N (G 4 S) # @ forany i € I\ J. Let 3% € A;(a) N (G + S).
Then o = min{4, {8V }icns} € {G}s. O

Remark 3.34. Let S be a good local semigroup. If £ € &g is generated by a good generating
system (5, and we suppose F C S, as remarked in then GG contains a positive element .
Then there is a positive integer & such that v < ka. Hence v¥ € {G}.=. We can then assume
that unless G = {v¥}, the conductor is never in a good generating system.

Taking into account Remark [3.34] from now on we assume that, unless If we assume this,
Lemma and Theorems [3.12]and can be rewritten as follows and the proof works in the
exact same way.
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3. Good generating systems

Lemma 3.35. Let S be a good local semigroup and E € Bg. Let G be a good generating system
for Eand o € G\ O(E). If there exists f € A(a) N (G \ {a} + ), then G\ {a} is a good

generating system for E.

Proof. Since a ¢ O(F) we have a < vF. If « = 3 < v¥, then we are done, since then clearly
a € {G\ {a}},e. Solet us suppose o # (3. By assumption we have G C Small(F) and
{G},z = Small(E). Since $ € A(«), there exists an ¢ € I such that 3; = ;. Then, applying
(E2), one canfindad € E \ {«, 5} such that

a =min{j,0}.

Eventually substituting § with min{d, v*} we can assume § € Small(E) = {G},&. Since
a ¢ O(F), after this substitution we still have § # « # .
By Proposition we can write

6 = min{y?, {0V }icr}, with 6@ € (G + 9).

Asd # aand o < § < 69, we also have o # 8 for any i € I. Let J C I be the maximal
set of indices such that 6 € A;(«), which implies 5 € Ap y(«). for any j € J there exists an

i; € I such that 5§ij) = §; = a;. Hence for any j € J, §@) € Aj(a) and moreover

a = min{f, {(S(ij)}jej}.
Since §(4) € (G + S), for any j € J we can write
5l — g(ij) + 5ia)
where ¢() € G and s(%) € S for any j € J. This yields
56 — g(ij) + (i) £ a
and :
(5](~Zj) = Oéj.
;ij) = «; and g% belongs to the axes, and

this is impossible since we assume the elements of G to be strictly positive; or g]@j ), sg-ij )
and 6() € (G \ {a} + 9); or, as S is local, s() = 0 and () = gj(-zj) € G\ {al.
Therefore 6%) € (G \ {a} + S) for any j € J and o = min{3, {6 },;c;} € {G\

{a}}ye. O

The following proof is the analogous to the proof of Theorem [3.12]

This implies one of the three following cases: either s

<Oéj

Theorem 3.36. Let S be a good local semigroup, E € &g and G a good positive generating
system for E. For a € G, let J, be the set of indices maximal with the property o € 05, (E) (Jq
can be empty). Then G is a minimal good generating system if and only if for any o € G

§ {A(am(G\{a}+s> if o =0

Ap(a) N (G\ {a} + S) forsomek € I\ J, if J, # 0.
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Proof. Assume G is a minimal good generating system for E. If J = (), i.e. « € G\ 9(F) and
Ai(a)N(G\{a}+8) #Dfori € I\ J, then A(a) N (G \ {a} + S) # 0 and Lemma[3.35]
gives directly a contradiction.

Therefore let a € 0,;(E) for some J (maximal), and suppose that for any i € I \ J there
exists an o' € A;(a) N (G \ {a} + S). Then a = min{y” a® | i € I\ J}, and consequently
a € {G \ {a}},=, which is a contradiction.

Let us now prove the converse. If G = {a}, then G is minimal. Suppose therefore |G| > 2
and G not minimal. Then there exist an a € G such that « € {G \ {a}},=. Since S is local,
is a positive element in N*. By Remark [3.34] it follows o # 7.

Let J be the maximal set such that « € 9;(E). Then a; < ~F forany j € I\ J. By

Proposition 3.1] there exist {a(?},c; C (G'\ {a} + S) such that

a = min{ny, {a(i)}iel}.

Hence for any j € I\ J there is i; with ozg-ij) = «a; and al%) > o. Then forany j € I\ J there

isan o) € Aj(a) N (G \ {a}) and this gives a contradiction. O

Theorem 3.37. Let S be a good local semigroup and E € &g. Then E has a unique minimal
good generating system.

Proof. Let ~¥ be the conductor of E. Let A and B be two minimal good generating systems for
E. Let  be minimal in (AU B) \ (A N B). Without loss of generality, we can assume 3 € B.

Let us prove that 5 € {min{y*,a + 0} | a + 6 € (A + S)}. Assume there are a« € A and
§ € Ssuch that 3 = min{y¥, a +§}. As3 & A, o # [ and hence § # 0. As a < o + § and
a < ~F, we have a < min{vE ,a + 0} = (. Together with the considerations above, this gives
a < (. But then o € B by minimality of 5 and thus 5 € {B \ {3} },=, which contradicts the
minimality of B. Thus

B¢ {min{y* a+6}|a+dsc(A+ S} (3.4)

Let now J C I be maximal such that 3 € J;(S) (J can also be empty). As 3 € B C {A}. =,
by Lemma [3.33] there exist . B
{6(1)}1'61\1 CA(B)N(A+S)
such that 4 4
5 = min{y?, {eD};en st with ) = g, fori e I'\ J.

As the ¢ do not need to be in { B}, let us consider () = min{y¥,e®} forany i € I\ J.
Then . -
{g(l)}ie[\J CA(B) N {min{y?, a+ 06} |a+de (A+S)}

and

B =min{7", {¢D}ien s} with ¢V = G fori € T\ J. (3.5)
Let K; C I be the maximum set of indices such that () € Ok, (S) forany i € I\ J. As
¢ e {A}, s = {B}, &, again by Lemma there exist

(6"} senm, € A;(¢)N(B+ )

such that } N .
¢ = min{ (609} jer e} with 67 = G for j € T\ K.
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3. Good generating systems

forany i € I\ J. Since Ci(i) =B <~F (e i¢g K)foranyi € I\ J,and 6@ > (@ > 3, for
any i € I\ J there exists j; such that

603 € Ay(¢YN(B+S) CA(B)N(B+S).
So by[3.2] we can write
8 = min{y?, {6@9)} ;e s} with 67 = B, fori € T\ J.
By Theorem this implies that there exists (at least) ai € I \ J such that
5:= 50 € (B+9)\ (B\ {8} +5).

This means 0 = 3 + 7, withn € S. Since §; = 3;, ; = 0. But .S is local, and this forces n = 0.
So § = 3. But by B3.1), () # B forany i € I\ J, so in particular § > ¢ > 3. This is a
contradiction. So the claim is proved. 0

3.3 Examples

While finding a minimal good generating system of a given semigroup is possible, we don’t
know how to characterize sets of data as good generating systems of good semigroups.

In fact, as the following examples show, not every set of elements with a whatever conductor
gives a good semigroup.

Example 3.38. Let G = {(3,3),(6,3)} and v = (9,9). Then [G], looks like:

o O
o O
o O
o O
o O
o O
o O
o O
o O

O O @€ O O O O O O
O O O O O O O O O
O O O O O O O O O
O O @€ O O e O O O
O O O O O O O O O
O O O O O O O O O
O O O O O @€ O O e

Condition (E2)) does not hold for (3, 3) and (6, 3).

Even if GG agrees with the conditions of Theorem [3.12] the resulting semigroup might not be
good.

Example 3.39 ([IDGSMT17, Example 7]). Let G = {(3,4), (7,8)} and v = (8, 10). Then [G], is

0O O 0 O O O O e
0O 0O 0O 0o 0o 0o o ©O
0O O 0O O O e e O
0O 0O 0O 0o 0o 0o o ©O
0O 0O 0O 0o 0o 0o o ©O
0O 0O 0O 0o 0o 0o o ©O
0O O @€ O O O O O
0O 0O O o O O o ©°o
0O 0O O o O O o ©°o
0O 0O O o O O o ©o
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Clearly, condition is again not satisfied.
For more examples see [DGSMT17, Examples 5,6].
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Duality

Let R be an admissible local ring with value semigroup S := I'g. A canonical semigroup ideal
K? of a good semigroup S was already defined by D’ Anna in [D”A97] in purely combinatoric
terms. In the same paper it was shown that fractional ideals of R are (normalized) canonical
ideals K if and only if their value semigroup ideal is I'x = K?2. In this chapter we give a more
general definition of canonical (semigroup) ideals of a good semigroup. Such canonical ideals
satisfy three equivalent definitions. One of them gives a duality on good semigroup ideals which
corresponds to the Cohen—Macaulay duality, i.e. if K is a canonical ideal of a good semigroup
S,then ¥ = K — (K — E) forany £ € B5. We only state the results regarding the equivalence
on these three conditions, as they are not original work of the author, but the proofs can be found
in [KST17]. Later, in Section 4.2, we show that value semigroup ideals are compatible with
dualizing in the sense that the following diagram commutes:

EkCE
Rp——— AR

SHFgJ l&—)l—‘g

Sr,

E—K-FE

where K is a canonical ideal of R and K = I'.. The original work contained in Section 4.2} is
again part of [KST17].

4.1 Duality on good semigroups

The new results of this section are part of [KST17]], but are original work of P. Korell.
Definition 4.1. For any good semigroup S, we call

K ={a ez | AS(r —a) =0}
the (normalized) canonical (semigroup) ideal of S.

Lemma 4.2. Let S be a good semigroup. Then the set KY is a semigroup ideal of S satisfying
property (EI)) with minimum 153 = 15 = 0 and conductor v53 = ~.

Proof. See [D’A97, Proposition 3.2], Lemma [2.13|and Notation [2.9 U]

Lemma 4.3. Let S be a good semigroup. Then the semigroup ideal K? of S has the following
properties:
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4. Duality

(a) AKs(T) =0
(b) If E is a semigroup ideal of S, then

K!—E={aeZ|A*(r—a)=10}.

Proof. See [KST17, Lemma 5.2.9]. ]

The following Theorem due to D’ Anna characterizes the canonical ideals by having a
value semigroup ideal equal to K.

Theorem 4.4. Let R be an admissible local ring with value semigroup S := I'r. Then for any
K € R such that R C K C R the following are equivalent:

(i) K is a canonical ideal of R;
(ii) T = K9 (see Definition . 1)).
Proof. See [D’A97, Theorem 4.1]. ]

Definition 4.5. Let S be a good semigroup (see Definition 2.1). We call K € &g a canonical
(semigroup) ideal of S if K C E implies K = E forany E € &g with v = +F.

Remark 4.6. If K is a canonical ideal of S, then o + K is a canonical ideal of S for any o € Z°.
In fact, this follows immediately from Definition 4.5 and Lemma [2.5] (b))

The following proposition was stated in [BDF0Oa, Proposition 2.15].

Proposition 4.7. Let S = [],,car S1,, be the decomposition of the good semigroup S into good
local semigroups Sy, . Then

Kg': H Kg'lm‘

meM

Proof. See [KST17, Proposition 5.2.3]. O]
Moreover, dualizing with K preserves the property of being a good semigroup ideal.

Proposition 4.8. Let S be a good semigroup. Then K% — FE € G for any E € &g and, in
particular, K9 € Gg.

Proof. See [KST17, Proposition 5.2.10]. [
Our definition of a canonical semigroup ideal allows shifts of K.

Proposition 4.9. Let S be a good semigroup, and let K € &g. Then K is a canonical ideal of
Sifand only if K = a + K3 for some a € Z°. In particular, for any 6 € Z° there is a unique
canonical ideal K of S with v = 4.

Proof. See [KST17, Proposition 5.2.11]. [

As a consequence we deduce the counterpart of the push-forward formula for canonical
ideals (see Lemma [E.T6)) on the semigroup side.

Corollary 4.10. Let S C S" € S be good semigroups. If K is a canonical ideal of S then
K'= K — S is a canonical ideal of S'.

Proof. See [KST17, Corollary 5.2.12]. U]
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The following two propositions establish an equivalent definition of canonical semigroup
ideals analogous to that of canonical fractional ideals (see Definition [E.10).

Theorem 4.11. Let S be a good semigroup, and let K € &g such that K — (K — E) = E for
any E € &g. Then K is a canonical ideal of S.

Proof. See [KST17, Proposition 5.2.14]. [
Theorem 4.12. Let S be a good semigroup. Then K% — (K% — E) = E forany E € ®g.
Proof. See [KST17, Proposition 5.2.16]. L]

Corollary 4.13. Any good semigroup S has a canonical ideal. Moreover, for any K € ®&g, the
following are equivalent:

(i) K is a canonical ideal of S;
(ii) There is an o € Z° such that o + K = K2;
(iii) forany E € &g we have K — (K — F) = E.
Proof. See [KST17, Theorem 5.2.7]. O

4.2 Duality of fractional ideals

In this section we show that taking values behaves well with respect to the Cohen—-Macaulay
duality and the semigroup duality.

The following result was stated by Waldi in case £ = R and F = R (see [Wal72, Bemerkung
1.2.21]).

Lemma 4.14. Let R be an admissible ring and £ € Rg and F € Ry Set £ = T'¢ and
F:=Tx Then & : F = Q""" and hence I'e.r = E — F. In particular, Cs = Q""" and hence
ch = CE

Proof. Cs = & : R by Definition @ If 7 € Ry, then F is principal by Theorem E@
Hence by Lemma [L.9() F = 2R = Q"™ for some 2 € Q5%. Then by Lemma [1.9](c),
I's = F = v(x) + N¥=, which implies v(z) = jr. By Lemma[A2l@®) £ : F = € : 2R =
2~ (€ : R) = 27'C¢. By Lemmal[l.9](B), if the particular claim is true, we have

E:F=1"Cc=1"RCe = Q""" Ce = Q—V(x)Q’VE - Q—uFQ'yE = Q"
where v(z7!) = —v(z) by Remark [B.8|(B). Then using the definition of C'p we have
Per=Tpc,=v(@ )+ Cp=—v(@)+Cp=—p " +E-S=E— (" +8)=E~-F

where —pf + E — S = E — (u" +S) thanks to Lemma[2.3/(c). Thus it is enough to prove the
particular claim. By Lemma[l.14] C¢ = Q" for some = € Q'5® such that v/(x) + N¥& C Tg.
Then, by Deﬁnition it has to be v(z) > v¥ and hence C¢ C o, By Lemma and
definition of /¥, Lop = v +N¥2 CT'e = F,and hence ',z = I'y,s = Cg. By Corollary
& Cc 9" and [y.n = Tgy,e imply & = Q" C & As Q" is an R-module, from
Lemma we get Q" C Ce. [
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4. Duality

By Lemma [4.14] value semigroup ideals commute with conductors in the sense that the
following diagram commutes:

E—Ce
Ri Ry
Sﬁrgl lgt—ﬂ_‘g
Ory, E—Cp erﬁ’

The following proposition allows us to reduce to the case of normalized canonical ideals.

Proposition 4.15. Any one-dimensional analytically reduced local Cohen—Macaulay ring with
large residue field R has a canonical ideal K such that R C K C R. It is unique up to
multiplication by R* with unique T .

Proof. By Theoremmthere is a canonical ideal £ of R. Since R is finite over R by Proposition
every regular ideal of R is principal by Theorem .@, and since |Max(R)| = [Ur| <
|R/m| by Theorem|1.3](d) and large residue field assumption, LemmalA.18|applies to R’ := R. It
yields ay € Q}® such that K := y& satisfies R C K C R. Hence KR = R. By Proposition|E.13]
the canonical ideals of R are of the form K’ = 2K with z € Q8. If R C K’ = 2K C R, then
z € R'. By Remark v(x) = 0 and hence ['x» = I'k. O]

We now show the compatibility of value semigroup ideals with dualizing.

Theorem 4.16. Let R be an admissible ring with canonical ideal IC with 'y = K. Let F € R
and £ € Ry such that £ C F. Then

(a) Tkr=K—-Tg
(b) d(TA\Tg) = d(Te\or) = d(K — Te\K — T'5).

Proof. Set S := I'p and K = I'x. From Theorem we have a decomposition ['x.r =
meMax(r) Lc:7), for any F € Ry, and by LemmalA. 14} we have an equality (K : F)p = K :
Fm. Moreover, Remark [E.TT] (a) yields IC canonical ideal of R if and only if Ky, canonical ideal
of Ry,. Thus if we prove () for local rings, we have a sequence of equalities

Ter= Il Twrn= Il Trker= Il (Ku—-(Tr))=K-Ts

meMax(R) meMax(R) meMax(R)

where the last equality holds by Theorem [2.11] For (b)), Remark [2.25](d)) gives the compatibility
of the distance function on semigroups with the decomposition in local semigroups (see Theorem
2.11]). Therefore if we prove it for local rings we have a sequence of equalities

d(T#\Te) = > d((T#)r, \(Te)1,,)

= ZM d(Txe) 1, \T7) 1) = d(Tiee)\ (Tkeor))
= > d(K —Tg), \(K =T7),) =d(K —Te\K —Tx).

Hence we may assume that R is local.

Now assume K to be such that R C K C R. Then K is unique up to multiplication by R,
with unique I'x by Proposition Moreover, by Theorem in this case ['x = K2. We
want to show that this assumption is not restrictive. In fact, let ' # K be any canonical ideal
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of R. Then K’ is of the form =K for some x € Q'5* by Proposition By Lemmal[A.2] (),
K':F = (zK) : F = z(K : F), and by Proposition4.9] K" := T'xs = o+ K3, where o = v(x).
Now suppose (a)) is true for K. Then we have a sequence of equalities

PK/:]: = F(ach):]-' = Fa:(IC:]-') = V(ZE)+F;C;_F = V(.Z‘)—F(ng—r}‘) = (V(.Z‘)+Kg)—rf = K/—F]:.

Similarly, if (b)) is true for K with I'x = K2, by Remark for any other canonical ideal
K" = K we have a sequence of equalities:

d(TF\T'e) = d(Tk.e\I'c.7)
=d(v(z) + Ie\v(2) + Ter) = d(Tapee) \Leger) = AT ar)e \ @) 7)
= d(Tre\krr)

and

d(T7\Ig) = d(Kg —Te\Kg — T'x)
=dla+Ky—T\a+ Ky —Tz)=d((a+ K2 —Te\(a+ K2 —Tx)
= d(K' —Te\K' —T5).

Thus it is not restrictive to assume K = K.
We now prove both claims simultaneously. Proposition gives (p(F/E) = d(I'x\I'¢),
and dualizing with a canonical ideal preserves lengths due to Remark [E.TT](b). Hence

dTie\lk.r) = (K : ) /(K : F)) = Lr(F/E) = d(L£\I'¢) =: n.
In particular, since Cg € R by Lemma|l.14]
d(Ti.c.\k.r) = Lr(F/Ce) =: 1 +n. 4.1)

By [AMG69], Proposition 6.8], there is a composition series in YRy (see Definition |C.1]). We pick
one in Rpg:
Ce=&ECEC - CE=ECEMC - C&mn=F.

=

By Corollary 2.30} applying I' preserves the strict inclusions. Since I'g, are good semigroup
ideals for any ¢ = 0, ..., [ + n by Corollary|1.25| applying I" yields a chain in &,

Pep =Tg, Gl & Clg=TeCleg,, & CTg,, =1F

Let £ € Rg. Then I'.e C 'k — I'e by Remark [1.17} and since I's € B¢ by Proposition
we get e € ' —T'¢ = K — T'¢ € &g by Proposition As dualizing with K
reverses inclusions by Lemma [2.5/(d) and preserves strict inclusions by Theorem (since
K — (K — E) = E), applying K — (—) to the previous chain yields a chain in &,

Tes =Tk —Tep =K —Tgy 2 2K —Tg =K — ¢ 4.2)
DK—Tg, 2 2K—Tg, =K-TrDTxr

=

and d(K —T'g,\K —T¢,,,) > 1forany i = 0,...,l +n — 1 by Proposition (distance is
zero if and only if the two good semigroup ideals are the same).
Applying Lemma [2.26] (additivity of distance) to the chain (4.2) it follows with equation

@.1) that
d(K - ng\K - F5i+1> =1
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forany: =0,...,l+n — 1, and hence

d(K —Te\K —T#) = Hfl d(K —Te\K —T¢,.,) =n=d(#\Ts)

1=l

and that
d(K —Tx\I'k.7) = 0.

By Proposition[2.28] the latter is equivalent to
Tyr = K — Ty 0

We can finally generalize D’ Anna’s Theorem [4.4]to the semilocal case based on our Defini-
tion {.5] of canonical semigroup ideals.

Corollary 4.17. Let R be an admissible ring. Then for any K € Ry, the following are equivalent:
(i) K is a canonical ideal of R;
(ii) U'x is a canonical ideal of T'g.

Proof. = (i) Letm € Max(R). As K is a canonical ideal of R, I, is a canonical ideal
of R, by Remark (a). Hence T'x,, = am + K3, for some a € Dr, by Proposition
Setting o := () meMax(r), Theorem and Proposition [4.7] yield

Te= II Tew= II (wm+EKp,)=a+ I Kp, =a+Kp,
meMax(R) meMax(R) meMax(R)

Thus, I'c is a canonical ideal of ' again by Proposition

= (i) Let & € Rg. By Corollary ['g is a good semigroup and I'y € &r,. By
assumption and Theorems Uiy = T'e — (I'x — T'¢) and as T’k is a canonical ideal,
by Corollary , I'x — (g —T¢) = Te. Hence I'. ey = e, which implies
K:(K: &)= & by Corollary It follows that C is a canonical ideal of R according to

Definition [E.10
O
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Poincaré series

In this chapter, we show some symmetry property between the Poincaré series associated to a
good semigroup ideal and the one associated to its dual. The name Poincaré series is taken from
the literature. Observe that in an algebraic context this would be called Hilbert-Samuel series.
This work is a generalization of [Pol16) §5.2.8 ]. In her work, Pol considers value semigroup
ideals associated to Gorenstein rings. Instead, our approach takes into account the more ample
class of good semigroups.

5.1 Distance and A-sets

Definition 5.1. Let S be a good semigroup. For any F € &4, we define a decreasing filtration
E* on E by semigroup ideals
E*:={BfeFE|p>a}

for any a € Z°. The semigroup ideals E“ satisfy (EI]) and (E4) for all o € Z°.

Remark 5.2. Let R be an admissible ring and S = I'g. Let £ be a fractional ideal of R and £ as
in Definition[[.8] If £ = T'¢, then E* = ['co for any « € Z°.
We now give some technical results about distances, and their relation with the A-sets (see

Definition [2.12]).

Lemma 5.3. Let S be a good semigroup. Let E € &g, and o € 7°. Then
d(E“\E*te) < 1.

Proof. Since E“ satisfies and for all «, the distance is well-defined (see Definition
[2.23)). We have the following:

A(BM\E) = dpo (1 75) = e (077 P

@ aTe; a+te; a+te; (51)
:dEa([LE ,'YE " )—dEa(HE " 7’YE " )

where the first equality is the definition of distance, and the second equality holds because a
saturated chain between ;7" and v#*"* is contained in £*. Now observe that ;" and p&*"
are always comparable. In fact, by minimality it has to be ;¢”* = min{u®", 7"} < pP7°.
So (5.1)) becomes

d(E\E®) = diga (1™, P,

55



5. Poincaré series

Now let 7" = o < ... < o™ = ;F*" be a saturated chain in E. Suppose m > 2.
By minimality, we have that a®) € AT () \ E* for any k < m. Consider o(®,aV) € E.
They have a(o) = Oz(l) = «; and there exists a j # ¢ such that a(o) < a(l) < a( ™ =

Eotei

14 . We can apply property (E2) to a®, o) € E and obtaina 3 € E Wlth B; > a; and
B = mm{a] , ] } = © n partlcular B € E~*. Thus, by minimality, it has to be
min{g, p?* "} = P, Thus ,u]EMei = min{3;, u; pevein — mln{ago),,ufﬁe } = 04(0) <

uf”e". This is a contradiction. Thus the claim. O

Lemma 5.4. Let S be a good semigroup and let E € Bg. Then d(E*\E**®) = 1 if and only if
Al (o) #0.

Proof. Observe that by definition £~ = E**®i UZiE(a). By Proposition d(E*\E***®) =0
if and only if E* = E**¢_ i.e. if and only if ZiE(a) = (). So the claim follows by Lemma
5.3] O

Proposition 5.5. Let S be a good semigroup and let E € &g. Let « < 3 € Z°. Then EP C E°.
Leta = al% < o) < ... < o™ = B be a saturated chain in Z°, with oU+tY) = o9 + e;(;) for
any j € {0,...,n — 1}. We have:

d(BE*\E®) = Card{j € {0,...,n — 1} | &, (a?)) # 0}

Proof. Using the additivity of the distance, our assumptions and Lemma[5.4] we get the following
equalities:

d(Ea\E’B) :nz_:ld(Ea(j)\Ea(Hl))

=0
n—1

_ Z d(Ea(j)\Ea(j)—i_ei(j))
=0

Corollary 5.6. Let S be a good semigroup and let E, F € &g with E C F. Let i = a® <
o) < o< al™ = 4F < .o < o™ = oF be a saturated chain in 7°. In particular,
Ut = ) + e forany j € {0,...,n — 1}. Then

d(F\E) = Card{j € {0,...,n — 1} | A, (aV) # 0}
— Card{j € {m,...,n— 1} | Ay, (o) # 0}
Proof. By additivity of the distance we have:

d(F\E) =d(F\Cg) — d(E\Cg)
=d(F*"\F"") — d(E*"\E"").

The claim follows by Proposition[5.5] O

Lemma 5.7. Let S be a good semigroup and let E € Gg. Let K := K2 be the normalized
canonical ideal of S. If A~ (a) # 0, then AE(1 — &) = 0.

56



5.1. Distance and A-sets

Proof. Let 3 € Ar' (). Then

Bi =0y,
B; >a; for any j # i,

and AP(7 — 3) = ( by Lemma[d.3(B). Therefore (7 — 3); = (7 — a); and (1 — 8); < (7 — ).
Hence AP(1 —a) CAFP(r - B) = 0. O

The following Proposition proves that the converse of Lemma(5.7]is always true when s = 2.

Proposition 5.8. Let S be a good semigroup, and assume S C Z2. Let E € &5, and K := K
the normalized canonical ideal of S. If AF (1 — ) = () then ZiK_E(a) # (.

Proof. In the following we will call i and j the two directions of Z?2. First assume 7 — o € E. If
AP (1 — a) # 0, then we can apply property (E2) to 7 — a and § € AP(7 — a) and obtain an
element in AZ(r — a) = (). Thus A(7 — &) = (). Therefore & € A1 (a) by definition of
K — FE, and the claim holds trivially.

So suppose 7 — a &€ E. Let 8 > a, with 3; = ;. If AP(7 — 3) = (), then 3 € Ef(fE(oz),
and the claim is true. Therefore assume that for any 8 > «, with 3; = a;, AP(7 — 3) # 0.
This is equivalent to AP (7 — 3) # (. In particular, we can choose 3; > (y — p*);. Let
T—6 € AP(t—f). ThenT—0 € E = K—(K—E),ie. AK77(§) = 0. But (1—0); = (1—f);,
ie. 6, =p; > (v— p¥); =~ " So AF~F(6) = 0. Since we had AX~(5) = 0, thisis a
contradiction. 0

Lemma 5.9. Let S be a good semigroup and let E € &g. Let K := K be the normalized
canonical ideal of S, and let o, 5 € 7° with o < 3. Then:

d(E“\E") < d(S"\8") — d((K — E)"*\(K — E)™).

Proof. Let

be a saturated chain in Z°, with Ut = o) 4 e,(;) forany j € {0,...,n — 1}. Let us denote
J=A{0,...,n—1}.
Set 8) = 4 — a(®=9) Then

7_5:5(0) <5(1) < ...<5(n):7_@
is a saturated chain in Z°, and
60-&-1) =7 — a(n—(j+1)) =7 — (a(n—j)) _ ei(n—(j+1))) — B(j) + €i(n—(j+1))-

By Proposition [5.5| we have d(E“\E®) = Card{j € J | ng)(a(j)) # 0}. Recall that
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5. Poincaré series

E=K—-(K—-FE)by Corollary Therefore we can apply Lemma and obtain
d(E“\E) = Card{j € J | A;;(a?) # 0}
< Card{j € J | Al "(1 - oﬂ)) 0}
= Card{j € J | AK E(7 —-1) =0}
= Card{j € J | AK E(/3<” D —1) =0}
= Card{j € J | A ( —U+D)y = g} (5.2)
=n— Card{j € ] | AK (B00+) £ 0)
=n— Card{j € J | Ai(nf(jﬂ))(ﬁ(j)) # 0}
=n—d((K - E)"\(K - E)"™)
= d(S\S") — d((K — By *\(K — E)"*).
]

Proposition 5.10. Ler S be a good semigroup. Let E € &g and o, € Z° with a < 3. Then
the following are equivalent:

(i) d(E\E?) = d(S"\S") — d((K — E)"*\(K — E)'=);
(ii) Forany § € 7° such that « < § < ( and forany i € {1,...,s} such that § + e; < 5,

AL (0)#0 <= AKE(r —5) =0

(iii) For any § € Z° such that « < 6 < f and foranyi € {1,...,s} such that 6 —e; > «,

K—-FE

A (1=0)#£0 = AF(5)=0.

Proof. Let
a=a® <aW<...<a®=p

and
be as in Lemma[5.9] Let us denote again J = {0,...,n — 1}. Then, from the proof of Lemma

5.9 (see (5.2))) we have that

d(E\E?) = d(S"\S") — d((K ~ E)" *\(K — E)"™*)
if and only if

: —~E :

Card{j € J | A;;(a W) £ ()} = Card{j € J | AZ(]) (r —aP) =0}

Since the first set is contained in the second by Lemma(5.7], we obtain

. —~E ; : _ ;

{7€ T 8i(a?) £ 0} = {j € J | Af;P(7 — o) = 0}

In particular

Aiy(a@) £ 0 = AKE(r — o) = 0.
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5.1. Distance and A-sets

Now let 6 € Z* be suchthat < 6 < fand forany: € {1,...,s},d+e; < 3. Then it is always
possible to find a saturated chain in Z* between « and 3 such that § = a¥) and i = (). Thus

AP (8) # 0 = AEE(r —§) = 0.

Finally, observing that, by Theorem4.12] E = K — (K — E), this is also equivalent to

AFTE(r—6) £ 0 = AP(5) = 0.
ifo—e; >a(e (1—90)+e <7—a). O

Remark 5.11. For any o € Z* we have K — S” = S’ . In fact, due to Lemmas 2.5 and @
and Definition [5.1] we have:

K-S"=K—(a+8)=-a+(K-8)=-a+y+5=5""

Corollary 5.12. Let S be a good semigroup, and K = K2 the normalized canonical ideal of S.
Let B € &g and o € 7 with i < o < vF. Then the following are equivalent:

(i) (5" \E) = d((K ~ ENS"™");
(ii) d(E\E"") = d(S"\8"") — d((K — E)\(K — E)*");
(iii) foranyi € {1,...,s} such that o + e; < vF,
A (@) £0 <= A E(r—a)=0;

(iv) foranyi € {1,...,s} such that o« — e; > p,

ALY

(]

(T—a)#0 <= AP(a)=10.

Proof. First of all observe that by additivity
d(S"\E) = d(S"\S") —d(E\S")

so (i) is equivalent to (ii). Now observe that by Lemma [4.3[(B) and Remark [5.11] (47) is the
same as
d(E""\E"") = d($" \S"") — d((K — E) " \(K — E)"*").

The claim then follows trivially from Proposition[5.10] O

Remark 5.13. Notice that, if R is an admissible ring and £ is a regular fractional ideal of R,
condition (1) of Corollary is always true. In fact, denoting S := I'g and £ := I, by
Theorem and Remark we have:

d(S"\E) = ((zR/€) = (K : /K : 2R) = d(K — E\K — §"")
— d(K — E\S"™"")

where x € R is an element of valuation x”, K is the normalized canonical ideal of S and K is a
normalized canonical ideal of R.
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5. Poincaré series

5.2 Duality of the Poincaré series

Forany J C [ we denote e; = 3, €;.
The following definition is analogous to the one given in [Poll6, § 5.2.8]:

Definition 5.14. Let R be an admissible ring, and let £ € Rg. Sett = (t4,...,ts). We define
le(a) = L(EX/EXMY),  Le(t) = > le(a)t?,

aELS

and the Poincaré series of £ is

s

Pe(t) = Le(t) [J(t: — 1).

=1
We now give the analogous definition for good semigroup ideals.

Definition 5.15. Let S be a good semigroup, and let £ € &g. We define

dp(a) = d(E\E°™Y), Lp(t)= Y dp(a)t®,

a€Zs

and the Poincaré series of E is

s

Pg(t) = Lp(t) [J(t: —1).

i=1
Remark 5.16. Due to Remark and Proposition [2.29] if S = I'p and ' = I'¢, we have
Lg(t) = Le(t), and in particular Pg(t) = Pe(t).

Lemma 5.17. Let S be a good semigroup ideal, and E € &g. Let us define

CE(Oé) = Z (—1)Card(J(:)dE(Oé — eJ)

JC{1,000r5}

then the Poincaré series can be written as

PE(t) = Z CE(Oé)ta.

a€eZs

Proof. Consider I = {1,...,s}. Observe that

S

[[¢ti~1) =t DY iyt b (- “Zt+

=1 11 <-<ls—1

— Z Card Je) teJ

JCI

where J¢ denotes the complement of ./ in /. Hence

=Y dg(a)t® f[(zfZ —1)= > dp(a)t® Z(_l)Card(JC)teJ

a€Zs =1 a€Zs JCI

= Z(_I)Card(JC)dE(a)toH-eJ _

a€cZs JCI

—_ Z Z Card JC E(a _ ej)ta

acZs JCI

=Y crla)®. 0

<Y/
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5.2. Duality of the Poincaré series

Lemma 5.18. Let S be a good semigroup and let E € Gg. Let § € Z°. If B; + 1 < uF or

Proof. Consider again [ = {1,...,s}. Let 3 =0 < pl) =t e; <---<p& =p+1<
B+ = B+ e; + 1 be a saturated chain in Z°, where BU+Y) = gU) 4 e forany j € I\ {i}.
Then by definition of dg () and by Proposition we have

dp(B) = dg(E°\E"™") = sildE(Eﬁ(j)\EB(j*U)‘

J=0

On the other hand we have

s

dp(f+e€;) = dE(E/3+ei\Eﬁ+ei+1) _ Z dE(Eﬂ(j)\Eﬂ(Hl))_

=1
Therefore
A (B + ;) — dp(B) =dp(E” \E*"") — dp(B*"\E”")
:dE(EB+1\E/B+ei+1) _ dE(E/B\EB-‘rei)‘
By Lemma 5.4 we know that
dp(BNE") =1 = B/(8) # 0.
and

dp(EPTN\EPTet) = 1 = AF(B+1) £ 0.

When 8 + 1 < pP, then also 8; < u”, and therefore A; (3) = Ar (8 + 1) = (. This yields
dp(B + e;) — dg(B8) = 0. On the other hand, when 3; > ~F, then also 3; + 1 > ~F and
AT(8) # 0, AT (8 +1) # 0. This implies d (E?\ Ef+e) = dp(EP+1\ EAe+1) = 1, and thus
once again dg(f3 + €;) — dg(B) = 0. O

Proposition 5.19. Let S be a good semigroup and let E € &5. Then Pg(t) is a polynomial.

Proof. The goal is to prove that cg () # 0 only if u” < o < +F. Suppose there exists an i such
that o;; < uf . Consider J C I = {1,...,s}. Itis not restrictive to consider i ¢ J (otherwise
we can consider .J \ {i}). Notice that if « — e ;3 = 3, then o — e; = 8 + e;. Since o; < puf’,
then ¥ > (o —ey); = (3 +e;); = B; + 1. So by Lemma|5.18] we have

dp(a —ejuy) = dp(a —ey)

The same is true if 4 is such that o;; > Z. Therefore when a ¢ {3 | u < 3 < +F}, for any
J C I there exists a J' C I (it can be either J U {i} or J \ {i}) such that

CZE(CV — eJ/) = dE(CY — EJ)
and Card(J) = Card(J’) & 1. Hence this terms annihilate each other in the sum

> (=1 dp(a —ey),

JCI

so that cgp(a) = 0 forany a & {8 | uP < B < ~F}.
Thus Pg(t) is a polynomial. O
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5. Poincaré series

Proposition 5.20. Let S be a good semigroup, K := K the normalized canonical ideal of S
and I/ € Bg. If one of the equivalent conditions of Corollary holds, then the Poincaré
polynomials of E and K — E are symmetric:

1
Pr_p(t) = (~1)*H47 Py <t> |
Proof. By Lemma(5.17, Px_g(t) = Y qczs cxk—r(a)t®. On the other hand

(=) Py (1) (1M Y en(B)E?

BELS
= > (1) ep(B)t"
BEZLS
= Z (1) ep(y — a)t.
a€ZS

Therefore the claim is equivalent to
cx-p(@) = (1) ep(y — ).

fag{Blu" <y=B<"}={B|7v-7""<B<y—p"}thencg_p(a) =cp(y—a)=0
by the proof of Proposition So we can assume 7 — v¥ < o < v — pF.

By Corollary [5.12|(ii), we have d_g(a) = dg(a) —dg(y —a—1) =s —dg(y —a —1).
Then

CK—E(OC) — Z (_1>Card(JC)dK_E(a . eJ)

JCA{1,...,s}
=(=1° Y ()™ (s —dp(v—a—1+ey))
JC{1,...,s}
:(_1)55 Z(_l)Card(J) + (_1)s+1 Z(—l)card(J)dE(”)/—Oé—l—i-eJ)
JCA{1,...,s} JCA1,...,s}

i . [ S c

:(—1)88 Z(_l)z ( ) + (_1)s+1 Z(_l)s—l-Card(J )dE<’)/—()é—8JC)
i=0 t JC{1,...,s}

=(=1)*1 = 1)* + (=1)""e(y — a)
(1) ep(y — a).

Hence the claim. O
So we obtain Pol’s result [Pol16, Proposition 5.2.28] as a corollary:

Corollary 5.21. Let R be an admissible ring and £ € Rg. If £ is a regular fractional ideal of
an admissible ring R, and & = T¢, then:

Pr_n(t) = (—1)*H17 Py (1) .

Question 5.22. Are the equivalent conditions of Corollary always true? Proposition[5.8|and
Remark [5.13]show that they are true in the 2-dimensional case and in the value semigroup case.
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Part 11

Inverse system






Introduction

Let k be an algebraic closed field and let A be a (*)local k-algebra (see §E.I|for a definition of
*local). Then A = R/I with R either the power series ring k[[xy, ..., x,]| or the polynomial
ring k[z1, ..., x,] and I either an ideal (not necessarily homogeneous) of R = k|[z1, ..., x,]],
or [ homogeneous ideal of R = k[x1, ..., x,]. As an effective consequence of Matlis duality, it
is known that A is Artinian if and only if the dual module

I+ := (R/I)Y = Homg(R/I, Er(k))

is a finitely generated R-module, where Er (k) is the injective hull of k. The module I is called
inverse system of I, and it can be embedded into the divided power ring D = kpp[ Xy, ..., X,] =
Er(k), which has a structure of R-module via the contraction action (see Definition [6.6).

It is in particular well-known that A is Gorenstein if and only if I+ is a cyclic R-submodule
of D. These cyclic R-submodules were called by Macaulay principal systems (see [Mac94]),
and contain the same information of the original ideals. In the last twenty years several authors
have explored this topic. Among others: [CENR13], [ER93]], [ER12]], [ER15]], [EMO7], [EI9S],
[Ger96], [[ar935], [Iar97/]], [1ar84], [IK99]], [MSO0S]. Principal systems generated by certain forms
associated to partitions occurred in the n-factorial conjecture in combinatorics and geometry,
see [Hai94]. They are also related to constant-coefficient partial differential equations and to
dualizing modules. There has been recent interest in non-homogeneous principal inverse systems
in connection with the study of "cactus" forms, see [RS13]],[BR13],[BB14]]. The inverse system
viewpoint can be used to parametrize Artinian Gorenstein quotients of R having a given Hilbert
function, see [Wat89], [[ar97]] and, more in general, to study the properties of the punctual
Hilbert Scheme. The inverse system of zero-dimensional schemes was described in [Ger96]],
[CI112]], [KIeQ7], [GS98], [Ems78]. In general, Macaulay’s inverse system allows to construct the
inverse system of any ideal I (need not be Gorenstein) when A = R/I is Artinian. In particular,
it allows to construct level rings in the zero-dimensional case (see for example [Ems78|] and
[Iar94]).

Level rings are Cohen—Macaulay rings with "minimal" socle type, and in particular Goren-
stein rings are level rings of type 1. Level rings have been studied in several different contexts.
One of the first to observe their properties was Stanley in [Sta77]], but later many others took an
interest in them: Iarrobino [lar84], Geramita, Harima, Migliore, Shin [GHMSO07]], Boij [B0194]
and more recently Bertella [Ber09] and De Stefani [DS14]], to name a few. Although in the
literature level rings are most studied in the Artinian case, there are many examples of positive
dimensional level rings: Stanley-Reisner rings of matroid simplicial complexes (see [Sta77]),
semigroup rings corresponding to arithmetic sequences (see [MT95]), and generic determinantal
rings. However, an inverse system for level rings of positive dimension is not known. An
important point is that for non- Artinian k-algebras, the inverse system is not finitely generated.

In this part of the thesis, extending a recent result by Elias and Rossi [ER17], we give the
structure of the inverse system of local and graded level k-algebras of positive dimension, and we
describe the global generators of the R-submodules W of D = kpp[Xy,. .., X,] corresponding
to d-dimensional level k-algebras.
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In Chapter[6] we recall how a polynomial ring S can be seen as an R-module via the derivation
or contraction actions. We then define the divided power ring, and we state results about its
structure as module and as ring. Later we recall known facts about Macaulay’s Inverse System
for Artinian algebras, and in particular Macaulay’s one-to-one correspondence between level
k-algebras and same degree polynomials with linearly independent forms (see Proposition [6.31).

In Chapter[7]we recall that a homogeneous k-algebra A is level if the canonical module w4 of
A s a free R-module generated by elements of same degree. We then give a definition in the local
case: a local k-algebra A is level if A/J is Artinian level for some minimal general reduction .J
of the maximal ideal (see Definition [7.21). Defining local level K '-algebras of positive dimension
is non-trivial. In fact, contrary to the graded case, where any Artinian reduction of the maximal
ideal has the same socle type, in the local case Artinian reductions of the maximal ideal given by
non-minimal general reductions may have different socle type.

Given a notion of local k-algebra in any dimension, we then investigate the structure of [+
when R/ is a positive dimensional level k-algebra. Generalizing the result of [ER17], we give
a notion of Lj-admissible submodules of D (see Definition[7.37)). and we establish a one-to-one
correspondence between level k-algebras R/I of positive dimension d (see Theorem .
Observe that our L]-admissibility is not merely the “union” of the conditions given in [ER17]].
Also, while in the Artinian case the intersection of Gorenstein ideals of same socle degree is
always level, as a trivial consequence of Macaulay’s inverse system, the analogous is not true in
positive dimension (see Example [8.6). Our correspondence is therefore an important tool, as it
provides an effective method to construct level k-algebras. In the graded case, we can retrieve
the level ring with just a finite number of generators of the inverse system. Moreover, we can
read both multiplicity and regularity of a level graded k-algebra in the dual module.

In Chapter [8] we collect some applications of our main result, and we give constructive
examples. In particular we show inverse systems of semigroup rings defined by arithmetic
sequences and of matroids coming from simplicial complexes.
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Inverse system of Artinian rings

In this chapter we give the definition of derivation and contraction action on a polynomial ring,
and we then introduce the divided power ring in order to avoid characteristic problems. The
divided power ring D is actually a ring, but we will not consider it as such in the following.
However, we give its ring structure for completeness, and we then concentrate on its structure
as R-module, were R is either a polynomial or a power series ring. Using the divided power
ring we then recall what is the Macaulay’s inverse system of an ideal of R and the annihilator
of a submodule M of D. This two operations (inverse system and annihilator) give rise to a
specialization of Matlis duality, i.e. a one-to-one correspondence between Artinian algebras
of type R/I and finitely generated R-submodules of D. In particular, we recall the one-to-one
correspondence between level zero-dimensional algebras and R2-submodules of D generated by
polynomials of same degree with linearly independent forms. The contents of this chapter are
taken from the literature, and are not original work.

6.1 Divided powers

Let k be an arbitrary field. Let R = k[[z1, ..., z,]] be the ring of formal power series with
maximal ideal m = (xq,...,z,) (or R = Kk[x1,...,z,] the polynomial ring with maximal
homogeneous ideal m = (zq,...,z,)) and let S = k|yi, ..., y,] be a polynomial ring, with
homogeneous maximal ideal (yi,...,¥,). It is well known that R is an S-module with the
induced product. Also, S can be considered as R-module with two different external products:
derivation and contraction. If char(k) = 0, the R-module structure of S by derivation is defined

by
RxS—S
oy’ iff>a

a B «a B8 _ ) (B—a)!
x, = T O = ]
(2%, 9") Y {0 otherwise

where for any o, 8 € N, a!l =[], o,
In any characteristic, the R-module structure of S by contraction is defined by

RxS—S
yime i g >«

a B3 a 8 _
X, = I ©° = )
(=%, 47) Y {O otherwise
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6. Inverse system of Artinian rings

We denote by (.5, der) the R-module S with the derivation action and (S, cont) the R-module
S with the contraction action.
The following is [El113| Proposition 2.1]:

Proposition 6.1. For any field k there is a R-module homomorphism

o : (S,der) — (S, cont)
Yo = aly®.
If char(k) = 0, then o is an isomorphism of R-modules.
Proof. The first statement follows from the following equalities:
!
o BY 6 B—a
ox%oy’)=0|——y
o= (5 )
p! Cw
= m((ﬂ - Oé)!yﬁ )
= By = 2% o (y?).

If char(k) = O then the inverse of o is the map
1
y* = —y”. O]
al

The following proposition relates the injective hull of k (see Definition [D.7]) with the modules
defined above.

Proposition 6.2. Let R = k[[x1, ..., x,]]. Ifk is of characteristic zero then Er(k) = (S, der) =
(S, cont). If k is of positive characteristic then Er(k) = (.5, cont).

Proof. See [El113, Theorem 2.2]. U]

To avoid the distinction based on the characteristic in Proposition [6.2] we introduce the
divided powers ring.

Definition 6.3. Let k be an infinite field of arbitrary characteristic. Let R = k[z1, ..., z,]. Then
the divided power ring D is the dual of R, i.e.

D := Homy(R, k). (6.1)

Since R = ®,>¢ Symj Ry, where the k-vector space R; has basis 1, ..., x,, then D is graded,
1.e.
D = Homy (P Sym’ Ry, k) = P Homy (Sym’ Ry, k) =: D D;.

J=0 j=20 J=0

The action of G',,(k) on R; by

AIi = ZAjin, with A c Gln<k),

Jj=1

can be extended to an action of G, (k) on R. Thus by duality G, (k) transposed on monomials
induces an action on @&,>¢D;. We denote D := kpp|zy, ..., x,)].
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Remark 6.4. Let R = K[z, ..., x,], with unique homogeneous maximal ideal m. Then the
completion of R is R = k|[[xy, ..., x,]|. Thus

Homy (R, k) = Homy(lim R/m/, k)
= lign Homy (R/m’ | k)

— lién gHomk((R/mj)i; k)
— HlignHomk((R/mj)i,k)-

>0
If j > i, then (R/m’); = R;, and hence

Homy (R, k) = [ Homk(R;, k) = [] D

i>0 i>0

In the following chapters we will consider R to be either the polynomial ring or the power
series ring. Thanks to Remark [6.4] in both cases we can consider D to be the dual of R.

Notation 6.5. Let R = k[21,...,2,] = @50 Sym’ Ry, and let R; = Sym’R;. For any j € N,
B(j) ={z* =222 |a € N |a| = oy + - - - + a,, = j} is the standard monomial basis

of Rj.

Definition 6.6. Let R = k[z,, ..., z,] and let X, ..., X, be the basis of D, such that X(z;) =
0] forany i, 5 € {1,...,n}, where 9 is the Kronecker delta. Then the divided power monomials
of D; are:

X(Oé) = X{al) .« o X(an)7

n

for any o € Z". They are a basis of D, dual to B(j). We put Xl = 0if o; < 0 for some .
For any j, we call the elements of D; divided power forms and the elements of D divided
power polynomials.

Definition 6.7. Let R = K[z, ..., x,]. For any i, j there is a (surjective) contraction map
Ri X Dj — ,Djfi
(6.2)
(f,F)— foF
where f o F' = 0if j < 1, or otherwise it is defined recursively through the formula
(f' o F)(f) = F(ff) with f" € R;_;.
In particular, this gives
o o (81) Gy )0 if B; — oy < 0 for some 7
.. .p o(X oo X =
(o w)e (X ) {Xl(ﬂl_al) - X(Baman)  otherwise

for any «, f € N™ with |o| = i and || = j. These maps can be extended by linearity to a
contraction map R X D — D, which makes D into a graded R-module.
Observe that [6.2]implies
R;oD; =D,_;. (6.3)
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6. Inverse system of Artinian rings

Definition 6.8. Let R = k|[[x1, ..., z,]]. Then we can define also in this case a contraction map

RxD—D

(h,F)—s h*o F ©4

where h* is the image of h in k[z1, ..., z,| = gr,(R), where m is the maximal ideal of R and
gr(R) = @;>om’/m*!. This makes D an R-module. In the following, we will abuse the
notation and write h o F' instead of h* o F'. Let R; = {h € R | deg(h) = i}. As a consequence

of we obtain

k<j k<j—i

In particular, as the action of 12 on D lowers degrees, D is not a finitely generated /2-module.

Remark 6.9. Let R = k[zy,...,z,] or R = K[[x1,...,2,]]. Let f,g € Rand F,G € D. The
contraction action on D has the following properties:

@ fo(F+G)=foF+foG.

(b) (fg)oF =fol(gokF).

© (f+g)oF=foF+4golF.

d) fol(cF)=(cf)oF =c(foF).
Proposition 6.10. Let k be of any characteristic. Then Er(k) = D as R-modules.

Proof. See [Gab3s8, §3.f] and [Eis95, Example A3.4.(b)]. O

Remark 6.11. Let now k be of characteristic 0. One considers the differentiation action of
R =Xk[zy,...,z,)on S ==Ky, ..., y,] given by
0 0
v, — | (h), € R hes.
This action yields a duality between R; and S; = {h € S | deg(h) = j, h homogeneous } for
any j > 0, and the basis dual to B(j) is

1 o fel o
Yy = X
Qi Qp!

foh=f<

So that the map

k oy — D
e ,yyl}_}Xl 6.5)

is an isomorphism of R-modules sending
1
MO s XY@ (6.6)
Oél! tet Oén!

where X is the one in Definition[6.6] The isomorphism (6.5) is compatible with the action of
Gl (k).

In particular, in this case the isomorphism of k[y, . . ., y,] with D induces a multiplication
on D, thus making D into a ring. The multiplication is defined on monomials as follows

e o (Oé‘i‘ﬁ)' [}
X@ . xB) — Tﬂ!X( +5) 6.7)
where
alp! N arl - rap!B Bl

This is extended by linearity, and therefore gives a structure of k-algebra on D.
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Remark 6.12. In general, for any R-module M, Sym (M )* has a natural divided power structure
(see for example [[Eis93, §A2.4]) coming from a multiplication with d! dividing z¢. Hence it

d
makes sense to set z(9) := Z

H.
In the following we will often denote the power monomials in D without the brackets, to
make notation easier.

6.2 Macaulay Inverse System

In this chapter we always consider k to be an infinite field.

Definition 6.13. Let R = k[z1,...,2,) or R = k[[zy,...,z,]]. For any ideal I of R, the
R-module
I :={GeD|IoG=0}=Homg(R/I,Kk)

is the Macaulay’s inverse system of 1.

Definition 6.14. Let D be the divided power ring. For any R-submodule M of D, the annihilator
of M is
Ammg(M):={f € R| foG =0forany G € M} = Hompg(M, k).

Proposition 6.15 (Macaulay’s duality). Let R = k[zy, ..., z,] or R = k[[z1, ..., ,]]. There is
a order-reversing bijection:

I ideal of R such that A M finitely generated
I is m-primary R-submodule of D

given by I — I and Anng(M) < M.
Proof. See [Eli13, Proposition 2.3]. [

It is clear that Proposition is a particular case of Theorem
Remark 6.16. Proposition |6.15|implies that for any finite R-submodule M of D

M = (Anng(M))*
and for any Artinian [ (i.e. R/I is Artinian)
I = Anng(IF).

Remark 6.17. Let R = k[xy,...,2z,] or R = kl[[z1,...,2,]], and let m denote the ideal
(x1,...,2,). Let A = R/I be an Artinian quotient of R, and let n = m/I be the (homo-
geneous) maximal ideal of A. Let

%

HFA(l) = dlmk ( n

ni+1

) fori >0

be the Hilbert function of A (see Definition [C.2). By Proposition[6.13] the multiplicity of A is
the integer
e(A) := dimy (A) = dimy (I*).

Since A is Artinian, s(A) is the last integer such that HF 4 (i) # 0 and e(A) = >7_, HF 4(¢). By
definition, the embedding dimension of A is HF 4(1).
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6. Inverse system of Artinian rings

Example 6.18 ([EIi13]). Let F' = X3 + X, X5 + X? € D be a polynomial. Then the submodule
of D generated by F'is
<F> = <F7X22 + X17X2 + X17X17 1>k‘

and dimy ((F')) = 5. The annihilator of F' is [ := Anng(F) = (z1709 — 73, 7% — 179) i @
complete intersection ideal of R. The Hilbert function of A = R/l is HF 4, = {1,2,1,1}, and
hence e(A) = 5 and s(A) = 3.

Definition 6.19. Let R = k[zy,...,z,] or R = k][[zy,...,2,]], and let m denote the ideal
(x1,...,2,). Let A = R/I be an Artinian quotient of R, and let n = m/[ be the (homogeneous)
maximal ideal of A.

The associated graded ring of A is the standard graded k-algebra

ni
grn(A) = @ ni+1 :

1>0

If A is a standard graded k-algebra and n is its homogeneous maximal ideal, then gr,(A) = A as
graded algebras. Let I* be the homogeneous ideal of k[x, . .., ;| generated by the initial forms
of the elements in /. Then gr,(A) and k[z1, ..., z,|/I* are isomorphic as graded k-algebras.

Notation 6.20. Let D be the divided power ring. In the following we denote

D<j =P
i<j
Let us define the k-vector space
_ I"ND<+ Dy

[J_ i -
(") Do)

The following proposition relates the graded parts in Notation to the Hilbert function.
The proof of this fact is taken from [El113, Proposition 2.6].

Proposition 6.21. Let R = k[z1,...,2,) or R = k][[z1,...,2,]], and let A = R/I be a
k-algebra. For any i > 0 there is an equality

HF 4 (i) = dimy (17F);.
Proof. Let us consider the exact sequence of R-modules

n A A
— — — 0.

0— ni-l—l - ni-‘,—l nt

Dualizing this sequence we get:

0— (I +m")*t = (I +m™™)*+ — Hompg (#,k) — 0.
nZ+1
Hence:
ﬂi ~ (I+mi+1)L [L mD<7, ~ [J' ﬂD<Z +D<i—1
Hompg [ —, o : — St~ < Siz1
i+1 (I + mz)J_ ESNe Dgi—l Dgi—l
The claim follows from linear algebra. 0
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6.2. Macaulay Inverse System

Proposition 6.22. Let R = k[z1,...,z,) or R = k][[xy,...,x,]|, and let D be the divided
power ring. Consider the k-bilinear pairing

(—,—): Ry xD; — Dy =k
(f, G) — ([ G)(0)

forany j € N. Let I be an ideal of R, homogeneous if R = k[z1, ..., x,]. Then:

(a) The map (—, —) extends to a non-degenerate pairing R x D — k of k-vector spaces.
(b) It ={f e R|(I,f) =0}
(¢) The map (—, —) induces a bilinear non-degenerate map of k-vector spaces

(——):R/Ix I+ =k

(d) Forany i > 0, there is an isomorphism of k-vector spaces:
(R/T);)* = (1),
where " is the initial ideal of I, and I* = I if I homogeneous.

Proof. See [El113| Proposition 2.7]. OJ

Remark 6.23. The pairing (—, —) is perfect in case R = k|[[x1, ..., z,]]. In fact in this case

R =[] — Homy(D, k) = Hom(EP D;, k) = [[ Homw(D;, k) = [[ R}

Jj=0 Jj=0 Jj=0 Jj=0
where the map is injective because [7; — RJVV.

Using this bilinear pairing we can deduce the following property of the annihilators.

Proposition 6.24. Let R = k[zy,...,x,]) or R = K[[x1,...,2,]], and let D be the divided
power ring. Let Wy, W5 be finitely generated R-submodules of D. Then

Anng(Wy NW3) = Anng(Wy) + Anng(Ws).
Proof. See [Cil194] Proposition 12.9]. [

Definition 6.25. Let R = k[z;,...,z,] or R = kl[[zy,...,2,]|, and let m denote the ideal
(x1,...,2,). Let A = R/I be an Artinian quotient of R, and let n = m /[ be the (homogeneous)
maximal ideal of A. The socle of A is defined as:

Soc(A) = (0:4 n),

and it is a finite k-vector space. We denote by socdeg(A) the socle degree of A, i.e. the maximum
positive integer j such that n? # 0.

Remark 6.26. Let R = k|[zy,...,z,] or R = Kk[[z1,...,x,]], and let A = R/I be an Artinian
quotient of R. Then the Cohen—Macaulay type of A (see Definition [E.I)) can be defined as
follows:

7(A) := dimy(Soc(A)).
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6. Inverse system of Artinian rings

Definition 6.27. Let R = k[zy,...,x,] or R = k[[z1,...,z,]], and let m denote the ideal
(x1,...,2,). Let A= R/I be an Artinian quotient of R, and let n = m /I be the (homogeneous)
maximal ideal of A.

The socle type of A is the sequence

Soc(A) N’
(SOC(A) N ni“) '

Clearly o5 > 0 and 0; = 0 for j > s.

Definition 6.28. Let R = k[zy,...,x,] or R = k[[z1,...,z,]], and let m denote the ideal
(x1,...,x,). Let A= R/I be an Artinian quotient of R, and let n = m/I be the (homogeneous)
maximal ideal of A. Let s be the socle degree of A. Then A is said to be level if

Soc(A) = n’.

Equivalently,
oj=0forj#sandoy, =17

where 7 is the Cohen—Macaulay type of A.
If A is level of type 1, then A is Gorenstein (see Proposition [E.5)).

Definition implies that level Artinian k-algebras have “minimal” socle type.

Proposition 6.29. Let R = k[xy,...,z,| or R = K[[z1,...,x,]], and let m denote the ideal
(x1,...,2,). Let A= R/I be an Artinian quotient of R, and let n = m/I be the (homogeneous)
maximal ideal of A. Then

Hompg(Soc(A), k) = ———

and

7(A) = u(IH),
where pi(I1) denotes the minimum number of generators of I+ as R-module.

Proof. Consider the exact sequence

0 — Soc(A) - A ———= A"

Dualizing this sequence we obtain

IR A il SNy RN Hompg(Soc(A), k) — 0 (6.8)

where (z1,...,x,) 0 (f1,..., fn) = 2", z; o f;. By Nakayama’s Lemma, and Remark
7(A) = dimy (Soc(A)) = dimy (Homp(Soc(A), k)) = u(I+). Hence by (6.8) we get
I+ I+

HomR(Soc(A),k)E(xl x)o]i-:mo]r -

74



6.2. Macaulay Inverse System

Let /' € D be such that ' € D<,. Then
F = Z F; with F; € D; and F; homogeneous.
i=0
We denote by top(F') the degree r form of F, i.e. top(F') := F,.

Lemma 6.30. Ler R = k[zy,...,z,] or R = Kk[[xy,...,2,]], and let m denote the ideal
(x1,...,2y,). Let M C D be an finitely generated R-submodule such that M C D« for some s.
Then

moM = Mﬂpgs_l.

Proof. By Definitions|[6.7]and [6.8| we have

mo M = (@Rz> oM C (@Rz) 0D<y € Dey.

i>1 i>1
As M is an R-module, it is clear that m o M C M. Hence
mOMg MﬂDSs—l‘

Conversely, let G € M N D<,_y, and assume M = (Fy,...,F.). Then G = Y, f; o F; and
G € D<s_1. As M C D, we have F; € D<,. Hence G € D<,_; if and only if deg(f;) > 0

(see also Remark [6.9). O
Proposition 6.31 (Macaulay’s Inverse System for level algebras). Let R = k[zy,...,x,] or
R = K[[z1,...,x,]], and let m denote the ideal (z1,...,x,). Let A = R/I be an Artinian

quotient of R, and let n = m/I be the (homogeneous) maximal ideal of A. Let I be an
m-primary ideal of R. Then A is level of socle degree s and type T if and only if I+ is
generated by T polynomials Fi, ..., F. € D such that deg(F;) = s foranyi € {1,...,7} and
top(F1), ..., top(F,) are k-linear independent forms of degree s.

In particular, A is Gorenstein of socle degree s if and only if I+ is a cyclic R-module
generated by a polynomial of degree s.

Proof. Assume A is an Artinian level algebra of socle degree s and type 7. Then Soc(A) =
n® = (m* + I)/I, and by the proof of Proposition[6.21]

n® It ND. I+
Homp(Soc(4), k) 2 Homp (1 k) = o -
OHIR( OC( ) ) Ompg nst+i I+ N D§5,1 I+ N Dgsfl ( )

where the last equality holds since I+ C D, as [ is generated by elements of degree at
maximum s. Since the isomorphism in (6.9) and the one in Proposition [6.29]are compatible, this
implies

mo IL = IL ﬂDgs_l.

Hence I+ is generated by 7 polynomials Fi, ..., F; of degree s and top(F}), ..., top(F,) are
necessarily k-linear independent.

Conversely, assume that [+ = (F,...F,) such that F; € D, fori = 1,...,7 and
that top(Fy), . .., top(F) are k-linear independent forms of degree s. Then by Lemma[6.30}
mo [l = IL m,D<5,1, and

B I I+

mo [+ a ILﬂDszl
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6. Inverse system of Artinian rings

is generated as k-vector space by the linearly independent top(F}), . .., top(F). Thus Fi, ... F,
is a minimal system of generators of /- by Nakayama. Then Proposition yields that the
type of A is equal to 7 = u(I*). Furthermore, since F; € D, fori € {1,...,7}, we have
I = Annp(I+) C Anng(D<,) = m*TL, ie. A has socle degree s. Finally, Proposition@
yields Soc(A) = n®, i.e. Ais Artinian level of socle degree s. O
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Inverse system of level algebras of positive
dimension

This chapter contains the main result of this part of the thesis. We first recall the definition
of level graded algebra. Then we introduce the concept of level local k-algebras in positive
dimension, whose definition is not trivial, and we prove some general results on these algebras.
Afterwards, we consider R to be either the polynomial ring or the power series ring, and we
consider Cohen—Macaulay k-algebras given by quotients of type R/I, where I is homogeneous
in case R is graded. In [ER17] the authors proved that I+ is G 4-admissible if R/ is Gorenstein
of dimension d and, conversely, for any G -admissible submodule W of D, Anng(W) is a d-
dimensional Gorenstein k-algebra. Generalizing the result of [ER17]], we establish a one-to-one
correspondence between level k-algebras R/ of positive dimension d and particular submodules
of D, which we call Lj-admissible (see Definition [7.37)).
The content of this chapter is part of a joint work with Shreedevi Masuti (see [MT17]).

7.1 Level k-algebras of positive dimension

Throughout this chapter we will consider
R =XK[zy,...,z,) or R=K][[z1,...,2,]],

where n > 1 and k is an infinite field. The unique (homogeneous) maximal ideal of R will be
denoted by
m = <£L'1,...,{13n>
In the graded case, the definition of level k-algebra is well-known:

Definition 7.1. Let R = k[xy,...,x,], and let A := R/I be Cohen—Macaulay for some
homogeneous ideal I C R. Then A is called level if there is an homogeneous homomorphism
under which all elements in a minimal set of generators of the canonical module w4 have the
same degree.

Remark 7.2. If A is Artinian, then the minimal number of generators of w4 coincides with the
dimension of Soc(A), and therefore A is a level ring if and only if the homogeneous socle is
equal to w,4. Hence Definition [7.1] coincides with Definition [6.28]

Proposition 7.3. Let R = Kk([xy,...,x,], and let A := R/I be Cohen—Macaulay for some
homogeneous ideal I C R. Let a € A be a homogeneous non-zero divisor. Then A is level if and
only if A/{a) is level.
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7. Inverse system of level algebras of positive dimension

Proof. By [BH93| Corollary 3.6.14], if w4 is the canonical module of A, then

way(a) = (wa/awa)(deg(a)).
Hence it is clear that w4 is generated by elements of same degree if and only if w4, () is. [

In the local case, a definition of level k-algebra is well-known in the Artinian case (see
Definition [6.28). One idea to define local level in positive dimension is to take an Artinian
reduction (defined below) of a ring A and define A to be level if so is the Artinian reduction. But
unlike in the graded case (see Proposition , in the local case two different Artinian reductions
can have different socle type (see Definition [6.27). We show this fact in Example[7.13]

First, let us recall the definition of reduction.

Definition 7.4. Let R = k[[z1, ..., z,]], and let A := R/I be Cohen—Macaulay for some ideal
I C R. Let n be the maximal ideal of A. An ideal J C n is said to be a reduction of n if
there exists a non-negative integer n such that n"** = Jn". Then n"™! = 0 modulo J, A/J is
Artinian. If J does not contain properly any other reduction, then J is minimal.

Remark 7.5. By [HS06, Proposition 8.3.7], for any local Noetherian ring with infinite residue
field, there exist minimal reductions of the maximal ideal minimally generated by /(n) elements,
where [(n) is the analytic spread of n. Since n is n-primary, /(n) is actually the dimension of
the ring (see [BH93, Exercise 4.6.13]). Then a reduction J is generated by a regular system of
parameters for n, which is just a regular sequence in the Cohen—Macaulay case.

Definition 7.6. Let R = k[[z1,...,x,]], and let A := R/I be Cohen—Macaulay for some ideal
I C R. Let n be the maximal ideal of A. The reduction number of n with respect to J, where J
is an ideal of A, is

ry(n) == min{k | 0¥ = Jn*}.

The reduction number of n is
r(n) := min{r,;(n) | J is a minimal reduction of n}.

Remark 7.7. Observe that the Cohen—Macaulay type of a ring is independent from the minimal
reduction, i.e. for a local ring A, 7(A) = dimy(Soc(A/J)) for any J minimal reduction (see
[BH93, Lemma 1.2.19]).

Definition 7.8. Let R = k[[xy,...,z,]], and let A := R/I be Cohen—Macaulay for some
ideal / C R with maximal ideal n. An element a € n is A-superficial for n if there exists a
non-negative integer c such that

(Wt a)Nn® =1

for any ;7 > c¢. A sequence of elements ay,...,a, is called A-superficial for n if a; is an
A/{ay,...,a;_1)-superficial elements for n forany i € {1,...,r}.

Definition 7.9. Let R = k[[z1, ..., z,]], and let A := R/I be Cohen—Macaulay for some ideal
I C R with maximal ideal n. Let G := gr,,(A) be the associated graded ring of A. Each element
a € A has a natural image in GG, denoted by a*, which is called initial form of a with respect to
n. If a = 0 then a* = 0, otherwise a* = @ € n’/n'*! where t is the unique integer such that
a € nt\ nttl
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Remark 7.10. Let R = K[[z1,...,x,]], and let A := R/I be Cohen—Macaulay for some ideal
I C R with maximal ideal n. Let G := gr,(A) be the associated graded ring of A, with maximal
ideal GT. Let N :={z € n|n"z =0forsomen}and H = {y € G | (G")"y = 0 for some n}.
If a € n'\ n?, the following conditions are equivalent (see [RV10, Theorem 1.2]):

(i) ais A-superficial for n;
(1) a* & Upeassia/m) Ps
(iil) (0:q a*); =0forj > 0;
(iv) N:a= Nandw ' Nan = an’ for j > 0.
V) Wt ia=n/4+ (0:4a)and 0/ N (0:4 a) = 0 for j > 0.
Since k is infinite, condition ({ii) ensures the existence of A-superficial elements for n.

Lemma 7.11. Let R = Kk[[x1,...,2,]], and let A := R/I be Cohen—Macaulay of dimension
d for some ideal I C R with maximal ideal n. Let G := gr,(A) be the associated graded
ring of A, and let G be the maximal homogeneous ideal of G, i.e. Gt = @509 /v th Let

aiy,...,a, be an A-superficial sequence for n. Then a3, . .., a} is a G-regular sequence if and
only if depthq+ (G) > 7.
In particular, since dim(G) = dim(A), if G is Cohen—Macaulay, then aj,...,a" is a

G-regular sequence if and only if d > r.
Proof. See [RV10, Lemma 1.3]. []

Proposition 7.12. Let R = k[[z1, ..., x,)], and let A :== R/I be Cohen—Macaulay of dimension
d for some ideal I C R with maximal ideal n. Then any reduction of n can be generated by
A-superficial elements for n and conversely the ideal generated by some maximal A-superficial
sequence for n is a minimal reduction of n.

Proof. See [HSO6, Theorem 8.6.3]. []

Example 7.13. Let A = Q[[t®, ¢, ¢!, ¢15]]. Then A has type 2. It can be checked via computer
algebra systems that the two ideals J = (t5) and J' = (¢ + ¢7) are two minimal reductions of
m = (t6,¢7 ¢!1 #15). Moreover, it can be verified that A/.J has Hilbert function (1,3,2). Thus
type(A) = 2 = dimk(Soc(A/J)) = HF 4,,(2), i.e. Soc(A/J) = (n/J)?, which means A/J is
level. On the other hand, A/.J’ has Hilbert function (1, 3, 1, 1), and hence is not level.

The following lemma shows that if the associated graded ring gr,(A) = @;>on’/n"™! of a
Cohen—Macaulay local ring A is Cohen—Macaulay as well, then Artinian reductions of A have
same socle type. This need not be true in general, as Example shows.

Proposition 7.14. Let R = k|[[zy,...,x,]|, and let A := R/I be Cohen—Macaulay for some
ideal I C R. Let n be the maximal ideal of A. Assume that G := gry,(A) = @;son’/n'* is
Cohen—Macaulay. Then:

(a) The socle degree of A/J is the same for any minimal reduction J of n.

(b) If A/ J is level for some minimal reduction J of n, then A/J’ is level for any minimal
reduction J' of n.

In particular, if A is level, then A/J is level for any minimal reduction J of n.
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7. Inverse system of level algebras of positive dimension

Proof. Let J C n be a minimal reduction of n. Then by Proposition there exist a :=
ai, . ..,aq € nsuperficial sequence such that J = (a). Since G is Cohen—Macaulay, by Lemma

aj,...,ay;is G-regular. Let

14 hyt 4 - + hyt?
HSa(0) = = gy

be the Hilbert series of A, with i, # 0. Since HS4/,4(t) = HSA(2)(1 — t) for any 2* € G™5,
we obtain
HSA/J(t) =1 + hlt +---+ hsts.

Thus the socle degree of A/.J equals s and dimy ((n®* + J)/J) = hy = 7(A) do not depend on
the minimal reduction .J of A since the type of A is an invariant. Since (n®+ J)/J C Soc(A/J)
and dimy ((n® + J)/J) = 7(A) = dimy(Soc(A/J)), we have actually an equality Soc(A/J) =
(n® 4 J)/J for any minimal reduction .J. Hence the claim. O

Remark 7.15. In Example not only J and J' are both Artinian reductions, but they are also
superficial sequences (see Definition [7.8)), so also regular elements. This explains the difficulty
in defining level local algebras through quotients of regular elements, even if such elements are
superficial. For this reason, we use general reductions.

Theorem 7.16. Let (A, n) be a Noetherian local ring with infinite residue field, and let I be an
ideal of analytic spread at most l. Then there exists a non-empty Zariski-open subset U (I) of
(I/nI)! such that whenever ay, .. .,a; € I with (ay +nl,... a;+nl) € U(I), then (ay, ..., a)
is a reduction of I.

Furthermore, if there exists a reduction of I with reduction number n, then there exists
a non-empty Zariski-open subset U(I,n) of (I/nl)! such that whenever ay, ... ,a; € I with

(ay+nl,...;a;+nl) € U(l,n), then (a,...,a)) is a reduction of I with reduction number at
most n.
Proof. See [HS06, Theorem 8.6.6]. ]

Definition 7.17. Let R = k[[z1, ..., z,]], and let A := R/I be Cohen—Macaulay of dimension
d for some ideal I C R with maximal ideal n. We say that an ideal (a) generated by a sequence
a:=ay,...,aqis a general reduction of n if a belongs to the non-empty Zariski-open U (n, r(n))
of Theorem [7.16] If this is the case, we call @ := a4, ..., aq € n a general sequence.

Remark 7.18. Let R = k[[z1,...,x,]], and let A := R/I be Cohen—-Macaulay of dimension
d for some ideal I C R. Let n be the maximal ideal of A. Let @ := a4, ..., a4 be a general
sequence in n.

(a) (a) is a minimal reduction of n (see [Xiel2) Corollary 2.5]).

(b) aq,...,ay form a superficial sequence for n (see [Xiel2, Corollary 2.5]).
(c) fa; =z + [ foranyi=1,...,d, then z; € mand 2y, ..., z; are general in m.
Conversely, if 21, ..., z4 are general inm, then z; + I, ..., 24 + [ are general in n.

In particular, this means that A/(a) is Artinian for any general sequence a.

Notice that by Definition [7.17)and Remark [7.18](a) there always exist a general reduction
which is a minimal reduction of n. We call such a reduction minimal general reduction.

The following proposition guarantees that the socle degree and the Hilbert function are
independent of the chosen minimal general reduction.
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Proposition 7.19. Let R = k|[[zy,...,x,]|, and let A := R/I be Cohen—-Macaulay for some
ideal I C R. Let n be the maximal ideal of A. For any two minimal general reductions J and J'
of n,

socdeg (A/J) = socdeg (A/J")

and ' ’
dimy((n" + J)/J) = dimy ((n* + J')/J")
forany 1 > 0.
Proof. See [MX16, Proposition 3.2]. ]

More generally, Elias and Iarrobino proved the following:

Lemma 7.20. Let R = k[[x1,...,x,]], and let A := R/I be Cohen—Macaulay for some ideal
I C R. Let n be the maximal ideal of A. Let a be a general sequence for n. Then there are
integers ca(i, s) such that

ealis) = € (Soc(A/ (@) N (n/{a))")
In other words, the socle type of A/J is the same for any minimal general reduction J.
Proof. See [EI87, Lemma 1.1]. O
Motivated by this, we define level local k-algebras as follows:

Definition 7.21. Let R = k[[z1,...,x,]], and let A = R/I be Cohen—Macaulay of positive
dimension for some ideal I C R. We say that A is level if A/.J is an Artinian level k-algebra for
some minimal general reduction J of n. Due to Proposition this is equivalent to require
A/ J is an Artinian level k-algebra for any minimal general reduction J of n.

In particular, if A is Gorenstein, then A is level.

Example 7.22. This example is [RV00, Example 3, p. 125]. Consider the semigroup ring

A= [, 85, 60,69 2 K[[o, y, 2 u]l /(4 — 22, y7 — 2%, 22 — Py, 0 — ay).
Then A is Cohen—Macaulay of type 2 and gr,(A) is Cohen-Macaulay. Let J = (¢%). Since A/.J
has Hilbert function (1, 3, 2), it is level. Thus Proposition implies A is level.

In general, if gr,(A) is not Cohen—Macaulay, it is not known whether A/.J being level for a
minimal general reduction implies A/.J level for any minimal reduction.

Notation 7.23. Letnow R = k([xy,...,x,] or R = K[[zy,...,x,]], and let A = R/I be Cohen—
Macaulay for some ideal / C R. Let n = m/[ be the maximal (homogeneous) ideal of A. Let
a = ay,...,aq be a regular linear sequence if A is graded, or let (a) be a minimal general
reduction of n if A is local. Moreover, let z := 21, ..., 2z, be a linear regular sequence of R if R
is the polynomial ring or a minimal general reduction of m if R is the power series ring.

We will use the following notations:

a:=at,...,a}", withn € N¢,
2= ML 2k withn € NY
In| :=mny +--- +ng, withn € N?
e :=(0,...,1,...,0) € N9,
t:=(t,...,t) € N°
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In order to construct the inverse system of a level k-algebra A, we need A/(a™) to be level
for any n € N? and some minimal reduction (a). This follows immediately from the definition
in the graded case. In the local case we need to assume further that a is a general sequence.
Thus the aim for the remainder of this section is to analyze the structure of quotients of level
k-algebras by ideals of type (a®).

Definition 7.24. Let A be a local ring with maximal ideal n. The index of nilpotency of A with
respect to a reduction J of n is

sj(A) :=socdeg(A/J).

Proposition 7.25. Let R = k[[x1,...,x,]], and let A := R/I be Cohen—Macaulay for some
ideal I C R. Let n be the maximal ideal of A. Then there is an integer s(A) such that

s(A) = s,(4)
for any minimal general reduction J of n. Moreover,

syp(A) < s(A)
for any minimal reduction J' of n.

Proof. See [MX16, Proposition 3.2] and [Fou06, 5.3.3]. ]

Remark 7.26. From Proposition it follows that (¢°) is not a minimal general reduction in
Example In fact, 56y (A) < 546,47y (A) < s(A), where s(A) is the index of nilpotency of A
with respect to any general reduction.

Definition 7.27. Let R = k[[z1,...,z,]] and A = R/I be Cohen-Macaulay for some ideal
I C R. Let n be the maximal ideal of A. The index of nilpotency of A is the number

s(A) = s,(A)

where J is a minimal general reduction of n.
The index of nilpotency s(A) is well-defined by Proposition [7.25]

Definition 7.28. Let R = k[[x1, ..., x,]], and let A := R/I be Cohen—Macaulay for some ideal
I C R. Let n be the maximal ideal of A. The core of n is

core(n):= (| J= N J.

Jred. of n J min. red. of n

We recall the following theorem, which gives an explicit formula to compute the core. The
result is true more generally for equimultiple ideals, but we state it only for n.

Theorem 7.29. Let R = k|[[zy,...,x,]] with char(k) = 0, and let A := R/I be Cohen—
Macaulay for some ideal I C R. Let n be the maximal ideal of A. Let J be a minimal reduction
of nand r := r(n) the reduction number of n (see Definition . Then

core(n) = J" "
Equivalently, core(n) = J"t1 . n" for anyn > r.

Proof. See [HT0S, Theorem 3.7]. U]
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7.1. Level k-algebras of positive dimension

Theorem is not true in positive characteristic, as [PUOS, Example 4.9] shows. Thus
hereafter we need to assume char(k) = 0 when considering the local case R = k[[z1, ..., z,]].

We thank Alessandro De Stefani for providing a proof of the following proposition (through
private communication) in the one-dimensional case.

Proposition 7.30. Assume one of the following:

(1) R=XK[x1,...,2,), and A .= R/I is Cohen—Macaulay of dimension d > 1 for some ideal
I C R. We denote by n the homogeneous maximal ideal of A. Leta = a4, ...,a; € nbe a
linear regular sequence in A. Let s be the Castelnuovo-Mumford regularity of A.

(2) R =Xk|[xy,...,x,]|] with char(k) = 0, and A :== R/I is Cohen—-Macaulay of dimension
d > 1 for some ideal I C R. We denote by n the maximal ideal of A. Let {(a) be a minimal
general reduction of n. Let s be the index of nilpotency of A.

Then for any n € N4 := (N\ {0})%,
socdeg(A/{a™)) = s+ |n| — d. (7.1)

Proof. (1) We prove (7.1) by induction on |n|. The Castelnuovo-Mumford regularity of an
Artinian graded ring coincides with its socle degree. Since the Castelnuovo-Mumford regularity
of A, reg(A), and the regularity of the Artinian reduction A/(a) are the same, we have

socdeg(A/(a)) = reg(A/(a) = reg(A) = s.

Thus the assertion is clear for |n| = d, which is the base case as n € N%. Let [n| > d.
It is not restrictive to assume that n = (ny,...,ny) with ny > 2. By induction A/{a” ')
has socle degree s + |n| —d — 1. Let f € n**I2l=4+1 be 3 homogeneous polynomial. Since
petlal—d+l C (gner)

f=ap i+ as?fot -+ ag' fa
where f; € A are homogeneous polynomials. Thus deg(f;) > s+ |n| —d+1 — (n; — 1),
and so f; € nstlnl=d+i=(m=1) By induction hypothesis, s + |n| —d +1 — (n; — 1) =
socdeg(A/{al,ay?, ... aj*)), and hence n**lnl=d+i=(mi=1) C (gl o22  al*). Hence f; €
(al,ay?,... a}*) and f € (a®). This yields n**®=4¢+1 C (g). On the other hand, assume
f € ntlnl=dn Then a,f € n*tI0l=d\ (g2~°1) is a homogeneous polynomial, then a;f €
netlnl=d\ (gn) Hence n**12I=4 ¢ (g). This proves (7.1).
(2) Under the assumptions, s = s(A) is the index of nilpotency of A. Let

V = {J | J is a minimal reduction of n}.
By Proposition[7.25] socdeg(A/.J) < s(A) = s for any minimal reduction J of n. Therefore

n*t C () J = core(n). (7.2)
JeV
We again prove (7.1) by induction on |n|. Let J := (a). The assertion is clear if |n| = d. Let

In| > d+ 1. Set k := max{0,r — |n| + d}, where r := r(n) is the reduction number of n. Since
k+ |n| — d > r, by Theorem|7.29 we have

core(n) = JhHnl=d+l . yktinl=d (7.3)
Therefore, using (7.2)) and (7.3), we get
Jhpstinl=d+l c phtinf=dpstl © phtinl=d .ope(n) (7.4)
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7. Inverse system of level algebras of positive dimension

Moreover, there is also an inclusion J2Z—4t1 C (a). Indeed for any a? e Jl-dtl with
n' = (n},...,n})) € NYand |n/| > |n| — d + 1, there exists an i € {1, ..., d} such that n} > n,
and ay" - - - a;* C (n®). Soif k = 0 (7.4) yields

pstinl—d+1 C Jinl—d+1 C <Q@>‘

Assume now that & > 1. Since @, J/J"*! is Cohen-Macaulay (see Sally’s machine [RVI0,
Lemma 1.4]) and a; is a superficial element, then J*™! :4 a; = J* for any ¢ > 0.Hence again by

(7.4) we get

ns+‘ﬂ‘fd+1 C Jk+|ﬂ|*d+1 . Jk C Jk‘Hﬂl*CH’l : <Zf> _ J‘Q|*d+1 C <Qﬂ>

Thus socdeg(A/(a%)) < s+ |n|—d. On the other hand, if # € n®\ (a), then (a* ' --- a4 "z €

Proposition 7.31. Assume one of the following:

(1) R =XK[xy,...,x,), and A := R/I is graded level of type T for some ideal I C R. We
denote by n the homogeneous maximal ideal of A. Let a = aq,...,aq € 0 be a linear
regular sequence in A.

(2) R=K][[x1,...,z,]] with char(k) =0, and A := R/ is local level for some ideal I C R.
We denote by n the maximal ideal of A. Let (a) be a minimal general reduction of n.

Then A/{a™) is an Artinian level k-algebra of type T and socle degree s(A) + |n| — d for any
n € N4 where s(A) = socdeg(A/(a)) is the index of nilpotency in case A is local.
In particular, if A satisfies (1)), then A is level if and only if A/{a) is level.

Proof. (1) Follows from Propositions [7.3]and
(2) Since A is level of type 7, A/(a) is an Artinian local level k-algebra of type 7(A/(a)) =:

7. By Proposition[7.25] s := socdeg(A/(a)) = s(A). Let t := socdeg(A/(a™)). By Proposition
7.30(2), t = s + |n| — d. Consider the homomorphism

L o I S R L o )

e (a)

_ -1 1
T yzpt ezt

Clearly p is well-defined. Since a is a regular sequence in A, it is easy to verify that 4 is injective.
Hence . N )
dimy Wt le) Wt =T

(@) —  (a)
n' + (a®)

(az)

and A/(a™) is an Artinian local ring of type 7 (because the type is independent from the Artinian
reduction), we always have

On the other hand, since
C Soc(A/(a"))

t n
dimy L ) + (a*) <.

(az)

Therefore dimy “tZZ%@ = 7 and hence A/{a") is level. O

Remark 7.32. There may be an alternative proof of Propositions and using Rees
Theorem [BH93, Theorem 1.1.8]. This would make possible to avoid results on the core, and
therefore make the assumption on characteristic O not necessary.
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7.2 Inverse system of level k-algebras

In this section we give the structure of the Inverse System of level k-algebras. We always assume
k is an infinite field.

Definition 7.33. Let R = k[z1,...,z,]. Let A = R/I be Cohen—Macaulay of dimension d
for some ideal I of R. Then there exist elements z := 21,...,2z5 € Ry such that z + [ :=
21+ 1,...,zqg+ I form a regular sequence in A. We call z as a regular linear sequence for R/1.

Definition 7.34. Let R = k[[z ..., x,]]. Let A = R/I be Cohen—Macaulay of dimension d for
some ideal I of RR. Then there exists a sequence of general elements 2 := 21, ..., zg € m. From
the definition of general elements we get that z € m \ m?, and hence is a part of a regular system
of parameters of R. Thus, by Remark [7.18|(c), z + I := 2 + I,..., z4 + I forms a sequence
of general elements in R/[ and hence (z + I) is a minimal general reduction of n by Remark
@. We call z a regular sequence of general linear forms for R/1.

Remark 7.35. Whether R = k[z1,...,x,] or R = K[[z1,...,x,]], the sequence z of Definition
or Definition can be extended to a minimal system of linear generators of m, say
Z1yeeeyZdy -y 2n. Let Zy, ..., Z, be the corresponding dual basis in D, i.e. elements such that
z;0Z; =0;;. Then Dy = (Zy, ..., Zy)x.

Notation 7.36. In the following we denote N, := N\ {0}.

The following definition will be motivated by Proposition as inverse systems of level
algebras satisfy the properties listed.

Definition 7.37. Assume R = k|[zy,...,2,], or R = k|[[zy,...,2,]]. Let d and T be positive
integers. An R-submodule W of D is called L)-admissible for some 7,d > 0 (where L stays
for "level") if it admits a system of generators {HJ | j € {1,...,7},n € N¢} satisfying the
following conditions: B

(1) Forany n € N‘i there exist an integer s,, such that
Sp = degH; = degHé =...= degHg
and top(H,), ..., top(H}) are linearly independent.

(2) There exists a regular sequence z1, ..., 24 € R of linear forms in case R = k[z1,...,x,
or of general linear forms in case R = k[[x1, ... x,]| such that

J : A
to HZ _ H; o, ifn (?Z >0
= 0 otherwise

foranyn € N?,j € {1,...,7}andi € {1,...,d}.
(3) For any n € N, the submodules of D
Wo=(Hlje{l,....7})r
and
Vie(Zp . ZF | k= (ki,..., k,) € N" with k; < n; — 2 and |k| < s,) g,

satisfy ‘
W,NV, CW, (7.5)

for any i € {1,...,d}and@€N§lr such that n — e; > 0.
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7. Inverse system of level algebras of positive dimension

We say that W is graded if R = k[z1,...,z,] and H] is homogeneous for any j € {1,...,7}
and for any n € N9,

Example 7.38. In Chapter [§| we give some explicit examples of L-admissible submodules
of D. In particular, in Proposition [8.2] we will show that the cone is always Lj-admissible.
Indeed, let H', ... . H™ € k[Z4,1, ..., Z,] be (homogeneous) polynomials of same degree with
top(H?'),...,top(H") linearly independent. Let TV be the R-submodule of D generated by the
polynomials

Hi=zn"t .zt gl

forany j € {1,...,7}and n € N% n > 1. Then W is L}-admissible.

Remark 7.39. From Definition [/.3"7| we obtain the following facts.

(a) Definition (2) implies s, > s,, for any n’ > n.

(b) 1 € W, for any W,, # 0. More in general, this holds for any non-zero R-submodule of
D

(c) If W is an R-submodule of D satisfying Definition (), then
Wh—e, C ﬂVﬂi forn —e; > 0.

Indeed, 2/ ' o H) = 0forany j € {1,...,7}. SO Wy, € Vi foranyi € {1,...,d}. In
particular,

Wi C Vi =( V(2" Z" | k € N" with k; = 0 and |k| < S14e,)R

)

— (Z5r . Zk | By eNforje {d+1,...,n})x.

(d) If W isis Lj-admissible, then equality holds in Definition [7.3). In fact, by (),
Wh—e, C V,.. And by Definition @) Wy—e, C W,,. Hence

Wh—e, €W, N Vﬁi forn —e; > 0.
(e) Let W, and V! be as in Definition Then
zjo Wy C Wy e,

and ' '
2j 0 VQ’ C Vﬂ’_ej
forany j € {1,...,d}.
We now want to confront L}-admissibility with the definition of G ;-admissibility given in

[ER17, Definition 3.6], in order to show that our conditions are not the "union" of the ones
imposed by the authors in [ER17].

Definition 7.40. Assume R = k[zy,...,xz,], or R = K[[zy,...,z,]]. Let d be a positive
integer. An R-submodule W of D is called G4-admissible for some d > 0 (where G stays for
"Gorenstein") if it admits a system of generators { H,, | n € N } satisfying Definition @)
and

Anng((Hp—e,)) © Hy = (Hp—(n;—1)e,) forany i € {1,...,d}, andn — e; > 0. (7.6)

In the following proposition we show that Definition [/.40| coincides with Definition [7.37|if
T=1
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Proposition 7.41. Assume R = k[xq,...,x,], or R = K[[z1,...,2,]]. Let d be a positive
integer and W a R-submodule of D.

(a) If W is L}-admissible, then
Annp(Wy—e,) o Wy = Wi (ni—1)e; (7.7)
foranyi e {1,...,d} and n — e; > 0. The converse is not true in general.
(b) If T = 1, then W is Li-admissible if and only if W is G 4-admissible.

Proof. (a) Assume W is a (graded) L]-admissible submodule of D generated by {Hé |
jed{l,....7},n e Ni}, and let W,, = (H] | j € {1,...,7}). Letj € {1,...,7}, and
f € Anng(W,,_e,). Then

zio(foHé):fo(zioHé):foHéfei:O.
Hence ' ' . 4
fo Hé cW,nN VQZ N Vﬂlei C Wypee, N Vﬂzfei.

Now implies fo HJ € W,_o,. Repeating the same argument, we get fo H? € W,,_(5,—1)e,-
The fact that the converse does not hold can be checked in Example [8.6] -

(b) It is clear that condition in Definition coincides with condition (7.7). So if W
is L}-admissible, part (a)) yields directly that W is G 4-admissible.
Conversely, assume W = (H, | n € N%) is Gz-admissible. Then W satisfies (7.6). Let
W, := (H,). We claim that for i € {1,...,d},

W, Nkerp(Z;) € Wy (n;—1)e; for any n € N (7.8)
Indeed, consider f o H,, € W,, Nkerp(Z;). Then z; o (f o H,) = 0. Hence
foHy e =fo(z0Hy) =2z0(foH,)=0.

This implies that f € Anng((H,,—e,)). Therefore by foH, € (Hy—(n;—1)e;) = Wae(ni—1)es-
To prove that IV is L}-admissible it is enough to prove (7.3). We prove by induction on n;.
Letn; = 2. Let f € Rsuchthat fo H, € W,,NV,\. Then z; 0 (f o H,) € V,'_, = 0 by Remark
[7.391(€) and Definition[7.37} So f o H,, € W, Nkerp(Z;) C Wy_e, by ([73).

Assume now that (7.3) is true for n with n; > 2, and let f o Hy e, € Whie, NV, .. Then by

Remark [7.39](e]), we have '
zio (foHyye,) €EWyNV,

and hence z; o (f o H,1e,) € W;,—e, by induction. Thus there exists g € R such that
%0 (fo Hye) = 90 Hy o, = go (10 Hy) = 0 (g0 Hy).
This gives z; o (f o Hyye, — g © H,) = 0 and hence
fo Hytre; —go Hy = (f - gzi) o Hyte, € Wige, N kerD(Zz'> C Wite;—nje; = W@—(ni—l)ei

where the inclusion W, e, Nkerp(Z;) € Wyie,—n,e, follows from (7.8). As W,,_(n,—1)e; € Wi,
we get f o Hyie, € W,. Hence the claim. O

Lemma 7.42. Assume one of the following:
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(1) R = K[x1,...,2,), and W = (H] | j € {1,...,7},n € NY) is a non-zero graded
LY -admissible R-submodule of D with respect to a regular sequence of linear forms z.

(2) R = K|[x1,...,a)], and W = (H} | j € {1,...,7},n € N{) is a non-zero Lj-
admissible R-submodule of D with respect to a regular sequence of general linear forms
2.

Set W, := (Hj} | j € {1,...,7}). Then Wy = 0 if and only if W,, = 0 for any n € N

Proof. Suppose W3 = 0. We use induction on ¢ = |n|. If ¢ = d, then n = 1 and by assumption
Wi = 0. Assume ¢ > d and W,, = 0 for any n with |n| < ¢. It suffices to show that W,, ., = 0

forany i € {1,...,d}. From (7.3),

LV£+mfj‘ﬂ

n+e;

C W, =0.
If Wpie, # 0,then 1 € Wy, NV, by Remark (B), which is a contradiction. Hence
Wite, = 0forany i € {1,...,d}. The converse is trivial. O

Remark 7.43. Lemma works more in general. If N C M are two R-submodules D, then
N # (0 if and only if 1 € N (see also Remark (b)). But this is equivalent to 1 € M, which
is true if and only if M # 0.

Lemma 7.44. Assume R = k[z1,...,x,], or R = K|[[xy,...,2,]]. Let f : M — N be an
epimorphism between two non-zero (graded) R-modules M and N, both minimally generated
by v elements, i.e (M) = u(N) = v. Let my, ..., m,, be such that f(my), ..., f(m,) generate
N. Then my, ..., m, generate M.

Proof. Since f : M — N is surjective, as R is graded or local, f : M/mM — N/mN is
well-defined and also surjective. As N/mN is generated by f(m1) + mN, ..., f(m,) + mN
as a k-vector space and dimy N/mN = v, the elements f(m;) +mN,..., f(m,) + mN are
linearly independent. By linearity of the homomorphism f, this yields m; +mM, ..., m, +mM
linearly independent. Hence m; + mM, ..., m, + mM generate M /mM. By Nakayama’s
Lemma (which holds both in the graded and in the local case), mq, ..., m, generate M. [

Proposition 7.45. Assume one of the following:

(1) R=XK|zy,...,x,|, and R/ is Cohen—Macaulay of dimension d for some homogeneous
ideal I C R. Let z = z1,...,23 € R be such that z + I is a regular sequence of linear
forms for R/ 1.

(2) R =X|[[z1,...,z,]] with char(k) = 0, and R/ is Cohen—Macaulay of dimension d for
some ideal I C R. Let z = z1,...,25 € R be such that z + I is a regular sequence of
general linear forms for R/ 1.

Foranyn € N¢ set T, := (I + (22))*.
(a) If d = 1, then there is an exact sequence of finitely generated R-submodules of D
210

0—Ty —1T,—1T,1—0

foranyn > 2.
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7.2. Inverse system of level k-algebras

(b) If d > 2, there is an exact sequence of finitely generated R-submodules of D

d
0T =T, > PTlhie, > P Tn-ee

k=1 1<i<j<d
foranyn € N such that n > 2.
Proof. See [ER1/, Proposition 3.2]. OJ
Proposition 7.46. Assume one of the following:

(1) R=XKlzy,..., x|, and R/I is graded level of dimension d and type T for some homoge-
neous ideal I C R. Let z = 2y, ...,2q € R be such that z + I is a regular sequence of
linear forms for R/ 1.

(2) R =X[[z1,...,z,]] with char(k) = 0, and R/ is local level of dimension d and type T
for some ideal I C R. Let z = z1,...,2q € R be such that z + 1 is a regular sequence of
general linear forms for R/1.

Then there exist a L}-admissible system of generators H := {H} | j € {1,...,7},n e N_} C
D such that

I+ () =(Hyje{l....7})
for any n € N The system H is graded in case ().

Proof. Letz = z1,..., 24 € R be a sequence of linear forms in case (I)) or a sequence of general
linear forms in case (2)). Then by Remark[7.18] 2 + [ := 2 + I,..., 24+ I is a minimal general
reduction of n. Recall that by Remark the type of R/I does not depend on the reduction.
Then by Propositions and[7.31] R/(I + (z™)) is an Artinian level k-algebra of type 7 and
socle degree s,, = s + |n| — d for any n € N¢. Set

Wy = (I + ()"

Since R/(I+(z)) is an Artinian local level k-algebra of type 7 and socle degree s = socdeg(R1),
by Proposition m there exist polynomials H{, H?, ..., H] of degree s such that the forms
top(HY), ..., top(H]) are linearly independent and Wy = (HJ | j = 1,...,7). As (z) + I is
m-primary and d > 1, we have W; # 0.

Forn = (nq,...,ng), let

0> 2 = |{ns | mi > 2}

We put the lexicographic order on {1,...,d} x N,i.e. (i1,71) < (i, j2) if i1 < igorifi; = is
and j; < jo. We use induction on the pair (jn > 2|,|n| —d+ |n > 2|) € {1,...,d} x Nto
construct { H}};cr -}mena such that

(1) deg(H?) = s+ |n| —dforany j € {1,...,7} and top(H,), ..., top(H) are linearly
independent, a a a

(2) {Hj |neNy,je{l,...,7}} satisfy Definition 7.37, @), and

(B) (I+ ()t =(Hi|je{l,....T}).
Assume that [n > 2| = 1. Up to a permutation, we may assume n = (n,1,...,1) withn > 2.
Since |n — e; > 2| < 1, we have

(In—er>2)n—e —d+|n—e >2) <(n>2]|n| - d+n>2|).
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7. Inverse system of level algebras of positive dimension

{H), |0/ e N.,1 <j<7,n <n—e;}satisfy the requlred conditions. Let J = I+(z, ..., 24)-
Now, by Proposition [7.45] (@), we get an exact sequence

Hence by induction for any n’ < n —ej and j € {1,...,7} there exist Hé, € W, such that

0—Ti=(J+(a)" —Ty=(J+ () 5 The =T+ (7)) — 0. (79

Therefore for any j € {1, ..., 7}, there exist polynomials Hg € W, such that 2, o HJ = H_, .
By Proposition [7.30] Socdeg (R/(I + (z%°'))) = s+ |n| — d — 1 and by Proposition“ 6.31], this
implies deg H,, o, = s+|n|—d—1. Hence by exactness of- deg HJ = s+|n|—dforany j €
{1,...,7}. Since top(H,_,,), ..., top(H}_,, ) are linearly independent, top(H,,), ..., top(H})
are linearly independent too. By Propositionm (I + (z2))* and (I + (22 ‘“‘1))L are both
minimally generated by 7 elements. Then Lemma I: gives (I + (™) = (H | j €
{L1,....,7}).

Now let! := |n > 2| > 2. After a permutation, we can assume thatn = (ny,...,n;,1,...,1)
with n; > 2fori = 1,...,1. Wesetz = z,...,zand ' = (ny,...,n) € N\ and
J =1+ (z41,...,24). By Proposition[7.45](b) we get an exact sequence

o%,
O—)T11—>T/—>@Tn ek—> @ Tn —e;—ej)

k=1 1<i<j<l

where Ty = W1y, Ty = (J+(2))t = Wa, Tw—e, = (JH (2% )t = Wy, and Tyy_e,—o; =
(J + (2™ 7e%))t = Wye,—e, and ¢}, is dual to the map

ow: D R/I+ (%) %@R/IvL en))

1<i<j<l

(W,j)lgiq’gl —> Z ,...,O, zj(m)i,(),...,O,—zi(WJ)j,O,...,O).

1<i<j<l

where 2;(7;); is in the i-th posmon and —z;(7;;); in the j-th position. By induction for any
ke{l,. l} there exist { H;,_ ek}JE{l -+ € D such that

.....

(1) deg e, =S+ |n| —d—1forany j € {1,...,7} and the forms of higher degree of
H}l e - H,TZ o, are linearly 1ndependent,
(2) zloH,]L ek—H,ﬁ er—e; foranyz'e{l LU}, i # k,and

(3) (I + {22 )" = (Hp o, | J € {1, }>-
Therefore for any j € {1,...,7},

(HiL o1y - - Hﬂl o) € ker(dy,).

Hence by the above exact sequence we conclude that there exist 7}, J € W, such that z; o H} J =
Hﬂb e, forany k € {1,...,1}. By Proposmon socdeg R,,—e, = $+ |n| —d — 1 and thus
deg Hfl e, = $+|n|—d—1 by Proposition Therefore we conclude that deg H I =s+|n|—d

As top(HﬁL e )s - top(H] o ) are linearly independent, top(H})), ..., top(H}, T) are linearly

independent too. By Lemma 4 {H,,...,H]} are thus generators of (I + (2™))*. Thus we

have constructed {H/ | j € {1,. 7'} n e Nd} satisfying conditions (1),(2) and (3). For them
to be L7-admissible, we still have to verify (7.5)).

Fixi € {1,...,d} andlet ' € (I + (z2))* NV}, where we recall V| = (Zj* - Zkn | | =
(ki,...,k,) € N*with k; < n; —2and |k| < s+ |n| — d). Since F' € (I + (z))* we have
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7.2. Inverse system of level k-algebras

(I + (2™)) o F'. This means that [ is annihilated by all the elements in (/ + (z™)), so in particular
by elements of /. Thus / o F' = 0. As F' € Vﬂi, we have

il =0,

(2

Hence
(I+{(z2)) o F=ToF + (2 ) oF = (%) o F = 0

Thus F' € (I + (2% °))*. This proves (7.3). Therefore (Hj | j € {1,...,7},n € N1) is
a (graded) Lj-admissible submodule of D. Since (Hj | j € {1,...,7}) # 0, we have that
<H£|j€{1;~--,T},@€Ni)7€0byLemma O

The following proposition justifies better Definition [7.37}(3), and in particular it clarifies the
meaning of the V..

Proposition 7.47. Assume one of the following:

(1) R = K[z1,...,2,), and W = (H}, | j € {1,...,7},n € N is a non-zero graded
L}-admissible R-submodule of D with respect to a regular sequence of linear forms z.

(2) R = K[[z1,...,2,]), and W = (H} | j € {1,...,7},n € N% is a non-zero L}-
admissible R-submodule of D with respect to a regular sequence of general linear forms
Z.

Set Wy, := (H} | j € {1,...,7}) for any n € N*. Then

Anngp(W,) = (2™ + () Anng(W,).

neNd

Proof. Let us denote
I, == Anng(W,).

Then 1, is an ideal of R. We denote

I'= ) Anng(W,) = () In

neNd neNd

Then I is also an ideal of R, as it is intersection of ideals.
(C) First observe that
L, C L1 + (2%, (7.10)

for any n € N In fact, forany i € {1,...,d} and n € N¢,

AnnR(VniJre,-) = (") 4+ (21, .., Bi ..., 2 bei

)

where we recall s, = deg(H}) forany j € {1,...,7}. As Wy, NV}, C W, Proposition

n+e;
gives

]ﬂ = AHHR(WQ) - AnnR(WQ+ei N Vgi+ei)
= Anng(Wyie,) + AnnR(vﬂi+ei)

=lnte; + ("),
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7. Inverse system of level algebras of positive dimension

where the last equality follows since (21, ..., %, ..., 2,)%2 ™ C Anng(W,, e, ). Therefore
[ﬂ - [EJrel + <ZIL1> c [ﬂ+91+62 + <Z{l1,232> c---C Iﬂ+e1+---+6d + <ZIL1? s 723d>
= I + (2%

for any n € N%
Now fix n € N and consider f € I,,. By (7.10) there exist f, 11 € I,,11 and gy € (22) such that

I = Jut1 + 0.
Since f, 11 € I,11, again by (7.10) there are f, 2 € I,,12 and g; € (2%**) such that

fos1 = foi2 T 01

Thus f = f,4+2 + go + ¢1. By recurrence there are sequences { f,,+¢ }t¢>0 and {g; }+>0, where
t=(t,...,t) e N fo1¢ € Lt, g € (2%TF), such that

Jott=1) = fate + gi-1.
So, for any ¢t > 0, it holds

t—1
f= ot +D_ 9 (7.11)
=0

Let g’ = Y50 9i € k[[z1,..., 2,]], and let f' = limy_o fuse € Kk[[21,...,2,]]. Taking limit as
t — oo in (7.11)), we get

t—1
f= tlg&f - tli>I?o <fn+t +;gi> =f+d.
Since g, € (z%**) for any ¢ > 0 (in particular gy € (%)), we obtain ¢’ € (z2). Now for any
k € N9, there exists a positive integer N such that m" C ;. Since fiyt — f' € m" C I, for any
t > 0and I}, C I forany ¢t > 0, we get that f’ € I, for any k € N Thus f' € I = \yend 1
and hence f € I + (z%). This gives that [, C I + (). -
If R =XKk[xy,...,2,),then f' € I C R. Since f € Rwe getthat ¢’ =),59; € R.

(2) By Deﬁnition@@, 2o H) =0forany j € {1,...,7}andi € {1,...,d}. Hence
(%) C I,. Clearly, I C I,,. Hence the claim.

O]
Lemma 7.48. Assume one of the following:
(1) R = K[zy,...,x,] with unique homogeneous maximal ideal m, and z = zy, ...,z is a
regular linear sequence of R.
(2) R =K][[x1,...,x,]] with unique maximal ideal m, and z = z1, . . ., 2, is a regular general

linear sequence of R.

Let I C R be an ideal, homogeneous in case (1)). Then I = (,ena(L + (2%)).

Proof. Let f € R/I, and assume f € J, := (2% ... 2}) C m!/I for any ¢ > 1. Then
by Krull intersection theorem, M;>1J; C ﬂtzlmt/] = 0. Thus f = 0,i.e. f € I. Hence
Nuene (I + (2™)) C 1. The other inclusion is trivial. O

Proposition 7.49. Assume one of the following:
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7.2. Inverse system of level k-algebras

(1) R = K[z1,...,x,), and W = (H} | j € {1,...,7},n € N%) is a non-zero graded
LY -admissible R-submodule of D with respect to a regular sequence of linear forms z.

(2) R = Kk[[21,...,x,), and W = (H] | j € {1,...,7},n € N% is a non-zero Lj-
admissible R-submodule of D with respect to a regular sequence of general linear forms
2.

Set W, := (H} | j € {1,...,7}) for any n € N°. Then

I:= () Anng(W,) = Anng(W)

neNd
is an ideal of R and z is a regular sequence modulo 1.

Proof. First of all, let us observe that [ is an ideal of R. The annihilators Anng(1V,,) are ideals
for any n. Thus [ is an ideal since it is intersection of ideals.

Let 1, := Anng(W,,). By Proposition we have
L, =1+ (z").

First we prove that z; is a nonzero-divisor of A = R/I. By (2) the action of z; defines an
epimorphism of R-modules
Wy =5 Wye, — 0 (7.12)

for any n — e; > 0. Since I,, = I + (z™) by Proposition7.47, applying Hompz(—, k) to (7.12)
yields by Proposition [6.22](c]) an exact sequence of R-modules
. R

0— — .
I+ (znety T4 ()

Let f € Rbe such that 2, f € I. Since z; f € I + (z%), from the exactness of the sequence we
deduce that f € I + (22 ') = I,,_, for any n — e; > 0 and hence we conclude that f € I.

Now assume that 21, . . ., z;, [ < d, is aregular sequence of R/I. Givenn' = (nj41,...,nq) €
N? we taken = (1,..., 1,141, ...,nq4) € N% By Definition the derivation by 2,1
defines an epimorphism of R-modules for any n;1 > 2

Z, o
W, =5 W,

n—ep4;

— 0.

Since I,, = I + (), this sequence induces an exact sequence of R-modules

R 241 R

0—> — n ng\ *
I+<21,...,zl)+<zfﬁl_1,...,zgd> I+ (2, z) + (gt 20

Let f € Rbesuchthat zy i f € I+ (z1,...,2). Since ziy1 f € T4+(z1, ..., 20+ (=1, ..., 25

for any n, 1, ..., ng, by exactness we deduce that f € I + (z1,...,2) + (zﬁﬁl_l, ooy zyt) for
any ny41 > 2. Lemmal(7.48|applied to [ + (z1,...,z) yields f € I + (z1,..., z). O

Now we prove the main theorem.
Theorem 7.50. Assume one of the following:

(1) R=XK|xy,...,x,| with unique homogeneous maximal ideal m, or
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7. Inverse system of level algebras of positive dimension

(2) R =XK]|[x1,...,x,]] with unique maximal ideal m and char(k) = 0.

Let d < n be a positive integer. There is a one-to-one correspondence between the following
sets:

I C R suchthat R/I is a W =(H)|je{l,...,7},n e N’
level k-algebra with — L}-admissible submodule of D
dim(R/I)=dand T(R/I) =T for some seq. of (gen.) lin. forms z € R
I — It

Npend AnnR((Hi lje{l,....7})) «— W

In particular, to homogeneous ideals correspond graded L}-admissible submodules of D and
vice versa.

Proof. We prove the result at the same time for graded and local case. We give different details
only if necessary.
Let

C :={I C R| R/I level k-algebra with dim(R/I) = d,7(R/I) = T};
C':={W C D |0 # W Lj-admissible submodule with W = (H}, | j € {1,...,7},n € N9 1.

We define two maps

0:C—C 0.C" =C
[Tt W () Anng ((H] |5 €{1,....,7}).
neNd

First, let us prove that these two maps are well-defined.

Let I € C. Then there exists a sequence of (general) linear forms z = 21, ..., 25 € R. Then
by Propositionthere exists an Lj-admissible system of generators {H}, | j € {1,...,7},n €
N4} C D such that (I + (2™))* = (HJ | j € {1,...,7}). Hence the map @ is well defined.

Conversely, let W € C’ be generated by {H7 | j € {1,...,7},n € N%} with respect to a
regular sequence of (general) linear forms z := z1,. .., zg in R. Set

W, = <H£U€ {1,...,7});
L, == Anng(W,);

[ = mﬁeNdlﬂ.

We want to show that R/I is a level k-algebra of dimension d and type 7.

By Proposition I is an ideal of R and z is a regular sequence modulo /. Hence
dim(R/I) > d. On the other hand, since W # 0, by Lemma [7.42] W; # 0. Therefore by
Proposition [7.47} I + (z) = I, = Anng(W;). As W is finitely generated, R/(I + (2)) is
Artinian by Macaulay’s Inverse System. This yields dim(R//) < d. Thus dim(R/I) = d. In
particular, since z is a regular sequence of length d, R/I is Cohen—-Macaulay.

Let us now prove that R/1 is a level k-algebra. By Remark[7.18] z+1/I C m/I is a minimal
general reduction of m/ 1. Proposition [7.47 gives I + (z) = I1. Since I; = Anng(W;) and W,
is generated by polynomials Hj, ..., Hj of same degree with top(H;), ..., top(H;) linearly
independent, by Proposition R/(I 4 (z)) is an Artinian level k-algebra of type 7. Since
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7.2. Inverse system of level k-algebras

R/ is Cohen—Macaulay, we conclude that R/ is a d-dimensional level k-algebra according to
Definition (resp. Definition [7.1]if graded). Hence 6’ is well-defined.

Finally, we prove that # and @’ are inverses of each other. Let / € Cand z = z1,...,2z0 € m
a regular sequence of (general) linear forms. Then

00 =0'((U (I +(=)) = () Amp((T+()7) = (| T+ (") =1
neNd neNd neNd
where Annp((I + (z%))*) = I + (2) by Remark , and (,ena (I + (2%)) = I by Lemma

[7.48 ‘
Conversely, let W = (H] | j € {1,...,7},n € N%) € C'. Then

00' (W) = 6( () Aung(W,) = ( U (Annp(W,))") = (U W) =W

neNd neNd neNd
where W, = (H} | j € {1,...,7}) and (Anng(W,))" = W, by Remark|6.16 O

Remark 7.51. If Propositions and are true also for non-general sequences, as stated in
Remark[7.32] then Proposition holds too, and as a consequence we can also state Theorem
in more generality. In particular, we have a correspondence between ideals / such that
R/I + (z) is level for some regular sequence z and L7-admissible R-submodules of D with
respect to the regular sequence z.

The following theorem shows that important information about a level k-algebra is encoded
in its inverse system.

Theorem 7.52. Let d < n be a positive integer.

(a) Let R = K[x1,...,x,]|. Then there is a one-to-one correspondence between d-dimensional
graded level k-algebras A = R/ of Castelnuovo-Mumford regularity r and multiplicity e
and non-zero graded Ly-admissible R-submodules W = (H} | j € {1,...,7},n € N)

of D such that deg H{ = r and dimk(<H{ je{l,...,T}H)) =e

(b) Let R = K[[x1,...,x,]| with char(k) = 0. Then there is a one-to-one correspondence
between d-dimensional local level k-algebras A = R/ of multiplicity e and non-zero
L7-admissible R-submodules W = (Hé | j € {1,...,7},n € N% of D such that

dimy((H{ :j€{1,...,7})) =e.
Proof. (a) If R = k[z1,...,2,) and A = R/I is a homogeneous level k-algebra, then the
multiplicity and the Castelnuovo-Mumford regularity of A coincide with those of A/(z) A for any

Z:=z1,...,%q regular linear sequence for R/I (see [BH93, Remark 4.1.11] for the multiplicity
and [BH93, §4.3] for the regularity). Hence

e(A) = dimk(<H{ lje{l,....7}))

and '
reg(A) = deg(H{) foranyj € {1,...,7}.

(b) Let A = R/I be a d-dimensional level local ring and let z = z1, ..., z4 be a sequence
of general linear forms in R. By Theorem , the dual module I+ = W = (Hé | j €

{1,...,7},n € N%) is an L]-admissible submodule of D. As (I + (z))* = (Hf1 1 j €
{1,...,7}), by Proposition[6.31]

socdeg(A/(z)A) = deg(H7)

95



7. Inverse system of level algebras of positive dimension

forany j € {1,...,7}. Since (z) is a minimal general reduction of n, and therefore z is a
superficial sequence by Remark (b), the multiplicity of A (see Definition coincides
with the multiplicity of A/(z)A and hence

e(A) = dimy(A/(2)A) = dim((H] | j € {1,...,7})). O
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In this section we give examples of applications of Theorem[7.50] In general it is very difficult to
verify whether a given R-submodule of D is L]-admissible, as one needs to check the conditions
in Definition [7.37|for an infinite number of elements. However, as observed in [ER17, Proposition
4.2] for the Gorenstein case, in the graded case it suffices to verify these conditions for finitely
many elements (Proposition [8.4)).

In the local case, we give only examples where the graded associated ring is Cohen—Macaulay,
so that, due to Proposition|/.14] we can consider any minimal reduction instead of general ones.

Definition 8.1. Let d > 1. Anideal ] C R = k|[zy,...,x,]] is a cone with respect to an ideal
J Ck[[Zasrs ... )] if I = JR.

The following proposition shows that every cone constructed starting from 7 suitable elements
is the dual of a level k-algebra.

Proposition 8.2. Let d > 1, and let H*,... H™ € kpp (Xat1,- .., Xn] be elements of same
degree with top(H"'), ... top(HT) linearly independent, and let H = (H',... H™) C D. Let
W be the R-submodule of D generated by the elements

H) = Xt X B = XY

forany j € {1,....,7} and n € N% n > 1. Then R/ Anng(W) is a d-dimensional level
k-algebra. Moreover, if the H? are homogeneous for all j € {1,... 7}, then R/ Anng(W) is
also graded.

In particular, Anng(W) is a cone with respect to Aung(H), where S = K[[zg41, ..., Tp]]
with chark = 0 or S = k[zg411,...,2,) if R/ Anng(W) is graded.

Proof. We show that W is a L]-admissible [?-submodule of D with respect to the sequence
T =xy,...,xrq. We will denote by X; the elements of D dual to the coordinates x;, and by X =
X1,..., Xy Ttis clear that for any n € N deg H! = --- = deg H? and top(H}), ..., top(H)
are linearly independent. Also, forany j € {1,...,7},i € {1,...,d} and n € N? with n; > 2

x;0 Hl = x;0 (X071 .ng—lHJ‘) =Xt .X;lz'*?-__ng—lHj - ‘
- 0 lfnl- =1

(8.1)
and hence W satisfies Definition [7.37/(2). Let us prove Definition [7.37/(3). From (8.1)) we obtain
that

{Hg_ei if ;> 1

zpo H) = X"V H e Vi= (X |k e N, k; <n; — 2, |k| < deg(H") — |n| — d)
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if and only if & = i and nj, = n; > 1. Moreover, in this case, by 1), z; 0 HI € W, ..
Hence W, NV, C W,,_, for any n — e; > 2. Hence W is a L]-admissible R-submodule of D.
Theorem [7.50]implies R/ Annpg (W) is a level k-algebra of dimension d. Notice that we didn’t
prove that z is a general sequence. However, since the ring we find applying the correspondence
has Cohen—Macaulay graded associated ring, it is level with respect to any Artinian reduction

(see Proposition[7.14).

To prove that Anng(1V) is a cone with respect to Anng(H ), recall that
Anng(W,) = () + Anng(H),
by construction. Hence

Annp(W) = () Anng(W,)

neNd
= () (&, ...,2}?) + Anng(W1)R)
neNd
= Anng(W1)R
where the last equality holds thanks to Lemma [7.48] O

Definition 8.3. Let t, € N,.. We say that a family H = {H] | j € {1,...,7}, n € N%, [n| <
to} of elements of D is L]-admissible if the elements Hi satisfy the conditions of Definition
[7.37)up to n with |n| < .

The following proposition shows that in the graded case finitely many admissible elements
‘H are sufficient to recover a graded level k-algebra.
Proposition 8.4. Let H, ..., H] be elements of degree r with top(H}), . . ., top(HJ) linearly
independent. Let ty > (r + 2)d for some d > 0 and let H = {H] | j € {1,...,7},n €
N? |n| < to} be an admissible set of homogeneous elements with respect to a regular linear

sequence z = z1, . .., zq for R. Assume there exists a graded level k-algebra A = R/I such that
(I + (%)t =Wy = (H]|je{l,...,7}) forany |n| < to. Then

I ={f € Aung(W,;,) | deg(f) <r+1}.
Proof. Recall that the Castelnuovo-Mumford regularity of A is
reg(A) = reg(A/(z)A) = reg(R/ Anng(W;)) = socdeg(R/ Anng (W) = deg H; = 7.

It is well known that the maximum degree of a minimal system of generators of [ is at most
reg(R/I) + 1. Hence the claim follows from the identity Anng (W, 2) = I + (z""2). O

8.1 Level algebras from L)-admissible systems

The following example shows how Propositions [8.2] and [8.4] can be effectively used to construct
examples.

Example 8.5. Let R = Q|x,y, z] and D = Q[X, Y, Z]. Let

H =Y? H =273

Hy = XH;{ H) = XH:?
H} = X?H} H? = X*H?
H} = X°H} Hi = X°H}
Hi = X'H]{ H? = X*H;}.
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By Proposition [8.2] the set
H = {H,, H, Hy, H, H, H, Hy, H{}

is L]-admissible. The involved elements are homogeneous, and hence by Proposition [8.4 we
have that
I={y*yz ") CR=Xklxy, 2

is a 1-dimensional level ideal of type 2.

From Proposition[6.31]it follows that the intersection of Gorenstein Artinian ideals (i.e. ideals
such that the quotient is Gorenstein) of same socle degree is level. The following example shows
that this is no longer true if ideals have positive dimension.

Example 8.6. Let R = Q|x,y,z] and D = Q[X, Y, Z]. Let

H =Y3-27° H?=Y?*Z

Hy=XH +YZ* H? = XH?
Hy = XHy, —Y*Z® H; = XHj
Hy=XH;+Y?2% —42° H? = XH?
HY = XH,+Y"-Y*'Z® + 4y Z° H? = X Hj.

By using Singular or Macaulay 2 one can verify that the set H, = {H], Hy, Hi, H;, H3} is
(1-admissible and hence by Proposition [8.4] the ideal

I = (yz+azz,y> + 2° — 2y + 2%y — 2°)
is a 1-dimensional Gorenstein ideal (see [ER17, Example 4.4]). Similarly, the set Hy =
{H? HZ H? HZ, HZ?} is Gi-admissible and the corresponding 1-dimensional Gorenstein ideal
is
T ={z%9).

In fact, both [ and J are complete intersections. Using Singular or Macaulay 2, it is easy to
check that

INJ = {x2® +y2 dy’z + 24 2%y® — 229" + 2y® — o° — 922?)
and R/(I N J) is a 1-dimensional ring with the following graded minimal R-free resolution:
0— R(—6)® R(—7) » R(—3)® R(—4) ® R(—6) - R — 0.
Hence R/(I N J) is not level. If we consider what should be the dual submodule in D:
W:={H]|j=1,2andn € N.}

we have
7% € (H}, HY) N QIY, 2]\ (H}, H?)

and hence W does not satisfy Definition[7.37](3)). However, it is easy to verify that W satisfies
(7.7).
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8.2 Inverse systems of level k-algebras

In this section we want to show some examples of the inverse systems of special classes of level
algebras.
Let ny,...,n; be an arithmetic sequence, i.e.

ni:ni_l—i-q:nl—l—(i—l)q

fori € {2,...,l} and ¢ € N,q > 1. Then the ring A = k[t™,...,t™] is a semigroup ring
whose associated graded ring is level (see [MT95, Prop. 1.12]). By [Fr687, Example 1.(b)], the
type of gr,(A) is always greater or equal than the type of A. If gr,(A) is level, then the two
types coincide. Hence we can deduce that the local ring A is also level (see Definition[7.21] and
Proposition [7.14).

Example 8.7. Let A = Q[[t5,¢1°, ¢ !8]]. Then A is a semigroup ring associated to an arithmetic
sequence, and we know from the previous observations that it is level. It is easy to check that
A = R/I where R = Q[[z,y, 2, w]] and

I=(2*—w,a* —yz,x2 —y*, 2%y — 22).
Then (z) is a minimal reduction for A, and as gr,(A) is Cohen—Macaulay, Proposition tells
us that we don’t need to find a minimal general reduction. The following elements in D are the

inverse system of A up to degree 5:

H =Y H} =27

Hy = XH/ H; = XH} +Y?

H} = X?H] H; = X’H} + XY? = XHj

H=X°H{ +YW + Z* H = XPH? + X?Y?+ ZW = XH3 + ZW

H)=X'H + XYW +XZ?+Y?Z H:=X'H?+X3Y?+ XZW +YZ> + YW
=XH;+Y?*Z = XH; +YZ* +Y*W

In principle, by Theorem we have an infinite number of elements in the inverse system.
However, in this case, to recover the ideal we only need a finite number. Let W5 5) = { H3, HZ}.
Using Singular, one can verify that

I =Annp(Wes)<r = (2° —w, 2z — y?, 2w — yz,2° — yw,2°) <4

= (2 —w,xz — Y, 2w — yz, 2* — yw).

Another important class of level rings are matroid simplicial complexes. By [Sta96, Proposi-
tion 3.2] all the Stanley-Reisner rings associated to matroid complexes are level. Let us describe a
particular type of these matroids, coming from matrices. If k is a field and m < n, let X € k""*".
The m x m minors of X are denoted by [i1, ..., 4,| where 1 < iy < -+ < i, < n. Letus
consider the simplicial complex A with vertices {1,...,n} and facets {F = {iy,...,in} |
[i1,...,im] # 0}. Then A is a matroid. Stanley’s result yields that R/l is a graded level
algebra, where I, is the Stanley-Reisner ideal associated to A (i.e. the ideal of non-facets).

Example 8.8. Let
1020 3
01020

Then the simplicial complex A has facets {{12}, {23}, {34}, {45}, {14}, {25}}. The figure
below illustrates the simplicial complex:

100



8.2. Inverse systems of level k-algebras

2 3
1<X
4 5

Let R = Q[z1, 9, 3, 24, x5]. We can easily compute the Stanley-Reisner ring associated to
this matroid:
In = <$1$3,$2I4,$1I57$3$5>

The ring R/I, is a graded level ring of dimension 2 and type 2. Observe that x5 + x4 and
x1 + x3 + x5 form a regular sequence for A = R/Ia. In order to find its inverse system, we first
operate a change of coordinates:

¢:R—S=Qly,...,ys
Ty + Tg = Y1
T1+ T3+ Ts > Y2
T3 Ys
Ty 7 Y4
Ts5 = Ys

Under this change of coordinates we get the ideal

I'=o(a) = ((y2 — ys — Ys)y3, (Y1 — Ya)Ys, (Y2 — Y3 — Y5)Ys, Y3Ys)-

The ring A = S/I is again a graded level ring of dimension 2 and type two,and y;, y» form a
regular sequence for A. Consider D = Q|[Y7, ..., Ys] the divided power ring dual to S. Using
Singular, we can compute the first generators of I+ C D:

H(ll,l) =Y,Y5 H(QM) =Y3Y,

H{y ) =Ya(YaYs) + YaYy H{) ) =Ya(Y3Y1) + Y5'Y)

H(12,2) :YlH(11,2) + YQYEYZ’) + Y42Y52 H(22,2) :YlH(Ql,Q) + Y2Y3Y42 + Y32Y42

H(14,4) :Y12Y22H(12,2) + KYQP)YALSYBJF H(24,4) :Y12YQ2H(22,2) + Y13Y2Y33Y4+
Y23Y;14Y5 + }/—1}/—221/;3}/52_'_ }/—131/;345/4 + Y12Y2Y33Y42+
Y22Y44Y52 + }/13}/2}/43/53+ 3/123@43@2 + Y1Y23Y3Y43+
YfYéYng’ + Y1Y2)Q3Y53—|— )/1}32)/32}@3 + Y1Y2Y33Y43+
}/—2}/;14}%3 + Y13K;Y})4+ Ylyglyf + 1/—235/}’5144_
Y12Y42Y54 + )/1}/43}/54+ }/22)/323/44 + 3/23@,35/44-#
v,y Y;'y;

The set
Hl = {H(11,1)7 H(Ql,l)a H(11,2)a H(21,2)7 H(12,1)7 H(22,1)7 H(12,2)> H(22,2)7 cee H(14,4)7 H(34,4)}

is L-admissible, with d = dim(R/IA) = 2.
From Proposition H we know that Wy 4) = (H{, 4, H{, 4)) is enough to identify the ideal /.
In fact, it can be verified that

I =Annp(Wiua)<s = (YsUs, YoUs — Yar Y1Ya — Ya YoUs — Y3, YaUis Yo Y, Ya) <3
=(Y3Ys, YoUs — Yz, Y1¥a — Ui, Y2Us — Y3)-
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8.3 Questions and Remarks

Question 8.9. Is it true that every graded or local level k-algebra of dimension d > 0 and type 7
is intersection of 7 graded or local Gorenstein k-algebras of dimension d > 0?

Remark 8.10. The answer to Question [8.9] in the Artinian case is positive, and it a direct
consequence of Macaulay’s inverse system. However, it is not clear if its possible to use
Theorem to answer in general. In fact, for now, we are not able to prove that the module
W, = (HJ | n € N%) is G -admissible for any j € {1,..., 7}, as it is not clear if it satisfies
(see Proposition [7-4T).

Question 8.11. Can Theorem[7.50|be extended to characterize the inverse System of any Cohen—
Macaulay k-algebra, depending on the socle type?

Remark 8.12. Question [8.11]can be answered in the graded case following basically the same
proof of Theorem However, in the local case it doesn’t seem possible to give a definition of
socle type of A which is preserved by quotients of type A/(z™) when n varies, even taking a
general linear sequence.

Question 8.13. Is there an analogous of Proposition (8.4 for the local case?
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Fractional ideals

All rings under consideration will be commutative and unitary.

Notation A.1. Let R be a ring. We will use the following notations:

e Max(R) is the set of maximal ideals of R.

e R'% is the set of all regular (non zero-divisors) elements of R, and R* C R™® the set of
invertible elements of R.

e For an R-module M, M denotes the completion of M at the Jacobson radical of R.

Let () be a ring such that
Q= (A1)
and let £, F C (). We abbreviate

F:&=Fgé={xecQ|z€CF}
Lemma A.2. Let v € Q"¢ and £,E', F, F',G be R-submodules of ). Then
(a) (G:F):E=G:(F-&).
(b) (z&): F=x(E:F)=E: (z7'F).
(c) For any two inclusions E CE and F C F,E . F CE: FCE& : F.
(d) If R C R' C Q is a ring extension and F and R'-module, € : F = (£ : R') : F.
Proof. (a) We get the equalities

(G:F):E={zeQ|afC(G:F)t={reQ|z£C{ycQ|yFCG}}
={reQ|2EFCG}=G:(F:&).

(b) We get the equalities

(&) F={yeQ|lyFCual}t=a{yecQ|yF CEt=x(&:F)
={yeQlyr ' FCE =& : (a1 F).

(c) Since F C F'
EF={reQ|aF C&}C{reQ|aFCE=EF

and,as £ C &’
EF={zeQ|aFC&C{re@|aF &}
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A. Fractional ideals

(d) We get the equalities

E:F={zeQ|aFC&={xeQ|aFR CER'}
={reQ|zFC{yeQ|yR C&}=(E:R):F.

Definition A.3. The toral ring of fractions Qi of aring R is the localization of R at R™®.

Definition A.4. The integral closure of a ring R is the set of elements of the total ring of
fractions ()r which are integral over R, and we denote it by R. If R is reduced, then R is the
normalization of R.

For any subset S C ()i, we set
SrE = S NQRE
Note that R™& = R N Q%"
Definition A.5. Let R be a ring with Q) r satisfying (A.T).
(a) An R-submodule £ of Qp is called regular if £*°¢ # () or, equivalently, Qr€ = Qrg.

(b) An R-submodule £ C Qg such that r€ C R for some r € R™# is called a fractional ideal
of R. If R is Noetherian, this is equivalent to £ being a finitely generated R-submodule of

Qr-

(c) If every regular ideal, or equivalently regular fractional ideal, / of R is generated by /"¢,
then R is called a Marot ring.

(d) The conductor of a fractional ideal £ of Ris Cc = & : R.
Notation A.6. Let R be a ring with Qp satisfying (A.I). We denote Ry the set of regular
fractional ideals of R.

Remark A.7. The set Ry is clearly a (commutative) monoid under product of ideals. Moreover, it
is closed under ideal quotient. In fact, if £, 7 € Ry, then £: F € Rp. This follows immediately,
since £ £ and £ C E: F.

Definition A.8. Let R be a ring with () satisfying (A.1). An R-submodule £ of Q) is invertible
if EF = R for some R-submodule F of Q.

Remark A.9. Let R be a ring with Qg satisfying (A.T). Then Q3®* = Q3 Hence any regular
element x € (Jp is invertible. In particular, xR is an invertible R-submodule of ().

Remark A.10. Let R be a ring with Q satisfying (A.T). If £ is invertible, then its inverse is
uniquely determined as F = £~! = R : £. Indeed, inverses are unique when they exist, and
if £ is invertible, with £F = R, then f€ C R forany f € F. Hence F C R : £. Now
R=EFCER:E)CR,sothat F=R:E.

Lemma A.11. Let R be a ring with Qg satisfying (A.1). Every invertible R-submodule of Qr is
regular and finitely generated.

Proof. See [KV04, Chapter 11, Remark 2.1.(3) and Proposition 2.2.(2)]. OJ
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In particular, as all invertible ideals are regular, the (abelian) group 93}, of all invertible
R-submodules of () is a submonoid of R y.

Lemma A.12. If R is semilocal, then
»=1{€ € Rr | € cyclic R — submodule ofQR}.

Proof. See [KV04, Chapter II, Proposition 2.2.(3)]. OJ

Lemma A.13. Let R be a ring with total ring of fractions () g.
For £, F € Rpg, there is a canonical isomorphism

F : & = Hompg(E, F)
z = (y = ay),

of R-modules compatible with multiplication in () gr and composition of homomorphisms. The
composed isomorphism

Y F:(F: &) — Hompg(F : €, F) - Homg(Hompg(E, F), F)
fits into a commutative diagram of canonical maps

E———— o F:(F: €&

I

Hompg(Hompg (&, F), F).

Proof. For the first isomorphism see [HK71, Lem. 2.1]. The homomorphism « is the natural
double dual map defined by = — (¢ — (z)), and € — F : (F : &) is the inclusion map. To
observe that the diagram commutes, let x € €. Thenxz € F : (F : &) and ¢(z) = (F : € 3
y+— xy) = (Homg(E,F) 3 ¢ — xp(1)) = (p — ¢(x)) = a(z). See also [HK71, Lemma
2.3]. U

Lemma A.14. Let R be a ring with total ring of fractions Qg. Let £, F € Rp.
(@) (F:E)m = (Fum:En)forany m € Max(R).
(b) En = ERy € ARp,,

Proof. (a) By Lemma|A.13| compatibility of Hom with flat extensions (see [Eis95, Propo-
sition 2.10]) and the fact that localization is flat ([E1s93. Proposition 2.5]), we have canonical
isomorphisms

(fm : 8m) = HomRm (gmafm) = HOmRm (5 R Rm7‘7® Rm)
= Ry ®@r Homg(E, F) = Ru @p (F: &) = (F : E)ne
As (Fu : En) and (F : €)y, are both subsets of @y, this is in fact an equality.

(b) The flat ring homomorphism ¢ :— R,, induces a ring homomorphism ¢ : Qr — Qg,,.
In particular, regular elements of R are regular elements of R,,. Hence, since £ € R,

S ®R Rm - @(g)Rm g QRmRm = QRm e 9%R«m' D

Lemma A.15. Let R be a semilocal ring. Then any finite ring extension R C R’ is semilocal.
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A. Fractional ideals

Proof. As R is Noetherian and R’ is R-finite, R’ is Noetherian too. Hence R'/mR’ is Noetherian
as well for any m € Max(R). As R’ is finite over R, it is also an integral extension. Hence
all primes of R’ over m are maximal (see [HS06, Lemma 2.1.7]). Then Max Spec(R') =
UmeMax(r) Max Spec(R'/mR') = Unemax(r) Min Spec(R'/mR’). As |[Max(R)| < oo be-
cause R semilocal and |[Min Spec(R'/mR')| < oo because R'/mR’ is Noetherian for any
m € Max(R), we obtain |Max Spec(R’)| < oo and hence R’ semilocal. O

Lemma A.16. Let R be a ring, and let £ and F be R-submodules of ()r. Then
(a) RCR is faithfully flat and hence Qr C Qr Qg RC Qn
(b) If € is finitely generated, then € @ R = ER C Qr ®p Rand ER = E.
(c) ERNQr=¢
(d) (ENF)R=ERNFR.
(e) If R is semilocal, then R = [TmeMax(r) E; is a product of local rings Ro = Rp = }A%a.
(f) If R is semilocal and R C R’ is a finite ring extension, then R’ @ R = R..

Proof. (a) By [Mat89, Theorem 8.14], the completion R with respect to the Jacobian radical
is faithfully flat over R. By [Mat89, Theorem 8.10(1)], the topology associated to the Jacobian
radical is Hausdorff, i.e. Nz J* = (0). _But ﬂkeZJ is exactly the kernel of the map R — R
Hence the map is injective, and R C R. Since R is faithfully flat over R, R C Qr Or R.
Moreover, every non zero-divisor of R is a non zero-divisor of R, s0 Qg ®p R is contained in
Qg

(b) Since R is a flat R-module and £ is finitely generated, the map EQr R — Q R OR R is
injective, and therefore £ @p R can be identified with its image & R. Hence E@r R =ER C
Qr®R R. The equality £ R = & follows from [Mat89| Theorem 8.7] , as for any finite 2-module
M there is an isomorphism M ®p R =M.

(c) By [Bou89, Chapter I, §3, Proposition 10(ii)], if M is an R-module and M’ is a submod-
ule of M, then

MANRM = M.

Taking M = Qg and M’ = £ we obtain the claim.

(d) By [Bou9, Chapter I, §3, Proposition 10(iv)] if M is an R-module and M’ M" are two
submodules of M, then

R(M'nM"y =M N RM".

Taking M = Qg, M' = € and M" = F gives the claim.

(e) By [Mat89, Theorem 8.15], R decomposes as a direct product

To see that R,, = R note that mR = f by (B) and hence m = @ N R by ().

(f) Observe first that here R’ has to be intended as the completion with respect to the Jacobian
radical of R'. However, as R C R’ is a finite extension, by Lemma[A.15 R’ is semilocal, and by
[Nag62| Theorem (16.8)] the topology of R’ as semilocal ring coincides with that of R’ as a finite
R-module. Then the claim follows from [Mat89 Theorem 8.7], since for any finite R-module
M there is an isomorphism M ®p R= M. U
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Lemma A.17. Let R be a one-dimensional local Cohen—-Macaulay ring. Then QrR = Q 7 and
there is an inclusion preserving group isomorphism

%R—Mﬁﬁ
E— &
FHQRH}".

Proof. By [KV04, Chapter II, (2.4)], since k™ C Rr&_ for any regular element » € m we have
Qp = R[l /r], and hence Qr = Qs 7 as RQp is the smallest subring of Q5 containing R and
@ r- Let m be the maximal ideal of R. Surjectivity follows from [HK71, Lemma 2.11], as it
states that for any m-primary ideal & there is an m-primary ideal £ with £ = ER. Notice that
the same can be said for fractional ideals, since if & is a fractional ideal of R there exists an
x € Qreg QrR such that z€ C R and hence there is an m-primary ideal £ with & = 2 1ER.
In]ect1V1ty follows from Lemma[A.T6](c). O

Lemma A.18. Ler (R, m) be a one-dimensional local Cohen—-Macaulay ring, and let R C

R' C Qg be a finite extension ring with |R/m| > |Max(R')|, and & € Rpg be such that ER'

is a cyclic R'-module. Then ER' = xR’ for some x € ™. In particular, R C y€ C R’ for
1 reg

y=x""€ Qg

Proof. By Lemmal[A.15] R’ is semilocal. Let ER’ be a cyclic R'-module. Then ER' = zR’
for some z € Q=®. The lemma is proved if we show that z € £, Multiplying by z71&
we get 2 'ER' = R/, and the claim becomes there exists a unit u € R’ such that u € 27 1€,
This is proven by Jdger in [Jag77, Hilfssatz 2]. Thus ER' = zR' = zuR/, and in particular
R C (zu)™'€ C (2u)"'ER' = R'. Hence & = zu gives the claim. O

Lemma A.19. Let (R, m) be a one-dimensional local Cohen—Macaulay ring, and let £ € Rp.
Then & is a faithful maximal Cohen—Macaulay module.

Proof. Letk = R/m. As & is a regular fractional ideal, there exists a y € £ such that zy = 0
implies x = 0. Thus the only zero multiplication map in End (&) is the one coming from zero
itself. Hence the map R — Endg(&) is injective, and £ is a faithful module. By definition

dim(€) = dim(R/ Anng(€)) = dim(R/ ker(R — Endg(£))) = dim(R) = 1.

Hence, as y € £7%, we get
1 =dim(€) > depthy(€) > 1.

Hence £ is a maximal Cohen—Macaulay module. [
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Valuations

In this chapter we give basic definitions and facts on valuations and valuation rings. All rings
considered are Noetherian commutative and unitary. For other references see [KV04, Mat73|
CDK94].

Definition B.1. A ring () has a large Jacobson radical if every prime ideal of () containing the
Jacobson radical of () is a maximal ideal (see [KV04, Chapter I, Proposition (1.9)] for equivalent
characterizations).

For example, any semilocal ring has a large Jacobson radical (see [KV04, Chapter I, Remark

(1.1D)].

Lemma B.2. Let () be a ring with large Jacobson radical and which is its own ring of quotients.
Then every ring having () as ring of quotients is a Marot ring (see Definition[A.5](c)).

Proof. See [KV04, Chapter I, Proposition (1.12)]. OJ

From now on we will always assume () is a ring with large Jacobson radical and which is its
own ring of quotients. In particular, () satisfies (A.I]).

Theorem B.3. Let V' C Q be a subring of Q) having Q) as its ring of quotients. The following
are equivalent:

(i) There exists a prime ideal p of V such that pW = W for any subring W of Q) properly
containing V';

(ii) Q \'V is a multiplicatively closed set;
(iii) for any v € Q', eitherx € V orx™' € V;
(iv) The set of regular V -submodules of () is totally ordered by reverse inclusion.

If these conditions are satisfied, then there is a unique regular maximal ideal my of V. In
particular, V™ \ V* C my,.

Proof. See [KV04, Chapter I, Theorem (2.2)] O]

Definition B.4. A subring V' C @) having () as ring of quotients is called a (Manis) valuation
ring of Q) or pseudo-valuation ring of () if it satisfies the equivalent conditions of Theorem [B.3
The maximal ideal my of V' such that my O V'8 \ V* is called the regular maximal ideal of V.
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B. Valuations

In the following for simplicity we will refer to Manis valuation rings simply as valuation
rings.

Proposition B.5. Let V' be a valuation of (). Then

(a) V isintegrally closed, and every proper subring of () containing V' is a valuation ring of

Q.
(b) Every finitely generated regular V -submodule of () is cyclic.

(c) Let my be the regular maximal ideal of V. Then the conductor (V :g Q) C my of V in Q)
is a prime ideal of V and of (), and it is the intersection of all regular ideals of V.

(d) If v € Q\ (V ¢ Q), then the intersection M (x) of all regular V -submodules of )
containing x is a regular cyclic V -submodule of (), and for any regular z € (), we have
M(z) = 2V ifand only if vz~ € V \ my.

Proof. See [KV04, Chapter I, Proposition (2.4)]. L]

Notation B.6. Let (I', <) be a totally ordered (additive) abelian group. Set 'y, := I' U {c0}.
We make I', into a totally ordered monoid containing I' by defining v < oo for any v € I" and
v+ 00 =o0o forany v € I'y.

Definition B.7. A surjective map v : ) — I', such that v(1) = 0, (0) = oo and
(VD) v(zy) = v(z) + v(y) and
(V2) v(z +y) > min{v(z),v(y)}

for any x,y € @ is called a (Manis) valuation of (). If I' = 7Z, then v is called a discrete (Manis)
valuation.

For simplicity in the following we refer to Manis valuations simply as valuations.

Remark B.8. A valuation v : () — I', has the following properties:

(@) v(—z) =v(z) forany z € Q.

(b) v(z7') = —v(x) # oo for any = € Q"¢ (see [KV04, Chapter I, Remark 2.9]).

(c) If v(x) # v(y), then v(x + y) = min{r(z), v(y)} (see [KV04, Chapter I, Proposition
2.10]).

Definition B.9. Let v : ) — I be a valuation. Then V,, = {z € @ | v(z) > 0} is a subring of
() and it is called the ring of v.

Notation B.10. By [KV04, Chapter I, Lemma (2.1)], if V' is a valuation ring of (), then @), = Q).
Thus, in analogy with Notation we denote by Ry the set of finitely generated regular
V-submodules of (), and by R, the group of invertible 1/-submodules of ().

Remark B.11. By Proposition [B.5](b), f3y consists only of cyclic modules. Moreover, by
Theorem [B.3](iv), the group 9y, is totally ordered by reverse inclusion, let us denote by < the
order relation.

Definition B.12. Let V' be a valuation ring of (). The infinite prime ideal of V'

Iv:=V:igQ= () €€ Spec(V)NSpec(Q)

geny,

is the intersection of all regular (principal) fractional ideals of V' (see Proposition B.5](c)).
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We can include 917, into the totally ordered monoid
Voo = Ry U{lv}.

Then, by definition of Iy, £ < Iy for any £ € Rj,. Moreover, £ - Iy = €N Iy = Iy for
EEeENRY .

Definition B.13. Let V' be a valuation ring. Then we can define a map

py Q@ — Ry
T > ﬂ E.

EERy
z€e€

If 2 € Q \ Iy, then by Proposition B.5(d), v () € R}, and py (z) = 2V Then the map

Ky : Q - 9:{*V,oo

s Vo ifxe@)\ Iy
]V ifl’e]\/.

is a valuation in the sense of Definition (but with multiplicative notaton for the group

I'w = Ry, see Notation . Moreover, jy 1s surjective as every invertible regular V-

submodule of () is finitely generated by Lemma[A.TT|and hence cyclic by Proposition [B.5](b).
Then definition of yy, implies

V={zxeQ|pu(zr)>V}. (B.1)
By Theorem [B.3] the units of V" are
Vi={r e Q" | py(x) =V} = (V\my)*®
and the regular maximal ideal is

my = {z € Q| pv(a) > V}. (B.2)

B.1 Discrete valuations

According to Notation we write Z, := Z U {oo}.

Proposition B.14. Let V be a valuation ring of (), and let my, be the regular maximal ideal of
V. The following are equivalent:

(i) V is the ring of a discrete valuation vy : QQ — Zoo;
(ii) Every regular ideal of V' is finitely generated;
(iii) The ideal my, is finitely generated, and is the only regular prime ideal of V.
If these properties are satisfied, then:

(a) Every regular ideal of V' is a principal ideal.
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B. Valuations

(b) Letmy = tV. Thent is a regular element, Q = V[t™'| and every regular element x of Q
has a unique representation x = at® with a € V* and k € Z. Moreover,

{ml, ="V | k € Z} = R}

(c) Vg Q= penmy.
(d) Let W be a subring of () containing V. Then either W =V or W = Q).
Proof. See [KV04, Chapter I, Proposition (2.15)]. [

Definition B.15. A valuation ring V' of @) is called a discrete valuation ring if it satisfies the
equivalent conditions of Proposition

The valuation vy associated to a discrete valuation ring V' of () is discrete with valuation
ringV, = V.

Theorem B.16 (Approximation theorem for discrete valuations). Let Vi, ..., V,, be pairwise
distinct discrete valuation rings of Q). Foranyi € {1,...,n} let v; : Q — Zo be the valuation
of Q defined by V; and let my, be the regular maximal ideal of V;. Set S .=V, N ---NV, and
m; = SNwmy, foranyi € {1,...,n}. Then:

(a) The prime ideals my, ..., m, are regular maximal ideals of S which are pairwise distinct,
and they are all the regular prime ideals of S. Moreover, for any i € {1, ... ,n}, we have
Stm,] = {x € Q | sx € S for some s € S\ m;} =V; and m;V; = my,.

(b) Foranyay,...,a, € Qandmy,...,m, € Z there exists an a € () such that
vila — a;) > m;
foranyie {1,...,n}.
(c) Forany my, ..., m, € Z there exists an a € () such that
vi(a) =my
foranyie {1,... ,n}.
Proof. See [KV04, Chapter I, Theorem 2.20]. O]

The proof of Theorem B.16]makes use of the Chinese Remainder Theorem and of Proposition
B.14

Assume V is a discrete valuation ring of (). Then by Proposition the regular maximal
ideal my = min{€ € R} | £ > V} is the only regular finitely generated prime ideal of V. In
particular, by Proposition [®), my € R} and {m}, | k € Z} = R}.. Thus there is a unique
order preserving group isomorphism

dv: Ry = Z,
£ max{j € Z | m} <&}, (B.3)
mb i k.
In fact, Proposition (a) yields £ € M} principal, i.e. £ = 2V with x € Q*&. Then

Proposition (b implies = = at® with ¢ such that my, = ¢V and a € V*. This gives £ = m}..
Hence k = max{j € Z | m{, < £} < oo. Clearly, ¢y is a surjective map.
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B.1. Discrete valuations

We can extend ¢y to Z., by setting

(bv([v) = OQ. (B4)

This yields a commutative diagram

Q (B.5)

% =
V,00 by ZOO

where sy is defined as in Definition B.13]
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Modules

Let R be a Noetherian commutative and unitary ring.

Definition C.1. A chain of R-submodules of an R-module M is a sequence (M;)" , of R-
submodules of M such that

M=My2> M 22 M,=0.

A composition series of M is a maximal chain, i.e. M;_;/M; is simple (has no submodules
except 0 and itself) for any 7. If M has a composition series, then all composition series have the
same length n. In this case we say that M has finite length, and the length of M is {(M) = n.

Definition C.2. Let R be a graded ring, and let M be a graded R-module whose graded
components M,, have finite length for any n. The numerical function

HEy(-) :Z — Z
n — {(M,)

is the Hilbert function of M. The Hilbert series of M is

nez

Definition C.3. Let (R, m) be a local ring. Then the Hilbert function of R and the Hilbert series
of R are the ones of its associated graded ring, i.e.
m
grm<R) = @ mitl

>0

Proposition C.4. Let M # 0 be a finite graded R-module of dimension d. Then there exists a
unique Q(t) € Z[t,t™) with Qpr(1) # 0 such that

HSw(t) = (Cf”_f f))d.

Moreover, if Qu(t) = 3=, hit' then min{i | h; # 0} is the least number such that M; # (

Proof. See [BH93, Corollary 4.1.8]. L]
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C. Modules

Definition C.5. Let M be a finite graded R-module of dimension d. Let Q)/(f) be as in
Proposition [C.4, The multiplicity of M is the integer

e(M) = Qu(1).
If d = 0, then e(M) = ((M).
Definition C.6. Let (R, m, k) be a local ring, and M a finite R-module. Then the depth of M is
depth(M) := min{i | Ext’%(k, M) # 0} = max{ length of maximal M -sequences in m}.
Definition C.7. A ring R is called Cohen—Macaulay if dim(R) = depth(R).

Lemma C.8. Let (R, m) be a local ring, M a finite R-module and M its m-adic completion.
Then M is Cohen—Macaulay if and only if M is Cohen—Macaulay.

Proof. See [BH93, Corollary 2.1.8]. O
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Injective modules and Matlis duality

Let R be a commutative and unitary ring.

Definition D.1. Let R be a commutative ring and let £ be an R-module. We say that £ is
injective if Hompg(—, E) is an exact functor.

As a consequence of this definition, a module F is injective if and only if for any injective
morphisms of R-modules » : M — N and for any morphisms f : M — E, there exists a
morphism g : N — E making the following diagram commutative

E

K
fT S
AN

0—— ML= N.
Proposition D.2. Let £, M, N be R-modules. Then:
(a) If E is injective, then every short exact sequence of type
0O—=E—M-—=>N=0
splits.
(b) If E C M is an injective submodule of a module M, then E is a direct summand of M.
(c) If {E}}jey is a family of injective R-modules, then [;c; E; is also an injective module.
(d) Every direct summand of an injective R-module is injective.
(e) A finite direct sum of injective R-modules is injective.
There is a criterion to check the injectivity of a module:

Proposition D.3 (Baer’s criterion). An R-module F is injective if and only if for any ideal I of
R, every homomorphism f : I — E can be extended to R.

Proof. See [Ei1s95, Lemma A3.4]. O
Theorem D.4. Any R-module M can be embedded as a submodule of an injective module.

Proof. See [El113 Theorem 1.9]. O
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D. Injective modules and Matlis duality

Definition D.5. Let N C M be R-modules. We call M an essential extension of N if for any
non-zero submodule U of M we have U N N # 0. An essential extension is proper if N # M.

The following proposition relates essential extensions and injective modules:
Proposition D.6. Let N and M be R-modules. Then:
(a) The module N is injective if and only if it has no proper essential extensions.

(b) If N C M is an essential extension, and E an injective R-module with £ O N. Then
there exists a monomorphism ¢ : M — E extending the inclusion N C M.

Proof. See [Eli113, Proposition 1.11]. [

Definition D.7. Let R be a ring and M an R-module. An injective hull of M is an injective
module Fr(M) such that M C Eg(M) is an essential extension.

Proposition D.8. Let M be an R-module. Then:
(a) M admits an injective hull.

(b) If M C E and E in injective, then a maximal essential extension of M in E is an injective
hull of M.

(c¢) Let ER(M) be an injective hull of M, and let o : M — E be a monomorphism, with E
injective R-module. Then there exists a monomorphism ¢ : Er(M) — E such that the
following diagram is commutative

M —— Ep(M)

A

i.e., the injective hulls of M are the minimal injective modules in which M can be
embedded.

(d) If Er(M) and Er(M)" are injective hulls of M, then there exists an isomorphism o :
Er(M) — Egr(M)' such that the following diagram commutes:

M

| >

Er(M)——= ER(M).

Proof. See [Eli13, Proposition 1.13]. [

Through this proposition, we can build an injective resolution £*(M) of a module M. Let
E°(M) = Eg(M) and denote the embedding by d~'. If the injective resolution has been
constructed till the ¢-th step:

0 E°M) S B\ S - BV (M) 2SS EN(M)

then we define E**! = Ep(coker 9"~1), and 0' is defined as the inclusion.
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Definition D.9. Let M be an R-module. The injective dimension of M is the smallest integer n
for which there exists an injective resolution £* of M with £ = 0 for m > n. If there is no
such an n, the injective dimension of M is infinite.

Definition D.10. A Noetherian local ring R is a Gorenstein ring if its injective dimension is
finite. A Noetherian ring is a Gorenstein ring if its localization at every maximal ideal is a
Gorenstein local ring.

Definition D.11. Let (R, m, k) be a local ring. Given an R-module M the Matlis dual of M is
defined as MY = Hompg(M, Er(k)). The functor (—)" := Hompg(—, Er(k)) is a contravariant
exact functor from the category of R-modules into itself.

Proposition D.12. Let (R, m, k) be a local ring. Then the functor (—)V is a faithful functor.
Moreover, if M is a R-module of finite length, then ((M") = ¢(M). If R is an Artinian ring,
then ((Er(k)) = {(R) < oc.

Proof. See [El113, Proposition 1.16]. []

Theorem D.13 (Matlis duality). Let (R, m, k) be a complete Noetherian local ring and let M
be a R-module. Then:

(a) If M is finite, then M is Artinian, and vice versa.
(b) If M is either finite or Artinian then M"Y = M.

Proof. See [El113, Theorem 1.21]. ]
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Canonical modules

Definition E.1. Let (R, m, k) be a Noetherian local ring, and M a finite non-zero R-module of
depth t. The type of M is the number

(M) = dimy (Ext’y (k, M)).

Definition E.2. Let (R, m, k) be a Cohen—Macaulay local ring. A canonical module of R is a
maximal Cohen—Macaulay module C' of type 1 and of finite injective dimension.

Theorem E.3. Ler (R, m, k) be a Cohen—Macaulay local ring. Then a canonical module is
unique up to isomorphism. In particular, if diim(R) = 0, then Er(k) is the uniquely determined
canonical module.

Proof. See [BH93, Theorem 3.3.4]. O]

If R is a Cohen—Macaulay local ring, we denote the unique (up to isomorphism) canonical
ideal with wp.

Theorem E.4. Let (R, m) be a Cohen—Macaulay local ring.
(a) The following conditions are equivalent:

(i) R is Gorenstein;

(ii) wg exists and is isomorphic to R.
(b) Let I C R be an ideal with ht(I) = k. Then

Exth(R/1,wr) 2 wgyr.

Proof. See [BH93, Theorem 3.3.7]. ]
Proposition E.5. The following conditions are equivalent:

(i) Ais a Gorenstein ring;

(ii) A is a Cohen—Macaulay ring of type 1.
Proof. See [BH93|, Theorem 3.2.10]. O
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E. Canonical modules

E.1 Canonical modules of graded rings

We say that a graded ring is a *local ring if it has a unique graded ideal m which is not properly
contained in any graded proper ideal.

Definition E.6. Let (R, m) be a Cohen—Macaulay *local ring of dimension d. A finite graded
R-module C'is a *canonical module of R if there exist homogeneous isomorphisms

0  ifitd

Ext’,(R/m, C) = {R/m il

Proposition E.7. Let (R, m) be a Cohen-Macaulay *local ring, and C be a *canonical module
of R. Then C'is a canonical module of R and, if m is maximal, it is uniquely determined up to
homogeneous isomorphism.

Proof. See [BH93, Proposition 3.6.9] OJ

Remark E.8. Let R = K[z, ..., x,] be a polynomial ring over a field, with deg z; = a; > 0 for
i =1,...,n. The *maximal ideal of R is the ideal m = (xz, ..., x,). Then the Koszul complex
of z1,...,x, yields a homogeneous free resolution of R/m whose last term is R(— Y1 ; a;).
Hence Ext’,(R/m, R) = 0 for i # n and the *canonical module of R is Ext};(R/m, R) =
R(— 3 ai).

Proposition E.9. Let (R, m) be a Cohen—Macaulay *local ring with *canonical modules wp.
Then the following conditions are equivalent:

(i) R is Gorenstein,
(ii) wr = R(a) for some integer a € 7.
Proof. See [BH93, Proposition 3.6.11]. O]
A result analogous to Theorem [E.4](b) holds also for graded rings.

E.2 Canonical ideals

Let R be a one-dimensional Cohen—Macaulay ring. In the following we recall some basics from
the theory of canonical ideals of R. We begin with a definition (see [HK71, Definition 2.4]).

Definition E.10. Let R be a one-dimensional Cohen—Macaulay ring. We call £ € Ry a
canonical (fractional) ideal of R if, for any £ € Rp,

E=K:(K:€&) (E.1)
or, equivalently, £ = Homp(Hompg(&, K), K) (see LemmalA.13). In particular,
R=K:K. (E.2)

Remark E.11. Let R be a one-dimensional Cohen—Macaulay ring. Then

(a) K is acanonical ideal of R if and only if Ky, = KR, € QRp, is a canonical ideal of R,
for any m € Max(R).
This fact is proven in [HK71, Lemma 2.6], but follows also from Lemma[A.T3]and Lemma[A.T4]
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E.2. Canonical ideals

(b) The functor (K : —) preserves lengths, i.e. (K : E/K : F) = ((F/E) for any
E,F € Rp.
This fact is proven in [HK71, Remark 2.5.(c)].

Lemma E.12. Let R be a one-dimensional Cohen—Macaulay ring. Then a canonical ideal K is
a canonical module.

Proof. By [BH93|, Proposition 3.3.13 and Def. 3.3.16] it is sufficient to prove that /C,, is a faithful
maximal Cohen—Macaulay module of R, of type 1 for any m € Max(R). By Remark @)
K is a canonical ideal and K,, € Rp,, for any m € Max(R). Then, by Lemmal[A.19] K, is a
faithful maximal Cohen—Macaulay module of R,,. We only need to prove that /C,, is of type one.
Let m € Max(R) and let k = R,,/m. Let us consider the exact sequence

0—m— R, —k —0.
Applying Hom(—, K;,) we obtain the exact sequence
0 +— Extp (k,Ku) +— Kn:m+— Kpn : Ry +— 0.

Then by Definition [E.T|Remark [E.TT] (b))

T(Kw) = dimy Extp,_(k, Kn) = ((Exty_(k,Kn)) = ((Kn : m/Ky : Ri) = ((Ry/m) = 1.
O

As a consequence of Lemma [E.12] if R is a canonical ideal, then R is Gorenstein (see

Theorem [E.4] (a)).

Canonical ideals are unique up to projective factors.

Proposition E.13. Let R be a one-dimensional Cohen—Macaulay ring with a canonical ideal IC.
Then K' is a canonical ideal of R if and only if K' = EK for some invertible ideal £ of R. In

case R is semilocal, the latter condition becomes K' = xK for some 1 € Q'35

Proof. By [HK71, Satz 2.8], if K is a canonical ideal of R, then £ is a canonical ideal of R
for any & projective (and therefore invertible) fractional ideal of R. Moreover, again by [HK71),
Satz 2.8], if K and K’ are two canonical ideals of R, then there exist a projective ideal £ such
that ' = EK. The claim in case R is semilocal follows from Lemmas|A.11|and |A.12] which
say that every invertible fractional ideal of R is regular and principal. U

Lemma E.14. Let R be a one-dimensional local Cohen—Macaulay ring. Then R has a canonical
ideal IC if and only if its completion R has a canonical ideal K.

Proof. Since by Lemma (&) R C Ris faithfully flat, and Hom is compatible with flat base
change, we have

Homp(Homp(€,K),K)R = Hom(Hom (£,K),K).

Thus, by Lemma and since the map in Lemma is an isomorphism (here we need the lo-
cal assumption), it is clear that /C is a canonical ideal for r Rifand only if £ = Homg(Hompg(&, K), K)
for any £ € Ry if and only if £ = (HomA(S K), K) for any € € PRy if and only if Kis a

canonical ideal for R (see also [HK71, Lemma 2.10]). ]

In case R is local, the existence of a canonical ideal of R can be characterized as follows.
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Theorem E.15. A one-dimensional local Cohen-Macaulay ring R has a canonical ideal if and
only if R is generically Gorenstein. In particular, any one-dimensional analytically reduced
local Cohen—Macaulay ring has a canonical ideal.

Proof. See [HK71, Korollar 2.12 and Satz 6.21]. O
Canonical ideals propagate along finite ring extensions (see [BH93, Theorem 3.3.7.(b)]).

Lemma E.16. Let o: R — R’ be a local homomorphism of one-dimensional local Cohen—
Macaulay rings such that R’ is a finite R-module and Qr = Qg If Kr is a canonical ideal of
R, then K : R is a canonical ideal of R’

Proof. By Lemma[A2l(@) (K : R') : ER' = Kg : ER' for any £ € Ry. Hence
(Kp:R):(Kg:R):ER)=Kr: (Kr:ER)=(Kr: (Kr:&))R =ER

Since for any &' € Rp, & = ER’, we get that L : R’ is a canonical ideal according to
Definition [E. 10} ]
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