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Abstract

The computational complexity of combinatorial multiple objective programming
problems is investigated. INP-completeness and # P-completeness results are pre-
sented. Using two definitions of approximability, general results are presented, which
outline limits for approximation algorithms. The performance of the well known tree
and Christofides’ heuristics for the TSP is investigated in the multicriteria case with
respect to the two definitions of approximability.
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1 Introduction

In this paper we will study combinatorial optimization problems with multiple criteria.
Interest in multicriteria optimization (or multiple objective programming, MOP) with
respect to theory and applications has been growing in recent years, as can be seen from
the literature reviews in [32, 39]. The reason for this is certainly that in real world problems
almost always multiple criteria are more appropriate than a single one. For example
consider the simultaneous minimization of travel cost, time, and distance in route planning.
Although multiple criteria optimization in combinatorial problems has not gained the same
attention as in linear or nonlinear problems, the classical problems have been studied,
see [36] for a survey. However, many decision problems are combinatorial in nature, so
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the necessity of a thorough understanding of combinatorial optimization problems in the
presence of conflicting criteria is evident.

This is the direction which we will pursue in this paper. We will study the computational
complexity of such problems, and see that multicriteria counterparts of polynomially solv-
able problems such as the shortest path or the minimum spanning tree problme are INP-
hard (Section 2). Due to this fact heuristics have to be investigated. We shall present
some general results on the quality of approximation algorithms for combinatorial multiple
objective programming problems (CMOP) in Section 3.

Then in Section 4 we especially address the travelling salesman problem (TSP). Since
the TSP is INP-complete with one objective, the multicriteria version has the difficulty of
the TSP itself plus the difficulty of multiple objectives. In Section 4 we will investigate
the performance of the well known approximation heuristics for the symmetric TSP with
triangle inequality in the multicriteria case. Results show that in some cases the same
performance ratio can be guaranteed.

The rest of the introduction is devoted to a formal definition of combinatorial multiple ob-
jective programming problems (CMOP) and a review of the basic notions of computational
complexity.

1.1 Combinatorial Multicriteria Optimization Problems

The feasible set of a combinatorial problem is defined as a subset F C 2F of the power set of
a finite set £ = {e,..., e, }. For example, consider the minimum spanning tree problem.
G = (V,E) is a graph with node set V' and the edge set E, the feasible set is the set of
spanning trees of G, i.e. £ ={e,...,en} and F ={T C E : T is a spanning tree of G}
A combinatorial optimization problem is formulated as follows:

min f(5) (P)

SeF

Typically, in combinatorial optimization only two types of objective functions are consid-
ered, namely the sum and the bottleneck objective:

f(s) = Zw(e), or

ecS
f(S) = maxw(e),
where S € F and w : E — Z is some weight function. We, too, will only consider these
two types of objectives in this paper.
A combinatorial problem can also be formulated in terms of binary variables. For this
purpose we introduce a variable x; for each element e; € FE. Then, a feasible solution
S € F can be represented by a binary vector x € {0,1}™ if we define

{1 e €S
T; =

0 else.



With this definition S = {e; : z; = 1}. It is therefore equivalent to speak about feasible
solutions as subsets of E or about their representations by binary vectors. Accordingly F
will be represented by a subset of {0, 1}™. We will make use of the possibility of formulating
a combinatorial multicriteria problem in terms of binary variables throughout the paper.

In a multicriteria combinatorial problem several weight functions w, : ' — Z are given,
yielding several objective functions f,, ¢ = 1,...,@Q of the sum or bottleneck type. The
problem is then to solve

n

“min(f1(5),..., fo(5)) (CMOP)

SeF

in the sense of Pareto optimality (or efficiency). A subset S € F is called Pareto optimal
if there does not exist another feasible solution S’ € F such that f,(S") < f,(S) for all ¢ =
1,..., @ with strict inequality for at least one of the objectives. The corresponding vector
F(S) = (f1(S),..., fo(S)) is called efficient or non-dominated. The set of Pareto optimal
solutions of (CMOP) will be denoted by P, the set of efficient values by £ throughout
the paper. We will denote combinatorial multicriteria problems of the sum and bottleneck
type by
Q- Z P and (- max P,

respectively. E.g. 3-maxTSP denotes a travelling salesman problem with three bottleneck
objectives. We remark that it is also possible to consider mixed objectives. However,
these will not be considered in the current paper. The topic is under research, and for
preliminary results we refer to [6]. Below, we will always assume that w,(e) > 0 for all
ecFandg=1,...,Q.

1.2 Computational Complexity

This section is intended as a brief and informal review of the basic concepts of computa-
tional complexity. For a detailed and more formal presentation of the subject we refer to
the seminal book of [12].

The theory of computational complexity is formulated for decision problems D(P). Let us
consider a single objective combinatorial optimization problem (P). Then the associated
decision problem is the following:

Given a constant k € Z, does there exist a

feasible solution S € F such that f(S) < k? D(P)

E.g. given a graph G = (V, E), a weight function w : E — Z,, and a constant k € Z, does
there exist a spanning tree T" of G of total weight at most k, i.e. such that > .cr w(e) < k?

A decision problem D(P) belongs to the class IP of problems if there exists a (determinis-
tic) Turing machine programme requiring a number of steps bounded by a polynomial in



the size of the input which solves D(P). In this sense the class IP is the class of ‘easy’ prob-
lems. In this class decision problems derived from optimization problems usually have the
property that there exist algorithms which solve the optimization problem with a number
of elementary operations bounded by a polynomial in the input size, usually the cardi-
nality of E. Therefore the associated decision problem can also be solved in polynomial
time for every constant k. Members of this class are e.g. (the decision versions of) the
minimum spanning tree problem (or more generally, the minimum matroid basis problem),
the shortest path problem, and the assignment problem.

A decision problem D(P) belongs to the class INP if there exists a nondeterministic poly-
nomial time Turing machine programme which solves D(P). Loosely speaking this means
that it is possible to check in polynomial time whether a solution yields a ‘yes’ answer
for D(P). Obviously the class IP is a subclass of the class INP. The reverse inclusion is a
fundamental open problem.

To understand the relation between IP and INP it is necessary to have the notion of trans-
formation. A polynomial time transformation of problem D(P;) to problem D(P) is
an algorithm A which for every instance of D(P;) constructs an instance of D(P3) such
that a feasible solution of the instance of D(P;) yields a ‘yes’ answer if and only if the
corresponding feasible solution of D(Py) constructed by algorithm A yields a ‘yes’ answer.
Polynomial transformability is denoted by

D(P;) and D(P;) are equivalent if both D(P;) o< D(P;) and D(P2) o D(P;) hold. A
problem D(P) is called INP-complete if D(P) is in INP and for all other problems D(P’)
in INP D(P’) o« D(P). Finally, D(P) (or a problem which is not a decision problem) is
called INP-hard if the latter property is fulfilled, but containment in INP is not known.
Actually, due to the transitivity of o, it is sufficient for INP-completeness or INP-hardness
of a problem D(P) to show transformability to D(P) of only one problem known to be INP-
complete. Among the class of INP-complete problems are the satisfiability problem, the
first problem ever shown to be INP-complete, and the (decision versions) of the travelling
salesman problem, the set covering problem, etc..

Closely related to decision problems are counting problems. The question ‘Does there exist
a feasible solution that yields the answer “yes”?’ is replaced by ‘How many feasible solutions
yielding “yes” answers do exist?’” The counting problem associated with a combinatorial
optimization problem can be formulated as follows:

Given a constant k € Z, how many feasible

solutions S € F do exist such that f(S) <k #(P)
do exist?

If we consider again the example of the spanning tree problem, the question is: how many
spanning trees of total weight less than or equal to £ does G contain?

As the number of such solutions may be exponential in the size of the input (i.e. in
m = |E), it would not be possible to enumerate all of them in polynomial time. However,
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writing down the answer to #(P) may nevertheless be possible in polynomial time. (This
is the case in the spanning tree problem). It is immediately clear that counting problems
related to INP-complete problems are ‘difficult’. To have a measure for this difficulty of
counting problems, the class #IP (read: number P) has been introduced in [37].

A counting problem #(P) belongs to the class #IP if there exists a nondeterministic
algorithm such that for each problem instance the number of ‘guesses’ which yield a ‘yes’
answer is equal to the number of solutions z for which f(z) < k. Furthermore the longest
computation that confirms the ‘yes’ answer for a certain ‘guess’ is supposed to be bounded
by a polynomial in the size of the input. A counting problem is #IP-complete if it
belongs to the class #IP and for all other counting problems #(P’) in #IP there exists a
parsimonious transformation such that

#(P’) o #(P).

A parsimonious transformation is a polynomial time transformation A such that the num-
ber of ‘yes’ solutions of every instance of #(P’) is the same as the number of ‘yes’ solutions
of the instance of #(P) resulting from the transformed problem A#(P’). As an example
we mention the problem of counting the number of perfect matchings in a bipartite graph,

which is equivalent to computing the permanent of a matrix, and has been shown to be
#IP-complete in [37].

2 Computational Complexity of
Combinatorial Multicriteria Problems

2.1 (CMOP) with sum objectives

To be able to prove INP- and #IP-completeness results we will refer to two well known
problems, the knapsack and the partition problem, which we present here in the formulation
of [18].

e KNAPSACK: Given (ay,...,a,,b) € Z™" does there exist an z € {0,1}" such that
ar = b?
e PARTITION: Given (ci,...,¢,) € Z", > ¢; = 2C, does there exist a subset S C

{1,...,n} such that },c5¢; = Yig5¢i?

From now on we will denote the counting problem associated with a specific decision
problem D(P) by using # as prefix: #(P).

Lemma 1 1. PARTITION and KNAPSACK are INP-complete.

2. #PARTITION and #KNAPSACK are #IP-complete.



The first part is well known, see [18] and [12]. For the second one we remark that, as
indicated in [38], the transformations used in [18] to show INP-completeness of KNAPSACK
and PARTITION are parsimonious.

It is easy to see that the following version of KNAPSACK, termed 0-1-KNAPSACK for dis-
tinction, is also INP complete, see e.g. [12].

e 0-1-KNAPSACK: Given (ci,...,¢q,7) and (py,...,pn,d) € Z™, does there exist an
x € {0,1}" such that cx < r and pz > d?

Lemma 2 (-1-KNAPSACK is INP-complete, #0-1-KNAPSACK is #IP-complete.

Proof:
Let ¢; =p; =a;i=1,...,n and r = d = b. This definition provides a transformation
KNAPSACK o 0-1-KNAPSACK which is parsimonious and the result follows. O

In order to transfer the notions of IP, INP and #IP to (CMOP) we first introduce a decision
problem related to (CMOP) in a straightforward manner:

Giwen constants ki, ..., kg € Z, does there

exist a feasible solution S € F such that D(CMOP)
foS) < kg a=1,...,Q7

The corresponding counting problem is:

How many feasible solutions S € F do satisfy
fq(S) <kyqg=1,...,Q%

In the remaining part of this section we will summarize some complexity results for com-

binatorial multicriteria optimization problems. We start with the following trivial obser-
vation.

#(CMOP)

Remark 1 If a combinatorial optimization problem 1-Y, P or 1-max P is INP-hard, then
the same is true for the multicriteria counterparts Q-Y P, resp. Q-max P, for all ) > 2.

An important question concerning complexity is, of course, whether problems which are
in class IP if a single objective is considered remain within that class in the presence of
multiple objectives. The answer to this question is negative except for special cases.

Let us consider a problem without any constraints, i.e. £ = {ey,...,e,} and the feasible
set is the power set of F, F = 2F. Therefore any subset of F is a feasible solution and the
problem is to find a subset of E of minimal weight. This problem is called the unconstrained
combinatorial optimization problem (UCP). With only one criterion this problem is trivial.
What about the bicriteria version?

The decision version of the bicriteria unconstrained combinatorial optimization problem

2->UCP
min (ZS wi(e), Z ws(e))

E
S€2 e ecS



is as follows: given w; and wy, € Z™, two constants k; and ke € Z, does there exist a
subset S C {ej,...,en} such that Y cqwi(e) < ky and Y cgwa(e) < ky?

If we formulate 2-3° UCP in terms of binary variables we have F = {0,1}™. Then the
decision problem is as follows: does there exist an =z € {0,1}™ such that w;z < k; and
wex < k9?7 We define a parsimonious transformation from 0-1-KNAPSACK by letting
wy =c¢, ki =1, we =—p, and ky = —d. Thus

0-1-KNAPSACK , 2-» UCP
and hence we have proven:
Proposition 1 D(2- UCP) is INP-complete, #(2-Y- UCP) is #IP-complete.

From this result, we may argue that INP- and # IP-completeness are a feature of multicrite-
ria optimization problems which occur very often. That this is indeed the case is illustrated
by some examples from the literature.

The second example is the shortest path problem, s-T SHORTEST PATH. Given a graph
G = (V,E) or a digraph D = (V, A) and two nodes s and ¢ in the respective node set,
the feasible set F is the set of paths from s to ¢ in G or D. The bicriteria shortest path
problem is

2-)" s-T SHORTEST PATH.

Proposition 2 ([30]) D(2-Ys-T SHORTEST PATH) is INP-complete, the corresponding
counting problem # (2-Y.S-T SHORTEST PATH) is #IP-complete.

Proof:

The decision problem clearly is in INP. Therefore INP-completeness is shown by the fol-
lowing transformation 0-1-KNAPSACK  2-) s-T SHORTEST PATH given in [30].

From (ci,...,¢n), (P1,---,Pn), 7, and d we construct the following bicriteria shortest path

problem on a digraph D = (V, A) defined as follows:

V = {vo,..., v}

A = {(vi,v):i=1,...,n}U{(vi_,v) :i=1,...,n—1}
wi((vi-, v)) = ¢
wa((vi-1,vi)) = 0
wi((vi1,v)) = 0
wa((vie1, Uz‘)') = Di

Then there exists a path P from vy to v, in D satisfying both Y .cpwi(e) < k; and
Yecpwale) < X p; — ko if and only if there exists a subset S C {1,...,n} such that
YiesCi < k1 and Y;egp; > ko (i € S corresponds to selecting (v;_1,v;) and i ¢ S to
selecting (v;_1,v;)" in D). Finally we remark that the transformation is parsimonious and
therefore the # IP-completeness is also proven. O
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The third problem we consider is the assignment problem. Given a complete bipartite
graph K, , we have the set of all perfect matchings of K,,, as feasible set F. Again we
consider the bicriteria case, i.e. wy,wy € IR are two costs on the edges of K, ,,, and we
consider 2-Y. ASSIGNMENT.

Proposition 3 ([30, 25]) The decision problem D(2->. ASSIGNMENT) is INP-complete
and the corresponding counting problem #(2-Y. ASSIGNMENT) is #IP-complete.

Proof:
We present the reduction of a version of PARTITION which is also /NP-complete according
to [12] to 2->° ASSIGNMENT.

e EQUI-PARTITION: Let (ci,...,c2,) € Z* be such that 37 ¢; = 2C. Does there
exist a subset S C {1,...,2n}, |S| =n such that 3,5 c; = Yiggci = C.

The reduction EQUI-PARTITION o< 2-) ASSIGNMENT is taken from [30]. We use ¢;, i =
1,...,2n to construct the following bicriteria assignment problem. Let ¢ be a real number
such that ¢ > max; ¢;. Let the node set V' of Ky, 9, be V = U U R. Define the weights on
the edges of Ky, 9y, as follows:

N (é+0i,6—0i) T'Z'Odd
wlui, i) = { (¢,¢)  ; even.

Then there exists a subset S C {1,...,2n}, |S| = n such that },cg¢; = C if and only if
Ky, 20, with the above weights contains a perfect matching M with w, (M) < 2né+ C and
wo(M) < 2né — C.

The main result of [37] mentioned in the previous section has been used in [25] to show
that #(2-3>° ASSIGNMENT) is #IP-complete. a

As the single criterion counterparts of all three problems presented here, 2-}° UCP, 2-3°
S-T SHORTEST PATH, and 2-)>° ASSIGNMENT are solvable in polynomial time, Propositions
1 - 3 are rather disappointing. They show that even bicriteria combinatorial problems are
among the hardest problems. All results above have been proved for the case of 2 criteria.
However, we remark that the results remain valid in the general case of () criteria. Just
let wy(e) := 0 for all e € E and ¢ > 3. Other results highlighting the intractability of the
Q->" P type concern the number of Pareto optimal solutions. We cite one from [6], see also
[16].

Proposition 4 Let (CMOP) be a multiple criteria combinatorial optimization problem
with the properties

o |S|=n forallSeF and
o wie) = (2071 2m — 201,

Then the set of all Pareto optimal solutions P is equal to F and |E| = |P| = |F|.
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Proof:
Let S € F be any feasible solution. Then

n n

F1(S) + £2(8) =D (wies) +waley)) = Y (27" +2m — 27") = n2™.

=1 =1

Therefore, by the uniqueness of binary representations of numbers, all objective values
f(S1) and f(S5) are pairwise non-comparable. O

In Proposition 4 all feasible solutions are also Pareto optimal and they have different
objective value vectors. Other results in this respect are known in the literature, see e.g.
[17].

2.2 (CMOP) with bottleneck objectives

All the preceding results are for (CMOP) with sum objectives. The situation for bottleneck
objectives is completely different. Here, a threshold approach can be used, the consequence
being that a problem 2-max P can be solved in polynomial time by Algorithm 2.1, whenever
the single criterion bottleneck problem

min max w(e)

SeF e€cS
can be solved in polynomial time.
The set P will finally contain Pareto optimal solutions representing the whole efficient set
£. Sometimes such a set is called a complete set of alternatives, see [6] and references
therein. The running time of Algorithm 2.1 is bounded by O(mB(m)), where B(m) is the
time needed to solve the single criterion bottleneck problem 1-max P.
The algorithm can be generalized to the case of () bottleneck objectives, yielding a bound
of O(m@B(m)) and thus confirming polynomial solvability for any fixed Q. The question
whether the problem is also solvable in polynomial time if the number () of objectives is
part of the input is open yet.

3 General Approximability Results

The concept of approximability and performance ratios of algorithms is thoroughly studied
in combinatorial optimization, see e.g. [4] for a list of results. The performance ratio
R(S,S*) of a feasible solution S of an instance of a (minimization) problem (P) with
respect to an optimal solution S* is defined as

f(5)
f(8%)

Accordingly a (polynomial time) algorithm A for problem (P) is called an r(n)-approxi-
mate algorithm if R(A(P),S*) < r(|(P)|) for all instances of problem (P), where A(P)

R(S,S") =

9



Algorithm 2.1 : Solving 2-max P

Input:  E, weights wy(e), ws(e) for alle € E
Output: Set of Pareto optimal solutions P

1:=1
let S; be an optimal solution of minge » max.csws (e)
wiy = f1(S1), wiy = fo(S1)
P = {Sl}
1: E;:={e€ E:wye) < wh}
if there is no S € F such that S C E;
then goto 2:
else begin
Fil.={SeF:SCE;}
let S;;; be an optimal solution of minge Fi+1 Mmaxecs w1 (e)
P.=PuU {Si+1}
Wiy = f1(Si), wig = fo(Sit1)
end
1:=1+1, goto 1:
2: Delete all dominated solutions from P

is the solution found by algorithm A and |(P)| denotes the size of a problem instance.
Furthermore, r : IN — [1,00] is an arbitrary function. Note that r(n) = 1 means that
problem P can be solved (in polynomial time) by Algorithm A. We also remark that
R(S, S*) = q can be equivalently stated as % =q—1.

For multicriteria problems we cannot directly transfer this definition, since we have ob-
jective value vectors. So we have to decide how to compare these vectors, i.e. a norm is
necessary. Throughout the paper we will assume that IR¥ is equipped with a monotonous
norm |[[.||. A norm is monotonous if, whenever |a,| < [b,|, ¢ = 1,...,Q holds for two
elements a,b € IR?, then ||a|| < |[b]|-

Furthermore, since efficient vectors are not unique, we have the options to define approx-
imability with respect to one or to all Pareto optimal solutions. We will use the second
approach. We will now provide two possible definitions of performance ratios in multiple
criteria optimization. We shall consider algorithms which find one solution only.

In the first, we compare the norms of the vectors. Note that the norm of a heuristic
solution may be larger or smaller than that of Pareto optimal solutions, wherefore the
absolute value is needed.

Definition 1 1. Let S € F be a feasible solution of (CMOP) let S* € P be a Pareto
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optimal solution. The performance ratio Ry of S with respect to S* is defined as

o Sl = 1
S =

2. An algorithm A for (CMOP) is an ri(n)-approximate algorithm if the solution S
found by the algorithm satisfies

Ry (A(CMOP),5*) < ri(|ICMOP))
for all Pareto optimal solutions S* € P.

The second option of comparing the vectors directly, i.e. measuring the norm of the
difference between heuristic and Pareto optimal solutions, is taken care of in the following
definition.

Definition 2 1. Let S € F be a feasible solution of (CMOP), let S* € P be a Pareto
optimal solution of (CMOP). The performance ratio Ry of S with respect to S* is

defined as 1£(S) — £(S)]
a5, 87) == ==

2. An algorithm A for (CMOP) is an ro(n)-approzimate algorithm for (CMOP) if the
solution S found by the algorithm satisfies

Ry(A(CMOP), 5*) < r,(|CMOP))
for all Pareto optimal solutions S* € P.

Note that if any feasible solution S satisfies Ry(S, S*) < p for some Pareto solution S*
then also R;(S,S*) < p. Therefore we can observe:

Remark 2 An r(n)-approzimate algorithm for (CMOP) in the sense of Definition 2 is
also an r(n)-approximate algorithm in the sense of Definition 1.

The first definition hints to the idea of using a solution with minimal norm as an approxi-
mate heuristic solution for the multicriteria problem. That this is indeed possible is shown
in Theorem 1.

Theorem 1 Let S} be a feasible solution of (CMOP) with minimal norm, i.e.

s
[[Sall = min |[S]].

Then the performance ratio Ry1(S;, S*) <1 for all S* € P.
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Proof:
S = SN _ IFEI =S _ AR

£ (S 17 (5% A S~

|

Note that there always exists an S that is itself a Pareto optimal solution. So two questions
arise: The first, whether the ratio 1 is tight, i.e. whether instances can be constructed which
achieve this ratio. The second is whether S} can be found.

Example 1 We consider a very simple example of a (CMOP). Let E = {a,b,c,d} and
let F consist of all two element subsets of E. Weights are given in the table below, M
representing a large number.

e ‘ a b c d
(wi(e),wale)) [ (M,0) (0,M) (1,1) (1,1)

Then the five solutions {a,c},{a,d},{b,c},{b,d}, and {c,d} are Pareto optimal, with the

efficient vectors (M+1,1), (1, M+1), and (2, 2). It is easy to see that both Ry ({c,d},{a,c})

and Ry({c,d},{a,c}) approach 1 as M approaches infinity. This observation is true for all
1

l, norms, ||z||, = (Z(?:l |xq|p)"7 with 1 < p < oc.

For most problems it will be possible to construct examples with a behaviour like this
simple one. For specific problems, however, improved results may be possible.

Addressing the second question of whether S can be found the answer is: it depends on
the specific (CMOP) and on the norm chosen. The problem to find S} is

min£(5)]| (NMIP)
When ||.|| is the maximum norm [, the problem is the so called max-ordering problem.

We refer to [6] and references therein for results on this type of problems. Here, we will
restrict ourselves to a result on a condition when the problem (NMP) is indeed solvable in
polynomial time.

Proposition 5 In the following cases problem (NMP) is solvable in polynomial time.

e 1-3" P is solvable in polynomial time and ||.|| is Iy, i-e. ||z|| = Zqul |z4|.
e I-max P is solvable in polynomial time and ||.|| is lw, i.€. ||z|| = maxg’?:l |z4].
Proof:

In both cases the respective problem (NMP) is equivalent to a single criterion problem,
which by assumption can be solved in polynomial time.

12



e The following holds.

Q
min [|f(S)[| = min (qu(5)>

SeF SeF

where w(e) = 222:1 wy(e).

e For all S € F it holds that

1FS)]| = nfix £,(8) = nifix (maxw,(e))

with w(e) = maquzl wy(e).
a

Proposition 5 has immediate consequences for such polynomially solvable problems as the
shortest path problem, the spanning tree problem and the assignment problem. The well
known algorithms that solve these (single objective) problems are 1-approximate algorithms
for the multicriteria counterparts.

Whenever problem (NMP) is not solvable in polynomial time, other approximation algo-
rithms have to be considered. Then we may turn to the question on how to approximate
Sk. But recall that there exists a Pareto optimal solution S} of (NMP) which hence is
included in the definition of an r(n)-approximate algorithm anyway. As an important
example of such a problem we consider the travelling salesman problem.

4 The Multicriteria TSP

The travelling salesman problem (TSP) can be formulated on the complete graph with n
nodes, K,, as follows. If w(s,j) is the weight of edge [7, j] find a Hamiltonian cycle C of
K, such that either the sum of the weights of the edges in C is as small as possible. In this
and the following sections F will always denote the set of Hamiltonian cycles of a graph.

The multiple criteria TSP is defined with ) > 1 weights on the edges of K,,. Let w,(i, j) >
0,g=1,...,Q, 4,5 € {1,...,n} be @ nonnegative weights. Then the problem is

“min” (f1(0), ..., f4(C))
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subject to C € F.

where f,(C) is Y .cc wy(e) The set of Pareto optimal tours will be denoted by P, the set
of efficient weight vectors by £. The bottleneck TSP will not be considered in this paper.
We restrict ourselves to the symmetric TSP with triangle inequality, that is we assume
wq(%, 7) = wq(7,7) and w, (i, k) < wq(i,j) +wq(j, k) for all ¢, j and £ in {1,...,n} and all ¢
in{1,...,Q}.

Before we begin the presentation of the results we will review previous results in the
context of TSP. The travelling salesman problem is the most widely studied combinatorial
optimization problem, confirmed by a vast amount of literature. For classical topics we
refer to [21] and the references therein. Research on the TSP in recent years was mainly
focussed on four fields.

1. Polyhedral combinatorics with the aim of solving large scale TSPs exactly by branch
and cut methods, see [8, 11, 14, 26],

2. generalized TSPs or TSPs with additional constraints, e.g. [1, 5, 20, 27|,
3. polynomially solvable special cases (see the surveys in [2, 13]), and

4. investigation of meta heuristics such as Tabu Search, Simulated Annealing or Genetic
Algorithms for the TSP, stimulated by the growing interest in these methods in
general. We refer to [9, 19, 23, 24, 33, 34].

Very few papers have treated the multicriteria TSP. Below we list some of the problems
investigated and some important results. In [31] a heuristic method for the solution of
the TSP with one sum and one bottleneck objective, i.e. 1-}. 1-maxTSP, where both
objectives are obtained from the same cost matrix (w), is presented. No performance
ratios are given for this algorithm.

In [15] 2-opt and 3-opt exchange heuristics for the max-ordering TSP (sum objectives) are
analyzed. The max-ordering TSP is

min max (fi1(C),..., fo(C)).

ceT ¢=1,...,Q

TSPs with two (sum) criteria are solved in [10] by a branch and bound approach. A
similar method is suggested in [35] for any number of objectives. A multiple labelling
scheme is used to keep track of possible Pareto optimal tours. However, these algorithms
are enumerative and exhibit exponential time complexity in the worst case for two reasons:
The complexity of the TSP itself and the (possibly) large number of Pareto optimal tours.
The cardinality of P is investigated in [7]. There are two main results on the maximal
number of Pareto optimal TSP-tours. For each number n and each number ) > 2 there
exist distance matrices (w?(i,5)), ¢ = 1,...,Q such that all possible TSP-tours are also
Pareto optimal, i.e. )

—1)!

e
Pl = €] =
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For the second result we note that a property holds for almost all graphs on n nodes if the
ratio of the number of graphs on n nodes fulfilling that property and the number of all
graphs on n nodes approaches 1 as n approaches infinity.

Theorem 2 For the multiple criteria TSP with QQ > 2 and for almost all graphs on n
nodes the following asymptotic lower bound on the mazimum number of Pareto optimal
tours and efficient vectors holds.

(n—1)!

max |P| > max |E| > —on

Here ¢ = ¢(n) is an arbitrary function such that ¢(n) — oo, p(n)/+/n — 0 as n — co.

Due to Theorem 2 we expect an exponential number of Pareto optimal tours for an instance
of the multicriteria T'SP. Since the problem of finding one of them is already /\NP-hard, that
would imply solution of a possibly exponential number of INP-hard problems to determine
E. In the following sections we will therefore investigate approximation algorithms for the
TSP. We prove that the two well known approximation algorithms for the symmetric TSP
with triangle inequality, the tree algorithm and Christofides’ algorithm, can be used in the
multiple criteria case, too.

The rest of this section is organized as follows. In Section 4.1 we present the two algorithms.
Their performance is investigated in Section 4.2, with respect to the two definitions of
approximation ratios. In Section 4.3 we give an example.

4.1 Algorithms

There are two well known heuristics for the TSP, which guarantee worst case performance
ratios for their solutions, namely the tree and the Christofides’ algorithm.

The idea of the tree algorithm in the single criterion TSP is rather simple. First a minimum
spanning tree (MST) of K, is constructed, then each edge of the MST is taken twice,
yielding a Eulerian graph GG. An Euler tour of G then defines an embedded TSP-tour. The
TSP-tour can easily be constructed from the Euler tour in O(n) time. However, in general
there are several Euler tours which can be used to find TSP-tours. In the multiple criteria
case the algorithm is as follows.

Christofides’ algorithm also begins with the construction of a minimum spanning tree. But
instead of duplicating the edges of the MST the edges of a minimal weight perfect matching
of the complete graph on the odd degree nodes (of which there is always an even number)
of the MST are added. Again the resulting graph is Eulerian and a TSP-tour embedded
in an Euler tour can be found in O(n) time. The method was first published in [3] and is
also analyzed in [28] and [21].

We remark that validity of both algorithms, i.e. the fact that they produce a TSP-tour,
can be shown exactly as in the single criterion case. Therefore we refer to the sources
above which include these proofs and omit them here.
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Algorithm 4.1 : Tree Algorithm for Q- TSP

Input:  Distance matrix (w,(4,7)) ¢=1,...,Q
Output: A TSP tour C

Step 1  Find a spanning tree with minimal normed weight,
ST € argmin {||f(T)|| : T is a spanning tree of K}

Step 2 Define G by the nodes of K,, and two copies of each edge of ST,
G:=(V(K,),E), E:=E(ST)U{e :e€ E(ST)}

Step 3 Find an Euler tour EU in G and a TSP-tour C' embedded in EU

Algorithm 4.2 : Christofides’ Algorithm for Q->- TSP

Input:  Distance matrix (w,(7,7)), ¢=1,...,Q
Output: A TSP-tour C

Step 1 Find a spanning tree S7" with minimal normed weight,
ST € argmin {||f(T)||: T is a spanning tree of K}
Step 2 Define G* as the complete graph on the odd degree nodes of ST,
G*:= (V*, E*), V* ={v € V(G) : v has odd degree in ST}, E* = {[u,v] : u,v € V*}
Step 3 Find a perfect matching PM of G* with minimal normed weight
PM € argmin {||f(M)|| : M is a perfect matching of G*}
Step 4  Define G as the union of ST and PM, G := (V(K,), E(PM)U E(ST))
Step 5  Find an Euler tour EU in G and a TSP-tour C' embedded in EU

Concerning computational complexity it is obvious that the construction of an Euler tour
and the embedded TSP tour can be achieved in O(n) time. However, the overall complexity
of Algorithms 4.1 and 4.2 depends on the complexity of of the problem of finding norm-
minimal spanning trees respectively norm-minimal perfect matchings, i.e again problems of
type (NMP). In the case of the /;-norm both of these problems are polynomially solvable,
since they reduce to the same problem with only one criterion (see Proposition 5). In this
case the well known algorithms for minimum weight perfect matching and minimum weight
spanning tree can be used and both tree and Christofides’ algorithm have polynomial time
worst case complexity, in fact O(n?) and O(n?), respectively.

In case of the l,-norm, however, both problems are known to be INP-hard, see [16] and
[22]. These problems are known as the max-ordering spanning tree and max-ordering
perfect matching problem. Therefore enumeration methods will be needed to solve these
subproblems in the two algorithms and exponential running times will occur.
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4.2 Approximation Results for the Multicriteria TSP

In view of Theorem 1 there are two problems concerning the approximation algorithms

1. Do Algorithms 4.1 and 4.2 guarantee the theoretical bound?

2. What is their performance for problem (NMP)?

We will address these questions below. The next theorem provides an affirmative answer
to the first question.

Theorem 3 The tree algorithm is a 1-approximate algorithm for the multicriteria TSP,
Q->TSP, in the sense of Definition 1, i.e. r1(n) = 1.

Proof:
Let C be the TSP-tour found by the tree algorithm and let C* be in P. We have to show
that

=[N <A ON = LA < 1A (1)
Since the first inequality is trivial we look at the second. From the algorithm and the
triangle inequality it follows that f(C) < 2f(ST) = f(G) which by monotonicity of the
norm implies

LF O] < 2| £(ST)] (2)

Due to the choice of ST and because removing one edge from C yields a spanning tree we
have

A ST < [LF(C)]] (3)
Combining (2) and (3) implies

LF O < 2/ £(C)]] (4)
and the claim holds. O

Theorem 3 shows that the performance ratio guaranteed for the tree algorithm is the same
for multiple and single criteria problems. From Section 3 it is obvious that for Christofides’
algorithm the % approximation ratio cannot be valid for the multicriteria TSP. However,
it has the best possible ratio of 1, too. In Section 4.3 we will see that in practice it yields

better results than the Tree algorithm.

Theorem 4 Christofides’ algorithm is a 1-approrimate algorithm for the multicriteria
TSP, Q-> TSP, in the sense of Definition 1, i.e. r1(n) = 1.

Proof:

Let C' be the TSP-tour constructed by Christofides’ algorithm and let C* be a Pareto
optimal TSP-tour. Again we have to show (1). We denote by {i1,...,i2,} the odd-degree
nodes of the spanning tree ST in the algorithm as they appear in C*, i.e.

C = O, %1, 01, 192, ...,029m—1, lom, Com
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where «;, 7 = 1,...,2m are possibly empty sequences of nodes. We define two perfect
matchings on {iy,..., 49, }. Let

Ml = {[il’ 7;2]7 [i3a Z.4]: R ) [7;2711717 2Zm]}
and
M2 = {[iQ’ Z'3]’ [Z'4’ 7;5]a L [iQma 7’1]}
Then by the triangle-inequality it follows that f(C*) > f(M;) + f(M;). By the choice of

PM in the algorithm it is clear that || f(M;)|| > ||f(PM)|| and ||f(Ms)|| > ||f(PM)]|| and
hence with monotonicity of the norm:

OO = [[f (My) + f(Ma)|| = max {[|f(M)]], [|f(Ma)[} = [|f(PM)]] (5)
The construction of C' and the triangle inequality imply that
O < [IF @) = [[f(ST) + f(PM)[| < [[f (ST + |[f(PM)]]. (6)
We observe that (3) holds. Then substituting (3) and (5) into (6) we conclude
£ (O] < 2[[F(C)]]. (7)
a

The result of Theorem 4 is weaker than in the single criterion case because we cannot prove
that || f(C*)|| > 2||f(PM)|| in general. An important special case in which we can indeed
prove a better performance ratio than in Theorem 4 occurs when the norm is the /; —norm,

.....

2|[f(PM)]];. Using this instead of (5) in the proof of Theorem 4 we have:
Corollary 1 If the norm of IR® is the l;-norm Christofides’ algorithm provides a TSP-tour

C such that .
@)l = 7€)l _

1 L
B £ (C)] — 2

for all C* € P.

Another problem in proving a better worst case bound is that it may happen that there
are Pareto optimal TSP-tours, which have a larger norm than the TSP-tour found by
Christofides’ algorithm. Hence there may occur lower deviations from Pareto optimal
tours. However, for the norm minimizing TSP (NMP) this situation is impossible. We
state this as a second Corollary.

Corollary 2 For the problem minger || f(C)|| Christofides’ algorithm provides a TSP-tour

C such that .

@l =1s@ll _

- (G -
where C! is the optimal solution of (NMP). If furthermore the norm of IR® is I, then
Christofides’ algorithm is a %—appro;m'mate algorithm for the norm minimizing TSP (NMP).

0
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1
For the rest of this section we will restrict ourselves to [,-norms, i.e.||z||, = (Z(?:l |:vq|”) ?

for x € IR?, which clearly are monotonous norms. The following lemma will be used in
the proof of the main result on approximation algorithms.

Lemma 3 Let a,b € ]Rf and let p > 1 then

Q [ v
(o) < (Becon)

g=1
Proof:
lag — bg|” < (max{ag, bg})? < ab + 8 holds for all ¢ = 1,...,Q. O

Theorem 5 Let the norm of IR? be ||.||,,1 < p < oo. Then both the tree and Christofides’

algorithm are (2P + 1)%—approa:imate algorithms for the multicriteria TSP, Q- TSP, in
1

the sense of Definition 2. That is, for both algorithms ro(n) = (2P 4+ 1)»

Proof:

Let C' be the TSP-tour found by either the tree or Christofides’ algorithm and let C* € P
be a Pareto optimal TSP-tour. Then

S =

1£0) = (O, _ (S [wg(C) — wy(C7)P)
O T (2 o)

(S8 (wg(C)) + (wy(C))))
(=8 (wg 0*»)5

<||f(0)||” + IIf(C*)||”>
1F(CE

(2”\|f(0*)||£+ 1£(C) |g>f»
1F(CIE

=

= (2" +1)»

where the first inequality follows from Lemma 3 and the second from (4) and (7), respec-
tively. O

If we let p approach infinity we see that both algorithms are 2-approximate algorithms if
|-]l = ||-]|cc- This result can be verified directly using ||z|| = max,—1,. ¢ |z,| in the proof
of Theorem 5.

The important special case of p = 1 allows again to prove a better result for Christofides’
algorithm. We can proceed as in Corollaries 1 and 2 after Theorem 4. This observation
allows to replace 2 by % in Theorem 5. Setting p = 1 we can state Corollary 3.
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Corollary 3 If the norm of IR is the l;-norm Christofides’ algorithm is a g—approa:imate
algorithm (in the sense of Definition 2) for the multicriteria TSP, Q-> TSP, i.e. ro(n) =
5/2.

Let p(p) denote the approximation ratios for /,-norms. Then according to Theorem 5
1
Figure 1 shows the values of p(p) = (27 +1)» .

Figure 1: Approximation Ratios for /,-norms

4.3 An Example

As an example let us consider the complete graph Kg with () = 3 weights on the edges
(see Table 1). In the example we will calculate the exact maximal deviations of all possible
TSP-tours the tree and Christofides’ algorithm may find to the seven Pareto optimal TSP-
tours. We consider /,-norms with p € {1,2,00}. The seven Pareto optimal TSP-tours are
listed in Table 2 with their weights and the corresponding normed weights, according to
the three norms we consider in this example.

1 2 3 4 5 6
1 - (1,57,39)  (6,55,173)  (5,24,6)  (5,19,249)  (5,46,45)
2 (1,57,39) - (5,151,354) (4,126,348) (6,121,430) (4,137,25)
3 (6,55,173) (5,151,354) - (5,121,511)  (6,90,76)  (1,117,404)
4 (524,6) (4,126,348) (5,121,511) - (6,34,251)  (8,61,39)
5 (5,19,249) (6,121,430)  (6,90,76)  (6,34,251) - (2,27,328)
6 (546,45) (4,137,25) (1,117,404) (8,61,39)  (2,27,328) -

Table 1: Weights of Kg in the Example
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No. Pareto Optimal Tour 1[4 ly loo Weight

1 1 4 6 5 3 2 1279 936.906 842 (27,410,842)
2 1 4 5 6 3 2 1812 1441.674 1382 (20,410,1382)
3 1 5 6 3 4 2 234 1936.247 1879 (18,467,1879)
4 1 4 5 3 6 2 1283 923478 801 (23,459,801)
3 1 3 5 4 6 2 1068 743.590 603 (31,434,603)
6 1 4 3 5 6 2 1464 1085.675 985  (23,456,985)
7 1 3 4 5 6 2 1782 1395.445 1327 (24,431,1327)

Table 2: Pareto Optimal TSP-Tours

For both algorithms we need spanning trees with minimal norm. These are unique and
listed for the three norms in Table 3. In Christofides’ algorithm it is also necessary to find
perfect matchings with minimal norm on the complete graph consisting of the odd degree
nodes of the trees listed in Table 3. These matchings are also unique and shown in Table
4.

Spanning Tree Norm Weight
b 1-21-3,1-4,1-6,3—-5 634 (23,272,339)
lpb, 1-2,1-3,1-4,1-6,3—-5 435.240 (23,272,339)
loo 1—2,1-3,1-4,3-5,4—-6 333 (26,287,333)

Table 3: Spanning Trees with Minimal Norm

Perfect Matching Norm Weight
[y 2—-6, 4-5 457 (10,171,276)
ly 2—-6, 4-5 324.69 (10,171,276)
loo 1-5, 2-6 274 (9,156,274)

Table 4: Perfect Matchings with Minimal Norm

Tables 3 and 4 provide the necessary data to apply the two algorithms. For the tree
algorithm the data for the /;- and ly-norms allow the construction of 24 TSP-tours (derived
from all possible Euler tours by short-cutting nodes which are visited twice), 4 of which
are Pareto optimal. If the [,-norm is used only 6 TSP-tours can be constructed, one of
which is Pareto optimal. Calculating the maximal deviations of these tours from Pareto
optimal tours according to Definitions 1 and 2, we get the results of Table 5. Investigating
Christofides’ algorithm we see that for all three norms 4 TSP-tours can be constructed,
one of which is Pareto optimal. Here for approximation in the sense of Definition 1 we
distinguish between upper (norm of the heuristic TSP-tour is larger than that of the Pareto
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optimal tour) and lower (norm of the heuristic TSP-tour is smaller than that of the Pareto
optimal TSP-tour) deviations. Results are summarized in Table 6.

L ly loo
Definition 1 74.16 91.75 91.5
Definition 2 74.91 100.16 91.5

Table 5: Deviations Using the Tree Algorithm

I Iy lo
Definition 1 Upper Deviation 34.55 39.87 55.72
Lower Deviation 54.82 61.60 67.91
Definition 2 Deviation 55.92 65.93 67.91

Table 6: Deviations Using Christofides’ Algorithm

The example shows that although we cannot prove better worst case approximation bounds
for Christofides’ algorithm in general this method usually will produce better results. This
is due to the more sophisticated idea of adding a perfect matching on the odd degree nodes
to the spanning tree instead of duplicating it to make the graph G' Eulerian. For the [5-
norm we also see that a worst case error of 1 in the sense of Definition 2 norm sense cannot
be proved for the tree algorithm.

5 Conclusions

In this paper we have first studied the computational complexity of combinatorial multicri-
teria optimization problems. The results obtained clearly emphasize the intrinsic difficulty
of (CMOP). Due to these complexity results we argued that heuristics should be investi-
gated to solve (CMOP).

In our paper we have focused attention on algorithms with a guaranteed worst case perfor-
mance ratio. We provided two possible definitions of approximate algorithms with perfor-
mance ratio with respect to the set of all Pareto optimal solutions. Some general results
where presented showing the limitations of such an approach. The TSP was considered
as an example of a problem which is INP-complete in the single objective case, but which,
nevertheless, admits approximate solutions up to a certain bound. The results obtained
indicate that the performance of the tree and Christofides’ algorithm in some cases are as
good as in the single objective case.

As pointed out at several points, this direction of research, to the author’s knowledge, has
not gained much attention. Some further directions of research emanate quite obviously.
We will briefly indicate these below.
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Another — component-wise — definition of a performance ratio is possible if we consider

Rq(S,S*) — |f11(S) _fll(S*)|’ q= 1,---,Q

fo(5%)

The question is: Do there exist problems (CMOP) that admit (r(n))-approximate algo-
rithms in the sense that

R,(A(CMOP),S") <r4(n), ¢g=1,...Q.

either for some or for all Pareto optimal solutions $*?

Very little is known about such algorithm up to now. The definition has been used in [29]
for bicriteria linear programs and minimum cost flow problems. As an indication of the
problems related to such an approach, e.g. for the TSP, note that equations (3) and (5)
do not hold component-wise in general.

Other directions of research are the investigation of approximate algorithms for multiple
objective versions of polynomially solvable combinatorial optimization problems. Results
for approximation algorithms which deliver good approximations to (at least) one Pareto
optimal solution have to be considered, too.

The final conclusion is that this study may serve as an incentive to study approximate
solutions of (CMOP) problems in the future. Due to the importance of (CMOP) in real
world problems, efficient methods which yield (provably) good results will be need ed in
the future.
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