
Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
genehmigte Dissertation

Induction-based Verification
of

Synchronous and Hybrid Programs

Autorin: Xian Li

Datum der Disputation: 10. November 2017

Gutachter:
Prof. Dr. Klaus Schneider
Prof. Dr. André Platzer

Promotionskommission:
Prof. Dr. Christoph Garth (Vorsitzender)
Prof. Dr. Christoph Grimm
Prof. Dr. Klaus Schneider

Dekan:
Prof. Dr. Stefan Deßloch

D 386

Abstract
Embedded reactive systems underpin various safety-critical applications wherein they
interact with other systems and the environment with limited or even no human su-
pervision. Therefore, design errors that violate essential system specifications can lead
to severe unacceptable damages. For this reason, formal verification of such systems in
their physical environment is of high interest. Synchronous programs are typically used
to represent embedded reactive systems while hybrid systems serve to model discrete
reactive system in a continuous environment. As such, both synchronous programs and
hybrid systems play important roles in the model-based design of embedded reactive sys-
tems. This thesis develops induction-based techniques for safety property verification of
synchronous and hybrid programs. The imperative synchronous language Quartz and
its hybrid systems’ extensions are used to sustain the findings.

Deductive techniques for software verification typically use Hoare calculus. In this
context, Verification Condition Generation (VCG) is used to apply Hoare calculus rules
to a program whose statements are annotated with pre- and postconditions so that the
validity of an obtained Verification Condition (VC) implies correctness of a given proof
goal. Due to the abstraction of macro steps, Hoare calculus cannot directly generate VCs
of synchronous programs unless it handles additional label variables or goto statements.
As a first contribution, Floyd’s induction-based approach is employed to generate VCs
for synchronous and hybrid programs. Five VCG methods are introduced that use
inductive assertions to decompose the overall proof goal. Given the right assertions, the
procedure can automatically generate a set of VCs that can then be checked by SMT
solvers or automated theorem provers. The methods are proved sound and relatively
complete, provided that the underlying assertion language is expressive enough. They
can be applied to any program with a state-based semantics.

Property Directed Reachability (PDR) is an efficient method for synchronous hard-
ware circuit verification based on induction rather than fixpoint computation. Crucial
steps of the PDR method consist of deciding about the reachability of Counterexamples
to Induction (CTIs) and generalizing them to clauses that cover as many unreachable
states as possible. The thesis demonstrates that PDR becomes more efficient for im-
perative synchronous programs when using the distinction between the control- and
dataflow. Before calling the PDR method, it is possible to derive additional program
control-flow information that can be added to the transition relation such that less
CTIs will be generated. Two methods to compute additional control-flow information
are presented that differ in how precisely they approximate the reachable control-flow
states and, consequently, in their required runtime. After calling the PDR method,
the CTI identification work is reduced to its control-flow part and to checking whether
the obtained control-flow states are unreachable in the corresponding extended finite
state machine of the program. If so, all states of the transition system that refer to the
same program locations can be excluded, which significantly increases the performance
of PDR.

Acknowledgments

First and foremost I would like to express my deepest gratitude to my Doktorvater,
Prof. Dr. Klaus Schneider, who gave me the opportunity to pursue my PhD under
his supervision and who led me into the fascinating world of verification. His constant
encouragement, continuous guidance, and constructive ideas throughout all the stages
of my PhD were a great help.

Furthermore, I am very grateful to Prof. Dr. André Platzer from Carnegie Mellon
University for accepting to review this manuscript and for his comments on it. I would
also like to express my gratitude to the PhD committee for helping me complete the
complex organizational procedures step by step.

Additionally, I want to convey my thanks to my wonderful colleagues throughout
the years I spent at the Embedded Systems Chair in Kaiserslautern. Dr. Kerstin Bauer
practically tutored me through my first year of study: Without her exemplary counsel,
I could definitely not have gotten familiar with my research area as fast as I did. I am
also very fortunate to have learned from my predecessors Dr. Andreas Morgenstern, Dr.
Mike Gemünde, Dr. Daniel Baudisch, Dr. Manuel Gesell, Dr. Alessandro Gerlinger
Romero and Dr. Yu Bai before they graduated and moved forward to industry. For their
support during my more recent PhD years, I would also like to thank Tripti Jain, Anoop
Bhagyanath, Marc Dahlem, Martin Köhler, Omair Rafique and Maximilian Senftleben:
It was a great pleasure to discuss and work with you all!

I owe my sincere gratitude to my husband Georgel without whose valuable feedback
and support this thesis could not have reached its present form. Last but not least, I
would like to thank my beloved parents for their confidence throughout my study years.

Kaiserslautern, November 10, 2017 Xian Li

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 5
1.3 Thesis Structure . 8

2 Preliminaries 9
2.1 Modeling of Synchronous Systems . 10

2.1.1 The Imperative Synchronous Language Quartz 10
2.2 Modeling of Hybrid Systems . 12

2.2.1 The Extension of Quartz to Hybrid Systems 13
2.3 The Averest System . 15
2.4 Symbolic Representations of Quartz Programs 17

2.4.1 EFSMs . 18
2.4.2 Symbolic Transition Systems . 21

2.5 Safety Property Verification . 25
2.5.1 The Satisfiability Problem . 25
2.5.2 Decidability and Tools . 27

2.6 Verification Condition Generation . 31
2.6.1 Hoare Calculus based VCG . 32
2.6.2 Difficulties of Adapting Hoare Calculus 33

2.7 PDR in a Nutshell . 35
2.7.1 Symbolic Model Checking . 35
2.7.2 Incremental Induction by PDR 37
2.7.3 Checking Unreachability of Cubes 39
2.7.4 Generalization of CTIs . 39

3 Verification Condition Generation Using Inductive Assertions 41
3.1 SafeTrans and SafePath Predicates . 42

3.1.1 Abbreviations for Predicates . 42
3.1.2 The SafeTrans Predicate . 43

vii

viii Contents

3.1.3 The SafePath Predicate . 44
3.1.4 Comparison between SafeTrans and SafePath 44

3.2 VCG using Control-flow Assertions . 45
3.2.1 The Transition-based Method . 45

3.3 VCG using SCC Assertions . 46
3.3.1 The SCC-Path Method . 46
3.3.2 The SCC-Trans Method . 47

3.4 VCG using Loop Assertions . 48
3.4.1 The Loop-Path Method . 48
3.4.2 The Loop-Trans Method . 49

3.5 Relative Completeness of the VCG Methods 50
3.5.1 Relative Completeness of Transition-based 51
3.5.2 Relative Completeness of SCC-Path 52
3.5.3 Relative Completeness of SCC-Trans 54
3.5.4 Relative Completeness of Loop-Path 54
3.5.5 Relative Completeness of Loop-Trans 57

4 Control-flow Guided Property Directed Reachability Optimizations 59
4.1 The Synchronous Product of Transition Systems 60
4.2 Transition Relation Modification . 60

4.2.1 Control-flow Invariant ReachCF(P) by Fixpoint Computation . . 61
4.2.2 Compiler Generated Control-flow Invariant InvarCF(P) 62
4.2.3 Examples . 63

4.3 CTI Identification and Generalization 70
4.3.1 Unreachability Checking by EFSMs 70
4.3.2 Control-flow Guided Clause Generation 70
4.3.3 Example . 71

5 Experimental Evaluation 77
5.1 Synchronous Quartz Program SearchZeros 78

5.1.1 Module SearchZeros and its EFSM 78
5.1.2 VCG using TransBased for SearchZero 79
5.1.3 Experiment Results for SearchZero 81

5.2 Synchronous Quartz Program VectorLengthN 82
5.2.1 Module VectorLengthN and its EFSM 82
5.2.2 VCG using SCCPath for VectorLengthN with N := 2 84
5.2.3 VCG using LoopPath for VectorLengthN with N := 2 86
5.2.4 Scalability . 87

5.3 Hybrid Quartz Program WaterTank . 92
5.3.1 Module WaterTank and its EFSM 92
5.3.2 VCG using SCCTrans for WaterTank 93
5.3.3 VCG using LoopTrans for WaterTank 95
5.3.4 Experiment Results for WaterTank 97

5.4 Hybrid Quartz Program SlowDown . 97

Contents ix

5.4.1 Module SlowDown and its EFSM 99
5.4.2 Experiment Results for SlowDown 99

5.5 Hybrid Quartz Program ParametricBall 102
5.5.1 Module ParametricBall and its EFSM 102
5.5.2 Validation by VCG Methods . 103

6 Conclusion 107

Bibliography 109

Appendices 123

A A Symbolic Simulation Algorithm 125

B Curriculum Vitae 127

List of Acronyms

AHA Affine Hybrid Automata

AIF Averest Interchange Format

CFG Control-Flow Graph

CTI Counterexample to Induction

EFSM Extended Finite State Machine

IC3 Incremental Construction of Inductive Clauses for Indubitable Correctness

LHA Linear Hybrid Automata

MILP Mix-Integer Linear Program

MINLP Mix-Integer Non-Linear Program

NLP Non-Linear Program

ODE Ordinary Differential Equation System

PDR Property Directed Reachability

SCC Strongly Connected Component

SMT Satisfiability Modulo Theories

SOS Structural Operational Semantics

VC Verification Condition

VCG Verification Condition Generation

WCET Worst-Case Execution Time

xi

List of Figures

2.1 Synchronous Quartz Module M1 . 11
2.2 Symbolic Simulation Graph of Module M1 12
2.3 Hybrid Quartz Module M2 . 13
2.4 Symbolic Simulation Graph of Module M2 14
2.5 Hybrid Quartz Module M3 . 15
2.6 Symbolic Simulation Graph of Module M3 16
2.7 The Averest System . 17
2.8 Synchronous Quartz Module M4 . 18
2.9 EFSM of Module M4 . 19
2.10 Transition Relation for Variable x . 22
2.11 The Relations of Logics . 28
2.12 The Relations of Constraint Problems 30
2.13 Hoare Calculus for a sequential Programming Language 32
2.14 Module Irreducible . 33
2.15 EFSM of Module Irreducible . 34
2.16 Module Reducible . 34
2.17 EFSM of Module Reducible . 35

4.1 Synchronous Quartz Module CfSeq . 64
4.2 State Transition Diagram of KCfSeq for Module CfSeq with N := 2 64
4.3 Synchronous Quartz Module CfIte . 65
4.4 State Transition Diagram of KCfIte for Module CfIte with N := 2 67
4.5 Synchronous Quartz Module CfPar . 67
4.6 State Transition Diagram of KCfPar for Module CfPar with N := 2 69
4.7 Control-flow Guided Clause Generation 72
4.8 Fig: Synchronous Quartz Module ITELoop 72
4.9 EFSM of Module ITELoop with N := 1 73
4.10 State Transition Diagram of KITELoop for Module ITELoop with N := 1 . 74
4.11 State Transition Diagram of Kcf

ITELoop for Module ITELoop with N := 1 . 75

xiii

xiv List of Figures

5.1 Synchronous Quartz Module SearchZero 79
5.2 EFSM of Module SearchZero . 80
5.3 D(s0)→ ΦSearchZero in SMT-LIB Format 81
5.4 Synchronous Quartz Module VectorLengthN 82
5.5 EFSM of Module VectorLengthN with N := 2 85
5.6 Hybrid Quartz Module WaterTank . 93
5.7 EFSM of Hybrid Quartz Module WaterTank 94
5.8 D(s0)→ ΦWaterTank in SMT-LIB Format 96
5.9 Hybrid Quartz Module SlowDown . 97
5.10 EFSM of Module SlowDown . 100
5.11 The Ball and Holes Scenario . 102
5.12 Hybrid Quartz Module ParametricBall 103
5.13 EFSM of Module ParametricBall . 104

List of Tables

2.1 Example Formulas . 26

5.1 Experiment Results - Module SearchZero 83
5.2 Experiment Results - Module VectorLengthN with N := 2 88
5.3 Experiment Results - Module VectorLengthN with N := 3 89
5.4 Experiment Results - Module VectorLengthN with N := 4 90
5.5 Experiment Results - Module VectorLengthN with N := 5 91
5.6 Experiment Results - Module WaterTank 98
5.7 Experiment Results - Module SlowDown 101
5.8 Experiment Results - Module ParametricBall 105

xv

Chapter1
Introduction

Contents
1.1 Motivation . 1
1.2 Contribution . 5
1.3 Thesis Structure . 8

1.1 Motivation

Embedded reactive systems are used in many safety-critical applications where they di-
rectly interact with other systems and their physical environment with only limited or
even no supervision of human operators. Design errors that violate the given specifi-
cations can therefore lead to severe damages which are unacceptable in safety-critical
applications. For this reason, formal verification of embedded reactive systems in their
physical environment is of high interest.

Synchronous programs [BC85; Ber99; Sch09] can directly express the execution steps
of embedded reactive systems, while a hybrid system [MMP92; Alu+93; Pla10; Alu11]
consists of both discrete and continuous transitions that can be often understood as the
result of considering a discrete reactive system in a continuous (physical) environment.
Therefore, both synchronous languages and hybrid systems play important roles for
embedded reactive systems in model-based design [NM09]: Here, a model of the system
to be built is made, simulated, analyzed and optimized before actually building the
system — preferably with the help of computer-aided design tools.

Safety properties are widely used to encode the system’s specifications for formal
analysis, which assert that observed behavior of the system always stays within some
allowed set of finite behaviors [KV99]. The thesis develops induction-based techniques
for safety property verification of synchronous and hybrid programs. In particular, the
imperative synchronous language Quartz and its extension to hybrid systems are used
to exemplify the findings.

1

2 Chapter 1. Introduction

For safety property verification, synchronous and hybrid programs are usually trans-
lated to state transition systems so that various kinds of model-checking procedures
can be applied. Many sophisticated optimizations and specializations for symbolic
model checking [Bur+90; Bur+92] have been found. However, all existing BDD-based
[Bur+93; McM93], SAT/SMT-based [Aud+02; BDS02; FH07; Frä+07; EFH08; MB08;
GAC12a; Cim+13; SB14; Cha+16], interpolation-based [McM03], IC3-based [Bra11],
bounded model-checking [Cla+01; Bie+03] as well as abstraction and reduction tech-
niques [Alu+00; Cla+03; ADI06; GSM07; BGS10; Tiw12] suffer from the state-space
explosion problem. It is therefore desirable to also apply deductive techniques [Gup92;
CW96; KG99] to safety property verification of synchronous and hybrid programs. They
are usually based on automated or interactive theorem provers, like the HOL family of
systems [Gor86], Isabelle [Pau94], PVS [ORS92], ACL2 [KM08], KeYmaera [PQ08;
Pla10] and many others. The user interacts with these systems by setting up proof
goals and applying proof rules until a proof is finally obtained. The mentioned systems
are general theorem provers and support undecidable and very expressive higher order
logics. These theorem provers were used for the verification of many kinds of systems,
in particular, many kinds of software systems [Bon10].

Firstly, the most popular deductive techniques for software verification are based
on Hoare calculus [Hoa69; Gri81; Apt81], where program statements S are enclosed in
pre- and postconditions φ, ψ to form proof goals {φ} S {ψ} which denote that if φ
holds at starting time of S, then ψ holds at termination time of S (provided that S will
terminate). The Hoare calculus then provides for every statement of the considered
programing language a decomposition rule to reduce a proof goal for that statement to
proof goals using only its sub-statements. In particular, loops are thereby reduced by
Hoare’s famous invariant rule: Given a loop statement while(σ) S with its invariant
I, one can deduce from a proof of {σ ∧ I} S {I} that also {I} while(σ) S {¬σ ∧ I}
holds. Since invariants, as well as pre- and postconditions usually have to be provided
by the user, the approach is in general an interactive one.

Verification Condition Generation (VCG) [Mat+06] aggressively applies all rules
of the Hoare calculus to a program whose statements are annotated with pre- and
postconditions so that the validity of the obtained formulas implies the correctness of
the given proof goal {φ} S {ψ}. In principle, it is thereby sufficient to only provide the
right loop invariants. VCG can work very fast, since they just make a linear pass over
the program and the obtained formulas can then be checked one after the other or in
parallel. This way, the overall verification problem is split into two independent parts:
First, generating the VCs, and second proving them — this can be done by different
tools and, if desired, in parallel.

VCG is not limited to Hoare calculus: Indeed, early work done by Floyd [Flo67]
used inductive assertions instead of loop invariants to prove assertions of loops, i.e.,
cycles in the flow graphs of programs. Induction-based approaches without VCG have
already been applied to the verification of hybrid systems: A similar idea has been
presented by barrier certificates [PJ04] which ask for a function that maps safe and
unsafe states to non-negative and negative real numbers, respectively, such that the

1.1. Motivation 3

transitions do not make the function’s value negative. The method is therefore in the
spirit of Lyapunov functions for proving the stability of ordinary differential equations.
An improved induction approach has been presented by Platzer’s differential induction
[Pla08; PC08; PC09] that does not require to solve the differential equations and uses
the directional derivative instead.

On one hand, many systems built with synchronous languages have already been
formally verified [BKS03; DBCB04]. However, these results were all obtained by model-
checking and are therefore limited by the state-space explosion. It is therefore desirable
to also apply deductive techniques like VCG to synchronous programs. On the other
hand, there has been considerable progress in the area of Satisfiability Modulo Theories
(SMT) solvers that can deal with arithmetic formulas like MathSAT [Aud+02; Cim+13],
CVC [BDS02; Det+14], ICS [Men+04], iSAT [SKB13; SB14], HySAT [FH05; Frä+07;
FH07; EFH08], ABSOLVER [BPT07], BACH [Bu+08], Z3 [MB08], MetiTarski [Pau12],
HybridSAL [Tiw12], and on special techniques for non-linear arithmetics [GAC12a;
GAC12b]. These tools are already used for the verification of (linear) hybrid systems
and typically employ bounded-model checking where safety properties are unrolled for
some finite number of discrete transitions. However, there is no VCG procedure that
generates proof goals of correctness statements about hybrid programs before [LS15c],
mainly because of the lack of modeling languages for hybrid systems with structured
programming constructs.

Secondly, Property Directed Reachability (PDR) [Bra11; Bra12a; Bra12b; EMB11;
GR16; HBS12; HBS13; SB11] is currently considered to be the most efficient verifica-
tion method for safety properties. The core algorithm has been introduced in [Bra11]
for hardware model checking and has been implemented in a tool called Incremental
Construction of Inductive Clauses for Indubitable Correctness (IC3). In essence, given
a symbolic representation of a state transition system K and a state property Φ, the
algorithm tries to prove that Φ holds on all reachable states of K by means of induc-
tion. It first checks whether Φ holds on all initial states (induction base), and then
checks whether Φ holds on all successor states of those states that satisfy Φ (induction
step). However, the latter may fail even though Φ holds on all reachable states since
there may exist unreachable states satisfying Φ that have successor states that do not
satisfy Φ. Such states are so called Counterexample to Induction (CTI)s and have to
be incrementally learned and excluded by the PDR method.

PDR is very efficient since, in the best case, it may just use a SAT or SMT solver
to prove the induction base and induction step. It doesn’t need to compute fixpoints as
symbolic model checking does, nor to unroll the transition relation as required in bounded
model checking nor to construct Craig interpolants as required by interpolation-based
model checking. Instead, it maintains a sequence of predicates Ψ0, . . . ,Ψk that include
the state sets X0, . . . ,Xk that are reachable in no more than 0, . . . , k steps, respectively.
If the induction proof fails, PDR either increments this sequence with a new predicate
Ψk+1 or improves the approximations of the predicates Ψi by removing CTIs. The latter
is done by first checking the unreachability of the CTI and then adding a most general
inductive clause to the predicates to remove the CTI together with as many further

4 Chapter 1. Introduction

CTIs as possible within one step. These steps are repeatedly applied until either finally
a reachable counterexample is found or one of the predicates Ψi becomes inductive1.
In the worst case, PDR may have to compute the state sets that are also computed
by a forward fixpoint computation of the reachable states. Usually, the construction
of predicates Ψ0, . . . ,Ψk until the induction proof works, is typically better than the
fixpoint iteration — both the number of predicates k can be less than the number of
iteration steps in the fixpoint computation and also less work is usually done within one
iteration step.

PDR has meanwhile been incorporated in many model checkers like nuXmv2, ABC
[BM10], IIMV3, PdTRAV4, and Kind25, and many detailed optimizations have been
added: In particular, [EMB11] suggested a couple of modifications to the original PDR
method to improve its performance and to simplify its implementation. Also, an al-
gorithm using SAT solvers instead of ternary simulation was proposed in [Cho+11] to
determine most general clauses from the CTIs, a lazy abstraction-refinement technique
has been combined with PDR for large industrial hardware designs in [VGS12], and the
clause generalization was improved to explore states farther than the counterexamples
in [HBS13]. Finally, [GR16] implemented different variants of PDR for hardware model
checking in nuXmv, and conducted a systematic evaluation using the benchmarks of
the latest hardware model checking competition.

The original PDR method was introduced for hardware model checking, and there-
fore operates directly on propositional formulas I and T that encode the initial states
and the transition relation of a considered hardware circuit with finitely many states.
It is however clear that PDR can handle also infinite state systems [HB12; CG12] by
replacing SAT solvers with SMT solvers, so that PDR can be also applied to software
model checking.

Besides the use of non-boolean data types, another distinction between hardware
and software model checking is the consideration of the programs’ syntax, i.e., the
control-flow of the programs. One of the first attempts in that direction was presented
with the TREE-IC3 method in [CG12] which unrolls the Control-Flow Graph (CFG)
to an abstract reachability tree. An adaptation of the TREE-IC3 algorithm is used in
[RKL14] to synthesize controllers for discrete-event systems modeled by Extended Finite
State Machines (EFSMs). Also, [WK14] presented a software verification algorithm
based on the refinement of loop invariants using a generalization of PDR to the theory
of quantifier-free formulas over bitvectors [WK13]. In [LNN15], the relative inductive
reasoning [BM07] is performed over regions that are defined by symbolic representations
with respect to certain locations of a control-flow automaton.

Hence, PDR has already been optimized in many ways. In particular, it has been
integrated with SMT solvers to deal with higher data types and it has been enriched with

1This must finally happen since (1) those predicates Ψi that cover the reachable states Sreach will
converge to Sreach due to improving the approximations and (2) Sreach is an inductive set.

2https://nuxmv.fbk.eu
3http://ecee.colorado.edu/~bradleya
4http://fmgroup.polito.it
5http://kind2-mc.github.io/kind2

https://nuxmv.fbk.eu
http://ecee.colorado.edu/~bradleya
http://fmgroup.polito.it
http://kind2-mc.github.io/kind2

1.2. Contribution 5

the use of loop invariants and control-flow graphs for software model checking. However,
these refinements are not just useful for software model checking since hardware circuits
are usually synthesized from more abstract high-level languages like synchronous pro-
grams or synchronous subsets of hardware description languages. In these programs, the
synchronous model of computation reflects the executions of hardware circuits: At each
tick of the clock, new input values are read, internal states are updated, and outputs
are immediately computed. Similar to traditional imperative programming languages,
imperative synchronous programming languages like Esterel [BC85; Ber99] and Quartz
[Sch09] also have statements like conditionals, sequences, various kinds of loops, etc.
Thus, one can also derive control-flow information from these kinds of hardware de-
scriptions that is only implicitly available in the generated synchronous circuits.

To the best of our knowledge, there is not much directly related work: One of
the first attempts to check synchronous programs by the PDR method is presented in
[Cim+14]. However, the main topic of [Cim+14] was integrating PDR with predicate
abstraction — this was demonstrated with synchronous Lustre programs [Hal+91]. The
latter is however a dataflow synchronous language without a control-flow and is also the
input language of the Kind2 model checker [Cha14; Cha+16] that focuses on invariant
generation and compositional reasoning. Closer to the work presented in this paper is
[LNN15], where additional control-flow information similar to ours has been added for
sequential programs. However, the method proposed in [LNN15] is limited to sequential
programs, concurrent synchronous programs were not considered there at all.

1.2 Contribution

The content of the thesis is divided into four parts. The first part is about the state-of-
art. The second part presents induction-based VCG methods tailored to synchronous
programs and hybrid programs. The third part shows that the PDR method benefits
from imperative synchronous programs by effectively using the distinction between the
control- and dataflow. The last part demonstrates the induction-based VCG methods
with several synchronous and hybrid Quartz programs.

Induction-based VCG Procedure Development

The first problem to be solved would be to define a Hoare calculus for synchronous and
hybrid programs. After many attempts [GS12; Ges14], we found that this is not directly
possible. The main reason is that the control-flow graphs of synchronous programs are
usually irreducible graphs which cannot be translated to sequential programs without
goto statements or without additional variables [AM71]. Note that this problem is
not just caused by the concurrency of these programs, indeed, there are extensions
of the Hoare calculus to concurrent programs [OG76a; OG76b; Lam80; Sti88], which
however only consider interleaved concurrency instead of synchronous concurrency: The
problems that generate irreducible graphs are caused by the abstraction to macro steps
done by synchronous programs, which means that several (micro) execution steps are

6 Chapter 1. Introduction

combined into one reaction step that corresponds with a transition in the state transition
diagram. Therefore, this thesis employs Floyd’s induction-based approach and shows
how it can be used to generate VCs for synchronous and hybrid programs.

• The proposed VCG methods consist of two steps, where the first step consists
of computing for a synchronous or hybrid Quartz program its Extended Finite
State Machine according to the operational semantics of the language (see Fig-
ure 2.9 as an example). This EFSM has one node for every discrete control-flow
state of the program, and every node is labeled with a set of guarded actions
that encode the dataflow of that node, i.e., assignments to both discrete and con-
tinuous variables. Transitions between nodes are labeled with trigger conditions,
and every transition corresponds with one macro step of the synchronous reactive
program. In the second step, the user has to provide inductive assertions (in-
variants) for each safety property and each component of the generated Extended
Finite State Machine (EFSM). The components can be either paths along several
control-flow states, or single transitions between two control-flow states, or paths
between different Strongly Connected Components (SCCs), or single transitions
among control-flow states related to the same loop statement in the program, etc.
The VCG methods then apply the induction rules and generate proof goals that
correspond with induction steps and bases.
Five VCG methods are presented in Chapter 3. Given the right assertions, the
VCG methods can automatically generate a set of VCs that can then be checked
by means of SMT solvers or automated theorem provers. All five methods are
proved sound and can be applied to any kind of programs with a state-based
semantics. The relative completeness for the methods are proved, provided that
the underlying assertion language is expressive enough.

Control-flow Guided PDR Optimizations

For formal verification, imperative synchronous programs are usually translated to
equivalent state transition systems that are symbolically represented by means of for-
mulas I and T to encode the initial states and the transition relation. The second
problem to be solved would be to apply PDR to this kind of state transition systems
for imperative synchronous programs. As we will show in Chapter 4, PDR can become
more efficient by effectively using the distinction between the control- and dataflow,
which is the second contribution of the thesis.

• Before calling the PDR method, it is beneficial to enhance the usual transition
relation T by additional control-flow invariants that contain information about
the reachable control-flow states. For example, an invariant states that no state
is reachable where the control would be active in both if-statement and sequential
substatements. By the semantics of the programs, this can also be proven with
the original formulas, and in particular, it can be verified by PDR or any other

1.2. Contribution 7

suitable verification method as well. However, this requires the computation of
reachable states that is actually what PDR wants to avoid as much as possible.
Two methods to compute additional control-flow invariants will be presented that
differ in how precisely they approximate the reachable control-flow states and also
in the runtime required for their computation. The first method considers the
abstract control-flow transition system for any imperative synchronous program P,
and compute its reachable states with a symbolic state space traversal. This way,
we obtain the reachable states ReachCF(P) that abstracts from the dataflow and
just considers the control-flow. The second method that computes a control-flow
invariant InvarCF(P) is straightforward and even in linear-time in the size of the
program. Actually, this control-flow invariant InvarCF(P) was already computed
by the compiler of the Averest6 framework.
Both ReachCF(P) and InvarCF(P) over-approximate the reachable control-flow
states with ReachCF(P) being more precise than InvarCF(P). Applying PDR to
the enhanced transition relation T ′ := T ∧ ReachCF(P) or T ′′ := T ∧ InvarCF(P)
some transitions of unreachable states are removed. The added control-flow in-
formation is not needed for synthesis and is therefore not explicitly encoded in
the generated systems, but it can be easily derived from the original imperative
synchronous programs and used for verification. As will be shown later, there are
safety properties that become inductive only with the enhanced transition rela-
tion, so that PDR can prove them in one step, while otherwise, PDR would have
to apply arbitrarily7 many incremental steps.

• The PDR method can be further optimized by the control-flow of the imperative
synchronous program under scrutiny. The control-flow information helps PDR
reason about the unreachability of counterexamples and then generalize them to
all states with the same control-flow locations.
As we will explain later, the transition relation T of such an imperative syn-
chronous program P can be derived as a conjunction T = T cf ∧ T df of transition
relations over the same set of states, one for the control-flow T cf and another one
for the dataflow T df , respectively. The reachability of a state s′ from a state s in T
is equivalent to the reachability in both T cf and T df . Hence, if s′ is not reachable
from s in T cf , we can already conclude its unreachability in T and thus can declare
it as a CTI without considering the full transition relation T . The advantage is
that the state transition system defined by the control-flow T cf is much simpler to
deal with (even though it has even more reachable states) since we can compute
a usually small quotient in terms of EFSM for it. We may also use traditional
model checking approaches for that purpose since T cf can be usually represented
efficiently by means of BDDs. This way, we can add a first, less expensive test
for checking the unreachability of a counterexample in the corresponding EFSM.

6http://www.averest.org
7Arbitrary means here that based on parameters, we can increase the number of additionally required

steps beyond every bound.

http://www.averest.org

8 Chapter 1. Introduction

If that test should fail, we use the traditional PDR reachability checks that will
generate further reachability queries that then (again) first ask for reachability by
EFSM in every step.
After determining a counterexample is unreachable in the corresponding EFSM,
we can reduce it to its control-flow variables and hence, obtain a generalized clause
that will exclude all states of the transition system that refer to the same control-
flow states (but with different values of the data variables). Thus, we can avoid
expensive clause generalizations that are required in PDR to narrow the over-
approximations of the clause sets Ψ0, . . . ,Ψk. The clauses generated this way
may not be relatively inductive, but by inspection of the control-flow transition
relation T cf , we can directly decide about their unreachability which is sufficient
for excluding these states. Also, the clauses may not be minimal, but since they
are quickly generated, it is usually a good compromise. Alternatively, standard
methods could be applied — at a cost — to minimize them.

1.3 Thesis Structure
The thesis is organized as follows:

• Chapter 2 describes some essential related work: The imperative synchronous
language Quartz and it extension to hybrid systems, techniques and tools for
safety property verification and software verification.

• Chapter 3 presents the five induction-based VCG methods for synchronous and
hybrid programs. Given the right assertions, the proposed methods automatically
generate a set of VCs that can then be checked by means of SMT solvers or auto-
mated theorem provers. All methods are proved sound and relatively complete.

• Chapter 4 optimizes the PDR method for safety verification of imperative syn-
chronous programs. Firstly, two methods that compute control-flow invariants to
over-approximate the reachable control-flow states are presented. Afterwards, an
improvement is described that helps PDR decide the unreachability of counterex-
amples, and then generalizes them to refine the over-approximations.

• Chapter 5 provides five synchronous and hybrid Quartz programs to show the
feasibility of the proposed five VCG methods.

• Chapter 6 concludes with a summary of the thesis and discusses future work.

Chapter2
Preliminaries

Contents
2.1 Modeling of Synchronous Systems 10

2.1.1 The Imperative Synchronous Language Quartz 10
2.2 Modeling of Hybrid Systems . 12

2.2.1 The Extension of Quartz to Hybrid Systems 13
2.3 The Averest System . 15
2.4 Symbolic Representations of Quartz Programs 17

2.4.1 EFSMs . 18
2.4.2 Symbolic Transition Systems . 21

2.5 Safety Property Verification . 25
2.5.1 The Satisfiability Problem . 25
2.5.2 Decidability and Tools . 27

2.6 Verification Condition Generation 31
2.6.1 Hoare Calculus based VCG . 32
2.6.2 Difficulties of Adapting Hoare Calculus 33

2.7 PDR in a Nutshell . 35
2.7.1 Symbolic Model Checking . 35
2.7.2 Incremental Induction by PDR . 37
2.7.3 Checking Unreachability of Cubes 39
2.7.4 Generalization of CTIs . 39

This chapter first describes some essentials for modeling embedded reactive systems in
their physical environments: The synchronous model of computation, hybrid systems,
the imperative synchronous language Quartz, and its extension to hybrid systems. The
Averest system — with which symbolic representations of Quartz programs can be
automatically derived as foundations for their formal analysis — is afterwards briefly
introduced. We are just interested in safety property verification, i.e., we want to prove

9

10 Chapter 2. Preliminaries

that some property Φ holds on all reachable states of a Quartz program P by its
symbolic representations. Therefore, the underlying satisfaction problem generated is
discussed in detail, and typical model checking and deductive verification techniques
and tools are categorized in accordance with the type of satisfaction problems that they
could solve. In the end, we explain the main ideas behind the Verification Condition
Generation (VCG) and Property Directed Reachability (PDR).

2.1 Modeling of Synchronous Systems

Synchronous languages [BB91; Hal93] such as Esterel [Ber00], Lustre [Hal+91] and
Quartz [Sch09] have been developed for the design of reactive systems. These languages
implement the synchronous model of computation that divides the execution of syn-
chronous systems into a discrete sequence of reaction steps which are also called macro
steps. A macro step consists of finitely micro steps whose maximal number is known
at compile time. Macro steps correspond to reaction steps of reactive systems, and mi-
cro steps correspond to atomic actions like assignments of the program that implement
these reactions. A macro step does not consume time in the abstraction while from one
macro step to the next one a logical unit of time passes. Variables of a synchronous
program are synchronously updated between macro steps so that the execution of the
micro steps within a macro step is done in the same variable environment of their macro
step. This synchronous update is important for avoiding data races, and therefore to
ensure determinism.

Synchronous systems abstract the communication and computation delays, and re-
flect the ideal model of embedded reactive systems: At each reaction step, new input
values are read, internal states are updated, and outputs are instantaneously computed.
The synchronous model of computation not only leads to a convenient design model for
embedded reactive systems that allows deterministic and efficient hardware and software
syntheses as well as a simplified estimation of worst-case reaction times. It is also the
key to a compositional formal semantics which is a prerequisite for formal verification
and provably-correct synthesis procedures.

2.1.1 The Imperative Synchronous Language Quartz

Quartz is an imperative synchronous language that is derived from the Esterel language.
The language offers many data types like booleans, bit-vectors, signed and unsigned
integers that may be bounded or unbounded, real numbers, as well as compound data
types like arrays and tuples. Modules are declared with an interface that determines
inputs and outputs, and a body statement that may use additional local variables. In
the following, we list some of the possible statements used in our later examples. A
complete definition of the language can be found in [Sch09]. Provided that S, S1 and
S2 are program statements, w is a control-flow variable, x is a variable, σ is a boolean
expression, and α is a type, then the following are program statements as well (parts
given in square brackets are optional):

2.1. Modeling of Synchronous Systems 11

• x = τ and next(x) = τ (assignments)
• assume(φ), assert(φ) (assumptions and assertions)
• w:pause (start/end of macro step)
• S1; S2 (sequences)
• S1 ∥ S2 (synchronous concurrency)
• if(σ) S1 else S2 (conditional)
• while(σ) S (while-loops)
The pause statement defines a control-flow variable w — this boolean variable is

true iff the control-flow is currently at w:pause. Since all other statements are executed
in zero time, the control-flow only rests at these control-flow positions in the Quartz
program, and thus the possible (discrete) control-flow states are the subsets of these
control-flow variables.

There are two variants of discrete assignments that both evaluate the right-hand
side τ in the current macro step: Immediate assignment x = τ transfers the value of τ
to the left-hand side x directly, while delayed assignment next(x) = τ assigns the value
in the next macro step. If the value of variable x is not determined by assignments of
the current or previous macro step, a default value is used according to the declaration
of the variable. To this end, declarations of variables consist of a storage class in
addition to their types. There are two storage classes, namely mem and event that
choose the previous value (mem variables) or a default value (event variables) in case
no assignment determines the value of a variable.

In addition to the statements known from other imperative languages (conditionals,
sequences and loops), Quartz offers synchronous concurrency S1 ∥ S2 and sophisticated
preemption and suspension statements (not shown in the above list), as well as many
other statements for the comfortable description of embedded reactive systems. There is
also the possibility to call once implemented modules and to store modules in packages
to support their re-use in the form of software libraries.

The execution of module M1 in Figure 2.1 is explained with the help of its symbolic
simulation graph depicted in Figure 2.2. Circles and rectangles represent control-flow
states and discrete assignments, respectively, and only active control-flow variables are
displayed in control-flow states — for example, control-flow variables w0 and w1 are

1 module M1(real x){

2 // variable declaration: x is a memorized inout real variable
3 while(true) {

4 w0: pause;
5 // x is assigned to 1.0
6 x = 1.0;

7 // x will be assigned to 0.0 in the next macro step
8 next(x) = x−1.0;

9 w1: pause;
10 }

11 }

Figure 2.1: Synchronous Quartz Module M1

12 Chapter 2. Preliminaries

st

s0

w0

s1

x = 1.0

next(x)= x−1.0

w1

s2

Figure 2.2: Symbolic Simulation Graph of Module M1

false while st is true in the initial control-flow state s0 (marked with double circles).
No immediate or delayed assignments will be executed in the first macro step, therefore,
x is set to default, i.e., 0.0. Afterwards, control-flow moves to s1, where only the control-
flow variable w0 holds, and then starts the second macro step: 1.0 is assigned to x due to
the immediate assignment in line 6 in Figure 2.1. After that control-flow moves to s2 for
the third macro step, in which the value of x is equal to 0.0 for the delayed assignment
of the previous macro step in line 8 of Figure 2.1. Later, the control-flow moves to s1,
since line 4-9 in Figure 2.1 is enclosed by a while-loop statement. The program will
never terminate, which means once the control-flow leaves the initial control-flow state
s0, it will move between s1 and s2: In the even numbers of macro steps, the value of x

is 1.0, whereas in the odd ones, x is assigned to 0.0.

2.2 Modeling of Hybrid Systems

The behavior of a hybrid system [Alu+93; MMP92; Pla10; Alu11] consists of both dis-
crete and continuous transitions which are often the result of considering a discrete reac-
tive system in a continuous (physical) environment. Within a discrete state, differential
equations determine the values of the variables until some release condition becomes
true to change the discrete state. A discrete transition performs then a sequence of
assignments to the variables and determines a new set of differential equations and a
new release condition.

Hybrid automata [Alu+93; Alu+95; Hen96] are often used as the underlying seman-
tic model for hybrid systems and is supported by many languages and tools [Car+06;
DLSV12]. Linear Hybrid Automata (LHA) and Affine Hybrid Automata (AHA) are
special hybrid automata, where LHAs are restricted to linear dynamics for continuous
state variables, while affine dynamics are allowed for AHAs. While this semantic model
is widely accepted, it is less clear how to define comfortable modeling languages that lend
themselves well for both the discrete and the continuous facets of hybrid systems, and
that offer a realistic kind of concurrency which can be used for compositional reasoning
[AH97; Fre05]. The semantics of these languages is often difficult to describe and it has
to deal with special phenomena like unwanted Zeno behaviors [Ame+06; ZLA06].

2.2. Modeling of Hybrid Systems 13

Hybrid programs are based on precise and readable modeling languages, so that the
hybrid systems could be encoded with data types and programming statements. Typical
examples are KeYmaera [Pla10], HyDI [CMT11], HybridSAL [Tiw12] and the extension
of Quartz to hybrid systems [Bau12].

2.2.1 The Extension of Quartz to Hybrid Systems

While time in synchronous languages is given in the abstract form of macro steps, hybrid
systems require the consideration of physical time. In order to combine these inherently
different concepts of time, the computational model of a macro step is endowed with
continuous evolution that takes place between the immediate and delayed assignments of
the macro step. During the physical time consuming continuous evolution, variables of
the new storage class hybrid change their values according to the new flow assignments
x ← τ or drv(x) ← τ (that equate variable x or its derivation on time drv(x) with
the expression τ). All this kind of hybrid variables are reals and, for convenience, we
call those Quartz programs with hybrid variables hybrid Quartz programs in this thesis.
An example can be seen in Figure 2.3 below.

1 module M2(){

2 // x is local hybrid real variable
3 hybrid real x;

4 // in the discrete variable environment, x is assigned to 0.5
5 x = 0.5;

6 while(true) {

7 w0,w1:flow{
8 // continuous transition starts from 1.0 in the continuous
9 // variable environment

10 x <− 1.0;

11 // x increases the value with derivative x’ = 1.0 in the
12 // continuous variable environment
13 drv(x) <− 1.0;

14 // continuous transition will terminate until the value of x
15 // in the continuous environment is greater or equal than 2.0
16 }until(cont(x) >= 2.0);

17 // x will be assigned to 0.0 in the next macro step in the
18 // discrete variable environment
19 next(x) = 0.0;

20 w2: pause;
21 }

22 }

Figure 2.3: Hybrid Quartz Module M2

The additional program statements of hybrid Quarz programs are
• flow{S1; ...; Sn}until(σ) (flow statements)
• x <− τ (continuous assignments)
• drv(x) <− τ (derivative assignments)
The flow statement flow{S1; ...; Sn}until(σ) can replace a pause statement and

will then extend the discrete transition by a continuous evolution where the continuous
variables behave according to the continuous or derivative assignments by S1; ...; Sn.

14 Chapter 2. Preliminaries

In contrast to the discrete transitions, continuous evolution requires physical time and
terminates as soon as the condition σ becomes true.

To distinguish between the discrete value determined by the discrete immediate or
delayed assignments and the continuously changing value during the continuous (time)
evolution, a new operator cont(x) is introduced: x always refers to the discrete value
of a variable determined by the immediate or delayed assignments, whereas cont(x)
refers to the (changing) value during the continuous evolution, which can be mapped
to some continuous variable environment. For hybrid variables, cont(x) starts with
the discrete value x as the initial value for the continuous evolution, if there is no
continuous assignment for the variable. For mem and event variables, the discrete
value x and the continuous value cont(x) always coincide as these variables do not
change during continuous evolution.

Figure 2.4 shows the symbolic simulation graph of hybrid Quartz module M2 from
Figure 2.3, where the continuous and derivative assignments are enclosed by diamonds.
Module M2 starts from control-flow state s0 where the immediate assignment x=0.5 that
updates the discrete variable environment is directly executed in the first macro step.
The continuous evolution starts with cont(x)=1.0, the derivation of x is then 1.0 and
the continuous evolution terminates as soon as the release condition cont(x)>=2.0
holds — afterwards the control-flow moves to s1. The macro step starting from s1
contains neither an immediate assignment nor continuous evolution, but a delayed as-
signment will assign 0.0 to x in the next macro step from control-flow state s3. For this
program, the control-flow will never move to control-flow state s2. The transitions that
will not take place are marked with dashed lines in Figure 2.4.

Consider also the case that the same flow statement runs in parallel with some
other flow statement and a macro step terminates before that release condition holds as
shown in module M3 from Figure 2.5. The control-flow then can move to a control-flow

st

s0

x = 0.5

x <− 1.0

drv(x)<− 1.0

release(cont(x)>=2.0)
w0

s1

w1

s2

next(x)= 0.0w2

s3

release(cont(x)>=2.0)

¬ rel
eas

e(c
ont

(x)
>=2

.0)

Figure 2.4: Symbolic Simulation Graph of Module M2

2.3. The Averest System 15

1 module M3(){

2 // x,y are local hybrid real variable
3 hybrid real x,y;

4 {// this branch will terminate later
5 w0,w1:flow{
6 // x increases the value with derivative x’ = 1.0 in the
7 // continuous variable environment
8 drv(x) <− 1.0;

9 // continuous transition will terminate until the value of x
10 // in the continuous environment is greater or equal than 2.0
11 }until(cont(x) >= 2.0);

12 }

13 ||

14 {// this branch will terminate first
15 l0,l1:flow{
16 // y increases the value with derivative y’ = 1.0 in the
17 // continuous variable environment
18 drv(y) <− 1.0;

19 // continuous transition will terminate until the value of y
20 // in the continuous environment is greater or equal than 1.0
21 }until(cont(y) >= 1.0);

22 }

23 }

Figure 2.5: Hybrid Quartz Module M3

state where w1 is active. For ease of notation, ’⊗’ in Figure 2.6 stands for those un-
reachable control-flow states by infeasible transitions. Hybrid variables x and y increase
their values starting from the same initial value 0.0 and by the same derivative 1.0

in the continuous environment. The first macro step ends when the release condition
cont(y)>=1.0 holds. Meanwhile, the other release condition cont(x)>=2.0 is evalu-
ated to false. Therefore, the control-flow moves to the control-flow state s1, where w1

holds. From there the program proceeds with a new continuous evolution: cont(x)
evolves until the release condition cont(x)>=2.0 holds.

2.3 The Averest System

The Averest toolset for HW/SW co-design and verification has been developed at the
Embedded Systems Chair of the University of Kaiserslautern as a long-term project
based on the imperative synchronous Quartz language. The Averest system is publicly
available at www.averest.org for research and teaching purposes. Currently, it offers a
constantly evolving infrastructure containing tools for compilation, analysis, as well as
for hardware/software synthesis and different formal verification techniques. The design
flow used in Averest is shown in Figure 2.7.

In short:
• Embedded reactive systems with or without their physical environments are de-

scribed by the imperative synchronous language Quartz with its extension to
hybrid systems.
• The compiler translates synchronous or hybrid Quartz programs into files in the

www.averest.org

16 Chapter 2. Preliminaries

st

s0

drv(x)<−1.0

release(cont(x)>=2.0)
drv(y)<−1.0

release(cont(y)>=1.0)

×

w1

s1

drv(x)<−1.0

release(cont(x)>=2.0)
×

w0

s2

release(cont(x)>=2.0)∨
¬release(cont(y)>=1.0)

¬ release(cont(x)>=2.0) ∧ release(cont(y)>=1.0)

¬ release(cont(x)>=2.0)

release(cont(x)>=2.0)

Figure 2.6: Symbolic Simulation Graph of Module M3

Averest Interchange Format (AIF), which is given in the form of guarded ac-
tions [Sch09; Bau12]. The formal correctness of the translation — which runs
in quadratic time over a program P and will generate also at most quadratically
many guarded actions in terms of the size of a program P — is proven in [Sch00;
Sch01; Sch02; SBS06].
• Several different transformation procedures are provided to modify AIF-files for

special needs. For example, partition of compound data types like tuples and
arrays to scalar types, reduction to Boolean types for hardware synthesis, aggre-
gation of all guarded actions on one variable into a single guarded action (so that
equations are generated), dead code elimination, generation of an Extended Finite
State Machine (EFSM), etc.
• Several tools for hardware and software synthesis are provided. For example,

there are code generators for software synthesis (producing C, Java or SystemC)
or hardware synthesis (producing VHDL and Verilog files).
• Formal analysis of imperative synchronous and hybrid Quartz programs can be

performed as well. A simulator named Trace and an interactive theorem prover
named AIFProver [GS13a] are integrated in the Averest system. Moreover, in-

2.4. Symbolic Representations of Quartz Programs 17

terfaces [BS11; Bau12; GS13b; LBS13; LS15a] with openModelica1, the symbolic
model checker nuSMV2, the interactive theorem prover SAL [de +04], KeYmaera
[Pla10], and the algebraic computation tool Bonmin [Bon+08] are available for
simulation and verification.

Quartz

Quartz

..
.

AIF
Module

AIF
Module

Compilation

Compilation

AIF
SystemLinking

Transformation

Trace

Modelica

SMV

AIFProver

KeYmaera

Symb. Repres.

C

Java

SystemC

VHDL

Verilog

Simulation

Verification

SW Synthesis

HW Synthesis

Figure 2.7: The Averest System

The thesis provides additional methods for safety property verification of synchronous
and hybrid systems [LBS13; LS14; LS15a; LS15b; LS15c; Rop+16; LS16a; LS16b]. In
particular, the imperative synchronous language Quartz and its extension to hybrid
systems are used to exemplify the findings. As a preparation for that, the symbolic
representations of Quartz programs are the basis for developing induction-based VCG
methods and exploring control-flow guided PDR.

2.4 Symbolic Representations of Quartz Programs

The Averest system provides algorithms that translate a Quartz program to a set of
guarded actions G (see [Sch09; Bau12]). Guarded actions are pairs (γ, α) that consist of
a trigger condition γ and an action α, and express that α is executed whenever γ holds.
Actions are thereby immediate x = τ and delayed assignments next(x) = τ (for discrete

1www.openModelica.org
2http://nusmv.fbk.eu/

www.openModelica.org
http://nusmv.fbk.eu/

18 Chapter 2. Preliminaries

transitions), flow assignments x ← τ and drv(x) ← τ (for continuous evolutions),
assumptions assume(φ), assertions assert(φ) and release conditions release(σ),
where γ, τ , φ and σ are program expressions. For each pause statement w : pause with
control-flow variable w, there is also a guarded action (γ,next(w)= true) such that γ
holds whenever the control-flow moves to program location w in the next macro step.
In this section, we construct EFSMs and state transition systems with those guarded
actions as symbolic representations of Quartz programs.

2.4.1 EFSMs

The semantics of synchronous Quartz programs has been formally defined (similar to the
semantics of Esterel [Ber99]) by means of Structural Operational Semantics (SOS) rules
[Plo81] as given in [Sch09]. Like synchronous Quartz programs, also the extension part
to hybrid systems has a precise formal semantics that defines unique behaviors for given
input traces [Bau12]. The operational semantics of synchronous and hybrid Quartz
programs is defined by two sets of SOS rules: SOS reaction rules define computation of
the outputs within a macro step, and SOS transition rules determine the movement of
the control-flow from the current to the next macro step. Applying SOS rules, we can
directly generate EFSMs for synchronous and hybrid Quartz programs, e.g., Figure 2.9
is the EFSM of module M4 in Figure 2.8.

The EFSM of a Quartz program has one state for every reachable control-flow state
of the program, and every state is labeled with a set of guarded actions that encode
the dataflow of that state, which means EFSMs show the control-flow information ex-
plicitly and keep the dataflow symbolic. Such EFSM has finitely many nodes and
transitions, but describes an infinite transition system that has discrete and continuous
evolutions occurring in pairs, which is frequently used as a convenient formalism to
describe programs with potentially infinite data types. Additionally, EFSMs are useful
for deductive verification in that one can decompose the proof goal with respect to the

1 module M4(int x,y){

2 // two loops run in parallel
3 while(!(x > 5)) { // the first while−loop increases the value of x until 5
4 w1:pause;
5 next(x) = x+1;

6 }

7 ||

8 while(!(y > 5)) { // the second while−loop increases the value of y until 5
9 w2:pause;

10 next(y) = y+1;

11 }

12 while(true) { // the third while−loop swaps the values of x and y
13 w3:pause;
14 next(x) = y; next(y) = x;

15 }

16 }

Figure 2.8: Synchronous Quartz Module M4

2.4. Symbolic Representations of Quartz Programs 19

s0:
Labels:{ }
SCC:{0}
Loops:{ }
actions:

s1:
Labels:{w3}
SCC:{1}
Loops:{3}
actions:
 <true ==> next(x) = y>
 <true ==> next(y) = x>

s2:
Labels:{w2}
SCC:{2}
Loops:{2}
actions:
 <true ==> next(y) = y+1>

!(5<x)&(5<y)

!(5<x)&(5<y)

!(5<x)&!(5<y)

s3:
Labels:{w1}
SCC:{3}
Loops:{1}
actions:
 <true ==> next(x) = x+1>

s4:
Labels:{w1,w2}
SCC:{4}
Loops:{1,2}
actions:
 <true ==> next(x) = x+1>
 <true ==> next(y) = y+1>

(5<x)&(5<y)

true

!(5<y) !(5<x)

5<y 5<x!(5<x)&!(5<y)

!(5<y)&(5<x)

(5<x)&(5<y)

!(5<y)&(5<x)

Figure 2.9: EFSM of Module M4

reachable control-flow states. As we will show in Chapter 3, five induction-based VCG
methods are presented based on the structure of Extended Finite State Machines.

2.4.1.1 The EFSM Structure

Every node si in an EFSM is labeled with a set of guarded actions, namely G(si). We
can divide G(si) to Gd(si) and Gc(si) for guarded actions that encode discrete transitions
and continuous evolutions, respectively. For convenience, we call Gd(si) discrete guarded
actions in node si, and Gc(si) continuous guarded actions in node si. For any pair of
nodes (si, si+1), there is moreover a path condition φ(si, si+1) that must hold to activate
the transition from si to si+1. Note that every transition corresponds to one macro step
of the program, and EFSMs have infeasible paths.

We call an Strongly Connected Component (SCC) a trivial SCC if it contains only a
single node without a self-loop transition, while all the other SCCs are called nontrivial.
By construction of an EFSM, the root node is always a trivial SCC. Recall that the
EFSM of a Quartz program has one node for every reachable control-flow state of the
program that can be encoded by the control-flow variables. Additional, some control-

20 Chapter 2. Preliminaries

flow variables are declared inside loop statements of the Quartz program, so we can also
identify the nodes by the loop statements in the program. To sum up, each node si in
the EFSM of a Quartz program carries the following information:
• Labels(si): Control-flow variables that hold in node si.
• SCC(si): SCC index of node si.
• Loops(si): Indices of the corresponding loop statements.
• G(si): Guarded actions in node si, i.e., Gd(si) ∪ Gc(si).

Take node s4 in Figure 2.9 as an example: It represents the control-flow state where
control-flow variables w0 and w1 are active; it belongs to SCC C4 in the EFSM; and its
loop indices are L1 and L2 which represents the case that neither of the two while-loops
run in parallel in module M4 have terminated yet. Gc(s4) is an empty set since the
program contains no hybrid variables.

Generally speaking, nodes in an EFSM can be categorized to the following sets:
• SCi : Nodes in SCC Ci.
• SLi : Nodes whose loop indices contain Li.
• SCt : Nodes in trivial SCCs.
• SL∅ : Nodes whose loop indices is empty.

Consider the EFSM of module M4 again: We have s4 ∈ SC4 , s4 ∈ SL1 , s4 ∈ SL2 and
SL∅ = SCt = {s0}.

2.4.1.2 The EFSM Semantics

EFSM nodes encode program states that are variable environments ξ : V → Val mapping
variables to values. To describe the continuous states along continuous evolutions, we
consider however variable environments χ : V → (R → Val) that map variables to
functions over time. A run π through an EFSM is described by an infinite sequence of
triples (ξi, χi, ti) for i ∈ N, where
• ξi is the discrete variable environment of the i-th macro step (mapping variables

to values in the corresponding state).
• χi is the continuous variable environment of the i-th macro step (mapping con-

tinuous variables x and a real time t ∈ R to a value (χi(x))(t)).
• ti is the duration of the continuous evolution of the i-th macro step.

Since discrete states are associated with variable environments ξ : V → Val, we define
• JxKξ := ξ(x) for variables x

For continuous states, we use the following definition with a variable environment χ :
V → (R→ Val) and some t ∈ R:
• JxKχ,t := (χ(x), t) for variables x

• Jdrv(x)Kχ,t := ((χ(x))′, t) for variables x where (χ(x))′ is the derivation of χ(x)
To evaluate a transition relation with transitions (si, si+1), we have to consider three
variable environments: (1) ξi which refers to the starting node si, (2) χi which describes
the continuous evolution in si, and (3) ξi+1 which refers to the target node si+1. We then
define J(si, si+1)Kξi,χ,ξi+1 accordingly, so that whenever it holds, the triple (ξi, χ, ξi+1)
describes a discrete transition followed by the cumulated continuous evolution symbol-
ically represented in (si, si+1). To that end, χi must map the variables to the solution

2.4. Symbolic Representations of Quartz Programs 21

of the corresponding Ordinary Differential Equation System (ODE) imposed by the
continuous evolution.

Notice that, each node si can have multiple continuous evolutions, for the reason
that each node can be entered at different (multiple) physical times by the iteration
statements. At each physical time t, the program can reach two different states, since
each variable has a discrete value JxKξi

and a continuous value JxKχi,t, where generallyJxKξi
̸= JxKχi,t. For convenience, we call state JxKξi

the discrete state at physical time
t in node si, and JxKχi,t the continuous state at physical time t in node si. If t is a
terminal physical time of a continuous evolution in node si, which is also some starting
physical time of a continuous evolution in node sj , then each variable can have at
most three different values at t by the delayed assignment, i.e., JxKξi

̸= JxKχi,t ̸= JxKξj
.

To distinguish state JxKξj
from the other two, we call it the discrete state at physical

time t in node sj . Obviously, each node represents multiple discrete and continuous
states at different physical time. In sum, each program state encoded in a node of the
corresponding EFSM is identified by the following three aspects:
• Which node the state belongs to.
• The state is a discrete or continuous state.
• What is the physical time of the state.

2.4.2 Symbolic Transition Systems

EFSMs are a symbolic representation for Quartz programs that decompose the entire
guarded actions to nodes. The other way to construct a symbolic representation in form
of guarded actions is by evaluating the changes of each program variable.

2.4.2.1 Abbreviations for Transition Relations

In every macro step, we have to evaluate all guards γ and fire all actions α whose guards
are enabled. For ease of notation, assumptions and assertions are not considered in this
section. If x is a variable of some Quartz program, then the guarded actions for the
variable x are given by:

(α1, x = τ1) , . . . , (αp, x = τp)
(β1,next(x) = π1) , . . . , (βq,next(x) = πq)
(γ1, x <− τ ′

1) , . . . , (γr, x <− τ ′
r)

(δ1,drv(x) <− π′
1) , . . . , (δs,drv(x) <− π′

s)

If x is not a hybrid variable, then neither continuous nor derivative assignments exist
for x. Furthermore, the program has the set of guarded release conditions for flow
statements:

(ε1,release(σ1)) , . . . , (εk,release(σk))
Figure 2.10 shows then the definition of the initial states predicate Initx and the tran-
sition relation Transx for variable x, where we use abbreviations Γ1 :=

∨p
i=1 αi, ∆1 :=∨q

i=1 βi, Γ2 :=
∨r

i=1 γi, and ∆2 :=
∨s

i=1 δi. The initial states predicate Initx can be
explained as follows:

22 Chapter 2. Preliminaries

Initx :=

p∧
i=1

(αi → x = τi)

∧
(
¬Γ1 → x = Default(x)

)
∧

r∧
i=1

(γi → cont(x) = τ ′
i)

∧
(
¬Γ2 → cont(x) = x

)

Transx :=

p∧
i=1

(αi → x = τi)

∧
q∧

i=1
(βi → next(x) = πi)

∧
(
next(¬Γ1) ∧ ¬∆1 → next(x) = Abs(x)

)
∧ cont∀

(r∧
i=1

(γi → cont(x) = τ ′
i))

∧ cont∀
(s∧

i=1
(δi → drv(x) = π′

i)
)

∧ cont∀
(
¬∆2 → drv(x) = 0.0

)
∧ cont∀

(k∧
i=1

(εi → ¬σi)
)

Abs(x) :=

x, if x is a memorized variable
cont(x), if x is a hybrid variable
Default(x), otherwise

Figure 2.10: Transition Relation for Variable x

2.4. Symbolic Representations of Quartz Programs 23

• The initial value of x can only be determined by its immediate actions. Hence, if
one of the guards αi of the immediate actions holds, the corresponding immediate
assignment defines the value of x. If none of the guards αi should hold, i.e.,
Γ1 :=

∨p
i=1 αi is false, the initial value of x is determined by its default value

(which is determined by the semantics, e.g., false for boolean variables and 0 for
numeric ones).
• if x is a hybrid variable, then the initial value of cont(x) can only be determined

by its continuous assignments. Therefore, if one of the guards γi of the continues
assignments holds, the corresponding continuous assignment defines the value of
cont(x). If none of the guards αi should hold, i.e., Γ2 :=

∨r
i=1 γi is false, the

initial value of cont(x) is equal to x.
The transition relation Transx can be explained similarly:
• The immediate assignments have to be respected for the current point of time, i.e.,

whenever a guard αi of the immediate actions holds, the corresponding immediate
assignment defines the current value of x. If one of the guards βi of the delayed
assignments holds at the current point of time, the next value of x is determined
by the corresponding delayed assignment. Finally, if the next value of x is not
determined by an action, i.e., neither Γ1 :=

∨p
i=1 αi holds at next point of time

nor does ∆1 :=
∨q

i=1 βi hold at the current point of time, then the next value of
x is determined by the reaction to absence. Depending on whether it is an event,
a memorized or hybrid variable, it may be reset to a default value, or store its
previous value, i.e., either x or cont(x).
• For hybrid variable x, we use predicate cont∀(ϕ), which demands that ϕ holds at

all points in time during a continuous evolution. The continuous assignments of
x have to be respected for the current point of time, i.e., whenever a guard γi of
the continuous assignment holds, the corresponding continuous assignment defines
the initial value of cont(x) for a continuous evolution. If one of the guards δi of
the derivative assignments holds, then the value of cont(x) evolves accordingly.
Otherwise, i.e., ∆2 :=

∨s
i=1 δi does not hold, the derivation of cont(x) is 0.0

which means cont(x) keeps unchanged. In addition, the release conditions need
to be considered in order to determine the end of a continuous evolution. To ease
of notation, we use drv(x) instead of drv(cont(x)).

Notice that the abbreviations given in Figure 2.10 can be literally used to define input
files for symbolic model checkers.

2.4.2.2 State Transition Systems

Imperative synchronous Quartz programs have a clearly distinct control- and dataflow.
If K = (V, I, T) is the transition system of a Quartz program P, we can then explicitly
differentiate its control- and dataflow by defining two other transition systems Kcf =
(V, Icf , T cf) and Kdf = (V, Idf , T df) as follows:

• Icf :=
∧
w∈Vcf Initw and T cf :=

∧
w∈Vcf Transw

• Idf :=
∧
x∈Vdf Initx and T df :=

∧
x∈Vdf Transx

24 Chapter 2. Preliminaries

• I := Icf ∧ Idf and T := T cf ∧ T df

where Vcf denotes all names of pause locations (i.e., control-flow variables) and Vdf

denotes all dataflow (hybrid and non-hybrid) variables.
Note that the transition systems K = (V, I, T), Kcf = (V, Icf , T cf) and Kdf =

(V, Idf , T df), are defined over the same states which are subsets of V := Vcf ∪ Vdf ,
but have different transitions and initial states. For example, we can define KM1 =
(VM1, IM1, TM1), i.e., the state transition system of Quartz module M1, as follows:

• VM1 := {run, w0, w1}︸ ︷︷ ︸
Vcf

∪ {x}︸︷︷︸
Vdf

, IM1 := Icf
M1 ∧ Idf

M1 and TM1 := T cf
M1 ∧ T df

M1

• Icf
M1 := ¬run ∧ ¬w0 ∧ ¬w1

• T cf
M1 :=

(
next(run)↔ true

)
∧

(
next(w0)↔ (¬run ∨ w1)

)
∧

(
next(w1)↔ w0

)

• Idf
M1 := (x = 0)

• T df
M1 :=

(
(x = 1.0)↔ w0

)
∧
(
(next(x) = x−1.0)↔ w0

)
For hybrid Quartz module M2, KM2 = (VM2, IM2, TM2) is the following:

• VM2 := {run, w0, w1, w2}︸ ︷︷ ︸
Vcf

∪ {x}︸︷︷︸
Vdf

, IM2 := Icf
M2 ∧ Idf

M2 and TM2 := T cf
M2 ∧ T df

M2

• Icf
M2 := ¬run ∧ ¬w0 ∧ ¬w1 ∧ ¬w2

• T cf
M2 :=

(
next(run)↔ true

)
∧

(
next(w0)↔ (¬run ∧ (cont(x) ≥ 2.0))

)
∧

(
next(w1)↔ ((¬run ∨ w1 ∨ w2) ∧ ¬(cont(x) ≥ 2.0))

)
∧

(
next(w2)↔ w0

)

• Idf
M2 := (x = 0.5)

• T df
M2 :=

(
(drv(x) = 1.0)↔ (¬run ∨ w1 ∨ w2)

)
∧

(
(cont(x) = 1.0)↔ (¬run ∨ w1 ∨ w2)

)
∧

(
(next(x) = 0.0)↔ w0

)
∧

(
(¬run ∨ w1 ∨ w2)→ ¬(cont(x) ≥ 2.0)

)

In general, the control-flow information is not needed for synthesis and is therefore
not explicitly encoded in the generated systems, but it can be easily derived from the
original imperative synchronous programs and used for verification. As we will show
in Chapter 4, the PDR method benefits from the control-flow invariants that contain
information about the reachable control-flow states.

2.5. Safety Property Verification 25

2.5 Safety Property Verification
The synchronous and hybrid systems discussed in this thesis are specified by symbolic
representations supporting standard data types (real, integer and boolean) and non-
linear dynamics. Safety property verification of these formal models calls for an effective
method to reason about boolean combinations of propositional logic atoms and atoms of
non-linear arithmetic theories over integers and reals with quantifiers. In the following,
the underlying satisfiability problem is defined formally.

2.5.1 The Satisfiability Problem

2.5.1.1 Syntax

We assume a finite set of real, integer and boolean variables V = VR ∪ VZ ∪ VB, and
define boolean expressions by the grammar:

eb := x ∈ VB | ¬eb | eb ∧ eb | eb ∨ eb (2.1)

and, respectively, numerical expressions by the grammar:

e := x ∈ VR ∪ VZ | e+ e | e− e | e · e | e/e | uop1(e) | uop2(e)

where uop1 are transcendental unary operation symbols, like sin, cos, etc., while uop2
are exponential and logarithmic operation symbols, like log, exp etc..

Given numerical expressions e and e′, e⊙e′ defines a constraint for any ⊙ ∈ {≤,=}.
The other relational operators can be obtained by using negation and conjunction.

c := e⊙ e′ | ¬c | c ∧ c (2.2)

Let XB ⊆ VB be the set of quantified boolean variables, the following formula defines
a boolean expression with quantifiers.

(eb)Q := (∃XB). eb | (∀XB). eb. (2.3)

Similarly, given the quantifier sets XR ⊆ VR and XZ ⊆ VZ, a constraint with quantifier
is defined as follows.

cQ := (∃XR, XZ). c | (∀XR, XZ). c (2.4)

The satisfiability problem is then syntactically defined as the boolean combination
of finitely many sub-formulas:

cb := cb0 ⊚ cb1 ⊚ · · ·⊚ cbn−1 ⊚ cbn (2.5)

where ⊚ ∈ {∧,∨}, n ∈ N, and each sub-formula cbi
with 0 ≤ i ≤ n is either a constraint

with quantifier or a boolean expression with quantifier.
Constraints and boolean expressions without quantifiers are no longer considered by

formula (2.5). It is reasonable to do that since the constraints and boolean expressions
without quantifiers could be represented by those with quantifiers.

26 Chapter 2. Preliminaries

Throughout the rest of this section, we assume that the constraints on variables that
appear in (2.1-2.5) are given, denoted as cv. To have some idea on how the formulas
look like, we assume that VR = {r1, r2}, VZ = {z1, z2}, VB = {b1, b2} and list some
examples in Table 2.1.

Table 2.1: Example Formulas

Category Formula
eb E0 : b1 ∧ b2

E1 : z1 ≤ z2
E2 : z1 + r1 ≤ z2 + r2

c E3 : r1 ≤ r2 ∗ r1 + r2/r1
E4 : r1 ≤ r2 + z1 ∗ (r1 − z2)
E5 : z1/r1 ≤ z2 ∗ cos(r2)
E6 : r1 ≤ log(r1)/cos(r2)

(eb)Q E7 : (∀VB). b1 ∧ b2
cQ E8 : (∃VR,VZ). E5
cb E9 : E7 ∨ E8

E10 :
(
(∃{r1}). r1 ≥ 1

)
∧
(
(∀{r1}). r1 ≤ 1

)
cv E11 : (−2.0 ≤ r1 ∗ r2 ≤ 10.0) ∧ (z1 ≤ z2 ≤ 5)

E12 : 0 ≤ r1

2.5.1.2 Semantics

The semantics of a formula (2.1) or a formula (2.2) is defined by the interpretation J·Kv,
which evaluates the inside · to True or False using the variable valuation function v.

Definition 1 (Variable Valuation). A variable valuation is a function v : V → R ∪
Z ∪ B that assigns to each variable a real, integer or boolean value. If e is a numerical
expression then e[v] replaces occurrences of its variables by their v-image. We use
similar eb[v] and c[v] notation in the case of boolean expression eb and constraint c,
respectively.

Definition 2 (Satisfaction relation). For formula f , which is either a boolean expression
eb or constraint c, a variable valuation v satisfies formula f , denoted v |= f , if JfKv

evaluates to True.
For boolean expressions x ∈ VB, eb, eb1 and eb2, we have:
• JxKv := x[v], for x ∈ VB

• J¬ebKv :=
{

True, if JebKv = False
False, if JebKv = True

• Jeb1 ∧ eb2Kv := Jeb1Kv ∧ Jeb2Kv

• Jeb1 ∨ eb2Kv := Jeb1Kv ∨ Jeb2Kv

Similarly, for constraints e1 ⊙ e2, c, c1 and c2, where both e1 and e2 are numerical
expressions, we have:

2.5. Safety Property Verification 27

• Je1 ⊙ e2Kv := e1[v]⊙ e2[v]

• J¬cKv :=
{

True, if JcKv = False
False, if JcKv = True

• Jc1 ∧ c2Kv := Jc1Kv ∧ Jc2Kv

Take formulas E2 and E11 in Table 2.1 as an example. If some variable valuation v1
maps r1, r2, z1 and z2 to 0.0, 1.0, 1 and 2, respectively, then v1 |= E2 and v1 |= E11.

Based on the above relation, the semantics of formulas (2.3)–(2.4) is defined by the
interpretation J·K, which evaluates the inside formula · to True or False. Thus, we have
the following:

• J(∃XB). ebK :=
{

True, if ∃ v : V → B. v |= eb

False, Otherwise

• J(∀XB). ebK :=
{

False, if ∃ v : V → B. v |= ¬eb

True, Otherwise

• J(∃XR, XZ). cK :=
{

True, if ∃ v : V → R ∪ Z. v |= c

False, Otherwise

• J(∀XR, XZ). cK :=
{

False, if ∃ v : V → R ∪ Z. v |= ¬c
True, Otherwise

For convenience of analysis and explanation, formula (2.5) could be reorganized as
the following disjunctive form:

Cb :=
∨
i∈N

(
(CQ)i ∧ (EQ)i

)
(2.6)

where each (CQ)i is a conjunction of finitely many constraints with quantifiers, and each
(EQ)i is a conjunction of finitely many boolean expressions with quantifiers.

We use formula (2.6) to display how the interpretation J·K works for conjunction and
disjunction of formulas. Concretely, sinceJ∨

i∈N

(
(CQ)i ∧ (EQ)i

)K :=
∨
i∈N

(J(CQ)iK ∧ J(EQ)iK)
formula (2.6) is interpreted by J·K as follows:

JCbK :=
{

True, if ∃ i ∈ N . J(CQ)iK ∧ J(EQ)iK = True
False, Otherwise

Consider the formula E10 in Table 2.1. Even though r1 = 2 is a candidate valuation
that satisfies r1 ≥ 1, it violates r1 ≤ 1, therefore, JE10K is False.

2.5.2 Decidability and Tools

We discuss decidability of the satisfiability problem specified by formula (2.6). The re-
lations between subclass problems are illustrated, so that we could classify the available
techniques and tools to different categories corresponding to the type of satisfiability
problems they could solve.

28 Chapter 2. Preliminaries

2.5.2.1 The Logics Perspective

As shown in Figure 2.11, the outmost yellow circle includes the following three sub-
set problems in the category of first-order logic that are decidable, and that admit
quantifier-elimination.
• (N,+,≤, 0, 1): Presburger arithmetic [Pre30] for natural numbers with addition,

e.g., formula E1 in Table 2.1.
• (R,+,≤,Z): First-order logic with real and integer addition, e.g., formula E2 in

Table 2.1.
• (R,+, ·, 0, 1, <): First-order theory of real-closed fields [Tar36], e.g., formula E3

in Table 2.1.
If we add a predicate for the integers to form the structure (R, +, ·, Z, 0, 1, <), then the
theory is no longer decidable. Formula E4 is a typical example for this logic. For the
same reason, the theory of (R, Z, +, ·, uop1(x), uop2(x), 0, 1, <) — where uop1, uop2
stand for the real-valued special function symbols introduced in Section 2.5.1.1 — is not
decidable either. Formulas E5 and E8 are examples for this logic. Also, its fragment
structure (R, +, ·, uop1(x), uop2(x), 0, 1, <) is not decidable: E6 is an example for this
subclass logic.

The satisfiability problem defined by formula (2.6) consists of boolean combinations

Figure 2.11: The Relations of Logics

2.5. Safety Property Verification 29

of propositional logic atoms and atoms of non-linear arithmetic theories over integers
and reals with quantifiers, but quantifier alternations are not allowed. Therefore, the
satisfiability problem described by formula (2.6) is undecidable and strictly included in
the outmost yellow circle.

Most of the SMT Solvers and theorem provers support decidable theories. However,
when modeling and analyzing systems, the increasing use of non-linear arithmetic over
reals and integers motivates an extension of SMT problems to non-linear theories, which
correspond to subsets of the unsatisfiable satisfiability problem defined by formula (2.6).

2.5.2.2 The Constraint Problem Perspective

From the view of constraint problems [BHZ06], a standard form formula that describes
a Mix-Integer Non-Linear Program (MINLP) problem, denoted as cQ

′, is defined as
follows:

cQ
′ := (∃XR, XZ). c′ where c′ := e⊙ e′ | c′ ∧ c′ (2.7)

Compared to formula (2.4), ∀-quantifiers are not allowed. Notice also that c′ restricts
formula (2.2) to only ⊙ and ∧ operators. In this way, cQ

′ represents an instance of a
MINLP problem.

If we get rid of the boolean variables and the ∀-quantifier, then the remaining subset
problem defined by formula (2.6) can be reorganized as follows:

Cb
′ :=

∨
i∈N

cQi
′ (2.8)

where each cQi
′ is defined by formula (2.7).

Solving the satisfiability problem for the above formula (2.8) amounts to check-
ing whether there exists a solution for a set of MINLP problems, where each MINLP
problem corresponds to a sub formula cQi

′. The solution satisfies at least one MINLP
problem in the set. Therefore, we need effective techniques to check the existence of
this solution for the set of MINLP problems generated by Cb

′.
The MINLP problem is one of the most general modeling paradigms in optimization

and includes both Non-Linear Program (NLP) and Mix-Integer Linear Program (MILP)
as subproblems. Linear constraint problems are a subset of NLP problems, while, MILP
problems are a subset of MINLP problems.

Relations between constraint satisfaction problems and first-order logics are illus-
trated in Figure 2.11. Linear constraint problems can be described by the first-order
theory of real-closed fields (the region encircled by green). NLP problems fall into both
the green and purple encircled regions that stand for the first-order theory of real-closed
fields including real-valued special function symbols. The theory of the structure (R,
+, ·, Z, 0, 1, <) (the region encircled by red) is strong enough to specify the MILP
problems. Both the theory of the structure (R, +, ·, Z, 0, 1, <) and the theory of the
structure (R, Z, +, ·, uop1(x), uop2(x), 0, 1, <) (the region encircled by blue) can yield
MINLP problems, which, as mentioned before, can be specified by formula (2.4).

30 Chapter 2. Preliminaries

NLP Problems:

KeYmaera, MetiTTarski,
IMITATOR, SpaceEx,

QEPCAD, Redlog,
Reduce, TReX, dReal

Linear Problems:

HySAT, BACH

MILP Problems:

MathSAT5, CVC4

MINLP Problems:

 iSAT, Bonmin, Z3

Figure 2.12: The Relations of Constraint Problems

When classifying the available tools and techniques for synchronous program and
hybrid system analysis, according to the constraint problems they could solve, as shown
in Figure 2.12, we have the following results:
• Linear constraint problems:

HySAT [FH07] and BACH [Bu+08] are designed for linear arithmetic over reals.
• MILP problems:

MathSAT5 [Cim+13], CVC4 [BDS02; Det+14] and Z3 [MB08] contain decision
procedures for mixed integer linear arithmetic.
• NLP problems:

KeYmaera and MetiTarski [Pau12] accept formulas over reals that are non-linear.
Originally based on the inverse method [And+09], IMITATOR [And09] is a tool
for efficient synthesis for Timed Automata [AD94]. In [FK11], the methodology
has been extended for LHAs and AHAs. SpaceEx [Fre+11] facilitates quite a lot
of algorithms related to reachability and safety verification in the theory of reals.
iSAT [EFH08] could solve large boolean combinations of non-linear arithmetic
constraints involving transcendental functions. Z3 also posseses partial support
for non-linear arithmetic: It contains quantifier elimination procedures for linear
arithmetic over the reals and integers.
• MINLP problems: iSAT [EFH08] could solve large boolean combinations of non-

linear arithmetic constraints involving transcendental functions. According to our

2.6. Verification Condition Generation 31

experiments, Z3 also presents partial support of mixed-integer linear arithmetic.
Some algebraic computation tools developed in different application areas attracted our
attention as well:
• NLP problems: QEPCAD [Bro03] can produce quantifier-free equivalent formulas

for Tarski formulas. Reduce [Hea84] can handle integer and real arithmetic. Its
package Redlog [DS96] has some quantifier elimination procedures to solve pa-
rameterized non-linear real arithmetic problems. Both of them are widely used as
external decision procedures for hybrid system verification tools, like KeYmaera.
TReX [ABS01], a tool for automatic analysis of automata-based models, relies
on Reduce to solve the constraint problems in the theory of non-linear arithmetic
over reals.
• MINLP problems: The survey [Bel+13] introduces a range of approaches to tackle

MINLP problems. Bonmin [Bon+08] is one of the open source tools mentioned
in it. Bonmin contains a combination of techniques that lends itself to be a good
candidate for convex MINLP problems.

In general, tools for MINLP problems try to find a solution for a single MINLP problem
each time. However, they cannot always find a solution. This might be due to the
limitations of the tool itself or due to the fact that satisfiability of MINLP problems is
undecidable. No solution returned does not mean no solution exists.

Solving the satisfiability problem requires to map the formula to a logical value
(True or False). It is beyond the ability of the tools to solve the class of formulas
defined by formula (2.8). This is the case since assigning a logical value is strongly
related to whether a tool can find a solution for each individual MINLP problem or not.
Taking C = cQ1 ∨ cQ2 as an example, if no solution is found for the MINLP problems
that correspond to cQ1 and cQ2 respectively, then it is unclear what logical value shouldJCKv be assigned to. Moreover, SAT/SMT solvers and the algebraic computation tools
are developed with different application backgrounds. It is still unclear which tool
performs best to solve the satisfiability problem that we consider.

Based on the above analysis, we conclude that currently available tools could solve
a certain subclass of the undecidable satisfiability problem, but they all have their own
limitations. They could still be used as components in the context of other frameworks,
in accordance with the different synthesis requirements to solve different logical formulas
or mathematical problems. In Section 5, we use iSAT and Z3 to check the VCs in various
input formats, and compare their performance by the execution time and the number
of solved VCs.

2.6 Verification Condition Generation

As the system descriptions are structured programs, it is natural to integrate software
verification methods with the already established model checking techniques. It is well-
known that axiomatic semantics as given by the Hoare calculus are a basic foundation
for the formal verification of software.

32 Chapter 2. Preliminaries

2.6.1 Hoare Calculus based VCG

Hoare calculus provides proof rules for each statement of the considered program lan-
guages: A decomposition rule reduces a proof goal for a statement to proof goals using
only its sub-statements. Figure 2.13 shows Hoares axioms for a simple sequential pro-
gramming language. The verification of algorithms can even be done in a parameterized
way that abstracts from the size of data structures (like array sizes) as well as from the
data types themselves (by considering polymorphic types). While systems with complex
dataflow are usually difficult to handle using model checking, they can often be easily
verified by means of interactive verification using the Hoare calculus.

Verification Condition Generations (VCGs) are used to aggressively apply all rules
of the Hoare calculus to a program whose statements are annotated with pre- and
postconditions so that the validity of the obtained VCs implies the correctness of the
given proof goal {φ} S {ψ}, which states that if φ holds at starting time of the program
statement S and if S will terminate, then ψ holds at termination time of S. In principle,
it is sufficient to only provide the right loop invariants, since intermediate assertions can
be computed automatically by weakest preconditions. VCGs can work very fast, since
they just make a linear pass over the program text, and the obtained formulas can then
be checked one after the other. This way, the overall verification problem is split into
two independent parts: First, generating the VCs, and second proving them (which can
be done by different tools and also in parallel).

As already explained in Section 2.5.2.2, there has been considerable progress on SMT
solvers that can deal with arithmetic formulas, especially non-linear arithmetics. Such
tools that are already used for the verification of (linear) hybrid systems, and mainly
employ bounded-model checking where safety properties are unrolled for some finite
number of discrete transitions. However, it is quite difficult to adapt Hoare Calculus
to imperative synchronous programs, and there is no VCG procedure to generate proof

nothing: 1
{Φ} nothing {Φ}

assign: {[Φ]τx} x=τ {Φ}

sequence: {Φ1} S1 {Φ2} {Φ2} S2 {Φ3}
{Φ1} S1;S2 {Φ3}

conditional: {σ∧Φ} S1 {Ψ} {¬σ∧Φ} S2 {Ψ}
{Φ} if (σ)S1 else S2 {Ψ}

loop: {σ∧Φ} S {Φ}
{Φ} while(σ) S {¬σ∧Φ}

weaken: |=Φ1→Φ2 {Φ2} S {Φ3} |=Φ3→Φ4
{Φ1} S {Φ4}

Figure 2.13: Hoare Calculus for a sequential Programming Language

2.6. Verification Condition Generation 33

goals of correctness statements for hybrid programs before [LS15c].

2.6.2 Difficulties of Adapting Hoare Calculus

Compilers for sequential programs usually translate the programs into an internal rep-
resentation for code optimization and code generation. In most cases, compilers use
control-flow graphs whose nodes are basic blocks that contain instructions without
branches. It is well-known that sequential programs with structured statements like se-
quences, if-then-else statements, while-loops etc. yield special control-flow graphs that
are called reducible flow graphs [BT79; Elg76; AM71]. These reducible flow graphs have
many special properties like having dominators [LT79] that are exploited in dataflow
analysis of compilers.

A control-flow graph is reducible if a sequence of transformations collapse it into a
single node. To this end, only two transformations are required: The first transformation
T1 removes self-loops from nodes in the graph, and the second transformation T2 merges
a node with only one incoming edge with its parent node (that inherits then the outgoing
transitions of its child). One can use these collapsing operations also to translate a
flowgraph to a sequential structured program.

Synchronous programs can yield EFSMs that are irreducible. For example, module
Irreducible in Figure 2.14 yields the EFSM shown in Figure 2.15. It copies input i

to the output o with a delay of one unit of time. Since only immediate assignments
are used, it has to remember the value of the previous input in its control-flow states
so that w1 is entered iff i holds, and otherwise w2 is entered. Depending on the initial
input, the EFSM then has a transition from the initial state to either w1 or w2, and we
have transitions also between w1 or w2. The EFSM therefore contains the (only) typical
irreducible graph.

This is remarkable since it is known that for sequential programs, only the use
of ’unstructured’ statements like goto statements can lead to irreducible control-flow
graphs. In case of synchronous programs, this is however the result of the abstraction
to macro steps where all micro step actions and all control-flow decisions are evaluated
in an EFSM node, and then transitions are made depending on the results. Hence, an
EFSM node may have any number of successor states, while basic blocks in a control-
flow graph can only have one or two successor states.

The abstraction to macro steps makes the decompositional style of Hoare calculus

1 module Irreducible(bool ?i, bool !o) {

2 o = false;
3 while(true) {

4 while(i) {w1: pause; o = true;}
5 while(!i) {w2: pause; o = false;}
6 }

7 }

Figure 2.14: Module Irreducible

34 Chapter 2. Preliminaries

s0:
Labels:{ }
SCC:{0}
Loops:{ }
actions:
 <true ==> o = false>

s1:
Labels:{w1}
SCC:{1}
Loops:{1,3}
actions:
 <true ==> o = true>

i

i

s2:
Labels:{w2}
SCC:{1}
Loops:{2,3}
actions:
 <true ==> o = false>

!i

i !i

!i

Figure 2.15: EFSM of Module Irreducible

impossible for synchronous programs. Note that the transformations T1 and T2 corre-
spond to the introduction of loops and conditional sequences, respectively, and therefore
can be used to translate the graph to a structured sequential program, so that this way
Hoare calculus can be applied. Since this is not possible for synchronous programs, it
shows that Hoare calculus cannot deal with synchronous programs.

It is also well-known that one can rewrite sequential programs so that their control-
flow graphs become reducible, e.g., the EFSM in Figure 2.17 of module Reducible in
Figure 2.16. However, this requires in general an exponential blow-up of the control-
flow graph [All70], and is therefore not practical. Also, [GS12] have proved that this is
possible for only a restricted class of synchronous programs.

Besides the argument of irreducible EFSMs, another argument for the non-existence
of a Hoare calculus is that macro steps are composed of micro steps that are collected
from different places of the program (in case parallel statements are active). This way,
Hoare calculus can no longer be applied in a decompositional manner reducing to the
next step to sub-statements only.

1 module Reducible(bool ?i, bool !o) {

2 o = false;
3 if(!i) {

4 while(!i) {w0: pause; o = false;}
5 }

6 while(true) {

7 while(i) {w1: pause; o = true;}
8 while(!i) {w2: pause; o = false;}
9 }

10 }

Figure 2.16: Module Reducible

2.7. PDR in a Nutshell 35

s0:
Labels:{ }
SCC:{0}
Loops:{ }
actions:
 <true ==> o = false>

s1:
Labels:{w1}
SCC:{1}
Loops:{2,4}
actions:
 <true ==> o = true>

s3:
Labels:{w0}
SCC:{3}
Loops:{1}
actions:
 <true ==> o = false>

i

s2:
Labels:{w2}
SCC:{1}
Loops:{3,4}
actions:
 <true ==> o = false>

!i

!i

ii

i

!i

!i

Figure 2.17: EFSM of Module Reducible

2.7 PDR in a Nutshell
In this section, we restrict our consideration to boolean programs and give a brief
introduction to Property Directed Reachability (PDR) as far as required for this thesis.

2.7.1 Symbolic Model Checking

To start with, we assume that a state transition system K = (V, I, T) is symbolically
represented by means of a finite set of boolean variables V, and propositional formulas
I and T for its initial states and its transitions, respectively. A state s ⊆ V of K is a
subset of V such that those variables hold in the state that belong to s while others are
false. As usual, every propositional formula φ over the variables V is associated with
a set of states JφKK ⊆ 2V of the transition system which are those states that satisfy
φ if the states are viewed as variable assignments. Analogously, every propositional
formula over the variables V and a related set V ′ denotes a set of transitions so that
the assignments to variables V and V ′ correspond with the current and next state,
respectively.

To reason about temporal relationships of states, we define the existential/universal
predecessor/successor states of a state set Q as follows:

• pre∃(Q2) := {s1 ∈ S1 | ∃s2.(s1, s2) ∈ T ∧ s2 ∈ Q2}

• pre∀(Q2) := {s1 ∈ S1 | ∀s2.(s1, s2) ∈ T → s2 ∈ Q2}

• suc∃(Q1) := {s2 ∈ S2 | ∃s1.(s1, s2) ∈ T ∧ s1 ∈ Q1}

• suc∀(Q1) := {s2 ∈ S2 | ∀s1.(s1, s2) ∈ T → s1 ∈ Q1}

While the above definitions are given in terms of sets of states, their counterparts in
the syntax of formulas are the following modal operators taken from µ-calculus [Sch03]:

36 Chapter 2. Preliminaries

• J3φKK := pre∃(JφKK)

• J2φKK := pre∀(JφKK)

•
q←−
3φ

y
K := suc∃(JφKK)

•
q←−
2φ

y
K := suc∀(JφKK)

Propositional logic with the above modal operators is however not powerful enough
to reason about interesting temporal properties. In the µ-calculus [Sch03], one adds
fixpoint formulas µx.φ and νx.φ that denote the least and greatest sets of states x such
that x = φ holds. Fixpoint formulas can be evaluated by means of the Tarski-Knaster
iteration [Sch03]. For example, the set of reachable states Sreach can be computed as
the set of states satisfying Ψreach := µx.I ∨ ←−3x which leads to the fixpoint iteration
X ′

0 := {} and X ′
i+1 := JIKK ∪ suc∃(X ′

i) or the equivalent one starting with X0 := JIKK
and iterating Xi+1 := Xi ∪ suc∃(Xi) (as used in the following).

Temporal logics like CTL, LTL and CTL∗ can all be expressed in the µ-calculus
[Sch03]. For this paper, we are just interested in safety properties, i.e., we want to
prove that some property Φ holds on all reachable states. This can be expressed in
the temporal logic CTL as AGΦ where A quantifies over all paths leaving a state and G
quantifies over all points of time on that path. It is known that AGΦ is equivalent to the
µ-calculus formula νx. Φ∧2x, i.e., the greatest set of states x such that x = Φ∧2x holds.
A fixpoint-based model checker would therefore compute this set of states according to
the Tarski-Knaster iteration starting with Q0 := S (the set of all states) and iterating
Qi+1 := JΦKK ∩ pre∀(Qi).

Instead of computing all states that satisfy a safety property AGΦ by fixpoint itera-
tion, and checking afterwards whether all initial states are included, we can also prove
them by means of one of the following induction rules:

I → Φ Ψreach ∧ Φ→ 2Φ
Ψreach → Φ

I → Φ Φ→ 2Φ
Ψreach → Φ

The rule on the right-hand side obviously follows from the one on the left-hand side, since
its second subgoal is stronger (validity of Φ→ 2Φ implies validity of Ψreach∧Φ→ 2Φ).
To prove the correctness of the rule on the left-hand side, one can prove (by induction
on i) that Xi ⊆ JΦKK holds where Xi are the sets of states that can be reached in no
more than i − 1 steps, i.e., those that occur in the fixpoint iteration X0 := {} and
Xi+1 := JIKK ∪ suc∃(Xi) to compute the reachable states Sreach.

In these kinds of proofs3, as well as those of the correctness of PDR, the following
lemmata are very useful and hold for every set of states Q:

• suc∃(pre∀(Q)) ⊆ Q and Q ⊆ pre∀(suc∃(Q))
3For example, the correctness of the first induction rule is proved as follows: The induction step is

trivial since X0 := {} holds. For the induction step, we have the induction hypothesis IH Xi ⊆ JΦKK and
we have to prove that Xi+1 ⊆ JΦKK holds: By the second subogal, we have (1) Sreach∩JΦKK ⊆ pre∀(JΦKK).
By monotonicity, we get (2) suc∃(Sreach ∩ JΦKK) ⊆ suc∃(pre∀(JΦKK)) from (1). From (2), we now get
(3) suc∃(Sreach ∩ JΦKK) ⊆ JΦKK and from the IH, we get (4) Sreach ∩ Xi ⊆ Sreach ∩ JΦKK, i.e., (4’)
Xi ⊆ Sreach ∩ JΦKK. Further, by monotonicity, we have (5) suc∃(Xi) ⊆ suc∃(Sreach ∩ JΦKK) and by
transitivity of (3) and (5), we get (6) suc∃(Xi) ⊆ JΦKK. By the first subgoal, we have (0) JIKK ⊆ JΦKK,
and therefore Xi+1 = JIKK ∪ suc∃(Xi) ⊆ JΦKK holds by (0) and (6).

2.7. PDR in a Nutshell 37

• Q ⊆ pre∀(Q) holds iff suc∃(Q) ⊆ Q (induction steps)

• suc∃(JAGΦKK) ⊆ JAGΦKK ⊆ JΦKK ∩ pre∀(JΦKK)

• If AGΦ — i.e., νx.Φ∧2x — holds on all initial states, then it holds on all reachable
states (and is therefore a safety property).

2.7.2 Incremental Induction by PDR

Property Directed Reachability (PDR) tries to prove that a property Φ holds on all
reachable states Sreach by means of induction. The induction rules of the previous section
may however not be strong enough, since even though Φ may hold on all reachable states,
the induction step may fail due to counterexamples to induction (CTIs): Φ may also
hold on an unreachable state that has a successor state where Φ does not hold. For
this reason, PDR checks the unreachability of state sets to identify counterexamples as
CTIs, and generalizes them to larger state sets.

A property φ where φ → 2φ is valid4 is called inductive, which means that no
transition starting in states satisfying φ will leave this state set, i.e., φ contains all its
successor states. In particular, Ψreach is inductive, and the goal of PDR is to generate
an inductive property Ψi that implies a considered property Φ.

PDR is used to check whether a property Φ holds on at least all reachable states of
a transition system K = (V, I,R). To this end, PDR first makes the following checks

• I → Φ: If not valid, we have a counterexample of length 0, since the counterex-
ample describes a state that satisfies I but not Φ.

• I → 2Φ: If not valid, we have a counterexample of length 1, since the counterex-
ample describes a state that satisfies I but not 2Φ, thus there is an initial state
with a successor state that violates Φ.

If one of the two is not valid, we have a counterexample for Φ, otherwise, there are no
counterexamples of length 0 or 1. PDR continues then by checking the following:

• I → 2I: If valid, we have a proof, since then only the initial states are reachable
states, and we already know that they all satisfy Φ.

• Φ → 2Φ: If valid, we have a proof since then also the induction step for Φ has
been proved this way.

Otherwise, there are reachable states other than the initial states, and there are states
that satisfy Φ, but at least one of their successor states violates Φ. Thus, PDR starts
then its real work. To this end, it sets up the following initial sequence of predicates5:

4Note that checking an implication ψ → 2φ can be done by a SAT solver by just checking ψ∧R → φ′

where φ′ is obtained from φ by replacing every occurrence of a variable x ∈ V by its corresponding one
x′ ∈ V.

5For the sake of simplicity, we ignore here that PDR actually works on clause sets, which is however
important for its implementation.

38 Chapter 2. Preliminaries

• Ψ0 := I

• Ψ1 := Φ

This way, we have an initial sequence of predicates Ψ0 and Ψ1. In general, PDR main-
tains an incrementally increasing sequence Ψ0, . . . ,Ψk with the following properties:

• I = Ψ0

• Ψi → Ψi+1 ∧2Ψi+1 for i = 0, . . . , k − 1

• Ψk → Φ, i.e., also Ψi → Φ for i = 0, . . . , k

• no Ψi is inductive, in particular, we have Ψi ̸= Ψi+1 for i = 0, . . . , k − 1

One can easily prove that by these invariants, we have the following situation where
Xi denotes the states that can be reached from the initial states in no more than i
transition steps, and Sreach are the reachable states:

JIKK = X0 ⊆ X1 ⊆ . . . ⊆ Xk ⊆ Sreach
∥ ∥ ∩ ∩JIKK = JΨ0KK ⊆ JΨ1KK ⊆ . . . ⊆ JΨkKK ⊆ JΦKK

Having an approximation Ψ0, . . . ,Ψk of X0, . . . ,Xk, the main algorithm of PDR then
checks whether Ψk → 2Φ is valid, i.e., whether there are some states in Ψk that have
successors violating Φ. Depending on this, one of the following is done:

• Case 1: Ψk → 2Φ is valid. In this case, we have not yet a counterexample, but
also the induction proof was not yet successful. Thus, we have to incrementally
extend the sequence of predicates (note that with a sufficiently large k, we must
finally have Sreach = Xk ⊆ JΨkKK ⊆ JΦKK so that a proof will be finally found
if we can make Ψk close enough to Sreach so that it must become inductive). To
this end, we could define Ψk+1 := Φ which would satisfy all PDR invariants, but
PDR narrows Φ first by propagating clauses from Ψk to Φ. Hence, it defines
Ψk+1 := narrow(Φ,Ψk) where the latter is defined as follows: narrow(Φ,Ψk) is
obtained by checking for all clauses ci of Ψk :=

∧m
i=0 ci whether Ψk → 2ci is

valid. Assume this is the case for the clauses c0, . . . , cn with n ≤ m, then we
define Ψk+1 := narrow(Φ,Ψk) := Φ ∧

∧n
i=0 ci to increase the chance of making it

inductive. All PDR invariants are maintained this way, and with increasing k, we
proceed towards a proof or a counterexample.

• Case 2: Ψk → 2Φ is not valid. Then, the SAT solver generates a counterexample
that satisfies Ψk ∧ ¬2Φ, i.e., a (partial) assignment to some of the variables V,
which is a cube Ck, i.e., a conjunction of literals of these variables. PDR now
has to check whether one of these states is reachable from the initial states within
k steps as explained in Section 4.3.1 below. If one of them is reachable within
k steps, it is a real counterexample since the property Φ then does not hold on

2.7. PDR in a Nutshell 39

all reachable states. Otherwise, the states in Ck are all unreachable, thus form
a CTI that can now be removed from all predicates Ψi. To that end, PDR first
generalizes the cube Ck to another cube C′

k as explained in Section 2.7.4 below so
that as many unreachable states as possible are removed by adding the clause ¬C′

k

to all Ψ0, . . . ,Ψk.

PDR therefore terminates with either a counterexample in case 2, or with a proof as
soon as one Ψi satisfies Ψi ⇔ Ψi+1, i.e., became inductive in case 1 or in case 2. As
explained above in these two cases, two important procedures are therefore (1) checking
the unreachability of a cube Ck within k steps and (2) the generalization of a cube Ck

that has been identified as a CTI. These procedures work as explained in more detail
in the following two sections.

2.7.3 Checking Unreachability of Cubes

To prove the unreachability of (all states of) a cube Ck within k steps, we would essen-
tially have to check whether Ψk−1 → 2¬Ck is valid. If it is valid, then no state of Ck

can be reached within k steps. Otherwise, there are states in Ψk−1 that have successor
states in Ck (but these could be unreachable). Bradley observed that it suffices to check
the validity of Ψk−1∧¬Ck → 2¬Ck and I → ¬Ck instead: If both are valid, we conclude
that no state in Ck is reachable within k steps6, and we can therefore remove all of these
states from the predicates Ψ0, . . . ,Ψk. On the other hand, if I → ¬Ck should not be
valid, we see that some states of Ck are initial states and are therefore reachable.

Finally, if Ψk−1 ∧ ¬Ck → 2¬Ck should not be valid, then there is another coun-
terexample, thus another cube Ck−1, which contains states that satisfy Ψk−1 ∧¬Ck and
that have at least one successor state in Ck. Therefore, we have to recursively check the
reachability of Ck−1 in k− 1 steps in the same way. Finally, if we get a counterexample
C0 from Ψ0∧¬C1 → 2¬C1, then the sequence C0, . . . , Ck contains a path in the transition
system reaching a state in Ck. Otherwise, we conclude that no state in Ck is reachable
in k steps and can remove it from the approximations Ψ0, . . . ,Ψk by adding the clause
¬Ck to these approximations, or better by adding a generalized clause ¬C′

k as explained
in the next section.

2.7.4 Generalization of CTIs

Once a cube Ck has been proved unreachable within k steps, i.e., finally Ψk−1 ∧ ¬Ck →
2¬Ck is valid, we may add its clause ¬Ck to all approximations Ψ0, . . . ,Ψk. However,

6Assume Xi are the states that are reachable within no more than i steps, i.e., X0 := I with
I := JIKK and Xi+1 := Xi ∪ suc∃(Xi). Given that Ψk−1 ∧ ¬Ck → 2¬Ck and I → ¬Ck hold, we can prove
by induction that Xi ∩ Ck = {} holds for i ≤ k: The induction base X0 ∩ Ck = {} is equivalent to the
validity of I → ¬Ck that we assumed. For proving Xi+1 ∩ Ck = {}, we have to prove by the definition
Xi+1 := Xi ∪ suc∃(Xi) that Xi ∩ Ck = {} and suc∃(Xi) ∩ Ck = {} holds. The former follows by induction
hypothesis, and the latter is derived as follows: By induction hypothesis, we have Xi ∩ Ck = {}, so that
Xi → Ψi ∧ ¬Ck is valid (Xi → Ψi holds by construction of Ψi). Since Ψi → Ψk−1 holds for i < k, also
Xi → Ψk−1 ∧ ¬Ck is valid, and thus, we finally conclude with Ψk−1 ∧ ¬Ck → 2¬Ck that Xi → 2¬Ck

holds, which finally implies suc∃(Xi) ∩ Ck = {}.

40 Chapter 2. Preliminaries

PDR tries to generalize the clause ¬Ck before adding it by removing single literals from
the clause as long as it remains unreachable. This way as many unreachable states
as possible are removed. In essence, PDR searches a subclause ¬C′

k of ¬Ck such that
Ψk−1 ∧ ¬C′

k → 2¬C′
k and I → C′

k still remain valid (hence a larger set of unreachable
states).

To this end, PDR constructs the subclause lattice LCk
:= (2Ck ,⊑Ψk

) whose elements
are the subclauses of ¬Ck that are ordered by the subclause relative relation ⊑Ψk

defined
as follows: Two subclauses c1, c2 ∈ 2Ck satisfy the relation c1 ⊑Ψk

c2 iff c1 ⊆ c2 and
c1∧Ψk → 2c2 holds. For example, assume that the SAT solver returns Ck := p1∧¬p2 as
a CTI over V = {p1, p2}. We have ¬Ck = {¬p1, p2}, and the subclause lattice is defined
by LCk

= ({{}, {¬p1}, {p2}, {¬p1, p2}},⊑Ψk
). Starting from the top element ¬Ck of 2Ck ,

which is inductive relatively to Ψk as proved by the above reachability analysis, all the
subclauses of ¬Ck that are inductive relatively to Ψk can be computed. Among these,
PDR chooses one that does not contain any strict subclause that is inductive relatively
to Ψk as a minimal inductive subclause. Instead of strengthening each Ψ0, . . . ,Ψk with
¬Ck, these sets are then updated by Ψi ∧ c, so that Ck and many other unreachable
states are removed from Ψ0, . . . ,Ψk.

Chapter3
Verification Condition Generation Using
Inductive Assertions

Contents
3.1 SafeTrans and SafePath Predicates 42

3.1.1 Abbreviations for Predicates . 42
3.1.2 The SafeTrans Predicate . 43
3.1.3 The SafePath Predicate . 44
3.1.4 Comparison between SafeTrans and SafePath 44

3.2 VCG using Control-flow Assertions 45
3.2.1 The Transition-based Method . 45

3.3 VCG using SCC Assertions . 46
3.3.1 The SCC-Path Method . 46
3.3.2 The SCC-Trans Method . 47

3.4 VCG using Loop Assertions . 48
3.4.1 The Loop-Path Method . 48
3.4.2 The Loop-Trans Method . 49

3.5 Relative Completeness of the VCG Methods 50
3.5.1 Relative Completeness of Transition-based 51
3.5.2 Relative Completeness of SCC-Path 52
3.5.3 Relative Completeness of SCC-Trans 54
3.5.4 Relative Completeness of Loop-Path 54
3.5.5 Relative Completeness of Loop-Trans 57

This chapter uses Floyd’s induction-based approach to generate verification conditions
for synchronous and hybrid programs. The proposed VCG methods consist of two steps,
where the first step consists of computing for a synchronous or hybrid Quartz program
its EFSM. In the second step, the user has to provide inductive assertions (invariants)

41

42 Chapter 3. Verification Condition Generation Using Inductive Assertions

for each safety property and each component of the generated EFSM. The components
can be either paths along several control-flow states or single transitions between two
control-flow states, or paths between different SCCs or single transitions among control-
flow states related to the same loop statement in the program, etc. The VCG methods
apply then the induction rules and generate this way proof goals that correspond with
induction steps and bases:

• the Transition-based method sets up proof goals over single EFSM transitions.

• the SCC-Path method performs induction over nontrivial SCCs: Induction bases
and steps are set up for paths to nontrivial SCCs. A better optimization is SCC-
Trans where the induction is performed for both trivial and nontrivial SCCs, so
that the induction bases are constructed by single transitions instead of paths.

• Loop-based methods set up induction proofs according to the loop statements in
the program. Depending on whether the induction bases are set up by paths or
single transitions, two variants, i.e., Loop-Path and Loop-Trans, are provided.

3.1 SafeTrans and SafePath Predicates
Most of the verification conditions generated by the proposed VCG methods are in the
form of either SafeTrans or SafePath predicate.

3.1.1 Abbreviations for Predicates

Assume that a Quartz program P hasm control-flow variables, i.e., Vcf := {w0, . . . , wm−1}.
Its EFSM Σ has nodes s0, . . . , sn — among which s0 is the initial node — and transi-
tions Trans(Σ). Each EFSM node si is labeled with a unique set of control-flow variables
Labels(si) ⊆ Vcf and can be identified by the following minterm:

σ(si) :=
m−1∧
i=0

w′
j where w′

j :=
{
wj , iff wj ∈ Labels(si)
¬wj , otherwise

The set of guarded actions G(si) for each node si can be reorganized as follows:

Dd(si) :=
∧

(γ,α)∈Gd(si)
(γ → α) Dc(si) :=

∧
(γ,α)∈Gc(si)

(γ → α)

where Dd(si) and Dc(si) determine the discrete environment and continuous evolutions
in node si, respectively. Thus, we have D(si) for node si:

D(si) := σ(si) ∧ Dd(si) ∧ cont∀
(
Dc(si)

)
where the predicate cont∀ demands that Dc(si) must hold during the continuous phase
in the node si. For every transition (si, sj) ∈ Trans(Σ), D(si) and D(sj) will be used to
determine the variable environment of the current and next nodes, respectively.

3.1. SafeTrans and SafePath Predicates 43

Assume that the dataflow is defined over a set of variables x⃗ = (x1, . . . , xn), and
for every variable there is exactly one enabled assignment, i.e., there is per-variable
exactly one immediate, delayed or continuous assignment in every transition (compilers
can add default actions when needed), so that the discrete environment coincides with
initial values of continuous evolutions for each node. ψi is a continuous invariant for
node si, if and only the formula cont∀(ψi) is valid. Because of the delayed assignments,
Dd(si) has occurrences of the variable x and also of next(x), while Dc(si), φ(si, si+1),
and ψ(si) have only occurrences of the variable x. Finally, we write

[Dd(si)]x⃗i,x⃗i+1
x⃗,next(x⃗), [Dc(si)]x⃗i

x⃗ , [φ(si, si+1)]x⃗i
x⃗ , and [ψi]x⃗i

x⃗

for the formulas that are obtained by replacing all occurrences of variables x⃗ and
next(x⃗) by new variables x⃗i and x⃗i+1 in the formulas Dd(si), Dc(si), φ(si, si+1), and
ψi, respectively.

3.1.2 The SafeTrans Predicate

For every transition (si, sj) ∈ Trans(Σ) starting from the discrete environment of node
si and ending in discrete environment of node sj , we define the following abbreviation
using (for simplicity) fresh variables x⃗0, x⃗1 and x⃗2 instead of x⃗i, x⃗i+1 and x⃗i+2:

SafeTrans
(
(si, sj), αi, ψi, αj

)
:=

(
[Dd(si)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(si)]x⃗0
x⃗

)
∧ [Dd(sj)]x⃗1,x⃗2

x⃗,next(x⃗) ∧

[αi]x⃗0
x⃗ ∧ σ(si) ∧ [φ(si, sj)]x⃗0

x⃗

)
→

(
cont∀

(
[ψi]x⃗0

x⃗

)
∧ [αj]x⃗1

x⃗ ∧ σ(sj)
)

The SafeTrans predicate formalizes the following two statements:
• The variables x⃗0, x⃗1 have values that are consistent with all the transitions that

start from the discrete environment in si to the discrete environment in sj , where
(1) the control-flow information σ(si) and σ(sj), (2) all discrete, continuous and
derivative assignments of node si as well as the discrete assignments of node sj

are respected and (3) transition condition φ(si, sj) holds too.
• If assertion αi holds for the discrete environment of node si, then ψi holds in

the continuous environment of node si, and assertion αj holds in the discrete
environment of node sj . For such αi and ψi, it is not difficult to prove that
αi → ψi holds always, since (as required) the discrete environment coincides with
initial values of continuous evolutions for that node.

The SafeTrans predicate is comparable with a Hoare calculus triple {αi} S {αj} which
intuitively says that the post-condition αj must hold after executing the program S

that satisfies the pre-condition αi. It is also comparable with dynamic logic expressions
α→ [S] γ, but additionally expresses properties that must hold during the execution.

44 Chapter 3. Verification Condition Generation Using Inductive Assertions

3.1.3 The SafePath Predicate

For every path s0, . . . , sn of the EFSM starting from the discrete environment of node
s0 and ending in discrete environment of node sn, we define the following abbreviation:

SafePath
(
(s0, . . . , sn), (ψ0, . . . , ψn−1), α, β, γ

)
:=

((
n∧

i=0
[Dd(si)]x⃗i,x⃗i+1

x⃗,next(x⃗)

)
∧
(

n−1∧
i=0

cont∀
(

[Dc(si)]x⃗i
x⃗

))
∧

[α]x⃗0
x⃗ ∧ σ(s0) ∧

(
n−1∧
i=0

[φ(si, si+1)]x⃗i
x⃗

))

→
((

n−1∧
i=1

[β]x⃗i
x⃗

)
∧
(

n−1∧
i=0

cont∀
(

[ψi]x⃗i
x⃗

))
∧ [γ]x⃗n

x⃗ ∧ σ(sn)
)

The SafePath predicate formalizes the following two statements:

• The variables x⃗0, . . . , x⃗n have values that are possible on a path from the discrete
environment in s0 to the discrete environment in sn, where (1) the control-flow
information of the head and tail nodes along that path, (2) all discrete assignments
of each node, and (3) continuous assignments of nodes except for the tail one are
respected and (4) all transition conditions φ(si, si+1) hold along that path.

• If assertion α holds in the discrete environment of head node si, then (1) for each
node si with i ̸= n, formula ψi holds during the corresponding continuous evolu-
tion, and (2) formula β holds in all discrete environments excepting the head and
tail nodes, and (3) formula γ holds in the discrete environment of tail node si+1.
Similar to the SafeTrans predicate, α→ ψ0 is required to hold. Moreover, β → ψi

must hold so that the SafePath predicate ensures that the discrete environment
coincides with initial values of continuous evolutions for that node.

3.1.4 Comparison between SafeTrans and SafePath

Compared with SafeTrans, SafePath focuses on the pre/post-conditions of paths, which
may consist of more than one transition. In the SafePath predicate, β is an invariant of
all discrete environments of nodes s1, . . . , sn−1, while SafeTrans predicate allows to given
each node an individual invariant for its discrete environment. The SafePath predicate
defined in Section 3.1.3 can be modified, so that it can have the same effect as the
SafeTrans predicate in Section 3.1.2. However, this change may add additional work to
the user since it needs more invariants.

Notice that it is not difficult to prove the following equivalences:
• SafeTrans

(
(si, sj), αi, ψi, αj

)
⇔ SafePath

(
(si, sj), (ψi), αi, true, αj

)

3.2. VCG using Control-flow Assertions 45

• SafePath
(
(s0, . . . , sn), (ψ0, . . . , ψn−1), α, β, γ

)
⇔

SafeTrans
(
(s0, s1), α, ψ0, β

)
∧

(
n−2∧
i=1

SafeTrans
(
(si, si+1), β, ψi, β

))

∧ SafeTrans
(
(sn−1, sn), β, ψn−1, γ

)
Both the SafeTrans and SafePath predicates can be translated to the SMT-LIB stan-
dard language [BFT15], and then checked by SMT solvers. According to the above
equivalence, instead of checking a complicated formula converted from a SafePath pred-
icate, we can prove the validity of several relatively simpler formulas converted from
SafeTrans predicates. This splitting work may shorten the execution time. However, it
is not always the case and it differs from tool to tool as will be shown in Chapter 5.
Furthermore, for the programs that have no hybrid variables, we can always use true
as the continuous invariant.

3.2 VCG using Control-flow Assertions

As explained in Section 2.4.1, each EFSM node represents a reachable control-flow
state of the Quartz program that is encoded by the control-flow variables. A control-
flow assertion αi restricts the discrete environment of node si. The Transition-based
method requires the user to provide for each EFSM node si a control-flow assertion αi

and a continuous invariant Ψi, by annotating the program code. Ψi is expected to hold
for the continuous evolutions in node si.

3.2.1 The Transition-based Method

To ensure the validity of a safety property Φ, we have to prove TB1-TB4 in Theorem 1.
It may yield several VCs, most of which are SafeTrans-formulas.

Theorem 1 (Correctness of the Transition-based Method). Given any Quartz program
P, its EFSM Σ with nodes s0, . . . , sn — where s0 is initial — and transitions Trans(Σ),
control-flow assertions α0, . . . , αn and continuous invariants Ψ0, . . . ,Ψn for each node,
respectively, then a property Φ holds in all EFSM nodes if the following holds:

TB1 : D(s0)→ α0
TB2 : αi → Φ for all α0, . . . , αn

TB3 : Ψi → Φ for all Ψ0, . . . ,Ψn

TB4 : SafeTrans
(
(sk, sl), αk,Ψk, αl

)
for all (sk, sl) ∈ Trans(Σ)

Proof. By TB1, the discrete environment of node s0 satisfies the control-flow assertion
α0. If αk holds on the discrete environment encoded in node sk, then TB4 ensures

46 Chapter 3. Verification Condition Generation Using Inductive Assertions

that Ψk holds on the continuous environment of node sk, and αl holds on the discrete
environment in any successor node sl of sk. Hence, by TB1 and TB4, it follows that
the discrete and continuous environments of node si satisfy its control-flow assertion αi

and continuous invariant Ψi, respectively. Finally, by TB2 and TB3, all discrete and
continuous environments encoded in the EFSM satisfy Φ. ■

3.3 VCG using SCC Assertions
The main idea behind the SCC-Path and SCC-Trans methods is to set up induction
proofs on the SCCs of the EFSM. A continuous invariant for each node si of the EFSM
is still required, however, instead of providing each node a control-flow assertion, SCC-
Path and SCC-Trans methods require an SCC assertion for each SCC of the EFSM. The
SCC assertion restricts the discrete environments of the nodes belongs to that SCC.

3.3.1 The SCC-Path Method

To ensure the validity of a safety property Φ, we have to prove SP1-SP5 in Theorem 2.
It may generate several VCs, most of which are SafePath-formulas.

Theorem 2 (Correctness of the SCC-Path Method). Assume an EFSM Σ of a Quartz
program P has nodes s0, . . . , sn such that s0 is the initial node. Nodes belong to sets
SC0 , . . . ,SCm for nontrivial SCCs and to SCt for nodes in trivial SCCs, respectively.
pathsTo(Ci) are paths entering nontrivial SCC SCi and inside(Ci) are transitions moving
inside SCi. Given SCC assertions I0, . . . , Im and It, for each nontrivial SCC C0, . . . , Cm

and for Ct, respectively, and continuous invariants Ψ0, . . . ,Ψn for each node s0, . . . , sn,
respectively, then a property Φ holds in all SCCs if the following holds:

SP1 : D(s0)→ It

SP2 : Ii → Φ for all I0, . . . , Im

SP3 : It → Φ
SP4 : Ψi → Φ for all Ψ0, . . . ,Ψn

SP5 : SafePath
(
(sk, . . . , sl), (Ψk, . . . ,Ψl−1), Isk

, It, Il

)
with Isk

:=
{
It, if sk = s0

Ii, otherwise
for each nontrivial SCC Cj

and all (sk, . . . , sl) ∈ pathsTo(Cj) where sl ∈ SCj and sk ∈ SCi ∪ {s0}

SP6 : SafePath
(
(sk, sl), (Ψk), Ij , true, Ij

)
for each nontrivial SCC Cj and all (sk, sl) ∈ inside(Cj)

Proof. By construction of the EFSM, the root node is always a trivial SCC. By SP1
and SP3, Φ holds on the discrete environment of the root node. By SP6, the nontrivial
assertion Ij holds on all discrete environments inside nontrivial SCC Cj and continuous
invariants are valid for the corresponding nodes inside nontrivial SCC Cj (induction step)
provided that it holds on the discrete environment when entering the nontrivial SCC Cj

3.3. VCG using SCC Assertions 47

(induction base). The latter is ensured by SP5, which describes that the entered discrete
states satisfy the assertion of their SCC. By SP5 and SP6, all discrete environments of
nontrivial SCCs satisfy the assertions of their SCCs, and the continuous environments in
the nodes belong to nontrivial SCCs that satisfy the continuous invariants of their nodes.
By SP1 and SP5, all the discrete state of trivial SCCs satisfy It, while the continuous
environments of trivial SCCs satisfy the continuous invariants of their nodes. Thus,
by SP2, SP3, and SP4, all discrete and continuous environments encoded in the EFSM
satisfy Φ. ■

3.3.2 The SCC-Trans Method

The SCC-Path method sets up induction proofs over nontrivial SCCs. To prove the
induction bases, we have to consider paths that may contain more than one transition.
In the worst case, to prove the induction bases the same transition that forms paths
leading to different nontrivial SCCs would be checked exponentially many times (in the
end) by the SAT/SMT solvers. Therefore, we propose the SCC-Trans method as an
improvement. To ensure the validity of a safety property Φ, we have to prove ST1-ST5
in Theorem 3. It may generate several VCs, most of which are SafeTrans-formulas.

Theorem 3 (Correctness of the SCC-Trans Method). Assume an EFSM Σ of a Quartz
program P has nodes s0, . . . , sn, such that s0 is the initial node. Nodes belong to sets
SC0 , . . . ,SCm for nontrivial SCCs and to SCt for nodes in trivial SCCs, respectively.
transTo(Ci), inside(Ci) and transTo(Ct), are transitions entering nontrivial SCC SCi,
moving inside SCi, and reaching the nodes in SCt, respectively. Given SCC assertions
I0, . . . , Im and It for each nontrivial SCC C0, . . . , Cm and for Ct, respectively, and con-
tinuous invariants Ψ0, . . . ,Ψn for each node s0, . . . , sn, respectively, then a property Φ
holds in all SCCs if the following holds:

ST1 : D(s0)→ It

ST2 : Ii → Φ for all I0, . . . , Im

ST3 : It → Φ
ST4 : Ψi → Φ for all Ψ0, . . . ,Ψn

ST5 : SafeTrans
(
(sk, sl), Isk

,Ψk, It
)

with Isk
:=
{
It, if sk ∈ SCt

Ii, otherwise
for all (sk, sl) ∈ transTo(Ct) where sk ∈ SCi ∪ SCt and sl ∈ SCt

ST6 : SafeTrans
(
(sk, sl), Isk

,Ψk, Ij
)

with Isk
:=
{
It, if sk ∈ SCt

Ii, otherwise
for each nontrivial SCC Cj

and all (sk, sl) ∈ transTo(Cj) where sk ∈ SCi ∪ SCt and sl ∈ SCj

ST7 : SafeTrans
(
(sk, sl), Ij ,Ψk, Ij

)
for each nontrivial SCC Cj and all (sk, sl) ∈ inside(Cj)

48 Chapter 3. Verification Condition Generation Using Inductive Assertions

Proof. By ST1 and ST3, Φ holds on the discrete environment of the root node. By
ST7, the nontrivial SCC assertion Ij holds on all discrete environments inside Cj and
continuous invariants are valid for the corresponding nodes inside Cj (induction step)
provided that it holds on the discrete environment when entering Cj (induction base).
The latter is ensured by ST6, which describes that the entered discrete states satisfy the
assertion of their SCC. By ST1, ST6 and ST7, all discrete environments in nontrivial
SCCs satisfy the assertions of their SCCs, and the continuous environments belongs to
nontrivial SCCs satisfy the continuous invariants of their nodes. By ST1 and ST5, all
discrete environments of trivial SCCs satisfy It, while the continuous environments of
trivial SCCs satisfy the continuous invariants of their nodes. Thus, by ST2, ST3, and
ST4, all discrete and continuous environments encoded in the EFSM satisfy Φ. ■

3.4 VCG using Loop Assertions
SCC-Trans and SCC-Path require assertions for discrete environments of SCCs. However,
the number of SCCs in the EFSM can grow exponentially with the size of its Quartz
program. As a consequence, in the worst case we may have to set up exponentially
many induction proofs, while proving assertions for each loop statement in the Quartz
program only requires a linear number of these induction proofs.

Continuous invariants of EFSM nodes are still needed for the Loop-Trans and the
Loop-Path methods. Additionally, the loop-based methods require an assertion for each
loop statement Li in the Quartz program, by annotating the program code. A loop
assertion Ii restricts the discrete environments of the nodes whose control-flow variables
are contained inside Li. Moreover, the user has to provide an assertion I∅ for nodes in
SL∅ . If node si refers to more than one loop statement, i.e., Loops(si) contains more than
one element, then the discrete environment of node si is restricted by the conjunction
of all related loop assertions.

3.4.1 The Loop-Path Method

To prove the validity of a safety property Φ, we can prove LP1-LP6 in Theorem 4 by the
Loop-Path method. It may generate several VCs, most of which are SafePath-formulas.

Theorem 4 (Correctness of the Loop-Path Method). For any Quartz program P with
loop statements L0, . . . ,Lm, assume that its EFSM Σ has nodes s0, . . . , sn such that
s0 is the initial node, the nodes belong to sets SL0 , . . . ,SLm and SL∅, pathsTo(Li) are
paths entering SLi, and inside(Li) are transitions moving inside SLi. Given assertions
I0, . . . , Im and I∅ for loop statements L0, . . . ,Lm and L∅, respectively, and continuous
invariants Ψ0, . . . ,Ψn for each node s0, . . . , sn, respectively, then a property Φ holds in
all EFSM nodes if the following holds:

LP1 : D(s0)→ I∅
LP2 : Ii → Φ for all I0, . . . , Im

LP3 : I∅ → Φ
LP4 : Ψi → Φ for all Ψ0, . . . ,Ψn

3.4. VCG using Loop Assertions 49

LP5 : SafePath
(
(sk, . . . , sl), (Ψk, . . . ,Ψl−1), Isk

, I∅, Ij
)

with Isk
:=

I∅, if sk ∈ SL∅∧
Li∈Loops(sk)

Ii, otherwise

for each loop statement Lj and all (sk, sl) ∈ pathsTo(Lj) where sl ∈ SLj

LP6 : SafePath
(
(sk, sl), (Ψk), Ij , true, Ij

)
for each loop statement Lj and all (sk, sl) ∈ inside(Lj)

Proof. By construction of the EFSM, the root node always belongs to SL∅ . By LP1
and LP3, Φ holds on the discrete environment of the root node. By LP6, the assertion Ij

holds on all discrete environments inside SLj and continuous invariants are valid for the
corresponding nodes inside SLj (induction step) provided that it holds on the discrete
environment entering SLj (induction base). The latter is ensured by LP5 which describes
that the entered discrete states satisfy the related loop assertion(s). By LP5 and LP6,
all discrete environments related to loop statements satisfy their loop assertions, while
continuous environments in the nodes in SL∅ satisfy the continuous invariants of their
nodes. By LP1 and LP5, the discrete environments in SL∅ satisfy I∅, while continuous
environments in the nodes belonging to SL∅ satisfy the continuous invariants of their
nodes. Hence, by LP2, LP3, and LP4, all discrete and continuous environments encoded
in the EFSM satisfy Φ. ■

3.4.2 The Loop-Trans Method

To prove the validity of a safety property Φ, we can prove LT1-LT7 in Theorem 5 by the
Loop-Trans method. It may generate several VCs, most of which are SafeTrans-formulas.

Theorem 5 (Correctness of the Loop-Trans Method). For any Quartz program P with
loop statements L0, . . . ,Lm, assume that its EFSM Σ has nodes s0, . . . , sn such that
s0 is the initial node, the nodes belong to sets SL0 , . . . ,SLm and SL∅, and pathsTo(Li),
inside(Li) and transTo(L∅) are transitions entering SLi, moving inside SLi, and reaching
SL∅, respectively. Given assertions I0, . . . , Im and I∅, for loop statements L0, . . . ,Lm

and L∅, respectively, and continuous invariants Ψ0, . . . ,Ψn for each node s0, . . . , sn,
respectively, then a property Φ holds in all EFSM nodes if the following holds:

LT1 : D(s0)→ I∅
LT2 : Ii → Φ for all I0, . . . , Im

LT3 : I∅ → Φ
LT4 : Ψi → Φ for all Ψ0, . . . ,Ψn

LT5 : SafeTrans
(
(sk, sl), Isk

,Ψk, I∅
)

with Isk
:=

I∅, if sk ∈ SL∅∧
Li∈Loops(sk)

Ii, otherwise

for all (sk, sl) ∈ transTo(L∅)

50 Chapter 3. Verification Condition Generation Using Inductive Assertions

LT6 : SafeTrans
(
(sk, sl), Isk

,Ψk, Ij
)

with Isk
:=

I∅, if sk ∈ SL∅∧
Li∈Loops(sk)

Ii, otherwise

for each loop statement Lj and all (sk, sl) ∈ transTo(Lj) where sl ∈ SLj

LT7 : SafeTrans
(
(sk, sl), Ij ,Ψk, Ij

)
for each loop statement Lj and all (sk, sl) ∈ inside(Lj)

Proof. By construction of the EFSM, the root node always belongs to SL∅ . By LT1
and LT3, Φ holds on the discrete environment of the root node. By LT7, the assertion
Ij holds on all discrete environments inside SLj and continuous invariants are valid
for the corresponding nodes inside SLj (induction step) provided that it holds on the
discrete environment entering SLj (induction base). The latter is ensured by LT6 which
describes that the entering discrete states satisfy the related loop assertions. By LT6 and
LT7, all discrete environments related to loop statements satisfy their loop assertions,
while continuous environments in the nodes not in SL∅ satisfy the continuous invariants
of their nodes. By LT1 and LT5, the discrete environments in SL∅ satisfy I∅, while
continuous environments in the nodes belonging to SL∅ satisfy the continuous invariants
of their nodes. Hence, by LT2, LT3, and LT4, all discrete and continuous environments
encoded in the EFSM satisfy Φ. ■

3.5 Relative Completeness of the VCG Methods

In this section, we prove that the five proposed VCG methods are relatively complete:
Whether they can be proved complete depends on the underlying assertion language,
hence, we can only prove completeness relative to that.

Proposition 1. For the proofs, we assume that a formula ΦR exists that encodes the
reachable states of the EFSM. Thus, this formula will have the following properties R1,
R2, R3, R4 and R5:
R1: cont∀(ΦR) is valid for all EFSM nodes.
R2: The reachable states encoded by the root node s0 implies ΦR:(

σ(s0) ∧ Dd(s0) ∧ cont∀
(
Dc(s0)

))
→ ΦR

R3: ΦR ∧ σ(si) encodes all the reachable states in node si. From any reachable states
encoded by si, with the corresponding guarded actions and transition (si, sj), the
discrete states in node sj will be reached, i.e., we demand the following:(

[Dd(si)]x⃗0,x⃗1
x⃗,next(x⃗) ∧ cont∀

(
[Dc(si)]x⃗0

x⃗

)
∧ [Dd(sj)]x⃗1,x⃗2

x⃗,next(x⃗) ∧

[ΦR]x⃗0
x⃗ ∧ σ(si) ∧ [φ(si, sj)]x⃗0

x⃗

)
→

(
[ΦR]x⃗1

x⃗ ∧ σ(sj)
)

3.5. Relative Completeness of the VCG Methods 51

R4: ΦR is the strongest inductive safety property, from which any other safety property
Φ can be derived:

ΦR → Φ
R5: ΦR implies the control-flow information, all the transitions could only take place

among the nodes:

ΦR →
n∨

i=0
σ(si)

3.5.1 Relative Completeness of Transition-based
Theorem 6 (Relative Completeness of the Transition-based Method). Given any Quartz
program P and its EFSM Σ with transitions Trans(Σ) and nodes s0, . . . , sn such that s0
is the initial node, and any valid safety property Φ that holds in all reachable states of
Σ, then there exist suitable control-flow assertions α0, . . . , αn and continuous invariants
Ψ0, . . . ,Ψn for nodes s0, . . . , sn, respectively, to prove Φ as shown in Theorem 1.
Proof. Assuming the existence of ΦR, we define αi := ΦR ∧ σ(si) and Ψi := ΦR for
every node si, then all generated subgoals are valid.
• TB1 is valid since the second formula of the following equivalence is valid by R2

of Proposition 1.

D(s0)→ α0 ⇔
(
σ(s0) ∧ Dd(s0) ∧ cont∀

(
Dc(s0)

))
→

(
ΦR ∧ σ(s0)

)
• TB2 is valid since the second formula of the following equivalence is valid by R4

of Proposition 1.
αi → Φ ⇔

((
ΦR ∧ σ(si)

)
→ Φ

)
• TB3 is valid since the second formula of the following equivalence is valid by R4

of Proposition 1.
Ψi → Φ ⇔ ΦR → Φ

• TB4 is valid since the following equivalences are valid by R1, R3 of Proposition 1.

SafeTrans
(
(sk, sl), αk,Ψk, αl

)
⇔

(
[Dd(sk)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(sk)]x⃗0
x⃗

)
∧ [Dd(sl)]x⃗1,x⃗2

x⃗,next(x⃗) ∧

[αk]x⃗0
x⃗ ∧ σ(sk) ∧ [φ(sk, sl)]x⃗0

x⃗

)
→

(
cont∀([ψk]x⃗0

x⃗) ∧ [αl]x⃗1
x⃗ ∧ σ(sl)

)
⇔

(
[Dd(sk)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(sk)]x⃗0
x⃗

)
∧ [Dd(sl)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧ σ(sk) ∧ [φ(sk, sl)]x⃗0

x⃗

)
→

(
[ΦR]x⃗1

x⃗ ∧ σ(sl)
)

■

52 Chapter 3. Verification Condition Generation Using Inductive Assertions

3.5.2 Relative Completeness of SCC-Path
Theorem 7 (Relative Completeness of the SCC-Path Method). Given any Quartz pro-
gram P and its EFSM Σ that has nodes s0, . . . , sn such that s0 is the initial node, assume
the nodes belong to sets SC0 , . . . ,SCm for nontrivial SCCs and to SCt for trivial SCCs,
respectively, that pathsTo(Ci) are paths entering nontrivial SCC SCi and that inside(Ci)
are transitions moving inside SCi. Given any valid safety property Φ that holds in all
reachable states of Σ, there exist suitable SCC assertions I0, . . . , Im and It, for each
nontrivial SCC C0, . . . , Cm and Ct, respectively, and continuous invariants Ψ0, . . . ,Ψn

for each node s0, . . . , sn, respectively, to prove Φ as shown in Theorem 2.
Proof. Assuming the existence of ΦR, we define Ii := ΦR ∧

∨
sr∈SCi

σ(sr) for every

nontrivial SCC Ci, It := ΦR ∧
∨

sr∈SCt

σ(sr) for nodes in trivial SCCs, and Ψi := ΦR for

every node si. Then all generated subgoals are valid:
• SP1 is valid since the last formula of the following equivalence is valid by R2 of

Proposition 1.

D(s0)→ It ⇔
(
σ(s0) ∧ Dd(s0) ∧ cont∀

(
Dc(s0)

))
→

(
ΦR ∧

∨
sr∈SCt

σ(sr)
)

• SP2 is valid since the second formula of the following equivalence is valid by R4
and R5 of Proposition 1.

Ii → Φ ⇔
(
ΦR ∧

∨
sr∈SCi

σ(sr)
)
→ Φ

• SP3 is valid since the second formula of the following equivalence is valid by R4
and R5 of Proposition 1.

It → Φ ⇔
(
ΦR ∧

∨
sr∈SCt

σ(sr)
)
→ Φ

• SP4 is valid since the second formula of the following equivalence is valid by R4
of Proposition 1.

Ψi → Φ ⇔ ΦR → Φ
• By the relation of SafePath and SafeTrans predicates, we can rewrite SP5 as follows:

SafePath
(
(sk, . . . , sl), (Ψk, . . . ,Ψl−1), Isk

, It, Il

)

⇔

SafeTrans
(
(sk, sk+1), Isk

,Ψk, It
)

∧

 l−2∧
i=k+1

SafeTrans
(
(si, si+1), It,Ψi, It

)
∧ SafeTrans

(
(sl−1, sl), It,Ψl−1, Il

)

Therefore, we only have to prove the validity of the following four general cases:

3.5. Relative Completeness of the VCG Methods 53

– SP51: SafeTrans
(
(si, si+1), Ii,Ψi, It

)
– SP52: SafeTrans

(
(si, si+1), It,Ψi, It

)
– SP53: SafeTrans

(
(si, si+1), It,Ψi, Ii+1

)
– SP54: SafeTrans

(
(si, si+1), Ii,Ψi, Ii+1

)
which can be done by equivalences with R1, R3 and R5 of Proposition 1:

∗ SafeTrans
(
(si, si+1), Ii,Ψi, It

)
⇔

(
[Dd(si)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(si)]x⃗0
x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

∨
sr∈SCi

σ(sr) ∧ [φ(si, si+1)]x⃗0
x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SCt

σ(sr)
)

∗ SafeTrans
(
(si, si+1), It,Ψi, It

)
⇔

(
[Dd(si)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(si)]x⃗0
x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

∨
sr∈SCt

σ(sr) ∧ [φ(si, si+1)]x⃗0
x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SCt

σ(sr)
)

∗ SafeTrans
(
(si, si+1), It,Ψi, Ii+1

)
⇔

(
[Dd(si)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(si)]x⃗0
x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

∨
sr∈SCt

σ(sr) ∧ [φ(si, si+1)]x⃗0
x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SCi+1

σ(sr)
)

∗ SafeTrans
(
(si, si+1), Ii,Ψi, Ii+1

)
⇔

(
[Dd(si)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(si)]x⃗0
x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

∨
sr∈SCi

σ(sr) ∧ [φ(si, si+1)]x⃗0
x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SCi+1

σ(sr)
)

• Notice that SP6 can be rewritten as the following SafeTrans-formula SP7:

SP7 : SafeTrans
(
(sk, sl), Ij ,Ψk, Ij

)
for each nontrivial SCC Cj and all (sk, sl) ∈ inside(Cj)

54 Chapter 3. Verification Condition Generation Using Inductive Assertions

and SP7 is valid since the second formula of the following equivalence is valid by
R1, R3 and R5 of Proposition 1:

SafeTrans
(
(sk, sl), Ij ,Ψk, Ij

)
⇔

(
[Dd(sk)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(sk)]x⃗0
x⃗

)
∧ [Dd(sl)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

∨
sr∈SCj

σ(sr) ∧ [φ(sk, sl)]x⃗0
x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SCj

σ(sr)
)

■

3.5.3 Relative Completeness of SCC-Trans
Theorem 8 (Relative Completeness of the SCC-Trans Method). Given any Quartz pro-
gram P and its EFSM Σ that has nodes s0, . . . , sn such that s0 is the initial node, assume
the nodes belong to sets SC0 , . . . ,SCm for nontrivial SCCs and to SCt for trivial SCCs,
respectively, and that transTo(Ci), inside(Ci) and transTo(Ct), are transitions entering
nontrivial SCC SCi, moving inside SCi, and reaching the nodes in SCt, respectively.
Given any valid safety property Φ that holds in all reachable states of Σ, there exist
suitable SCC assertions I0, . . . , Im and It, for each nontrivial SCC C0, . . . , Cm and Ct,
respectively, and continuous invariants Ψ0, . . . ,Ψn for each node s0, . . . , sn, respectively,
to prove Φ as shown in Theorem 3.
Proof. Assuming the existence of ΦR, we define Ii := ΦR ∧

∨
sr∈SCi

σ(sr) for every

nontrivial SCC Ci, It := ΦR ∧
∨

sr∈SCt

σ(sr) for the nodes in Ct, and Ψi := ΦR for every

node si, then all generated subgoals are valid:
• ST1-ST4 are valid following the same arguments as for SP1-SP4.
• ST5-ST7 are valid since the proof of SP5-SP6 has covered all the possible general

cases, i.e., SP51, SP52, SP53, SP54 and SP7.
■

3.5.4 Relative Completeness of Loop-Path
Theorem 9 (Relative Completeness of the Loop-Path Method). Given any Quartz pro-
gram P with loop statements L0, . . . ,Lm, assume that its EFSM Σ has nodes s0, . . . , sn

such that s0 is the initial node, nodes belongs to sets SL0 , . . . ,SLm and SL∅ accordingly,
pathsTo(Li) are paths entering SLi, and inside(Li) are transitions moving inside SLi.
Given any valid safety property Φ that holds in all reachable states of Σ, there exist suit-
able assertions I0, . . . , Im and I∅, for loop statements L0, . . . ,Lm and L∅, respectively,
and continuous invariants Ψ0, . . . ,Ψn for each node s0, . . . , sn, respectively, to prove Φ
as shown in Theorem 4.

3.5. Relative Completeness of the VCG Methods 55

Proof. Assuming the existence of ΦR, we define Ii := ΦR ∧
∨

sr∈SLi

σ(sr) for every set

of nodes SLi , and I∅ := ΦR ∧
∨

sr∈SL∅

σ(sr) for SL∅ , and Ψi := ΦR for every node si,

then all generated subgoals are valid.
• LP1 is valid since the last formula of the following equivalences is valid by R2 of

Proposition 1.

D(s0)→ I∅ ⇔
(
σ(s0) ∧ Dd(s0) ∧ cont∀

(
Dc(s0)

))
→

(
ΦR ∧

∨
sr∈SL∅

σ(sr)
)

• LP2 is valid since the second formula of the following equivalence is valid by R4
and R5 of Proposition 1.

Ii → Φ ⇔
(
ΦR ∧

∨
sr∈SLi

σ(sr)
)
→ Φ

• LP3 is valid since the second formula of the following equivalence is valid by R4
and R5 of Proposition 1.

I∅ → Φ ⇔
(
ΦR ∧

∨
sr∈SL∅

σ(sr)
)
→ Φ

• LP4 is valid since the second formula of the following equivalence is valid by R4
of Proposition 1.

Ψi → Φ ⇔ ΦR → Φ

• By the relation of SafePath and SafeTrans predicates, we can rewrite LP5 as follows:

SafePath
(
(sk, . . . , sl), (Ψk, . . . ,Ψl−1), Isk

, I∅, Il

)

⇔

SafeTrans
(
(sk, sk+1), Isk

,Ψk, I∅
)

∧

 l−2∧
i=k+1

SafeTrans
(
(si, si+1), I∅,Ψi, I∅

)
∧ SafeTrans

(
(sl−1, sl), I∅,Ψl−1, Il

)

Therefore, we have to prove the validity of the following four general cases:

– LP51: SafeTrans
(
(si, si+1),

∧
Lj∈Loops(si)

Ij ,Ψi, I∅
)

– LP52: SafeTrans
(
(si, si+1), I∅,Ψi, I∅

)
– LP53: SafeTrans

(
(si, si+1), I∅,Ψi, Ii+1

)
– LP54: SafeTrans

(
(si, si+1),

∧
Lj∈Loops(si)

Ij ,Ψi, Ii+1
)

56 Chapter 3. Verification Condition Generation Using Inductive Assertions

which can be done by the following equivalences with R1, R3 and R5 of Proposi-
tion 1:

∗ SafeTrans
(
(si, si+1),

∧
Lj∈Loops(si)

Ij ,Ψi, I∅
)

⇔
(

[Dd(si)]x⃗0,x⃗1
x⃗,next(x⃗) ∧ cont∀

(
[Dc(si)]x⃗0

x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

(∧
Lj∈Loops(si)

∨
sr∈SLj

σ(sr)
)
∧ [φ(si, si+1)]x⃗0

x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SL∅

σ(sr)
)

∗ SafeTrans
(
(si, si+1), I∅,Ψi, I∅

)
⇔

(
[Dd(si)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(si)]x⃗0
x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

∨
sr∈SL∅

σ(sr) ∧ [φ(si, si+1)]x⃗0
x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SL∅

σ(sr)
)

∗ SafeTrans
(
(si, si+1), I∅,Ψi, Ii+1

)
⇔

(
[Dd(si)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(si)]x⃗0
x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

∨
sr∈SL∅

σ(sr) ∧ [φ(si, si+1)]x⃗0
x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SLi+1

σ(sr)
)

∗ SafeTrans
(
(si, si+1),

∧
Lj∈Loops(si)

Ij ,Ψi, Ii+1
)

⇔
(

[Dd(si)]x⃗0,x⃗1
x⃗,next(x⃗) ∧ cont∀

(
[Dc(si)]x⃗0

x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

(∧
Lj∈Loops(si)

∨
sr∈SLj

σ(sr)
)
∧ [φ(si, si+1)]x⃗0

x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SLi+1

σ(sr)
)

• Notice that LP6 can be rewritten as the following SafeTrans-formula LP7:

LP7 : SafeTrans
(
(sk, sl), Ij ,Ψk, Ij

)
for each loop statement Lj and all (sk, sl) ∈ inside(Lj)

3.5. Relative Completeness of the VCG Methods 57

and LP7 is valid since the second formula of the following equivalence is valid by
R1, R3 and R5 of Proposition 1:

SafeTrans
(
(sk, sl), Ij ,Ψk, Ij

)
⇔

(
[Dd(si)]x⃗0,x⃗1

x⃗,next(x⃗) ∧ cont∀
(

[Dc(si)]x⃗0
x⃗

)
∧ [Dd(si+1)]x⃗1,x⃗2

x⃗,next(x⃗)

[ΦR]x⃗0
x⃗ ∧

∨
sr∈SLj

σ(sr) ∧ [φ(si, si+1)]x⃗0
x⃗

)

→
(

[ΦR]x⃗1
x⃗ ∧

∨
sr∈SLj

σ(sr)
)

■

3.5.5 Relative Completeness of Loop-Trans
Theorem 10 (Relative Completeness of the Loop-Trans Method). Given any Quartz
program P with loop statements L0, . . . ,Lm, assume that its EFSM Σ has nodes s0, . . . , sn

such that s0 is the initial node, nodes belong to sets SL0 , . . . ,SLm and SL∅ accordingly,
pathsTo(Li), inside(Li) and transTo(L∅), are transitions entering SLi, moving inside
SLi, and reaching SL∅, respectively. Given any valid safety property Φ that holds in all
reachable states of Σ, there exist suitable assertions I0, . . . , Im and I∅, for loop state-
ments L0, . . . ,Lm and L∅, respectively, and continuous invariants Ψ0, . . . ,Ψn for each
node s0, . . . , sn, respectively, to prove Φ as shown in Theorem 4.
Proof. Assuming the existence of ΦR, we define Ii := ΦR ∧

∨
sr∈SLi

σ(sr) for every set

of nodes SLi , and I∅ := ΦR ∧
∨

sr∈SL∅

σ(sr) for SL∅ , and Ψi := ΦR for every node si,

then all generated subgoals are valid.
• LT1-LT4 are valid following the same arguments as for LP1-LP4.
• LT5-LT7 are valid since the proof of LP5-LP6 has covered all the possible general

cases, i.e., LP51, LP52, LP53, LP54 and LP7.
■

Chapter4
Control-flow Guided Property Directed
Reachability Optimizations

Contents
4.1 The Synchronous Product of Transition Systems 60
4.2 Transition Relation Modification 60

4.2.1 Control-flow Invariant ReachCF(P) by Fixpoint Computation . . . 61
4.2.2 Compiler Generated Control-flow Invariant InvarCF(P) 62
4.2.3 Examples . 63

4.3 CTI Identification and Generalization 70
4.3.1 Unreachability Checking by EFSMs 70
4.3.2 Control-flow Guided Clause Generation 70
4.3.3 Example . 71

Property Directed Reachability (PDR) tries to prove a safety property holds on all
reachable states by means of induction. Even being valid, safety properties may not be
provable by induction due to Counterexamples to Induction (CTIs) that result from the
over-approximation of reachable states. The main idea of PDR is to incrementally learn
from those CTIs and exclude them together with many more unreachable states from
consideration in each propagation step. In the worst case, PDR may have to compute
the state sets that are also computed by a forward fixpoint computation of the reachable
states. In the best case, it may just check one induction base and step.

Imperative synchronous languages have a clear distinction between the control- and
dataflow. The control-flow information is not needed for synthesis and is therefore not
explicitly encoded in the generated systems, but it can be derived from the original
synchronous programs and used for verification. In this section, PDR is optimized by
effectively using this control-flow information:

59

60 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

• Before calling the PDR method, it is beneficial to enhance the original transition
relation with additional control-flow information that contains invariants about
the reachable control-flow states.

• After calling the PDR method, the control-flow helps PDR not only decide about
the unreachability of states derived from counterexamples, but also generate more
general clauses to refine the over-approximations.

The PDR method has already been implemented and optimized in many ways. Different
implementations yield different proofs with different CTIs as intermediate steps. With-
out loss of generality, we ignore the higher data types and use some extreme cases, i.e.,
Quartz programs with only boolean variables, to demonstrate the control-flow guided
PDR method. All control-flow variables are boolean, and the optimizations inspired by
the control-flow have no impact on the dataflow. Therefore, we can apply this control-
flow guided method to any state-based languages with clear distinction of control- and
dataflow. However, this is beyond the scope of this thesis.

4.1 The Synchronous Product of Transition Systems
Given any synchronous Quartz program P, we have the following lemma that describes
the relations of its state transition systems.

Lemma 1 (State Transition Systems of a Synchronous Quartz Program). For states s, s′

of the state transition systems K = (V, I, T), Kcf = (V, Icf , T cf) and Kdf = (V, Idf , T df)
the following holds:

• There is a transition s→ s′ in K iff this transition exists both in Kcf and Kdf .

• State s′ can be reached from state s, i.e., s →∗ s′ in K iff it can be reached from
state s both in Kcf and Kdf .

• If s →∗ s′ in Kcf , then we also have s →∗ s′′ in Kcf for every state s′′ with
s′ ∩ Vcf = s′′ ∩ Vcf .

The proof of the first proposition is straightforward since K is the synchronous product
of the transition systems Kcf and Kdf , i.e., K = Kcf ×Kdf . The second one is proved by
induction using the first proposition. For the third proposition, note that T cf has been
constructed by guarded actions that do not constrain the next values of the dataflow
variables — only the values of the control-flow variables in state s′ are determined by the
values of the variables in state s; the dataflow variables are completely unconstrained.

4.2 Transition Relation Modification
Counterexamples to Induction (CTIs) are unreachable states that satisfy Φ and that
also have successor states violating Φ, therefore, using a better approximation of the

4.2. Transition Relation Modification 61

reachable states is alway welcomed by the PDR method. Predicates ReachCF(P) and
InvarCF(P) are encoded with only control-flow variables that approximate the reachable
control-flow states of a synchronous Quartz program P. They contain useful information
about the unreachability of states that PDR otherwise has to prove first. We can avoid
this proof overhead by simply adding either ReachCF(P) or InvarCF(P) to the original
transition relation T and thus using T ′ := T ∧ReachCF(P) or T ′′ := T ∧ InvarCF(P) for
PDR instead. As will be shown in Section 4.2.3, many safety properties even become
inductive only with respect to the enhanced transition relations.

4.2.1 Control-flow Invariant ReachCF(P) by Fixpoint Computation

The first method to compute the control-flow invariant considers Kabs, which is an
abstraction of the control-flow transition system Kcf , and computes its reachable states
with a symbolic state space traversal.

Definition 3 (Abstract Control-flow Transition System Kabs). Given an Imperative
synchronous program P with control-flow variables Vcf = {w0, . . . , wm−1} and dataflow
variables Vdf = {x1, . . . , xn}, and its control-flow transition system Kcf = (Vcf ∪
Vdf , Icf , T cf), the abstract control-flow transition system Kabs is defined over Vcf with
the following initial states and transition relation:

• Iabs := ∃x1, . . . , xn. Icf

• T abs := ∃x1, . . . , xn.∃x′
1, . . . , x

′
n. T cf

The reachable states ReachCF(P) of Kabs are defined by the iteration X abs
0 := Iabs and

X abs
i+1 := X abs

i ∪ suc∃(X abs
i).

The control-flow transition system Kabs abstracts the dataflow and just considers the
control-flow of a synchronous Quartz program P. It has only finitely many states, and
usually also not that many states. These are the corresponding EFSM states that are
also often considered for code generation. The above abstraction makes nondeterminis-
tic choices on all control-flow expressions that occur in Icf and T cf so that no variables
other than the control-flow variables occur in Iabs and T abs. In practice, we can quickly
compute the reachable states ReachCF(P) of Kabs by means of symbolic model checking
using BDDs. And ReachCF(P) is an over-approximation of the reachable control states
of the program P by the following theorem.

Theorem 11 (ReachCF(P)). Sreach represents all reachable states of a synchronous
Quartz program P. Sreach implies ReachCF(P), so that the projection of Sreach to the
control-flow variables Vcf , namely Scf

reach, implies ReachCF(P) as well.

It has to be remarked here that one core idea of PDR is to avoid the computation
of the reachable states by means of a fixpoint computation. It may therefore seem to
be counterintuitive that we are using a fixpoint computation at this stage. However,
since the fixpoint computation is just restricted to the control-flow, typical BDD-based

62 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

approaches can quickly compute ReachCF(P). The challenges for the reachable state
space computation are rather in the dataflow, and we therefore employ PDR for the
control-flow only.

4.2.2 Compiler Generated Control-flow Invariant InvarCF(P)

The definition of certain control-flow predicates for the compilation of guarded actions
were introduced already in [Sch01]. One of these predicates is insd(S), which holds
whenever the control-flow is active in S, and it is just the disjunction of the control-flow
variables contained in S. Using insd(S) we can recursively compute the control-flow
predicate InvarCF(P) for any Quartz program P by the following theorem.

Theorem 12 (InvarCF(P)). For every synchronous Quartz program P, all reachable
states satisfy the predicate InvarCF(P) as defined by the following rules:

• InvarCF(nothing) := true

• InvarCF(x = τ) := true

• InvarCF(next(x) = τ) := true

• InvarCF(w: pause) := true

• InvarCF({α x; S}) := InvarCF(S)

• InvarCF(S1; S2) := InvarCF(S1) ∧ InvarCF(S2) ∧ ¬(insd(S1) ∧ insd(S2))

• InvarCF(S1 ∥ S2) := InvarCF(S1) ∧ InvarCF(S2)

• InvarCF(if(σ) S1 else S2) := InvarCF(S1) ∧ InvarCF(S2) ∧ ¬(insd(S1) ∧ insd(S2))

• InvarCF(while(σ) S) := InvarCF(S)

• InvarCF(do S while(σ)) := InvarCF(S)

• InvarCF([...] abort S when(σ)) := InvarCF(S)

• InvarCF([...] suspend S when(σ)) := InvarCF(S)

Intuitively, InvarCF(P) states that the control-flow reaches can never be active at both
substatements S1 and S2 of sequences and conditional statements. Actually, InvarCF(P)
has already been generated in [Sch01] (see Lemma 2 in that paper), where it has been
required to prove the correctness of the generated set of guarded actions with respect
to the Structural Operational Semantics of the language. The validity of this predicate
on all reachable states has been formally proved there, and it can also be proved by
means of induction on the state transition system that is symbolically encoded by the
formulas defined in Section 2.4.

InvarCF(P) is an over-approximation of the reachable control-flow states Scf
reach due to

two facts. First, it does not take care of the infeasibility of control-flow conditions σ that

4.2. Transition Relation Modification 63

occur in conditionals, loops, abortion and suspension statements. Instead, InvarCF(P)
considers both σ and its negation ¬σ to be satisfiable, so that all substatements can
be activated. If such a condition should however be unsatisfiable, some of the con-
tained control-flow variables will not be reachable. Note that this can also be due to
nested statements like nested conditionals where the combination of their conditions
may become unsatisfiable.

Heuristics may be applied to check for infeasible path conditions as it is classically
done in Worst-Case Execution Time (WCET) analysis, and it can be done today much
better with the help of SMT solvers. In practice, however, it is usually never the case
that such infeasible paths occur. We therefore do not consider this problem but focus
on another one that is simpler to handle, but more relevant in practice.

Another reason why InvarCF(P) is an over-approximation of the reachable control-
flow states Scf

reach is that it just states the disjointness of conditional and sequential
substatements, but it does not consider how the control-flow variables contained in the
substatements of parallel statements are related to each other.

We can significantly improve the approximation of InvarCF(P) by computing the
reachable states of the state transition system in the way that projects its initial states
and transition relation to the Vcf labels only, which yields ReachCF(P) in Definition 3.
We can even add a bit more information that is equally simple to get: In particular,
note that all control-flow variables are false at the initial point of time, and this is also
encoded in Icf . Moreover, the single guarded action (true,next(run)=true) of the
control-flow variable run will hold at every point of time other than the initial point of
time. Therefore, any other control-flow variable holds implies run.

To sum it up, the computation of InvarCF(P) is straightforward: It can be done
in linear time with respect to the size of S. However, we always have ReachCF(P) →
InvarCF(P), since ReachCF(P) is a better approximation of Scf

reach than InvarCF(P). For
example, ReachCF(CfPar) is more accurate than InvarCF(CfPar) as will be shown in
Section 4.2.3.3.

4.2.3 Examples

In this section, we consider three generic Quartz modules CfSeq, CfIte, and CfPar to
illustrate our definitions and their effects on Property Directed Reachability. All three
programs are particular cases that contain only boolean variables.

4.2.3.1 Example 1: Synchronous Quartz Program CfSeq

Module CfSeq shown in Figure 4.1 is just a sequence of N pause statements. We com-
pute its state transition system KCfSeq = (VCfSeq, ICfSeq, TCfSeq), control-flow transition
system Kcf

CfSeq = (Vcf
CfSeq, Icf

CfSeq, T cf
CfSeq), together with its abstract control-flow transition

system Kabs
CfSeq = (Vcf

CfSeq, Iabs
CfSeq, T abs

CfSeq):

• VCfSeq := {run, p<0>, . . . , p<N−1>} VCfSeq = Vcf
CfSeq = Vabs

CfSeq

64 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

1 macro N = ?;

2 module CfSeq(){

3 for (j=0..N−1) p: pause;
4 }

Figure 4.1: Synchronous Quartz Module CfSeq

• ICfSeq := ¬run ∧
N−1∧
i=0
¬pi ICfSeq = Icf

CfSeq = Iabs
CfSeq

• TCfSeq :=

(
next(run) ↔ true

)
∧

(
next(p<0>) ↔ ¬run

)
∧

(
next(p<1>) ↔ p<0>

)
∧

...
∧

(
next(p<N−1>) ↔ p<N−2>

)

 TCfSeq = T cf
CfSeq = T abs

CfSeq

Notice that their initial states and transition relations are the same, since there are no
assignments to local or output variables.

The control-flow invariant InvarCF(CfSeq) encodes the correct reachable states, and
thus ReachCF(CfSeq) cannot do better and is equivalent to InvarCF(CfSeq) in this exam-
ple. Hence, ReachCF(S) and even InvarCF(S) precisely compute the reachable control-
flow states Scf

reach.

• ReachCF(CfSeq) :=
(
¬run→

N−1∧
i=0
¬pi

)
∧

N−2∧
i=0

N−1∧
j=i+1

¬(p<i> ∧ p<j>)

• InvarCF(CfSeq) = ReachCF(CfSeq)

Figure 4.2 shows the state transition diagram of KCfSeq for module CfSeq with N := 2
where the reachable states are in the yellow region and the initial state is drawn with
double lines. For the three state variables, i.e., run, p<0> and p<1>, there are eight
possible states, but only four of them are reachable. Thus, there are many CTIs for
possible safety properties. For example, to prove that ¬(p<0> ∧ p<1>) holds on all
reachable states, we color all the safe nodes with green in Figure 4.2, and the unsafe
ones with orange. By the PDR method, we will have a CTI at state s2 since it satisfies
this property, but its successor state s7 does not. PDR will therefore not be able to

s0: {} s6: {run,p<0>} s1: {p<1>}

s2: {p<0>}s7: {run,p<0>,p<1>}

s3: {p<0>,p<1>}

s4: {run} s5: {run,p<1>}

Figure 4.2: State Transition Diagram of KCfSeq for Module CfSeq with N := 2

4.2. Transition Relation Modification 65

prove this property within one step. However, if we add the control-flow invariant
InvarCF(CfSeq) or ReachCF(CfSeq) to the transition relation, then only the reachable
states will have outgoing transitions. Thus, no CTIs are possible, and PDR will be able
to prove every valid safety property by just checking the induction base and induction
step. Note that in case of general N, there are N+ 2 reachable states, but 2N states exist
in the state transition system. The additional proof overhead of PDR grows with N.

4.2.3.2 Example 2: Synchronous Quartz Program CfIte

Module CfIte in Figure 4.3 is a conditional statement whose two substatements are
both sequences of N pause statements. The decision depends on an input variable i.

1 macro N = ?;

2 module CfIte(mem bool i){

3 if (i) {for (j=0..N−1) p: pause;}
4 else {for (j=0..N−1) q: pause;}
5 }

Figure 4.3: Synchronous Quartz Module CfIte

Here are the state transition system KCfIte =: (VCfIte, ICfIte, TCfIte) and the control-
flow transition system Kcf

CfIte = (Vcf
CfIte, Icf

CfIte, T cf
CfIte):

• Vcf
CfIte := {run, p<0>, . . . , p<N−1>, q<0>, . . . , q<N−1>} VCfIte := {i} ∪ Vcf

CfIte

• ICfIte := ¬run ∧
N−1∧
i=0
¬(pi ∨ qi) ICfIte = Icf

CfIte

• TCfIte :=

(
next(run) ↔ true

)
∧

(
next(p<0>) ↔ i ∧ ¬run

)
∧

(
next(p<1>) ↔ p<0>

)
∧

...
∧

(
next(p<N−1>) ↔ p<N−2>

)
∧

(
next(q<0>) ↔ ¬i ∧ ¬run

)
∧

(
next(q<1>) ↔ q<0>

)
∧

...
∧

(
next(q<N−1>) ↔ q<N−2>

)

TCfIte = T cf

CfIte

Notice that their initial states and transition relations are the same, since there are
again no assignments to local or output variables.

In contrast to module CfSeq, we have however an input variable, so that the abstract
control-flow system Kabs

CfIte has another symbolic representation that is obtained by
existential quantification over the input variables, which is just i in this case: The
decision whether to branch from the initial state to the control-flow state p<0> or q<0>
depends on the input variable i, but is made nondeterministically in T abs

CfIte. Obviously,

66 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

this does not change the reachable control-flow states, so that ReachCF(CfIte) will
precisely compute the reachable control-flow states Scf

reach of module CfIte.

• Vabs
CfIte = Vcf

CfIte

• Iabs
CfIte := ¬run ∧

N−1∧
i=0
¬(pi ∧ qi)

• T abs
CfIte :=

(
next(run) ↔ true

)
∧

((
next(p<0>) ↔ false

)
∧
(
next(q<0>) ↔ ¬run

)
∨(

next(p<0>) ↔ ¬run
)
∧
(
next(q<0>) ↔ false

))
∧

(
next(p<1>) ↔ p<0>

)
∧

...
∧

(
next(p<N−1>) ↔ p<N−2>

)
∧

(
next(q<1>) ↔ q<0>

)
∧

...
∧

(
next(q<N−1>) ↔ q<N−2>

)

Meanwhile, the control-flow invariant InvarCF(CfIte) just encodes that if one branch

of the conditional statement is active, none of the labels of the other branch can be
active, and since these are again sequences as module CfSeq, it furthermore states that
only one of the control-flow variables can be active. Again, InvarCF(CfIte) precisely
computes the reachable control-flow states Scf

reach like ReachCF(CfSeq).

• ReachCF(CfIte) :=

(
¬run→

N−1∧
i=0
¬(pi ∨ q<i>)

)

∧ ¬
(
N−1∨
i=0

p<i> ∧
N−1∨
i=0

q<i>

)

∧

N−2∧
i=0

N−1∧
j=i+1

¬(p<i> ∧ p<j>)

∧

N−2∧
i=0

N−1∧
j=i+1

¬(q<i> ∧ q<j>)

• InvarCF(CfIte) = ReachCF(CfIte)

Figure 4.4 shows the state transition diagram of KCfIte for module CfIte with N := 2
where again the initial state is drawn with double lines. For the five state variables,
i.e., run, p<0>, p<1>, q<0> and q<1>, there are 25 = 32 possible states, but only six of
them are reachable, as shown in the yellow region in Figure 4.4. Again, there are many

4.2. Transition Relation Modification 67

s0: {}

s18: {run,q<0>} s24: {run,p<0>}

s1: {q<1>}

s2: {q<0>}

s19: {run,q<0>,q<1>}

s25: {run,p<0>,q<1>}

s3: {q<0>,q<1>}

s4: {p<1>} s5: {p<1>,q<1>}

s6: {p<1>,q<0>}

s7: {p<1>,q<0>,q<1>}

s8: {p<0>}

s22: {run,p<1>,q<0>}

s28: {run,p<0>,p<1>}

s9: {p<0>,q<1>}

s10: {p<0>,q<0>}

s23: {run,p<1>,q<0>,q<1>}

s29: {run,p<0>,p<1>,q<1>}

s11: {p<0>,q<0>,q<1>}

s12: {p<0>,p<1>}

s13: {p<0>,p<1>,q<1>}

s14: {p<0>,p<1>,q<0>}

s15: {p<0>,p<1>,q<0>,q<1>}

s16: {run}

s17: {run,q<1>} s20: {run,p<1>}

s21: {run,p<1>,q<1>}

s26: {run,p<0>,q<0>}s27: {run,p<0>,q<0>,q<1>}

s30: {run,p<0>,p<1>,q<0>}

s31: {run,p<0>,p<1>,q<0>,q<1>}

Figure 4.4: State Transition Diagram of KCfIte for Module CfIte with N := 2

CTIs for possible safety properties that may trouble PDR. For example, to prove that
¬(p<0>∧p<1>)∧¬(q<0>∧q<1>)¬

(
(p<0>∨p<1>)∧ (q<0>∨q<1>)

)
holds on all reachable

states, we mark all the safe nodes with green and the unsafe ones with orange. We will
have CTIs at states s2 and s8 since they satisfy this property, but their successor states
s19, s22, s25 and s28 do not. The same as in the previous example, the addition of the
control-flow invariant InvarCF(CfIte) or ReachCF(CfIte) to the transition relation will
only allow the reachable states to have outgoing transitions. Thus, no CTIs are possible
anymore, and PDR will be able to prove every valid safety property by just checking
the induction base and induction step.

4.2.3.3 Example 3: Synchronous Quartz Program CfPar

Module CfPar shown in Figure 4.5 is a parallel statement whose two substatements are
both sequences of N pause statements.

1 macro N = ?;

2 module CfPar(){

3 { for (j=0..N−1) p: pause; }

4 ||

5 { for (j=0..N−1) q: pause; }

6 }

Figure 4.5: Synchronous Quartz Module CfPar

When it starts, both pause statements p<0> and q<0> are entered by the control-flow,

68 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

then p<1> and q<1>, and so on. We compute its state transition system KCfPar =
(VCfPar, ICfPar, TCfPar), control-flow transition system Kcf

CfPar = (Vcf
CfPar, Icf

CfPar, T cf
CfPar),

and also abstraction control-flow transition system Kabs
CfPar = (Vcf

CfPar, Iabs
CfPar, T abs

CfPar):

• Vcf
CfPar := {run, p<0>, . . . , p<N−1>, q<0>, . . . , q<N−1>} VCfPar = Vcf

CfPar = Vabs
CfPar

• ICfPar := ¬run ∧
N−1∧
i=0
¬(pi ∨ qi) ICfPar = Icf

CfPar = Iabs
CfPar

• TCfPar :=

(
next(run) ↔ true

)
∧

(
next(p<0>) ↔ ¬run

)
∧

(
next(p<1>) ↔ p<0>

)
∧

...
∧

(
next(p<N−1>) ↔ p<N−2>

)
∧

(
next(q<0>) ↔ ¬run

)
∧

(
next(q<1>) ↔ q<0>

)
∧

...
∧

(
next(q<N−1>) ↔ q<N−2>

)

TCfPar = T cf

CfPar = T abs
CfPar

The control-flow invariant InvarCF(CfPar) just encodes that at most one of the
control-flow variables p<0>, . . . , p<N−1> and also that at most one of the control-flow
variables q<0>, . . . , q<N−1> is valid. However, it does not relate the two threads to each
other. Hence, this predicate allows all combinations of pairs p<i>, q<j> to be active at
the same time which is however not possible in any reachable state. InvarCF(CfPar) is
therefore a coarse abstraction. Meanwhile, the computation of the reachable states with
Iabs
CfPar and T abs

CfPar yields ReachCF(CfPar), which is the precise set of reachable control-
flow states Scf

reach of module CfPar, and can therefore give PDR the exact information
from the beginning.

• ReachCF(CfPar) :=

(
¬run ∧

N−1∧
i=0
¬(p<i> ∨ q<i>)

)

∨

run ∧ p<0> ∧ q<0> ∧
N∧

i=1,i ̸=1
¬(p<j> ∨ q<j>)

∨

run ∧ p<1> ∧ q<1> ∧
N∧

i=1,i ̸=2
¬(p<j> ∨ q<j>)

∨

...

∨

run ∧ p<N−1> ∧ q<N−1> ∧
N−1∧

i=1,i ̸=N

¬(p<j> ∨ q<j>)

4.2. Transition Relation Modification 69

• InvarCF(CfPar) :=

(
¬run→

N−1∧
i=0
¬(p<i> ∨ q<i>)

)

∧

N−2∧
i=0

N−1∧
j=i+1

¬(p<i> ∧ p<j>)

∧

N−2∧
i=0

N−1∧
j=i+1

¬(q<i> ∧ q<j>)

The state transition diagram of KCfPar for module CfPar with N := 2 is shown in

Figure 4.6, where again the reachable states are in the yellow region and the initial
state is drawn with double lines. For the five state variables, i.e., run, p<0>, p<1>, q<0>
and q<1>, there are 25 = 32 possible states, but only four of them are reachable so that
PDR may have to deal with CTIs. In contrast to the previous examples, the addition
of InvarCF(CfPar) will not remove all transitions from unreachable states. Of course,
InvarCF(CfPar) holds in the four reachable states, but also in additional six states: s17,
s18, s20, s22, s24, s25. It can therefore help PDR with some, but not with all safety
properties. For example, given a safety property where all the safe nodes are marked
green whereas the unsafe ones are marked with orange in Figure 4.6, to prove it holds
on all reachable states with InvarCF(CfPar), we will still have CTIs at states s18 and s24
since they satisfy this property, but their successor states s17 and s20 do not. On the
other hand, ReachCF(CfPar) computes in this example precisely the reachable control-
flow states Scf

reach of module CfPar so that PDR can prove any safety property directly
without even starting the incrementation procedure.

s0: {}

s26: {run,p<0>,q<0>}

s1: {q<1>}

s2: {q<0>}

s27: {run,p<0>,q<0>,q<1>}

s3: {q<0>,q<1>}

s4: {p<1>} s5: {p<1>,q<1>}

s6: {p<1>,q<0>}

s7: {p<1>,q<0>,q<1>}

s8: {p<0>}

s30: {run,p<0>,p<1>,q<0>}

s9: {p<0>,q<1>}

s10: {p<0>,q<0>}

s31: {run,p<0>,p<1>,q<0>,q<1>}

s11: {p<0>,q<0>,q<1>}

s12: {p<0>,p<1>}

s13: {p<0>,p<1>,q<1>}

s14: {p<0>,p<1>,q<0>}

s15: {p<0>,p<1>,q<0>,q<1>}

s16: {run}

s17: {run,q<1>}

s18: {run,q<0>} s19: {run,q<0>,q<1>}

s20: {run,p<1>}

s21: {run,p<1>,q<1>}

s22: {run,p<1>,q<0>}

s23: {run,p<1>,q<0>,q<1>}s24: {run,p<0>}

s25: {run,p<0>,q<1>}

s28: {run,p<0>,p<1>}

s29: {run,p<0>,p<1>,q<1>}

Figure 4.6: State Transition Diagram of KCfPar for Module CfPar with N := 2

70 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

4.3 CTI Identification and Generalization
In this section, we describe our method that can automatically generate unreachable
clauses for synchronous Quartz programs based on the analysis of their control-flow
transition systems. As we will show, the unreachability of some CTIs in K can be
proved by unreachability in the EFSM. Dropping the dataflow variables in the cube
will moreover generate an unreachable cube whose clause can be used to narrow the
reachable state approximations maintained by PDR.

4.3.1 Unreachability Checking by EFSMs

As explained in Section 4.1, the transition relation T of such a synchronous Quartz
program can be derived as a conjunction T := T cf ∧ T df of transition relations over
the same set of variables, one for the control-flow T cf and another one for the dataflow
T df , respectively. The reachability of a state s′ from a state s in T is equivalent to
the reachability in both T cf and T df . Hence, if s′ is not reachable from s in T cf , we
can already conclude its unreachability in T and thus can declare it as a CTI without
considering the full transition relation T .

The advantage is that the control-flow transition system Kcf is much simpler to deal
with (even though it has even more reachable states) since we can compute a usually
small quotient (in terms of the EFSM) for it. We may also use traditional model
checking approaches for that purpose since T cf can be usually represented efficiently
by means of BDDs. This way, we can add a first, less expensive test for checking the
unreachability of a state in the corresponding EFSM. If that test should fail, we use
the traditional PDR reachability checks that will generate further reachability queries
that then (again) first ask for reachability by EFSM in every step.

Our extension of PDR to the CTI identification is based on the following lemma
that defines the reachability in EFSMs:

Lemma 2 (Unreachability Checking by EFSMs:). If a node s with a control-flow label
Labels(s) ⊆ Vcf is not reachable in the EFSM from the initial node, then neither this
state nor any other state s′ ⊆ Vcf ∪ Vdf with s = s′ ∩ Vcf is reachable in Kcf , and thus
also none of these states is reachable in K.

Note that the transition conditions have been ignored for defining the above reachability
in the EFSM so that we do not have to consider infeasible paths.

4.3.2 Control-flow Guided Clause Generation

After determining a state is unreachable in Kcf through the EFSM, we can reduce it
to its control-flow variables, and obtain this way a generalized clause that will exclude
all states of the transition system that refer to the same program locations (but with
different values of the data variables). In this way, we can avoid expensive clause
generalizations that are required in PDR to narrow the over-approximations of the
clause sets Ψ0, . . . ,Ψk.

4.3. CTI Identification and Generalization 71

The clauses generated this way may not be relative inductive, but by inspection of
the control-flow transition relation T cf , we can directly decide about their unreachability
which is sufficient for excluding certain states. Also, the clauses may not be minimal, but
since they are quickly generated this way, it is usually a good compromise. Alternatively,
we could apply the usual methods to minimize them. Our extension of the clause
generation is based on the following theorem:

Theorem 13 (Control-flow Guided Clause Generation). Let P be a synchronous Quartz
program with the transition systems K = (V, I, T), Kcf = (V, Icf , T cf), and Kdf =
(V, Idf , T df) as introduced in the previous section and let C be a cube over variables V.

• Reachability of Cubes: If no state s ⊆ V that satisfies C is reachable in Kcf , then
none of these states is reachable in K.

• Generalization of Clauses: If no state of C is reachable in Kcf , then also no state
of C′ := C|Vcf is reachable neither in Kcf nor in K where C′ := C|Vcf denotes the
restriction of C to the control-flow variables Vcf .

Proof.

• The first proposition follows almost directly from Lemma 1, since unreachability
in Kcf implies unreachability in K.

• The cube C′ contains only control-flow literals. One of its states is reachable in Kcf

iff the corresponding state endowed with the dataflow literals in C will be reachable
in Kcf , since reachability in Kcf does not depend on the dataflow literals. Thus,
if no state of C is reachable in Kcf then and only then, no state of C′ is reachable
in Kcf , and thus also not reachable in K.

■
The subclause C′ := C|Vcf obtained from omitting the dataflow literals in cube C can
therefore be used to narrow the reachable state approximations of PDR if no state of C is
reachable inKcf . Finally, checking unreachability of a cube C inKcf can be approximated
by checking whether the node in the EFSM that corresponds to C′ := C|Vcf is reachable
in the EFSM.

As shown in Figure 4.7, the Averest compiler computes for a given Quartz program
an equivalent set of guarded actions GP. Different transformation procedures are pro-
vided to adapt the guarded actions for special needs. The symbolic transition system
K is the input for the PDR method. In the blocking phase, if the CTI can not be
mapped to any of the reachable nodes of the EFSM, then an unreachable subclause
will be derived by restricting the cube clause to its control-flow literals, otherwise the
normal reachability checks of PDR will be applied.

4.3.3 Example

To demonstrate the control-flow guided clause generalization method, we use module
ITELoop as shown in Figure 4.8: i is a local array with N boolean variables. The initial

72 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

Quartz Programs

Guarded Actions GP EFSM

Symbolic Transition
System K

Input Files for
PDR Method

Propagation
Verify by PDR Method

Mapping CTI
to EFSM

CTI Generation

Blocking

Control-flow Guided
Clause Generation

Original Inductive
Subclause Generation

Proofs

Averest

Compilation

Transformation

Transformation

Transformation

No

Yes

Figure 4.7: Control-flow Guided Clause Generation

value of i[0] is true, the other array elements are false (default initialization). The
body statement of the module ITELoop is a conditional statement: if ¬i[0] holds, then
the loop statement will be immediately started. In the second macro step inside the
loop statement i[0] is assigned to false. It is not difficult to see that i[0] always
holds in module ITELoop since the control-flow will never enter the loop statement.

1 macro N=?;

2 module ITELoop() {

3 [N]bool i; i[0] = true;
4 if (!i[0]) {

5 loop{
6 p1: pause;
7 i[0] = false;
8 p2: pause;
9 }

10 }

11 }

Figure 4.8: Fig: Synchronous Quartz Module ITELoop

Consider the instance of module ITELoop with N := 1, and its EFSM in Figure 4.9. The
symbolic representations of the transition systemsKITELoop = (VITELoop, IITELoop, TITELoop),
Kdf

ITELoop = (VITELoop, Idf
ITELoop, T df

ITELoop), and Kcf
ITELoop = (VITELoop, Icf

ITELoop, T cf
ITELoop) are

4.3. CTI Identification and Generalization 73

s0:
Labels:{ }

actions:
 <true ==> i[0] = true>

SCC:{0}
Loops:{ }

SCC:{1}
Loops:{1}

s3:
Labels:{run}

actions:

s1:
Labels:{p1,run}

actions:
 <true ==> i[0] = false>

!i[0]

true
s2:
Labels:{p2,run}

actions:

truei[0]
true

SCC:{3}
Loops:{ }

SCC:{1}
Loops:{1}

Figure 4.9: EFSM of Module ITELoop with N := 1

defined as follows:

• Vcf
ITELoop := {p1, p2, run}

• Vdf
ITELoop := {i[0]}

• Icf
ITELoop := ¬(p1 ∨ p2 ∨ run)

• T cf
ITELoop :=

next(run)

∧
(
next(p1) ↔

(
¬p2→ (¬run ∧ ¬i[0])

))
∧

(
next(p2) ↔ p1

)

• Idf
ITELoop := i[0]

• T df
ITELoop :=

((p1→ ¬i[0])
∧

(
¬next(p1)→

(
next(i[0]) ↔ i[0]

)))

• VITELoop := Vcf
ITELoop ∪ Vdf

ITELoop

• IITELoop := Icf
ITELoop ∧ Idf

ITELoop

• TITELoop := T cf
ITELoop ∧ T df

ITELoop

Figure 4.11 and Figure 4.10 are the state transition diagrams of KITELoop and Kcf
ITELoop.

Again, the yellow region covers the reachable states, and the green nodes are the states
satisfying i[0], while the remaining ones violate i[0].

By the control-flow guided clause generation method, we prove that Φ := i[0] holds
on all reachable states of KITELoop as follows:

• i[0] holds in both the initial state s1 and its successor s3. The initial state is not
inductive since the successor s3 of the initial state s1 is not an initial state. Since

74 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

s0: {}s10: {p1,run}

s11: {p1,run,i[0]}

s1: {i[0]}

s3: {run,i[0]}

s2: {run}s4: {p2}s5: {p2,i[0]}

s6: {p2,run}

s7: {p2,run,i[0]}

s8: {p1}

s14: {p1,p2,run}

s15: {p1,p2,run,i[0]}

s9: {p1,i[0]}

s12: {p1,p2}

s13: {p1,p2,i[0]}

Figure 4.10: State Transition Diagram of KITELoop for Module ITELoop with N := 1

there are transitions from states where Φ := i[0] holds to states where Φ does
not hold, Φ is also not inductive. So, we set up the first Ψ-sequence of clauses
sets for k := 1:

Ψ0 := {{i[0]}, {¬p1}, {¬p2}, {¬run}}
Ψ1 := {{i[0]}}

• Let JΨiKKITELoop
represent the set of states satisfying Ψi. Looking at Figure 4.10,

we see the following:JΨ0KKITELoop
:= {s1}JΨ1KKITELoop
:= {s1, s3, s5, s7, s9, s11, s13, s15}

s5 and s7 are CTIs since these states belong to JΨ1KKITELoop
but have successors

violating i[0].

• We choose the CTI with the smallest index, i.e., s5. It can be represented as cube
¬p1∧p2∧¬run∧i[0], whose control-flow part is ¬p1∧p2∧¬run which corresponds
to states s4 and s5. There is no corresponding node in the EFSM labeled with
{p2}, and thus, none of the states s4 and s5 are reachable in Kcf

ITELoop, and thus
neither in KITELoop. Therefore, unreachability of s4 and s5 follows directly, and we
could add clause {p1,¬p2, run} to Ψ0 and Ψ1.

• We next explore the lattice of the subclauses of {p1,¬p2, run} to generalize the
clause. The minimal inductive subclause {¬p2} can be extracted. We then conjoin
{¬p2} and obtain the following Ψ-sequence:

Ψ0 := {{i[0]}, {¬p1}, {¬p2}, {¬run}}
Ψ1 := {{i[0]}, {¬p2}}

Now we have JΨ1KKITELoop
= {s1, s3, s9, s11}.

4.3. CTI Identification and Generalization 75

s0: {}s10: {p1,run}

s11: {p1,run,i[0]}

s1: {i[0]}

s3: {run,i[0]}

s2: {run}s4: {p2}s5: {p2,i[0]}

s6: {p2,run}

s7: {p2,run,i[0]}

s8: {p1}

s14: {p1,p2,run}

s15: {p1,p2,run,i[0]}

s9: {p1,i[0]}

s12: {p1,p2}

s13: {p1,p2,i[0]}

Figure 4.11: State Transition Diagram of Kcf
ITELoop for Module ITELoop with N := 1

• Since now all successors of Ψ1 satisfy i[0], PDR increments the trace and propa-
gates clauses as usual1 in PDR. The following Ψ-sequence of clause sets for k := 2
is obtained:

Ψ0 := {{i[0]}, {¬p1}, {¬p2}, {¬run}}
Ψ1 := {{i[0]}, {¬p1}, {¬p2}}
Ψ2 := {{i[0]}, {¬p1}, {¬p2}}

Note that {¬run} cannot be propagated to Ψ1 since it does not hold on s3, but
{¬p1} propagates from Ψ0 to Ψ1 since it holds on all successors of Ψ0, i.e., on s3.

• We now have Ψ1 = Ψ2 (syntactic equality) with JΨ1KKITELoop
= JΨ2KKITELoop

=
{s1, s3}, so we found a proof and conclude that i[0] holds on all reachable states
of KITELoop by the control-flow guided clause generation method.

In general, the set of boolean variables of module ITELoop is the following:

VN := {i[0], . . . , i[N−1]}︸ ︷︷ ︸
Vdf

∪ {p1, p2, run}︸ ︷︷ ︸
Vcf

In the worst case, C contains N+ 3 literals over VN. Omitting the dataflow literals, only
three literals over Vcf remain. By our control-flow guided clause generalization method,
starting from those CTIs that cannot be mapped to any nodes in the EFSM, the PDR
method benefits from the following two aspects:

• The unreachability of those CTIs can be proved directly by the control-flow labels
of the EFSM nodes.

1A clause c of Ψi is propagated to Ψi+1 if Ψi → 2c is valid.

76 Chapter 4. Control-flow Guided Property Directed Reachability Optimizations

• It is sufficient to narrow the reachable state approximations with the generalized
clause C′ obtained from omitting the dataflow literals. In this way, the traditional
generalization of clauses, which may yield 2N+3 queries to a SAT/SMT solver, can
be avoided.

• The generalized clause C′ may not be relative inductive. If it is relative inductive,
then deriving a minimal inductive subclause from it can exclude more unreachable
states, which requires at most 23 times relative inductiveness reasoning.

The proposed control-flow guided method can safely omit dataflow literals for clause
generation so that the more expensive clause generalization of PDR will only be called
when it is really needed. The generalized clause generated by our method excludes all
states of the transition system that refer to the same control-flow states.

Chapter5
Experimental Evaluation

Contents
5.1 Synchronous Quartz Program SearchZeros 78

5.1.1 Module SearchZeros and its EFSM 78
5.1.2 VCG using TransBased for SearchZero 79
5.1.3 Experiment Results for SearchZero 81

5.2 Synchronous Quartz Program VectorLengthN 82
5.2.1 Module VectorLengthN and its EFSM 82
5.2.2 VCG using SCCPath for VectorLengthN with N := 2 84
5.2.3 VCG using LoopPath for VectorLengthN with N := 2 86
5.2.4 Scalability . 87

5.3 Hybrid Quartz Program WaterTank 92
5.3.1 Module WaterTank and its EFSM 92
5.3.2 VCG using SCCTrans for WaterTank 93
5.3.3 VCG using LoopTrans for WaterTank 95
5.3.4 Experiment Results for WaterTank 97

5.4 Hybrid Quartz Program SlowDown 97
5.4.1 Module SlowDown and its EFSM 99
5.4.2 Experiment Results for SlowDown 99

5.5 Hybrid Quartz Program ParametricBall 102
5.5.1 Module ParametricBall and its EFSM 102
5.5.2 Validation by VCG Methods . 103

In this section, we use five synchronous and hybrid Quartz programs to demonstrate
the feasibility of the presented VCG methods in Chapter 3. To simplify the verification
goals, all ODEs in the VCs are solved with the aid of a computer algebra tool like
Mathematica. Let vi represent the i-th VC, vi is valid if and only if ¬vi is unsatisfiable.

77

78 Chapter 5. Experimental Evaluation

For programs where the underlying satisfiability program is decidable, we could either
check each ¬vi by the SMT solvers directly, or combine them to a single VC before
using the solvers. Thus, VCs can be verified in the following different formats:

•
∑

-Format: Check each formula ¬vi independently, τ∑ is the sum of the execution
time for each ¬vi.

•
∧

-Format: Check the reorganized formula in the form of ¬
∧
i

vi, τ∧ represents

the execution time.

•
∨

-Format: Check the reorganized formula in the form of
∨
i

¬vi, the execution

time is τ∨.

Both Z3 and iSAT, which can be called as external programs, are used to prove the
VCs. Variable ranges must be provided for iSAT, and obviously the provided variable
ranges affect the runtime. The implementation is written in F#, which is one of the
main languages of the Mono/.NET framework. Meanwhile, Z3 API can be accessed
in Mono/.Net, and additionally, it provides a parallelized version using the ’async’
computation expression. Therefore, we use Z3 API and its parallelized version to check
VCs as well. We also try another SMT solver, namely CVC4, however, according to
our experiments, CVC4’s non-linear real and non-linear integer arithmetic support is
currently not sufficient for our needs.

All experiments were performed on a machine with 3.2GHz Intel Core i5-3470 pro-
cessor, 8.1GB RAM, and 64-bit Ubuntu 17.04. We compare the proved VC number
with the total VC number, and collect the following execution time (average time over
5 iterations in milliseconds) consumed by different formats and different SMT solvers:

• EFSM-Inv Time: The computation time for the preparation work that includes
parsing input files, generating the EFSM, and mapping SCC or loop invariant(s)
to the EFSM nodes.

• VCG Time: The computation time to generate VCs by the provided VCG method.

• SMT Time: The computation time to check VCs by the provided SMT solver.

5.1 Synchronous Quartz Program SearchZeros

The synchronous program SearchZero in Figure 5.1 was first used as an introductory
example in [AO09]. Its EFSM is depicted in Figure 5.2.

5.1.1 Module SearchZeros and its EFSM

Given a function f : int→ int defined by a macro, the program starts two searches:
one from 0,1,2,... and another from −1,−2,−3,... until the first integer x is found for

5.1. Synchronous Quartz Program SearchZeros 79

1 // define the function f(x)
2 macro f(x) = (x−2)∗(x−2)+1;

3 module SearchZero(bool found, int y){

4 int x0,x1;

5 weak immediate abort{
6 { // one branch searches from 0 to the positive infinity
7 x0 = 0;

8 while(f(x0) != 0){

9 next(x0) = x0+1;

10 w0: pause;}
11 found = true;
12 }||

13 { // the other branch searches from −1 to the negative infinity
14 x1 = −1;

15 while(f(x1) != 0) {

16 next(x1) = x1−1;

17 w1: pause;}
18 found = true;
19 }

20 } when(found);
21 // return the value of x for f(x) = 0
22 if (f(x0) == 0) y = x0; else y = x1;

23 }

Figure 5.1: Synchronous Quartz Module SearchZero

which f(x) = 0 holds. The correctness of the program is ensured by the following
invariant:

ΦSearchZero := found →
((
f(y) = 0

)
∧
(
y ≥ 0→ ∀i ∈ [−y, y− 1].f(i) ̸= 0

)
∧(

y < 0→ ∀i ∈ [y + 1,−y− 1]. f(i) ̸= 0
))

In our example, i.e., f(x) = (x−2)2+1, all model checking algorithms will not terminate
since there is no x that satisfies f(x) = 0. which ensures the correctness of this program.

5.1.2 VCG using TransBased for SearchZero

The EFSM of module SearchZero in Figure 5.2 has five states. We use ΦSearchZero as
control-flow invariant αi for each node si, and then apply the TransBased method to
generate the following subgoals:

• D(s0)→ ΦSearchZero
• α0 → ΦSearchZero
• α1 → ΦSearchZero
• α2 → ΦSearchZero
• α3 → ΦSearchZero
• α4 → ΦSearchZero
• SafeTrans((s0, s1), α0, true, α1)
• SafeTrans((s0, s2), α0, true, α2)

• SafeTrans((s0, s3), α0, true, α3)
• SafeTrans((s0, s4), α0, true, α4)
• SafeTrans((s1, s1), α1, true, α1)
• SafeTrans((s1, s2), α1, true, α2)
• SafeTrans((s1, s3), α1, true, α3)
• SafeTrans((s1, s4), α1, true, α4)
• SafeTrans((s2, s2), α2, true, α2)
• SafeTrans((s2, s4), α2, true, α4)

80 Chapter 5. Experimental Evaluation

s0:
Labels:{ }
SCC:{3}
Loops:{ }
actions:
<!(found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))&!(0==1+(x0-2)*(x0-2))==> next(x0) = x0+1>
<!(found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))&!(0==1+(x1-2)*(x1-2)) ==> next(x1) = x1-1>
<!found&!(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2)|found|found&0==1+(x1-2)*(x1-2)|found&0==1+(x0-2)*(x0-2)&
0==1+(x1-2)*(x1-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2) ==> next(x1) = x1>
<!found&!(0==1+(x1-2)*(x1-2))&0==1+(x0-2)*(x0-2)|found|found&0==1+(x0-2)*(x0-2)|found&0==1+(x0-2)*(x0-2)&
0==1+(x1-2)*(x1-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2) ==> next(x0) = x0>
<0==1+(x0-2)*(x0-2)|0==1+(x1-2)*(x1-2) ==> found = true>
<found&!(0==1+(x0-2)*(x0-2)) ==> y = x1>
<found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2) ==> y = x0>
<found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)|!found&!(0==1+(x1-2)*(x1-2))&!next(0==1+(x1-2)*(x1-2))&0==1+(x0-2)*(x0-2)|
!found&!(0==1+(x0-2)*(x0-2))&!(0==1+(x1-2)*(x1-2))&!next(0==1+(x0-2)*(x0-2)|0==1+(x1-2)*(x1-2))|
!found&!(0==1+(x0-2)*(x0-2))&!next(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2) ==> next(found) = found>
<found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)|!found&!(0==1+(x1-2)*(x1-2))&!next(found&!(0==1+(x0-2)*(x0-2))|
!(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2))&!next(found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))&
0==1+(x0-2)*(x0-2)|!next(found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))&!found&!(0==1+(x0-2)*(x0-2))&
!(0==1+(x1-2)*(x1-2))&!next(found&!(0==1+(x0-2)*(x0-2)))|!found&!(0==1+(x0-2)*(x0-2))&!next(found&!(0==1+(x0-2)*(x0-2)))&
!next(found&0==1+(x0-2)*(x0-2)| 0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2) ==> next(y) = y>
<found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)|!found&!(0==1+(x1-2)*(x1-2))&0==1+(x0-2)*(x0-2)|!(0==1+(x1-2)*(x1-2))&
!found&!(0==1+(x0-2)*(x0-2))|!found&!(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2) ==> next(i) = i>
<true ==> found = false>
<true ==> i = 0>
<true ==> x0 = 0>
<true ==> x1 = -1>
<true ==> y = 0>

s1:
Labels:{w0, w1}
SCC:{1}
Loops:{1,2}
actions:
<!(found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))&!(0==1+(x0-2)*(x0-2))==> next(x0) = x0+1>
<!(found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))&!(0==1+(x1-2)*(x1-2))==> next(x1) = x1-1>
<!found&!(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2)|found|found&0==1+(x1-2)*(x1-2)|found&0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)|
0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2) ==> next(x1) = x1>
<!found&!(0==1+(x1-2)*(x1-2))&0==1+(x0-2)*(x0-2)|found|found&0==1+(x0-2)*(x0-2)|found&0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)|
0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2) ==> next(x0) = x0>
<0==1+(x0-2)*(x0-2)|0==1+(x1-2)*(x1-2) ==> found = true>
<found&!(0==1+(x0-2)*(x0-2)) ==> y = x1>
<found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2) ==> y = x0>
<found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)|!found&!(0==1+(x1-2)*(x1-2))&!next(0==1+(x1-2)*(x1-2))&0==1+(x0-2)*(x0-2)|!found&
!(0==1+(x0-2)*(x0-2))&!(0==1+(x1-2)*(x1-2))&!next(0==1+(x0-2)*(x0-2)|0==1+(x1-2)*(x1-2))|!found&!(0==1+(x0-2)*(x0-2))&
!next(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2) ==> next(found) = found>
<found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)|!found&!(0==1+(x1-2)*(x1-2))&!next(found&!(0==1+(x0-2)*(x0-2))|
!(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2))&!next(found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))&
0==1+(x0-2)*(x0-2)|!next(found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))&!found&!(0==1+(x0-2)*(x0-2))&
!(0==1+(x1-2)*(x1-2))&!next(found&!(0==1+(x0-2)*(x0-2)))|!found&!(0==1+(x0-2)*(x0-2))&!next(found&!(0==1+(x0-2)*(x0-2)))&
!next(found&0==1+(x0-2)*(x0-2)| 0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2) ==> next(y) = y>
<found|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)|!found&!(0==1+(x1-2)*(x1-2))&0==1+(x0-2)*(x0-2)|!(0==1+(x1-2)*(x1-2))&!found&
!(0==1+(x0-2)*(x0-2))|!found&!(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2) ==> next(i) = i>

!(0==1+(x1-2)*(x1-2))&!found&
!(0==1+(x0-2)*(x0-2))

s2:
Labels:{w0}
SCC:{0}
Loops:{1}
actions:
<!(found|0==1+(x0-2)*(x0-2))&!(0==1+(x0-2)*(x0-2))
==> next(x0) = x0+1>
<!found&!(0==1+(x0-2)*(x0-2))&!next(found&!(0==1+(x0-2)*(x0-2)))&
!next(found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2))|found|
0==1+(x0-2)*(x0-2) ==> next(y) = y>
<!found&!(0==1+(x0-2)*(x0-2))|found|0==1+(x0-2)*(x0-2)
==> next(i) = i>
<!found&!(0==1+(x0-2)*(x0-2))|found|0==1+(x0-2)*(x0-2)
==> next(x1) = x1>
<!next(0==1+(x0-2)*(x0-2))&!found&!(0==1+(x0-2)*(x0-2))|found|
0==1+(x0-2)*(x0-2) ==> next(found) = found>
<0==1+(x0-2)*(x0-2) ==> found = true>
<found&!(0==1+(x0-2)*(x0-2)) ==> y = x1>
<found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2) ==> y = x0>
<found|0==1+(x0-2)*(x0-2) ==> next(x0) = x0>

!found&!(0==1+(x0-2)*(x0-2))&
0==1+(x1-2)*(x1-2)

s3:
Labels:{w1}
SCC:{2}
Loops:{2}
actions:
<!(found|0==1+(x1-2)*(x1-2))&!(0==1+(x1-2)*(x1-2))
==> next(x1) = x1-1>
<!found&!(0==1+(x1-2)*(x1-2))&!next(found&!(0==1+(x0-2)*(x0-2))|
!(0==1+(x0-2)*(x0-2))&0==1+(x1-2)*(x1-2))&!next(found)
&0==1+(x0-2)*(x0-2|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2))|
found|0==1+(x1-2)*(x1-2) ==> next(y) = y>
<!found&!(0==1+(x1-2)*(x1-2))|found|0==1+(x1-2)*(x1-2)

==> next(x0) = x0>
<!next(0==1+(x1-2)*(x1-2))&!found&!(0==1+(x1-2)*(x1-2))|
found|0==1+(x1-2)*(x1-2) ==> next(found) = found>
<0==1+(x1-2)*(x1-2) ==> found = true>
<found&!(0==1+(x0-2)*(x0-2))|!(0==1+(x0-2)*(x0-2))&
0==1+(x1-2)*(x1-2) ==> y = x1>
<found&0==1+(x0-2)*(x0-2)|0==1+(x0-2)*(x0-2)&0==1+(x1-2)*(x1-2)
==> y = x0>
<found|0==1+(x1-2)*(x1-2) ==> next(x1) = x1>

==> next(i) = i>
<!found&!(0==1+(x1-2)*(x1-2))|found|0==1+(x1-2)*(x1-2)

!found&!(0==1+(x1-2)*(x1-2))&
0==1+(x0-2)*(x0-2)

s4:
Labels:{ }
SCC:{4}
Loops:{3}
actions:
<true ==> next(found) = found>
<true ==> next(i) = i>
<true ==> next(x0) = x0>
<true ==> next(x1) = x1>
<true ==> next(y) = y>

found|0==1+(x0-2)*(x0-2)&
0==1+(x1-2)*(x1-2)

!(0==1+(x1-2)*(x1-2))&!found&
!(0==1+(x0-2)*(x0-2))

!found&!(0==1+(x0-2)*(x0-2))&
0==1+(x1-2)*(x1-2)

!found&!(0==1+(x1-2)*(x1-2))&
0==1+(x0-2)*(x0-2)

found|0==1+(x0-2)*(x0-2)&
0==1+(x1-2)*(x1-2)

!found&!(0==1+(x0-2)*(x0-2))
found|0==1+(x0-2)*(x0-2)

!found&!(0==1+(x1-2)*(x1-2))
found|0==1+(x1-2)*(x1-2)

true

Figure 5.2: EFSM of Module SearchZero

5.1. Synchronous Quartz Program SearchZeros 81

• SafeTrans((s3, s3), α3, true, α3)
• SafeTrans((s3, s4), α3, true, α4)

• SafeTrans((s4, s4), α4, true, α4)

Each subgoal represents a VC that can be converted to SMT-LIB format for SMT
solvers. To have some idea on how the VCs look like, we give the following input file in
SMT-LIB format in Figure 5.3 that describes the subgoal D(s0)→ ΦSearchZero:

1 (declare−fun y_0 () Int)

2 (declare−fun i_0 () Int)

3 (declare−fun found_0 () Bool)

4 (declare−fun x1_0 () Int)

5 (declare−fun x0_0 () Int)

6 (declare−fun w1_0 () Bool)

7 (declare−fun w0_0 () Bool)

8 (assert (let ((a!1 (ite (bvslt #b0 #b0) (− (bv2int #b0) 2) (bv2int #b0)))

9 (a!2 (ite (bvslt #b01 #b00) (− (bv2int #b01) 4) (bv2int #b01)))

10 (a!3 (ite (bvslt #b010 #b000) (− (bv2int #b010) 8) (bv2int #b010))))

11 (let ((a!4 (= a!1 (+ a!2 (∗ (− x0_0 a!3) (− x0_0 a!3)))))

12 (a!5 (= a!1 (+ a!2 (∗ (− x1_0 a!3) (− x1_0 a!3)))))

13 (a!7 (or (<= i_0 (− (− a!1 y_0) a!2)) (<= (+ y_0 a!2) i_0)))

14 (a!8 (not (= a!1 (∗ (− i_0 a!3) (− i_0 a!3)))))

15 (a!10 (= a!1 (+ a!2 (∗ (− y_0 a!3) (− y_0 a!3))))))

16 (let ((a!6 (and (not w0_0)

17 (not w1_0)

18 (=> (and found_0 (not a!4)) (= y_0 x1_0))

19 (=> (or (and found_0 a!4) (and a!4 a!5)) (= y_0 x0_0))

20 (=> (or a!4 a!5) (= found_0 true))
21 (= found_0 false)
22 (= y_0 a!1)

23 (= x0_0 a!1)

24 (= x1_0 a!1)

25 (= i_0 a!1)))

26 (a!9 (=> (or (<= i_0 (− y_0 a!2)) (<= (− a!1 y_0) i_0)) a!8)))

27 (let ((a!11 (=> found_0

28 (and (=> (< y_0 a!1) (=> a!7 a!8)) (=> (<= a!1 y_0) a!9) a!10))))

29 (not (=> a!6 a!11)))))))

Figure 5.3: D(s0)→ ΦSearchZero in SMT-LIB Format

5.1.3 Experiment Results for SearchZero

Except for the root state, all the other states in the EFSM as shown in Figure 5.2 are
nontrivial SCCs. The loop indices map them accordingly to the while(σ) S statements
in the program. We can use ΦSearchZero as SCC invariants and loop invariants for the
other four VCG methods. The fifth column in Table 5.1 shows the proved VC number
compared to the total VC number: We notice that providing the same SCC or loop
invariants, iSAT cannot prove all VCs, but Z3 and Z3 API can do that. In general, for
all five VCG methods, the parallelized version of Z3 API consumes less execution time
than Z3 API and Z3. No matter whether we choose Z3 or Z3 API, there is barely a
difference of the SMT checking time for the

∑
-Format,

∨
-Format, and

∧
-Format. The

execution time to check VCs depends on the SMT tool we choose, and it does not rely

82 Chapter 5. Experimental Evaluation

on the formats we use for this module. Moreover, we notice that the execution time
spent on the preparation work is longer than the execution time to generate VCs, which
is reasonable, since parsing input files usually takes a long time.

5.2 Synchronous Quartz Program VectorLengthN

Module VectorLengthN computes the euclidean length of a N-dimensional vector v,

i.e.,
√

N−1∑
i=0

v[i]2 for integer coordinates v[i].

We thereby compute just an integer approximation to the square root, which is the
largest integer less than the real square root.

5.2.1 Module VectorLengthN and its EFSM

In Figure 5.4, the dimension of the vector is defined as a macro in the second line. The
vector v in line 3 is an input variable, while len and rdy are output variables. The local
variables p, x, and y are declared in line 4. From line 6 to line 8, the N loops compute
the squares of each dimension v[i] in parallel. After that, the square of all dimensions
will be summed up as shown in line 10, so that the square root of v can be computed
from line 12 to line 15. Once the program terminates, the output variable len will be
assigned to the value of the length of the vector v[i], while the other output variable
rdy will be set to true. The correctness of the program is ensured by the formula
shown in the last two lines.

1 // N−dimentional Vector
2 macro N = ?;

3 module VectorLengthN([N]nat ?v, nat !len, event !rdy) {

4 [N]nat p, x, y;

5 // compute the square of each v[i] in p[i]
6 for(i = 0..N−1) do || {

7 x[i] = v[i]; y[i] = v[i];

8 while(y[i] > 0){next(p[i]) = p[i]+x[i]; next(y[i]) = y[i]−1; w0: pause;}}
9 // compute the sum of all p[i] in p[0]

10 next(p[0]) = sum(i = 0..N−1) p[i]; w1: pause;
11 // compute the integer square root of p[0]
12 x[0] = 0; y[0] = 1;

13 while(y[0] <= p[0]) {

14 // invariant: y[0] = (x[0]+1)^2
15 next(x[0]) = x[0]+1; next(y[0]) = y[0]+2∗x[0]+3; w2: pause;}
16 // return the length of the vector v
17 emit(rdy); len = x[0];}

18 satisfies{// the correctness of the program is ensured by the following formula
19 assert A G (rdy −> sum(i=0..N−1) exp(v[i],2) <= exp(len+1,2)
20 and exp(len,2) <= sum(i=0..N−1) exp(v[i],2));}

Figure 5.4: Synchronous Quartz Module VectorLengthN

5.2. Synchronous Quartz Program VectorLengthN 83

Table 5.1: Experiment Results - Module SearchZero

VCG Method SMT Solver Range Format VC Number EFSM-Inv VCG SMT

TransBased

iSAT [-100..100] τ∑ 17/19 371.56 52.08 156.90
Z3 τ∑ 19/19 366.32 51.99 404.99
Z3 τ∧ 1/1 368.06 52.12 334.42
Z3 τ∨ 1/1 356.44 52.77 314.83
Z3 API τ∑ 19/19 357.95 53.38 279.97
Z3 API τ∧ 1/1 354.87 51.57 234.43
Z3 API τ∨ 1/1 354.58 51.70 234.17
Z3 API async τ∑ 19/19 357.88 52.43 169.32

SCCTrans

iSAT [-100..100] τ∑ 18/19 355.35 55.81 116.35
Z3 τ∑ 19/19 356.27 55.67 315.97
Z3 τ∧ 1/1 353.18 55.72 317.40
Z3 τ∨ 1/1 354.02 55.63 317.97
Z3 API τ∑ 19/19 355.03 55.81 233.79
Z3 API τ∧ 1/1 357.21 55.69 234.18
Z3 API τ∨ 1/1 352.17 55.61 235.59
Z3 API async τ∑ 19/19 354.68 55.88 167.86

SCCPath

iSAT [-100..100] τ∑ 18/19 356.48 58.23 121.12
Z3 τ∑ 19/19 354.18 57.60 316.75
Z3 τ∧ 1/1 354.17 59.77 314.89
Z3 τ∨ 1/1 352.81 57.50 313.54
Z3 API τ∑ 19/19 353.73 57.71 237.87
Z3 API τ∧ 1/1 352.20 57.74 237.04
Z3 API τ∨ 1/1 356.53 57.68 238.40
Z3 API async τ∑ 19/19 352.96 57.92 171.99

LoopTrans

iSAT [-100..100] τ∑ 19/20 353.48 59.69 126.92
Z3 τ∑ 20/20 356.77 59.82 342.40
Z3 τ∧ 1/1 352.51 59.62 342.04
Z3 τ∨ 1/1 353.81 59.58 343.80
Z3 API τ∑ 20/20 355.57 59.87 277.82
Z3 API τ∧ 1/1 359.04 60.04 277.85
Z3 API τ∨ 1/1 354.87 59.81 276.21
Z3 API async τ∑ 20/20 353.69 59.62 187.72

LoopPath

iSAT [-100..100] τ∑ 19/20 359.38 61.67 125.71
Z3 τ∑ 20/20 353.83 60.91 343.08
Z3 τ∧ 1/1 354.20 61.09 337.69
Z3 τ∨ 1/1 353.17 61.08 343.39
Z3 API τ∑ 20/20 353.94 61.07 277.00
Z3 API τ∧ 1/1 354.58 60.95 278.28
Z3 API τ∨ 1/1 356.00 61.29 278.38
Z3 API async τ∑ 20/20 353.81 61.15 187.00

84 Chapter 5. Experimental Evaluation

Module VectorLengthN can be scaled to evaluate the VCG methods. In the next
two sections, we first explain how to generate VCs by SCCPath and LoopPath methods
to prove the correctness of the 2-dimensional case when

ΦVectorLength2D := rdy→ (len2 ≤ (v[0]2 + v[1]2) < (len + 1)2)

and then show experimental results up to 5-dimensional instances in Section 5.2.4.

5.2.2 VCG using SCCPath for VectorLengthN with N := 2

As shown in Figure 5.5, the EFSM of the 2-dimensional instance has seven control-
flow states (s0 is the root state and s6 is the state for termination), which form five
nontrivial SCCs and two trivial SCCs, i.e., each SCC has only one state. We thereby
use the following SCC-invariants for nontrivial and trivial SCCs:
• I0 := (p[0] + x[0] · y[0] = v[0]2) ∧ (0 ≤ y[0]) ∧ (p[1] = v[1]2) ∧

(len = 0) ∧ ¬rdy
• I1 := (p[0] + x[0] · y[0] = v[0]2) ∧ (0 ≤ y[0]) ∧ (0 ≤ y[1]) ∧

(p[1] + x[1] · y[1] = v[1]2) ∧ (len = 0) ∧ ¬rdy
• I2 := (p[1] + x[1] · y[1] = v[1]2) ∧ (0 ≤ y[1]) ∧ (p[0] = v[0]2) ∧

(len = 0) ∧ ¬rdy
• I3 :=

(
y[0] = (x[0] + 1)2) ∧ (p[0] = v[0]2 + v[1]2) ∧

(
(len = 0) ∧

¬rdy ∧ (y[0] ≤ p[0]) ∨ (y[0] > p[0]) ∧ (p[0] ≥ x[0]2) ∧
rdy ∧ (len = x[0])

)
• I6 := ΦVectorLength2D
• It :=

(
¬w0<0> ∧ ¬w0<1> ∧ ¬w1 ∧ ¬w2 → (len = 0) ∧ (p[0] = 0) ∧

(p[1] = 0) ∧ ¬rdy ∧ (x[0] = v[0]) ∧ (y[1] = v[0]) ∧
(x[1] = v[1]) ∧ (y[1] = v[1])

)
∧
(
w1 → (p[0] = v[0]2 + v[1]2) ∧

(x[0] = 0) ∧ (y[0] = 1) ∧
(
¬rdy ∧ (len = 0) ∧ (y[0] ≤ p[0]) ∨

(y[0] > p[0]) ∧ (p[0] ≥ x[0]2) ∧ rdy ∧ (len = x[0])
))

As explained in Section 3.3.2, we now set up induction bases and induction steps to
prove that the above invariants hold by the SCC-Path method:
• I0 for C0:

– Induction Base:
∗ SafePath((s0, s4), (true), It, true, I0)
∗ SafePath((s5, s4), (true), I1, true, I0)

– Induction Step:
∗ SafePath((s4, s4), (true), I0, true, I0)

• I1 for C1:
– Induction Base:
∗ SafePath((s0, s5), (true), It, true, I1)

– Induction Step:
∗ SafePath((s5, s5), (true), I1, true, I1)

5.2. Synchronous Quartz Program VectorLengthN 85

s0:
Labels:{ }

Loops:{ }
actions:
<!(0<y[0])&!(0<y[1]) ==> next(p[0]) = p[0]+p[1]>
<!(0<y[0])&!(0<y[1])|!(0<y[1])&0<y[0] ==> next(p[1]) = p[1]>
<!(0<y[0])&!(0<y[1])|!(0<y[1])&0<y[0] ==> next(y[1]) = y[1]>
<!(0<y[0])&0<y[1] ==> next(p[0]) = p[0]>
<!(0<y[0])&0<y[1] ==> next(y[0]) = y[0]>
<0<y[0] ==> next(p[0]) = p[0]+x[0]>
<0<y[0] ==> next(y[0]) = y[0]-1>
<0<y[0]&0<y[1]|!(0<y[0])&0<y[1]|!(0<y[1])&0<y[0] ==> next(x[0]) = x[0]>
<0<y[0]&0<y[1]|!(0<y[1])&0<y[0]|!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1] ==> next(v[0]) = v[0]>
<0<y[0]&0<y[1]|!(0<y[1])&0<y[0]|!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1] ==> next(v[1]) = v[1]>
<0<y[0]&0<y[1]|!(0<y[1])&0<y[0]|!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1] ==> next(x[1]) = x[1]>
<0<y[0]&0<y[1]|!next(!(y[0]<=p[0]))&!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1]|!(0<y[1])&0<y[0] ==> next(len) = len>
<0<y[0]&0<y[1]|!next(!(y[0]<=p[0]))&!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1]|!(0<y[1])&0<y[0] ==> next(rdy) = rdy>
<0<y[1] ==> next(p[1]) = p[1]+x[1]>
<0<y[1] ==> next(y[1]) = y[1]-1>
<true ==> len = 0>
<true ==> p[0] = 0>
<true ==> p[1] = 0>
<true ==> rdy = false>
<true ==> x[0] = v[0]>
<true ==> y[0] = v[0]>
<true ==> x[1] = v[1]>
<true ==> y[1] = v[1]>

SCC:{4}

s1:
Labels:{w1}

Loops:{ }
actions:
<!(y[0]<=p[0]) ==> len = x[0]>
<!(y[0]<=p[0]) ==> next(x[0]) = x[0]>
<!(y[0]<=p[0]) ==> next(y[0]) = y[0]>
<!(y[0]<=p[0]) ==> rdy = true>
<!(y[0]<=p[0])|!next(!(y[0]<=p[0]))&y[0]<=p[0] ==> next(len) = len>
<!(y[0]<=p[0])|!next(!(y[0]<=p[0]))&y[0]<=p[0] ==> next(rdy) = rdy>
<true ==> next(v[0]) = v[0]>
<true ==> next(v[1]) = v[1]>
<true ==> next(p[0]) = p[0]>
<true ==> next(p[1]) = p[1]>
<true ==> next(x[1]) = x[1]>
<true ==> next(y[1]) = y[1]>
<true ==> x[0] = 0>
<true ==> y[0] = 1>
<y[0]<=p[0] ==> next(x[0]) = x[0]+1>
<y[0]<=p[0] ==> next(y[0]) = 3+y[0]+x[0]*2>

SCC:{5}

!(0<y[0])&!(0<y[1])

SCC:{2}
Labels:{w0<1>}

Loops:{2}
actions:
<!(0<y[1]) ==> next(p[0]) = p[0]+p[1]>
<!(0<y[1]) ==> next(p[1]) = p[1]>
<!(0<y[1]) ==> next(y[1]) = y[1]>
<!(0<y[1])&!next(!(y[0]<=p[0]))|0<y[1] ==> next(len) = len>
<!(0<y[1])&!next(!(y[0]<=p[0]))|0<y[1] ==> next(rdy) = rdy>
<0<y[1] ==> next(p[0]) = p[0]>
<0<y[1] ==> next(p[1]) = p[1]+x[1]>
<0<y[1] ==> next(x[0]) = x[0]>
<0<y[1] ==> next(y[0]) = y[0]>
<0<y[1] ==> next(y[1]) = y[1]-1>
<true ==> next(v[0]) = v[0]>
<true ==> next(v[1]) = v[1]>
<true ==> next(x[1]) = x[1]>

s3:

!(0<y[0])&0<y[1]

s4:
Labels:{w0<0>}

Loops:{1}
actions:
<!(0<y[0]) ==> next(p[0]) = p[0]+p[1]>
<!(0<y[0])&!next(!(y[0]<=p[0]))|0<y[0] ==> next(len) = len>
<!(0<y[0])&!next(!(y[0]<=p[0]))|0<y[0] ==> next(rdy) = rdy>
<0<y[0] ==> next(p[0]) = p[0]+x[0]>
<0<y[0] ==> next(x[0]) = x[0]>
<0<y[0] ==> next(y[0]) = y[0]-1>
<true ==> next(v[0]) = v[0]>
<true ==> next(v[1]) = v[1]>
<true ==> next(p[1]) = p[1]>
<true ==> next(x[1]) = x[1]>
<true ==> next(y[1]) = y[1]>

SCC:{0}

!(0<y[1])&0<y[0]

s5:
Labels:{w0<0>, w0<1>}

Loops:{1,2}
actions:
<!(0<y[0])&!(0<y[1]) ==> next(p[0]) = p[0]+p[1]>
<!(0<y[0])&!(0<y[1])|!(0<y[1])&0<y[0] ==> next(p[1]) = p[1]>
<!(0<y[0])&!(0<y[1])|!(0<y[1])&0<y[0] ==> next(y[1]) = y[1]>
<!(0<y[0])&0<y[1] ==> next(p[0]) = p[0]>
<!(0<y[0])&0<y[1] ==> next(y[0]) = y[0]>
<0<y[0] ==> next(p[0]) = p[0]+x[0]>
<0<y[0] ==> next(y[0]) = y[0]-1>
<0<y[0]&0<y[1]|!(0<y[0])&0<y[1]|!(0<y[1])&0<y[0] ==> next(x[0]) = x[0]>
<0<y[0]&0<y[1]|!(0<y[1])&0<y[0]|!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1] ==> next(v[0]) = v[0]>
<0<y[0]&0<y[1]|!(0<y[1])&0<y[0]|!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1] ==> next(v[1]) = v[1]>
<0<y[0]&0<y[1]|!(0<y[1])&0<y[0]|!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1] ==> next(x[1]) = x[1]>
<0<y[0]&0<y[1]|!next(!(y[0]<=p[0]))&!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1]|!(0<y[1])&0<y[0] ==> next(len) = len>
<0<y[0]&0<y[1]|!next(!(y[0]<=p[0]))&!(0<y[0])&!(0<y[1])|!(0<y[0])&0<y[1]|!(0<y[1])&0<y[0] ==> next(rdy) = rdy>
<0<y[1] ==> next(p[1]) = p[1]+x[1]>
<0<y[1] ==> next(y[1]) = y[1]-1>

SCC:{1}

0<y[0]&0<y[1]

s6:
Labels:{ }

Loops:{4}
actions:
<true ==> next(v[0]) = v[0]>
<true ==> next(v[1]) = v[1]>
<true ==> next(len) = len>
<true ==> next(p[0]) = p[0]>
<true ==> next(p[1]) = p[1]>
<true ==> next(rdy) = rdy>
<true ==> next(x[0]) = x[0]>
<true ==> next(y[0]) = y[0]>
<true ==> next(x[1]) = x[1]>
<true ==> next(y[1]) = y[1]>

SCC:{6}

!(y[0]<=p[0])

s2:
Labels:{w2}

Loops:{3}
actions:
<!(y[0]<=p[0]) ==> len = x[0]>
<!(y[0]<=p[0]) ==> next(x[0]) = x[0]>
<!(y[0]<=p[0]) ==> next(y[0]) = y[0]>
<!(y[0]<=p[0]) ==> rdy = true>
<!(y[0]<=p[0])|!next(!(y[0]<=p[0]))&y[0]<=p[0] ==> next(len) = len>
<!(y[0]<=p[0])|!next(!(y[0]<=p[0]))&y[0]<=p[0] ==> next(rdy) = rdy>
<true ==> next(v[0]) = v[0]>
<true ==> next(v[1]) = v[1]>
<true ==> next(p[0]) = p[0]>
<true ==> next(p[1]) = p[1]>
<true ==> next(x[1]) = x[1]>
<true ==> next(y[1]) = y[1]>
<y[0]<=p[0] ==> next(x[0]) = x[0]+1>
<y[0]<=p[0] ==> next(y[0]) = 3+y[0]+x[0]*2>

SCC:{3}

y[0]<=p[0]

!(0<y[1])0<y[1]
!(0<y[0])

0<y[0]!(0<y[0])&!(0<y[1])!(0<y[0])&0<y[1] !(0<y[1])&0<y[0]

0<y[0]&0<y[1]

true

y[0]<=p[0]

Figure 5.5: EFSM of Module VectorLengthN with N := 2

86 Chapter 5. Experimental Evaluation

• I2 for C2:
– Induction Base:
∗ SafePath((s0, s3), (true), It, true, I2)
∗ SafePath((s5, s3), (true), I1, true, I2)

– Induction Step:
∗ SafePath((s3, s3), (true), I2, true, I2)

• I3 for C3:
– Induction Base:
∗ SafePath((s0, s1, s2), (true, true), It, It, I3)
∗ SafePath((s3, s1, s2), (true, true), I2, It, I3)
∗ SafePath((s4, s1, s2), (true, true), I0, It, I3)
∗ SafePath((s5, s1, s2), (true, true), I1, It, I3)

– Induction Step:
∗ SafePath((s2, s2), (true), I3, true, I3)

• I6 for C6:
– Induction Base:
∗ SafePath((s0, s1, s6), (true, true), It, It, I6)
∗ SafePath((s3, s1, s6), (true, true), I2, It, I6)
∗ SafePath((s4, s1, s6), (true, true), I0, It, I6)
∗ SafePath((s5, s1, s6), (true, true), I1, It, I6)
∗ SafePath((s2, s6), (true), I3, true, I6)

– Induction Step:
∗ SafePath((s6, s6), (true), I6, true, I6)

Each SafePath condition represents a VC. We need some more VCs to ensure that the
safety property ΦVectorLength2D holds in the root state s0, and the trivial/nontrivial SCC
invariants implies ΦVectorLength2D as well.

5.2.3 VCG using LoopPath for VectorLengthN with N := 2

As can be seen in Figure 5.4, the program has three while(σ) S statements, and the
program can terminate. Therefore, except for I∅, we provide each while(σ) S statement
a loop invariant, i.e., I1, I2 and I3, together with an additional one I4 for the hidden
loop when the program terminates.

• I1 := w0<0> ∧ (len = 0) ∧ ¬rdy ∧ (p[0] + x[0] · y[0] = v[0]2) ∧
(0 ≤ y[0]) ∧

(
w0<1> → (y[1] = 0) ∧ (p[1] = v[1]2)

)
• I2 := w0<1> ∧ (len = 0) ∧ ¬rdy ∧ (p[1] + x[1] · y[1] = v[1]2) ∧

(0 ≤ y[1]) ∧
(
w0<0> → (y[0] = 0) ∧ (p[0] = v[0]2)

)
• I3 := w2 ∧

(
y[0] = (x[0] + 1)2) ∧ (p[0] = v[0]2 + v[1]2) ∧(

¬rdy ∧ (len = 0) ∧ (y[0] ≤ p[0]) ∨ (y[0] > p[0]) ∧
(p[0] ≥ x[0]2) ∧ rdy ∧ (len = x[0])

)
• I4 := ΦVectorLength2D
• I∅ := ΦVectorLength2D

As explained in Section 3.4.1, we now set up the following induction bases and induction

5.2. Synchronous Quartz Program VectorLengthN 87

steps to prove that the above invariants hold in the loops by Loop-Path method:
• I1 for L1 with control-flow label w0<0>:

– Induction Base:
∗ SafePath((s0, s5), (true), I∅, true, I1)
∗ SafePath((s0, s4), (true), I∅, true, I1)

– Induction Step:
∗ SafePath((s5, s5), (true), I1, true, I1)
∗ SafePath((s5, s4), (true), I1, true, I1)
∗ SafePath((s4, s4), (true), I1, true, I1)

• I2 for L2 with control-flow label w0<1>:
– Induction Base:
∗ SafePath((s0, s5), (true), I∅, true, I2)
∗ SafePath((s0, s3), (true), I∅, true, I2)

– Induction Step:
∗ SafePath((s5, s5), (true), I2, true, I2)
∗ SafePath((s5, s3), (true), I2, true, I2)
∗ SafePath((s3, s3), (true), I2, true, I2)

• I3 for L3 with control-flow label w2:
– Induction Base:
∗ SafePath((s0, s1, s2), (true, true), I∅, I∅, I3)
∗ SafePath((s3, s1, s2), (true, true), I2, I∅, I3)
∗ SafePath((s4, s1, s2), (true, true), I1, I∅, I3)
∗ SafePath((s5, s1, s2), (true, true), I1 ∧ I2, I∅, I3)

– Induction Step:
∗ SafePath((s4, s4), (true), I3, true, I3)

• I4 for L4 for termination:
– Induction Base:
∗ SafePath((s0, s1, s6), (true, true), I∅, I∅, I4)
∗ SafePath((s3, s1, s6), (true, true), I2, I∅, I4)
∗ SafePath((s4, s1, s6), (true, true), I1, I∅, I4)
∗ SafePath((s5, s1, s6), (true, true), I1 ∧ I2, I∅, I4)
∗ SafePath((s2, s6), (true), I3, true, I6)

– Induction Step:
∗ SafePath((s6, s6), (true), I4, true, I4)

Each SafePath condition is a single VC. Again, we need some more VCs to ensure that
the safety property ΦVectorLength2D holds in the root state s0, and all loop invariants
implies ΦVectorLength2D as well.

5.2.4 Scalability

In general, it is not recommended to use the Transition-based method since it becomes
harder to determine a control-flow state assertion for each node when the size of the
program grows. Considering the VCG methods using SCC assertions, the number of
SCCs can grow exponentially with the size of the program as well. The Quartz program

88 Chapter 5. Experimental Evaluation

Table 5.2: Experiment Results - Module VectorLengthN with N := 2

VCG Method SMT Solver Format VC Number EFSM-Inv VCG SMT

TransBased

Z3 τ∑ 25/25 434.44 50.79 709.25
Z3 τ∧ 1/1 382.84 51.00 564.00
Z3 τ∨ 1/1 378.45 50.90 641.87
Z3 API τ∑ 25/25 382.48 50.88 410.83
Z3 API τ∧ 1/1 384.83 50.80 408.53
Z3 API τ∨ 1/1 371.57 51.27 412.34
Z3 API async τ∑ 25/25 387.97 50.89 158.65

SCCTrans

Z3 τ∑ 25/25 389.60 55.12 645.11
Z3 τ∧ 1/1 380.53 55.32 630.03
Z3 τ∨ 1/1 377.09 54.98 642.14
Z3 API τ∑ 25/25 382.67 55.02 422.02
Z3 API τ∧ 1/1 389.04 55.49 422.49
Z3 API τ∨ 1/1 390.17 55.24 422.08
Z3 API async τ∑ 25/25 386.69 55.08 158.56

SCCPath

Z3 τ∑ 27/27 388.19 58.33 785.10
Z3 τ∧ 1/1 389.12 58.61 753.49
Z3 τ∨ 1/1 380.52 58.69 745.05
Z3 API τ∑ 27/27 385.67 58.29 460.67
Z3 API τ∧ 1/1 390.92 58.60 465.76
Z3 API τ∨ 1/1 391.27 58.60 458.39
Z3 API async τ∑ 27/27 386.93 58.45 181.16

LoopTrans

Z3 τ∑ 25/25 388.22 58.89 690.87
Z3 τ∧ 1/1 380.27 59.21 823.10
Z3 τ∨ 1/1 386.84 59.08 852.89
Z3 API τ∑ 25/25 382.31 59.41 468.60
Z3 API τ∧ 1/1 387.50 58.98 470.19
Z3 API τ∨ 1/1 385.69 59.00 466.84
Z3 API async τ∑ 25/25 388.13 58.98 156.84

LoopPath

Z3 τ∑ 27/27 389.10 61.80 997.55
Z3 τ∧ 1/1 359.30 61.92 948.14
Z3 τ∨ 1/1 381.77 61.45 841.53
Z3 API τ∑ 27/27 388.18 61.55 499.93
Z3 API τ∧ 1/1 386.75 61.49 499.85
Z3 API τ∨ 1/1 388.97 61.86 501.43
Z3 API async τ∑ 27/27 375.22 61.86 172.93

5.2. Synchronous Quartz Program VectorLengthN 89

Table 5.3: Experiment Results - Module VectorLengthN with N := 3

VCG Method SMT Solver Format VC Number EFSM-Inv VCG SMT

TransBased

Z3 τ∑ 51/51 456.96 62.16 2072.82
Z3 τ∧ 1/1 393.61 61.85 2124.78
Z3 τ∨ 1/1 393.32 62.60 2380.60
Z3 API τ∑ 51/51 397.72 61.55 1198.24
Z3 API τ∧ 1/1 401.40 61.84 1195.53
Z3 API τ∨ 1/1 402.37 61.65 1190.69
Z3 API async τ∑ 51/51 380.62 61.74 341.45

SCCTrans

Z3 τ∑ 51/51 388.45 66.17 2139.24
Z3 τ∧ 1/1 389.13 66.53 2440.72
Z3 τ∨ 1/1 399.76 66.83 1848.32
Z3 API τ∑ 51/51 395.19 66.50 1263.92
Z3 API τ∧ 1/1 401.25 66.40 1221.20
Z3 API τ∨ 1/1 402.28 66.27 1224.28
Z3 API async τ∑ 51/51 399.82 66.43 342.55

SCCPath

Z3 τ∑ 57/57 401.58 72.74 2698.91
Z3 τ∧ 1/1 391.59 72.25 2197.59
Z3 τ∨ 1/1 389.05 72.52 2314.93
Z3 API τ∑ 57/57 403.90 73.34 1337.19
Z3 API τ∧ 1/1 401.32 72.51 1398.82
Z3 API τ∨ 1/1 411.27 73.87 1346.50
Z3 API async τ∑ 57/57 402.83 72.30 419.47

LoopTrans

Z3 τ∑ 59/59 385.88 76.04 3237.78
Z3 τ∧ 1/1 402.39 76.24 3286.25
Z3 τ∨ 1/1 400.03 76.59 3370.92
Z3 API τ∑ 59/59 403.35 76.30 1849.85
Z3 API τ∧ 1/1 402.07 76.19 1848.24
Z3 API τ∨ 1/1 399.97 76.05 1845.13
Z3 API async τ∑ 59/59 394.68 76.90 423.77

LoopPath

Z3 τ∑ 65/65 394.65 83.12 3896.60
Z3 τ∧ 1/1 397.76 84.76 3904.41
Z3 τ∨ 1/1 395.51 83.17 4108.24
Z3 API τ∑ 65/65 395.87 83.39 1969.30
Z3 API τ∧ 1/1 401.41 83.03 1963.83
Z3 API τ∨ 1/1 370.14 82.95 2083.27
Z3 API async τ∑ 65/65 397.51 83.77 500.81

90 Chapter 5. Experimental Evaluation

Table 5.4: Experiment Results - Module VectorLengthN with N := 4

VCG Method SMT Solver Format VC Number EFSM-Inv VCG SMT

TransBased

Z3 τ∑ 121/121 427.17 135.39 9618.95
Z3 τ∧ 1/1 436.06 135.94 9723.99
Z3 τ∨ 1/1 429.95 136.28 9808.30
Z3 API τ∑ 121/121 439.75 135.79 4839.75
Z3 API τ∧ 1/1 443.34 134.84 4921.77
Z3 API τ∨ 1/1 433.04 135.41 4899.68
Z3 API async τ∑ 121/121 440.78 135.70 1159.25

SCCTrans

Z3 τ∑ 121/121 439.86 141.50 9352.39
Z3 τ∧ 1/1 441.27 140.55 9593.78
Z3 τ∨ 1/1 438.31 139.99 9345.50
Z3 API τ∑ 121/121 437.07 140.18 4954.51
Z3 API τ∧ 1/1 438.33 140.40 4910.09
Z3 API τ∨ 1/1 428.46 140.62 4978.46
Z3 API async τ∑ 121/121 440.34 142.36 1142.49

SCCPath

Z3 τ∑ 135/135 431.37 160.62 11266.91
Z3 τ∧ 1/1 426.61 159.26 11201.50
Z3 τ∨ 1/1 436.90 158.93 11236.71
Z3 API τ∑ 135/135 440.94 159.94 5419.32
Z3 API τ∧ 1/1 442.49 159.05 5358.18
Z3 API τ∨ 1/1 440.99 158.72 5190.73
Z3 API async τ∑ 135/135 441.45 160.60 1325.46

LoopTrans

Z3 τ∑ 169/169 429.61 231.88 18066.73
Z3 τ∧ 1/1 438.22 233.37 17561.73
Z3 τ∨ 1/1 440.40 232.38 17839.58
Z3 API τ∑ 169/169 437.83 231.13 9062.71
Z3 API τ∧ 1/1 441.98 234.04 9027.34
Z3 API τ∨ 1/1 438.16 232.26 9094.41
Z3 API async τ∑ 169/169 441.94 233.49 1974.69

LoopPath

Z3 τ∑ 183/183 439.62 253.34 22106.42
Z3 τ∧ 1/1 429.38 250.32 21683.81
Z3 τ∨ 1/1 424.95 247.36 21974.05
Z3 API τ∑ 183/183 437.09 248.19 9389.55
Z3 API τ∧ 1/1 438.14 246.70 9503.84
Z3 API τ∨ 1/1 425.25 254.30 9563.78
Z3 API async τ∑ 183/183 441.99 248.23 2021.59

5.2. Synchronous Quartz Program VectorLengthN 91

Table 5.5: Experiment Results - Module VectorLengthN with N := 5

VCG Method SMT Solver Format VC Number EFSM-Inv VCG SMT

TransBased

Z3 τ∑ 315/315 574.41 682.01 46873.32
Z3 τ∧ 1/1 566.48 684.38 46106.28
Z3 τ∨ 1/1 590.54 688.51 46531.15
Z3 API τ∑ 315/315 565.96 677.23 21633.23
Z3 API τ∧ 1/1 588.88 763.28 21620.11
Z3 API τ∨ 1/1 580.02 682.30 21383.04
Z3 API async τ∑ 315/315 589.34 679.88 6493.50

SCCTrans

Z3 τ∑ 315/315 565.73 692.81 46034.93
Z3 τ∧ 1/1 581.24 699.39 46845.68
Z3 τ∨ 1/1 433.18 140.28 9912.47
Z3 API τ∑ 315/315 587.99 694.24 21466.12
Z3 API τ∧ 1/1 587.15 693.59 21366.60
Z3 API τ∨ 1/1 441.48 145.01 4985.22
Z3 API async τ∑ 315/315 582.07 692.20 5514.18

SCCPath

Z3 τ∑ 345/345 587.88 768.29 52431.88
Z3 τ∧ 1/1 572.04 760.37 52320.02
Z3 τ∨ 1/1 568.60 757.26 52447.26
Z3 API τ∑ 345/345 582.43 765.23 22875.73
Z3 API τ∧ 1/1 572.60 759.60 23071.09
Z3 API τ∨ 1/1 585.37 818.27 22850.36
Z3 API async τ∑ 345/345 590.17 764.28 6022.41

LoopTrans

Z3 τ∑ 531/531 577.48 1618.27 100904.19
Z3 τ∧ 1/1 565.51 1583.05 100088.78
Z3 τ∨ 1/1 571.38 1616.93 101040.08
Z3 API τ∑ 531/531 584.20 1547.86 48994.69
Z3 API τ∧ 1/1 586.39 1538.83 47898.58
Z3 API τ∨ 1/1 586.81 1555.25 47872.01
Z3 API async τ∑ 531/531 584.99 1541.33 17717.09

LoopPath

Z3 τ∑ 561/561 588.51 1632.54 126123.35
Z3 τ∧ 1/1 588.77 1659.76 130354.01
Z3 τ∨ 1/1 561.69 1608.75 129769.30
Z3 API τ∑ 561/561 586.21 1611.08 49058.29
Z3 API τ∧ 1/1 586.36 1623.36 50079.27
Z3 API τ∨ 1/1 587.03 1677.65 50091.06
Z3 API async τ∑ 561/561 574.64 1605.33 13219.31

92 Chapter 5. Experimental Evaluation

VectorLengthN is one of these worst case examples. Indeed, when all N while(σ) S

statements run in parallel, we have to consider all 2N different situations where one of
them terminated while the others were still running. As a consequence, we will have
to set up exponentially many induction proofs for the SCC methods, since the worst
case of the VectorLengthN program is caused by the parallel composition of while(σ)
S statements.

Meanwhile, proving assertions for while(σ) S statements will only require a linear
number of these induction proofs. Notice that for those while(σ) S statements run
in parallel, their loop invariants should contain other while(σ) S statements’ termina-
tion conditions. For example, the following formula is the loop invariant I1 defined in
Section 5.2.3:

w0<0> ∧ (len = 0) ∧ ¬rdy ∧ (p[0] + x[0] · y[0] = v[0]2) ∧ (0 ≤ y[0])︸ ︷︷ ︸
Computation of v[0]2 does not terminate yet!

∧
(
w0<1>→ (y[1] = 0) ∧ (p[1] = v[1]2)

)︸ ︷︷ ︸
Computation of v[1]2 has terminated!

Without the subformula describes the computation of v[1]2 has terminated, the induc-
tion bases of I3 and I4 generated by LoopPath method can not be proved.

We scale the VectorLengthN program up to five dimensions to evaluate the five
induction-based VCG methods. It is very likely that the number of boolean variables
has great impact on iSAT, so that it ran out of memory quite often for this module’s
instances. Therefore, only the execution time using Z3 and Z3 API has been collected
for those instances.

Tables 5.2, 5.3, 5.4, and 5.5 show the experimental results. After comparing the
execution time to check VCs, again we found that accessing the parallelized version
of Z3 API in Mono/.NET leads to the best performance, and it does not rely on the
formats we use.

5.3 Hybrid Quartz Program WaterTank

We illustrate the VCG methods with a parameterized water tank system in this section.

5.3.1 Module WaterTank and its EFSM

Module WaterTank in Figure 5.6 describes the following scenario: A water tank regulates
water level y by filling or emptying the water tank. The initial water level is y = 5.
inV and outV are parameters that describe the water level changes, and the module can
either set drv(y)<− inV or drv(y)<− −outV to fill or empty the water tank. The
reaction of the system is delayed, so that both the filling and emptying procedures are
extended by delta-unit time. While delta is real, y is hybrid real.

5.3. Hybrid Quartz Program WaterTank 93

1 module WaterTank(real ?delta, nat ?inV, ?outV){

2 hybrid real y; y = 5;

3 // the filling and emptying procedures happen continuously
4 loop{
5 // the water level increases with inV m/s until y = 10.
6 fl1,fl2:flow{
7 drv(y) <− inV;

8 }until(cont(y) >= 10);

9 // the water level still increases after delta−unit time
10 fl3,fl4:flow{
11 drv(y) <− inV;

12 }until(cont(y)−y >= delta∗inV);
13 // the water level decreases with outV m/s until y = 5
14 fl5,fl6:flow{
15 drv(y) <− −outV;

16 }until(cont(y) <= 5);

17 // the water level still decreases after delta−unit time
18 fl7,fl8:flow{
19 drv(y) <− −outV;

20 }until(y−cont(y) >= delta∗outV);
21 }

22 }

23 satisfies{// the water level will not exceed a certain range.
24 assert A G (inV > 0 and outV >0 and delta > 0) −>

25 (5−outV∗delta <= cont(y)) and (cont(y) <= 10+inV∗delta);}

Figure 5.6: Hybrid Quartz Module WaterTank

The safety property of the water tank system states that the water level will not
exceed a certain range. Hence, we check the following safety property:

ΦWaterTank := (5− outV ∗ delta ≤ cont(y)) ∧ (cont(y) ≤ 10 + inV ∗ delta)

The program has four flow statements, and the filling and emptying procedures run in
turn, so that the program will not terminate. The corresponding EFSM is displayed
in Figure 5.7. It has six nodes in total, one trivial SCC (the root node s0), and one
nontrivial SCC that contains the remaining five nodes. To prove ΦWaterTank by the VCG
methods, we give the following continuous invariants for each node si:
• Ψ0 :=

(
cont(y) ≤ 10

)
∧
(
5 ≤ cont(y)

)
• Ψ1 :=

(
cont(y) ≤ 10

)
∧
(
5− outV ∗ delta ≤ cont(y)

)
• Ψ2 :=

(
10 ≤ cont(y)

)
∧
(
cont(y) ≤ 10 + inV ∗ delta

)
• Ψ3 :=

(
5 ≤ cont(y)

)
∧
(
cont(y) ≤ 10 + inV ∗ delta

)
• Ψ4 :=

(
5− outV ∗ delta ≤ cont(y)

)
∧ (cont(y) ≤ 5

)
• Ψ5 :=

(
5− outV ∗ delta ≤ cont(y)

)
∧ (cont(y) ≤ 10

)
property, and then give the complete experimental results in Section 5.3.4.

5.3.2 VCG using SCCTrans for WaterTank

The SCC invariants provided for the SCCTrans method are as follows:
• I1 := ¬fl1 ∧ ¬fl2 ∧ ¬fl3 ∧ ¬fl4 ∧ ¬fl5 ∧ ¬fl6 ∧ ¬fl7 ∧ ¬fl8 ∧

(
(inV > 0) ∧

(outV > 0) ∧ (delta > 0)→ (cont(y) ≤ 10) ∧ (5 ≤ cont(y))
)

94 Chapter 5. Experimental Evaluation

s0:
Labels:{ }
SCC:{1}
Loops:{ }
actions:
<true ==> fl2 : release 1.000000e+001<=cont(y)>
<true ==> next(delta) = delta>
<true ==> next(inV) = inV>
<true ==> next(outV) = outV>
<true ==> next(y) = cont(y)>
<true ==> y <- y+time*nat2real(inV)>
<true ==> y = 5.000000e+000>

s1:
Labels:{fl2}
SCC:{0}
Loops:{1}
actions:
<true ==> fl2 : release 1.000000e+001<=cont(y)>
<true ==> next(delta) = delta>
<true ==> next(inV) = inV>
<true ==> next(outV) = outV>
<true ==> next(y) = cont(y)>
<true ==> y <- y+time*nat2real(inV)>

!(1.000000e+001<=cont(y))

1.000000e+001<=cont(y)

s2:
Labels:{fl1, fl4}
SCC:{0}
Loops:{2}
actions:
<true ==> fl4 : release 1.000000e+001+delta*nat2real(inV)<=cont(y)>
<true ==> next(delta) = delta>
<true ==> next(inV) = inV>
<true ==> next(outV) = outV>
<true ==> next(y) = cont(y)>
<true ==> y <- y+time*nat2real(inV)>

!(1.000000e+001<=cont(y))

!(1.000000e+001<=cont(y))

1.000000e+001<=cont(y)

!(1.000000e+001+delta*nat2real(inV)<=cont(y))

s3:
Labels:{fl3, fl6}
SCC:{0}
Loops:{3}
actions:
<true ==> fl6 : release cont(y)<=5.000000e+000>
<true ==> next(delta) = delta>
<true ==> next(inV) = inV>
<true ==> next(outV) = outV>
<true ==> next(y) = cont(y)>
<true ==> y <- y-time*nat2real(outV)>

1.000000e+001+delta*nat2real(inV)<=cont(y)

!(cont(y)<=5.000000e+000)

s4:
Labels:{fl5, fl8}
SCC:{0}
Loops:{4}
actions:
<true ==> fl8 : release cont(y)<=5.000000e+000-delta*nat2real(outV)>
<true ==> next(delta) = delta>
<true ==> next(inV) = inV>
<true ==> next(outV) = outV>
<true ==> next(y) = cont(y)>
<true ==> y <- y-time*nat2real(outV)>

cont(y)<=5.000000e+000 !(cont(y)<=5.000000e+000-delta*nat2real(outV))s5:
Labels:{fl7}
SCC:{0}
Loops:{ }
actions:
<true ==> fl2 : release 1.000000e+001<=cont(y)>
<true ==> next(delta) = delta>
<true ==> next(inV) = inV>
<true ==> next(outV) = outV>
<true ==> next(y) = cont(y)>
<true ==> y <- y+time*nat2real(inV)>

cont(y)<=5.000000e+000-delta*nat2real(outV)

1.000000e+001<=cont(y)

Figure 5.7: EFSM of Hybrid Quartz Module WaterTank

• I0 :=
(
¬fl1 ∧ fl2 ∧ ¬fl3 ∧ ¬fl4 ∧ ¬fl5 ∧ ¬fl6 ∧ ¬fl7 ∧ ¬fl8→

(
(inV > 0) ∧

(outV > 0) ∧ (delta > 0)→ (cont(y) ≤ 10) ∧ (5− outV ∗ delta ≤ cont(y))
))

∧
(
fl1 ∧ ¬fl2 ∧ ¬fl3 ∧ fl4 ∧ ¬fl5 ∧ ¬fl6 ∧ ¬fl7 ∧ ¬fl8→

(
(inV > 0) ∧

(outV > 0) ∧ (delta > 0)→ (10 ≤ cont(y)) ∧ (cont(y) ≤ 10 + inV ∗ delta)
))

∧
(
¬fl1 ∧ ¬fl2 ∧ fl3 ∧ ¬fl4 ∧ ¬fl5 ∧ fl6 ∧ ¬fl7 ∧ ¬fl8)→

(
(inV > 0) ∧

(outV > 0) ∧ (delta > 0)→ (5 ≤ cont(y)) ∧ (cont(y) ≤ 10 + inV ∗ delta)
))

∧
(
¬fl1 ∧ ¬fl2 ∧ ¬fl3 ∧ ¬fl4 ∧ fl5 ∧ ¬fl6 ∧ ¬fl7 ∧ fl8→

(
(inV > 0) ∧

(outV > 0) ∧ (delta > 0)→ (5− outV ∗ delta ≤ cont(y)) ∧ (cont(y) ≤ 5)
))

∧
(
¬fl1 ∧ ¬fl2 ∧ ¬fl3 ∧ ¬fl4 ∧ ¬fl5 ∧ ¬fl6 ∧ fl7 ∧ ¬fl8→

(
(inV > 0) ∧

(outV > 0) ∧ (delta > 0)→ (5− outV ∗ delta ≤ cont(y)) ∧ (cont(y) ≤ 10)
))

∧ (¬fl1 ∧ fl2 ∧ ¬fl3 ∧ ¬fl4 ∧ ¬fl5 ∧ ¬fl6 ∧ ¬fl7 ∧ ¬fl8 ∨
fl1 ∧ ¬fl2 ∧ ¬fl3 ∧ fl4 ∧ ¬fl5 ∧ ¬fl6 ∧ ¬fl7 ∧ ¬fl8 ∨
¬fl1 ∧ ¬fl2 ∧ fl3 ∧ ¬fl4 ∧ ¬fl5 ∧ fl6 ∧ ¬fl7 ∧ ¬fl8 ∨
¬fl1 ∧ ¬fl2 ∧ ¬fl3 ∧ ¬fl4 ∧ fl5 ∧ ¬fl6 ∧ ¬fl7 ∧ fl8 ∨
¬fl1 ∧ ¬fl2 ∧ ¬fl3 ∧ ¬fl4 ∧ ¬fl5 ∧ ¬fl6 ∧ fl7 ∧ ¬fl8)

5.3. Hybrid Quartz Program WaterTank 95

As explained in Section 3.3.2, the following induction bases and steps of I0 are set up
for the nontrivial SCC C0 to prove the validity of ΦWaterTank by the SCC-Trans method:
• Induction Base of I0 for C0:

SafeTrans((s0, s1), (Ψ0), I1, true, I0) SafeTrans((s0, s2), (Ψ0), I1, true, I0)

• Induction Step of I0 for C0:

SafeTrans((s1, s1), (Ψ1), I0, true, I0)
SafeTrans((s1, s2), (Ψ1), I0, true, I0)
SafeTrans((s2, s2), (Ψ2), I0, true, I0)
SafeTrans((s2, s3), (Ψ2), I0, true, I0)
SafeTrans((s3, s3), (Ψ3), I0, true, I0)

SafeTrans((s3, s4), (Ψ3), I0, true, I0)
SafeTrans((s4, s4), (Ψ4), I0, true, I0)
SafeTrans((s4, s5), (Ψ4), I0, true, I0)
SafeTrans((s5, s1), (Ψ5), I0, true, I0)
SafeTrans((s5, s2), (Ψ5), I0, true, I0)

Each SafeTrans condition is thereby a single VC. Again we need some more VCs to
ensure that the safety property ΦWaterTank holds in the root state s0, and that the
trivial/nontrivial SCC invariants together with the continuous invariants of each node
imply ΦWaterTank as well. To have some idea on how the VCs look like, we give the
input file in SMT-LIB format in Figure 5.8 that describe D(s0)→ ΦWaterTank.

5.3.3 VCG using LoopTrans for WaterTank

The loop invariants provided for the LoopTrans method are the following:
• I1 := fl2 ∧ (cont(y) ≤ 10) ∧ (5− outV ∗ delta ≤ cont(y))
• I2 := fl4 ∧ (10 ≤ cont(y)) ∧ (cont(y) ≤ 10 + inV ∗ delta)
• I3 := fl6 ∧ (5 ≤ cont(y)) ∧ (cont(y) ≤ 10 + inV ∗ delta)
• I4 := fl8 ∧ (5− outV ∗ delta ≤ cont(y)) ∧ (cont(y) ≤ 5)
• I∅ := fl7 ∧ (5− outV ∗ delta ≤ cont(y)) ∧ (cont(y) ≤ 10) ∨

¬run ∧
(
(cont(y) ≤ 10) ∧ (5 ≤ cont(y)

)
As explained in Section 3.4.2, our tool automatically sets up the following induction
bases and induction steps to prove the validity of ΦWaterTank by the Loop-Trans method:
• I1 for L1 with control-flow label fl2:

– Induction Base:
∗ SafeTrans((s0, s1), (Ψ0), I∅, true, I1)
∗ SafeTrans((s5, s1), (Ψ5), I∅, true, I1)

– Induction Step:
∗ SafeTrans((s1, s1), (Ψ1), I1, true, I1)

• I2 for L2 with control-flow label fl4:
– Induction Base:
∗ SafeTrans((s0, s2), (Ψ0), I∅, true, I2)
∗ SafeTrans((s1, s2), (Ψ1), I1, true, I2)
∗ SafeTrans((s5, s2), (Ψ5), I∅, true, I2)

– Induction Step:
∗ SafeTrans((s2, s2), (Ψ2), I2, true, I2)

• I3 for L3 with control-flow label fl6:
– Induction Base:

96 Chapter 5. Experimental Evaluation

1 (declare−fun delta () Real)

2 (declare−fun |cont(y)| () Real)

3 (declare−fun inV () Int)

4 (declare−fun outV () Int)

5 (declare−fun fl2 () Bool)

6 (declare−fun fl1 () Bool)

7 (declare−fun fl3 () Bool)

8 (declare−fun fl4 () Bool)

9 (declare−fun fl5 () Bool)

10 (declare−fun fl6 () Bool)

11 (declare−fun fl7 () Bool)

12 (declare−fun fl8 () Bool)

13 (assert (let ((a!1 (and (< (bv2int #b0) inV)

14 true
15 (<= 0 inV)

16 (< (bv2int #b0) outV)

17 true
18 (<= 0 outV)

19 (< 0.0 delta)

20 true
21 (<= 0.0 delta)))

22 (a!3 (<= (− 5.0 (∗ delta (to_real outV))) |cont(y)|))
23 (a!4 (<= |cont(y)| (+ 10.0 (∗ delta (to_real inV))))))

24 (let ((a!2 (and (not fl8)

25 (not fl7)

26 (not fl6)

27 (not fl5)

28 (not fl4)

29 (not fl3)

30 (not fl1)

31 (not fl2)

32 (=> a!1

33 (and (<= 5.0 |cont(y)|)
34 true
35 (<= 0.0 |cont(y)|)
36 (<= |cont(y)| 10.0)

37 (<= 0.0 |cont(y)|)
38 true))))
39 (a!5 (=> a!1

40 (and a!3

41 (and true true true (<= 0.0 delta) true)
42 (<= 0.0 |cont(y)|)
43 a!4

44 (<= 0.0 |cont(y)|)
45 (and true true true (<= 0.0 delta) true)))))
46 (not (=> a!2 a!5)))))

Figure 5.8: D(s0)→ ΦWaterTank in SMT-LIB Format

∗ SafeTrans((s2, s3), (Ψ2), I2, true, I3)
– Induction Step:
∗ SafeTrans((s3, s3), (Ψ3), I3, true, I3)

• I4 for L4 with control-flow label fl7:
– Induction Base:
∗ SafeTrans((s3, s4), (Ψ3), I3, true, I4)

– Induction Step:

5.4. Hybrid Quartz Program SlowDown 97

∗ SafeTrans((s4, s4), (Ψ4), I4, true, I4)
• I∅: SafeTrans((s4, s5), (Ψ4), I3, true, I∅)

Each SafeTrans condition is thereby a single VC. We need some more VCs to ensure
that the safety property ΦWaterTank holds in the root state s0, the loop invariants and
all continuous invariants imply ΦWaterTank as well.

5.3.4 Experiment Results for WaterTank

Notice that both inV and outV are Z-variables, all the others are R-variables, there-
fore, the underlying satisfiability problem contains MINLP problems as defined in Sec-
tion 2.5.2. From the fifth column of Table 5.6, we know that iSAT can prove at most
half of the total VCs, and also, the external version of Z3 is unstable in the 5-times
iteration experiment, since the proved VC number is not equal to the total VC number
when using either SCC or loop assertions in

∑
-Format. Again, accessing the paral-

lelized version of Z3 API in Mono/.NET leads to the best performance comparing the
execution time to check VCs, it does not rely on the formats we use for this module.

5.4 Hybrid Quartz Program SlowDown

SlowDown behavior is a safety control component of an autonomous mobile robot. It
requires the vehicle always keeps a certain distance from the obstacle [Rop+16].

1 macro delta= ?, max_velocity_v = ?, protect_distance = ?;

2 module SlowDown(real ? obstacle_x, ? vehicle_xi) {

3 real max_velocity_a, slow_down_a, distance_front, vehicle_v;

4 hybrid real vehicle_x; vehicle_x = vehicle_xi;

5 // the movement of the vehicle towards the obstacle
6 loop {

7 // detect the distance between the vehicle and the obstacle
8 distance_front = obstacle_x−vehicle_x;

9 // decide the velocity for the movement
10 if (distance_front <= protect_distance) slow_down_a = 1.0;

11 else slow_down_a = 0.0;

12 max_velocity_a = 1.0−slow_down_a;

13 vehicle_v = max_velocity_v∗max_velocity_a;
14 // the vehicle goes forward for delta−unit time
15 w0,w1: flow{
16 drv(vehicle_x) <− vehicle_v;

17 }until(cont(time)−time >= delta);

18 }

19 }

20 satisfies{
21 assume ((protect_distance >= 0) and (delta > 0) and (max_velocity_v > 0));

22 // for bounded initial distance
23 assume (abs(vehicle_xi−obstacle_x) >= protect_distance);

24 assume (abs(max_velocity_v ∗ delta) <= protect_distance);

25 // the vehicle keeps a certain distance from the obstacle
26 assert A G (abs(obstacle_x−vehicle_x) >= protect_distance−vehicle_v∗delta);}

Figure 5.9: Hybrid Quartz Module SlowDown

98 Chapter 5. Experimental Evaluation

Table 5.6: Experiment Results - Module WaterTank

VCG Method SMT Solver Range Format VC Number EFSM-Inv VCG SMT

TransBased

iSAT [-100..100] τ∑ 12/25 364.79 68.80 111.79
Z3 τ∑ 25/25 364.84 69.31 14673.97
Z3 τ∧ 1/1 358.52 68.71 345.36
Z3 τ∨ 1/1 389.70 73.89 350.83
Z3 API τ∑ 25/25 387.63 72.46 208.80
Z3 API τ∧ 1/1 359.66 68.85 197.08
Z3 API τ∨ 1/1 364.46 68.69 199.73
Z3 API async τ∑ 25/25 363.68 69.18 169.80

SCCTrans

iSAT [-100..100] τ∑ 8/21 360.20 73.67 123.41
Z3 τ∑ 20/21 363.74 74.11 315.83
Z3 τ∧ 1/1 363.15 74.17 318.52
Z3 τ∨ 1/1 361.54 74.07 316.04
Z3 API τ∑ 21/21 361.53 73.79 189.94
Z3 API τ∧ 1/1 362.62 73.93 188.74
Z3 API τ∨ 1/1 361.37 74.00 190.97
Z3 API async τ∑ 21/21 363.46 74.19 166.46

SCCPath

iSAT [-100..100] τ∑ 8/21 359.91 74.76 124.79
Z3 τ∑ 20/21 360.93 79.97 371.50
Z3 τ∧ 1/1 386.39 74.60 344.10
Z3 τ∨ 1/1 382.02 74.29 328.80
Z3 API τ∑ 21/21 384.92 74.22 186.68
Z3 API τ∧ 1/1 387.05 74.58 188.56
Z3 API τ∨ 1/1 376.75 74.41 189.78
Z3 API async τ∑ 21/21 364.64 74.48 134.61

LoopTrans

iSAT [-100..100] τ∑ 12/24 388.62 75.91 112.93
Z3 τ∑ 23/24 377.65 76.03 326.99
Z3 τ∧ 1/1 387.95 76.58 352.91
Z3 τ∨ 1/1 386.29 76.28 321.39
Z3 API τ∑ 24/24 383.08 76.11 187.13
Z3 API τ∧ 1/1 355.54 75.67 187.40
Z3 API τ∨ 1/1 387.72 75.97 187.70
Z3 API async τ∑ 24/24 388.06 76.24 148.69

LoopPath

iSAT [-100..100] τ∑ 11/23 371.64 78.61 115.04
Z3 τ∑ 22/23 387.56 78.23 324.17
Z3 τ∧ 1/1 378.44 78.16 311.40
Z3 τ∨ 1/1 380.23 78.03 335.55
Z3 API τ∑ 23/23 379.96 79.12 183.44
Z3 API τ∧ 1/1 391.08 78.86 184.32
Z3 API τ∨ 1/1 387.50 78.02 182.17
Z3 API async τ∑ 23/23 383.58 78.36 141.28

5.4. Hybrid Quartz Program SlowDown 99

5.4.1 Module SlowDown and its EFSM

Module SlowDown in Figure 5.9 with its EFSM in Figure 5.10 is a discretization model
for the SlowDown behavior in horizontal X dimension, which can be extended to two
dimensions.

The sample time delta, the maximum forward speed max_velocity_v, and a default
distance protect_distance to avoid the collision, are declared in the macro part. The
main module starts with the declaration of the input variables. The initial positions of
the obstacle and the vehicle are denoted as obstacle_x and vehicle_xi, respectively.
The local variables max_velocity_a, slow_down_a, and distance_front are used to
determine vehicle_v, i.e., the speed of the vehicle. vehicle_x is the position of the
vehicle that changes continuously.

The movement of the vehicle is represented by a loop statement, which contains:
• One discrete macro step to set the velocity of the vehicle, as shown from line 9 to

line 13.
• Another continuous macro step from line 15 to line 17 that describes the vehicle

goes forward with the speed vehicle_v for delta unit time.
The assertion in line 26 of the last satisfies part specifies that the vehicle always

keeps a certain distance from the obstacle, provided the prerequisite conditions in line
20-25 which states:
• The vehicle starts from a bounded distance from the obstacle.
• The vehicle can proceed at most a certain distance with the maximum speed in

one sample time.

5.4.2 Experiment Results for SlowDown

All variables are real-valued, therefore the underlying satisfiability problem contains
NLP problems as defined in Section 2.5.2.

From the fifth column of Table 5.7, we notice that iSAT can only prove less than
half of the total VCs. Also, it can be deduced from the fifth column that all variants of
Z3 — i.e., external Z3, Z3 API, and the parallelized version of Z3 API — are unstable
according to our 5-times iteration experiment: The proved VC number is not equal to
the total VC number when using

∑
-Format.

Only by either
∧

-Format or
∨

-Format with external Z3 or Z3 API can we prove the
validity of all VCs. And, once more, the execution time consumed by Z3 API is shorter
than the one by external Z3.

100 Chapter 5. Experimental Evaluation

s0:
Labels:{ }
SCC:{1}
Loops:{ }
actions:
<!(delta<=time) ==> next(max_velocity_a) = max_velocity_a>
<!(delta<=time) ==> next(vehicle_v) = vehicle_v>
<!(delta<=time)|!next(!(obstacle_x-vehicle_x<=protect_distance))&
!next(obstacle_x-vehicle_x<=protect_distance)&delta<=time
==> next(slow_down_a) = slow_down_a>
<!(obstacle_x-vehicle_x<=protect_distance) ==> slow_down_a = 0.000000e+000>
<obstacle_x-vehicle_x<=protect_distance ==> slow_down_a = 1.000000e+000>
<true ==> fl2 : release delta<=time>
<true ==> max_velocity_a = 1.000000e+000-slow_down_a>
<true ==> next(delta) = delta>
<true ==> next(max_velocity_v) = max_velocity_v>
<true ==> next(obstacle_x) = obstacle_x>
<true ==> next(protect_distance) = protect_distance>
<true ==> next(vehicle_x) = cont(vehicle_x)>
<true ==> next(vehicle_xi) = vehicle_xi>
<true ==> vehicle_v = max_velocity_v*max_velocity_a>
<true ==> vehicle_x <- vehicle_x+vehicle_v*time>
<true ==> vehicle_x = vehicle_xi>

s1:
Labels:{fl2}
SCC:{0}
Loops:{1}
actions:
<!(delta<=time) ==> next(max_velocity_a) = max_velocity_a>
<!(delta<=time) ==> next(vehicle_v) = vehicle_v>
<!(delta<=time)|!next(!(obstacle_x-vehicle_x<=protect_distance))&
!next(obstacle_x-vehicle_x<=protect_distance)&delta<=time
==> next(slow_down_a) = slow_down_a>
<true ==> fl2 : release delta<=time>
<true ==> next(delta) = delta>
<true ==> next(max_velocity_v) = max_velocity_v>
<true ==> next(obstacle_x) = obstacle_x>
<true ==> next(protect_distance) = protect_distance>
<true ==> next(vehicle_x) = cont(vehicle_x)>
<true ==> next(vehicle_xi) = vehicle_xi>
<true ==> vehicle_x <- vehicle_x+vehicle_v*time>

!(delta<=time)

s2:
Labels:{fl1}
SCC:{0}
Loops:{1}
actions:
<!(delta<=time) ==> next(max_velocity_a) = max_velocity_a>
<!(delta<=time) ==> next(vehicle_v) = vehicle_v>
<!(delta<=time)|!next(!(obstacle_x-vehicle_x<=protect_distance))&
!next(obstacle_x-vehicle_x<=protect_distance)&delta<=time
==> next(slow_down_a) = slow_down_a>
<!(obstacle_x-vehicle_x<=protect_distance) ==> slow_down_a = 0.000000e+000>
<obstacle_x-vehicle_x<=protect_distance ==> slow_down_a = 1.000000e+000>
<true ==> fl2 : release delta<=time>
<true ==> max_velocity_a = 1.000000e+000-slow_down_a>
<true ==> next(delta) = delta>
<true ==> next(max_velocity_v) = max_velocity_v>
<true ==> next(obstacle_x) = obstacle_x>
<true ==> next(protect_distance) = protect_distance>
<true ==> next(vehicle_x) = cont(vehicle_x)>
<true ==> next(vehicle_xi) = vehicle_xi>
<true ==> vehicle_v = max_velocity_v*max_velocity_a>
<true ==> vehicle_x <- vehicle_x+vehicle_v*time>

delta<=time!(delta<=time)

delta<=time !(delta<=time) delta<=time

Figure 5.10: EFSM of Module SlowDown

5.4. Hybrid Quartz Program SlowDown 101

Table 5.7: Experiment Results - Module SlowDown

VCG Method SMT Solver Range Format VC Number EFSM-Inv VCG SMT

TransBased

iSAT [-100..100] τ∑ 5/13 342.66 65.73 636.04
Z3 τ∑ 11/13 369.22 65.87 200.97
Z3 τ∧ 1/1 360.53 66.03 209.36
Z3 τ∨ 1/1 371.01 66.05 193.04
Z3 API τ∑ 11/13 364.13 65.94 119.73
Z3 API τ∧ 1/1 369.81 65.68 120.10
Z3 API τ∨ 1/1 361.88 65.98 120.79
Z3 API async τ∑ 11/13 375.23 66.24 117.93

SCCTrans

iSAT [-100..100] τ∑ 4/12 344.08 69.25 3931.05
Z3 τ∑ 10/12 363.83 69.05 184.25
Z3 τ∧ 1/1 360.91 69.10 192.67
Z3 τ∨ 1/1 363.15 69.03 186.44
Z3 API τ∑ 10/12 366.96 68.94 113.78
Z3 API τ∧ 1/1 371.05 69.14 113.91
Z3 API τ∨ 1/1 364.90 69.81 114.41
Z3 API async τ∑ 10/12 361.03 69.23 122.63

SCCPath

iSAT [-100..100] τ∑ 4/12 370.12 71.55 3875.76
Z3 τ∑ 10/12 364.16 70.60 198.77
Z3 τ∧ 1/1 374.97 70.38 189.04
Z3 τ∨ 1/1 369.46 70.12 188.95
Z3 API τ∑ 10/12 371.88 70.25 113.50
Z3 API τ∧ 1/1 343.44 70.39 113.48
Z3 API τ∨ 1/1 367.49 70.19 120.03
Z3 API async τ∑ 10/12 357.21 70.05 116.43

LoopTrans

iSAT [-100..100] τ∑ 4/12 371.81 72.40 3951.95
Z3 τ∑ 10/12 365.53 72.28 183.97
Z3 τ∧ 1/1 377.37 73.23 188.02
Z3 τ∨ 1/1 359.14 72.26 180.12
Z3 API τ∑ 10/12 363.25 72.14 113.54
Z3 API τ∧ 1/1 372.68 72.54 113.71
Z3 API τ∨ 1/1 371.09 72.50 112.96
Z3 API async τ∑ 10/12 342.71 72.43 118.61

LoopPath

iSAT [-100..100] τ∑ 4/12 360.02 72.73 3872.54
Z3 τ∑ 10/12 366.12 73.19 191.00
Z3 τ∧ 1/1 365.05 73.77 233.90
Z3 τ∨ 1/1 371.05 72.72 190.21
Z3 API τ∑ 10/12 368.16 72.74 112.90
Z3 API τ∧ 1/1 358.80 73.05 113.45
Z3 API τ∨ 1/1 371.81 72.81 112.99
Z3 API async τ∑ 10/12 364.68 73.10 124.83

102 Chapter 5. Experimental Evaluation

B1

X

Y Vmin

Vmax

Hole

B2
 S1S0 S2 B3

Figure 5.11: The Ball and Holes Scenario

5.5 Hybrid Quartz Program ParametricBall

Figure 5.11 describes the following scenario: Throwing a ball from the ground with a
non-zero speed, the ball will bounce continuously according to the environment con-
ditions, e.g. the wind and the gravity. However, there are some holes on the ground
where the ball will not be able to bounce again if it falls into the holes.

5.5.1 Module ParametricBall and its EFSM

Module ParametricBall in Figure 5.12 with its EFSM in Figure 5.13 is an abstract
model of the above scenario. It consists of three parts. The macro part gives the
static hole region information, including N ∈ Z for the hole number, and two real-valued
arrays S_min[N] and S_max[N] for the hole locations. There are three holes in total,
S_0 = [0.0, 8.0], S_1 = [10.0, 18.0], and S_2 = [22.5, 24.5].

The main module starts with the input R-variables, including a_x, Vx_init, Vy_init,
Ts, and c. Among them, a_x is the instant wind acceleration that is sampled by the
given period Ts, and a_x keeps unchanged until the next sample period. Vx_init and
Vy_init stand for the initial horizontal and vertical speed components. Vx is influenced
by the wind, while Vy is controlled by the gravity, which means the acceleration in Y

dimension is the constant value g. The ball may lose some energy in Y dimension after
hitting the ground, where the energy loss coefficient c satisfies 0.0 ≤ c ≤ 1.0.

Local variables B and H encode the bounce trace of the two dimensions that are
decided by the speed components Vx and Vy, respectively. The other time related
variable T works as a timer to stimulate the sampling procedure, so that both a and T

should be reset after every Ts time units. Variable n increases its value whenever the ball
hits the ground. The bouncing procedure is represented by a loop statement, which
contains one continuous macro step for the dynamic evolutions, and another discrete
macro step for reseting either the wind acceleration at each sample time or the velocity
of the ball when it hits the ground. Checking whether the ball could avoid all holes,
is equal to verifying whether there exists a path in the future so that the ball may fall

5.5. Hybrid Quartz Program ParametricBall 103

into the hole region, as stated in the last satisfies part.

1 macro N = 3; macro S_min = [0.0,10.0,22.5]; macro S_max= [8.0,18.0,24.5];

2 module ParametricBall(real ?a_x, ?Vx_init, ?Vy_init, ?Ts ?c){

3 hybrid real Vx,Vy,T,B,H; real a; nat n;

4 // Initialization configuration
5 Vx = Vx_init; Vy = Vy_init; a = a_x;

6 // Ball Bounces
7 loop{
8 // Continuous dynamics
9 flow{

10 drv(B) <− cont(Vx); drv(Vx) <− a;

11 drv(H) <− cont(Vy); drv(Vy) <− −9.8;

12 drv(T) <− 1.0;

13 }until((cont(T) >= Ts) or ((cont(H) <= 0.0)&(cont(Vy) <= 0.0)));

14 if((T >= Ts) and ((cont(H) <= 0.0) and (cont(Vy) <= 0.0))){

15 //Case 1: the ball hits the ground at the sample time
16 next(a) = a_x; next(T) = 0.0;

17 next(Vy) = −c∗Vy; next(n) = n+1;}

18 else{
19 if((T >= Ts) and !((cont(H) <= 0.0) and (cont(Vy) <= 0.0))){

20 //Case 2: sample time, the ball does not hit the ground
21 next(a)= a_x; next(T) = 0.0;}

22 else{
23 //Case 3: the ball hits the ground not at the sample time
24 next(Vy) = −c∗Vy; next(n) = n+1;}}

25 pause;}}
26 satisfies{
27 assert E F (exists(i = 0..N−1) ((S_min[i] <= B) and (B <= S_max[i]) and (H <= 0.0));}

Figure 5.12: Hybrid Quartz Module ParametricBall

5.5.2 Validation by VCG Methods

Assume that the wind acceleration is constant and that the initial variable values are:
Vx_init = 0.0, Vy_init = 19.6, and c is constantly equal to 0.5. The following safety
regions for a_x is generated by a symbolic simulation algorithm shown in Appendix A:

2.25 < a_x < 2.8125 ∨ 3.0625 < a_x

This safety region can be validated by the VCG methods. The underlying satisfiability
problem contains MINLP problems as defined in Section 2.5.2, since except for n ∈ Z,
all the other local variables are R-variables.

The experimental result is similar to module SlowDown. As shown in Table 5.8, iSAT
can only prove no more than half of the total VCs, as shown in the fifth column. And
also, all variants of Z3, i.e., external Z3, Z3 API, and the parallelized version of Z3 API,
are unstable in our 5-times iteration experiment: The proved VC number is not equal
to the total VC number when using

∑
-Format.

Only by either
∧

-Format or
∨

-Format with external Z3 or Z3 API can prove the
validity of all VCs. And, as before, the execution time consumed by Z3 API is shorter
than the one by external Z3.

104 Chapter 5. Experimental Evaluation

s0:
Labels:{ }
SCC:{1}
Loops:{ }
actions:
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(B) = cont(B)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(H) = cont(H)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(T) = cont(T)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Ts) = Ts>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vx) = cont(Vx)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vx_init)=Vx_init>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vy) = cont(Vy)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vy_init)=Vy_init>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(a) = a>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(a_x) = a_x>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(c) = c>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(n) = n>
<true ==> B <- B+time*time*a*5.000000e-001>
<true ==> B = 0.000000e+000>
<true ==> H <- H-time*time*4.900000e+000>
<true ==> H = 0.000000e+000>
<true ==> T <- T+time>
<true ==> T = 0.000000e+000>
<true ==> Vx <- Vx+a*time>
<true ==> Vx = Vx_init>
<true ==> Vy <- Vy>
<true ==> Vy = Vy_init>
<true ==> a = a_x>
<true ==> fl2 : release cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T)>
<true ==> n = 0>

s1:
Labels:{fl2}
SCC:{0}
Loops:{1}
actions:
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(B) = cont(B)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(H) = cont(H)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(T) = cont(T)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Ts) = Ts>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vx) = cont(Vx)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vx_init)=Vx_init>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vy) = cont(Vy)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vy_init)=Vy_init>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(a) = a>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(a_x) = a_x>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(c) = c>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|
cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(n) = n>
<true ==> B <- B+time*time*a*5.000000e-001>
<true ==> H <- H-time*time*4.900000e+000>
<true ==> T <- T+time>
<true ==> Vx <- Vx+a*time>
<true ==> Vy <- Vy>
<true ==> fl2 : release cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T)>

!(cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T))

s2:
Labels:{fl1}
SCC:{0}
Loops:{1}
actions:
<!(Ts<=T)|!(Ts<=T)&!(cont(Vy)<=0.000000e+000)|!(Ts<=T)&!(cont(H)<=0.000000e+000)|!(Ts<=T)&cont(Vy)<=0.000000e+000|!(Ts<=T)&
cont(H)<=0.000000e+000|!(Ts<=T)&!(cont(Vy)<=0.000000e+000)&cont(H)<=0.000000e+000|!(Ts<=T)&!(cont(H)<=0.000000e+000)&
cont(Vy)<=0.000000e+000|!(Ts<=T)&cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000 ==> next(T) = cont(T)>
<!(Ts<=T)|!(Ts<=T)&!(cont(Vy)<=0.000000e+000)|!(Ts<=T)&!(cont(H)<=0.000000e+000)|!(Ts<=T)&cont(Vy)<=0.000000e+000|!(Ts<=T)&
cont(H)<=0.000000e+000|!(Ts<=T)&!(cont(Vy)<=0.000000e+000)&cont(H)<=0.000000e+000|!(Ts<=T)&!(cont(H)<=0.000000e+000)&
cont(Vy)<=0.000000e+000|!(Ts<=T)&cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000 ==> next(a) = a>
<!(cont(H)<=0.000000e+000)&Ts<=T&cont(Vy)<=0.000000e+000|!(cont(Vy)<=0.000000e+000)&Ts<=T|!(cont(H)<=0.000000e+000)&Ts<=T|
!(cont(Vy)<=0.000000e+000)&!(cont(H)<=0.000000e+000)&Ts<=T|!(cont(Vy)<=0.000000e+000)&Ts<=T&cont(H)<=0.000000e+000
==> next(Vy) = cont(Vy)>
<!(cont(H)<=0.000000e+000)&Ts<=T&cont(Vy)<=0.000000e+000|!(cont(Vy)<=0.000000e+000)&Ts<=T|!(cont(H)<=0.000000e+000)&Ts<=T|
!(cont(Vy)<=0.000000e+000)&!(cont(H)<=0.000000e+000)&Ts<=T|!(cont(Vy)<=0.000000e+000)&Ts<=T&cont(H)<=0.000000e+000
==> next(n) = n>
<Ts<=T&cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|!(Ts<=T)|!(Ts<=T)&!(cont(Vy)<=0.000000e+000)|!(Ts<=T)&
!(cont(H)<=0.000000e+000)|!(Ts<=T)&cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000 ==> next(Vy) = Vy*(0.000000e+000-c)>
<Ts<=T&cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|!(Ts<=T)|!(Ts<=T)&!(cont(Vy)<=0.000000e+000)|!(Ts<=T)&
!(cont(H)<=0.000000e+000)|!(Ts<=T)&cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000 ==> next(n) = n+1>
<Ts<=T&cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|!(cont(Vy)<=0.000000e+000)&!(cont(H)<=0.000000e+000)&
Ts<=T|!(cont(Vy)<=0.000000e+000)&Ts<=T|!(cont(H)<=0.000000e+000)&Ts<=T ==> next(T) = 0.000000e+000>
<Ts<=T&cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|!(cont(Vy)<=0.000000e+000)&!(cont(H)<=0.000000e+000)&
Ts<=T|!(cont(Vy)<=0.000000e+000)&Ts<=T|!(cont(H)<=0.000000e+000)&Ts<=T ==> next(a) = a_x>
<true ==> B <- B>
<true ==> H <- H>
<true ==> T <- T>
<true ==> Vx <- Vx>
<true ==> Vy <- Vy>
<true ==> next(B) = cont(B)>
<true ==> next(H) = cont(H)>
<true ==> next(Ts) = Ts>
<true ==> next(Vx) = cont(Vx)>
<true ==> next(Vx_init) = Vx_init>
<true ==> next(Vy_init) = Vy_init>
<true ==> next(a_x) = a_x>
<true ==> next(c) = c>

cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T)

!(cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T))

cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T)

s3:
Labels:{w0}
SCC:{0}
Loops:{ }
actions:
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(B) = cont(B)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(H) = cont(H)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(T) = cont(T)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Ts) = Ts>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vx) = cont(Vx)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vx_init)=Vx_init>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vy) = cont(Vy)>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(Vy_init)=Vy_init>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(a) = a>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(a_x) = a_x>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(c) = c>
<!(Ts<=cont(T))&!(cont(Vy)<=0.000000e+000)|!(Ts<=cont(T))&!(cont(H)<=0.000000e+000)|cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T) ==> next(n) = n>
<true ==> B <- B+time*time*a*5.000000e-001>
<true ==> H <- H-time*time*4.900000e+000>
<true ==> T <- T+time>
<true ==> Vx <- Vx+a*time>
<true ==> Vy <- Vy>
<true ==> fl2 : release cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T)>

true !(cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T))cont(Vy)<=0.000000e+000&cont(H)<=0.000000e+000|Ts<=cont(T)

Figure 5.13: EFSM of Module ParametricBall

5.5. Hybrid Quartz Program ParametricBall 105

Table 5.8: Experiment Results - Module ParametricBall

VCG Method SMT Solver Range Format VC Number EFSM-Inv VCG SMT

TransBased

iSAT [-100..100] τ∑ 8/16 450.25 70.36 119.23
Z3 τ∑ 11/16 415.25 70.37 268.03
Z3 τ∧ 1/1 417.02 70.67 280.20
Z3 τ∨ 1/1 412.42 70.12 258.23
Z3 API τ∑ 11/16 417.02 70.69 167.41
Z3 API τ∧ 1/1 419.89 70.40 166.92
Z3 API τ∨ 1/1 419.44 70.46 168.46
Z3 API async τ∑ 11/16 420.39 70.80 131.89

SCCTrans

iSAT [-100..100] τ∑ 6/14 405.82 73.50 112.99
Z3 τ∑ 9/14 416.55 74.05 231.31
Z3 τ∧ 1/1 412.67 73.52 240.85
Z3 τ∨ 1/1 416.70 73.74 271.23
Z3 API τ∑ 9/14 414.57 73.32 152.42
Z3 API τ∧ 1/1 423.04 73.86 151.83
Z3 API τ∨ 1/1 419.99 73.13 152.07
Z3 API async τ∑ 9/14 422.27 73.98 118.19

SCCPath

iSAT [-100..100] τ∑ 6/14 392.89 74.77 113.68
Z3 τ∑ 9/14 410.01 74.62 235.63
Z3 τ∧ 1/1 412.38 74.54 228.16
Z3 τ∨ 1/1 411.33 74.61 233.63
Z3 API τ∑ 9/14 413.62 74.53 151.55
Z3 API τ∧ 1/1 420.95 74.52 152.27
Z3 API τ∨ 1/1 420.60 74.92 152.65
Z3 API async τ∑ 9/14 421.59 74.50 117.96

LoopTrans

iSAT [-100..100] τ∑ 6/14 415.35 77.98 108.46
Z3 τ∑ 9/14 414.51 77.89 239.85
Z3 τ∧ 1/1 413.36 77.56 242.65
Z3 τ∨ 1/1 417.24 78.02 237.63
Z3 API τ∑ 9/14 415.02 77.55 151.76
Z3 API τ∧ 1/1 423.20 78.03 151.65
Z3 API τ∨ 1/1 420.18 77.53 153.20
Z3 API async τ∑ 9/14 395.02 77.96 118.84

LoopPath

iSAT [-100..100] τ∑ 6/13 407.26 79.11 121.69
Z3 τ∑ 8/13 414.67 78.82 238.29
Z3 τ∧ 1/1 414.80 78.72 250.37
Z3 τ∨ 1/1 409.81 79.42 261.19
Z3 API τ∑ 8/13 409.52 78.96 156.12
Z3 API τ∧ 1/1 421.29 78.77 155.65
Z3 API τ∨ 1/1 424.26 79.45 156.21
Z3 API async τ∑ 8/13 419.74 79.20 118.75

Chapter6
Conclusion

This thesis develops induction-based techniques for the verification of safety property
for synchronous and hybrid programs. The imperative synchronous language Quartz
and its extension to hybrid systems are used to sustain the findings.

• As a first contribution, we used Floyd’s induction-based approach to generate
verification conditions for synchronous and hybrid programs. We then introduced
five VCG methods for deductive verification that use inductive assertions (i.e.,
invariants) to decompose the overall proof goal.

Given the right assertions, the proposed VCG methods can automatically generate
a set of VCs that can then be checked by SMT solvers or automated theorem
provers. The methods are proved sound and can be applied to any program with
a state-based semantics. We also prove relative completeness for the methods,
provided that the underlying assertion language is expressive enough.

The last experimental part demonstrates the feasibility of the induction-based
VCG methods by several synchronous and hybrid Quartz programs.

• As the second contribution, we optimize the PDR method by using the distinction
between the control- and dataflow of imperative synchronous programs.

We present two methods to compute additional control-flow information that differ
in how precisely they approximate the reachable control-flow states and, conse-
quently, in their required runtime. Before calling the PDR method, the transition
relation can be enhanced by the derived additional program control-flow infor-
mation such that less CTIs will be generated. Many safety properties become
inductive with respect to such an enhanced transition relation.

After calling the PDR method, we can use the control-flow information to reason
about the unreachability of counterexamples and to generalize them to all states
with the same control-flow states. Thus, we avoid expensive clause generalizations
required to narrow the over-approximations of the clause sets.

107

108 Chapter 6. Conclusion

As potential future work, the following directions are worth addressing:

• Inductive invariants are one of the key elements to prove safety properties through
the proposed VCG methods: The user is supposed to provide such prerequisite
information. Indeed, automatic inductive invariant generation is not an easy task.
Applying the PDR method in the framework of compositional verification can
be used an alternative to automatically generating inductive invariants. This is
the case since once the PDR method can prove a safety property of a program
component it may also yield a better inductive invariant for that component: The
Ψ-sequence of computed clause sets are inductive and, at the same time, refine
the possible non-inductive safety property.

• The proposed PDR optimization includes the control-flow part of input imperative
synchronous programs. The similar challenge of coming up with optimizations
that exploit the dataflow part still stands. To solve this problem, one would need
powerful SMT solvers or theorem provers, since the underlying satisfying problem
is undecidable. According to our experimental results, it would be a good idea
to try more than one backend tool with various input formats. Furthermore,
integrating other effective inductive methods like differential induction can likely
ease the difficulties faced when solving this kind of verification goals.

• Applying our proposed VCG methods to embedded systems used in realistic
safety-critical applications is (due to the inherent complexity) currently infeasible.
Hence, except for the module SlowDown, all our other examples did not originate
in safety-critical applications. Module SlowDown is obtained by exploiting the
modularity and network structure of behavior-based control systems where only
the relevant behaviors are isolated and analyzed by techniques for hybrid system
verification. To address such shortcomings, abstraction could be another research
topic for reducing the complexity of real systems to high level models. This would
allow for more practical experiments to be performed in order to further sustain
the feasibility of the proposed verification techniques.

Bibliography

[ABS01] A. Annichini, A. Bouajjani, and M. Sighireanu. “TREX: A Tool for Reach-
ability Analysis of Complex Systems”. In: Computer Aided Verification
(CAV). Ed. by G. Berry, H. Comon, and A. Finkel. Vol. 2102. LNCS.
Paris, France: Springer, 2001, pp. 368–372.

[AD94] R. Alur and D.L. Dill. “A theory of timed automata”. In: Theoretical Com-
puter Science (TCS) 126.2 (1994), pp. 183–235.

[ADI06] R. Alur, T. Dang, and F. Ivani. “Counter-example guided predicate ab-
straction of hybrid systems”. In: Theoretical Computer Science (TCS) 354.2
(2006), pp. 250–271.

[AH97] R. Alur and T.A. Henzinger. “Modularity for Timed and Hybrid Sys-
tems”. In: Concurrency Theory (CONCUR). Ed. by A. Mazurkiewicz and
J. Winkowski. Vol. 1243. LNCS. Warsaw, Poland: Springer, 1997, pp. 74–
88.

[All70] F.E. Allen. “Control Flow Analysis”. In: ACM SIGPLAN Notices 5.7
(1970), pp. 1–19.

[Alu+00] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. “Discrete Ab-
stractions of Hybrid Systems”. In: Proceedings of the IEEE 88.7 (2000),
pp. 971–984.

[Alu+93] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. “Hybrid Au-
tomata: An Algorithmic Approach to the Specification and Verification of
Hybrid Systems”. In: Hybrid Systems. Ed. by R.L. Grossmann, A. Nerode,
A.P. Ravn, and H. Rischel. Vol. 736. LNCS. Springer, 1993, pp. 209–229.

[Alu+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. “The Algorithmic Analysis of Hybrid
Systems”. In: Theoretical Computer Science (TCS) 138.1 (1995), pp. 3–34.

[Alu11] R. Alur. “Formal verification of hybrid systems”. In: Embedded Software
(EMSOFT). Ed. by S. Chakraborty, A. Jerraya, S.K. Baruah, and S. Fis-
chmeister. Taipei, Taiwan: ACM, 2011, pp. 273–278.

109

110 Bibliography

[AM71] E.A. Ashcroft and Z. Manna. The translation of ‘go to’ programs to ‘while’
programs. Technical Report CS-TR-71-188. Stanford, California, USA: De-
partment of Computer Science, University of California, Jan. 1971.

[Ame+06] A.D. Ames, H. Zheng, R.D. Gregg, and S. Sastry. “Is there life after Zeno?
Taking executions past the breaking (Zeno) point”. In: American Con-
trol Conference. Minneapolis, MN, USA: IEEE Computer Society, 2006,
pp. 2652–2657.

[And+09] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg. “An Inverse Method for Parametric Timed Automata”. In: Inter-
national Journal of Foundations of Computer Science 20.5 (Oct. 2009),
pp. 819–836.

[And09] E. André. “IMITATOR: A Tool for Synthesizing Constraints on Timing
Bounds of Timed Automata”. In: Theoretical Aspects of Computing (IC-
TAC). Ed. by M. Leucker and C. Morgan. Vol. 5684. LNCS. Kuala Lumpur,
Malaysia: Springer, 2009, pp. 336–342.

[AO09] K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent
Programs. 3rd ed. Springer, 2009.

[Apt81] K.R. Apt. “Ten Years of Hoare’s Logic: A Survey-Part I”. In: ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 3.4 (1981),
pp. 431–483.

[Aud+02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. “A
SAT Based Approach for Solving Formulas over Boolean and Linear Math-
ematical Propositions”. In: Conference on Automated Deduction (CADE).
Ed. by A. Voronkov. Vol. 2392. LNCS. Copenhagen, Denmark: Springer,
2002, pp. 195–210.

[Bau12] K. Bauer. “A New Modelling Language for Cyber-physical Systems”. PhD.
PhD thesis. Kaiserslautern, Germany: Department of Computer Science,
University of Kaiserslautern, Germany, Jan. 2012.

[BB91] A. Benveniste and G. Berry. “The synchronous approach to reactive real-
time systems”. In: Proceedings of the IEEE 79.9 (1991), pp. 1270–1282.

[BC85] G. Berry and L. Cosserat. “The Esterel Synchronous Programming Lan-
guage and its Mathematical Semantics”. In: Seminar on Concurrency
(CONCUR). Ed. by S.D. Brookes, A.W. Roscoe, and G. Winskel. Vol. 197.
LNCS. Pittsburgh, Pennsylvania, USA: Springer, 1985, pp. 389–448.

[BDS02] C.W. Barrett, D.L. Dill, and A. Stump. “Checking Satisfiability of First-
Order Formulas by Incremental Translation to SAT”. In: Computer Aided
Verification (CAV). Ed. by E. Brinksma and K.G. Larsen. Vol. 2404. LNCS.
Copenhagen, Denmark: Springer, 2002, pp. 236–249.

Bibliography 111

[Bel+13] P. Belotti, C. Kirches, S. Leyffer, J.T. Linderoth, J. Luedtke, and A. Maha-
jan. “Mixed-Integer Nonlinear Optimization”. In: Acta Numerica. Ed. by
Arieh Iserles. Vol. 22. Cambridge University Press, 2013, pp. 1–131.

[Ber00] G. Berry. The Esterel v5 Language Primer. July 2000.
[Ber99] G. Berry. The Constructive Semantics of Pure Esterel. July 1999.
[BFT15] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version

2.5. Tech. rep. Available at www.SMT-LIB.org. Department of Computer
Science, The University of Iowa, 2015.

[BGS10] K. Bauer, R. Gentilini, and K. Schneider. “A Uniform Approach to Three-
Valued Semantics for mu-Calculus on Abstractions of Hybrid Automata”.
In: Software Tools for Technology Transfer (STTT) 12.2 (May 2010), pp. 1–
15.

[BHZ06] L. Bordeaux, Y. Hamadi, and L. Zhang. “Propositional Satisfiability and
Constraint Programming: A Comparative Survey”. In: ACM Computing
Surveys (CSUR) 38.4 (Dec. 2006).

[Bie+03] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. “Bounded
Model Checking”. In: Advances in Computers. Ed. by M. Zelkowitz. Vol. 58.
Academic Press, 2003, pp. 118–149.

[BKS03] G. Berry, M. Kishinevsky, and S. Singh. “System Level Design and Veri-
fication Using a Synchronous Language”. In: International Conference on
Computer-Aided Design (ICCAD). San Jose, California, USA: ACM/IEEE
Computer Society, 2003, pp. 433–440.

[BM07] A.R. Bradley and Z. Manna. “Checking Safety by Inductive Generalization
of Counterexamples to Induction”. In: Formal Methods in Computer-Aided
Design (FMCAD). Austin, Texas, USA: IEEE Computer Society, 2007,
pp. 173–180.

[BM10] R. Brayton and A. Mishchenko. “ABC: An Academic Industrial-Strength
Verification Tool”. In: Computer Aided Verification (CAV). Ed. by T.
Touili, B. Cook, and P. Jackson. Vol. 6174. LNCS. Edinburgh, Scotland,
UK: Springer, 2010, pp. 24–40.

[Bon+08] P. Bonami, L. Biegler, A. Conn, G. CornuéJols, I. Grossmann, C. Laird,
J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. “An Algorithmic
Framework for Convex Mixed Integer Nonlinear Programs”. In: Discret.
Optim. 5.2 (May 2008), pp. 186–204. issn: 1572-5286.

[Bon10] M.P. Bonacina. “On Theorem Proving for Program Checking: Histori-
cal Perspective and Recent Developments”. In: Principles and Practice of
Declarative Programming (PPDP). Hagenberg, Austria: ACM, 2010, pp. 1–
11.

112 Bibliography

[BPT07] A. Bauer, M. Pister, and M. Tautschnig. “Tool-support for the analysis
of hybrid systems and models”. In: Design, Automation and Test in Eu-
rope (DATE). Ed. by R. Lauwereins and J. Madsen. Nice, France: IEEE
Computer Society, 2007, pp. 924–929.

[Bra11] A.R. Bradley. “SAT Based Model Checking without Unrolling”. In: Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI). Ed. by R.
Jhala and D.A. Schmidt. Vol. 6538. LNCS. Austin, Texas, USA: Springer,
2011, pp. 70–87.

[Bra12a] A.R. Bradley. “IC3 and beyond: Incremental, Inductive Verification”. In:
Computer Aided Verification (CAV). Ed. by P. Madhusudan and S.A. Se-
shia. Vol. 7358. LNCS. Berkeley, California, USA: Springer, 2012, p. 4.

[Bra12b] A.R. Bradley. “Understanding IC3”. In: Theory and Applications of Sat-
isfiability Testing (SAT). Ed. by A. Cimatti and R. Sebastiani. Vol. 7317.
LNCS. Trento, Italy: Springer, 2012, pp. 1–14.

[Bro03] C.W. Brown. “An overview of QEPCAD B: a tool for real quantifier elim-
ination and formula simplification”. In: Journal of Japan Society for Sym-
bolic and Algebraic Computation 10.1 (2003), pp. 13–22.

[BS11] K. Bauer and K. Schneider. “Transferring Causality Analysis from Syn-
chronous Programs to Hybrid Programs”. In: International Modelica Con-
ference. Ed. by C. ClauSS. Vol. 63. Linköping Electronic Conference Pro-
ceedings. Dresden, Germany: Linköping University Electronic Press, 2011,
pp. 207–217.

[BT79] S.L. Bloom and R. Tindell. “Algebraic and graph theoretic characteriza-
tions of structured flowchart schemes”. In: Theoretical Computer Science
(TCS) 9.3 (Oct. 1979), pp. 265–286.

[Bu+08] L. Bu, Y. Li, L. Wang, and X. Li. “BACH: Bounded Reachability Checker
for Linear Hybrid Automata”. In: Formal Methods in Computer-Aided De-
sign (FMCAD). Portland, Oregon, USA: IEEE Computer Society, 2008,
pp. 1–4.

[Bur+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. “Sym-
bolic Model Checking: 1020 States and Beyond”. In: Logic in Computer
Science (LICS). Washington, District of Columbia, USA: IEEE Computer
Society, 1990, pp. 1–33.

[Bur+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. “Sym-
bolic Model Checking: 1020 States and Beyond”. In: Information and Com-
putation 98.2 (June 1992), pp. 142–170.

[Bur+93] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Sym-
bolic Model Checking for Sequential Circuit Verification. Tech. rep. CMU-
CS-93-211. Pittsburgh, Pennsylvania, USA: Carnegie Mellon University,
July 1993.

Bibliography 113

[Car+06] L.P. Carloni, R. Passerone, A. Pinto, and A.L. Sangiovanni-Vincentelli.
“Languages and Tools for Hybrid Systems Design”. In: Foundations and
Trends in Electronic Design Automation 1.1/2 (2006), pp. 1–193.

[CG12] A. Cimatti and A. Griggio. “Software Model Checking via IC3”. In: Com-
puter Aided Verification (CAV). Ed. by P. Madhusudan and S.A. Seshia.
Vol. 7358. LNCS. Berkeley, California, USA: Springer, 2012, pp. 277–293.

[Cha+16] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. “The Kind2 Model
Checker”. In: Computer Aided Verification (CAV). Ed. by S. Chaudhuri
and A. Farzan. Vol. 9780. LNCS. Toronto, ON, Canada: Springer, 2016,
pp. 510–517.

[Cha14] A. Champion. “Collaboration of Formal Techniques for the Verification of
Safety Properties over Transition Systems”. PhD. PhD thesis. Toulouse,
France: Institut Supérieur de l’Aeronautique et de l’Espace (ISAE), Uni-
versité de Toulouse, Jan. 2014.

[Cho+11] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. “Incremental
formal verification of hardware”. In: Formal Methods in Computer-Aided
Design (FMCAD). Ed. by P. Bjesse and A. Slobodová. Austin, Texas, USA:
IEEE Computer Society, 2011, pp. 135–143.

[Cim+13] A. Cimatti, A. Griggio, B. Joost Schaafsma, and R. Sebastiani. “The
MathSAT5 SMT Solver”. In: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Ed. by N. Piterman and S.A. Smolka.
Vol. 7795. LNCS. Rome, Italy: Springer, 2013, pp. 93–107.

[Cim+14] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. “IC3 Modulo Theories
via Implicit Predicate Abstraction”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). Ed. by E. Ábraháma and K.
Havelund. Vol. 8413. LNCS. Grenoble, France: Springer, 2014, pp. 46–61.

[Cla+01] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. “Bounded Model Checking Using
Satisfiability Solving”. In: Formal Methods in System Design (FMSD) 19.1
(July 2001), pp. 7–34.

[Cla+03] E.M. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg,
and M. Theobald. “Abstraction and Counterexample-Guided Refinement
in Model Checking of Hybrid Systems”. In: International Journal of Foun-
dations of Computer Science (IJFCS) 14.4 (Aug. 2003), pp. 583–604.

[CMT11] A. Cimatti, S. Mover, and S. Tonetta. “HyDI: A Language for Symbolic
Hybrid Systems with Discrete Interaction”. In: Software Engineering and
Advanced Applications (SEAA), 2011 37th EUROMICRO Conference on.
IEEE Computer Society, 2011, pp. 275–278.

[CW96] E.M. Clarke and J.M. Wing. “Formal Methods: State of the Art and Future
Directions”. In: ACM Computing Surveys (CSUR) 28.4 (1996), pp. 626–
643.

114 Bibliography

[DBCB04] S. Dajani-Brown, D. Cofer, and A. Bouali. “Formal Verification of an Avion-
ics Sensor Voter Using SCADE”. In: Formal Modeling and Analysis of
Timed Systems (FORMATS). Ed. by Y. Lakhnech and S. Yovine. Vol. 3253.
LNCS. Grenoble, France: Springer, 2004, pp. 5–20.

[Det+14] M. Deters, A. Reynolds, T. King, C.W. Barrett, and C. Tinelli. “A tour of
CVC4: How it works, and how to use it”. In: Formal Methods in Computer-
Aided Design (FMCAD). Lausanne, Switzerland: IEEE Computer Society,
2014, p. 7.

[DLSV12] P. Derler, E.A. Lee, and A. Sangiovanni-Vincentelli. “Modeling Cyber-
Physical Systems”. In: Proceedings of the IEEE 100.1 (2012), pp. 13–28.

[DS96] A. Dolzmann and T. Sturm. Redlog user manual. Universität Passau.
Fakultät für Mathematik und Informatik, 1996.

[EFH08] A. Eggers, M. Fränzle, and C. Herde. “SAT Modulo ODE: A Direct SAT
Approach to Hybrid Systems”. In: Automated Technology for Verification
and Analysis (ATVA). Ed. by S.D. Cha, J.-Y. Choi, M. Kim, I. Lee, and
M. Viswanathan. Vol. 5311. LNCS. Seoul, South Korea: Springer, 2008,
pp. 171–185.

[Elg76] C.C. Elgot. “Structured Programming With and Without ‘go to’ State-
ments”. In: IEEE Transactions on Software Engineering (T-SE) SE-2.1
(Mar. 1976), pp. 41–54.

[EMB11] N. Eén, A. Mishchenko, and R.K. Brayton. “Efficient implementation of
property directed reachability”. In: Formal Methods in Computer-Aided
Design (FMCAD). Ed. by P. Bjesse and A. Slobodová. Austin, Texas, USA:
IEEE Computer Society, 2011, pp. 125–134.

[FH05] M. Fränzle and C. Herde. “Efficient Proof Engines for Bounded Model
Checking of Hybrid Systems”. In: Electronic Notes in Theoretical Computer
Science (ENTCS) 133 (2005), pp. 119–137.

[FH07] M. Fränzle and C. Herde. “HySAT: An efficient proof engine for bounded
model checking of hybrid systems”. In: Formal Methods in System Design
(FMSD) 30 (2007), pp. 179–198.

[FK11] L. Fribourg and U. Kühne. “Parametric Verification and Test Coverage for
Hybrid Automata Using the Inverse Method”. In: Reachability Problems
(RP). Ed. by G. Delzanno and I. Potapov. Vol. 6945. LNCS. Genoa, Italy:
Springer, 2011, pp. 191–204.

[Flo67] R.W. Floyd. “Assigning Meanings to Programs”. In: Mathematical Aspects
of Computer Science. Ed. by J.T. Schwartz. Vol. 19. Symposia in Applied
Mathematics. Providence, Rhode Island, USA: American Mathematical So-
ciety, 1967, pp. 19–32.

Bibliography 115

[Fre+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R.
Ripado, A. Girard, T. Dang, and O. Maler. “SpaceEx: Scalable Verification
of Hybrid Systems”. In: Computer Aided Verification (CAV). Ed. by G.
Gopalakrishnan and S. Qadeer. Vol. 6806. LNCS. Snowbird, Utah, USA:
Springer, 2011, pp. 379–395.

[Fre05] G. Frehse. “Compositional Verification of Hybrid Systems using Simulation
Relations”. PhD. PhD thesis. Nijmegen, The Netherlands: Institute for
Programming research and Algorithmics (IPA), Radboud University, 2005.

[Frä+07] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. “Efficient
Solving of Large Non-linear Arithmetic Constraint Systems with Complex
Boolean Structure”. In: Journal on Satisfiability, Boolean Modeling and
Computation 1.3-4 (May 2007), pp. 209–236.

[GAC12a] S. Gao, J. Avigad, and E.M. Clarke. “δ-Complete Decision Procedures for
Satisfiability over the Reals”. In: International Joint Conference on Auto-
mated Reasoning (IJCAR). Ed. by B. Gramlich, D. Miller, and U. Sattler.
Vol. 7364. LNCS. Manchester, UK: Springer, 2012, pp. 286–300.

[GAC12b] S. Gao, J. Avigad, and E.M. Clarke. “Delta-Decidability over the Reals”. In:
Logic in Computer Science (LICS). Dubrovnik, Croatia: IEEE Computer
Society, 2012, pp. 305–314.

[Ges14] M. Gesell. “Interactive Verification of Synchronous Systems”. PhD. PhD
thesis. Department of Computer Science, University of Kaiserslautern,
2014.

[Gor86] M.J.C. Gordon. “Why Higher-Order Logic is a Good Formalism for Spec-
ifying and Verifying Hardware”. In: Formal Aspects of VLSI Design. Ed.
by G.J. Milne and P.A. Subrahmanyam. Cambridge, England, UK: North-
Holland, 1986, pp. 153–177.

[GR16] A. Griggio and M. Roveri. “Comparing Different Variants of the IC3 Al-
gorithm for Hardware Model Checking”. In: Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD) 35.6 (June 2016),
pp. 1026–1039.

[Gri81] D. Gries. The Science of Programming. Springer, 1981.
[GS12] M. Gesell and K. Schneider. “A Hoare calculus for the verification of syn-

chronous languages”. In: Programming Languages meets Program Verifica-
tion (PLPV). Ed. by K. Claessen and N. Swamy. Philadelphia, Pennsylva-
nia, USA: ACM, 2012, pp. 37–48.

[GS13a] M. Gesell and K. Schneider. “An Interactive Verification Tool for Syn-
chronous/Reactive Systems”. In: Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen (MBMV).
Ed. by C. Haubelt and D. Timmermann. Warnemünde, Germany: Univer-
sity of Rostock, 2013, pp. 267–277.

116 Bibliography

[GS13b] M. Gesell and K. Schneider. “Translating synchronous guarded actions to
interleaved guarded actions”. In: Formal Methods and Models for Code-
sign (MEMOCODE). Portland, OR, USA: IEEE Computer Society, 2013,
pp. 167–176.

[GSM07] R. Gentilini, K. Schneider, and B. Mishra. “Successive Abstractions of Hy-
brid Automata for Monotonic CTL Model Checking”. In: Logical Founda-
tions of Computer Science (LFCS). Ed. by S.N. Artemov and A. Nerode.
Vol. 4514. LNCS. New York, New York, USA: Springer, 2007, pp. 224–240.

[Gup92] A. Gupta. “Formal Hardware Verification Methods: A Survey”. In: Formal
Methods in System Design (FMSD) 1.2-3 (1992), pp. 151–238.

[Hal+91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The Synchronous
Dataflow Programming Language LUSTRE”. In: Proceedings of the IEEE
79.9 (Sept. 1991), pp. 1305–1320.

[Hal93] N. Halbwachs. Synchronous programming of reactive systems. Kluwer, 1993.
[HB12] K. Hoder and N. Bjørner. “Generalized Property Directed Reachability”.

In: Theory and Applications of Satisfiability Testing (SAT). Ed. by A.
Cimatti and R. Sebastiani. Vol. 7317. LNCS. Trento, Italy: Springer, 2012,
pp. 157–171.

[HBS12] Z. Hassan, A.R. Bradley, and F. Somenzi. “Incremental, Inductive CTL
Model Checking”. In: Computer Aided Verification (CAV). Ed. by P. Mad-
husudan and S.A. Seshia. Vol. 7358. LNCS. Berkeley, California, USA:
Springer, 2012, pp. 532–547.

[HBS13] Z. Hassan, A.R. Bradley, and F. Somenzi. “Better generalization in IC3”.
In: Formal Methods in Computer-Aided Design (FMCAD). Ed. by B. Job-
stmann and S. Ray. Portland, Oregon, USA: IEEE Computer Society, 2013,
pp. 157–164.

[Hea84] A.C. Hearn. “REDUCE User’s Manual: Version 3.1 The Rand Corpora-
tion”. In: Santa Monica (1984).

[Hen96] T.A. Henzinger. “The Theory of Hybrid Automata”. In: Logic in Com-
puter Science (LICS). New Brunswick, New Jersey, USA: IEEE Computer
Society, 1996, pp. 278–292.

[Hoa69] C.A.R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Com-
munications of the ACM (CACM) 12.10 (1969), pp. 576–580.

[KG99] C. Kern and M.R. Greenstreet. “Formal Verification in Hardware Design:
A Survey”. In: ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES) 4.2 (1999), pp. 123–193.

[KM08] M. Kaufmann and J.S. Moore. “An ACL2 Tutorial”. In: Theorem Proving
in Higher Order Logics (TPHOL). Ed. by O. Ait Mohamed, C. Muñoz,
and S. Tahar. Vol. 5170. LNCS. Montréal, Québec, Canada: Springer, 2008,
pp. 17–21.

Bibliography 117

[KV99] O. Kupferman and M.Y. Vardi. “Model Checking of Safety Properties”. In:
Computer Aided Verification (CAV). Ed. by N. Halbwachs and D. Peled.
Vol. 1633. LNCS. Trento, Italy: Springer, 1999, pp. 172–183.

[Lam80] L. Lamport. “The ‘ Hoare Logic’ of Concurrent Programs”. In: Acta Infor-
matica 14 (1980), pp. 21–37.

[LBS13] X. Li, K. Bauer, and K. Schneider. “Interactive Verification of Cyber-
physical Systems: Interfacing Averest and KeYmaera”. In: International
Workshop on Cyber-Physical Systems (IWCPS). Kraków, Poland: IEEE
Computer Society, 2013, pp. 1447–1454.

[LNN15] T. Lange, M.R. NeuhäuSSer, and T. Noll. “IC3 Software Model Checking on
Control Flow Automata”. In: Formal Methods in Computer-Aided Design
(FMCAD). Ed. by R. Kaivola and T. Wahl. Austin, Texas, USA: IEEE
Computer Society, 2015, pp. 97–104.

[LS14] X. Li and K. Schneider. “Interactive Verification of Hybrid Systems”. In:
Automated Verification of Critical Systems (AVoCS). Ed. by M. Huisman
and J. van de Pol. Vol. 70. Enschede, The Netherlands: EASST, 2014,
pp. 265–266.

[LS15a] X. Li and K. Schneider. “A Counterexample-Guided Approach to
Symbolic Simulation of Hybrid Systems”. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Sys-
temen (MBMV). Ed. by U. Heinkel and M. RöSSler. Chemnitz, Germany,
2015.

[LS15b] X. Li and K. Schneider. “An SMT-based Approach to analyze Non-Linear
Relations of Parameters for Hybrid Systems”. In: SyDe Summer School.
http://www.informatik.uni-bremen.de/syde/index.php?summerschool-2.
Bremen, Germany, 2015.

[LS15c] X. Li and K. Schneider. “Verification Condition Generation for Hybrid
Systems”. In: Formal Methods and Models for Codesign (MEMOCODE).
Ed. by A. Gerstlauer, C. Heitmeyer, and E. Leonard. Austin, Texas, USA:
IEEE Computer Society, 2015, pp. 238–247.

[LS16a] X. Li and K. Schneider. “Control-flow Guided Clause Generation for Prop-
erty Directed Reachability”. In: High-Level Design Validation and Test
Workshop (HLDVT). Ed. by M. Vechev. Santa Cruz, California, USA:
IEEE Computer Society, 2016.

[LS16b] X. Li and K. Schneider. “Control-flow Guided Property Directed Reach-
ability for Synchronous Programs”. In: Formal Methods and Models for
Codesign (MEMOCODE). Ed. by E. Leonard and K. Schneider. Kanpur,
India: IEEE Computer Society, 2016.

[LT79] T. Lengauer and R.E. Tarjan. “A fast algorithm for finding dominators
in a flowgraph”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 1.1 (July 1979), pp. 121–141.

118 Bibliography

[Mat+06] J. Matthews, J. Strother Moore, S. Ray, and D. Vroon. “Verification
Condition Generation Via Theorem Proving”. In: Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR). Ed. by M. Hermann and
A. Voronkov. Vol. 4246. LNCS. Phnom Penh, Cambodia: Springer, 2006,
pp. 362–376.

[MB08] L. Mendonça de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Ed. by C.R. Ramakrishnan and J. Rehof. Vol. 4963. LNCS.
Budapest, Hungary: Springer, 2008, pp. 337–340.

[McM03] K.L. McMillan. “Interpolation and SAT-Based Model Checking”. In: Com-
puter Aided Verification (CAV). Ed. by W.A. Hunt and F. Somenzi.
Vol. 2725. LNCS. Boulder, Colorado, USA: Springer, 2003, pp. 1–13.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
[MMP92] O. Maler, Z. Manna, and A. Pnueli. “From Timed to Hybrid Systems”. In:

Real-Time: Theory in Practice. Ed. by J.W. de Bakker, C. Huizing, W.-P.
de Roever, and G. Rozenberg. Vol. 600. LNCS. Mook, The Netherlands:
Springer, 1992, pp. 447–484.

[NM09] G. Nicolescua and P.J. Mosterman. Model-based design for embedded sys-
tems. CRC Press, 2009.

[OG76a] S.S. Owicki and D. Gries. “An axiomatic proof technique for parallel pro-
grams I”. In: Acta Informatica 6.4 (1976), pp. 319–340.

[OG76b] S.S. Owicki and D. Gries. “Verifying properties of parallel programs: An ax-
iomatic approach”. In: Communications of the ACM (CACM) 19.5 (1976),
pp. 279–284.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. “PVS: A Prototype Verification
System”. In: Conference on Automated Deduction (CADE). Ed. by D. Ka-
pur. Vol. 607. LNCS. Saratoga Springs, New York, USA: Springer, 1992,
pp. 748–752.

[Pau12] L.C. Paulson. “MetiTarski: Past and Future”. In: Interactive Theorem Prov-
ing (ITP). Ed. by L. Beringer and A.P. Felty. Vol. 7406. LNCS. Princeton,
New Jersey, USA: Springer, 2012, pp. 1–10.

[Pau94] L.C. Paulson. Isabelle: A Generic Theorem Prover. Vol. 828. LNCS.
Springer, 1994.

[PC08] A. Platzer and E.M. Clarke. “Computing Differential Invariants of Hybrid
Systems as Fixpoints”. In: Computer Aided Verification (CAV). Ed. by
A. Gupta and S. Malik. Vol. 5123. LNCS. Princeton, New Jersey, USA:
Springer, 2008, pp. 176–189.

[PC09] A. Platzer and E.M. Clarke. “Computing differential invariants of hybrid
systems as fixedpoints”. In: Formal Methods in System Design (FMSD)
35.1 (Aug. 2009), pp. 98–120.

Bibliography 119

[PJ04] S. Prajna and A. Jadbabaie. “Safety Verification of Hybrid Systems Us-
ing Barrier Certificates”. In: Hybrid Systems: Computation and Control
(HSCC). Ed. by R. Alur and G.J. Pappas. Vol. 2993. LNCS. Philadelphia,
Pennsylvania, USA: Springer, 2004, pp. 477–492.

[Pla08] A. Platzer. “Differential-algebraic Dynamic Logic for Differential-algebraic
Programs”. In: Journal of Logic and Computation 20.1 (Nov. 2008),
pp. 309–352.

[Pla10] A. Platzer. Logical Analysis of Hybrid Systems – Proving Theorems for
Complex Dynamics. Springer, 2010.

[Plo81] G.D. Plotkin. A Structural Approach to Operational Semantics. Tech. rep.
FN-19. Århus, Denmark: DAIMI, 1981.

[PQ08] A. Platzer and J.-D. Quesel. “KeYmaera: A Hybrid Theorem Prover for
Hybrid Systems (System Description)”. In: International Joint Conference
on Automated Reasoning (IJCAR). Ed. by A. Armando, P. Baumgartner,
and G. Dowek. Vol. 5195. LNCS. Sydney, New South Wales, Australia:
Springer, 2008, pp. 171–178.

[Pre30] M. Presburger. “über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt”. In: Sprawozdanie z I Kongresu Matematykòw Krajòw Sowiaskich
(Comptes-rendus du I Congrès des Mathèmaticiens des Pays Slaves). Ed.
by F. Leja. Warsaw, Poland, 1930, pp. 92–101.

[RKL14] M. Reza Shoaei, L. Kovács, and B. Lennartson. “Supervisory Control of
Discrete-Event Systems via IC3”. In: Haifa Verification Conference (HVC).
Ed. by E. Yahav. Vol. 8855. LNCS. Haifa, Israel: Springer, 2014, pp. 252–
266.

[Rop+16] T. Ropertz, K. Berns, X. Li, and K. Schneider. “Verification of Behavior-
Based Control Systems in their Physical Environment”. In: Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen (MBMV). Freiburg, Germany, 2016, accepted for publica-
tion.

[SB11] F. Somenzi and A.R. Bradley. “IC3: where monolithic and incremental
meet”. In: Formal Methods in Computer-Aided Design (FMCAD). Ed. by
P. Bjesse and A. Slobodová. Austin, Texas, USA: IEEE Computer Society,
2011, pp. 3–8.

[SB14] K. Scheibler and B. Becker. “Implication Graph Compression inside the
SMT Solver iSAT3”. In: Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen (MBMV). Ed.
by J. Ruf, D. Allmendinger, and M. Michel. IBM Deutschland, Böblingen,
Germany: Cuvillier, 2014, pp. 25–36.

120 Bibliography

[SBS06] K. Schneider, J. Brandt, and T. Schüle. “A Verified Compiler for Syn-
chronous Programs with Local Declarations”. In: Electronic Notes in The-
oretical Computer Science (ENTCS) 153.4 (2006), pp. 71–97.

[Sch00] K. Schneider. “A Verified Hardware Synthesis for Esterel”. In: Distributed
and Parallel Embedded Systems (DIPES). Ed. by F.J. Rammig. SchloSS
Ehringerfeld, Germany: Kluwer, 2000, pp. 205–214.

[Sch01] K. Schneider. “Embedding Imperative Synchronous Languages in Interac-
tive Theorem Provers”. In: Application of Concurrency to System Design
(ACSD). Newcastle Upon Tyne, England, UK: IEEE Computer Society,
2001, pp. 143–154.

[Sch02] K. Schneider. “Proving the Equivalence of Microstep and Macrostep Se-
mantics”. In: Theorem Proving in Higher Order Logics (TPHOL). Ed. by
V. Carreño, C. Muñoz, and S. Tahar. Vol. 2410. LNCS. Hampton, Virginia,
USA: Springer, 2002, pp. 314–331.

[Sch03] K. Schneider. Verification of Reactive Systems – Formal Methods and Algo-
rithms. Texts in Theoretical Computer Science (EATCS Series). Springer,
2003.

[Sch09] K. Schneider. The Synchronous Programming Language Quartz. Internal
Report 375. Kaiserslautern, Germany: Department of Computer Science,
University of Kaiserslautern, Dec. 2009.

[SKB13] K. Scheibler, S. Kupferschmid, and B. Becker. “Recent Improvements in
the SMT Solver iSAT”. In: Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen (MBMV). Ed.
by C. Haubelt and D. Timmermann. Warnemünde, Germany: University
of Rostock, 2013, pp. 231–241.

[Sti88] C. Stirling. “A generalization of Owicki-Gries’s Hoare logic for a concur-
rent while language”. In: Theoretical Computer Science (TCS) 58.1-3 (June
1988), pp. 347–359.

[Tar36] A. Tarski. “Der Wahrheitsbegriff in formalisierten Sprachen”. In: Studia
Philosophica 1 (1936).

[Tiw12] A. Tiwari. “HybridSAL Relational Abstracter”. In: Computer Aided Veri-
fication (CAV). Ed. by P. Madhusudan and S.A. Seshia. Vol. 7358. LNCS.
Berkeley, California, USA: Springer, 2012, pp. 725–731.

[VGS12] Y. Vizel, O. Grumberg, and S. Shoham. “Lazy Abstraction and SAT-
based Reachability in Hardware Model Checking”. In: Formal Methods in
Computer-Aided Design (FMCAD). Ed. by G. Cabodi and S. Singh. Cam-
bridge, UK: ACM and IEEE Computer Society, 2012, pp. 173–181.

Bibliography 121

[WK13] T. Welp and A. Kuehlmann. “QF BV model checking with property di-
rected reachability”. In: Design, Automation and Test in Europe (DATE).
Ed. by E. Macii. Grenoble, France: EDA Consortium/ACM, 2013, pp. 791–
796.

[WK14] T. Welp and A. Kuehlmann. “Property directed invariant refinement for
program verification”. In: Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE). Dresden, Germany: IEEE Computer Society,
2014, pp. 1–6.

[ZLA06] H. Zheng, E.A. Lee, and A.D. Ames. “Beyond Zeno: Get on with It!” In:
Hybrid Systems: Computation and Control (HSCC). Ed. by J. Hespanha
and A. Tiwari. Vol. 3927. LNCS. Santa Barbara, California, USA: Springer,
2006, pp. 568–582.

[Men+04] L. Mendonça de Moura, S. Owre, H. RueSS, J.M. Rushby, and N. Shankar.
“The ICS Decision Procedures for Embedded Deduction”. In: Interna-
tional Joint Conference on Automated Reasoning (IJCAR). Ed. by D.A.
Basin and M. Rusinowitch. Vol. 3097. LNCS. Cork, County Cork, Ireland:
Springer, 2004, pp. 218–222.

[de +04] L.M. de Moura, S. Owre, H. RueSS, J.M. Rushby, N. Shankar, M. Sorea,
and A. Tiwari. “SAL 2”. In: Computer Aided Verification (CAV). Ed. by
R. Alur and D.A. Peled. Vol. 3114. LNCS. Boston, Massachusetts, USA:
Springer, 2004, pp. 496–500.

Appendices

123

AppendixA
A Symbolic Simulation Algorithm

Here we describe the symbolic simulation algorithm that we introduced in [LS15a] and
which we use to verify ParametricBall in Section 5.5.

Given a system’s symbolic representation G, specification Cb, and an initial state
set I, the algorithm reuses the solution returned by Bonmin that violates the given
specification. The recursive function ValueRange computes two subsets of the range
constraint vector: ∆f has range constraint vectors that lead to an over-approximation
of the reachable states violating the given specification, while ∆u has not yet found any
parameter valuation that will go against the specification.

Function Extend in Line 5 generates a new range constraint vector ∆⃗i by extending
v⃗i. For each parameter, the lower and upper bounds of ∆⃗i are obtained by subtracting
and adding (j+1) times ϵ to the value according to v⃗i, respectively. Function Valuation
reorganizes the solution produced by Bonmin for this new range constraint vector.
Whenever a parameter valuation vector v⃗ that violates the specification is found, we
first exclude v⃗i from the initial state set, and then classify ∆⃗i to ∆f by function Merge
iff j = 0 holds, as shown from Line 8 to Line 11. Otherwise, if function Valuation
returns an empty set, then ∆⃗i is classified to ∆u by function Merge in Line 13. The
algorithm executes the above steps for all the elements in the initial state set, before
performing a recursive call. The recursive procedure terminates when either the initial
state set becomes empty or the maximum recursion step N is reached.

Both ∆f and ∆u are obtained by extending each parameter valuation in the initial
state set to a range constraint vector until some parameter valuation violates the prop-
erty. The range constraint vector set ∆f may include some range vectors that should
belong to ∆u, due to the introduced inaccuracy ϵ, while ∆u provides the candidate
ranges for parameters that meet the given specifications. Engineers could adapt the
value of ϵ to get more accurate results. However, high accuracy is sometimes trouble-
some since it generates infeasible problems for Bonmin. For the moment, there is no
general suggestion to avoid this problem.

125

126 Appendix A. A Symbolic Simulation Algorithm

Algorithm A.1 Computing Ranges for Input Parameters
Input:
• Initial State Set: I = {v⃗i | i ∈ N}
• Specification: Cb

• System’s Symbolic Representation: G
• Iteration Length: N

Output:
• Range Constraint Vector Set: ∆u

• Range Constraint Vector Set: ∆f

Local:
• Step Size: ϵ
• Parameter Vector: p⃗r

• Parameter Valuation Vector: v⃗
• Iteration Counter : j

1: ∆u ← ∅, ∆f ← ∅, j ← 0
2: procedure ValueRange(I, Cb,G, N,∆u,∆f , j)
3: if I ̸= {} then
4: for all v⃗i ∈ I do
5: ∆⃗i ← Extend(v⃗i, ϵ, j)
6: {v⃗} ← Valuation(∆⃗i, Cb,G, p⃗r)
7: if {v⃗} ̸= {} then
8: I ← I\v⃗i

9: if j = 0 then
10: ∆f ← Merge(∆f , ∆⃗i)
11: end if
12: else
13: ∆u ← Merge(∆u, ∆⃗i)
14: end if
15: end for
16: j ← j + 1
17: if j < N then
18: ValueRange(I, Cb,G, N,∆u,∆f , j)
19: else
20: return (∆u,∆f)
21: end if
22: else
23: return (∆u,∆f)
24: end if
25: end procedure

AppendixB
Curriculum Vitae

Persönliche Daten

Name Xian Li
Geburtsdatum April 1989

Geburtsort Fujian, China
Staatsangehörigkeit chinesisch

Bildungsweg

Sep 13 — Sep 17 PhD: Computer Science
TU Kaiserslautern, Kaiserslautern, Germany

Oct 12 — Aug 13 PhD: Qualification Phase
TU Kaiserslautern, Kaiserslautern, Germany

Sep 10 — Jul 12 Master of Engineering:
Traffic Information Engineering & Control

Beijing Jiaotong University, Beijing, China

Sep 06 — Jul 10 Bachelor of Engineering:
Communication Engineering (Science Experimental Class)

Beijing Jiaotong University, Beijing, China

Sep 03 — Jul 06 Senior Secondary Education
Shishi Shiguang Highschool, Fujian, China

	Introduction
	Motivation
	Contribution
	Thesis Structure

	Preliminaries
	Modeling of Synchronous Systems
	The Imperative Synchronous Language Quartz

	Modeling of Hybrid Systems
	The Extension of Quartz to Hybrid Systems

	The Averest System
	Symbolic Representations of Quartz Programs
	EFSMs
	Symbolic Transition Systems

	Safety Property Verification
	The Satisfiability Problem
	Decidability and Tools

	Verification Condition Generation
	Hoare Calculus based VCG
	Difficulties of Adapting Hoare Calculus

	PDR in a Nutshell
	Symbolic Model Checking
	Incremental Induction by PDR
	Checking Unreachability of Cubes
	Generalization of CTIs

	Verification Condition Generation Using Inductive Assertions
	SafeTrans and SafePath Predicates
	Abbreviations for Predicates
	The SafeTrans Predicate
	The SafePath Predicate
	Comparison between SafeTrans and SafePath

	VCG using Control-flow Assertions
	The Transition-based Method

	VCG using SCC Assertions
	The SCC-Path Method
	The SCC-Trans Method

	VCG using Loop Assertions
	The Loop-Path Method
	The Loop-Trans Method

	Relative Completeness of the VCG Methods
	Relative Completeness of Transition-based
	Relative Completeness of SCC-Path
	Relative Completeness of SCC-Trans
	Relative Completeness of Loop-Path
	Relative Completeness of Loop-Trans

	Control-flow Guided Property Directed Reachability Optimizations
	The Synchronous Product of Transition Systems
	Transition Relation Modification
	Control-flow Invariant ReachCF(P) by Fixpoint Computation
	Compiler Generated Control-flow Invariant InvarCF(P)
	Examples

	CTI Identification and Generalization
	Unreachability Checking by EFSMs
	Control-flow Guided Clause Generation
	Example

	Experimental Evaluation
	Synchronous Quartz Program SearchZeros
	Module SearchZeros and its EFSM
	VCG using TransBased for SearchZero
	Experiment Results for SearchZero

	Synchronous Quartz Program VectorLengthN
	Module VectorLengthN and its EFSM
	VCG using SCCPath for VectorLengthN with N := 2
	VCG using LoopPath for VectorLengthN with N := 2
	Scalability

	Hybrid Quartz Program WaterTank
	Module WaterTank and its EFSM
	VCG using SCCTrans for WaterTank
	VCG using LoopTrans for WaterTank
	Experiment Results for WaterTank

	Hybrid Quartz Program SlowDown
	Module SlowDown and its EFSM
	Experiment Results for SlowDown

	Hybrid Quartz Program ParametricBall
	Module ParametricBall and its EFSM
	Validation by VCG Methods

	Conclusion
	Bibliography
	Appendices
	A Symbolic Simulation Algorithm
	Curriculum Vitae

