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Abstract

Crowd condition monitoring concerns the crowd safety and concerns business
performance metrics. The research problem to be solved is a crowd condition
estimation approach to enable and support the supervision of mass events by first-
responders and marketing experts, but is also targeted towards supporting social
scientists, journalists, historians, public relations experts, community leaders, and
political researchers. Real-time insights of the crowd condition is desired for quick
reactions and historic crowd conditions measurements are desired for profound
post-event crowd condition analysis.
This thesis aims to provide a systematic understanding of different approaches for
crowd condition estimation by relying on 2.4 GHz signals and its variation in crowds
of people, proposes and categorizes possible sensing approaches, applies supervised
machine learning algorithms, and demonstrates experimental evaluation results.
We categorize four sensing approaches. Firstly, stationary sensors which are sensing
crowd centric signals sources. Secondly, stationary sensors which are sensing other
stationary signals sources (either opportunistic or special purpose signal sources).
Thirdly, a few volunteers within the crowd equipped with sensors which are sensing
other surrounding crowd centric device signals (either individually, in a single group
or collaboratively) within a small region. Fourthly, a small subset of participants
within the crowd equipped with sensors and roaming throughout a whole city to
sense wireless crowd centric signals.
We present and evaluate an approach with meshed stationary sensors which were
sensing crowd centric devices. This was demonstrated and empirically evaluated
within an industrial project during three of the world-wide largest automotive
exhibitions. With over 30 meshed stationary sensors in an optimized setup across
6400 m2 we achieved a mean absolute error of the crowd density of just 0.0115



people per square meter which equals to an average of below 6 % mean relative
error from the ground truth. We validate the contextual crowd condition anomaly
detection method during the visit of chancellor Mrs. Merkel and during a large press
conference during the exhibition. We present the approach of opportunistically
sensing stationary based wireless signal variations and validate this during the
Hannover CeBIT exhibition with 80 opportunistic sources with a crowd condition
estimation relative error of below 12% relying only on surrounding signals influenced
by humans. Pursuing this approach we present an approach with dedicated signal
sources and sensors to estimate the condition of shared office environments. We
demonstrate methods being viable to even detect low density static crowds, such
as people sitting at their desks, and evaluate this on an eight person office scenario.
We present the approach of mobile crowd density estimation by a group of sensors
detecting other crowd centric devices in the proximity with a classification accuracy
of the crowd density of 66 % (improvement of over 22 % over a individual sensor)
during the crowded Oktoberfest event. We propose a collaborative mobile sensing
approach which makes the system more robust against variations that may result
from the background of the people rather than the crowd condition with differential
features taking information about the link structure between actively scanning
devices, the ratio between values observed by different devices, ratio of discovered
crowd devices over time, teamwise diversity of discovered devices, number of semi-
continuous device visibility periods, and device visibility durations into account.
We validate the approach on multiple experiments including the Kaiserslautern
European soccer championship public viewing event and evaluated the collaborative
mobile sensing approach with a crowd condition estimation accuracy of 77 % while
outperforming previous methods by 21 %. We present the feasibility of deploying
the wireless crowd condition sensing approach to a citywide scale during an event
in Zurich with 971 actively sensing participants and outperformed the reference
method by 24 % in average.
Table 1 presents the full list of performed crowd condition estimation experiments
discussed within this thesis and beyond.



Table 1 Performed crowd condition estimation experiments.

2010 • Munich Oktoberfest 9 participants, 3 days
2010 • Munich Allianz arena soccer match

fan arrivals
6 participants, 2 days

2010 • Passau Dult fair 12 participants, 3 days
2010 • Malta Farsons festival 10 participants, 3 days
2010 • London Wembley Stadium fan

arrivals
6 participants, 1 day

2011 • Passau shopping center 2 participants, 1 day
2012 • Public viewing Kaiserslautern 20 participants, 2 days
2012 • Kaiserslautern fair 20 participants, 2 days
2012 • Kaiserslautern 1.FCK soccer match

fan arrivals
5 participants, 2 days

2013 • Kaiserslautern Altstadtfest 3 stationary scanners, 3 days
2013 • Kaiserslautern 1.FCK soccer match

fan arrivals
12 participants, 1 day

2013 • Zurich Zuerifaescht 971 participants, 3 days
2014 • Dresden Volkswagen V-Day event 250 participants, 1 day
2014 • Hannover CeBIT DFKI 14 stationary scanners, 5 days
2015 • Geneva Volkswagen Auto Salon 15 stationary scanners, 13 days
2015 • Shanghai Volkswagen Auto Show 20 stationary scanners, 20 days
2015 • Frankfurt Volkswagen IAA 33 stationary scanners, 13 days
2016 • DFKI shared office spaces BOSCH 25 participants, 25 days
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1 Introduction

1.1 Motivation

With approximately 21 stampedes in the last 5 years and 3000 attributed deaths
reported globally, high crowd densities are a severe danger if not recognized im-
mediately. The theory behind crowd stampedes and evolving crowd conditions is
studied in a related research area where among others the critical crowd density
thresholding values are determined with simulation models. However, an important
component towards mastering crowd conditions is obtaining the actual values of the
crowd condition in reality. The main motivation for this thesis is the importance
of automatically estimating crowd conditions, as during the ‘Loveparade’ event
in Duisburg in 2010 a fatal catastrophe happened due to crowd conditions the
supervisory authorities were not fully aware of. Complications are that manual
observations are difficult and common image recognition issues exist for observing
the crowd condition. In the ubiquitous computing age we are surrounded by wireless
signals - especially in the industrial, scientific and medical (ISM) radio band of
2.4 GHz. The ubiquitous computing revolution has been inspecting wireless signals
for social inferring. Wireless signals have attributes which are likewise advantageous
and disadvantageous as the human body absorbs signals in the 2.4 GHz spectrum.
Before, sensing of wireless signals was used in social sciences for social inferring
where the research community aimed towards detecting people in the proximity.
However, the complications for detailed crowd condition estimation are the signal
attenuation, the issue of sufficient statistics and the cultural factors. At 2.4 GHz
the human body (made of about 70% water) has a high absorption coefficient. This
means that in a dense crowd (where we would expect to have good statistics) the
effective scan range is reduced and therefore ‘falsifying’ the results. As a result the
range of an RF signal is not constant as the signals are attenuated by (a) free-space
and by (b) objects. In an ideal constant environment the signal propagation loss
Lp is given by Lp = 20 log10(f) + 10 n log10(d) 10−3 − 27.55 [dB] where f is the
transmission frequency, n is the path loss exponent depending on the obstruction
and d is the distance in meters. Without having a complete model of the dynamic
environment we cannot solve the equation to get the distance value and vice versa
we cannot solve the equation to get the path loss exponent to know how many
people are in-between a signal link. Therefore, empirical evaluations at different
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1.2 Aims of the Thesis

crowd densities are necessary, which this thesis proposes.

1.2 Aims of the Thesis

So far, Bluetooth and WiFi crowd condition research is fragmented, with most
work focusing on individual narrow problems, or does not consider cultural effects,
or the presented concepts were not evaluated with ground truth. This thesis aims
to change that by providing a systematic understanding both in a theoretical
and a practical way and presents the feasibility, describes the experimental setup,
describes a comprehensive set of methods to deal with different challenges, and
illustrates how such methods are evaluated.
While this thesis focuses on novel wireless signal based crowd condition methods
and its evaluation we neither do provide a classical exhaustive survey nor do we
provide a multidisciplinary review. This thesis aims at analyzing signals from
common mobile devices equipped with wireless 2.4 GHz interfaces including the
Bluetooth protocol and WiFi protocol. There is a lot of current interest in this
topic but not much work in the field, yet. Despite the growing research interest
in this area, many problems remain unsolved. This is particularly true for the
case apart from specific scenarios such as queues. The first problem this thesis
deals with is how to estimate the crowd condition from a continuous sequence
of signal measurements. The second problem, once we have a solution to the
estimation problem, is how to tell how good this solution is - how do we measure
its performance. The goal is to help researchers make their wireless signal based
crowd condition estimation systems more robust with respect to absorption and
cultural effects and to provide evaluations serving as reference for future methods.
The main questions to be solved include:

• How to deal with opportunistic passively received signals (from peoples’ mobiles)
not being received at deterministically time periods? How to setup a meshed
network of stationary sensors and extract information from the intermittent
individual signals but large mass of total signals?

• How to deal with potential scenarios where no signals from peoples’ mobiles
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1 Introduction

exist? How can other opportunistic ambient signals or special purpose signals
be used for estimating the crowd condition based on passive signal alterations?

• How to make the system more robust against variations in the number of
discoverable devices that may result from the background of the people in the
crowd rather than the crowd density?

• How to not just rely on the number of devices seen by a scan, but also take into
account information about average observed signal strength and the variance in
both the signal strength and the number of devices?

• How to benefit of combining the information from several mobile sensors/devices
carried by different close by users, rather than on an individual scanner?

• How to combine the collaborative sensor information from several mobile phones
carried by different groups of static and dynamic intermittently close by users
(only below 0.2 % of all people are equipped with a Bluetooth scanning mobile
phone)?

• How do the proposed methods of extracting information about the link structure
between actively scanning Bluetooth devices, ratio of discovered devices in the
current scan window to previous scan windows, teamwise diversity of discovered
devices, number of semi-continuous device visibility periods, and device visibility
durations perform in crowd density estimation?

• How does such an approach with mobile sensors perform in unconstrained city
scale environments where participants are not students following well defined
motion patterns but ‘normal people going about their business’? What does it
take to improve the system performance under such conditions? Is it possible to
go beyond density estimation towards the recognition of motion patterns even
through the owners of the discovered devices (who do not actively participate
in the data collection and do not provide GPS data) from whose we have the
approximate location but have no motion information?

1.3 Related Work

A lot of related work has been done in the large field of defining, estimating,
processing, and interpreting the crowd condition. In this related work section we
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1.3 Related Work

present work in the order from general to specific including fundamental work,
general mobile sensing, and crowd condition sensing technologies. Wireless sensing
has its roots in social relationships [10], to track people within a city [71, 1], to
estimate waiting times in queues [97], to uncover complex social systems [31],
to analyze people behavior [57], and mobile crowd sensing [75, 100]. Since the
approaches within this thesis are manifold, specific wireless signal based crowd
condition estimation related work is presented along the chapters of this thesis.

1.3.1 Crowd Condition

The crowd condition can be described by various characteristics including the
density of a crowd which is defined as the number of people in relation to a unit of
space. Another secondary characteristic is the crowd movement which indicates
either which fraction of the crowd is moving or how fast the crowd is moving in
average. Besides the spatial crowd condition, also the temporal changes (increasing
or decreasing crowd density by arriving or leaving people) are an indicator of
the crowd condition which can also serve to detect temporarily contextual crowd
anomalies. Related work has been investigating human stampedes such as during
the Love Parade in 2010 in Duisburg [55]. Krausz and Bauckhage have shown that
in areas of extremely high crowd density the movement of a person is affecting
other people in proximity and as a result of the high crowd density shock waves
occur and propagate through the crowd. When people are moved by the crowd and
cannot control their own motion anymore people loose their balance and typically
fall down in a shock wave to get crushed and suffocate [55]. In related work the
need for a precise crowd density estimation to correctly asses the dangerousness of
a situation is clarified [74].

In a completely different branch of the business analytics, the crowd condition can
be an intelligence gathering tool to provide valuable indication about the interest
of customers through quantifying the number of individuals browsing a product,
or the customers during different times of the day [90]. The information gathered
can then be used to optimize the need for staff, the floor plan layout, and product
display optimization.
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1 Introduction

1.3.2 Crowd Condition Sensing Technologies

Manual Crowd Counting An early proposed simplistic method to manually
estimate the crowd density was introduced in 1967 by Jacobs [46]. He was a
journalism lecturer at the University of California at Berkeley and viewed many
student demonstrations from his office above a plaza. He manually obtained the
number of people within a square of stone pavement lines of around 22 foot (6.7
meters) and then he converted the value to the people per square foot unit. Today
this simplistic method serves as the foundation for manually extracting the ground
truth to be used for machine learning training and validation. Nowadays, this
approach often performed by humans reviewing CCTV footage and counting people
in a defined area and extract the crowd density [67, 80]. A different manual
approach is counting people with digital clickers [32] at entrance/exit gates and
infer the crowd density within the closed area.

Computer Vision A long history of the computer vision approach of crowd con-
dition estimation work exists. The images or video streams are most often sourced
from CCTV footage or aerial images. The approach includes visual analysis by
itself or includes a combination of visual and thermal cameras [4, 96]. Two principle
computer vision approaches exist: the direct approach (i.e. human detection) and
the indirect approach (i.e. pixel-based, texture-based, and corner points based
analysis). Direct approaches include methods based on the detection of fully visible
humans [82, 48] or the head/face detection [60, 42, 21]. Indirect approaches include
methods based on foreground pixels counting after background image subtraction
[27, 64], [47], methods based on texture features analysis [66], methods based on
histograms of edge orientations [20], or methods based on moving corner points
to estimate the number of moving people [3]. A multitude of visual crowd flow
tracking methods exist such as a frame difference algorithm [59] or optical flow
methods [6].
Despite the recent advances, along many computer vision approaches, it is referred
to challenges with perspective problems, occlusions, and restricted light conditions.
Specifically, edge-based features can be highly incorrect in the presence of com-
plicated background and uneven textures of human clothes. The foreground and
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1.3 Related Work

background segmentation process becomes a more difficult task in crowded scenes.
Also, extracting features from video streams is referred to be very time consuming
for a subset of computer vision approaches.

Other Stationary Sensors Related work on crowd condition estimation also
involves other technologies. The application range of technologies in related work
is scattered. Two general approaches exist: automatic counting of people at en-
trance/exit gates and inferring the crowd density or estimating the crowd density
directly. Methods include infrared barriers at gates [32, 45], personal radio-frequency
identification (RFID) card detection systems [69, 84, 28], passive infrared (PIR)
sensors for movement detection [94], pressure sensors [22], carbon dioxide sen-
sors [63, 7], audio sensors [49], floor pressure sensors with footprint detection [69],
seismic sensors [26], Kinect sensor [24], or radar sensors [23].

Other Mobile Sensors Since the rise of smartphones, general mobile crowd
sensing is a vividly studied field in ubiquitous computing. Related work on mobile
phone sensing in general is far reaching. Crowd sensing includes multiple intentions
besides crowd condition estimation. Related work in the area of mobile phone
sensing includes mechanisms to recruit crowd sensing participants [112]. Such
mechanisms are primarily based on incentives towards collecting sensor data. Mul-
tiple mobile phone sensing concepts exist [56] including different potential mobile
phone sensors, different sensing scales (individual, group, community), application
distribution, sensing paradigms (either participatory sensing and being actively
involved to opportunistic sensing) and mobile phone sensing architectures. A set of
applications exists which uses smartphones as sensors for environment monitoring,
traffic monitoring, human mobility behavior, interesting location discovery, public
health, and social interaction detection [51]. In related work, mobile crowd condi-
tion estimation is accomplished with active user participation by [11, 105, 106] while
relying just on GPS locations collected by a smartphone application and sending
the data to a server. However, the challenge lies in the difficulty of recruiting a
large number of participants to fulfill a sample large enough to represent the crowd
condition.
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1 Introduction

1.4 Thesis Outline

Crowd condition estimation

Stationary Scanners Mobile Scanners

Wireless Bluetooth or WiFi Signal Based Crowd Condition Estimation

Opportunistic 
scanning of crowd 

centric mobile device 
signals

Opportunistic 
scanning of static 
source ambient 

signals

Scanning of static 
special purpose

signals

Individual sensors 
opport. scanning 

mobile signals in the 
proximity

Collaborative peers 
opport. scanning 

mobile signals in the 
proximity

Participatory city-
wide scanning of 

crowd centric mobile 
device signals

Figure 1.1. The full thesis ontology of the considered wireless signal based crowd condition
estimation methods.

The thesis is building on the ontology shown in Figure 1.1. The thesis topics
include meshed stationary sensors scanning for crowd based opportunistic devices,
stationary sensors scanning for external signal interferences by people of signals
opportunistic WiFi access points, stationary sensors scanning for external signal
interferences by people of special purpose connection-oriented signal sources, mobile
sensors in single group scanning or collaborative scanning of crowd opportunistic
devices, and mobile participatory scanning in the citywide scale.

Chapter 2 This chapter introduces meshed stationary sensors scanning for op-
portunistic mobile device signals from the crowd. We setup meshed
stationary sensors and recorded three large scale, real life data sets from
a car manufacturers exhibitions at Geneva (Switzerland), Shanghai
(China), and Frankfurt (Germany). Providing nearly 90 million data
points from a total of over 670 000 unique mobile devices. We systemat-
ically analyze the approach of monitoring crowd density and crowd flow
in real world environments. Questions that we address include the map-
ping from the number of detected devices to the number of people. We
have developed and evaluated methods and compare multiple machine
learning methods for crowd density estimation and visualization that
build on the insights from the analysis above. We describe methods
for the contextual crowd condition anomaly detection validated on two
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1.4 Thesis Outline

significant events during the experiment being a visit by the German
chancellor Mrs. Merkel and a press conference. We achieve approxi-
mation error rates of just 0.0151 people per square meter at average
crowd densities of 0.22 people per square meter and maximum crowd
densities of 2.6 people per square meter (during the press conference)
and maximum crowd densities of 0.45 people per square meter during
public days. The real-time crowd condition estimation visualization
application was deployed and monitored during the exhibitions.

Chapter 3 This chapter presents the approach of analyzing signals by stationary
scanners opportunistically sensing ambient signal sources with station-
ary sensors scanning for either a large number of opportunistic signal
sources or special purpose signal sources. A method is proposed for
estimating the number of people present within an exhibition hall by an-
alyzing signal variations from over 80 ambient wireless access points. A
large-scale experiment is presented for validating the methods. A finger-
printing method is proposed for estimating the number of people present
in a room (i.e. in a shared office space). A connection-oriented special
purpose signal source allows measurements beyond signal strength such
as signal phase and signal-to-noise-ratio. The method relies on machine
learning to estimate the precise number of people within shared office
spaces.

Chapter 4 This chapter describes the crowd condition estimation approach with
mobile sensors opportunistically scanning crowd devices. Mobile sensors
are carried by people in groups or collaboratively through different
crowd densities. This is compared to the naive individual scanner
approach of just counting crowd devices in the proximity. Relative
features rely on signal attenuation based on people and promote crowd
condition estimation independent of cultural factors. This chapter
includes evaluations based on multiple extensive data sets. We present
a Bluetooth scan based method that can detect different discrete crowd
densities. The main contributions beyond the above related work are
to not just rely on the number of devices seen by a scan, but also take
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into account information about the average observed signal strength
and the variance in both the signal strength and the number of devices.
This makes the system more robust against variations in the number
of discoverable devices that may result from the background of the
people in the crowd rather than the crowd density. We investigate
the benefit of combining the information from several devices carried
by different close by users, rather than on an individual scanner. We
evaluate the method on a data set recorded during three days at the
famous Munich Octoberfest festival which is attended by hundreds of
thousands of visitors from all over the world per day. We introduce new
collaborative concepts of multiple teams walking intermittently nearby
and scanning each other in addition to the previous method. The
main contributions beyond the related work include also information
about the link structure between actively scanning Bluetooth devices,
ratio of discovered devices in the current scan window to previous scan
windows, teamwise diversity of discovered devices, number of semi-
continuous device visibility periods, and device visibility durations. We
propose a method to combine the collaborative sensor information from
several mobile phones carried by different groups of static and dynamic
intermittently close by users (only 0.2 % of all people are equipped with
a Bluetooth scanning mobile phone) to determine the crowd density in
an area of 2500 m2. We evaluate the collaborative method on a data
set recorded during three days at the European soccer championship
public viewing event in Kaiserslautern which is attended by thousands
of visitors. Looking at seven discrete densities that cover the range
from a nearly empty space (around 0.01 people per square meter) to
dense crowd (above 2.0 people per square meter) we achieve recognition
rates of over 75 % using both relative and absolute features.

Chapter 5 This chapter presents participatory wireless scanning which scales city-
wide. Participative scanning follows a self-organizing citywide scanning
approach. Participants are not students following well defined motion
patterns but normal people going about their business. We evaluate the
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crowd density estimation and crowd flow estimation methods on a data
set consisting of nearly 200 000 discoveries from nearly 1000 scanning
devices recorded during a three day citywide festival in Zurich. The
data set also includes ground truth of 23 million GPS location points
from nearly 30 000 users. The data set was used to compare the naive
crowd density estimation method (extrapolating from the number of
seen devices) with a more advanced method that goes beyond absolute
numbers towards relative features that are more robust against statisti-
cal variations of the number of devices present at a given density. We
analyzed the crowd condition estimation within 12 pre-defined areas
during the Zurich event. A typical area has the size of thousand to tens
of thousands of square meters. Areas are defined manually as being
thematically associated. We also present an approach for the citywide
grid-based area-independent crowd density estimation, visualizations,
and validations.
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1.5 Selected List of Publications

The selected list of publications, which this thesis is building on, is presented in
Table 1.1.

Table 1.1. Selected List of Publications.
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Jens Weppner, Benjamin Bischke, and Paul Lukowicz. Monitoring crowd
condition in public spaces by tracking mobile consumer devices with wifi
interface. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct. International Joint Con-
ference on Pervasive and Ubiquitous Computing (UbiComp-16), September
12-16, Heidelberg, Germany, UbiComp ’16, pages 1363–1371. ACM, 2016

3
Jens Weppner, Benjamin Bischke, and Paul Lukowicz. Sensing room occu-
pancy levels with ieee 802.11n wifi channel state information fingerprinting.
IEEE Sensors Letter, 2017

4

Jens Weppner and Paul Lukowicz. Collaborative crowd density estimation
with mobile phones. In Second International Workshop on Sensing
Applications on Mobile Phones. ACM Conference on Embedded Network
Sensor Systems (SenSys-11), 9th, November 1, Seattle, USA. Microsoft,
ACM, 2011

Jens Weppner and Paul Lukowicz. Bluetooth based collaborative crowd den-
sity estimation with mobile phones. In Proceedings of the Eleventh Annual
IEEE International Conference on Pervasive Computing and Communica-
tions (Percom 2013), pages 193–200. IEEE, 3 2013

5
Jens Weppner, Paul Lukowicz, Ulf Blanke, and Gerhard Tröster. Participa-
tory bluetooth scans serving as urban crowd probes. Sensors Journal, IEEE,
14(12):4196–4206, Dec 2014
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Crowd condition estimation

Stationary Scanners Mobile Scanners

Wireless Bluetooth or WiFi Signal Based Crowd Condition Estimation

Opportunistic 
scanning of crowd 

centric mobile device 
signals

Opportunistic 
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source ambient 
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special purpose
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wide scanning of 

crowd centric mobile 
device signals

Figure 2.1. Thesis outline and wireless signal based crowd condition estimation scanning
ontology.

2.1 Introduction

Figure 2.2. Symbolic illustration of the meshed sensors mounted at the ceiling which
passively scanned opportunistically wireless mobile crowd centric devices with enabled
WiFi or Bluetooth interface.

The analysis of radio-frequency signals is a well known technique for human activity
monitoring. In general, we distinguish three types of approaches (which may be
used in isolation or in combination). First are systems where users’ mobile devices
scan the environment for signals from stationary beacons such as for example WiFi
access points or Bluetooth iBeacons. This is a basis for a whole range of indoor
positioning systems (see related work). Second are systems where users’ mobile
devices are used to detect the presence of other mobile devices. This approach
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2.2 Problem Statement

has been widely used especially for the tracing of social interactions. Thirdly,
we have stationary scanners detecting, counting, and tracking mobile beacons
carried by the users. Such mobile beacons can either be dedicated devices or the
WiFi or Bluetooth interfaces of standard mobile devices such as smartphones or
smartwatches. In this chapter we focus on the later. Specifically, we use carefully
placed stationary WiFi and Bluetooth scanners with highly directional antennas to
monitor crowd conditions during large scale public events (see symbolic setup in
Figure 2.2). The advantage of the approach is that the crowd can be monitored
without the need for user cooperation in the form of installing and starting an
App or carrying a dedicated beacon. As outlined in the related work section below
the general feasibility of the approach above has already been demonstrated in
individual applications including some crowd density measurement (see related
work). The contribution of this paper beyond such work is a systematic study
and optimization of crowd monitoring methods using stationary scanners to track
consumer devices with activated WiFi/Bluetooth interfaces on a large, real life
data set that includes extensive video ground truth.

2.2 Problem Statement

The research problem to be solved is a grid-based crowd condition monitoring
method to enable and support the supervision of mass events by first-responders and
by business intelligence personnel. Crowd condition monitoring campaigns concern
the crowd safety and concerns marketing performance metrics. Real-time insights
of the crowd condition is desired for quick reactions. Historic data evaluation is
desired for profound crowd condition analysis. A reliable, repeatable and precise
crowd condition measurement is required. The method needs to allow a continuous
temporal monitoring and continuous spatial grid-based monitoring of the crowd
condition. No active user participation should be required. The main condition for
crowd condition estimation campaigns is a well defined event area to be equipped
with stationary sensors. Important crowd condition measurements need to be
supported in combination. The two fundamental crowd condition measurements
are defined as the crowd density and the crowd movement state. A proposed crowd
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condition measurement is estimated with an approximate value approaching the
true value with the least possible estimation error.
To support the crowd condition surveillance, further insights beyond momentary
measurements are needed. Intelligent processes are required to support the human
embracing of circumstances requiring further action or giving historical insights.
The temporal variations of the crowd condition measurements are another indi-
cator and enables insight into the progression of the crowd condition. Indicators
are needed to detect deviations in the crowd condition which could otherwise
be overseen with momentary crowd monitoring. Deviations in the time series
which are successfully recognized as significant crowd mutations are defined as
crowd anomalies. Additional redundant measurements beyond crowd density an
crowd movement need to be presented to support the reliability of detecting crowd
anomalies.

2.3 Chapter Overview

This thesis chapter is organized as follows: We begin with presenting the existing
related work on the specific field of opportunistic stationary scanning of crowd
devices. Then the enabling foundations of wireless protocols for opportunistic
scanning is shown. The experimental environments are declared to which the
methods are applied to. The experimental environment description includes an
overview about the scanner hardware, the scanner setup, the data sets, and the
ground truth.
Next, the approaches follow including the definition of local and global crowd
density estimation. The challenges in opportunistic scanning is explained and
empirically demonstrated with multiple opportunistic localization methods under
different conditions. We present a localization approximation being reliable under
different conditions. Along the crowd density estimation the definition of crowd
movement state estimation is presented.
In the following, the methods and results follow including the global crowd density
estimation methods, applied machine learning principles, and present the quantita-
tive machine learning regression results. We continue the methodological transfer
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to local crowd density estimation, present result visualizations, and describe the
qualitative results.
Next, the contextual crowd condition anomaly detection is presented with multiple
redundant anomaly detection methods, and describe qualitative results.

1. We have recorded three large scale, real life data sets from car manufacturers
exhibitions at Geneva (Switzerland), Shanghai (China), and Frankfurt (Ger-
many). While the first two events were used for technological evaluation and
visitor clustering the third event in Frankfurt during the IAA was directed
towards crowd density estimation including video-based ground truth coverage.
The data set is based on 33 directional scanners covering 9 ‘zones of interest’
and a total area of 6400m2. The scanners were running for 13 business days,
providing nearly 111 million data points from a total of over 670 000 unique
mobile devices. For 7 of the 13 days video ground truth has been recorded and
extensively annotated.

2. We have used the data set to systematically analyze the limits and potential
problems associated with monitoring crowd density and crowd flow in real
world environments. Questions that we addressed include the mapping from
the number of detected devices to the number of people (including the ability
to generalize from a small number of ground truth points recorded on one day
to other days), the ability to localize individuals in different conditions and the
ability to reconstruct paths in different conditions.

3. We have developed and evaluated methods for crowd density estimation and
visualization that build on the insights from the analysis above.

2.4 Related Work

Freudiger presented an experimental study of WiFi probe request [35]. He analyzed
different smartphone brands and models on the burst rate of WiFi probes. They
also analyzed the impact of a multitude of device states on the burst rate of WiFi
probes. Such device states include the number of known WiFi SSIDs ever registered
with the smartphone, the charging state, the screen on/off state, the state of the
smartphone WiFi connection, and whether the user is currently in the WiFi settings
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screen. Freudiger showed that the WiFi probe burst highly vary between a few
seconds and 5 minutes with exceptional burst of up to 10 minutes. Freudiger also
showed that 39% of the WiFi probes are missed (according to probe sequence
numbers) which he assumes to be caused by the noisy nature of the wireless medium.
However, the focus was put on the study of WiFi probes in general and not on the
connection to the crowd condition.
Little and O’Brien presented within a CISCO White Paper the current possibilities
of WiFi probe sensing [61]. They present use-cases for large sites including location
analytics where they estimate the number of visitors, the amount of time they
spend, and the frequency of their visits within the site. They also present advanced
large site analytics which provide knowledge of movement patterns by these visitors
while they are on the site. However, this White Paper does not present details of
the methods and does not focus on crowd density estimation but rather on general
crowded spots on large sites. A scientific evaluation with ground truth is not within
the subject of the White Paper.
Li et al. demonstrated crowd condition estimation with just individual sensors in
a small scale building environment [58]. The evaluation with ground truth was
targeted whether the number of unique WiFi probe MAC falls below or exceeded the
actual number of people. They analyzed the WiFi probe burst rate in dependence
of the device vendor and device state (screen on, screen off, currently registered
to a WiFi, not registered to a WiFi) and identified burst intervals between one
second and individual maximum intervals of 20 minutes when a device is registered
to a WiFi. They analyzed the impact of the human walking speed (slow, normal,
jogging, and running) to the detection rate of WiFi probes. A decreasing detection
rate with increasing speed was observed by individual sensors. This complies to
the observation of potential long burst intervals which go beyond the range of
individual sensors. They analyzed the trajectories between 6 individual scanners
and discovered trajectory discovery rates between 28 % and 80 % for iOS devices
depending on the device state. However, they did not focus on meshed stationary
sensors and did not focus on the detailed ground truth based evaluation of the
crowd density.
Handte et al. deployed a single WiFi probe sensor in a public transport bus for
fill level estimation [38]. They were counting the people in a 30 minutes trip from
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the start to the end of the bus route. After the trip they compared the measured
number of unique WiFi probe devices with the ground truth. During the experiment
the bus contained between 22 and 52 passengers and 20 % were visible. However,
details about considered time windows are missing and the evaluation complexity
is small.
Musa and Eriksson demonstrated WiFi probe based tracking of smartphones within
a city over a distance of up to 2.8 km targeting road traffic congestion analysis and
trajectory estimation [71]. They present a HMM approach estimating the location
of a device between nodes and conclude that the localization accuracy depends on
the geometry. However, they focussed on opportunistically detecting the location
and did not focus on a detailed evaluation of the traffic density or crowd density.
Multiple related work is focussing on the travel time extraction by detecting WiFi
probe scans at two or more displaced sensors within a large scale citywide environ-
ment [1, 14, 87, 77]. Their approach is based on inferring the road congestion state
based on the travel time. However, this approach has limited applicability towards
crowd density estimation, as crowd can behave static and travel time extraction
would be of limited benefit.
Other related work is focussing on detecting crowd with an individual sensor at a
previously known specific location such as queues [97, 83]. For example, Schauer
et al. evaluated the WiFi probe based queue waiting time by placing a WiFi probe
sensor at the security check within the Munich airport. They used boarding pass
scan numbers as ground truth for the number of people. The accuracy of both
crowd density and pedestrian flow estimations was evaluated. A correlation of
0.75 is presented, however, the paper does not focus on an evaluation of a factor
between ground truth and WiFi measurements.
Fukuzaki et al. collected WiFi probe requests from 20 sensors distributed widely
in a shopping mall [36]. They used motion sensors at entrances for retrieving a
calibration factor between 2.8 and 3.4 with an average error of 30 %. However,
there is no mention of the expected accuracy of the automatic ground truth and
how the motion sensor differentiated between inbound and outbound visitors for
a correct count. The paper focussed on detecting single crowded spots within a
medium-sized area and not on the precise crowd density with meshed sensors as
presented in this thesis chapter.
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Redondi et al. analyzed WiFi inter-probe periods for laptops and mobile devices.
Their primary interest was to classify between mobiles and laptops by their WiFi
probe pattern. They identified a broad range of inter-probe periods for continuously
present devices on a university campus. They empirically extracted a probability
of 95 % that mobile devices send a WiFi probe within 35 minutes and a probability
of 80 % that mobile devices send a WiFi probe within 8 minutes [81]. However, it
is not fully clear if devices have been in range all the time during the analysis and
whether one can rely on this statistical information for further utilizations.
Zebra Technologies Corporation published a White Paper where they presented
an analysis of WiFi probe MAC address randomization since iOS 8 [110] where
they refer to the brief privacy enhancement statement with MAC randomization
by Apple Inc. in [8]. They state that there are certain conditions under which
the vendor may randomize, or not use, the device’s static or real MAC address
and in other conditions they may use the device’s real MAC address. Zebra
Technologies Corporation observed that the MAC randomization happens only in
certain conditions that are not normal. They found that iPhone devices have this
feature enabled and for random MAC to occur, the following conditions have to be
met: 1. The phone wakes up from a sleep mode 2. The phone is not connected
to WiFi 3. Cellular data is off 4. Location service is off. If all of the conditions
are met the phone sends out its original MAC address initially for a few times and
then sends out a probe request using random MAC addresses. In order to save
battery life, an iPhone goes into sleep mode when all the services in the phone are
inactive, not just when the screen is being switched off by the user. It is important
to note that there are many applications that use location service, mail and message
notifications which could keep the phone awake despite the screen being off. In
addition, the cellular data is likely kept active and location services are likely to
kept active. So, in real life, it is very hard to make the phone go to sleep. Also,
while the phone is connected to the WiFi network, the phone always uses the real
MAC address in the Probe Requests. So, the MAC randomization is expected to
have very little impact on analytics.
Stationary Bluetooth sensors were used in related work in specific situations.
Kostakos et al. used Bluetooth discoveries to wirelessly detect and record end-to-
end passenger journeys in public transport buses [53]. O’Neill et al. analyzed the
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people throughput at entrance gates [76]. Versichele et al. presented a setup of
stationary Bluetooth sensors during a city event where they observed Bluetooth
device transitions between check-points and showed the temporal progression of the
measurements [92]. Nicolai and Kenn investigated the discovery time of Bluetooth
devices as well as the relation between number of people and number of discov-
erable Bluetooth devices [75]. They analyzed different locations and discovered
a deviating people/device relation at different locations around the world. They
used individual sensors and not a meshed sensor network and did not present the
variations over multiple days. However, in general, related work lacks of a thorough
experimental analysis with ground truth evaluation (except [75]) but focuses on
the pure technical feasibility of Bluetooth discoveries.
In summary, while the general feasibility has been demonstrated before, this thesis
chapter goes beyond previous research work and targets towards crowd density
estimation and crowd movement estimation with meshed sensors with respect to a
systematic study of various effects and comprehensive analysis of various crowd
aspects in a large data set within a complex real world environment.

2.5 Opportunistic Scanning of Crowd Devices

We define wireless ‘scanning’ as the procedure to retrieve wireless device identi-
fiers, independent of the wireless nature of WiFi or Bluetooth. The approach of
opportunistic scanning of crowd devices is a virtual sensing technique (also called
surrogate sensing) [62] used to provide a feasible and economical method to discover
the crowd condition. The technique relies on measurements and learned parameters
to estimate the desired quantity. The category of empirical virtual sensing relies
on past measurements and the collateral ground truth observations. In general,
empirical virtual sensing is based on regression techniques that can be implemented
using a variety of machine learning modeling methods, such as linear regression,
kernel regression, weighted least squares, support vector regression, or regression
trees.
Opportunistic scanning (in the following synonymic for virtual sensing) is based
on the assumption that a subset of the people within the crowd are equipped
with a wireless enabled device. Nowadays, WiFi and Bluetooth equipped mobile
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devices are ubiquitous. A large subset of visitors’ devices have WiFi enabled. By
experience some visitors disable WiFi permanently or temporally for energy saving.
Our opportunistic scanning approach is built on top of ‘Bluetooth’ IEEE 802.15.1
standard and WiFi based on the IEEE 802.11 standard (currently Bluetooth SIG
oversees the specification). Both protocols are coexisting on the 2.4 GHz frequency
spectrum. Typical Bluetooth class 2 devices have a maximum permitted power of
2.5 mW and a signal range of up to 10 meters. Typical WiFi smartphones have a
signal power of 7 mW [17] and a signal range of up to 50m–100 m. The standards
were intended for wireless local area networking and for wireless communication
between a mobile phone and a handsfree headset. For opportunistic scanning we
take advantage of specific wireless protocols partitions of the specification. Although
our implementations rely on high level application programming interfaces we define
the protocols shortly.

2.5.1 Opportunistic Bluetooth Discovery

For opportunistic Bluetooth scanning we built on top of the Bluetooth inquiry
procedure [13]. The inquiry procedure was intended by the Bluetooth specification
to discover a nearby device or even multiple devices. For Bluetooth this is typically
the case for a mobile phone preparing to pair to a new Bluetooth headset. The
inquiry procedure sends out an inquire, which is a request for nearby devices.
Devices which are in discoverable mode (adjusted by the operating system or the
user) issue an inquiry response. In total the inquiry procedure can take up to
10.24 seconds (128 train scans are repeated 4 times) after which all static nearby
devices are deterministically known. Due to the frequency hopping architecture
of the Bluetooth protocol the scanner (inquiring device) sends out a sequential
inquiry on 32 different channels. The discoverable device in standby mode wakes
up at least every 1.28 seconds and listens for at least 10 milliseconds. The listening
device periodically listens on a single frequency for incoming inquiries and stays at
this frequency long enough until the inquiring device has covered all frequencies.
Devices always reply to each received inquiry with an inquire response. A repeated
inquiry is repeatedly responded with an inquiry response. When a device receives
an inquiry, it waits between 0 and 0.3 seconds before sending a Frequency Hopping
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Synchronization packet in response. This is done to avoid a collision with another
device that also wants to respond. The payload contains 144 bits plus 16 bits of
CRC code. The information bits contain the UAP, LAP, and NAP. The unique
identifier of the device is constructed by the LAP, UAP, and NAP as the 48-bit
Bluetooth MAC address (see Figure 2.3). The UAP and NAP are assigned by the
IEEE uniquely to each company. Each company assigns the LAP uniquely to each
produced device.
With a specially equipped Bluetooth scanner unit we can continually disseminate
Bluetooth inquiries and then process the inquiry responses.

Figure 2.3. Bluetooth inquiry response packet payload after active inquiry procedure.
This packet is also called ‘frequency hopping synchronization packet’ to synchronize the
frequency hopping scheme for the potential following communication. The relevant parts
are the LAP and UAP. LAP: 24-bit field containing the lower address part of the responding
device. UAP: 2-bit field containing the upper address part. NAP: 16-bit field containing
the non-significant address part. Class of device: 24-bit field containing the device type.
Source: ‘Specification of the Bluetooth protocol’ [13]

2.5.2 Opportunistic WiFi Probe Receiving

For opportunistic WiFi scanning we build on top of the WiFi scanning proce-
dure [43]. Receiving WiFi devices is opportunistic in two ways: the devices in
proximity are opportunistic and the receiving of device signals is opportunistic
as the approach is fully connection-less. The concerning procedure was intended
by the WiFi specification IEEE 802.11 to find a known network on arrival or to
find a known network during roaming. For WiFi this is typically the case for a
smartphone, tablet, embedded device, or laptop preparing to connect to a known
access point periodically when arriving to a previously visited place. Even in
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standby, mobile smartphones regularly wake up for trying to find a WiFi network
for internet access in favor for a cellular connection. Two variants exist. ‘Passive
scanning’ finds networks simply by listening for a ‘beacon frame’ from any access
point (AP). This is not suitable for opportunistic scanning. Active scanning by the
mobile device finds networks by sending a ‘probe request’ on each channel and waits
for a ‘probe response’. The probe request is received by any access point, either
known or unknown. AP probe response then announces its presence and Service
Set Identifier (SSID also known as human readable WiFi name). The probe request
is performed by a ‘MAC WiFi management frame’ also called ‘MAC Management
Protocol Data Units’ (see MMPDU in Figure 2.4). The MMPDU header contains
the MAC address (DA) of the wireless AP to receive this frame, the MAC address
(SA) of the wireless host transmitting this frame, and the MAC address (BSSID) of
the router interface which the AP is attached to [104]. The MMPDU body contains
a requested SSID and supported data rates. The MMPDU body is not of further
interest for opportunistic scanning.
As the WiFi scanner is purposely not a known WiFi device, no advancing con-
nection to the scanner unit will take place by the host. Normal access points do
not propagate received ‘probe request’ to the application layer because they are
perceived as part of the WiFi management. The advantage about other connection
oriented WiFi detections methods is the fact that the visitor does not need to
interact by manually connecting to a specific AP. With a specially equipped WiFi
scanner unit we can not just receive probe requests but process them further.
By extracting the non-significant the MAC address of the wireless host transmitting
the ‘probe request’ from the MMPDU header the device vendor statistics are
retrieved. In Table 2.2 we list the variety of device vendors discovered during the
experiments.
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Figure 2.4. The probe request is performed by a ‘MAC WiFi management frame’ (image
source [104]) also called ‘MAC Management Protocol Data Units’. The MMPDU header
contains the MAC address (DA) of the wireless AP to receive this frame, the MAC address
(SA) of the wireless host transmitting this frame, and the MAC address (BSSID) of the
router interface which the AP is attached to [104]. The MMPDU body contains a requested
Service Set Identifier (SSID) and supported data rates.

2.6 Experiment Context

In this section we describe the experimental context including experiment locations,
the meshed scanner setup, the scanner hardware and data processing pipeline, the
data sets, and the collected ground truth used for qualitative visual evaluation and
machine learning evaluation. We later refer to the experimental environment in
section 2.7 and in section 2.8.
The experiments were performed in the context of a large industrial cooperation
project funded by a large German car manufacturer with the aim of bringing new
technology from academia to a large scale industrial-proof real-world campaign.
The scientific exploitation of the experiments go far beyond the common scien-
tific laboratory experiment scale. The experiments cover a large mass of visitors
emitting WiFi probes and responding to Bluetooth discovery requests. We have a
multitude of experiment days with different levels of the crowd condition. Different
experiment days include diverse groups of people with a different background
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and different mobile device configuration. The experimental environment includes
simultaneous scanning of WiFi probes and Bluetooth inquiry responses. The ex-
perimental environment also includes ground truth with accurate manual human
annotations extracted from the ground truth video stream. The experiments exceed
previous experiments in the setup technology (meshed scanners), in scale (number
of continuously observed devices), and in scientific evaluation complexity (ground
truth evaluation with machine learning).

2.6.1 Experiment Locations

The industrial project included three experiment location across the world. The
experiment locations were part of the largest automobile exhibitions in the world
consisting of the exhibition in Geneva (Switzerland) titled ‘Geneva International
Motor Show’, the exhibition in Shanghai (China) titled ‘Shanghai International
Automobile Industry Exhibition’, and the exhibition in Frankfurt (Germany) titled
‘IAA’.
The Geneva motor show is an annual auto show held in March in the Swiss city
of Geneva. Our experiment took place during the 13 days of the auto show in
2015. The exhibition is in the convention center ‘Geneva Palexpo’ located next
to Geneva international airport. The exhibition is organized by the ‘Organisation
Internationale des Constructeurs d’Automobiles’. The auto show is held since 1905
and hosted all major combustion engine models in the history of the automobile.
Official visitor statistics describe between 34 984 and 87 192 unique visitors entering
the exhibition during each day. Accumulated along 13 days a total of 683 681
visitors came to the exhibition.
The Shanghai auto show is an biennial exhibition held in April in the Chinese city of
Shanghai. Our experiment took place during the 10 days of the auto show in 2015.
The exhibition is placed in the convention center ‘National Center for Exhibition
and Convention’ located next to the Shanghai Hongqiao international airport.
The convention center consists of 8 large halls with two floors. The auto show is
organized by a consortium of the Shanghai International Exhibition Co., Ltd., the
China Association of Automobile Manufacturers, the China Council for Promotion
of International Trade Shanghai Sub-Council, and the European co-organizer ‘Inter-
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nationale Messe- und Ausstellungsdienste’. The auto show is held since 1985 and is
the nation’s oldest auto exhibition and being one of the top auto shows due to the
expanding presence of foreign brands in the Chinese market. The exhibitions ranges
from passenger cars, commercial vehicles, buses, trucks, new energy technology,
automative parts, automative accessories, car maintenance products, auto supplies,
manufacturing technology, to automotive computer systems. The exhibition space
covers 350 000 square meters, includes 1185 exhibitors, 1343 vehicles on display,
109 world debut cars, 47 concept cars, and 103 new energy vehicles. Accumulated
along 10 days a total of 928 000 visitors came to the exhibition.

The Frankfurt auto show is a biennial exhibition held in September in the German
city of Frankfurt am Main. Our experiment took place during the 13 days of
the auto show in 2015. The exhibition is placed in the convention center ‘Messe
Frankfurt (‘Frankfurt Trade Fair’) located in the heart of the financial and business
centre Frankfurt. The auto show is organized by the ‘Association of the German
Automotive Industry (VDA)’. The auto show is held since 1897 and is the world’s
largest motor show. The convention center consists of 12 halls covering 367 000
square meters and additional free space of 96 000 square meters, includes 1103
exhibitors from 39 countries, 219 world premier cars. 11000 journalists from 106
countries attended the exhibition. Accumulated along 13 days a total of 931 700
visitors with an average age of 34 years came to the exhibition. The auto show
was limited on three days to journalists, limited on two days to the professional
audience and on nine days opened to general audience. The opening hours ranged
from 09:00 to 19:00. The experiment sensing technology was setup within the large
6400 square meter booth of a large German car manufacturer within the half of
the large exhibition hall 3. We set up the meshed scanners at each venue, while
the Geneva venue and the Shanghai venues were used as technological prototypes
and for visitor analytics which is out of the scope of this thesis, only the venue
in Frankfurt was considered for the scientific crowd condition estimation with
extensive ground truth information.
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2.6.2 Data Set

During the experiments in Geneva, Shanghai, and Frankfurt we collected three
extensive data sets containing up to 111 millions of scan entries per experiment. A
single raw data entry in the data set contains of five elements: meshed network
scanner identifier, timestamp, extracted MAC address vendor, received signal
strength indicator, and the anonymized/hashed MAC.
We give an overview of the collected data sets by demonstrating extracted statistical
information from and summarized them in Table 2.1. In the Geneva experiment
we installed 15 Bluetooth/WiFi scanners and collected over 3.2 million Bluetooth
inquiry responses, 16.2 thousand unique Bluetooth MAC addresses were detected
at an average detection rate of 71 Bluetooth scans per minute. 8.1 million WiFi
probes were received during the event, 113.7 thousand unique WiFi MAC addresses
detected at an average detection rate of 282 per minute.
During the Shanghai experiment we installed 10 Bluetooth/WiFi scanners and
collected over 1.2 million Bluetooth inquiry responses, 22.2 thousand unique Blue-
tooth MAC addresses were detected at an average detection rate of 185 per minute.
55.6 million WiFi probes were received during the event, 848.0 thousand unique
WiFi MAC addresses detected at an average detection rate of 9312 WiFi scans per
minute.
During the Frankfurt experiment we installed 33 Bluetooth/WiFi scanners and
collected over 5.3 million Bluetooth inquiry responses, 31.2 thousand unique Blue-
tooth MAC addresses were detected at an average detection rate of 598 per minute.
111.0 million WiFi probes were received during the event, 670.0 thousand unique
WiFi MAC addresses detected at an average detection rate of 9312 per minute.
We also gathered statistical device vendor information during the experiments and
observed a highly diverging device vendors for WiFi probes and Bluetooth inquiry
responses which we summarized in Table 2.2. The vendors Apple, Samsung, and
Sony lead in the ranking and have a cumulated share of over 70 % of WiFi enabled
devices being detectable by outgoing WiFi probes. Other vendors follow in the
WiFi probe ranking: HTC, Murata (manufacturing smartphone components for
other vendors), Motorola, Microsoft, LG, Huawei, Nokia, Intel, RIM, Asustek, Hon
Hai, and Azurewave. Other vendors are omitted. As noted before the vendor
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identifier is extracted from the MAC address which can then be used for a lookup
in IEEE MAC vendor tables. Vendors not being registered in the IEEE vendor
list or randomized MAC addresses are not part of the statistics. The Bluetooth
vendor ranking has a completely different order than the WiFi ranking. Nokia,
RIM, and Samsung are the leaders with a share of over 80 % of Bluetooth enabled
devices being detectable by Bluetooth inquiry responses. Other vendors follow in
the Bluetooth ranking: Apple, Sony, LG, Microsoft, Huawei, Murata, Hin Hai,
Intel, HTC, Motorola, Liteon, and Azurewave. Nevertheless, it is interesting to see
that 6.83 % of Apple devices have Bluetooth enabled, as they are only in Bluetooth
discoverable when the Bluetooth settings screen is active. These vendor statistics
give a first hint that different groups of users are represented by Bluetooth and
WiFi scans, as Bluetooth inquiry responses are mostly originating from traditional
Nokia mobile phones and business centric BlackBerry RIM mobile phones.

29
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Table 2.1. Experiment data set statistics of stationary opportunistic scanning of crowd
devices. Upper table: Bluetooth data set statistics. Lower table: WiFi data set statistics.
Table columns include the experiment duration, number of scanner units in the experiment
setup, number of scans (including multiple scans of identical unique device), number of
unique devices, mean scans per minute, and median scans per minute.
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Table 2.2. Scanned WiFi and Bluetooth crowd device vendors statistics.

WiFi
Device Vendor

Fraction

Apple 44.59 %
Samsung 22.98 %
Sony 6.19 %
HTC 5.68 %
Murata 5.04 %
Motorola 4.75 %
Microsoft 2.98 %
LG 2.96 %
Huawei 1.73 %
Nokia 1.39 %
Intel 0.70 %
RIM 0.48 %
Asustek 0.16 %
Hon Hai 0.15 %
Azurewave 0.08 %

Bluetooth
Device Vendor

Fraction

Nokia 32.53 %
RIM 30.20 %
Samsung 21.01 %
Apple 6.83 %
Sony 3.05 %
LG 1.57 %
Microsoft 1.55 %
Huawei 0.70 %
Murata 0.63 %
Hon Hai 0.59 %
Intel 0.46 %
HTC 0.46 %
Motorola 0.18 %
Liteon 0.17 %
Azurewave 0.03 %
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2.7 Approach

In this section we present the fundamental approach towards our crowd condition
estimation including the meshed scanner setup, the embedded scanner hardware,
the definition of the global and grid-based crowd density estimation approach, the
general crowd movement estimation approach, and localization approaches suitable
for opportunistic wireless localization.

2.7.1 Embedded Scanner Unit

The embedded scanner unit consists of the hardware and core Bluetooth/WiFi
scanning software to scan, process, and transfer scans to a central server. The
embedded scanner hardware includes a compact, embedded, and passively cooled
platform based on the Swiss PC Engines ALIX platform which is popular for
special purpose network computing units. The mainboard has a small form factor
of 15*15 cm suitable to fit into a compact enclosures (see Figure 2.5a). The main-
board contains a 500 MHz AMD Geode CPU, 256 MB memory, CompactFlash
card socket, miniPCI slots, USB connector, and Ethernet connector. WiFi and
Bluetooth scan functionality is realized with miniPCI cards connected to the system
with antenna cables connected to external enclosure connectors. The platform
is running the ‘tinyBIOS’ open source system BIOS which is hosting a slimmed
down embedded Debian Linux version. The embedded scanner unit is placed
inside a robust enclosure allowing a deployment outside of the lab in real-world
environments. A variety of external antenna directional antennas can be attached
to the embedded unit. For the scenario in this thesis chapter we selected highly
directional antennas with a theoretical wireless beam angle of 12 degrees. The
embedded scanner software builds on top of open source software packages which
are designed for wireless network security research and wireless network engineer-
ing. The core WiFi scan collection software is building on top of the open source
‘airodump’ software. The software contains a variety of functionalities including
the functionality of presenting all wireless access points in range and the particular
functionality of presenting received WiFi probe signals from wireless clients within
the signal range. The intention of inspecting WiFi probes is manifold but not yet
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introduced to large-scale meshed scanning targeting the crowd condition estimation.
The details of WiFi probes are described in subsection 2.5.2. The functionality of
the research tool ‘airodump’ goes beyond those functionalities and also offers packet
capturing which we are not building on. Our software is querying the ‘airodump’
module in regular intervals to extract the currently received WiFi probe requests.
For each received WiFi probe the following core scan processing is initiated:

• vendor lookup by MAC address from local IEEE vendor lookup table
• randomized WiFi MAC identification (relying on failed vendor lookup)
• time-slot based MAC hashing for anonymization (no real MAC address is stored)
• received signal strength indicator (RSSI) extraction
• creation of current timestamp
• creating set of information including the local scanner unit identifier (ascend-

ing number from 0 to 32), anonymized user identifier (hashed MAC), vendor,
‘randomized’ flag, RSSI, and timestamp

• transmitting set of information to central data base server (see Figure 2.6 on
page 35)

MAC addresses were checked for integrity by comparing the vendor identifier part
of the MAC address to a IEEE vendor lookup table. When a valid vendor identifier
existed it was marked as valid, otherwise marked as randomized/dynamic. For
complying with legal authorities the MAC is anonymized by a hash function chang-
ing over time. After every 24 hours the hashing function changes for continuous
anonymization. No real MAC address was persisted.
The core Bluetooth scan collection software is building on top of the open source
‘hcitool’ software. The software contains a variety of functionalities including the
functionality for system administration, configuring Bluetooth connections, and
sending special commands to Bluetooth devices. Special commands include display-
ing connected devices, inquiring/scanning remote devices, naming a remote device
with a given Bluetooth address, printing supported features of the remote device,
creating a baseband connection to the remote device, displaying received signal
strength information for the connection to the device, requesting authentication
for the device, and further lower-level functionalities. The Bluetooth scan software
module is relying on the ‘hcitool’ and inquiring for Bluetooth devices. The inquiry
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command is continually send to the ‘hcitool’. Together with the inquiry the received
signal strength information command is executed. For each received Bluetooth
inquiry response the following core scan processing is initiated:

• vendor lookup by MAC address from local IEEE vendor lookup table
• time-slot based Bluetooth MAC hashing for anonymization (no real MAC

address is stored)
• received signal strength indicator (RSSI) extraction
• creation of current timestamp
• creating set of information including the local scanner unit identifier (ascending

number from 0 to 32), anonymized user identifier (hashed MAC), vendor, RSSI,
and timestamp

• transmitting set of information to central data base server (see Figure 2.6)

The main part of processing is performed by the backend servers accessing the raw
central data base entries (see methods in section 2.8).

a) b) c)

Figure 2.5. Photographs of a) the scanner unit in enclosure and connected external
downward-directional WiFi/Bluetooth antennas, b) the installation preparations at the
exhibition booth, c) the installation preparations in close-up.

2.7.2 Meshed Scanner Setup
Related work previously considered solitary WiFi probe scanners giving a hint at
the device situation at a single spot. In contrast, this thesis chapter is building on
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Object of visitor interest

Scanner unit (placement at ceiling)

Walls/obstructions

Network data connection switch

Central data base

Data processing server

Real-time visualization server

Network connection

Figure 2.6. Stationary WiFi/Bluetooth scanner setup during the IAA (Frankfurt, Ger-
many) for crowd density estimation including floor plan, meshed stationary scanner unit
setup, objects of visitor interest, network infrastructure, central data base, data processing
server, real-time visualization server, and object of visitor interest positions.

top of a meshed scanner setup suitable for crowd density and crowd flow estimation.
With a meshed setup devices can be localized under certain conditions or assigned
to a scanner cell. We later describe how the crowd density can be measured within
such a scanner cell. We carefully planned the meshed scanner setup by considering
the regions of visitor interest. Nine regions of interest existed each consisting of an
exhibition element. We assigned one scanner specifically to each region of interest
to avoid boundary effects of measurement fluctuations if two or more scanners
are equidistant to a region of interest. The remaining 24 scanners were uniformly
positioned across the exhibition area. In total 33 scanners were positioned with an
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average distance of 14 meters and an average scanning zone of 180 m2. Figure 2.6
also visualizes the scanner distribution. One major issue in wireless transmissions
in general is the influence of the signal by objects within the signal propagation
path which is formed around the line of sight. When positioning a scanner on
the ground significant shielding is caused by human bodies which can influence
the localization within heterogenous crowd densities. We considered the approach
of mounting the scanners on the ceiling. From the ceiling the scanners have an
optimized free line of sight towards the device, and just constricted by the body of
the inherent visitor and directly surrounding visitors. A secondary practical reason
for mounting the scanners at the ceiling was the positioning freedom at the ceiling.
Figure 2.5 shows a scanner unit and a scanner unit mounting preparations on the
ceiling.
Each scanner was connected for maximum reliability via Ethernet cable over a
cascade of network switches to a central data base server and pushed scan results to
it (see Figure 2.6). The processing server and the visualization server accessed the
central data base and did not need to communicate with each scanner individually.

2.8 Methods and Results

In this section we present the methods and results of the crowd density estimation
and crowd movement estimation. The section includes the definition of the ground
truth, the definition of aggregated and local crowd density estimation reference
regions, the methods for aggregated crowd density estimation, the summary of
the applied machine learning algorithms, and present the machine learning results
of the aggregated crowd density estimation. We apply several different features
(see methods in subsection 2.8.2) along with the extensive ground truth to several
popular machine learning algorithms. We continue with transferring the methods
to the local crowd density estimation, present crowd density visualizations, and
describe the qualitative results on the local crowd density estimation. We continue
with the transferring the methods to the local crowd movement estimation, present
crowd movement level visualizations, and describe the qualitative results on the
local crowd movement estimation. Finally, we present the anomaly detection
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methods based on multiple crowd condition measurements and present qualitative
results on two significant events during the experiment.

2.8.1 Ground Truth

The notation of ‘ground truth’ is used in artificial intelligence machine learning in
combination with supervised learning techniques. This serves as the ‘gold standard’
which is the best available information under reasonable conditions. Collecting
ground truth refers to the process of gathering the proper objective data.

We collected ground truth during seven days of the experiment. We managed to
temporally mount a single compact video camera (GoPro) while being supervised
by a human. It was located at a height of 5 meters in direct vicinity of the area
of interest. The view was diagonally directed towards the observed area. The
camera was equipped with a wide angle lens, therefore covering almost the whole
exhibition area. The video camera recorded video footage continuously and had to
be re-charged regularly. Video data was extracted in regular intervals. Extracting
the ground truth was a multi-step task. Firstly, frames were uniformly selected from
the video with about 30 minutes to one hour of time difference. During observable
high fluctuations of the crowd density the ground truth interval was reduced to 30
minutes. Secondly, each of these images were annotated in a labor-intensive task
by students. For this task we relied on a graphical image processing tool as an
annotation tool which allowed direct highlighting on a separate layer of the image.
The annotations layer could then be exported for further processing. Popular
specialized image annotation open source software tools failed because of frequent
crashes when labeling over thousand entities within a single image. Annotations
were defined as highlighting all visible people in the image. Up to 1200 annotations
were performed per image. In total 42 444 annotations were made for in total 71
ground truth frames. Thirdly, annotation files were further processed, leaving the
actual task of counting annotations to the software.
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2.8.2 Methods of Aggregated Crowd Density Estima-
tion

In this sub-section we present the required general data pre-processing steps, present
the reference method serving as a baseline for later evaluation, present the time win-
dow based concept (important for later transfer to local crowd density estimation)
with varying time ranges reflecting different potential visit durations, present the
proposed WiFi based aggregated crowd density estimation methods, present the
proposed Bluetooth based aggregated crowd density estimation methods, explain
why these methods were used in distinction to other time series based analysis
methods, and describe the machine learning training/validation process, and finally
present the applied machine learning algorithms.

Definition of Aggregated/Local Crowd Density Estimation In general,
the crowd density indicates the number of people within a unit area. The crowd
density is i.e. used to describe the population density at different scales. A
population density can be expressed as the number of inhabiting people per square
kilometer. This can be measured within the boundary of a city or within a whole
country and up to the world scale. Similarly, this thesis deals with crowd densities
at different scales: 1. the crowd density within the whole observed area, and 2.
the crowd density within parts of the observed area. We define the crowd density
within the whole area (higher scale) as the ‘aggregated’ crowd density because it is
originating from measurements of the whole meshed scanner network. We define
the crowd density within parts (smaller scale) of the observed area as the ‘local’
crowd density. Commonly for such scales the unit of people per square meter is
used. The aggregated crowd density scale is spanning over multiple scanners (in this
experimental evaluation: 6000m2) and represents the averaged number of people
per square meter. The crowd density is reduced to a single value per observed
meshed scanner area. This scale is useful when analyzing the evolving crowd density
within a time based sequence within a simple line-plot. Within this thesis chapter
the aggregated proposed crowd density methods are extensively evaluated with the
supporting ground truth. The aggregated crowd density estimation methods are
the foundation for the later localized crowd condition estimation methods which
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are calibrated based on the former. The ‘local’ crowd density scale is referring to
the area of one scanning zone and still represents the average number of people
per square meter but within a much smaller scale of in average 180m2, which
corresponds to a circular area with a radius of just 7.5 m or to a quadratic area width
of just 13.5 m. This scale is useful when analyzing the distribution of the crowd
density within a two-dimensional visualization, which is essential when analyzing
which regions are more densely packed than others. Within this thesis chapter
an aggregated crowd density estimation method is transferred to the local crowd
density estimation, is visualized, and evaluated qualitatively within the capabilities
of the supporting ground truth. The local crowd density estimation method is
calibrated based on the results of the aggregated crowd density estimation.

General Data Pre-Processing Before the data is ready to be processed by the
crowd density estimation methods, the data needed to be pre-processed including
rejecting static devices and rejecting received signal from out of boundary. Signals
can be received from mobile visitor devices and static devices. A static device
is defined as not being attached to a person. Such static devices are embedded
WiFi/Bluetooth enabled embedded components, WiFi/Bluetooth enabled demon-
stration tablets or WiFi/Bluetooth enabled computers of staff. We applied the
following filtering criteria to select the relevant devices representing the crowd.
Other devices are ignored. The signal itself does not tell anything about the device
properties. Properties need to be extracted by analyzing the presence over time. A
device is categorized as static devices when it is continuously detectable before, and
during the exhibition hours. Additionally, we rejected all devices which appeared
only during the business hours but their signal was not recognized by a changing
set of scanners over the time.
A received signal from out of boundary is defined as a strong signal which was
received by scanners at the boundary of the area but did not actually visit the area
itself. Obviously the sensors also detect mobile devices neighbored pathways of the
area, as it is not possible to setup an electro-magnetic absorbing WiFi shield around
the area of interest. The area of interest which we covered with WiFi-scanners
accounted for half of the exhibition floor, having one side open to the other half.
We grouped scanners into six rows in parallel. Visitors standing not within the
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area of interest should have many scans from the boundary scanner rows compared
to inner scanners. For each visitor we compute the distribution of scans amongst
the six scanner rows and cluster visitors based on a similar scanning pattern. With
hierarchical clustering we selected two clusters: devices within the boundary and
devices outside the boundary.
During the total experiment duration we scanned 987 681 unique devices, while
317 071 devices were either rejected as being stationary or being out of bounds.
This number includes recurring devices over multiple days as the MAC hashing
algorithm is changing on each new day.

Reference Method of Visit Periods The ‘visit periods’ method serves as a
baseline reference for further evaluation comparisons. Similar to entering/exiting
counting methods [38, 71, 53] of visitors this methods monitors present visitors
within the area. This method differs from the other proposed methods as it requires
specific knowledge of a) the presence of each specific device and b) is only applicable
for the aggregated not local crowd density estimation as the visit period detection
within each local area is infeasible with the opportunistic highly varying wireless
signal intervals. Both WiFi and Bluetooth scans are calculated separately and are
independent features. While a visitor is roaming through the meshed scanner area,
any scanner is contributing to pick up his mobile device signal. The scan data from
the meshed scanners is aggregated to monitor the presence of a device d within
the area (area covered by the range of the meshed scanners excluding rejected
pre-processed devices), by observing the state of appearance a and disappearance
due to time-out b by any of the aggregated scanners. The time-out of a device
is defined by 20 minutes which is the longest silent period discovered by related
work [58]. A device d can be present at multiple visits n. A visit presence is
determined by observing all devices in parallel. The value at time t is defined as∑

{d | adn ≤ t < bdn}. The method is computing a time series of active device visit
periods which is later used as feature in machine learning. A new computation is
performed every 10 seconds, and updates the active device visit periods by adding
newly arriving device identifiers and removing previous device identifiers which
were observed as gone after the time-out. Within the updated list each device
identifier holds a timestamp of the last presence detection. On each update the
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last presence detection is compared to the current time stamp and is removed if
the time-out of 20 minutes is reached.

Time Window Based Concept Towards the aim of local crowd density estima-
tion we introduce the time window based concept which does not rely on historical
knowledge of updated visit periods, but only on signals within small windows
time windows. We later compare the visit period method to the time window
based concept methods. The concept does not rely on tracking the visit period
of each device, but relies just on observed devices within the current small time
window (without a historic memory). The probability of a device being detected is
increasing with an extended observation time window. However, with an increasing
time window the crowd density aggregation period is extended which is relevant
to changing crowd density situations. The concept methods are computed on a
variation of time windows suitable for real-time analysis ranging from 2.5, 5, 10,
20, and 30 minutes. A new computation is performed every 10 seconds allowing
real-time estimations, while accessing scan data from the data base of the last 2.5,
5, 10, 20, and 30 minutes.

Proposed Time Window Based Methods For the aggregated crowd density
estimation we present five methods based on the time window based concept. Each
method is computing a measurement value for each 10 seconds of the data set. In
the following we present the definition of the methods and highlight their attributes.
The proposed crowd density estimation time window based methods are:

• unique WiFi devices per time window (2.5, 5, 10, 20, and 30 minutes)
• unique Bluetooth devices per time window (2.5, 5, 10, 20, and 30 minutes)
• dynamic WiFi devices per time window (2.5, 5, 10, 20, and 30 minutes)
• scans WiFi (2.5, 5, 10, 20, and 30 minutes)
• scans Bluetooth (2.5, 5, 10, 20, and 30 minutes)

The feature unique WiFi devices per time window (WiFi and Bluetooth) is calculated
for the WiFi and Bluetooth scan data separately. We utilize the fact that most
scans contain the unique MAC addresses of devices (uniquely hashed per day).
Randomized/dynamic MAC addresses are rejected and not used for this method.
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Randomized MAC addresses were marked during the scan phase by identifying a
random MAC address pattern not mapping to any vendor identifier in the IEEE
MAC vendor lookup table. For each 10 second interval the scans are retrieved
from the data set with the selection parameter of the observing time window of
t−2.5...t0, t−5...t0, t−10...t0, t−20...t0, and t−30...t0. For the aggregated crowd density
estimation no further selection based on the scanner identifier is made. A set is
created with all hashed MAC addresses occurring in the observed time window.
Finally, the size of the set represents the number of unique MAC addresses and
denotes one value within the time series of one observing time window. The same
procedure is repeated for each time window.
The feature dynamic devices per time window (WiFi) builds on the existence
of randomized MAC addresses [8] and their observations [110]. This method is
considering the potential change towards full WiFi probe MAC randomization and
the effect on crowd density estimation. This method is not applied to Bluetooth
signals as MAC randomization is not applied to Bluetooth addresses. Device
vendors are shifting towards sending dynamic WiFi probe MAC addresses for
privacy reasons. This is currently the case for WiFi MAC addresses. The time
interval of dynamic MAC address change is not specified by the device vendors
and is expected to vary. These dynamic MAC addresses are identifiable as not
complying to IEEE vendor data base entries. In related work dynamic MAC
addresses are often not identified and lead to confusion. We recognize dynamic
MAC addresses and calculate the set size of distinct dynamic MAC addresses
similar to the previous method unique WiFi devices per time window (WiFi and
Bluetooth) but only selecting randomized MAC address scan entries.
The feature number of total scans (WiFi and Bluetooth) builds on the assumption
of an increasing number of scans with an increasing number of present devices. For
each 10 second interval the scans are retrieved from the data set with the selection
parameter of the observing time window of t−2.5...t0, t−5...t0, t−10...t0, t−20...t0, and
t−30...t0. For the aggregated crowd density estimation no further selection based
on the scanner identifier is made. Resulting scan entries can involve an arbitrary
number of scans per device along all scanners. Repeating scans by the same scanner
are included, and repeating scans of the same device by different scanners are also
included. This method is fully independent of unique and dynamic/randomized
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MAC addresses as only the absolute size of retrieved scans is considered by this
method. Finally, the size of the returned scans fulfilling the observation time
window criterion denote one value within the time series of one observing time
window. The same procedure is repeated for each time window.

Distinction to Other Time Series Based Analysis Methods Several spe-
cific time series processing methods exist which benefit from ordered data sequences.
Popular methods are Bernoulli process, Markov chain, random walk, maximal en-
tropy walk, or the hidden Markov model. One of the most popular method is the
hidden Markov model where the current state is estimated by probability transition
i.e. trained with the Baum–Welch algorithm to find the unknown parameters of
a hidden Markov model. This method is often used in the context of activity
recognition. The methods were considered but due to the continuity of the crowd
density estimation during the experiments the methods were not further regarded
because stronger variations in the crowd density would have been necessary to
evaluate the effect of such time series based estimation methods.

Machine Learning Algorithm Overview As stated before, the actual fraction
of visitors carrying a WiFi enabled is not known a-priori. The knowledge needs to
be extracted from the data set, with the extracted features and the ground truth
values. We apply multiple popular machine learning algorithms applicable to the
regression problem, and later evaluate the machine learning algorithms towards
their estimation error. In general, supervised machine learning is based on extracted
feature vectors and ground truth target variables, while training the regressor with
a small part of the data set and validating the regressor with the remaining part
of the data set. We applied the following machine learning algorithms which are
briefly described afterwards:

• linear regression with ordinary least squares
• kernel ridge regression
• support vector regression
• gaussian process regression
• regression trees
• neural network based regression
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Linear regression with ordinary least squares is an attractive model because the
representation is very simple. Linear regression fits a linear model with the coeffi-
cients c = (c1, ..., cn) to minimize the residual sum of squares between the observed
responses in the dataset, and the responses predicted by the linear approximation.
Mathematically, it solves a problem of the form: minc||Xc − y||2. Kernel ridge re-
gression combines ridge regression with the kernel trick. It learns a linear function by
the respective kernel and the data. Ridge regression addresses some of the problems
of ordinary least squares by creating a penalty on the size of coefficients. The ridge
coefficients minimize a weighted residual sum of squares, min

c
||Xc − y||2 + α||c||2.

α ≥ 0 is a parameter that controls the amount of shrinkage: the larger the value
of α, the greater the amount of shrinkage and thus the coefficients become more
robust to collinearity. The support vector regression with the linear kernel is an
extension to the support vector machine classification algorithm. A support vector
machine constructs a hyperplane to discriminate between instances. Gaussian pro-
cess regressors are another machine learning algorithm to solve a regression problem
with a probabilistic approach in kernel machines. The kernel ‘1.0 * RBF(1.0)’ is
used. The kernels hyper-parameters are optimized during fitting of the Gaussian
process regressor by maximizing the log-marginal-likelihood. Regression trees are
dependent from classification decision trees. As in the classification setting, the
training phase takes as input the feature vector X and target variable y, only that
in this case y is expected to have floating point values instead of integer values. A
popular neural network algorithm is the multi-layer perceptron that trains using
back propagation with no activation function in the output layer. It uses the square
error as the loss function, and the output is a set of continuous values.

Machine Learning Training/Validation Overview We evaluate all features
individually on the machine learning algorithms. To evaluate the machine learning
algorithms we selected the common 10-fold cross-validated for dividing the data
set in separate training and validation sets, while each element is once used for
validation.
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2.8.3 Aggregated Crowd Density Estimation Results

In this sub-section the results of the machine learning validation based on the
previously defined methods are presented, including the description of the results
of the visit period method for all machine learning algorithms, the detailed linear
regression result description of individual days. We divide the presentation of the
crowd density estimation results into the WiFi based results and the Bluetooth
based results. The following described results of the methods are shown in Table 2.3.
Firstly, we discuss the results of the reference method ‘visit periods’ (WiFi) and
present them in the order of the ascending error. The error has to be seen in the
context of the average crowd density of 0.22 during the experiment. The kernel
ridge regression has a mean absolute error (MAE) of 0.1070 [unit of people per
m2]. The linear regression has a MAE of 0.0112. The decision tree regression has a
MAE of 0.0155 The support vector regression has a MAE of 0.0190. The gaussian
process regression has a MAE of 0.0287. The neural network based regression has
a MAE of 0.0445. The median error (MMAE) is lower for all algorithms which is
caused by the fact that higher crowd densities are predominating and having a
better statistical expressiveness.
Secondly, we present the results of the proposed time window based methods (WiFi)
in the order of the ascending error for the linear regression algorithm. The method
‘unique WiFi devices per 2.5 minute time window’ (‘unique 2.5 min WiFi’) has the
lowest estimation error of 0.0115 beyond the reference method. Followed by the
same method with increasing time windows with increasing MAE of up to 0.0153.
The method ‘dynamic’ follows with MAE of 0.0196–0.0199 for all time windows.
The method ‘scan’ follows in reverse order of the time window size ranging from
MAE 0.0393 for ‘scan 30 min’ to MAE 0.0497 for ‘scan 2.5 min’. Other machine
learning algorithms produce different results. The kernel ridge regression algorithms
results in larger MAE, while the distribution of the errors between time windows
is different than with linear regression. The support vector regression algorithms
results in slightly smaller MAE than linear regression for many of the methods.
The gaussian process regression algorithm results in overall higher MAE than linear
regression. The regression decision trees algorithm in slightly higher MAE with
a minor number of methods having a lower MAE than linear regression. The
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neural network based regression algorithm results in overall higher MAE than
linear regression, which is caused by the disadvantage of neural networks with an
insufficient number of training elements.
Thirdly, we discuss the results of the reference method ‘visit periods’ (Bluetooth)
and present them in the order of the ascending error. The support vector regression
has a mean absolute error (MAE) of 0.0463 [unit of people per m2]. The gaussian
process regression has a MAE of 0.0468. The neural network based regression
has a MAE of 0.0497. The linear regression has a MAE of 0.0550. The decision
tree regression has a MAE of 0.0554 The kernel ridge regression has a MAE of
0.1597. The median error (MMAE) is lower for all algorithms which is caused
by the fact that higher crowd densities are predominating and having a better
statistical expressiveness.
Fourthly, we present the results of the proposed time window based methods
(Bluetooth) in the order of the ascending error for the linear regression algorithm.
The method ‘unique Bluetooth devices per 30 minute time window’ (‘unique 30
min Bluetooth’) has the lowest estimation error of 0.0456, even lower than the
reference method. Followed by the same method with decreasing time windows
with increasing MAE of up to 0.0488. The method ‘scan’ follows with a MAE of
0.0456 for ‘scan 2.5 min’, followed by the remaining time windows in reversed order.
With all machine learning algorithms the Bluetooth methods result in higher MAE
than WiFi based methods.
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Linear Regression Analysis The linear regression algorithm results in the
second best MAE rates over all machine learning algorithms. The advantage of
linear regression -when a linear connection is existing- is the easily comprehensible
conversion from input data to output data. In this paragraph we discuss the results
of the linear regression algorithms for multiple experiment days. Linear regression
with the method ‘visit periods’ (WiFi) has a coefficient of 1.32 based on seven
experiment days including different private or business backgrounds of visitors.
The coefficient of 1.32 equals to 76 % of visitors being equipped with WiFi enabled
devices. The method ‘unique 10 min (WiFi)’ has a coefficient of 0.58, which means
every device is discovered 1.7 times within 10 minutes independent of the actual
visit duration. The feature ‘dynamic 10 min (WiFi)’ has a coefficient of 1.09. The
feature ‘scan 10 min (WiFi)’ has a coefficient of 0.0061.
The resulting linear regression Figure 2.7 shows the resulting connection between
the ground truth crowd density and the estimated crowd density for the individ-
ual experiment days. The reference method ‘visit periods (WiFi)’ is shown in
Figure 2.7a), the ‘unique 10 min (WiFi)’ method in Figure 2.7b), the ‘dynamic
10 min (WiFi)’ method in Figure 2.7c), and the ‘scan 10 min (WiFi)’ method in
Figure 2.7d). We see that the variation of the estimation increases proportionally
with increasing crowd density for all methods. The method ‘unique 10 min (WiFi)’
has very similar ‘visit periods (WiFi)’ (see Figure 2.7a and b). The variation in
the estimation is significantly larger with method ‘dynamic 10 min (WiFi)’ (see
Figure 2.7c) across all experiment days, while a linear relationship is still observ-
able. The method ‘scans 10 min (WiFi)’ performs significantly worse with linear
regression (see Table 2.3) as linear relationship is not observable (see Figure 2.7d),
which is also reinforced by the fact that other methods perform better with the
method ‘scan’, such as the decision tree regression algorithm with a MAE of 0.0203
compared to the linear regression MAE of 0.0427 (see Table 2.3).
Figure 2.8 is showing the resulting estimated crowd density time series by the
method ‘unique 10 min (WiFi)’ along with the ground truth for each experiment
day. We observe a reliable estimation even when the crowd density fluctuates over
a short period of time. Such fluctuations are especially observable on experiment
day 6 and experiment day 7 (see Figure 2.8f and g).
Differently to WiFi methods, the number of detected Bluetooth fluctuates heavily
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over time. Linear regression with the feature ‘visit periods (Bluetooth)’ has a
coefficient of 6.67 based on seven experiment days during different crowd densities
including different private or business backgrounds of visitors. The method ‘unique
10 min (Bluetooth)’ has a coefficient of 3.09. The method ‘scan 10 min (Bluetooth)’
has a coefficient of 0.11.
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Linear regression coefficient: 0.0061
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Figure 2.7. Linear regression algorithm results showing the relation between the ground
truth crowd density and the estimated crowd density for the individual experiment days.
The regression results are shown for a) the reference method ‘visit periods (WiFi)’, b) the
‘unique 10 min (WiFi)’ method, c) the ‘dynamic 10 min (WiFi)’ method, and d) the ‘scan
10 min (WiFi)’ method.
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Figure 2.8. Time series of the estimated crowd density during seven days of the experi-
ment. Includes ground truth annotation values. The estimation results are based on the
selected linear regression algorithm with the method ‘unique 10 min (WiFi)’.

2.8.4 Methods and Results of Local Crowd Density Es-
timation

In the previous section we demonstrated the feasibility of the aggregated crowd
density estimation with evaluations based on the area-wide ground truth. In
this section we describe the transfer of the methods to the local crowd density
estimation, including the definition of the local crowd density scale, the Voronoi
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cell binning, the method, the calibration approach of the local crowd density based
on the global crowd density, the calibrations coefficients, and finally describe the
qualitative results for local crowd density estimation visualization together with
visual ground truth.
As stated before, the ‘local’ crowd density scale is referring to the area of one
scanning zone and still represents the averaged number of people per square meter
but within a much smaller scale of in average 180m2, which corresponds to a
circular area with a radius of just 7.5 m or to a quadratic area with a width of
just 13.5 m. This scale is useful when analyzing the distribution of the crowd
density within a two-dimensional visualization, which is essential when analyzing
which regions are more densely packed than others. The scanners are carefully
set up to cover the whole area without leaving ‘dead-zones’ in scanning of the
devices. Knowledge has been collected from previous experiments and brought
into the setup of the scanners. Conventional opportunistic smartphone signals
(other wireless signals are stronger and need to be rejected by pre-processing) are
detected within the proximity of one scanner with more infrequent detections by
neighbored scanners. We define the region of each scanner as its Voronoi cell. A
Voronoi cell has the attribute that each point within the cell is closer to its scanner
than to any other scanner. Essentially, the scanner setup defines the scale of the
crowd density measurement. However, decreasing the scanner displacement and
therefore decreasing the scanner cell size is not feasible because of the impact of
signal attenuations induced by the crowd and not only due to the distance.
We transfer the previous aggregated method ‘unique scan’ to the local method ‘local
unique scan’. We rely on the WiFi methods which have been previously proven more
reliable in this scenario. Randomized/dynamic MAC addresses are rejected and
not used for this method. For each 10 second interval the scans are retrieved from
the data set with the selection parameter of the observing time window of t−2.5...t0,
t−5...t0, t−10...t0, t−20...t0, and t−30...t0. For the local crowd density estimation
we select the scans by each scanner identifier from the base separately. A set is
created with all hashed MAC addresses occurring in the observed time window
for. Finally, the size of the set represents the number of unique MAC addresses
and denotes one value within the time series of one observing time window. The
same procedure is repeated for each time window and for each scanner. When
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data is selected by one scanner this happens in isolation to scans of the same
device identifiers by other scanners. This means that a roaming visitor device
can be detected by multiple scanners within one time window and support the
crowd density estimation within multiple cells. This is a correct assumption as
roaming visitors also contribute to the local crowd density for a short period of
time. The probability of detecting a roaming visitor within a cell is increasing
with the duration spent within a cell. This assumption is supported by the large
data set and the large number of detected devices. We choose the linear regression
algorithm for the local crowd density estimation. To determine the coefficient for
local crowd density estimation given the aggregated crowd density ground truth we
rely on the previous results and derive the coefficient based on the averaged local
method values over all cells which is compared to the aggregated crowd density.
The resulting linear regression coefficients for the method ‘local unique scan’ are
shown in Table 2.4 for multiple time windows. Based on the extracted coefficients
the method ‘local unique scan’ is calibrated and used for further visualization of
the local crowd density.

Table 2.4. Coefficient values for different time windows based on supervised linear
regression machine learning validation and the ‘unique’ features for local Voronoi cell based
crowd density estimation.

Time Window Coefficient ‘unique’

2.5 min 1.4788
5.0 min 1.0819

10.0 min 0.0657
20.0 min 0.4907
30.0 min 0.3749

In Figure 2.9 and Figure 2.10 we present snapshots of the local crowd density scale
estimation as heat-map visualizations. Blue cells denote low crowd densities, white
cells denote average crowd densities, and red cells denote high crowd densities. The
visualization includes the scanner locations, the objects of interest, the Voronoi
cell borders, and obstructions such as walls. The series of heat-maps represent
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the filling phase and stagnant phase during the experiment day 2 which is also
presented as the time series of the aggregated crowd density in Figure 2.8b. The
filling phase is consisting of the first four hours of the business day 2. The crowd
density stagnates at around 10 am (UTC). Then small crowd density displacements
are observable over time. Spatially, the highest crowd density is observed within the
center of the area where an exhibit (world premiere show car) was located which
attracted many visitors at a time and led to a intermittent local crowd density
of up to 0.45 people per square meter, which is twice as much as the aggregated
crowd density of 0.22 during this time.
Next to the heat-map we present the ground truth images at the according point in
time. Especially at the center of the ground truth images we can observe that the
area around the world premiere show car attracts many visitors which aligns with
the heat-map visualizations. The left, top, and right border of the area are hard to
perceive in the small images ground truth images. Exact analysis together with
knowledge gathered during the event affirms the given crowd density distribution
shown in the heat-maps.
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2.8.5 Methods and Results of Local Crowd Movement
Estimation

In the previous sections we demonstrated the feasibility of the aggregated and local
crowd density estimation scale. In this section we describe the crowd movement
approach, the Voronoi cell binning, and finally present the qualitative results for
local crowd movement estimation by visualization with visual ground truth.
In general, the ‘crowd movement’ refers to the average velocity of people within a
crowd. In related work the crowd movement has been determined as an import
crowd condition measurements as critical crowd movement levels have been demon-
strated where the crowd movement begins to decrease as the crowd density rises
to a critical level [33]. We present the local crowd movement as a value being a
relative indicator within the experiment. This is based on the fact of insufficient
ground truth camera angles to reliably determine the visitor path in all areas due
to intermittent obstruction of visitors in the visual ground truth video stream. The
evaluation would not resilient regarding the ground truth. However, we present
the crowd movement visualizations and qualitative results compared to best-effort
crowd movement ground truth extractions.
The fundamentals of the crowd movement method is similar to the local crowd
density estimation in subsection 2.8.4, including the Voronoi cell binning and the
time window based approach. We propose a method ‘unique once assign’ for the
crowd movement estimation by assigning a device within a time window once to
a single cell. Randomized/dynamic MAC addresses are rejected and not used for
this method. For each 10 second interval the scans are retrieved from the data set
with the selection parameter of the observing time window. For the local crowd
movement estimation we select the scans by each scanner identifier from the data
base separately. The method then calculates the number of scans of each scanner.
Each device is then assigned to the cell with the highest count of scans. This process
is repeated for all devices within this time window. Finally, the assigned devices per
cell are accumulated for each cell. Differently to the previous method ‘local unique
scan’ each device contributes only exactly once to a scanner cell and not to multiple
cells while the user is roaming through the area. When a visitor is continuously
roaming this could be any cell within the path. When a visitor is standing -and
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scans are accumulated- during the time window the probability is increased of the
local scanner cell to be selected by the algorithm. The methods builds on the
assumption of uniformly distributed WiFi probe requests and Bluetooth inquiry
responses during the visit. Having a big data set containing thousands of device
scans in parallel, the method also builds on the assumption that different visitors
will be scanned by different scanners during their visit event when having the same
path.
In Figure 2.11 we present snap-shots of the local crowd movement estimation as heat-
map visualizations. Blue cells denote high crowd flow, white cells denote average
crowd flow, and red cells denote low crowd flow. The visualization includes the
scanner locations, the objects of interest, the Voronoi cell borders, and obstructions
such as walls. The series of heat-maps represent the same points in time as in
Figure 2.9 and Figure 2.10. It is observable that the crowd movement is changing
over time. Spatially, the lowest crowd flow is observed within the center of the
area where an exhibit (world premiere show car) was located which attracted
many visitors at a time. Along the heat-maps we present the ground truth images
at the according point in time. At the center of the ground truth images we
can observe that the area around the world premiere show car attracts standing
visitors -contributing to low crowd movement- which aligns with the heat-map
visualizations.
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Figure 2.9. Heat-map visualization of the crowd density based on the local crowd density
estimation method. Snap-shots (density evolves over 10 minutes) of the crowd density
is shown at 07:00am UTC, 08:00am, and 09:00am during the filing phase of the second
experiment day. See Figure 2.8b for the aggregated crowd density during the same day.
Red circles in ground truth image show manual human annotations for machine learning
training.
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Figure 2.10. Heat-map visualization of the crowd density based on the local crowd density
estimation method. Snap-shots (density evolves over 10 minutes) of the crowd density is
shown at 10:00am, 11:00am, and 12:00am during the stagnant phase during the second
experiment day. Red circles in ground truth image show manual human annotations for
machine learning training. See Figure 2.8b for the aggregated crowd density during the
same day.
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Figure 2.11. Heat-map visualization of the crowd movement estimation within cells of
the meshed scanners. Visualized for multiple points in time at 07:00am UTC, 08:00am,
09:00am, 10:00am, 11:00am and 12:00am during the filing phase. The crowd movement
level varies between the daily range values 0.0 and 1.0 along the scanner cells.
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2.8.6 Methods and Results of Contextual Crowd Con-
dition Anomaly Detection

In the previous section we presented the crowd density estimation methods and
crowd movement methods. In this section we present contextual crowd condition
anomaly detection, including methods and qualitative evaluations based on two sig-
nificant events (visit of the German chancellor Dr. Merkel and the press conference)
during the experiment.
Crowd condition estimation and crowd movement estimation is suitable for contin-
uous real-time and online monitoring. However, towards full insight into the crowd
condition besides absolute crowd density and crowd movement the temporal course
is important. For example, a high crowd density is necessary for a critical situation
but not compulsory. We define the contextual monitoring of the crowd condition
as monitoring the change of measurements over time. A potential finding in the
course of the crowd measurements are called anomalies. Anomalies are divergences
from the normal/usual course in time. An anomaly can be a rapid increase or
decrease in the crowd density, changes in the crowd flow or other changes from the
crowd behavior. We present methods for crowd condition anomaly detection. We
do not provide a summary on general anomaly detection categories such as point
anomalies, contextual anomalies or collective anomalies used for system intrusion
detection, fraud detection or fault/damage detection, i.e. surveyed by by Chandola
et al. [19]. We rather present the central ideas of time sequence based contextual
crowd condition anomaly detection. Related work on crowd condition anomaly is
non-existent for wireless signal sensing and is limited to computer vision based
crowd condition anomaly detection as in [65].
The methods rely on the time window based concept introduced earlier. The
proposed anomaly detection algorithm relies on detecting rapid variations of a short
time window compared to a longer overlapping time window. We define a short
time window as a duration of 10 minutes motivated by the observation of detecting
over 80 % of wireless enabled devices within a 10 minute time window [81]. We
define the overlapping time window as a duration of 60 minutes. The 60 minute
spanning time window is motivated by the background knowledge of anomalies.
In our experimental case the anomalies are short term anomalies with a duration
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well below 60 minutes. Anomalies lasting longer need a longer spanning time
window. However, the thorough analysis of time window sizes is out of the scope
of this thesis due to the lack of the existence of anomalies of different lengths
during the experiment. The algorithms is defined as follows: 1. the rolling mean
(time window of 60 minutes) is applied to the crowd condition measurements, 2.
subtracting the small 10 minute window crowd condition measurements from the
previous overlapping 60 minute rolling mean crowd condition measurements. This
calculation is performed repeatedly for one minute sliding window steps.
We apply the proposed anomaly algorithm to multiple crowd condition measure-
ments - in addition to the crowd density measurement and crowd flow measurement.
The anomaly algorithm and the measurements are briefly described in the following
list:

• The anomaly measurement ‘divergence of unique devices’ at time t is defined as
the disparity between measurement ‘aggregated unique 10 min’ (t−5)...t+5) to
the measurement ‘aggregated unique 60 min’ (t−30)...t+30).

• The anomaly measurement ‘divergence of unique arrivals’ is defined as the
disparity between the number of arrivals (first occurrences) of unique device
identifiers to the number of arrivals within the last 60 minutes.

• The anomaly measurement ‘divergence of unique departures’ is defined as the
disparity between the number of departures (minimum of 10 minute time-out
since last observation) of unique device identifiers and the number of departures
within the last 60 minutes.

• The anomaly measurement ‘standard deviation of unique detections’ is defined
as the standard deviation of the measurement ‘aggregated unique 60 min’ at
time t.

• The anomaly measurement ‘standard deviation of unique arrivals’ is defined as
the standard deviation of the number of arrivals within the last 60 minutes at
time t.

• The anomaly measurement ‘standard deviation of unique departures’ is defined
as the standard deviation of the number of departures within the last 60 minutes
at time t.

The results of the applied anomaly algorithm is presented in Figure 2.12 and
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Figure 2.13. Two significant crowd condition anomalies happened during the exper-
iment days: one being a 15 minutes press conference and one being a 20 minutes
visit by the German chancellor Dr. Merkel.
In Figure 2.12 the press-conference is highlighted (from 9:00am to 9:15am UTC)
with a prior event preparation phase (i.e. area restructuring and spectators arrival)
and relieve phase (i.e. area restructuring, chancellor/staff departure, and spectators
departure). During the press-conference we observe peaks in all anomaly algorithm
measurements immediately before, during, or immediately after the event. As noted
before, automatic detection of such ‘peak’ events is straightforward with common
peak detection algorithms, however, a systematic evaluation is infeasible due to
the existence of just two proven crowd condition anomalies. The reliability of a
valid anomaly can be considered high because all anomaly algorithm measurements
show peaks.
In Figure 2.13 the visit of chancellor Dr. Merkel is highlighted (from 10:30am
to 10:50am UTC). During the visit of German chancellor Dr. Merkel we observe
peaks in anomaly algorithm measurements unique detections, unique departures
and standard deviation of unique departures. No peaks are monitored for the
anomaly algorithm measurements of delta unique arrivals, standard deviation
unique detections and standard deviation unique arrivals.
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Magnification

Figure 2.12. Highlighted contextual anomaly detection algorithm results showing the
event of the press conference. A contextual anomaly is defined as a temporal divergence
from normal/usual course of crowd condition measurements. Showing a high crowd density
during the event, fast arrivals before the event, fast departures after the event, and further
standard deviation indicators.
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2.9 Conclusions

In this chapter crowd condition estimation was demonstrated with wireless oppor-
tunistic scanning of crowd devices by stationary scanners. A meshed scanner setup
has been proposed and implemented in multiple large scale real-world experiments
in cooperation with a large German car manufacturer. Methods in combination
with supervised machine learning algorithms were presented for the crowd density
estimation. The approach was presented for the proposed WiFi based aggregated
crowd density estimation methods including the comparison with the reference
method and the time window based concept (important for the transfer to local
crowd density estimation) with varying time windows. The methods were evaluated
with the comprehensive data set and ground truth annotations extracted from video
based footage. Multiple methods and machine learning algorithms were compared.
The aggregated crowd density estimation with the best method resulted in a low
mean absolute error of just 0.0115 people per square meter. The methods were
transferred to the local crowd density estimation scale, including the definition of
the local crowd density scale, the Voronoi cell binning, the method, the calibration
approach of the local crowd density based on the global crowd density, the calibra-
tions coefficients, and finally presented the estimation results for local crowd density
estimation with visualizations and qualitatively evaluated with visual ground truth.
The approach of crowd movement estimation was demonstrated and results for
local crowd movement estimation were validated qualitatively by visualizations
and visual ground truth comparisons. Finally, contextual crowd condition anomaly
detection methods were proposed and could be successfully demonstrated based on
two significant events, the visit of the German chancellor Dr. Merkel and the large
car manufacturer press conference, during in the real-world environment.
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Figure 3.1. Thesis outline and wireless signal based crowd condition estimation scanning
ontology.
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3.1 Problem Statement

Knowing room occupancy levels (how many people are in a given room) is important
for a number of applications. Examples range from evacuation coordination in
emergency situations through the optimization of office space usage to energy
management. Given the fact that today WiFi can be found in nearly all buildings
and public spaces, using the disturbance that people cause, WiFi signals as a ‘virtual
sensor’ is an attractive approach for occupancy level estimation. The problem to
solve is to find an approach where the crowd is fully passive and no opportunistic
mobile signals sources are used, which means that no re-calibration is necessary on
potentially varying crowd devices in the future. However, WiFi signal analysis has
mostly been used for estimation of qualitative crowd density (which is associated
with strong variation in the signal strength) and for the detection of movement
(which cause characteristic temporal signal fluctuations, see related work below).
The estimation of the number of people in a small group (≤ 10) who is largely static
(e.g. working at their desks) in a shared space such as an office is a more difficult
problem as it is related to subtle, mostly static signal changes. To address this
problem we present a new sensing concept that applies machine-learning techniques
to appropriate features extracted from the Channel State Information (CSI) data.

3.2 Chapter Overview

In this chapter the approach of analyzing signals is presented based on stationary
scanners opportunistically sensing ambient WiFi access points and stationary
scanners sensing special purpose signal sources. The chapter includes related work,
the theoretical foundation of signal path loss and signal propagation properties,
signal analyzing methods, experiments, and results.
In section 3.5 a method is proposed for estimating the number of people present
within an exhibition hall by analyzing signals from over 80 opportunistic/ambient
wireless access points (not under own control). When looking at phenomenas that
are determined by a high degree of signal blockage (e.g. detecting a dense crowd)
much of the complexity can be ignored as the RSSI can be used for analysis. A
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method to estimate the fill level is presented and evaluated based on video based
ground truth information.
In section 3.6 a fingerprinting method is proposed for estimating the number of
people present in a room (e.g. in a shared office space) from signal-to-noise-ratio
(SNR) and signal phase (PHASE) data provided by the the IEEE 802.11n CSI
(Channel State Information). We apply random decision forests machine learning
to SNR and PHASE based features and show that the exact number of people can
be estimated with a precision of 0.67 and approximate occupancy level ranges with
a precision of 0.87 at an affordable cost. We evaluate our approach in two settings:
one small room (20 m2) with 0 to 2 and one medium (60 m2) office space with 0
to 8 people doing their work at desks as usual. Beyond determining maximum
recognition rates we systematically investigate the impact of different design choices
(antennas, features, fingerprint density) on system performance.

3.3 Related Work

First introduced by Woyach et al. [107] RSSI variations were empirically described
for objects moving between and in the vicinity of signal source and scanner in lab
experiments. They also identified that RSSI deviations at 2.4GHz are doubled
compared to 433MHz signals. Related experiments were performed in office floors
where the number of people where low, i.e. up to 4 subjects have been counted in a
150m2 and 500m2 [108] but focussing in passive localization of individuals. Other
related work concerns small spaces with single WiFi access points in short distance
to the people and counting or detecting presence of few people, i.e. with 16 sensors
in a 7x7m area [109], three rooms spanning 9x15m area [93] in contrast to crowd
condition estimation. More distant to the work presented in this chapter but also
building on signal attenuation and crowd awareness is done by Hiroi et al. [41].
They proposed a RSSI crowd compensation scheme for indoor localization and
demonstrated this with 40 Bluetooth low energy (BLE) scanners and 100 stationary
BLE tags while 100 people were present. Their localization method considering the
crowd density yielded a 59.8% higher accuracy than a simple positioning method
without compensation. Related work further away is indoor localization where

67



3 Crowd Condition Estimation with Stationary Sensors Scanning Stationary Devices

known access point locations are used for trilateration/fingerprinting. In that case,
access points are scanned by mobile devices.
Different sensing technologies have been proposed to estimate the occupancy level
of spaces. These include surveillance cameras [25], thermal sensors [94], pressure
sensors [22], acoustic sensors [49], and floor pressure sensors [69]. Compared to
most of the above sensing modalities WiFi signal analysis has the advantage of
requiring no extra hardware installation as WiFi is present in most spaces and
just the special drivers need to be installed and being less privacy intrusive than
computer vision or thermal cameras. Work so far includes strategies evaluating
subjects’ beacons (i.e. smart-phones) for crowd density estimation by collaborative
mobile sensors [100] by citywide mobile participatory sensors [101] or by stationary
sensors [102] based on device identifier and RSSI features. RSSI methods are
suitable for qualitative crowd density estimation, indoor localization and many
other interesting applications, but its limits arise when subtle signal variations due
to few people being present need to be measured. With respect to the more general
use of CSI Halperin et al. [37] published the enabling work on Channel State
Information (CSI) measurement which was intended for WiFi MIMO-transmission
optimizations.

3.4 Signal Path Loss and Signal Propagation

Wireless signal path loss occurs in free space and when signals interact with obsta-
cles. Such obstacles can be static structures, or transient obstacles such as human
bodies. Signal path loss for free space and static structures is well understood and
is theoretically described with a formula depending on the distance and material
the signal is propagating through. In an ideal environment the free-space signal
propagation loss Lp [9] is be given by

Lp = 20 log10(f) + 10 n log10(d) 10−3 − 27.55[dB].

Where f=2400 MHz) is the signal frequency, n is the path loss exponent
(nfreespace = 2) and d [meter] is the distance between the source and sensor.
Phillips et al. [78] analyzed the prediction of the wireless path loss towards wire-
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less signal coverage mapping methods. While signal coverage mapping methods
predominantly consider static structures (walls, ceilings, columns, and furniture
etc.) they also demonstrated the influence of transient obstacles. They excellently
described the situation of path loss prediction:

“Actually, things are a bit more complicated than this. Because an antenna
radiates its signal simultaneously in all directions, the signal can take many
paths to the receiver. Each path may interact with the environment in a
chaotically different way and arrive at the receiver delayed by some amount.
If these delayed signals are in phase with one another, then they produce
constructive interference. If they are out of phase with one another, they
produce destructive interference. The spread of this delay is called the delay
spread and the resulting attenuation is called multi-path fading. When
this attenuation is caused by large unmoving obstacles, it is referred to as
shadowing, slow-fading, or large-scale fading and when it is caused by small
transient obstacles, and varies with time, it is called scattering, fast fading,
or small scale fading. When the signals interact with the environment, they
can be delayed by reflections, or frequency-shifted by diffractions. Mobile
transceivers also incur frequency shift due to Doppler spreading. Frequency
shifts and delay spread both contribute to small scale fading.” [78]

Path loss and signal propagation is a key aspect in wireless crowd condition estima-
tion with Bluetooth and WiFi scanning. Unfortunately, the modeling approach has
its limitations as the location of opportunistic transceivers such as Bluetooth/WiFi
smartphones is unknown and the people are moving. In most applications, the
additional error of small scale signal fading is computed ‘stochastically’ using
a probability distribution (often Raleigh, although Ricean and m-Nakagami are
popular). Phillips et al. [78] surveyed wireless signal path loss models and described
large-scale signal fading (large unmoving obstacles) and small scale signal fading
(small transient obstacles varying with time). They state that exhaustive Models
cannot, without perfect knowledge of the environment, be expected to predict the
small-scale fast fading due to destructive interference from multi-path effects and
small scatterers (which varies with time t). Philips et al. state that general machine
learning approaches in the domain of path loss modeling and coverage mapping is
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currently unexplored. The work in this thesis chapter is going into the direction of
the machine learning approach in the domain of signal path loss abstract modeling.

3.5 Opportunistic Scanning of Ambient Static Devices

Figure 3.2. Symbolic illustration of opportunistically scanning ambient stationary devices
(not under control) with people influencing the wireless signal properties.

In this section an approach for estimating the crowd condition based on analyzing
the received signal strengths of static and opportunistic common WiFi access points
is presented. A method is proposed for estimating the number of people present
within an exhibition hall by analyzing signals from over 80 opportunistic/ambient
wireless access points (not under own control). When looking at phenomena that
are determined by high degree of signal blockage (e.g. detecting a dense crowd)
much of the complexity can be ignored as the RSSI can be used for analysis. The
method is evaluated based on video based ground truth information. Finally, the
results of the proposed method is compared to the reference method ‘visit periods’
of opportunistic crowd devices as described in the previous chapter subsection 2.8.2.

3.5.1 CeBIT Experiment Context and Data Set
The scientific exploitation of the experiment goes far beyond the common scientific
laboratory experiment scale. The experiment covers a large number of ambient
access points (nature of a technology exhibition) and a mass of visitors. The
experiment covered all days of the exhibition with different number of visitors. The
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experimental environment includes simultaneous scanning of WiFi access point
signal strengths. The experimental environment also includes ground truth with
accurate manual human annotations extracted from the ground truth video stream.
The experiments exceed previous experiments in scale, and in scientific evaluation
complexity (ground truth evaluation with machine learning).

The experiment was performed during one of the largest computer exhibitions
worldwide in the year of 2014. The trade fair ‘CeBIT’ is held each year on the
Hannover fairground, the world’s largest fairground, in Hannover, Germany. The
main audience of the exhibition are professional visitors attending during the 5
opening days of the exhibition. The exhibition attracted 210 000 visitors.

In cooperation with the Messe AG organizing committee a setup of WiFi scanners
in hall 9 for the scientific experiment during the exhibition was coordinated. We
performed an experiment during four sequential business days and continuously
scanned the RSSI of 80 opportunistic stationary access points. The organizers and
a majority of the exhibitors are setting up individual access points. We deployed 12
stationary scanners throughout the boundary of the exhibition hall (see Figure 3.3).
The scanning unit is identically to the description in section 2.7. The scanners
were mounted at 10 meters heights along the wall. The scan units were equipped
with directional WiFi antennas directed to the area in front. Ground truth was
collected with video cameras and manual annotations. We selected a thorough
camera coverage setup where multiple cameras cover the whole hall. Annotations
were done every 30 minutes in time for each video stream. Resulting in a total of
768 manually annotated images with up to 2500 annotated people per frame.

3.5.2 Methods and Results

The approach of opportunistically scanning common wireless access points is based
on the continuous signal emissions. Access points continuously send ‘beacon frames’
broadcasting the presence and information about the network. A beacon frame
contains the timestamp for clock synchronization between stations, beacon interval,
and network capability information such as the human readable WiFi Service set
identifier (SSID). WiFi beacon frames are known as WiFi management frames,
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handling roaming of clients between wireless access points and presenting the
existence of the wireless network to the user.
Along with each beacon transmission the received signal strength indicator (RSSI)
is obtained by the scanner unit (see section 2.7). The proposed method is based on
the connection between the absolute RSSI and the number of people being present
within the hall. The values are extracted by four sequential steps including signal
smoothing, normalization, and the aggregation of multiple scanners. Firstly, the
rolling average over a window size of 6 minutes (with a scan interval of 40 seconds
this equals to 10 samples per access point) is calculated to smooth the signal.
Secondly, the signal is normalized according to the reference signal strength at the
empty crowd state. The empty crowd state was recognized at night (all access
points were continuously enabled during the day and night time). For each pair of
access points and scanners the RSSI is normalized to the value of 1.0. This step
compensates different signal powers of the access points and different (unknown)
distances between access point and scanner. Thirdly, all values are aggregated by
each scanner by rolling window averaging the value at each point in time over all
access points. Figure 3.4 gives an overview about the data processing in the first
two steps.
To evaluate the relationship between the absolute RSSI and the number of people
being present, the machine learning algorithm linear regression with 10-fold cross-
validation was applied to the measurements described previously along with the
extracted ground truth. The linear regression was trained on each unique oppor-
tunistic SSID (see step 3 in Figure 3.4). As each access point is representing the
crowd influence within its own region, the resulting estimated number of people is
aggregated by all 80 linear regression estimations resulting in the estimation shown
in step 4 in Figure 3.4. This process is repeated for each of the four experiment
days. The regression training and validation is performed for each individual day
and for all days together, to identify deviation between days and to evaluate a
universal estimator enabling training and validation on different days.
The evaluation results in a mean absolute error of 208 to 217 people when trained
on individual days and 263 people when trained on all days. The mean absolute
error rates have to be seen in context of in average 1700 (up to 2500) people being
present.
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We compared the results of this method with the reference method of scanning
opportunistic crowd devices and the method described in subsection 2.8.2. For the
compared method the mean absolute error is between 167 and 199 people being
present. The proposed method underperforms the reference method. However, the
mean absolute errors are within the same magnitude and are not significantly worse
compared to the absolute number of people being present. The proposed method
on the other hand is fully independent of variations of the scanned crowd devices.

Table 3.1. Evaluation results of estimating the number of people within the exhibition
hall based on opportunistic RSSI measurements of 80 access points. The results are based
on machine learning evaluation with the linear regression algorithm and 10-fold cross
validation.

Method Day Ground Truth Estimation Results

People
Count
(Mean)

People
Count
(Median)

Absolute
Error
(Mean)

Absolute
Error
(Median)

Ambient static
access point signals

all 1696 1905 263 207
1 1428 1669 217 213
2 1590 1769 208 167
3 1802 2116 210 188
4 1945 2318 212 151

Crowd opportunistic
signals

all 1696 1905 223 190
1 1428 1669 167 134
2 1590 1769 199 187
3 1802 2116 187 153
4 1945 2318 186 175
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Figure 3.4. Data transformation process and the estimation results of number of people
being present within the exhibition hall visualized as time series. The data processing and
estimations contain four sequential steps including (1) RSSI signal collection by 12 WiFi
scanners, (2) signal smoothing and normalization, (3) machine learning based on ground
truth, and (4) the area-wide aggregation by combining 80 estimation results from each
access point signal.
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3.6 Scanning of Special Purpose Devices

In this section an approach for estimating the number of people within a small
shared office space is presented. The main contributions are a method to estimate
the exact number of people in an office room based on measuring WiFi Channel
State Information (CSI) properties, evaluate different types of antenna setups,
and determine whether a complex antenna setup is improving the estimation
results compared to a single antenna setup in small scale and low number of
people scenarios. The results are compared to the approach of RSSI sensing.
Two experimental evaluations were performed based on a small office room and
a medium-sized shared office space. The interaction of WiFi signals with the
environment is a complex process that involves absorption, reflections (multi-path)
and a variety of wave specific effects (refraction, interference etc.). When looking
at phenomena that are determined by high degree of signal blockage (e.g. detecting
a dense crowd) much of the complexity can be ignored as the received signal
strength (given by RSSI) can be used for analysis. However, when considering
subtle influences caused by a small number of largely static people a more complex
metric is needed. In the IEEE 802.11n standard such a metric is provided by
Channel State Information (CSI, [44, 37]) that captures signal strength, signal
to noise ratio, and phase information for OFDM (Orthogonal Frequency Division
Multiplexing) subcarriers and between each pair of transmit-receive antennas. It
has originally been defined to allow the sender to improve the wireless link via
transmit beam-forming [44].

3.6.1 DFKI Experimental Environment and Hardware

A sensing unit was built based on a INTEL NUC mini PC running Linux with
a wireless Intel 5300 mini-PCI card with Multi-Input-Multiple-Output (MIMO)
multi antenna support. The wireless card was selected to support a custom driver
to access the signal to noise and signal phase measurements normally only used by
internal WiFi management procedures [37]. The sensing unit was customized with
external antenna connections specifically for the experimental setups. One directly
attached external omni-directional antenna and two displaced directional antennas
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Figure 3.5. WiFi signals are influenced by two effects: blocking of the line of sight and
by multi-path effects due to objects as well as human bodies. A radio signal arrives at the
receiver through different paths. The challenge is to measure and learn from such transient
signal variations caused by people being present and infer the number of people.

were connected (see Figure 3.6). The setup was implemented to continuously
transfer data at 200 millisecond intervals. The retrieval of CSI measurements is
relying on active data transmission on the wireless connection. As the special setup
had the primary purpose of sensing, artificial data was transferred over the link.
However, future scenarios are expected to rely on common hardware and common
data transmissions.
For the small (20m2) and medium-sized (60m2) office environment the antennas
were setup carefully. In the small office 0, 1, or 2 people were present at their
designated desks. The sensing antennas were placed together with the directional
antennas on one side of the room. The directional antennas were displaced by 1
meter to the side of the central omni-directional antenna. The directional antennas
were directed towards the seat position at the given desk. A common MIMO
access point served as the wireless signal emitter. The signal emitter was placed on
the opposite side of the room with two displaced external antennas. The emitter
antennas were placed according to the desk to be in the line of sight between signal
emitter and sensor antenna.
In the medium office space 0 to 8 people were present at their desks. Four desks
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were setup to face four other desks in the center of the room. The sensor antennas
were placed at one side of the room. The directional sensor antennas were displaced
sideways to create a line of sight through the desk seat position with the wireless
emitter antennas on the opposite of the room (see illustration in Figure 3.5).

Figure 3.6. Sensing unit hardware for scanning a special purpose connection-oriented
wireless signal source. A modified Intel ‘Next Unit of Computing’ (NUC) small form factor
mini computing unit with embedded multi-antenna capable miniPCI WiFi card (Intel 5300)
compatible for channel state information (CSI) scanning. CSI was originally intended for
MIMO-WiFi channel monitoring for bandwidth optimization.

3.6.2 Methods
The proposed method is based on learning the signal properties over time. Firstly,
a varying number of people being present contributes towards learning the exact
count of people currently being present. Secondly, variations induced by different
people and by different occupied desks is contributing towards learning the exact
count of people. This approach is different to the signal fingerprinting approach in
WiFi based indoor localization, but relies on creating and learning fingerprints in
a changing environment and the estimation result is the number of people being
present.
To model the complex process of the interaction of WiFi signals with the en-
vironment the method is extended beyond RSSI and based on the WiFi CSI
measurements including signal to noise ratio (SNR) and the relative signal phase
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difference (PHASE). The SNR is reflecting the relationship between the signal
and the noise. As the signal power is continuous and the setup of the antenna is
static, the impact of the measurement is due to noise induced to signal obstructing
objects in the environment. As objects such as furniture and computer hardware
is static, the change in signal noise is due to human bodies. Wireless signal noise
is also induced by other wireless signals. However, within multiple weeks of the
experiment such variations are assumed to be learned by the classifier to not be
connected to the number of people currently being present. Similar argumentation
is valid for PHASE measurements. The SNR is extracted for each pair of sender
and sensor antenna (in total six antenna combinations). The absolute wireless
signal phase measurement is infeasible as the sender and receiver must be perfectly
synchronized. Unfortunately, commercial WiFi devices have non-negligible carrier
frequency offsets. Nevertheless, we can identify and calculate the signal phase
difference by the two signal streams emitted by both sender antennas synchronously.
The signal phase difference is extracted for each sensor antenna (two measurements).
The method relies on the time windowing approach with a time window size of one
second to allow real-time estimations even when fast fluctuations in the number
of people occurs. The method calculates absolute and relative signal properties
reflecting the long term (absolute) and short term (variations) of the signal. Based
on the raw SNR measurement the proposed method is calculating the properties of
sequential measurements within one window. We define the properties as the mean
SNR value, the variance SNR value, the minimum SNR and maximum SNR value
within a one second window. Similarly, based on the PHASE the signal properties
are defined as the PHASE mean, the PHASE variance, the PHASE minimum,
and the PHASE maximum within a one second window. The signal property
computation is repeated for each of the 30 accessible WiFi signal sub-carriers
(base frequencies within the frequency band). Multiple frequencies with small
variations increase the feature dimensions and allow the classifier to learn from
small variations based on different frequencies at the exact same time.
To learn fingerprints of multiple extracted properties from the signals the machine
learning classification principle is selected as no direct relationship between the
fingerprints is expected to be suitable for a regression approach. The machine
learning ensemble algorithm ‘random decision forests’ was selected being able to
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handle multiple dimensions and a strong variation in machine learning features very
well. The machine learning algorithm was trained and validated with the common
10-fold cross-validation. As stated in the previous chapter, collecting ground truth
is a crucial step for supervised machine learning and to thoroughly evaluate the
classification estimates. The raw ground truth was collected by a video camera
covering the room. The video stream was then manually annotated by students at
each 5 seconds of the video stream with the exact position of each person and the
derived true number of people.
The following sub-section describes the detailed application of the machine learning
process towards answering the research questions.

3.6.3 Experimental Validation and Aims
Besides estimating the number of people being present within an office, the exper-
imental validation includes multiple aims. The aims are briefly described in the
following list.

• To evaluate the surplus value of the CSI measurements the proposed method
is compared to the previously presented method based on RSSI measurements
towards estimating the exact number of people being present within a room.

• A comparison is performed between a pure statistical knowledge about the
number of people being present at different times (basic reference method) and
the estimated number of people being present with the proposed method.

• Different configurations of the antenna setups are compared to evaluate the
advantage of a complex antenna setup over a simpler setup. This has the aim
to assess the cost of the setup compared to the estimation result. A simple
setup has the advantage to be implemented into future common access points
without the need for specific external antenna setups according to the line of
sight situation of people being present. One scenario includes the evaluation of a
single omni-directional antenna, similar to an antenna in common access points.
Another scenario includes the evaluation of two carefully installed directional
antennas targeted towards the expected locations (desk rows) of people being
present. Another scenario includes the evaluation of all three antennas including
one omni-directional plus two carefully positioned directional antennas.
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• The importance of individual signal measurements and the applied methods are
evaluated. The evaluation is based on using a sub-set of signal measurements
including the evaluation of different antenna scenarios. The signal measurements
SNR and PHASE are evaluated in connection with the time windowing methods
of the mean value, the standard deviation value, the minimum value, and the
maximum value.

• Depending on the application either an approximate estimation of the precise
number of people is required or a precise estimation of a range of people.
Towards comparing both scenarios the people count estimation is evaluated on
the precise number of 0, 1, 2, 3, 4, 5, 6, 7, or 8 persons and on the range of 0,
1–3, or 4–8 persons being present.

• It is assumed that the machine learning classifier training phase needs to learn
different permutations of people being present in the room. The impact of
relying only on a sub-set of permutations for training is analyzed. Ascending
fractions of the training data (‘fingerprints’) is selected for classifier training.

The experimental validations are applied to the small office space and to the medium
office space environment, while the focus is on RSSI/CSI comparison in the small
office scenario and the focus is on the other validation aims in the medium office
scenario. Due to the low number of permutations of people in the two person office
scenario a detailed evaluation is omitted. The used classification metrics are the
precision, recall, and f1-score (harmonic mean between precision and recall) defined
as follows, where ‘tp’ is the number of true positive estimations and ‘fp’ is the
number of false positives:

Precision = tp

tp + fp

Recall = tp

tp + fn

F1-Score = 2 · precision · recall
precision + recall
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Small-Sized Office Space

The small office space scenario (20m2) consisted of 0, 1, or 2 people being intermit-
tently present at their designated desks. The office routine was not interrupted
during the experiment but relied on different presence times of employees during the
day over two weeks. Due to different meetings and business trips the presence varied
during the experiment and different numbers of people could be detected. The
scenario was evaluated towards the validation of the surplus value of the CSI based
approach compared to the RSSI based approach (see section 3.5). As described
before the machine learning classifier ‘random decision forests’ was applied to the
set of CSI signal properties including all SNR and PHASE properties. Another
classifier was cross-validated with RSSI signal properties. The evaluation of the
proposed CSI approach results in a f1-score of 0.73 with equal precision and recall
(see Table 3.2). The evaluation of the traditional RSSI approach results in a inferior
f1-score of 0.50 and near equal precision and recall (see Table 3.2).

Table 3.2. Small office experiment results. SNR&PHASE scanner in comparison with
traditional RSSI scanner. Classification between 0, 1 or 2 persons in room.

Antennas Features Classification results

F1-Score Precision Recall

ALL RSSI 0.50 0.50 0.51

ALL SNR&PHASE 0.73 0.73 0.73

Medium-Sized Office Space

The medium-sized office space environment (60m2) consisted of 0, 1, 2, 3, 4, 5, 6,
7, or 8 people being intermittently present at their designated desks. The office
routine was not interrupted during the experiment but relied on different presence
times of employees during the day over two weeks. The shared office space is
a room where complementary science employees work at different weekdays and
during different hours of the day. Due to a large number of complementary science
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employees their presences varied during the experiment and different numbers of
people could be detected. If not otherwise declared the following validation is based
on the exact estimation of 0,1,2,3,4,5,6,7 or 8 people being present.
To evaluate the surplus value of the CSI measurements the proposed method is
compared to the previously presented method based on RSSI measurements towards
estimating the exact number of people being present within a room. A statistical
reference based on hourly knowledge of the occupation of the room is extracted
from the ground truth to be compared with the machine learning classifier. All
SNR and PHASE properties are extracted and cross-validated together with the
ground truth by the random decision tree forest classifier. The statistical reference
method resulted in a weak f1-score of 0.27 (with similar precision and recall). The
CSI approach has a f1-score of 0.67 (see Table 3.3). This means that the classifier
is superior to the statistical reference method, but still involves mis-interpretations
in the true count of people being present.
Different configurations of the antenna setups are compared to evaluate the advan-
tage of a complex antenna setup over a simpler setup. Firstly, the scenario with a
single omni-directional antenna was evaluated. The random decision tree forest
classifier was cross-validated with all extracted signal properties and resulted in a
f1-score of 0.61 (see Table 3.4). Secondly, the scenario with two directional antennas
was evaluated. The random decision tree forest classifier was cross-validated with
all extracted signal properties based on the given antenna and resulted in a f1-score
of 0.62. Thirdly, the scenario with three antennas (one omni-directional plus two
directional antennas) was evaluated. The random decision tree forest classifier was
cross-validated with all extracted signal properties based on the three antennas and
resulted in a f1-score of 0.67. Comparing the three antenna configurations a clear
benefit of using different antennas can be seen, while the two directional antennas
result in no significant precision enhancement compared to the single directional
antenna. This clearly denotes that the signal variations are not just relying in line
of sight obstructions but on signal multi-path signal interferences also detected
with a simple single antenna setup.
The importance of the individual signal properties is evaluated with the aim of
identifying the most important properties to the classifier. The signal measurements
SNR and PHASE are evaluated in connection with the time windowing methods
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of the mean value, the standard deviation value, the minimum value, and the
maximum value. The evaluation is based on the three antenna scenario. An
individual random decision tree forest classifier was cross-validated for each mean
SNR, maximum SNR, minimum SNR, and standard deviation SNR. The best
random decision tree forest classifier estimation f1-score 0.67 was detected alone
for each mean SNR and maximum SNR properties (see Table 3.5).
Depending on the application an approximate estimation of the precise number of
people is required or a precise estimation of a range of people is required. Towards
comparing both scenarios the people count estimation is evaluated on the precise
number of 0, 1, 2, 3, 4, 5, 6, 7, or 8 persons and on the range of 0, 1–3, or 4–8
persons being present. While the random decision tree forest classifier based on the
exact people count resulted in a f1-score of 0.67, the ranged people count resulted
in a f1-score of 0.87 (see Table 3.6). This demonstrated that the precision and
recall can be significantly improved on a ranged estimation of people.
It was assumed that the machine learning classifier training phase needs to learn a
significant amount of different permutations of people being present at different
locations in the room. The impact of relying only on a sub-set of permutations for
training is analyzed. Each sub-set of permutations includes each occurring class
(0–8 people) but for each class only a fraction of all occurring seat permutations
(fingerprints) are included. The number of permutations is defined by the binomial
coefficient

(n
k

)
, where n = 8 is the number of desk seat locations and k is the number

of people being present. For example class ‘0’ includes only one permutation: the
empty permutation. Class ‘1’ includes 8 permutations on all seats. Class ‘2’ includes
28 permutations, class ‘3’ includes 56 permutations and so on. Based on these
permutations multiple fractions are selected in 10% steps from 10% to 100% of
each of the class permutations. One random decision tree forest classifier was
cross-validated for each of the selected sub-sets based on the three antennas. In
Figure 3.7 the ordered sequence of classifications with sub-sets is presented for the
exact estimation of the number of people and the ranged estimation of the number
of people. It can be observed that with an increasing fraction of permutations the
estimation f1-score can be improved continuously. However, an increased number
of fractions used for classifier training requires an increased number of ground truth
labels is necessary for supervised learning which raises the complexity of training
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the classifier in a given environment.

Table 3.3. Medium office space experiment results on baseline statistical classifier (av-
erage hourly ground truth statistics). Ground truth is aggregated to hourly value and
classification based on overall learned hourly values. The Table presents the inferior results
of a simple hourly statistical evaluation which is due to fluctuations of office space fill level
over days.

Approach Classification Results

F1-Score Precision Recall

Baseline statistics 0.26 0.27 0.26

SNR&PHASE (all antennas) 0.67 0.66 0.66

Figure 3.7. Medium office space experiment results. Influence of the percentage of avail-
able fingerprints used for training the classifier. a) Classification between 0,1,2,3,4,5,6,7,8
persons. b) Classification on 0,1–3 and 4–8 persons. The Figure shows the importance of
learning sensor data not just at different fill levels but also on different positions of people.
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Table 3.4. Medium office space experiment results. Comparison between different antenna
setups and signal characteristics: 1 omni-directional antenna, 2 directional antennas, or 1
omni-directional + 2 directional antennas. Using multiple features on signal characteristics
of signal-to-noise (SNR) and signal phase (PHASE) measurements. Classification between
0,1,2,3,4,5,6,7 and 8 persons in shared office space.

Antennas Feature Sets Classification results

F1-Score Precision Recall

OMNI SNR 0.59 0.59 0.59

PHASE 0.51 0.52 0.52

SNR&PHASE 0.61 0.61 0.60

DIRECTIONAL SNR 0.61 0.61 0.61

PHASE 0.52 0.53 0.52

SNR&PHASE 0.62 0.62 0.62

ALL SNR 0.65 0.65 0.65

PHASE 0.58 0.58 0.57

SNR&PHASE 0.67 0.66 0.66
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Table 3.5. Medium office space experiment results. Comparison between different feature
methods with signal-to-noise-ratio (SNR) and signal phase (PHASE) with 1 omni-directional
+ 2 directional antennas. Classification between 0,1,2,3,4,5,6,7 and 8 persons in shared
office space.

Feature Method Classification results

F1-Score Precision Recall

SNR MEAN 0.67 0.67 0.67

STD 0.43 0.44 0.44

MIN 0.65 0.65 0.65

MAX 0.67 0.67 0.67

PHASE MEAN 0.55 0.56 0.55

STD 0.33 0.34 0.34

MIN 0.58 0.58 0.58

MAX 0.58 0.58 0.58

Table 3.6. Medium office space experiment results. Comparison to classification of the
ranges 0,1–3 and 4–8 persons in the shared office space.

Class Range Classification results

F1-Score Precision Recall

0,1,2,3,4,5,6,7,8 0.67 0.66 0.66

0,1–3,4–8 0.87 0.87 0.87
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3.7 Conclusions

In this section two scenarios were presented: Estimating the fill level of thousands
of people in a large-scale exhibition hall by relying only on ambient (not under own
control) static wireless access point signals and estimating the number of people
(up to 8) in a small-scale office environment with special purpose wireless devices
and multiple carefully setup antenna configurations.
An experiment of this scale has been first presented by the work in this chapter. We
conclude that crowd condition estimation by stationary scanning of opportunistic
WiFi access point signals is feasible to a limited extent. This method relies on the
availability of sufficient access points and the distribution across the whole area.
However, estimation errors could be detected at the state when people were rushing
out of the exhibition at the end of the business day and causing signal fluctuation
expected by a higher fill level. The proposed method was compared to the method
in subsection 2.8.2. Compared to this, the estimation results are slightly worse, but
do not rely at all on visitor device detections and can be deployed independently
of the visitor backgrounds.
In the second part of this chapter a method was proposed to count the number of
people in shared office spaces. Both the RSSI approach and the reference method
of statistical knowledge were outperformed. While a simpler setup of a single omni-
directional antenna resulted in similar results as two carefully setup directional
antennas, the combination of the three antennas resulted in an increased precision
of 0.67. While the person precise people count estimation is the ultimate goal,
currently, the estimation on a people count range is more reliable with a precision
of 0.87. However, the current effort of training ‘fingerprints’ needed for different
people arrangements is big. Current work could be extended in future work by
minimizing the training effort. Future work could also focus on methods assessing
the required amount of training data depending on the location complexity and
number of people.
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Figure 4.1. Thesis outline and wireless signal based crowd condition estimation scanning
ontology.

4.1 Introduction

Knowing the density of a crowd can be relevant for a number of applications.
Examples range from crowd control and emergency services through urban planning
to consumer applications recommending where to go out (based where many other
people also have gone to). While in some applications dedicated infrastructure such
as stationary wireless crowd scanners, access control gates, or CCTV cameras [88]
may be used, in others it would be desirable to be able to estimate crowd density
without pre-installed infrastructure. One possibility is to recruit enough users to be
able to estimate the density from the number of devices which report being in the
relevant area. The obvious disadvantage of this method is that a significant number
of users must be recruited, which is not always possible. In this chapter we present
an alternative method that requires only few users moving through the environment
with their mobiles scanning for discoverable Bluetooth devices. Since the rise of
mobile phones and the advent of smartphones in 2007 the community is putting
efforts to infer social state by monitoring ubiquitous wireless user centric signals.
Using wireless user centric signals for crowd density estimation has gained interest
since 2010. As of today we are still witnessing an explosion in ubiquitous wireless
enabled devices. The environment is full of mobiles’ signals from smartphones,
smartwatches, or fitness-trackers. This chapter builds on previous work directed to
using Bluetooth scans to analyze social context and extends it with more advanced
features, leveraging combined scans between numerous mobiles, and the use of
relative features that do not directly depend on the absolute number of devices in
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the environment (which may vary from venue to venue).

a)
Sc
an
ne
r

b)

Sc
an
ne
r

Sc
an
ne
r

Sc
an
ne
r

c)

Sc
an
ne
r

Sc
an
ne
r

Sc
an
ne
r

Sc
an
ne
r

Sc
an
ne
r

Sc
an
ne
r

Figure 4.2. Symbolic visualization of mobile individual scanning of opportunistic crowd
devices and group scanning of opportunistic crowd-centric devices.

4.2 Chapter Overview and Contributions

This chapter presents the crowd condition estimation approach with mobile sensors
scanning opportunistically crowd devices (see Figure 4.1 for the context of this
chapter within the thesis). This chapter includes the approach, the related work,
the general considerations, the individual scanning methods, the group formation
methods, the collaborative scanning methods, and evaluations based on multiple
extensive data sets.
In section 4.6 we present a Bluetooth scan based method that can detect different
discrete crowd densities. The main contributions beyond the related work are as
follows.

1. We rely not just on the number of devices seen by a scan, but also take into
account information about average observed signal strength and the variance
in both the signal strength and the number of devices. This makes the system
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more robust against variations in the number of discoverable devices that may
result from the background of the people in the crowd rather than the crowd
density.

2. We investigate the benefit of combining the information from several devices
carried by different close by users, rather than on an individual scanner.

We evaluate the method on a data set recorded during three days at the famous
Munich Oktoberfest festival which is attended by hundreds of thousands of visitors
from all over the world each day. Looking at four discrete densities that cover the
range from a loosely occupied space (around 0.1 people per square meter) to dense
crowd (around 0.4 people per square meter) we demonstrate recognition rates of
66 % using both relative and absolute features. This is over 32 % better than the
simple approach from previous work that relies on the number of devices found
only.

In section 4.7 we introduce new collaborative concept of multiple teams walking
intermittently nearby and scanning each other in addition to the previous method.
The main contributions beyond the related work above are as follows:

1. We rely not just on the number of devices seen by a Bluetooth scan, but also
take information about the link structure between actively scanning Bluetooth
devices, ratio of discovered devices in the current scan window to previous scan
windows, teamwise diversity of discovered devices, number of semi-continuous
device visibility periods, and device visibility durations into account.

2. We propose a method to combine the collaborative sensor information from
several mobile phones carried by different groups of static and dynamic inter-
mittently close by users (only 0.2 % of all people are equipped with a Bluetooth
scanning mobile phone) to determine the crowd density in an area of 2500 m2.

We evaluate the method on a data set recorded during three days at the European
soccer championship public viewing event in Kaiserslautern which is attended by
thousands of visitors. Looking at seven discrete densities that cover the range
from a nearly empty space (around 0.01 people per m2) to dense crowd (above 2.0
people per m2) we demonstrate recognition rates of over 75% using both relative
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and absolute features. This is over 30 % better than the simple approach from
previous work that solely relies on the number of devices found.

4.3 Related Work

The work most similar to this chapter is done by Nicolai et al. [75] where the
discovery time of Bluetooth devices as well as the relation between number of people
and number of discoverable Bluetooth devices was investigated. As opposed to our
approach the work relied on static Bluetooth sensing locations and only the absolute
number of discovered Bluetooth devices was used. Along the same lines Morrison
et al. [70] investigated crowd density estimation in stadium-based sporting events.
However, they did not attempt rigorous automatic classification and focused on a
visualization tool for Bluetooth logs. Another use case of Bluetooth scanning is
described in [52] by Kostakos et al. They recorded passenger journeys in public
transportation by analyzing Bluetooth fingerprints. In [76] O’Neill et al. presented
initial findings in Bluetooth presence and Bluetooth naming practices. Slightly
further away from our work, Eagle et al. showed [30] how to recognize social patterns
in daily user activity, infer relationships and identify socially significant locations
from using Bluetooth scans. BLIP Systems [12] exploited a stationary Bluetooth
based people tracking system. Based on multiple Bluetooth zones scenarios like
queue length at airports or travel times by car are indicated. Table 4.1 presents an
overview of different existing crowd condition estimation approaches with Bluetooth
scanning and declares the distinction to other work.
Campbell et al. [16] and Burke et al.[15] introduced the general concept of people-
centric sensing. Wirz et al. [105] demonstrated the specific need for detecting
potentially critical crowd situations at an early stage during citywide mass gather-
ings. They collected GPS traces to create a crowd condition visualization which
was monitored by the city police.
Related work so far focussed on specific situations for crowd condition estimation
such as queues [53], crowd flow at entrance gates [76], or crowd transitions between
check-points [92]. Related work introduced signal strength and signal strength
variance effects [72] for an increasing number of people (0–20) between the link
with passive stationary sensors and stationary transmitter in a controlled lab
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environment. However, related work lacks a detailed description and thorough
experimental studies at non-specific scanner locations within the crowd. Differently
to previous methods we introduced an approach of estimating the crowd density at
arbitrary locations.
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Table 4.1. WiFi and Bluetooth crowd condition estimation concepts in related work
requiring specific environments such as a crowd passage (i.e. queue, gate, turnstile, etc)
and potentially inferring to an area-wide crowd condition. Followed by the approach we
propose.

Bluetooth
Measurement Setup

Description

Gate flow measurements
(cumulative people count-
ing)

A Bluetooth scanning device is positioned stationary near a nar-
row entry/gate/turnstile/security check point etc. This is mostly
accomplished with fixed Bluetooth scanning hardware. The number
of discovered Bluetooth devices is summed up over time to make
a statement about the current crowd density in a bounded area.
Instantaneous crowd density evaluations are not possible. [76]

Queue measurements
(waiting time)

A Bluetooth scanning device is positioned near a queue or waiting
area (i.e. supermarket check-out/airport check-in/public transport
etc.) to measure the time between the appearance and disappear-
ance of unique Bluetooth devices to estimate the current waiting
time. This is useful for estimating a relatively small group of lo-
cally bounded stationary people. This approach does not consider
dynamic people who are not bound to a single location. [53, 12]

Checkpoint measure-
ments (people flow
detection). Transition
time tracking (i.e. at
exhibitions, airports,
cities).

Two or more specific Bluetooth scanning devices are fixed at two
or more separate places with a well known distance to each other.
Time is measured between a discovery of a unique device at place A
and place B. This approach is similar to queue length estimation
but works in a more widespread area. Requirement of this approach
is that people are walking from place A to place B and that the
crowd density has a direct relationship with the time needed between
both places. Versichele et al. presented such an approach during a
citywide festival. [92]

Solitary stationary mea-
surements (instantaneous
people counting)

One Bluetooth device is located at a specific location (i.e. shop
etc.) with limited dimensions. The instantaneous number of discov-
erable Bluetooth devices in the covered area is mapped to a number
of people by assuming a fixed proportion between the number of
discoverable Bluetooth devices and the number of people. [75]

Collaborative and in com-
bination of stationary
and dynamic measure-
ments (instantaneous in-
crowd people counting)

We propose the method of multiple people equipped with ubiquitous
smartphones and we present new features to evaluate the crowd-
density instantaneously. The collaboration allows a coverage of a
larger area and a crowd-density estimation with features which are
even independent of the proportion between discoverable Bluetooth
devices and the number of people. This thesis chapter is based on
this approach.
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4.4 Approach

The foundation of our Bluetooth based crowd density sensing technique is the
general observation that many people have the Bluetooth transceivers of their
mobile phone in the discoverable mode as default setting. This is illustrated
in Table 4.2 and Figure 4.3 on data sets from 5 different locations and venues
across Europe: (1) several soccer games from the German first and second division,
collected in and around the stadium, (2) the world-famous Munich Oktoberfest
festival, (3) the England-France soccer game at Wembley Stadium in November
2010, (4) a music festival in Malta, and (5) the 3-day European championship public
viewing event in Kaiserslautern. We observed that most discoverable Bluetooth
devices are personal smartphones and cell phones mostly manufactured by Samsung,
Nokia and Sony Ericsson (see table 4.3).
From the above only the Munich Oktoberfest festival and the public viewing
event in Kaiserslautern data was collected explicitly for crowd density estimation
and thus contains crowd density ground truth that is used for the quantitative
evaluation later in this chapter. During the Munich Oktoberfest experiment we
only had a small number of people walking synchronously back and forth on the
event’s main street. Regarding the Octoberfest experiment we only can utilize a
subset of the features presented in this paper because of the lack of information
of the bi-directional link structure between actively scanning Bluetooth devices.
The Kaiserslautern public viewing experiment gives us a complex data set with
asynchronously walking or standing people and all feature calculation requirements
to demonstrate our approach.
The other data sets were collected for different purposes, such as inertial navigation
and activity recognition. However, all data sets include regular Bluetooth scans
collected over periods of days by several volunteers walking through the area of
the specific event during times of different crowd density. It can be seen that
the median of the number of devices discovered per scan is between 8 and 13
with thousands of distinct devices having been recognized over the course of each
experiment. Figure 4.3 shows that only less than only less than 10 % of the scans
returned no discoverable devices and up to 50 devices were seen when in dense
crowd.
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Figure 4.3. Distribution showing the fraction of the number of Bluetooth devices discov-
ered in a 15 second time window at multiple experiment venues.
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Table 4.2. Statistics overview about performed Bluetooth crowd condition experiments.

Event Duration Participants Number of
Bluetooth

scans

Average
devices per

scan

Median
devices per

scan

Unique
devices

Kaiserslautern
(DE)
Public viewing
event

3 days 10,10,10 4100 5.84 6 410

Munich (DE)
Oktoberfest

3 days 3,3,3 2775 13.35 13 4454

Malta (MT)
Open-air festival

3 days 12,12,12 5500 8.70 8 1088

London (UK)
Wembley Stadium

1 day 6 4958 15.44 10 2509

Munich (DE)
Allianz Soccer
Arena

4 days 10,16,6,12 14 087 10.87 8 3944

Table 4.3. Types of discovered Bluetooth devices

Bluetooth major
device class

Fraction

Smartphone 72.0 %

Mobile phone 28.0 %

Laptop 0.2 %

Cordless phone 0.02 %

Audio headset 0.01 %

Other 0.04 %

Bluetooth device
manufacturer

Fraction

Samsung 29 %

Nokia 32 %

Sony Ericsson 12 %

RIM 7 %

LG 7 %

Texas Instruments 3 %

HTC 1 %

Other 8 %
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4.5 General Considerations

An obvious way to estimate crowd density is to perform a scan for discoverable
devices and assume that the number of devices it returns is an indication of the
number of people in the vicinity defined by Bluetooth range (typically around
10 m). Unfortunately, this simple approach contains a number of problems.

Firstly, there is the issue of sufficient statistics. With the scan limited to a radius
of about 10m (approximately a circle with 300 m2 area) anything between a few
and a few hundred people can be within range. While in a dense crowd with a few
hundred people we may get a representative sample, in less crowded areas we are
likely to see very strong variations between samples. Assuming the probability of
any single user having a discoverable Bluetooth device to be 10 %, the probability
that no device is seen when 20 people are within range is 0.920 = 0.12. Thus we
may sometimes be in a group of people which do not even have activated mobile
phones while at other times we may be surrounded by a group where everyone has
an active Bluetooth device.

Secondly, there is the question of signal attenuation. At 2.4 GHz (which is the
transmission frequency of Bluetooth) the human body has a high absorption coef-
ficient. This means that in a dense crowd (where we would expect to have good
statistics) the effective scan range is reduced and therefore ‘falsifying’ the results.

Finally, we have to consider cultural factors. This means that the average number
of people carrying a discoverable Bluetooth device may significantly vary depending
on who the persons in the crowd are. For the same crowd density at a student
party of a technical university a different number of devices may be present than
at a fifth division soccer game in a poor rural area.

To mitigate the influences above our method does not rely solely on the absolute
number of discovered devices. Instead we also use the average signal strength and
signal strength variations. In addition, we look at collaborative estimation from
several (up to around 10) devices. In doing so, we focus on differential features
that are not directly dependent on the absolute number of discoverable devices
in the environment or the absolute signal strength. As shown in the evaluation
subsection 4.6.6 and subsection 4.7.3 the above measures lead to around 30 %
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improvement in recognition rate over a method based on the absolute number of
discovered devices.

4.6 Oktoberfest Experiment

4.6.1 Individual Scanner Feature Vector

Individual scanning is relying on an individual person roaming through the area.
The person is equipped with a smartphone and software for automated discovering
of Bluetooth devices. Due to the fact of low signal energy used for Bluetooth,
devices are known to be in the immediate proximity.

The instantaneous area covered by an invidual scanners is 314m2.

Based on the raw data we define feature vectors and later extract them from
the experimental data set. A feature vector x of the dimension 1–k is defined as
the composition of the input variables x1...xk computed for each time interval i

between ti−1 and ti. The time interval i is defined as the duration of one scanning
interval. Each data record at i is defined as the form (x, Y ) = (x1...xk, Y ). Y is the
target variable extracted from ground truth at interval i. We present the detailed
description of features x in subsubsection 4.6.1 and 4.6.2 which are then evaluated
by the machine learning method described in subsection 4.6.3.

Count of unique crowd devices in the proximity within
a scan interval (absolute feature)

The first feature (count of distinct Bluetooth devices) is the most obvious feature
extracted from the raw data by counting the number of different devices per scan
interval. As described above the discovered devices per 60 seconds time window
are the set of actual surrounding devices (count(i) = | ∪s∈i | where s is a time of
occurrence and i is the current interval) in this time window independent to real
duration of occurrence of a device.
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Mean signal strengths (relative feature)
The second feature (mean signal strength) averages the signal strength of all devices
in a scan interval (averagesignal(i) =

∑
s∈i

signal(s)
count(i) ), motivated by the assumption

that the average signal strength gives a hint for the crowd density. Assuming
surrounding people are shielding the signal the average of the signal strength might
be lower. Due to the opportunistic scanning approach of crowd devices their exact
location is unknown. It is unknown to the algorithm whether a low signal strength
corresponds to a device being further away during a less crowded time or being
close by but strongly attenuated by the crowd.

Variance of the signal strengths (relative feature)
The third feature (variance of the signal strengths) is defined by the variance of the
measured signal strengths of unique devices in a scan interval (variancesignal(i) =∑

s∈i
signal2s

numberi
− average(i)2). Assuming a shielding effect is measurable, the Blue-

tooth signal reception is excellent from people walking nearby and the Bluetooth
signal is near the reception threshold from people walking rather further afar. At
high crowd densities the signal strength variance would be higher than at low crowd
densities where less people are shielding the Bluetooth signal.

Compound features (individual relative and absolute)
This method considers the composition of the absolute feature (count of distinct
Bluetooth devices) and the relative features (mean signal strength, variance of the
signal strength). The idea is to maximize the classification performance metrics
when combining absolute and relative features to a single feature vector.

4.6.2 Group Formation Scanning Feature Vector
‘Group formation scanning’ (or ‘group scanning’) is an extension of individual
scanning relying on multiple continuously nearby persons are roaming through
the area. ‘Group scanning’ is defined as scanning with three mobile scanners in
continuous proximity of 5 m displacement (triangle formation). The instantaneous
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scan area is 440m2. The scanning range is extended as a side effect. The overlapping
scanning range compensates ‘dead zones’ where some Bluetooth devices would
otherwise be fully shielded at high crowd densities and not detected by an individual
scanner.

Average count of crowd devices in the proximity (group
absolute features)

Groupwise scanning is defined as multiple people roaming in a triangle formation
with 5 m displacement through the same space. The first group feature (average
number of Bluetooth devices) is computed by collecting the individual count of
Bluetooth devices of each participating scanning device and averaging the values.
This feature is intended to compensate variations between scanners.

Set size of crowd devices in the proximity (group abso-
lute features)

The second group feature (set size of Bluetooth devices) is the compound set of
actual surrounding devices to the group of people (countgroup(i) = | ∪s∈i∀g | where
s is a time of occurrence and i is the current interval and g is the group of scanners)
in this time window independent to real duration of occurrence of a device. As
opposed to a sum, this feature is independent of the number of collaborating
devices.

Count variations between scanners (group relative count
features)

The third group feature (variance in the number of devices) is defined by the
variance of the individual count of Bluetooth devices values across all people
(variationcount(i) = var(count(i)∀g)).
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Signal strength variations (group relative RSSI feature)

The fourth group feature (variance of all signal strengths) is defined by the variance
of the signal strengths aggregated from all participating scanning devices during
a given scan interval (variance(i) =

∑
x∈i

signal2s
numberi

− average(i)2∀g). Potential
multiple occurrences of the same Bluetooth device found by different sensing devices
are not removed from the feature computation.

While the first and second group features represent absolute values, the third and
fourth group features represent differences in the values measured by different,
spatial distributed devices. Thus, they are more related to the properties of the
crowd than to the absolute number of discoverable devices in the crowd (although
they are not fully independent of the number of devices). The effects involved are
complex and driven by a number of factors. For one, the spatial variance is likely
to be reduced as the crowd density increases since each scan is likely to be based
on a larger (= more representative) sample of people. On the other hand, with
increased crowd density occlusions, reflections and other propagation effects are
likely to play a bigger role. These depend on the specific configuration of people
at scan locations (where the devices are worn, how they are occluded etc.) which
means that variance will increase.

Compound features (group relative and absolute)

This method considers the composition of the absolute feature and the relative
features. The set of features includes the previous single scanner features (count of
distinct Bluetooth devices), mean signal strength, variance of the signal strength from
each of the individual scanners and extends the feature set with the group features
(average number of Bluetooth devices), set size of Bluetooth devices, variance in
the number of devices, variance of all signal strengths. The idea is to maximize the
classification performance metrics when combining absolute and relative features
to a single feature vector.
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4.6.3 Machine Learning

We apply machine learning where the predicted outcome is the class Y to which the
input data records belongs to. For classifier training we applied 10-fold stratified
cross-validation. The set of data records is randomly partitioned into ten equal
sized subsets while maintaining the same proportion of the target variables in
each subset. A single subset is maintained as the validation data for testing the
classifier model and two subsets are used for training the classifier. Cross validation
is performed three times, while each data record is used exactly once for validation.
All data records are used for training and validation during the three folds. The
results are then averaged to produce a single estimation. As the machine learning
classifier we used the decision tree learning algorithm. The decision tree learning
algorithm is defined as the construction of a decision tree from training data records
(x, Y ). The decision tree consists of branches representing conjunctions of 1 to
k features leading to the leaves representing target variables Y . Each internal
(non-leaf) node denotes a test on an variable x, each branch represents the outcome
of a test, and each leaf (or terminal) node holds a target variable ym. The topmost
node in a tree is the root node. When predicting an unseen data record the tree
is traversed from the root node to a leaf node representing the target variable ym.
The decision tree classification algorithm is configured as follows: the criterion
measuring the split quality is set to the Gini impurity. The minimum number of
samples required to split an internal node is set to 2. The minimum number of
samples required to be at a leaf node is set to 1. A node will split if its impurity is
above the threshold 1e − 07 (threshold for early stopping in tree growth).
We used performance metrics to evaluate the classifier. The classification ‘score’ is
defined as the proportion of feature vectors x exactly matching the corresponding
label Y . The ‘precision’ performance metric is defined as true positive

true positive+false positive
and can be described as the proportion of correctly predicted x as target vari-
able ym to all x predicted as ym. The ‘recall’ performance metric is defined as

true positive
true positive+false negative and can be described as the proportion of correctly predicted
target variable ym to the total number of correctly predicted target variables. The
‘f1-score’ performance metric is defined as 2∗ precision∗recall

precision+recall and can be interpreted as
a weighted average of the precision and recall. The ‘confusion matrix’ performance
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metric is defined as the matrix C such that Cm,n is equal to the proportion of data
records known to belong to target variable yn but predicted to be as target variable
yn.

4.6.4 Experimental Environment and Data Collection
Process

The following evaluation is based on the dataset collected during the Munich Okto-
berfest event over a period of three days. The event was attended by hundreds of
thousands of visitors from all over the world each day. The event’s main pedestrian
zone is approximately 500 m long and 20 m wide. The pedestrian zone is divided
sparsely by merchandise stands in the center and bounded by food stands and tents
with side street crossings where other visitors entered and left the area. Volunteers
of the experiment were told to move continuously in a triangle group formation
with a distance 5m to each other as accurate as this was possible in large crowd
densities. Volunteers walked back and forth the main 500 meters long pedestrian
event zone. After finishing one walk a short period of being stationary existed.
For our experiment three participants were equipped with Android HTC Desire
smartphones with enabled Bluetooth unit. The phones were placed in the pants
front pockets. Collected raw data for each discovered Bluetooth device consisted of
the following attributes:

1. Timestamp
2. Bluetooth scan interval number
3. Bluetooth device name
4. Unique Bluetooth device ID
5. Bluetooth signal strength in dBm

The data was written to the SD card of each phone and evaluated later on. It is
important to mention that the discovery process of Bluetooth devices is not an
infinitely small snapshot in time, but in our case it was a 60 seconds time window
(so called Bluetooth scan interval). During this time the underlying system reports
Bluetooth devices which were not found before in the given scan interval. Therefore
the above features are based on a time interval of about 60 seconds.
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For crowd density ground truth one group member took digital camera pictures at
an interval of 100 m along the zone. All pictures had an embedded timestamp and
were made with the same focal length of 5.8 (equivalent to 35 mm) and consistent
angle of vision while holding the camera above the head in forward direction.
The area regarded for manual ground truth count of the people per picture was
defined by the maximum distance where the head width falls below 10 % of the
picture width. With this technique some heads might have been covered by other
heads, but compared to birds-eye-perspective-pictures this approach was feasible
in this situation. All pictures were annotated manually according to the defined
boundaries and averaged over pictures taken per walk on the 500 m zone resulting
in a crowd density label for each segment of the experiment. The crowd condition
is measured in terms of crowd density which varied between 0.1 and 0.4 m−2 with a
resolution of 0.1 m−2 (see Figure 4.4). Measurement evaluation yielded that 5–7 %
of the people have Bluetooth enabled on their mobile phones during the Munich
Oktoberfest data set experiment.

4.6.5 Data Distribution

The general considerations in section 4.5 included the issue of the question of signal
attenuation. Due to signal attenuation it is expected that the number of detected
devices does not linearly increase. To validate this expectation, we analyzed the
absolute count of discovered devices by an individual scanner and by a group of
scanners within the Bluetooth proximity. In the violin plot in Figure 4.5a we see
the ‘individual scanner’ distribution of the absolute count of distinct Bluetooth
devices per minute during constant motion. The ground truth is shown as the crowd
density class 1 to class 4, the crowd density [m−2], and the number of people in the
10 m range radius (based on mixed crowd flow in both directions). Four different
crowd densities have been detected during the experimental evaluation by ground
truth: 0.1 m−2 (class 1), 0.2 m−2 (class 2), 0.3 m−2 (class 3), and 0.4 m−2 (class
4). We observe that the increasing ground truth crowd densities does not linearly
correspond to the distributions of measurements for each class. The properties
of the distribution of class 3 and class 4 are similar. The peak of the class 4
distribution even falls below the class 3 distribution, although more people being
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a)

Density Class 1
0.1 people/m2

b)

Density Class 2
0.2 people/m2

c)

Density Class 3
0.3 people/m2

d)

Density Class 4
0.4 people/m2

Figure 4.4. Ground truth reference images representing average crowd densities of 0.1m−2,
0.2m−2, 0.3m−2, and 0.4m−2.

in the proximity. This affirms our expectations and demonstrates the issue for
crowd density estimation with the naive approach of a single mobile sensor and
pure counting of devices in the proximity.

In violin plot in Figure 4.5b we see the ‘group of scanners’ distribution of the set
size of Bluetooth devices per minute during constant motion. The ground truth
is shown as the crowd density class 1 to class 4, the crowd density [m−2], and
the number of people in the 440m2 triangle formation scan area with partial scan
range overlapping between scanners. We observe that increasing ground truth
crowd densities correspond to increasing peak values of the distributions. The
distributions still overlap partially between the crowd density classes especially
between class 3 and class 4. However, the distinction between the distributions is
superior to the distributions in Figure 4.5a.
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Figure 4.5. Violin-plot data distribution of the feature absolute number of unique
Bluetooth device detections against ground truth. Ground truth is shown as the crowd
density class, the crowd density and the number of people in 10 meters radius (based on
mixed crowd flow in both directions). The distribution plots show a) individual mobile
scanning, and b) group scanning which is defined in this case as scanning with 3 mobile
scanners in a triangle formation with 5 m displacement and overlapping scanning range.

4.6.6 Experimental Validation Results

We present the results of the machine learning evaluation for seven feature vectors
listed in Table 4.4. The feature vector were constructed without further windowing
the data. The estimation is performed in real-time with the delay of one scanner
interval duration of 60 seconds. When applying the machine learning to the one
dimensional feature vector of the individual absolute feature we achieve a classi-
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Table 4.4. Classification metric performance results of crowd density estimation with
mobile individual scanners and with a single scanning group

Feature Vector Classification results

Score Precision Recall F1-Score

individual absolute 0.34 0.35 0.34 0.33

individual relative RSSI 0.39 0.40 0.39 0.39

individual absolute & relative 0.44 0.45 0.44 0.43

group absolute 0.65 0.66 0.65 0.64

group relative RSSI 0.55 0.55 0.55 0.54

group relative COUNT 0.30 0.30 0.30 0.29

group absolute & relative 0.66 0.67 0.66 0.65

fication score of 0.34 (see further performance metrics in Table 4.4), while the
mis-classifications occur across all classes in the confusion matrix (Figure 4.6a).
Class 0.4 is more often mis-classified as class 0.3 or even class 0.2. Class 0.3 is
classified as class 0.4 by 55%. When applying the machine learning to the two di-
mensional feature vector of the individual relative features we achieve a classification
score of 0.39, while the mis-classifications occur across all classes in the confusion
matrix (Figure 4.6b). Classes 0.1 and 0.4 are estimated best, while the embraced
classes 0.2 and 0.3 are estimated with the score of a uniformly guessing or even
below. When applying the machine learning to the three dimensional feature vector
of the individual compound feature vector of the compound individual absolute and
relative features we achieve a classification score of 0.44, while the mis-classifications
occur across all classes in the confusion matrix (Figure 4.6c). Compared to the
previous feature vectors this equals to an increase in the classification score of 0.10
or 0.05.

The feature vector group absolute features consists of all group absolute and the
inherited individual absolute features. By combining similar features of the same
category we improve the clarity of the evaluation and improve the estimation
performance with multi-dimensional feature vectors. When evaluating the machine

109



4 Crowd Condition Estimation with Mobile Scanners Opportunistically Scanning Crowd Devices

a)

0.1 0.2 0.3 0.4
Estimated density [m 2]

0.
4

0.
3

0.
2

0.
1

Tr
ue

 d
en

si
ty

 [m
2 ]

0.18 0.24 0.34 0.23

0.04 0.25 0.16 0.55

0.02 0.44 0.21 0.33

0.66 0.13 0.02 0.19

absolute

b)

0.1 0.2 0.3 0.4
Estimated density [m 2]

0.
4

0.
3

0.
2

0.
1

Tr
ue

 d
en

si
ty

 [m
2 ]

0.16 0.11 0.15 0.58

0.28 0.18 0.18 0.36

0.35 0.24 0.24 0.16

0.42 0.24 0.22 0.12

relative

c)

0.1 0.2 0.3 0.4
Estimated density [m 2]

0.
4

0.
3

0.
2

0.
1

Tr
ue

 d
en

si
ty

 [m
2 ]

0.05 0.12 0.21 0.61

0.09 0.23 0.24 0.44

0.1 0.22 0.41 0.26

0.52 0.19 0.15 0.13

absolute & relative

Figure 4.6. Confusion matrices representing the class-wise machine learning performance
metric classification results of the individual scanning approach. Confusion matrices
of classification results with a) individual scanners with absolute feature, b) individual
scanners with relative features, and c) individual scanners with absolute feature and relative
features.

learning results on the 5-dimensional feature vector of the group absolute features
we achieve a classification score of 0.65, while the mis-classifications mostly occur
along the diagonal at neighbored classes in the confusion matrix (Figure 4.7a).
Especially class 0.3 is often confused with class 0.2 or 0.4. When a crowd density
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application allows a class divergence of ±1, the classification score is between 0.93
and 0.98 per class for the now estimated class range.
The feature vector group relative count feature consists of a single feature. When ap-
plying the machine learning to the 1-dimensional feature vector of the group relative
count feature we achieve a classification score of 0.30, while the mis-classifications
occur across the whole confusion matrix (Figure 4.7b). The classes 0.1 and 0.4
are estimated with 0.56 and 0.36, while the intermediary classes 0.2 and 0.3 are
estimated with a significant lower score of 0.17 and 0.07.
The feature vector group relative RSSI features consists of the group relative feature
and the inherited individual relative RSSI features. When evaluating the machine
learning results on the 7-dimensional feature vector of the group relative RSSI
features we achieve a classification score of 0.55, while the mis-classifications mostly
occur along the diagonal at neighbored classes in the confusion matrix (Figure 4.7c).
The classes 0.1 and 0.4 are estimated with 0.53 and 0.88, while the intermediary
classes 0.2 and 0.3 are estimated with a significant lower score of 0.30 and 0.23.
When a crowd density application allows a class divergence of ±1, the classification
score -for the now estimated class range- is between 0.27 and 1.0 per class.
The feature vector group compound relative and absolute features consists of the
individual absolute feature, the individual relative features, the group absolute
features, the group relative RSSI features and the group relative count feature.
When evaluating the machine learning results on the 13-dimensional feature vector
of the group compound relative and absolute features we achieve a classification score
of 0.66, while the mis-classifications occur just along the diagonal at neighbored
classes in the confusion matrix (Figure 4.7d). When a crowd density application
allows a class divergence of ±1, the classification score -for the now estimated class
range- is between 0.95 and 1.0 per class.
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Figure 4.7. Confusion matrices representing the machine learning performance metric
of mis-classifications of the group scanning approach. Confusion matrices of classification
results a) group scanning and absolute feature, b) group scanning and relative features,
and c) group scanning and absolute feature and relative features.
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4.7 Collaborative Scanning - Public Viewing Experi-
ment

We introduce new collaborative concepts of multiple teams walking intermittently
nearby and scanning each other in addition to the previous method. The main
contributions beyond the methods presented in section 4.6 include processing
information about the link structure between actively scanning Bluetooth devices,
ratio of discovered devices in the current scan window to previous scan windows,
teamwise diversity of discovered devices, and the number of semi-continuous device
visibility periods. Additionally, it takes device visibility durations into account.

Figure 4.8. Bluetooth link structure graph showing all 10 actively scanning smartphones
(colored nodes) and discovered devices (black nodes) during the experiment.
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4.7.1 Experimental Environment and Experimental Setup

To evaluate the methods described in the following sub-section we set up three
experiments on three days during the European soccer championship 2012 at the
official public viewing event at the town-center (marketplace called ‘Stiftsplatz’) of
Kaiserslautern (Germany). The evaluated experiment area has a dimension of 48.5
to 48.5 meters allowing up to 5200 people to enter the fenced area.
Each experiment had a duration of about 4 hours consisting of 2 hours before the
soccer championship kick-off began, 45 minutes during the first half of the soccer
match, 15 minutes during the half-time break, 45 minutes during the second half
of the soccer match, and 20 minutes after the game.
We started our experiment early before spectators began entering the event area.
During two hours the area was then filled up to a level where no more people where
allowed to enter the area by the event organization for safety reasons.
We gathered sensor data of different crowd densities including levels nearly empty
(0.01 − 0.05people/m2), very low (0.05 − 0.2people/m2), low (0.2 − 0.3people/m2),
moderate (0.3 − 0.4people/m2), high (0.4 − 1.0people/m2), very high (1.0 −
2.0people/m2), extremely high (2.0 + people/m2). See figure 4.9 for the com-
plete course of the crowd density levels during the experiment and figure 4.11 with
excerpts from the ground truth video for each crowd density class.
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Figure 4.9. Crowd density ground truth information during the course of the experiment.

The crowd flow was moderate during the filling phase of the event since attendees
went slowly from the event entry towards the big screen in the opposite corner.
There was no crowd flow during the first and second half of the soccer match.
During the break the crowd flow range was between moderate and high. After the
end of the soccer match the crowd flow was very high since the attendees wanted to
leave the event area through multiple exits as fast as possible because the German
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soccer team had lost the match. See figure 4.10 for the complete course of the crowd
flow. Our presented crowd density measurement technique is robust to differing
crowd flow levels as they are not considered in the labeling procedure of the feature
vectors and are not correlated to the crowd density levels.

0 180002000 4000 6000 8000 10000 12000 14000 16000
Time [s]

m
od

er
at

e

lo
w

ne
gl

ib
le

ne
gl

ib
le

hi
gh

m
od

er
at

e

lo
w

Figure 4.10. Crowd flow ground truth information during the course of the experiment.

For each experiment we recruited 10 students. We divided the students into 5
teams with 2 students each. Team members always stayed in close contact (up to 1
meter distance) to each other. Teams were instructed to be either stationary (2
teams, 4 students) or dynamic (3 teams, 6 students).
Stationary is defined as continuously standing on the spot. We placed stationary
teams near the entrance of the area. One team near the left side and the other
team on the right side of the entry.
Dynamic is defined as continuously walking around on the event area. Teams were
told to walk on a curved path covering 3 sides of the event area and mostly covering
the edge regions (see below for exceptions) of the crowd since those regions were
common to walk on because of nearby food and beverage stands.
The idea behind the stationary and dynamic scripted setup is to represent a natural
behavior of people during such events. Some people are standing still watching
the performance. Other people are walking around to food/beverage stands, meet
friends, change to a better viewing spot etc.
Multiple dynamic teams are allowed to walk asynchronously. The walking speed of
dynamic teams is not scripted, allowing to choose the personal optimum walking
speed (we can determine the walking speed by evaluating our GPS log information).
We allowed teams to move to a self-determined place in the middle of the crowd
during the first and second half of the soccer match excluding the break.
In a real-life scenario people do not have to be categorized to behave stationary or
dynamically continuously. Smartphone sensor information allows to dynamically
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detect the type of behavior. Because of this random natural behavior we do not
manually apply any information to our algorithms about stationary or dynamic
behavior.
Each student was equipped with one Android smartphone which is placed in the
trouser’s pocket.
We deployed Android smartphones of different types including HTC Desire, Google
Nexus and Samsung Nexus S each based on the most recent version of the Android
operating system. On all devices we were running our custom Android application
called ContextRobot which records multiple sensor data streams onto the microSD
card for later off-line analysis. Our Android applications continuously scanned
for discoverable Bluetooth devices (a Bluetooth scan is defined as a time interval
which emits a set of unique Bluetooth devices with the restriction of unrepeated
occurrences of a unique device). A single log entry of a device discovery during
a Bluetooth scan is associated with a timestamp, a serial Bluetooth scan interval
number, personal Bluetooth device name, unique Bluetooth identifier (Bluetooth
MAC address), and the Bluetooth signal strength as a RSSI (received signal strength
indication) value.
An exact temporal begin and end of a Bluetooth scanning interval cannot be
specified during the recording of Bluetooth sensor data since the operating systems
restricts to certain length of scan intervals depending on internal thresholds. The
average duration of a Bluetooth scan interval is about ten seconds (with little
variations). Our application triggers a new Bluetooth scan when the previous
scan has ended. Multiple collaborative Android devices recording Bluetooth scans
intervals are synchronized in an off-line manner. At a given time window of a
length of 20 seconds we determine one scan interval which fits this window entirely.
In addition to Bluetooth sensor information we record location information by the
GPS sensor at a frequency of 1 Hz. Our Android application continuously records
timestamp, latitude, longitude and accuracy onto the microSD cards. Location
information is required for some feature computations which rely on distances
between multiple students and their walking speed.
For obtaining ground truth data about the crowd density we set up a HD video
camera on top of a neighbored hotel building with view of the whole event area.
Figure 4.11 shows excerpts of the video footage for different crowd density classes.
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The ground truth labels are based on the video footage which we labeled every
10-15 minutes with a crowd density class ranging from nearly empty to extremely
high.

4.7.2 Feature Vector

We are calculating our features based on multiple partially distributed sensors
because we want to achieve a statement of the crowd density of the whole event
area as we assume all sensors together are covering a large portion of the area
during movement in the area.

Feature: Averaged sum of distinct devices discovered by
all sensors in scan window

This simple feature describes the current number of discovered distinct devices for
every snapshot (a Bluetooth scan window is hereafter also referred to as a snapshot)
of the experiment. For each snapshot each of the sensors delivers a set of unique
devices identified by the unique Bluetooth MAC address.

Calculating the union of all discovered devices (by all sensors) divided by the
number of sensors results in this feature. Bluetooth devices discovered by multiple
sensors at the same time are not influencing this feature.

This feature relies directly on the level of distribution of the sensors over the event
area. Since the Bluetooth range is very limited a sensor distribution over a larger
area obviously leads to a larger number of distinct devices and the other way
around.

The downside of this feature is its direct relation to the ratio of discoverable
Bluetooth devices to the number of people to be detected.

See figure 4.12 on page 123 for a visualization of the feature during one experiment.
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Feature: Ratio bi-directional link structure of sensors
to average pairwise distance of sensors multiplied with
average sensor speed

This composite feature characterizes the context of the snapshot of the collaborative
sensor data more explicit.

The feature takes the bi-directional Bluetooth link structure between the sensors
(actively scanning Bluetooth devices are hereafter also referred to as sensors) into
account. A directional link (hereafter also referred to as sensor discovery) between
a pair of sensor ‘a’ and ‘b’ is defined as established when sensor ‘a’ discovers sensor
‘b’ in the current snapshot. Another directional link is defined as established when
sensor ‘b’ discovers sensor ‘a’. This implies a pair of sensors might both link to each
other or one sensor links to the other or none of both sensors links to the other.
All combinations of pairs between sensors are monitored. Maximum established
links between ten sensors would be 90 links, the minimum number of established
links would be zero. The bi-directional link structure is defined as the sum of all
links between all sensors.

The average pairwise distance calculation is based on the GPS sensor data infor-
mation. A snapshot contains multiple GPS locations per sensor (GPS location
is sampled at 1 Hz). Only locations with a GPS accuracy better than 15m are
taken into account. Based on the filtered locations we calculate the average as
most promising location of the sensor. For each pair of sensors we calculate the
distance between them. There are n!/2/(n − 2)! distances calculated per snapshot
where n is the number of sensors. The distance between all sensor pairs is then
averaged. The average speed is calculated for every snapshot and each individual
sensor based on averaged GPS information per snapshot each with an accuracy
of better than 15m. Afterwards the average speed is calculated for all sensors.
Finally, the feature is calculated by the number of bi-directional links divided by
the average pairwise distance of sensors multiplied with the average sensor speed.
It is important to mention that this feature is completely independent of external
(others than the used Bluetooth sensors) discoverable Bluetooth devices. It uses
the relationship between the number of links to the distance between sensors, based
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on the assumption that a more dense crowd shields the sensor links heavier than in
a low dense crowd with the same underlying distance.
See figure 4.13 on page 124 for a visualization of the feature during one experiment.

Feature: Ratio of discovered devices in current snapshot
to discovered devices in last x minutes

This feature characterizes the crowd movement during the snapshot of the collabo-
rative sensor data more explicit.
Newly detected Bluetooth devices in a snapshot are defined as a set of all unique
devices discovered during the snapshot by all sensors. Calculating the union of
unique discovered devices by all sensors in a snapshot leads to the collaborative
measurement. The second part of the ratio is the size of the set of unique Bluetooth
devices discovered during previous 15 snapshots (depending on the size of the
snapshot, this signifies a monitoring of the previous 1 to 10 minutes). Finally, the
feature is calculated by the size of the collaborative set of discovered devices at the
snapshot divided by the size of the collaborative set of Bluetooth devices discovered
before. This implies that the value is smaller in a less moving crowd than in a
more likely moving crowd. This is caused by the fact that the number of different
devices seen during x snapshots is smaller if there is less movement (less devices
are rushing by) than for strong crowd movement (high crowd flow).
See figure 4.14 on page 124 for a visualization of the feature during one experiment.

Feature: Average teamwise diversity of discovered de-
vices per scan window (ratio not concurrent devices to
concurrent devices)

We define a team by two persons staying in close adjacency while each person
is carrying a sensor. A team can either move dynamically or be stationary, but
continuously stays together.
This feature takes into account the teamwise diversity of discovered Bluetooth
devices for each snapshot. In this context we define diversity as the ratio between
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the number of Bluetooth devices not concurrently discovered and concurrently
discovered devices. Not concurrently discovered devices are defined in set theory
as the symmetric difference. Either sensor ‘a’ or sensor ‘b’ but not both sensors
discover the same device in a snapshot. Concurrent devices appear both in the
current snapshot of sensor ‘a’ and sensor ‘b’. The ratio is averaged for all teams in
each snapshot for a collaborative measurement.
This feature calculates the diversity of discovered devices between two sensors which
are close to each other. This gives us a value depending on the crowd between and
around the team as well as the unambiguousness of the two sensor measures.
See figure 4.15 on page 125 for a visualization of the feature during one experiment.

Feature: Average number of semi-continuous unique de-
vice visibility periods (finite state machine approach)

We define a semi-continuous device visibility period per sensor as the number of
consecutive snapshots, whereas in each snapshot a unique device is discovered with
the exception of very short vanishings during the period. A short vanishing is
defined as a single snapshot without a discovery among other snapshots including
the presence of a specific device. Multiple short vanishings may appear during a
semi-continuous device visibility period. The period ends when a device vanishes
at least for two consecutive snapshots. The same unique device then may reappear
again or vanish for a longer time or forever.
The data is further processed by calculating the sum of present semi-continuous
unique device visibility periods during a snapshot. By definition, the sum of unique
devices might include a device which is not seen in the current snapshot. We
implemented the calculation of this feature by a finite state machine for each unique
device (d) and for each sensor (s). Resulting in d ∗ s finite state machines. Finally,
the collaborative overall average value is calculated per snapshot over all sensors.
The feature value can be high for a small number of discoverable devices which are
in range for a longer time. The value can be low for a high number of discoverable
devices which are in range for a shorter time.
See figure 4.16 on page 125 for a visualization of the feature during one experiment.

120



4.7 Collaborative Scanning - Public Viewing Experiment

Feature: Average durations of semi-continuous unique
device visibility periods (finite state machine approach)
This feature is based on semi-continuous device visibility similar to feature 4.7.2
but calculates the duration. Therefore, the pre-processing is similar to feature
4.7.2.
The duration of a semi-continuous visibility of a unique device is defined as the
number of sequential snapshots where a specific device is seen. This duration
factors into all snapshots that the semi-continuous visibility is covering. Averaging
the duration for one sensor of all device visibility durations at one snapshot is the
value per sensor. Averaging this value of all sensors per snapshot results in the
value of this feature.
See figure 4.17 on page 126 for a visualization of the feature during one experiment.
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(a) nearly empty
0.01-0.05 people/m2

(b) very low
0.05-0.2 people/m2

(c) low
0.2-0.3 people/m2

(d) moderate
0.3-0.4 people/m2

(e) high
0.4-1.0 people/m2

(f) very high
1.0-2.0 people/m2

(g) extremely high
2.0++ people/m2

Figure 4.11. Crowd density classes ranging from nearly empty to extremely high. Excerpts
of the HD ground truth video.
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Figure 4.12. Feature: ‘Size of device set of all distinct discovered devices by all sensors
in time frame’. Overview of crowd density levels shown by different background grey levels.
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Figure 4.13. Feature: ‘Ratio bi-directional link structure of sensors to average pairwise
distance of sensors multiplied with average sensor speed’
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Figure 4.14. Feature visualization of ‘Ratio of discovered devices in current snapshot to
discovered devices in last x minutes’.
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Figure 4.15. Feature visualization of ‘Average team-wise diversity of discovered devices
per scan window (ratio not concurrent to concurrent)’.
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Figure 4.16. Feature visualization of ‘Average number of semi-continuous unique device
visibility periods’.
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Figure 4.17. Feature visualization of ‘Average durations of semi-continuous unique device
visibility periods (finite state machine approach)’.
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4.7.3 Experimental Validation

We introduced a new collaborative concepts of multiple teams walking intermittently
nearby and scanning each other in addition to the previous method. The main
contributions beyond the related work not relying just on the number of devices seen
by a Bluetooth scan, but also take information about the link structure between
actively scanning Bluetooth devices, ratio of discovered devices in the current scan
window to previous scan windows, teamwise diversity of discovered devices, number
of semi-continuous device visibility periods, and device visibility durations into
account.
We validate the proposed collaborative features and compare them to the reference
method of individual sensing. The different approaches of relying either on only
absolute features (based on the count), relative features (based on relative and
differential measurements between scanners), or on the combination of relative and
absolute features are compared. ‘Collaborative absolute features’ are consisting of
the two methods ‘averaged sum of distinct devices discovered by all sensors in scan
window’ and ‘average number of semi-continuous unique device visibility periods
(finite state machine approach)’. ‘Collaborative relative features’ are consisting of
the four methods ‘ratio bi-directional link structure of sensors to average pairwise
distance of sensors multiplied with average sensor speed’, ‘ratio of discovered devices
in current snapshot to discovered devices in last 5 minutes’, ‘average teamwise
diversity of discovered devices per scan window (ratio not concurrent devices
to concurrent devices)’, and ‘average durations of semi-continuous unique device
visibility periods (finite state machine approach)’. ‘Collaborative relative & absolute
features’ are consisting of the six methods being a combination of the ‘collaborative
absolute features’ and the ‘collaborative relative features’. The reference method is
just building on individual scanner features as described in section 4.6.
As described earlier the approach with just relative features allows potential crowd
density estimation applications without adapting the estimator to the saturation
of mobile wireless devices. The crowd density estimation is evaluated with the
machine learning method of classification with a real-time resolution of just 40
seconds. We selected the machine learning ensemble method ‘random decision tree
forest classifier’ because it has been proven to handle complex data sets with a
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multitude of features very well. We trained the ensemble random decision tree forest
classifier with the common proven parameters. The classifier was cross-validated
with 10-fold cross-validation. For cross-validation the stratified cross-validation
was selected to achieve a balance in the classes used for training and estimating
the classifier, due to the higher fraction of ‘extremely high’ crowd density class
instances.

4.7.4 Results

We achieve a classification score of 67 % based on absolute collaborative features
for estimating the correct crowd density class on seven discrete crowd density
classes with stratified 10-fold cross-validation (see Table 4.5). This outperforms the
reference method of absolute individual features by 27 % (reference method score
40 %). The precision is 0.71, the recall 0.69. We evaluate the mis-classifications of
the classifier by visualizing the classifications results in a confusion matrix which
presents the fraction of instances of classes being estimated as the true class or
other classes. In the confusion matrix we observe mis-classifications between classes
not directly adjacent to the true crowd density class. Classes ‘0.2 - 0.3’, ‘0.3 - 0.4’,
‘0.4 - 1.0’, and ‘2.0+’ are mis-classified in some instances to not similar classes. The
different crowd density classes are classified with a classification score between 0.33
and 0.8. Figure 4.18 on page 130 shows the confusion matrix of the collaborative
absolute features.
We achieve a classification score of 74 % based on relative collaborative features
for estimating the correct crowd density class on seven discrete crowd density
classes with stratified 10-fold cross-validation (see Table 4.5). This outperforms the
reference method of absolute individual features by 17 % (reference method score
57 %). In the confusion matrix we observe mis-classifications just between directly
adjacent classes with few exceptions to the true crowd density class. Only classes
‘0.4 - 1.0’, and ‘2.0+’ are mis-classified just 3–4 % of the instances to not similar
classes. The different crowd density classes are classified with a classification score
between 0.58 and 0.9. Figure 4.19 on page 131 shows the confusion matrix of the
collaborative absolute features.
We achieve a classification score of 77 % based on absolute and relative collaborative

128



4.7 Collaborative Scanning - Public Viewing Experiment

features for estimating the correct crowd density class on seven discrete crowd
density classes with stratified 10-fold cross-validation (see Table 4.5 on page 129).
This outperforms the reference method of absolute individual features by 21 %
(reference method score 56 %). In the confusion matrix we observe that the majority
of the predictions are distributed along the diagonal -with few exceptions. This
means mis-classifications just between directly adjacent classes to the true crowd
density class. Only classes ‘0.4 - 1.0’and ‘2.0 ++’ are mis-classified just 3–6 % of the
instances to not similar classes. The different crowd density classes are classified
with a classification score between 0.56 and 0.94. Figure 4.20 on page 132 shows
the confusion matrix of the collaborative absolute features.

Table 4.5. Crowd density estimation classification results based on the public viewing
experiment validation. Includes the results of the collaborative approach with different
methods. Includes the results of the reference method of individual sensing.

Feature Set Sensors Classification results

Score Precision Recall F1-Score

collaborative absolute 10 0.67 0.71 0.69 0.66
collaborative relative 10 0.74 0.80 0.78 0.77
collaborative absolute&relative 10 0.77 0.83 0.74 0.75

individual absolute (reference) 10 0.40 0.36 0.38 0.38
individual relative (reference) 10 0.57 0.62 0.57 0.51
individual absolute&relative (reference) 10 0.56 0.63 0.56 0.54
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Figure 4.18. Confusion matrix of machine learning stratified cross-validated classification
results based on absolute features.
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Figure 4.19. Confusion matrix of machine learning stratified cross-validated classification
results based on relative features.
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Figure 4.20. Confusion matrix of machine learning stratified cross-validated classifica-
tion results based on all features including absolute collaborative features and relative
collaborative features
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4.8 Conclusion

This thesis chapter demonstrated that with just a a few scanners and a low satura-
tion of discoverable crowd devices (5–7 % of people having Bluetooth enabled) we
can achieve a viable mobile ad-hoc based crowd density estimation. We presented
two general methods based on a single group of people with scanning mobiles and
multiple collaborative groups of people with scanning mobiles being intermittently
within the proximity.
We presented a method to rely not just on the number of devices seen by a scan,
but also take into account information about average observed signal strength
and the variance in both the signal strength and the number of devices. This
makes the system more robust against variations in the number of discoverable
devices that may result from the background of the people in the crowd rather
than the crowd density. We demonstrated that relative features based on data
collected with a group of synchronous scanners allow a crowd density estimation
performance score of 0.55 with mis-classifications in just neighbored classes. We
investigated the benefit of combining the information from several devices carried
by different close by users, rather than on an individual scanner. When combining
absolute and relative features based on the group scanning we achieve a viable
crowd density estimation precision of 0.66 with mis-classifications in adjacent crowd
density classes.
The just over 66 % accuracy on four classes must be seen in the context of noisy
ground truth resulting from arbitrary class definition, extrapolation between photos
taken every 500 meters, and inaccuracies in the counting process. In addition,
confusions occur nearly exclusively between adjacent classes (see Figure 4.6 on
page 110 and Figure 4.7 on 112). Note that the experimental data did not include
the ‘nearly empty space’ class which can be trivially recognized from the near
absence of Bluetooth devices and could be easily integrated into the system.
We presented a method to combine the collaborative sensor information from several
mobile phones carried by different groups of static and dynamic intermittently
close by users. The core of the method is the comparison and fusion of data from
different devices which leads to up to 27 % improvement in accuracy over a simple
single device(s) approach. We presented that the collaborative relative methods
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are exceeding the results from the collaborative absolute methods - building rather
on the signal variations than on the background of the people. The just about
77 % accuracy on seven classes must be seen in the context of noisy ground truth
resulting from arbitrary class definition, extrapolation between the ground-truth
based crowd density extraction every 10 minutes and inaccuracies in the counting
process. In addition, confusions occur nearly exclusively between adjacent classes
(see confusion matrices in Figure 4.18, and Figure 4.19, and Figure 4.20). Note
that the experimental data did not include the ‘totally empty space’ class which
can be trivially recognized from the near absence of Bluetooth devices and could
be easily integrated into the system.
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5
Participatory Citywide Sensing

Jens Weppner, Paul Lukowicz, Ulf Blanke, and Gerhard Tröster. Participatory
bluetooth scans serving as urban crowd probes. Sensors Journal, IEEE, 14(12):
4196–4206, Dec 2014
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Figure 5.1. Thesis outline and wireless signal based crowd condition estimation scanning
ontology.
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5.1 Introduction

Crowds are an integral component of urban environments: from city festivals
through sports events to rush hour in busy business or shopping districts. As a
consequence monitoring, managing and planning for crowds is a key concern of civil
protection and city authorities. Today the main instrument of crowd monitoring
are CCTV cameras. While useful in many situations, they are, however, more
suitable for intensive surveillance of constrained hot spots during well defined time
periods than for long term monitoring of large areas. Alternatives (see related
work) that have been considered range from airborne cameras through cell tower
information to counting people at access control points (where possible).
As another alternative related work along the lines is investigating smartphone
based participatory approaches. The core idea is that smartphone apps are in-
creasingly becoming basic tools of daily city life. This includes navigation, public
transport (including online tickets), information about services and opening hours,
tourism and special events. In particular, large events such as city festivals are
today unthinkable without an own App. Our work leverages such apps asking
users to voluntarily contribute data for crowd monitoring. Originally, related work
had focused on anonymized location information and estimating crowd density
distribution from the distribution of data points provided by the volunteers. In a
trivial approach one can simply count the number of people providing data from a
certain location, assuming that they constitute a fixed percentage of the crowd, and
then extrapolate to the number of people present. In reality, the procedure is more
complex (as the percentage may be neither known nor constant), however, related
work has shown that, given enough participants, a good estimation of the crowd
density as well as other parameters such as speed, flow direction is indeed possible
[105]. A major concern observed was how to achieve sufficient participation. Thus,
for example, getting a few hundred to a thousand participants for large scale city
events was not a problem (in fact, these could come from the organizers and civil
protection forces). Getting tens of thousands participants is also possible as we
had around 55 000 app downloads for the event App in Zurich (Switzerland) which
is the foundation for this chapter. However, it requires an extremely well prepared,
very intensive marketing campaign that is often not feasible.
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a)

b)

Figure 5.2. Experiment and event visualization with a) the crowd density heat-map
snapshot on Friday (05.07.2013, 9 p.m.) based on GPS location data transmitted to the
server during 60 minutes. The main event areas during the Zürifäscht 2013 event are shown
as polygons with white borders. b) The pre-determined event areas by the organization
authorities of the event (image source: www.blick.ch)
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a)

b)

Figure 5.3. Impression of the ‘Zuerifaescht’ event in Zurich (Switzerland) in the year
2013. (Image sources: a) www.20min.ch and b) www.srf.ch)
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5.2 Motivation and Problem Statement

In summary, the question is how participatory crowd monitoring can be extended
to situations where the number of participants is too low to represent the crowd
distribution and motion in a statistically significant way from their GPS traces
alone (in other words the participants are too sparsely distributed within the crowd
to accurately reflect its structure and motion). The proposed solution is based on
the following observations:

1. Many users leave their smart phone bluetooth subsystem in discoverable mode
‘per default’ e.g. for the convenience of just getting into the car and being
automatically connected to the speakerphone (see Figure 5.5 on page 149).

2. Scanning for discoverable Bluetooth devices is a standard functionality in most
smartphones so that participants’ devices can be made to transmit not only
their GPS data but also information on discoverable devices that are within
their range.

3. In general the Bluetooth range is limited to 10 meters. This means that adding
information about discoverable devices in reception range to participants’ GPS
data is equivalent to providing location information not only about the par-
ticipants but also about the owners of the discovered devices. This effectively
increases the size of the sample that can be used for crowd density and motion
estimation.

Previous studies (see chapter 4, section 4.6 and section 4.7) with students as
participants carrying scanning smartphones

• at small scale events (thousands of people in an areas of about 500 x 20 m and
200 m x 200 m),

• following well defined walking patterns

have confirmed the basic feasibility of using such an approach to accurately es-
timate crowd density. However, they have also shown that the actual number
of discoverable devices can vary strongly in space and time for a given crowd
density so that only very rough estimates are possible when using the absolute
number of discovered devices as a feature. Motion patterns of the scanning devices
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have significant influence on the performance. Thus, the core scientific questions
addressed in this chapter are defined by the following aspects.

1. How does such an approach perform in unconstrained city scale environments
where participants are not students following well defined motion patterns but
‘normal people going about their business’?

2. What does it take to improve the system performance under such conditions, in
particular in terms of choosing and designing features that go beyond a mere
device count?

3. Is it possible to go beyond density estimation towards the recognition of motion
patterns even through the owners of the discovered devices (who do not actively
participate in the data collection and do not provide GPS data) from whose
have the approximate location but have no motion information?

5.3 Chapter Overview and Contributions

We describe a system that leverages users voluntarily having their smartphones scan
the environment for discoverable Bluetooth devices to analyze crowd conditions
in urban environments. Our method goes beyond mere counting of discoverable
devices towards a set of more complex, robust features. We also show how to
extend the analysis from crowd density to crowd flow direction. We evaluate our
methods on a data set consisting of nearly 200 000 discoveries from nearly 1000
scanning devices recorded during a three day citywide festival in Zurich. The data
set also includes as ground truth 23 million GPS location points from nearly 30 000
users.
Towards answering the above questions the chapter makes the following contribu-
tions:

1. A large, real life data set with nearly 1000 devices (subsequently called Bluetooth
scanner or scanner) providing Bluetooth scans (nearly 200 000 discoveries)
annotated with location information over a period of three days during a citywide
festival in Zurich. The data set also contains the ground truth for the density
and motion analysis that is based on around 30 000 users providing their GPS
coordinates.
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2. Use of the data set to evaluate the naive crowd density estimation method
(extrapolating from the number of seen devices) against the GPS based ground
truth.

3. A more advanced method that goes beyond absolute numbers towards relative
features that are more robust against statistical variations of the number of
devices present at a given density. The method is evaluated on the same data
set and compared to the naive method.

4. A method for the estimation of the crowd flow direction, again with evaluation
on the data set against the GPS based ground truth.

5.4 Related Work

Our work deals with (1) participative (2) crowd state analysis estimation using (3)
Bluetooth scanning. The relevant state of the art research in the three areas can
be described as follows.

5.4.1 Participatory Sensing

Among others Campbell et al. [16] and Burke et al. [15] introduced the general
concept of people-centric sensing and participatory sensing. Since then a lot of work
has been done in this area including sound pollution [85], air pollution [29] or road
and traffic conditions [68]. Wakamiya et al. studied temporal patterns of crowd
behavior indirectly speculated from a massive number of collected Twitter messages
[95]. In previous work [105] it was demonstrated how participatory collections of
GPS traces can be used to monitor the crowd condition (this is being used as
ground truth for the Bluetooth methods described in this chapter).

5.4.2 Crowd Monitoring

Video based crowd analysis became popular in the 1990s with the increased use
of CCTV cameras and availability of sufficient computing power (e.g. [27]). Since
then extensive research has been done and a comprehensive overview goes be-
yond the scope of this chapter (see. e.g. [111]). Examples of specific work range
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from detection of anomalies in crowd behavior [65], through work related to pri-
vacy preserving analysis [18] (not tracking or identifying individuals) to various
multi-camera systems [91]. Significant attention has also been given to tracking
individuals in crowds [54] including large area tracking with multiple cameras [50].
Overall the video monitoring work must be seen as complementary rather than
an alternative to our research of long term large area participatory analysis being
complemented by punctual video surveillance of specific hotspot. An alternative
may be airborne cameras that can cover large areas [86].
Beyond camera-based crowd monitoring, methods based on thermal imaging [2],
combination of thermal imaging and cameras, [5], wireless sensor network signal
propagation [109], cell tower information [79], and passive RFID monitoring [98]
were proposed.

5.4.3 Bluetooth Scanning

With the proliferation of mobile Bluetooth enabled devices leveraging the informa-
tion about discoverable devices has become an active research field in Ubiquitous
Computing. Early well known work showed [30, 40] how to recognize social patterns
in daily user activity, infer relationships and identify socially significant locations
from using Bluetooth scans. Since then Bluetooth has been widely investigated
as an additional source of information for various activity and lifestyle monitoring
systems (e.g. [34]).
Towards public spaces and crowd related applications Nicolai et al. [75] looked
at the discovery time of Bluetooth devices and the relation between the number
of people and the number of discoverable Bluetooth devices. However, unlike
in our approach only the absolute number of discovered Bluetooth devices was
used. Morrison et al. [70] considered the visualization of crowd density in stadium-
based sporting events. In [53] the authors recorded passenger journeys in public
transportation by analyzing Bluetooth fingerprints. O’Neill et al. [76] presented
initial findings in Bluetooth presence and Bluetooth naming practices. Versichele
et al. [92] performed an experiment during a mass event where they covered an
area with static Bluetooth scanning devices to extract statistics and visitor profiles.
BLIP Systems [12] exploited a stationary Bluetooth based people tracking system.
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Based on multiple Bluetooth zones scenarios like queue length at airports or travel
times by car are indicated.
With respect to large scale applications of mobile Bluetooth sensing Natarajan
et al. [73] have had 12 participants scan a city for discoverable Bluetooth devices
over a period of three months. A similar study was conducted on a larger scale
(100 devices, nine months) by Henderson et al. [39]. Finally, there were different
studies with the scope of university campuses and conference locations (e.g. [89]).
Overall the work we present differs from those in this scope (we base our work on
an order of a magnitude of more of Bluetooth scanning devices and discoveries)
and we focus on crowd behavior analysis. In our previous and initial work we have
demonstrated the feasibility of an early version of the features described in this
work at a small scale experiment with instructed students [100].

5.5 Data Set

The data set that this work is based on has been recorded during a three day
citywide festival in Zurich (Switzerland) in the summer of 2013 (http://www.

zuerifaescht.ch). The festival takes place every four years and attracts up to
2 million people with a mixture of shows, concerts, sports events, parades and
parties distributed all over the city. The recording had been leveraged by the
event management platform developed during the Socionical European Union
project (http://www.socionical.eu) and tested (mostly at a smaller scale and
without Bluetooth scanning) at a variety of events in London, Zurich, Vienna and
Amsterdam. The platform is build around an event information App [11] which
the attendees can use to plan their visit and get information on anything from
the location and timing of events through the background of the festival to public
transport and route planning. The app also includes a variety of social networking
features. In parallel, it integrates a set of safety/security modules which the users
could activate on a voluntary basis:

1. A monitoring module that records and transmits data of a set of selected sensors
to the server. The sensors are requested once the app was launched for the first
time and require explicit user consent for every sensor.
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2. A location sensitive messaging module that allows the organizers to send in-
formation or instructions to users at specific locations or at users heading in
specific directions.

3. A privileged module that is activated via special code when the app is not being
used by a visitor but by a member of the civil protection forces.

Considering the event management the collection of anonymized GPS traces, their
visualization in form of a heat map and the location based messaging capability were
the key. For the experimental purposes described in this thesis chapter, for the first
time of this software platform, users were asked to activate their Bluetooth module
if it was not activated previously and if they agree with scanning for Bluetooth
devices even when the application is currently not used. Synchronously to collecting
the data users were asked to transmit the Bluetooth discovery information, together
with signal strength, identifier and timestamp. The Bluetooth data collection
procedure had been previously cleared with the Zurich legal authorities.

5.5.1 Experiment Advertising Campaign and Distribu-
tion

We endeavored to achieve a very high quantity of participators acting as urban
crowd probes. There are primarily three goals to achieve. Getting the users to
download the application and acquire the permission from the user to collect the
sensor data in compliance with the privacy policy (see sub-section 5.5.3 for details).
The first goal was successfully achieved (55 000 app downloads) by collaborating
with the event management, local media featuring the scientific crowd sensing
aspects of the event application. Substantive functionality such as the schedule
and site information of the festival were of high interest by the users. Once the
potential users were aware of the application the users downloaded it via the Apple
and Google app stores. Most importantly, collecting sensor data (GPS localization
and Bluetooth scans) while in the event area in the background must happen with
clear communication with the user i.e. why, when and in which area sensor data
is collected. To let users easily participate in collecting sensor data no explicit
registration was necessary. As a result of the advertising campaign 55 000 people

144



5.5 Data Set

downloaded the application and a total of 30 000 people (approximately 54 % of
the app downloads) uploaded sensor data to the server. Users not participating
either opted-out, deactivated their data uplink, or never initially launched the
application after downloading. Application support was built into the application
giving hints on how to use the app, the privacy policy, and the possibility how to
opt-out regarding the data collection and transmission process.

5.5.2 Privacy Policy and Anonymization Approach

Most importantly, data protection officers made clear to precisely communicate
that data is used and how it is used. Through press releases the public has
been completely aware of this experiment. While the user initially launched the
application an indication about scientific and safety rationales behind the data
collection and data transfer to the server was shown along with a guide on how to
opt-out. This had to be confirmed by the user prior to any usage of the application,
data collection or data transfer. No information was transmitted to the server
which would infer to an identity of a participant. We emphasized not to annotate
data transfers to the server with any permanent user name or smartphone identifier
(device MAC address, device UUID, etc.). Additionally the GPS localization
mechanism had to be accepted due to operating system requirements for newly
installed applications (on iOS at the first launch of the app, on Android requested
device permissions are displayed prior to the download of the app). After the
confirmation a temporary random event device identifier was generated which was
sent together with the GPS and Bluetooth data packets to the server. The random
event device identifier cannot be mapped to a user identity and has the life time of
the special purpose event application. Any conclusion of anonymous traces of event
device identifiers is not possible since location recording and transmission is limited
to the 1.5 km2 event area and prominent user locations like the beginning and end
of a trace (i.e. location of residence, location of work, etc.) were not collected.
The IP address of the device (incoming data packet sender) was not stored. Next
to the anonymization of the participator we considered the anonymization of
Bluetooth discoveries. Each Bluetooth discovery contains a MAC address which is
uniquely assigned during the manufacturing of the Bluetooth chipset. We uploaded
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the MAC address to the server where we used a random salt which was used as
an additional input to a one-way hashing function (SHA) to encrypt the MAC
addresses irreversibly.

5.5.3 Experiment Procedure and Data Collection Pro-
cess

The distribution to a wide audience is more complex than to a small set of persons.
As we had to distribute the app through the official app stores, certain technical
and regulatory requirements had to be met. The team responsible for the app and
its release consisted of three persons. According to the app store carrier Apple, the
regulations of a background process accessing the GPS location was not allowed
without any direct benefit to the user. For this reason a location-based feature
called ‘friend finder’ was integrated into the application for getting Apple’s app
store approval. After the app download, the initial launch and the privacy policy
acknowledgement the application configured itself to start recording experimental
data for scientific research in the morning of the first event day. A data packet was
sent every two minutes (or buffered in case of 3G network congestion) to the server
(4 Amazon AWS server instances) running MongoDB data base instances. When
exiting the event zone the GPS localization was switched off. In the night of the
last event day the data collection module was deactivated automatically to prevent
collecting and uploading of unintended data in case the user kept the application
on his device. The experiment logic was integrated into the application. The
operating system function called ‘geo-fencing’ (coarse but power efficient location
method based on cell tower locations) automatically activated the data recording
process in the background if the user was present in the event area which covered
1.5 km2. When data recording was activated GPS data was acquired at 1 Hz, and
Bluetooth scans were obtaining every minute. The core part of the experiment was
the collection of Bluetooth scan information. Bluetooth scanning is defined as the
process of recognizing surrounding Bluetooth devices. Each Bluetooth scan can
result in n ≥ 0 Bluetooth discoveries. Each discovery contains information of the
device name (ignored), device profile (ignored), supported services (ignored), unique
MAC address, timestamp and signal strength. The duration of a Bluetooth scan
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(as of current Bluetooth chipset and operating system cooperation) is dynamically
controlled depending on whether new devices (within the scan period) are detected.
This is motivated by energy saving of the Bluetooth module when no devices are
discovered. The data was stored on the server for offline analysis.

5.5.4 Data Characteristics

Some key statistics of the collected ground truth data and Bluetooth discovery data
are shown in Tables 5.1. From the about 2 million visitors 55 000 had downloaded
our app and 30 000 of those have been actively transmitting GPS data. Of those
971 have also provided Bluetooth scans. This is due to the fact that users had to
explicitly activate the Bluetooth module and many were worrying about power
consumption issues or simply shunning the effort. Over the course of the event this
gave us nearly 200 000 discoveries that belonged to around 20 000 unique devices.

Distribution of Bluetooth Discoveries

The vast majority of scans has turned up relatively few devices. Figure 5.6 shows a
comparison of the statistics from Zurich to five other events: two football games (at
‘Wembley’ stadium in London and at the ‘Allianz Arena’ in Munich), the Munich
October Fest, a festival in the city center of Valetta in Malta (very small area
compared to Zurich) and the public viewing soccer event in the German city of
Kaiserslautern. What all the other events have in common is that a small number
(10) of Bluetooth scanners were moving around a constrained, very crowded area.
Thus the majority of Bluetooth scanning periods turned up a value corresponding
to the typical number of discoverable devices in a dense crowd which was somewhere
between 5 and 20 depending on the crowd and the location. It is also interesting
to note the similarity in the shape of the distribution of the Zurich event, the
Malta festival and the Allianz Arena data. The three had a comparatively larger
area going beyond a single crowded location (in the Allianz Arena experiment the
data was collected around rather than inside the stadium). However, the Zurich
distribution is much more distinct, due to the much larger area.
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Figure 5.4. The aggregated Bluetooth topology of the whole event duration visualized as
a graph. The circular layout is caused by the spring-embedder based ForceAtlas2 (gravity
and repulsion based) graph visualization algorithm. Due to the large number of edges (an
edge equals a distinct Bluetooth discovery) these appear as bluish blur in the background.
Blue dots represent Bluetooth scanners. The larger a blue circle (and proportionally more
blue) is the more discoveries were made by a certain device. Small white circles represent
discoveries.
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Proportion of Relevant Bluetooth Scanning Devices
The vast majority of Bluetooth discoveries comes from a relatively small number of
devices. This is illustrated in Figure 5.5. Exactly 329 devices were accountable for
90% of the total number of discovered Bluetooth devices. Figure 5.4 visualizes those
devices as large blue circles and discoveries as small white dots. Discoveries are
arranged in the proximity of the device(s). Again, the nature of the event explains
the data. Many people would visit the event briefly or stroll through the city
streets rather then spending more of their time at crowded locations. Additionally,
a number of participants had the Bluetooth scanning functionality turned on only
briefly.

Figure 5.5. Distribution showing the proportion of Bluetooth scanning devices to be
accounted for Bluetooth discoveries. The bar chart shows the index of the Bluetooth
scanning devices in sorted order (x-axis) with respect to the number of individual Bluetooth
discoveries (y-axis). The y-axis is shown in log scale to visualize the wide range of discoveries
from one to 7964 Bluetooth discoveries per Bluetooth scanner. Apparently, broad bars are
not to be confused with a single bar but multiple bars close to each other.

Uniform Event Area
Of the nearly 1000 scanning devices only 13 have seen each other over the course
of the festival. Given the large temporal and spatial extent of the festival and
the fact that the scanners were a random selection of the participants this is not
surprising. People were at different places at different times. What is surprising
is the fact that over 700 scanners shared at least one device that they have both
discovered over the course of the festival. In fact more than half of the scanners
shared at least 20 devices. This implies that the festival did not strongly separate
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into distinct events with little shared spectators. The above points illustrate that
participatory Bluetooth sensing is not only suitable for assessing crowd density (as
is the focus of this chapter) and flow directions but that it contains information
about more complex aspects of an event and may be used to recognize different
types of events taking place in a city.

Table 5.1. Data set statistics of the mobile participatory wireless scanning experiment in
Zurich.

Event Attribute Value

Event duration 3 consecutive days

Scope 1.5 km2 event area

Estimated number of visitors during the event
(according to event organizers)

2 million

Ground truth entities
(total number of GPS locations collected and
uploaded)

23 million

Number of app downloads 39 300 (iOS) +
15 600 (Android OS)

Devices collecting and uploading GPS traces 23 400 (iOS) +
6400 (Android OS)

Average number of location samples per device Friday: 586
Saturday: 643
Sunday: 703

Average time collecting GPS locations
(including pauses)

Friday: 12 840 seconds
Saturday: 14 378 seconds
Sunday: 10 145 seconds

Users actively participating in collecting and up-
loading Bluetooth scan data (Android OS)

971

Total Bluetooth discoveries 190 600

Distinct Bluetooth discoveries 18 900
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5.6 Citywide Area based Crowd Density Estimation

We analyzed the crowd condition estimation within defined areas during the Zurich
event. A typical area has the size of thousand to tens of thousands of square meters.
Areas are defined manually as being thematically associated. People are attracted
by an area, by its certain topic such as drink stands, open-air music concerts, open
air shows, spectator zones along the Zurich lake front for on-water shows, activity
zones for children and adults, public transit zones and pedestrian passage zones
between areas. A small number of Bluetooth scanning participants can deliver fast
crowd condition results within an area representing the current crowd condition. An
advantage of area based monitoring is the low latency estimation because scanning
just small parts of the area allows an assertion of the whole semantically connected
area. For a basic crowd condition estimation not every angle of the area needs
to be monitored before presenting a first estimation. Another advantage is the
clear connection between the crowd condition and the affected area. Security staff
monitoring the crowd condition estimation in real-time can easily recognize the
potentially affected area. In total 12 pre-defined areas mapped to activity zones
were monitored.

5.6.1 General Principle

An obvious way to estimate the crowd density is to perform a scan for discoverable
devices and assume that the number is an indication for the number of people in the
vicinity defined by the Bluetooth range (typically around 10 meters). Unfortunately,
this simple approach contains a number of problems. Firstly, there is the issue
of sufficient statistics. With the scan limited to a radius of about 10 meters
(approximately a circle with an area of 300 m2) anything between a few and a few
hundred people can be within range. While in a dense crowd with a few hundred
people we may get a representative sample, in less crowded areas we are likely
to see very strong variations between samples. Assuming the probability of any
single user having a discoverable Bluetooth device to be in average 10 % and 20
people are within range the average number of discovered Bluetooth devices will
only be two. While meeting in a space with exactly two technophile friends having
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Bluetooth switched on will also result in two Bluetooth discoveries. Thus we may
sometimes be in a group of people who do not even have activated mobile phones
while at other times we may be surrounded by a group where everyone has an
active Bluetooth device. Secondly, there is the question of signal attenuation. At
2.4 GHz (which is the transmission frequency of Bluetooth) the human body has a
high absorption coefficient. This means that in a dense crowd (where we would
expect to have good statistics) the effective scan range is reduced and therefore
‘falsifying’ the results. Finally, we have to consider cultural factors. This means
that the average number of people carrying a discoverable Bluetooth device may
significantly vary depending on who the persons in the crowd are. For the same
crowd density at a student party of a technical university a different number of
devices may be present than at a fifth division soccer game in a poor rural area.
In the previous chapter 4 we investigated a group-wise and collaborative Bluetooth
based crowd density measurement approach. However, the methodology of the
previous experiments was different and served as an initial study on the feasibility of
Bluetooth based crowd density. In the previous work we performed an experiment
in a controlled environment during a public viewing event during the European
soccer championship (see Figure 5.6 on page 153, a soccer public viewing event in
Kaiserslautern, Germany). The experiment persisted of 4 hours (1 hour during
arrival, 2 hours during and 1 hour during departure). The experiment took place
in a rectangularly fenced area with just a single entry and exit point while most
of the event visitors stood on the spot without moving after the arrival. During
the experiment we instructed students in five groups each of two people to move
consistently along a pre-defined imaginary path within the fenced area during
the three periods of the experiment. A walk along the path was finished in less
than three minutes and then repeated in reverse. In the previous approach we
developed features and built the method on Bluetooth discovery of constantly two
nearby scanning devices (one device per person, two per group) where we analyzed
variations of Bluetooth discoveries between both participants with a fixed spatial
connection.
In the work described in this chapter we have not set any requirements to the
participants behavior. Nearly 1000 participants moved freely at any desired speed
and direction without any influences from us. We applied neither methods from
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Figure 5.6. Visualization of Bluetooth discoveries in relation to a consistent 15 second
time windows. The x-axis of each sub-plot represents the number of Bluetooth discoveries
and the y-axis represents the proportion (percentage) of time windows with a certain
number of Bluetooth discoveries. The time windows are based on the whole experiment
duration and on all experiment participants. Each sub-plot represents one experiment.

previous work nor analyzed continuous groups of participants since time periods
of two constant close-by Bluetooth scanning participants was insignificant. The
covered experiment area is heterogenous consisting of many streets, footways,
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pedestrian zones, parks, stages and food courts which are divided by buildings,
bridges, a river and a lake. Visitors either stood statically at one point (i.e. at
a music stage, at the water-front spectator zone, etc.) or moved in the same
direction (i.e. before beginnings of mass events) or moved in different directions
while strolling around or spreading out (i.e. from train stations, etc.).

5.6.2 Advanced Method

The proposed advanced method builds on features which go beyond of just counting
Bluetooth discoveries. Our main contribution lies within the new features presented
in subsubsection 5.6.2. Bluetooth scan information is the main component of the
feature set but also GPS sensor information is taken into account. Our approach
was to aggregate sensor data from multiple participants to obtain a statistical
validity which had the aim to achieve a higher robustness regarding noise and
estimation accuracy compared to the trivial approach by just counting the Bluetooth
discoveries. This aggregation was applied to twelve different event zones defined by
us according to the event schedule and event map. Secondly, we aggregated the
sensor data by time, either with a time window of 10 or 30 minutes. As a result
of the spatio-temporal aggregation we obtained one 12-dimensional feature vector
per time window and event area. All in all we obtained 5184 (for a 10 minute
time window) respectively 1728 (for a 30 minute time window) feature vectors.
For our regression analysis we built on top of established methods. We applied
a feature selection using M5’s method (step through the features removing the
one with the smallest standardized coefficient until no improvement is observed in
the estimate of the error given by Akaihe information criterion) and eliminated
collinear features. After we obtained the set of feature vectors we built a regression
model based on the feature vectors and computed the ground truth value for each
feature vector. This crowd density estimation method was then applied on the
feature set for evaluation.
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Feature Definition

We introduce 12 features which were computed based on the Bluetooth discoveries
and the GPS location information of the nearly 1000 Bluetooth scanning partici-
pants. The data was stored in the MongoDB database and features were developed
later after the end of the event. Information from other participants which served as
a source of ground-truth was intended not to be involved in computing the features.
In the following, the proposed features are described. (1) The average speed of the
scanning devices (sensors) indicates different crowd states: If the speed is low either
the scanner is stationary and the crowd is stationary (due to high crowd density or
on-going event) or the scanner is stationary (spending time at food or drink stand)
and the crowd is passing by. We calculated the average speed by averaging the
speed values of all sensors during discovering Bluetooth devices. We did not take
the speed of other non-Bluetooth scanning devices into account. (2) The average
Bluetooth signal strength (RSSI value) reflects a rough statement about the average
distance and signal attenuation between the scanning device and discovered devices.
We calculated the average signal strength of all Bluetooth identifiers including
multiple discoveries of the same Bluetooth identifier by one or multiple scanners and
then averaged the value. (3) The variance of the Bluetooth signal strengths indicate
the deviation (due to different distances and signal attenuation) of signal strengths.
We calculated the variance of the signal strength of all Bluetooth discoveries in-
cluding multiple discoveries of the same Bluetooth identifier. (4) The variance of
subsequently measured Bluetooth signal strengths for a specific Bluetooth identifier
is influenced by the crowd behavior. If two devices are in the same distance to
each other and does the crowd not move in between the signal link, the variance is
lower than in a moving crowd. We calculated the variance of the signal strength
of Bluetooth discoveries with the same Bluetooth identifier detected by the same
sensor. We then averaged the values of all discoveries and sensors. (5) The feature
is defined as the average value of re-discoveries of each Bluetooth identifier address
by all sensors representing the overall crowd motion in an event area. We calculated
this by counting the re-discoveries of the same Bluetooth identifier by any sensor.
All sensors act as an aggregated sensor, as if the discoveries were coming from
one sensor. If a re-discovery was made by the same sensor or another sensor is
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irrelevant. We then average the number of re-discoveries over all current Bluetooth
identifiers. (6) By analyzing the average number of scanners discovering a certain
Bluetooth identifier per time window we can make an assumption of the coverage
and scanner distribution in the event area. We calculated this feature by the sum
of sensors which discovered a unique Bluetooth identifier and then averaged this
over all current Bluetooth identifiers. (7) The diversity of individual sensors is
defined by the overall average of the relation of uniquely discovered devices to the
sum of non-unique devices discovered. This feature was calculated by the sum
of Bluetooth identifiers which were only discovered by one sensor, divided by the
sum of Bluetooth identifiers discovered by two or more sensors. (8) We define
the duration of device visibility periods in a given time window as the maximum
timespan a Bluetooth identifier was recognized by all sensors. Averaged over all
scanners the length of the stay depicts the potential to be discovered by any sensor
in the area. This feature was calculated by retrieving the first and last occurrence
of a Bluetooth identifier which was discovered by any sensor in the time window.
We then averaged the duration of all Bluetooth identifiers. (9) The average time of
Bluetooth sensors in the area measures the ‘scan-ability’ of an area and takes time
spans into account where no or few Bluetooth devices were found. We averaged the
duration of active sensors in the given time window and, of course, the given area.
We include three basic features in our feature set. (10) The total number bluetooth
discoveries reflects the sum of all Bluetooth discoveries including re-discoveries of
the same Bluetooth identifier by any sensor. (11) The unique Bluetooth device
discoveries reflects the sum of all Bluetooth discoveries excluding re-discoveries of
the same Bluetooth identifier by any sensor. (12) The number of active scanners
is another measure of the ‘scan-ability’ of a certain time window and event area.
This is calculated by the sum of all active sensors in the given time window and of
course the given area.

Ground Truth Definition

To evaluate our proposed Bluetooth based crowd density estimation method we
had to consider a comparison with the actual number of people in a certain area.
Manual methods for obtaining ground truth information with a granularity of
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10 minutes for each of the 12 event areas were not feasible. We did not have the
resources to deploy multiple persons all day long for multiple days at the wide
spread event areas manually noting the number of people around. Even having the
man-power it would be impossible to continuously count the number of constantly
moving people in a complex area with multiple entry and exit points. For this
reason we designed our experiment to collect additional ground truth information.
While nearly 1000 participants were obtaining Bluetooth discoveries, nearly 30 000
participants (23 400 iOS and 6400 Android OS) obtained ground truth information
with an average daily duration of 3.5 hours on Friday, 4.0 hours on Saturday, 2.8
hours on Sunday with potential pauses in between (we defined an event day from
from 4 am to 4 am). The average number of samples per GPS trace was 586 samples
on Friday, 643 on Saturday, and 703 on Sunday (see Table 5.1). We extracted
the ground truth values from the collected data set by counting the unique event
device identifiers in a certain time window and event area. While we are aware that
our ground truth value is a value smaller than the real number of people (not all
people present participate in the experiment with the provided apps) we assumed
a constant factor to be multiplied with our ground truth values to achieve the real
number of people. Since we are interested to evaluate our approach as a method to
obtain the crowd density based on a small sample (971 participants vs 2 million
event visitors) compared to a larger sample we consider calculating the calibration
factor in future work.

5.6.3 Evaluation and Results

We applied a feature selection using M5’s method and eliminated collinear features.
We identified features (feature identifiers (2), (4), and (9) defined in subsubsec-
tion 5.6.2 on page 155) which did not contribute to information content of the
feature vectors. We then evaluated our crowd density estimation method in multiple
ways. Firstly, by comparing our new crowd density method (advanced) to two
kinds of basic methods previously used in literature. The basic reference method
is defined by simply counting unique Bluetooth device discoveries (basic), which
counts multiple discoveries of the same Bluetooth identifier only once. For each
method we generated an individual regression model which is based on all event
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Table 5.2. Results (lower value is better) by evaluating the model with data subsets
regarding different event areas. For generating the model all feature vectors of all event
areas were selected, while each set of feature vectors of event areas was used as a test set.
A 10 minutes time window was used for data aggregation. A previous methodology (basic2)
for crowd density estimation was compared against our newly proposed methodology
(advanced).

Event area
Approximation error (lower is better)

Basic2 Method Advanced Method

Area 1 75.6 % 67.4 %
Area 2 80.0 % 47.1 %
Area 3 77.2 % 78.9 %
Area 4 92.3 % 88.3 %
Area 5 61.4 % 47.7 %
Area 6 95.0 % 71.8 %
Area 7 79.8 % 69.7 %
Area 8 80.4 % 70.6 %
Area 9 87.8 % 80.0 %
Area 10 62.8 % 69.3 %
Area 11 99.2 % 52.5 %
Area 12 80.1 % 97.4 %

areas and a temporal aggregation of ten minutes. As described before we have 5184
feature vectors, while they either have the dimensionality of one (basic reference
method) or twelve (the proposed advanced method).

As the evaluation metric we selected the relative approximation error, expressed as
the percentage of our calculated value deviates from the absolute ground truth value.
Method basic results to a relative approximation error of 57 %. Our advanced

method leads to a relative error of 47 %. This is a decrease of 10 % regarding the
relative error compared to basic which denotes a significant improvement of our
method. We visualized the individual error values of 5184 feature vectors with
the basic method in Figure 5.7a and the error values of the advanced method in
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Table 5.3. Linear Regression results with data subsets. Showing the impact of the number
of scanners (x) involved to the crowd density estimation both on the correlation coefficient
and relative absolute error.

Number
(x) of
Scanners

Approximation error

10 min window 30 min window

x ≥ 2 65.4 % 49.7 %
x ≥ 3 66.4 % 50.9 %
x ≥ 4 59.8 % 49.4 %
x ≥ 5 52.5 % 45.7 %
x ≥ 6 44.9 % 38.5 %
x ≥ 7 39.8 % 33.0 %
x ≥ 8 34.5 % 29.4 %
x ≥ 9 35.7 % 27.5 %
x ≥ 10 28.9 % 26.1 %

Figure 5.7b which show the deviations between actual value (x-axis, ground truth)
and predicted value (y-axis, estimation) with a temporal aggregation of ten minutes.
As visualized in the scatter plots the approach basic tends to exaggerate lower
crowd density values to higher crowd density values, while our advanced method
tends to concentrate values near to the diagonal line (representing 0 % relative
error).

Secondly, we evaluated the method on individual event areas with the proposed
crowd density estimation method (advanced) and compared it to the reference
method of simply counting unique Bluetooth devices (basic). With this evaluation
we wanted to see whether the regression model, generated on n − 1 event areas, fits
to the nth event area. We generated a regression model for all n − 1 combinations
while the set of feature vectors of the nth event areas was used as a test set. A
10 minutes time window was used for data aggregation. The results are shown
in Table 5.2. While our method outperforms the basic method in nine of twelve
event areas, our method has a higher relative absolute error at two event areas and
approximately the same relative absolute error at one event area.
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Lastly, we analyzed the impact of the number of Bluetooth scanners involved in
the crowd density estimation with the advanced method. For each method we
generated an individual regression model which is based on all event areas and
a temporal aggregation of 10 and 30 minutes. The raw data was not reduced by
selecting a range of Bluetooth scanners on the data set but by selecting subsets
of the feature vectors (each feature vector corresponds to a time-window and an
event area) which complied to the given criteria. We filtered the feature vectors
by the number (x) of Bluetooth scanners actively scanning (not to be confused
with the number of Bluetooth discoveries). Multiple subsets of the feature vectors
with the attribute of x ≥ 2 up to x ≥ 10 Bluetooth scanners were selected. For the
evaluation we used 10-fold cross-validation. The resulting relative approximation
errors are shown in Table 5.3, which are ranging from 65 % (x ≥ 2) to 28 % (x ≥ 10),
and respectively regarding a time window of 30 minutes ranging from 49 % (x ≥ 2)
to 26 % (x ≥ 10). If the minimization of the relative error is considered, each
additional Bluetooth scanner decreases the error in average by 5 % (10 or 30 minutes
time window). If the time window duration is considered, the relative absolute
error decreases by 9 % in average while choosing a window size of 10 minutes
respectively 30 minutes with the same number of Bluetooth scanners available.
The error decreases is significantly more when x ≥ 2 (16 %) as if x ≥ 10 (3 %) is
considered.
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Figure 5.7. a) Estimation result with basic crowd density features. b) Estimation
result with advanced crowd density features. a+b) Each ‘+’ symbol denotes a 10-minute
snapshots from one of the 12 event areas. The x-axis shows the resulting linearly combined
value of the feature vector, and the y-axis is defined by the ground truth value. The blue
diagonal line denotes the 0% relative error value. The coloring visualizes the relative error
of the predicted value (x-axis) regarding the actual value (y-axis). The range of the color
scale is limited from 0.0 (0%) to 1.0 (100%) and values with a relative error larger than 1.0
are also colored red.

5.7 Crowd Motion Characteristics

We evaluate the general feasibility to detect crowd flows in relying on mobile Blue-
tooth scanning devices and present qualitatively results by matching the extracted
information to event schedule ground truth. The motivation of Bluetooth based
crowd flow sensing is based on the assumption that just a few actively participating
Bluetooth scanners are needed. Other surrounding people contribute indirectly
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just with their enabled Bluetooth radio module without the need of an explicitly
installed application. For example, if a single Bluetooth scanner senses five sur-
rounding devices the statistical validity is higher than if a single sensor is measuring
only its own movement.
Bluetooth scanners might be static or moving. Those can be selected dynamically
by their current association (which might change) to a certain area. The crowd flow
can be measured between two areas. An area acts as a virtual checkpoint where
Bluetooth devices are discovered. If a Bluetooth device identifier is discovered at
another checkpoint a transition from area A to area B can be determined. Each
transition detection is attributed with the duration of the transition. Virtual check-
points can cover corridors (i.e. bridges, underpasses, streets) or any other places
(larger and more distant areas) with numerous paths between two locations. While
the latter might be interesting for analyzing patterns in visitor flows for marketing
reasons, the former is most interesting for real-time analysis of emergencies in
crowded areas. The tragic example of the Love Parade 2010 in Duisburg (Germany)
demonstrated that such bottle necks can lead to fatal accidents.
We demonstrate the general feasibility to detect crowd flows in relying on mobile
Bluetooth scanning devices by Figure 5.8 which visualizes all Bluetooth device
identifiers compared to the number of Bluetooth scanners which discovered a
Bluetooth identifier. In total 12 933 discovery identifiers are involved. Around
3700 Bluetooth identifiers were discovered by just one scanner. In contrast some
Bluetooth identifiers were discovered by up to 67 scanners. Figure 5.9 visualizes
all Bluetooth device identifiers compared to the number of locations they were
re-discovered. Locations are defined individually for a Bluetooth identifiers. A new
location is represented by a discovery which is at least 10 meters away from any
other discovery of the same Bluetooth identifier. Nearly 6000 Bluetooth discovery
identifiers were not re-discovered at another location. In contrast around 7000 were
re-discovered at another location at least once, with a maximum number of 75
locations.
We studied the crowd flow on the ‘Quai’ bridge which acted as a corridor between
the western and eastern part of the city and as a spectator area at the same
time. Figure 5.10 shows a satellite view with marked zones we used for transition
monitoring. We aggregated all available scanners in each zone and time window.
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Figure 5.8. Bar chart visualizing the Bluetooth discovery identifiers (x-axis, sum: 12 933
discovery identifiers) which were discovered by different Bluetooth scanners (y-axis, log
scale). The values are sorted by the ascending number of Bluetooth scanners. Wide bars
are not to be confused with a single bar, but many contiguous equally high bars. 3700
Bluetooth discovery identifiers were discovered by just one scanner, while the remainder was
discovered by at least two different Bluetooth scanners (maximum 67 Bluetooth scanners
discovered the same Bluetooth discovery identifier).
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Figure 5.9. Bar chart visualizing the Bluetooth discovery identifiers (x-axis, sum: 12 933
discovery identifiers) which reappeared (by proof of discovery) at least once and the
respective number of different locations (y-axis, log scale) defined by a minimum distance
of 10 meters to any previous discovery of the same identifier. The values are sorted by
the ascending number of locations. Wide bars are not to be confused with a single bar,
but many contiguous equally high bars. Nearly 6000 Bluetooth discovery identifiers were
not re-discovered at another location, while around 7000 were re-discovered at least once
(maximum location of re-discoveries: 75 locations).

The extracted transition information on the ‘Quai’ bridge during two days is shown
in Figure 5.10 where separate time series show the crowd flow from the west to
the east and the other way around. The time series simply represent the count
of consecutive Bluetooth identifier observations within a 30 minute time window.
Figure 5.10 qualitatively reveals a matching between the time series and the event

163



5 Participatory Citywide Sensing

schedule ground truth. A strong connection between event times where spectators
were stationary or walking around could be determined with the event calendar
ground truth information. During three major events on lake Zurich the crowd
flow on the monitored region quickly declined. At time (A) fireworks with music
were presented (ground truth event calendar entry: Friday 10:30 p.m. to 11 p.m.),
at time (B) a skydiver show was performed (ground truth event calendar entry:
Saturday 4 p.m. to 4:30 p.m.), and at time (C) an acrobatic show was performed
(ground truth event calendar entry: Saturday 10 p.m. to 10:15 p.m.).
This underlines our hypothesis that besides Bluetooth based crowd sensing we
can also achieve Bluetooth based crowd flow monitoring with mobile Bluetooth
scanners. This observation is new compared to previous literature where stationary
Bluetooth scanners were used.
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Figure 5.10. Indirect crowd flow measurement visualization. a) Diagram showing
Bluetooth re-discoveries on the Quaibridge. The numbers towards the end of a line section
represent the number of Bluetooth devices re-appearing afterwards at the target zone. The
blue colored regions represent the detection area. b) Time series of the crowd flow from the
west (left blue area in Fig.a) to the east (right blue area in Fig.a). (A) fireworks (ground
truth event calendar entry: Friday 22:30 to 23:00), (B) skydiver show (Saturday 16:00 to
16:30), and (C) acrobatic show. The maximum time lag between consecutive observations
of the same device at different locations are 30 minutes. A strong peak can be detected on
Friday during the arrival time between 6 p.m. and 9 p.m. and at around 11 p.m. during
the departure time.

5.8 Citywide Grid-based Crowd Density Estimation

In the previous section we presented and validated the crowd condition estimation
within pre-defined areas during the Zurich event. In this section we present a
citywide grid-based crowd density estimation method and validation. However,
the grid-based density estimation is not a real-time method for all density ranges
(except identifying high crowd density levels) and focuses on a daily period crowd

165



5 Participatory Citywide Sensing

density estimation.

5.8.1 General Considerations

A previously defined area has the size of thousand to tens of thousands of square
meters. Areas are defined manually as being thematically associated. However,
limitations exist when monitoring the crowd condition at semantically pre-defined
areas. Areas have to be defined manually. An area is defined with the background
knowledge. Coherency within an area must be given and known in advance of
an event. Another disadvantage is that there is no guarantee of a uniform crowd
distribution within an area - even when expected. Another disadvantage is that
the crowd condition estimation within an area is aggregating all scanning data
within the area. There is no knowledge of the exact location of the underlying scan
coordinates after the aggregation.
In this section we propose the method of grid (or bin) based crowd condition
estimation with Bluetooth scanning participators. Several advantages of grid-based
crowd condition estimation opposed to area based crowd condition estimation exist.
An advantage is the detailed resolution of crowd condition estimation entities.
Diverging crowd conditions within an area can be estimated. No manual definition
of event areas is necessary. Dynamically evolving event area boundaries are un-
problematic. A disadvantage is the unsteady distribution of the crowd condition
across neighbored entities when not enough scanning samples are available. An
entity without scan samples is marked as void. The grid-based crowd condition
estimation has to be seen as an evolving estimation method over time. The full
picture of the crowd condition distribution is created over time. Participatory
scanners must scan exactly within an entity to update its crowd condition. More
frequented entities contain more scans and may contain newer scans. Less partici-
patory scanner frequented entities contain less scans and contain potentially older
scans. Grid-based crowd condition estimation is based on uniformly distributed
entities along a lateral and longitudinal grid. Given a start entity, all other entities
are deterministically distributed across the world. An entity can be defined as a
polygon of common elementary categories such as a square, circle or hexagonal bin.
We describe the attributes of the entities regarding its effectiveness for grid-based
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crowd condition estimation. When using circles, grid aligned circles would leave
holes in-between or otherwise would overlap when holes are avoided. Overlapping
is critical because a non-ambiguous allocation to an entity is not possible. When
using squares, grid aligned squares would perfectly align and would not leave holes
and would not overlap. Lastly, when using hexagons, grid aligned hexagons would
perfectly align and would not overlap. A hexagon grid consists of hexagons shifted
by the half diameter in vertical direction. A hexagon based grid has advantages
over a square based grid. Assuming a location in the center of the given entity,
the euclidian distance to another location in the corner (north-east, south-east,
south-west, north-west) is much further away as another location in the north, east,
south or west. Another disadvantage of the square-grid is the problematic allocation
of diagonal trajectories (north-east to south-west or south-east to north-west or
inverse). A arbitrary diagonal participatory scanner walking pattern would yield to
a staircase shaped allocation pattern to square entities. A hexagonal grid reduces
the disadvantages of a square based grid. In a hexagonal grid the distance from
the center to the boundary is nearly identical. Diagonal and straight movement
trajectories are predominantly allocated to a straight sequence of hexagon entity.
We defined the size of each hexagon entity with the background knowledge of the
Bluetooth signal range. The specified hexagon diameter is reflecting the theoretical
wireless Bluetooth signal range in a free line of sight condition. The Bluetooth
range is limited to 10 meters. The hexagonal bin diameter is defined as 20 meters
which is two times the Bluetooth range. Assuming a center location of a scanner
within a hexagonal bin, the entire bin area is within the signal range. As the
scanned signal source location is not known, the heuristically approach is expecting
it and the signal attenuating crowd within the bin. We divided the whole central
city of Zurich into 7838 hexagonal bins with a diameter of 20 meters.

In the following subsection we describe the crowd condition estimation methods
and present evaluation results for the experiment during the citywide event in
Zurich.
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5.8.2 Definition of Crowd Class and Ground Truth

It is desirable to have a detailed ground truth information about the citywide
crowd condition of the event. Detailed crowd condition (crowd density and crowd
velocity) allows detailed temporal (i.e. at every second) and at the same time
detailed spatial information (i.e. at every square meter). However, obtaining
such detailed ground truth information for a whole city is infeasible. Similar to
the participatory Bluetooth scanners we had other participators delivering their
GPS position as a ground truth reference. GPS participators are independent of
Bluetooth scan participators. GPS participators allowed continuous and anonymous
tracking during the experiment within the city boundary. In total, we collected GPS
traces from 29 800 people which were roaming throughout the city and reporting
as ground truth indicator with their GPS location information over three days. We
assume that the people are a representative sample. The fraction of GPS scanners
is 1.3% according to the total number of 3.2 million event visitors. The fraction of
participatory Bluetooth scanners is just 0.04 %. 1.3% of the event visitors (every
77th person) are participatory GPS data collector. Likewise, at low frequented
locations -during a whole day- no or only a very few intermittent participatory
Bluetooth scanners might appear. To maximize the range of crowd density classes
available for the method validation we selected a whole day for the aggregation time
window. Within the duration of one day we collected a detailed spatial resolution
of the crowd condition. With this method we rely on GPS information of up to
3000 people per hexagonal bin. We define the ground truth ‘crowd level’ as the
connection between the quantity and the speed of the GPS participators. The
quantity per bin is defined as the number of distinct GPS participators localized in
hexagonal bin (ξx). This quantity alone does not represent the crowd condition
very well over the duration of one day. Bins through which people roam over time
are marked as a high quantity (see Figure 5.11b on page 170). The most frequently
used pathways throughout the city are recognized by this value. Bins with high
crowd density and many transitions are not recognizable. To compensate this
effect we aggregate the crowd speed in each hexagonal bin (νx). We only rely on
GPS participators with a maximum velocity of 2.5 m/s which is equal to running
speed. Faster moving transportation methods are not included. The crowd speed is
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computed by averaging all filtered GPS participants velocities while being observed
in the hexagonal bin during the day. Figure 5.11c is visualizing the crowd speed
in each hexagonal bin. We see that the city center is dominated by a low crowd
speed while the adjacency bins are dominated by crowd speeds above 0.7 m/s. The
Zurich lake is a special case where slowly moving ships are underway with a low
velocity of around 1.6 m/s. Neither the quantity nor the velocity are reflecting the
crowd condition very well on their own. But the combination gives an important
statement.
Low crowd velocity and high quantity would indicate a highly crowded bin. High
crowd velocity and high quantity would indicate a medium crowded bin. A high
crowd velocity and low quantity would indicate a low-crowded bin. To emphasize
bins which are not often visited by crowd scanners we apply logarithm function.
To emphasize bins with just few scanners but with low crowd speed -assuming the
low speed is based on a high crowd density- we apply the exponential function. We
define the ‘crowd level’ by the function f :

f(hexagonal binx) = log(ξx)/exp(νx)

Figure 5.11d is visualizing the crowd level during one day of the Zurich event. To pre-
pare the crowd level for machine learning classification we discretize the crowd level
values into five discrete ‘crowd classes’ ranging from discrete class 0 (uncrowded)
to class 4 (crowded). The ‘crowd classes’ are visualized in Figure 5.11e.

5.8.3 Methods and Machine Learning

We propose methods to estimate the crowd class within a grid of 7838 hexagonal
bins with a diameter of 20 meters each. The methods build on the foundation of
machine learning classification. Analogous to the time frame based ground truth
extraction the methods estimate the ‘crowd level’ for a full event day. To allow
comparability with the ground truth we compute the following features for the
same time window.
The first proposed method is based on quantities of values being observed (absolute
features) similar to t. The second method is based on measurable variations of
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a)

b)

c)

d)

e)

a)

Figure 5.11. Definition of the ground truth ‘crowd level’. Defined by the quantity of GPS
sensor participators and the velocity of the GPS sensor participators per hexagonal bin. b)
The quantity (ξx) per bin. c) The crowd velocity (νx) per hexagonal bin. d) The combined
crowd level by the formula f(hexagonal binx) = log(ξx)/exp(νx). e) Discretized ‘crowd
level’.

values being observed (relative features). As described in the previous chapters,
absolute quantity methods are strongly influenced by the background of the sur-
rounding people. Within one group of people everyone might be equipped with
a wireless enabled device. In another group of people nobody might be equipped
with a wireless enabled device. Such fluctuations are impossible to be detected
for absolute features. We create a multi-dimensional feature vector to reduce such
influences over time and when multiple scanners were active in a hexagonal bin.
Relative features on the other hand measure variations which are produced by
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signal attenuations by the people themselves and not due to the background of
the people. We introduce multiple independent relative features combined to a
multi-dimensional feature vector.
Each feature is computed for each of the 7838 hexagonal bins. To identify the
currently associated bin of each scanner we rely on location information from the
participatory scanner (consecutively called scanner). The scanners sent location
information at varying time intervals. When being static, location information
was sent every 30 seconds. When moving, location information was sent every
few seconds. Situations in which GPS beams from the satellites were shielded did
not allow location extraction. Such situations occur under bridges or in narrow
streets between tall houses. When location information was not available during the
Bluetooth scan the Bluetooth scan was ignored. Bluetooth scans were performed
once every minute. A Bluetooth scan includes a set of distinct Bluetooth devices.
A Bluetooth scan does not allow insight into the continuity of the devices within
the scan. No assertion is possible whether a device is discovered while passing by
or whether the signal attenuation is varying for a single device. Due to the growing
size of the data set over the experiment day, one can assess different devices’ signals
scanned by multiple scanners over time within each bin.
The absolute features are defined as the 1) total number of unique detections
per hexagonal bin, 2) the total number of detections including repeated detected
devices per hexagonal bin, 3) the average number of detected devices per scanner
per hexagonal bin and 4) the number of scanners being active in the hexagonal bin.
The feature of the total number of unique detections per hexagonal bin is created
by the size of the set of distinct discovered devices over time. This feature is
independent of the repeatedly discovered devices but models the quantity of distinct
detections and the diversity of detections. Over time the set size is increased as
new distinct devices are discovered by the same or by other scanners within the bin.
A single well receivable device’s wireless signal won’t influence this feature when
multiple scanners detect the same device multiple times. In our mobile scanning
scenario scanners and discovered devices are mobile and are potentially roaming
throughout the commemorated bin boundaries. When the discoverable device is
roaming to another bin and is re-detected it is again considered in the set of unique
devices per bin. The feature of the total number of detections including repeated

171



5 Participatory Citywide Sensing

detected devices per hexagonal bin is created by the size of the array of discovered
devices over time. This feature includes potential multiple detection of the same
device being stationary in the bin. This feature describes the number of scans
within a bin even when both scanner and discovered device are not moving the
value is increased. This feature is important for bins with less pedestrian flow,
i.e. during a concert when people are standing still in a dense crowd and no new
unique devices are arriving in the allocated bin over the duration of the concert.
The feature of the average number of detected devices per scanner per hexagonal
bin is created by the size of detected devices per scanner within the bin divided
by the number of scanners being active within the bin. This feature describes the
average detections of devices per scanner within one scan. This feature compensates
divergences between multiple scanners and over time. With an increasing duration
of observed scans this feature is representing the expected number of devices being
discovered during one scan window within the bin. The feature of the unique
number of scanners in the hexagonal bin is created by the set size of the number of
unique scanners being active at least once within the bin. This feature describes the
visit frequency of scanners in the bin. This feature is independent of the duration
of the scanner visit within the bin and is independent of the number of scanners
re-visiting a bin again for a second time or more.
The relative features are defined as 5) the signal variation over all devices being
detected over time including re-discoveries in the bin, 6) the mean signal strength
over all devices being detected over time including re-discoveries in the bin, 7) the
variation over the quantity of devices per scan along all scanners within the bin,
8) the mean scanner velocity during the scans in the bin, and 9) the fraction of
scans returning no discovered device in the bin against the total number of scans
performed in the bin.
The feature of the signal variation over all devices being detected over time in
the bin is created by the variance between the measured received signal strength
indicators of all detected devices including re-discoveries of the same device during
another scan by the same scanner or by any other scanner. The variance is defined
as variancesignal(bin) =

∑
x∈bin

signal2

numberbin
− average(bin)2 where x describes a device

discovery with a connected signal strength measurement. This feature takes signal
strength variations into account which are induced by varying signal attenuations
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at different crowd densities and varying distances between scanner and discovered
devices. While the true distance to a device is unknown we assume that the
distances are uniformly distributed as time continuous and further scanning devices
are discovered. We expect stronger variations in crowded environments than in
non-crowded environments. The feature of the mean signal strength of all detected
devices including re-discoveries of the same device during another scan by the same
scanner or by any other scanner is defined as meansignal(bin) =

∑
x∈bin

signal

numberbin
. This

feature takes the signal strength into account which is induced by signal attenuation
at different crowd densities and the distance between scanner and discovered device.
Over time we expect a lower signal strength in crowded environments than in non-
crowded environments. The feature of the variation over the quantity of devices
per scan in the bin is created by the variance of the number of detected devices
per scan by the same scanner or any other scanner. The variance is defined as
variancequantity(bin) =

∑
x∈bin

quantity2

numberbin
− average(bin)2 where x describes a the

number of unique devices within a scan. This feature takes variations of the number
of devices detected per scan into account. We expect a stronger variation in lower
crowd densities than in higher crowd densities. In low crowd densities it is expected
that it strongly depends on the group of people currently being in the proximity
of a scanner. Within one group every person might be equipped with a wireless
Bluetooth enabled device, within another group no person might be equipped with
a Bluetooth device. When the number of persons in the proximity is high we
assume that different groups are within the range and the number of Bluetooth
enabled devices is uniformly distributed. The feature of the mean scanner velocity
during the scans in the bin is created by the sum of the velocity during a scan
divided by the number of scans performed. This feature takes the potential ability
of detecting new unique devices into account. A scanner can either detect many
devices when moving fast through a less dense crowd or can detect many devices
when walking slowly trough a dense crowd. This feature compensates the effect
of the scanner velocity while the velocity of discovered devices in the proximity is
unknown. The feature of the fraction of scans returning no discovered device in
the bin against the total number of scans performed in the bin is created by the
number of scan intervals without detecting any device divided by the number of
performed scans with zero or more detected devices in the bin. This feature takes
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the scanning into account that tried scanning for devices in the bin but did not
resolve any devices. This feature emphasized the detection of at least one device
against the detection of none device at all. It is expected that bins with very low
crowd densities have many empty scans over time. Because of the assumed uniform
distribution of scanners within the city crowded bins are covered more often than
non-crowded bins. This allows to support the assumption of bins being not crowded
at all.
Our methods to estimate the ‘crowd level’ rely on machine learning of the data
records (x, Y ), where x is the feature vector and Y is the target value. The
general machine learning principle was described in detail in subsection 4.6.3.
For machine learning we selected the decision tree classifier and configured its
parameters to generally avoid overfitting. The decision tree classifier is configured
to have a maximum depth of 15 from the root not to any leaf node and the decision
tree is configured to have a minimum number of 15 data records per leaf. This
configuration is common in decision tree learning where a large number of data
records is available. The machine learning approach follows an independent training
with a subset of the data while another subset of the data is used for validation.
The classifier results are evaluated by 10-fold cross-validation. With this approach
every data record is used once in the training set. The classification performance
metrics are averaged along the cross-validation results.
In general, the classifier is trained by either the feature set of absolute features or
by the feature set of relative features. One feature vector was computed for each
of the 7838 hexagonal bins. Together with the ground truth ‘crowd level’ labels
Y for each bin (as defined in the previous subsection) the data record (x1...xk, Y )
is created for each bin. During one cross-validation step one hexagonal bin data
record either served as training or as validation instance. This means we divide the
whole city geographically into training bins and validation bins. While iterating
over the cross-validation steps each bin is used once for training. While a bin is
used for training it is not used for validation as of the principle of machine learning.
By having equally sized hexagonal bins as data records we avoid specializing on
specific manually defined regions of the event, but generalize the classifier to be
universally applicable to a dynamically extendable region.
For the evaluation of the influence of the quantity of participative scanners within
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a bin, we selected a subset of currently considered scanners in a bin. For each
subset of currently considered scanners the features are individually generated.
For each bin we randomly selected ix (i <= nx) distinct scanners (nx is the
maximum number of scanners available in bin x). We considered a range between
a minimum of 1 scanner and maximum of 25 scanners per bin. This yielded into
24 individual feature computation runs. In total we have 7838 · 24 · 9 = 1 693 008
feature computation runs over all bins and subsets. Feature computation was done
with parallel processing to reduce run-time. The absolute feature vectors and the
relative feature vector are computed individually. According to the general classifier
training procedure with cross-validation each subset is evaluated individually. In
total we have 2 · 24 · 10 = 480 classifier runs.

5.8.4 Evaluation Results
We evaluated our ‘crowd level’ estimation method for four scenarios. The first two
scenarios allow insight into the estimation performance as achieved with the exact
amount of all 981 scanners and their scanning data available during the Zurich
event. The third and fourth scenario allow insight into the estimation performance
when only a lower number of scanners is available. This is an important aspect
when applying the estimation method to other events and to know the number
of scanners needed within a bin for a certain performance metric. The scenarios
include the validation of the

• absolute feature vectors from the full spectrum of data available by all scanners
being active during the citywide event (scenario 1)

• relative feature vectors from the full spectrum of data available by all scanners
being active during the citywide event (scenario 2)

• absolute feature vectors from several subsets of the data by artificially limiting
the number of scanners being active in each hexagonal bin (scenario 3)

• relative feature vectors from several subsets of the data by artificially limiting
the number of scanners being active in each hexagonal bin (scenario 4).

In Figure 5.12 the performance metrics are shown for a) the absolute feature vector
and for b) the relative feature vector. The shown performance metrics are the
weighted classification precision for each class, the weighted classification recall for
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each class and the weighted classification f-score for each class. We use weighted
precision and weighted recall to compensate the different number of data records
per class. Intuitively a high precision is the ability of the classifier to return accurate
results. Intuitively recall is the ability of the classifier not to label a sample as
positive that is negative. The f-score is the harmonic mean of the precision and
recall, allowing a one-value classifier performance description. However, we present
the f-score as an add-on and use the precision and recall as the main classifier
performance metric values. We present the evaluation results separately based on
the absolute method and the relative method in the order of the aforementioned
scenarios, continued by presenting the similarities and differences between the
methods.
We begin with the scenario ‘1’ -the full spectrum of data available by all scanners-
and the absolute feature vector. The performance metric results for the full data set
are shown for the x-axis value of 24 in Figure 5.12a in each of the three sub-plots.
The scenario ‘1’ has classification precisions (in increasing order of the precision)
of 0.52 for class 1, 0.61 for class 2, 0.68 for class 0, 0.72 for class 3 and 0.80 for
class 4. We observe that the classes 4, 3 and 0 have the best classification precision.
These are the classes with either very high or very low crowd density. The most
accurately estimated data records belong to class 4, class 3, and class 0. The other
classes 1, 2 and 0 are not estimated accurately. We see in the later evaluation the
confusion of the estimation. In average we have a classification precision of 0.64.
The classification recall values are (in increasing order of the recall) 0.06 for class
1, 0.40 for class 2, 0.62 for class 3, 0.71 for class 4 and 0.99 for class 0. We observe
that class 0 and the class 4 have a large fraction of true positives in relation to the
sum of true positives and false negatives. This means that the classifier’s ability is
proportionally high to not estimate the other classes as class 0 or class 4. This also
means that the classes 1, 2 and 3 lave a low fraction of true positives in relation to
the sum of true positives and false negatives. In average we have a classification
recall of 0.67.
We continue with the scenario ‘2’ -the full spectrum of data available by all scanners-
and the relative feature vector. The performance metric results for the full data set
are shown for the x-axis value of 24 in Figure 5.12b in each of the three sub-plots.
The scenario ‘2’ has classification precisions (in increasing order of the precision)
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of 0.54 for class 1, 0.64 for class 2, 0.67 for class 3, 0.68 for class 0 and 0.75 for
class 4. We observe that the classes 4 and 0 have the best classification precision.
This means that the class 4 and class 0 are often correctly estimated and at the
same time a low number of data records is falsely classified as class 4 or class 0.
In average we have classification precision of 0.65. The classification recall values
are (in increasing order of the recall) 0.09 for class 1, 0.38 for class 2, 0.57 for class
4, 0.62 for class 3 and 0.99 for class 0. We observe that class 0 and the class 3
have a large fraction of true positives in relation to the sum of true positives and
false negatives. This means that the classifier’s ability is proportionally high to
not estimate the other classes as class 0 or class 3. This also means that the class
1 and class 2 have a low fraction of true positives in relation to the sum of true
positives and false negatives. In average we have a classification recall of 0.67.
We continue with the scenario ‘3’ with several subsets of the data by artificially
limiting the number of scanners being active in each hexagonal bin and the absolute
feature vector. The performance metric results for each of the subsets are shown for
the x-axis values ranging from 2 to 25 in Figure 5.12a in each of the three sub-plots.
By increasing the subset of active scanners s to s ≤ x in scenario ‘3’ we observe an
increasing classification precision for the classes 4, 3 and 2. We observe that the
classification precision is initially increasing strongly with a following convergence
to the best possible precision. We see that for class 3 and 4 the optimum precision
is nearly reached at s ≤ 10. The optimum precision for class 2 is reached earlier
at s ≤ 7. The other classes 0 and 1 have a steady classification precision and
increasing x does not change the classification precision. The classification recall is
increasing for an increased value of x for the classes 3 and 4. We observe that the
classification recall is initially increasing strongly with a following convergence to
the best possible recall. We see that for class 3 the optimum recall is nearly reached
at s ≤ 4. The optimum recall for class 4 is reached at s ≤ 14. For class 4 s ≤ 8
falls below s ≤ 7, while s ≤ 9 continues in the increasing trend. The other classes
0, 1 and 2 have a steady classification recall and increasing x does not change the
classification precision.
We continue with the scenario ‘4’ with several subsets of the data by artificially
limiting the number of scanners being active in each hexagonal bin and the relative
feature vector. The performance metric results for each of the subsets are shown for
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the x-axis values ranging from 2 to 25 in Figure 5.12b in each of the three sub-plots.
By increasing the subset of active scanners s to s ≤ x in scenario ‘4’ we observe an
increasing classification precision for the classes 4, 3, 2 and 1. We observe that the
classification precision is initially increasing strongly with a following convergence
to the best possible precision. We see that for class 1 the optimum precision is
nearly reached at s ≤ 4. The optimum precision for class 2 is reached nearly at
s ≤ 7. The optimum precision for class 3 and 4 is reached nearly at s ≤ 12. The
classification recall is increasing for an increased value of x for the classes 3 and
4. We observe that the classification recall is initially increasing strongly with
a following convergence to the best possible recall. We see that for class 3 the
optimum recall is nearly reached at s ≤ 6. The optimum recall for class 4 is reached
at s ≤ 14. The other classes 0, 1 and 2 have a steady classification recall and
increasing x does not change the classification precision.
We observe that the scenario ‘2’ classification precision with the relative feature
vector equals the precision of scenario ‘1’ - and this even by not relying on the
absolute count of detected Bluetooth devices. Comparing the scenario ‘3’ and
scenario ‘4’ the classification precision has a similar progression over the increasing
number of active Bluetooth scanners per bin.
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a)

b)

Figure 5.12. Classification performance metrics. Grid-based crowd level estimation
evaluation results based on a) absolute feature vectors from several subsets of the data by
artificially limiting the number of scanners being active in each hexagonal bin and the full
spectrum of data available by all scanners. b) Relative feature vectors from several subsets
of the data by artificially limiting the number of scanners being active in each hexagonal
bin and full spectrum of data available by all scanners being active during the citywide
event.
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Figure 5.13. Confusion matrices. Grid-based crowd level estimation evaluation results
based on a) absolute feature vectors on all participatory scanners, b) on relative feature
vectors on all participatory scanners being active during the citywide event.
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Spatial Grid-based Results
In the following we present the results of the spatial distribution of the estimation
results of the hexagonal bins. The question is whether we can observe the spatially
structure of the ground truth crowd class again in the estimated crowd class.
In Figure 5.14 we visualized the scenario ‘1’ spatial distribution of the ground
truth crowd classes and the spatial distribution of the estimated crowd classes.
We observe that the hexagonal bins of crowd classes 1, 2 and 3 are dominantly
correctly estimated and mis-classified as class 0. The crowd classes 3 and 4 are well
estimated and represent the same spatial structure as the ground truth distribution.
Some hexagonal bins of class 4 are just classified as the very similar class 3. We
can recover the spatial structure of the ground truth classes 3 and 4 very well. The
confusion matrix in Figure 5.13a is confirming this observation. We see that the
true crowd class 1 is confused by 85 % to crowd class 0 and by 10 % to crowd class
2.
In Figure 5.15a we visualized the scenario ‘2’ spatial distribution of the ground
truth crowd class and the spatial distribution of the estimated crowd classes. We
observe that the hexagonal bins of crowd classes 1, 2 and 3 are again intermittent
correctly estimated and often classified as class 0. The crowd classes 3 and 4 are
well estimated. Some hexagonal bins of class 4 are just classified as the very similar
class 3. We can recover the spatial structure of the ground truth classes 3 and
4 very well. The confusion matrix in Figure 5.13b is confirming this observation.
We see again the confusion of the true crowd classes 1, 2 are confused by 85 %
to crowd class 1 or 47 % to crowd class 2. The key difference in the confusions
between scenario ‘1’ and scenario ‘2’ are the mis-classifications of the classes 3 and
4. Scenario ‘1’ has less confusion crowd class 4 than scenario ‘2’. Scenario ‘2’ has
less confusion crowd class 3 than scenario 1. For both methods the most confusion
according to Figure 5.13a and Figure 5.13b are with the classes 1 and 2. Class 1 is
mostly confused with the neighbored class 0. Class 2 is confused often with the
class 0. We suspect that the medium crowded classes 1 and 2 are prone to the
presence or absence of wireless enabled groups of people. The classes 0, 3 and 4
are the least confused.
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a)

b)

Figure 5.14. Spatial visualization of crowd level estimation in hexagonal bin scale.
Absolute feature vectors on all participatory scanners.
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d)

e)

Figure 5.15. Spatial visualization of crowd level estimation in hexagonal bin scale.
Relative feature vectors on all participatory scanners.
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5.9 Conclusion

The work presented in this chapter clearly shows the potential of using Bluetooth
scanning as means of monitoring crowds in urban environment. The accuracy of our
density estimation is well within needs of typical crowd management applications.
The analysis of the data set (section 5.5) has demonstrated that the analysis
strongly depends on a relatively small number of highly mobile nodes. This means
that, for more spatially constrained events just equipping the security personnel
with scanners may be enough. Similarly, the technique could support urban crowd
monitoring outside specific events (as demonstrated in section 5.8). To this end one
would need to recruit volunteers who regularly move around the city a lot. How
many people need to be recruited and what mobility patterns would be needed
is something that would have to be studied empirically in a real life experiment.
Building on insights from section 5.5, section 5.6, and section 5.8 future work could
investigate which types of users contribute to the result better, whether different
patterns can be extracted at different time periods, and to what degree aspects
such as the distribution of the number of found devices per scan and the temporal
and spatial distribution of the reoccurrence of devices in the scans can be used to
reason about the character of events on a more complex level.
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