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Abstract
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tions for convex operators on Banach spaces. We prove a condition for the existence of directional
derivatives which does not assume regularity of the ordering cone K. This result is then used to
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tive lies in the negative interior of the ordering cone K. Finally, we show that the continuity of the
convex operator can be replaced by its K-boundedness.
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1.  Introduction

In optimization theory it is  well known that  convex functions as well as convex sets in play an im-
portant role. Convexity assumptions lead to significantly stronger reults than hold for general opti-
mizaion problems. We refer to [1] and [24] for a thorough treatment of convex analysis and to [24]
and [25] for a summary of important results in real-valued convex optimization. Furthermore, in
recent years interest in optimization of vector valued functions has grown.  Vector optimization the-
ory has been widely developed in recent years, optimization problems with respect to vector-valued
functions have been explored, and various solution approaches have been characterized and com-
puted (see, for example, [2-12] and references therein).

In 1963 Zadeh (see [13]) presented the need to design control systems in a multiple objective opti-
mization framework. He observed that it is impossible to describe the quality of a control system by
one criterion only. For example, in  economic systems one has to estimate obvious parameters (reli-
ability, prime cost payoff, quality of the product, etc.) as well as ecological damages, optimal con-
nections between suppliers, etc.

In such vector optimization problems the function to be minimized, can obtain its values not only in
a finite dimensional vector space but also in an infinite dimensional one. The preference order in the
space is assumed to be given by a convex cone, which is referred to as a domination cone.

The theory of vector optimization is in a close relation with the theory of setvalued mappings, ory,
which is  a natural generalization of the classical analysis, see [14]. At the present the theory of set-
valued mappings is widely used in many branches of science and technique. The nonlinear analysis
constructed on the basis of this theory has become a rather convenient tool to solve many problems.
It has been especially productive in mathematical economics, game theory, variation calculus,  op-
timal control theory, etc. In [15, 16] application of setvalued mapping theory has been explored as
an instrument for nonscalar optimization problems (see also [19]) and for general vector optimiza-
tion problems
.
Thus optimization  problems in infinite dimensional spaces arise in various fields. Therefore devel-
opment of techniques for solving such problems is a worthwhile research topic. One of the question
is the generalization of  the well developed theory of directional derivatives to infinite dimensional
spaces. Research in that area has been started by the work of Valdier (see [22]). Various conditions
for the existence of  directional derivatives have been developed, see e.g. [23].

Our  paper is devoted to the further investigation of the properties of convex operators in ordered
spaces. In Section 3 we prove a new condition for the existence of directional derivatives, which
does not assume regularity properties of the ordering cone. This section is proceed by some initial
results presented in Section 2. In Section 4 we study the structure of the cone of  decrease directions
for convex operators in Banach spaces. An  analythical representation of this cone is obtained. In
this way corresponding results of Miliutin and Dubovtskiy, developed for singlecriteria optimization
problems, are generalized for the vector valued case. Finally, in Section 5 we prove a sufficient
condition for a convex operator to be continuous, which is the main assumption in Thorem 2 of
Section 4.

Throughout the paper, we denote the positive orthant of the Euclidian space R n  by R n
+ .
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2.  Initial Facts and Findings
 

 
 
 Suppose that Y is a Banach space and that a convex cone K in Y is given. Assume that the cone K

contains the zero element of the space Y as its vertex.
 

Definition. A cone K is called a normal cone if there exists a positive number δ>0 such that for any
two elements x,y∈K, both with nonzero norms, the inequality

x y+ ≥ δ
holds. From now on by the notion of a normal cone we understand a normal cone with a nonempty
interior.

Lemma 1. The normal cone K is a pointed cone in the space Y.

Proof. Suppose that the cone K is a normal cone but that it is not  pointed. Then there  exists an

element y∈K∩(-K) such that y≠0. As y≠0, then y > 0  and y y K/ ,∈ − ∈y y K/ . Obviously,

the relation y y/ = − =y y/ 1 holds. Normality of the cone K implies that there exists a posi-

tive number δ>0 which satisfies the inequality
( / ) ( / ) ,y y y y+ − = = >0 0 δ

a contradiction.                                                                                                                               q.e.d.

Lemma 1 guarantees that the Banach space Y is a partially ordered space by means of the cone K.
Note that, taking into account Krein’s Theorem (see, for example, [17, 18] or [21]), we can make
the following observation.

Conclusion. Suppose that the Banach space Y is partially ordered by means of the normal cone K.
Then the equality

  Y* =K* -K* ,            (1)
holds, where Y*  is a conjugate space for the space Y, and K*  is a conjugate (dual) cone of the cone
K. (If (1) holds, K* is called reproducing.)

Suppose that X  and Y  are linear topological spaces such that the space Y is partially ordered by
means of a pointed cone K, and Ω⊆X  is some convex subset in the X space.

Definition2. An operator F:Ω→Y is referred to as a convex operator in Ω if for arbitrary two ele-
ments x,y∈Ω and an arbitrary number λ∈[0,1]  the  inclusion

λF(x) + (1-λ)F(y) - F(λx+(1-λ)y) ∈ K
is satisfied. If  Ω ≡ X  then we say that F  is a convex operator.
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Lemma 2. Assume that F:X→Y  is a convex operator. Then for arbitrary two elements xo, h∈X  the
operator ϕ:R→Y , defined by means of the following equality

ϕ(t) = F(xo+th),∀t∈R ,
is  convex.

Proof. The following equalities
ϕ λ λ λ λ λ λ λ λ( ( ) ) ( ( ( )) ) ( ( ) ( ) ),t t F x t t h F x x t h t h1 2 0 1 2 0 0 1 21 1 1 1+ − = + + − = + − + + −

λ ϕ λ( ) ( ),t F x t h1 0 1= +
( ) ( ) ( ) ( ),1 12 0 2− = − +λ ϕ λt F x t h

hold for arbitrary t t R1 2 0 1, , [ , ].∈ ∈λ
From these equalities we get that

λ ϕ λ ϕ ϕ λ λ( ) ( ) ( ) ( ( ) )t t t t1 2 1 21 1+ − − + − =
= + + − + − + + − +λ λ λ λF x t h F x t h F x t h x t h( ) ( ) ( ) ( ( ) ( )( ).0 1 0 2 0 1 0 21 1

Now suppose that x=xo+t1h , y=xo+t2h , and take into account the convexity of the operator F. Then
we can directly conclude that the inclusion

λ ϕ λ ϕ ϕ λ λ λ( ) ( ) ( ) ( ( ) ) , , , [ , ],t t t t K t t R1 2 1 2 1 21 1 0 1+ − − + − ∈ ∀ ∈ ∈
holds                                                                                                                                               q.e.d.

Lemma 3. Suppose that the space  Y  is a partially ordered Banach space by means of the normal
cone K, and that the operator ϕ: R+→Y possesses the following three properties:
1. ϕ(t)∈K for all t∈R+;
2. t1 ≤ t2  implies  ϕ(t2) - ϕ(t1)∈K;
3. the sequence  {ϕ(t)}⊂Y  weakly converges to zero when  t→+0.

Then ϕ ( )t → 0  when  t→+0 .

Proof. Suppose that all conditions of the Lemma are satisfied, but that ϕ ( )t /→ 0  when  t→+0.

Then there exist two positive numbers ε>0 and to>0 such that for an arbitrary number t∈(0,to) the
inequality

ϕ ε( )t >
holds.

Denote by  A=co(ϕ(R+)) the convex hull of the image of ϕ. Obviously, A is a convex set and for ar-
bitrary t∈R + we have that ϕ(t)∈R+. Let x be an arbitrary point in A. Then we can find two sets
{ }λ i i

n
=1  and { }ti i

n
=1   of positive numbers which satisfy the following equalities:

λ λ ϕi i i
i

n

i

n

x t= =
==
∑∑ 1

11

, ( ).

Define t* := min(to,t1,...,tn). Taking into account Condition 2. of the Lemma we get the relations
ϕ ϕ( ) ( ) , ,..., ,t t K i ni − ∈ ∀ = 1

ϕ ε( ) , ( , ).*t t t> ∀ ∈ 0 (2)

According to Condition 1. of the Lemma we have the inclusion ϕ(t)∈K for  arbitrary t∈(0,t*), and as
K is a convex cone from inequality (2) we obtain the inclusion
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λ ϕ ϕi i
i

n

t t K( ) ( ) ,− ∈
=
∑

1

i.e., x-ϕ(t)∈K for arbitrary t∈(0,t* ).

As Y is a Banach space and K  is a normal cone then according to the fact that K is normal if and
only if the norm is semimonotone (see e.g. [17], [21]) and by taking into account the last inclusion,
there exists a positive number c>0 such that

ϕ ( ) , ( , ).*t c x t t≤ ∀ ∈ 0

Then by taking into account (2) and denoting  α =ε/c from the last inequality we get
x > α . (3)

Note that inequality (3) is true  for arbitrary elements x∈A. Therefore, if U is an open ball with its
center 0∈Y  and the radius α, then the following set equality

A UI = ∅ (4)
is valid.

As A is a convex and nonempty set, U  is a convex, open and nonempty set, and by taking into ac-
count equality (4) and the Hahn-Banach Theorem for normed spaces we can conclude that there ex-
ists a nonzero functional y* ∈Y* and a positive number r such that the inequalities

< > > ∀ ∈y x r x A* , , ,

  < > ≤ ∀ ∈y x r x U* , , , (5)
hold.

As for arbitrary t∈R+ we have that ϕ(t)∈A, then from (5) we  obtain
< > > > ∀ ∈ +y t r t R* , ( ) , .ϕ 0

By passing to the limit in the last inequality we get the following:
lim , ( ) .*

t
y t r

→+
< > ≥ >

0
0ϕ

The last fact contradicts the assumption of weak convergence for the sequence {ϕ(t)}.              q.e.d.

Note that if K  is a normal cone in the Banach space Y  then the cone K  is also a normal one and
then according to Lemma 1 this cone is a pointed one. Therefore,  Krein’s Theorem is valid for a
closed cone  K  too, i.e., equality (1) holds.
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3. Existence of Directional Derivatives

In this section we will use the results obatined in the previous section to prove the first main result
of this paper. Theorem 1 below provides a  new condition for the existence of directional deriva-
tives, which does not use regularity properties of the cone K.

Theorem 1. Assume that  X  is a linear space, that Y  is a weakly complete Banach space which is
partially ordered by a normal  closed cone K, and  that F:X→Y  is a convex operator. Then  for  an
arbitrary  point (xo ,h)∈X×X the directional derivative, i.e. the limit:

lim
( ) ( )

( , )
t

F x th F x

t
F x h

→+

+ −
= ′

0

0 0
0

does exist in the sense of strong convergence in Y.

Proof. Let to, t2∈R be such that to< t2  and let to< t1< t2. Obviously, t1- to>0 and t2- to>0, and if we
denote by λ=(t1-to)/(t2- to), then 0<λ<1. Also the equality λt2+(1-λ)to=t1 holds. Consider an operator
ϕ :R→Y given in the form ϕ(t)=F(xo+th), ∀t∈R. According to Lemma 2  ϕ is  convex and therefore
the inclusion

t t

t t
t

t t

t t
t t1 0

2 0
2

1 0

2 0
0 11

−
−

+ −
−
−

− =ϕ ϕ ϕ( ) ( ) ( ) ( )
t t

t t
t t t t1 0

2 0
2 0 1 0

−
−

− − − =( ( ) ( )) ( ( ) ( ))ϕ ϕ ϕ ϕ

= −
−
−

−
−
−

∈( )(
( ) ( ) ( ) ( )

)t t
t t

t t

t t

t t
K1 0

2 0

2 0

1 0

1 0

ϕ ϕ ϕ ϕ

holds.

As  t1-to>0  and  1/(t1-to)K ⊂ K  we have

  (
( ) ( ) ( ) ( )

)
ϕ ϕ ϕ ϕt t

t t

t t

t t
K2 0

2 0

1 0

1 0

−
−

−
−
−

∈ (6)

for arbitrary t1∈(to,t2).
Choose t2 = t>0, t1 = 0, to= -1 to get  from (6)

ϕ ϕ
ϕ ϕ

( ) ( )
( ( ) ( )) , .

t

t
K t R

− −
+

− − − ∈ ∀ ∈ +

1

1
0 1 (7)

It follows from (7) that
ϕ ϕ

ϕ ϕ
( ) ( )

( ( ) ( )) , .
t

t
K t R

−
− − − ∈ ∀ ∈ +

0
0 1 (8)

It is easy to show that from (6) we can conclude
ϕ ϕ ϕ ϕ( ) ( ) ( ) ( )t

t

t

t
K

−
−

−
∈

0 01

1

(9)

for arbitrary t∈R+ and  t1 ∈(0,t).

Now consider an arbitrary, but fixed, element y*∈K*. As y*∈Y*, and y*  is bounded in K the number
<y*, ϕ(0)-ϕ(-1)> = α(y*) is  finite.

On the other hand, from (8) we get
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<
−

> ≥ ∀ ∈ +y
t

t
y t R* *,

( ) ( )
( ), .

ϕ ϕ
α

0

This last inequality implies the boundness from below of the sequence of numbers {<y*,(ϕ(t)-
ϕ(0))/t>} for  t→+0.

Furthermore,  inclusion (9) yields the inequality

<
−

> ≥ <
−

> ∀ ∈y
t

t
y

t

t
t t* *,

( ) ( )
,

( ) ( )
, ( , ).

ϕ ϕ ϕ ϕ0 0
01

1
1

The latter means that the sequence {<y*,(ϕ(t)-ϕ(0))/t>}, for  t→+0, is  nonincreasing. We can con-
clude  that there exists a finite number β(y* ), which satisfies the equality

     lim ,
( ) ( )

( ).* *

t
y

t

t
y

→+
<

−
> =

0

0ϕ ϕ
β       (10)

As the sequence {<y*,(ϕ(t)-ϕ(0))/t>} with  t→+0 is  converging,  it is a fundamental (Cauchy) se-
quence, i.e., for an arbitrary positive number ε>0 there exists another positive number t  such that
for an arbitrary number t1∈(0, t),  t< t , the inequality

<
−

−
−

> <y
t

t

t

t
* ,

( ) ( ) ( ) ( )
.

ϕ ϕ ϕ ϕ
ε

0 01

1

holds.

Now consider an arbitrary element h*∈Y*. According to equality (1) there exist two elements g*,
q*∈K* such that h* can be represented as  h*=g*-q*. Now we shall show that the sequence
{<h*,(ϕ(t)-ϕ(0))/t>}, fort  t→+0, is  fundamental (Cauchy), too. We have

<
−

−
−

> =h
t

t

t

t
* ,

( ) ( ) ( ) ( )ϕ ϕ ϕ ϕ0 01

1

< −
−

−
−

> ≤g q
t

t

t

t
* * ,

( ) ( ) ( ) ( )ϕ ϕ ϕ ϕ0 01

1

     ≤ <
−

−
−

> +g
t

t

t

t
* ,

( ) ( ) ( ) ( )ϕ ϕ ϕ ϕ0 01

1

<
−

−
−

>q
t

t

t

t
* ,

( ) ( ) ( ) ( )
.

ϕ ϕ ϕ ϕ0 01

1

             (11)

As the sequences  {<g*,(ϕ(t)-ϕ(0))/t>},  {<q*,(ϕ(t)-ϕ(0))/t>}, with  t→+0, are fundamental, we have
that for an arbitrary positive number ε>0 two positive numbers t1 0> , t2 0>  can be found, such that
the following two inequalities

<
−

−
−

> < ∀ ∈g
t

t

t

t
t t t* ,

( ) ( ) ( ) ( )
, ( , ),

ϕ ϕ ϕ ϕ ε0 0

2
1

1
1 1

<
−

−
−

> < ∀ ∈q
t

t

t

t
t t t* ,

( ) ( ) ( ) ( )
, ( , ),

ϕ ϕ ϕ ϕ ε0 0

2
1

1
1 2

hold.

By denoting t t t* min{ , }= 1 2  and taking into account inequality (11)  from the latter inequalities we
easily obtain

<
−

−
−

> < ∀ ∈h
t

t

t

t
t t t* *,

( ) ( ) ( ) ( )
, ( , ).

ϕ ϕ ϕ ϕ
ε

0 01

1
1

Thus fundamentality of the sequence  {<h*,(ϕ(t)-ϕ(0))/t>}, for  t→+0,  is proved.
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Summarizing the discussion above, we can state that the sequence { (ϕ(t)-ϕ(0))/t }⊂Y, for t→+0,  is
weakly fundamental because the sequence {<h*,(ϕ(t)-ϕ(0))/t>}⊂ R, with  t→+0, is  fundamental for
arbitrary h*∈Y*. As Y  is a weakly complete Banach space, there exists an element yo∈Y, which is a
weak limit for the sequence { (ϕ(t)-ϕ(0))/t }, for t→+0, i.e.

    lim ,
( ) ( )

.*

t
h

t

t
y

→+
<

−
− > =

0
0

0
0

ϕ ϕ
          (12)

Now we are going to show that ( ( ) ( )) /ϕ ϕt t y K− − ∈0 0  for arbitrary t∈R+.
Suppose the opposite. Then there exists a number t R∈ + ,  which satisfies the condition

( ( ) ( )) / .ϕ ϕt t y K− − ∉0 0  Thus, there exists a functional y*∈K*, which satisfies the inequality

<
−

− > <y
t

t
y* ,

( ) ( )
.

ϕ ϕ 0
00

(Indeed, if there does not exist such a functional y*∈K*, then for an arbitrary y*∈K* the following
inequality

<
−

− > ≥y
t

t
y* ,

( ) ( )ϕ ϕ 0
00

should be valid. The latter one is possible only in the case when ( ( ) ( )) / .ϕ ϕt t K− ∈0  As K is a

closed one then K K= ,  but this contradicts the assumption that ( ( ) ( )) / .ϕ ϕt t K− /∈0 )

On the other hand, according to (9) the inclusion
ϕ ϕ ϕ ϕ( ) ( ) ( ) ( )

, ( , ),
t

t
y

t

t
y K t t

−
− −

−
+ ∈ ∀ ∈

0 0
00 0

holds, and therefore this relation implies the inclusion

<
−

− > ≥ <
−

− > ∀ ∈y
t

t
y y

t

t
y t t* *,

( ) ( )
,

( ) ( )
, ( , ).

ϕ ϕ ϕ ϕ0 0
00 0

Passing to the limit in the last inequality we get

lim ,
( ) ( )

,
( ) ( )

.* *

t
y

t

t
y y

t

t
y

→+
<

−
− > ≤ <

−
− > <

0
0 0

0 0
0

ϕ ϕ ϕ ϕ

So we obtain a contradiction with equality (12), and thus the inclusion
ϕ ϕ( ) ( )

, ,
t

t
y K t R

−
− ∈ ∀ ∈ +

0
0

is proved.

Now consider an operator S:R+→Y, which is defined by the equality

      S t
t

t
y t R( )

( ) ( )
, .=

−
− ∀ ∈ +

ϕ ϕ 0
0                       (13)

By taking into account inclusions (9) and (13) it is easy to show that the operator S satisfies   all as-

sumptions of  Lemma 3, according to which  S t( ) ,→ 0 when  t→+0. Note that Y is a locally con-

vex space and therefore a weak limit yo for the sequence { (ϕ(t)-ϕ(0))/t }, when t→+0,  is unique.

As the relation (ϕ(t)-ϕ(0))/t=(F(xo+th)-F(xo))/t holds,  denoting yo=F ′(xo, h) we obtain the equality

lim
( ) ( )

( , )
t

F x th F x

t
F x h

→+

+ −
= ′

0

0 0
0

in the sense of strong convergence in Y.                                                                                        q.e.d.
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Corollary 1. Assume  that X  is a linear space, Y  is a weakly complete Banach space which is par-
tially ordered by means of the normal closed cone K, and F:X→Y  is a convex operator. Then

F x h F x F x h K x h X X( ) ( ) ( , ) , ( , ) .0 0 0 0+ − − ′ ∈ ∀ ∈ ×           (14)

Proof. Because of  the inclusion (ϕ(t)-ϕ(0))/t-yo∈K, ∀t∈R+ and Theorem 3, we can directly show
that inclusion (14) holds, by using t=1.                                                                                         q.e.d.
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4.  Structure of the Cone of Decrease Directions

In this section we define the cone of decrease directions of  an operator F. We show, using Theorem
1, that the cone of decrease directions can be represented in terms of directional derivatives.

Suppose that two linear topological spaces X and Y are given, and that F:X→Y is some operator. K
is a cone in Y as introduced above.

Definition. (See, for example, [19]). Assume that xo is a fixed point in the space X. A vector h∈X is
referred to as a decrease direction for the operator F in the point xo if there exist εo(h) ∈ R+, q(h) ∈
intK, and a neighbourhood U(h) of h, such that

< + − − > ≤ ∀ ∈ ∈ ∈y F x h F x q h y K h h U ho
* * *, ( ) ( ) ( ) , , ( , ( )), ( ).ε ε ε ε0 00 0

We assume that the set of decrease directions for the operator F in the point xo is  nonempty and de-
note it by K(F,xo). It was shown in [19] that this set K(F,xo) is an open cone in X, and some addi-
tional properties have been investiagted. We will refer to K(F,xo)  as the cone of decreas directions
of the operator F.

Theorem 2. Suppose that X is a normed space, that Y is a weakly complete Banach space, which is
partially ordered by means of the normal closed cone K, and that F:X→Y is a continuous convex
operator. Then for an arbitrary point xo∈X  the cone of decrease directions K(F,xo) of the operator F
is convex and can be represented in the following way:

K F x h X F x h K( , ) { ( , ) int }.0 0= ∈ ′ ∈−                     (15)

Proof.  It is obvious from  Theorem 1  that  for an arbitrary point   (xo ,h)∈X×X  the directional de-
rivative  F’’(xo,h) exists.

Let  h∈K(F,xo). Then there exist εo(h) ∈R+, q(h)∈R+(-intK), and a neighbourhood U(h), which sat-
isfy the inequality

< + − − > ≤ ∀ ∈ ∈ ∈y F x h F x q h y K h h U ho
* * *, ( ) ( ) ( ) , , ( , ( )), ( ).ε ε ε ε0 00 0      (16)

In particular, inequality (16) holds for h h= , too, i.e.,
         < + − − > ≤ ∀ ∈ ∈y F x h F x q h y K ho

* * *, ( ) ( ) ( ) , , ( , ( )).ε ε ε ε0 00 0                (17)

By taking into account Theorem 1, the continuity of the functional y*∈K*, and passing to the limit in
(17) with ε→+0, we get

lim ,
( ) ( )

( ) , lim
( ) ( )

( )* *

ε ε

ε
ε

ε
ε→+ →+

<
+ −

− > = <
+ −

− > =
0

0 0

0

0 0y
F x h F x

q h y
F x h F x

q h

= < ′ − > ≤ ∀ ∈y F x h q h y K* * *, ( , ) ( ) , .0 0

The latter inequality holds if and only if  the inclusion q(h)-F’ (xo,h)∈ K  holds. But as K is a closed
cone, then we have F’ (xo,h)∈-(-q(h)+K), i.e., there exists an element y∈K, which satisfies the
equality F’(xo,h)∈-(-q(h)+K). As -q(h)∈intK and y∈K,  it is easy to prove the validity of the inclu-
sion -q(h)+y∈intK, i.e., F’ (xo,h)∈-intK. So the first  inclusion
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K F x h X F x h K( , ) { ( , ) int }.0 0⊂ ∈ ′ ∈−                     (18)

has been proved.

Now let h∈{h∈X | F ′(xo,h)∈-intK}. We are going to show that there exist εo(h)∈R+,
q(h)∈(-intK), and U(h) satisfying inequality (16). Obviously inequality (16) holds for arbitrary
εo(h)∈R+, U(h)∈τ, if y*=0*, and therefore we shall consider only  positive functionals
y K K+ +∈ ⊂* * * .

We have

  lim ,
( ) ( )*

ε

ε
ε→+ +<

+ −
>=

0

0 0y
F x h F x

< ′ > ∀ ∈+ + +y F x h y K* * *, ( , ) , .0           (19)

Because - F’ (xo,h)∈intK, we get the inequality
     < ′ > < ∀ ∈+ + +y F x h y K* * *, ( , ) , .0 0           (20)

When proving Theorem 1 we have already shown that the sequence
{ ,( ( ) ( )) / },*< + − >+y F x h F x0 0ε ε with ε→+0, is  nonincreasing, and therefore relying on (19) and

(20), we can confirm that there exists a number εo(h)∈R+  such that

<
+ −

> < ∀ ∈+ + +y
F x h h F x

h
y K* * *,

( ( ) ) ( )

( )
, .0 0 0

0

0
ε

ε

From this we get the inclusion
F x F x h h h K K( ) ( ( ) ) ( ) int int ,0 0 0 0− + ∈ ⊂ε ε

which implies the inequality
< − + >= > ∀ ∈+ + + +y F x F x h h y y K* * * *, ( ) ( ( ) ) ( ) , .0 0 0 0ε δ          (21)

As the operator F:X→Y  is  continuous, the operator y F X R+ →* :o  will be continuous for arbitrary

y K+ +∈* * , too. Therefore, for a positive number δ ( ) /*y+ 2  there can be found a neighbourhood

U(xo+εo(h)h)=xo+εoU(h)  of the point xo +εo (h)h , which satisfies

( )( ( ) ) ( )( ( ) )* *y F x h h y F x h h+ ++ − + =o o0 0 0 0ε ε

= < + − + > ≤ ∀ ∈ ∈+
+

+ +y F x h h F x h h
y

y K h U h*
*

* *, ( ( ) ) ( ( ) )
( )

, , ( ).0 0 0 0 2
ε ε

δ

From the latter inequality we get

< + > ≤ < + > + ∀ ∈ ∈+ +
+

+ +y F x h h y F x h h
y

y K h U h* *
*

* *, ( ( ) ) , ( ( ) )
( )

, , ( ).0 0 0 0 2
ε ε

δ
     (22)

According to (21) we have
< + > = < > −+ + +y F x h h y F x y* * *, ( ( ) ) , ( ) ( ).0 0 0ε δ

Therefore (22) implies the inequality

    < + − > ≤ − ∀ ∈ ∈+
+

+ +y F x h h F x
y

y K h U h*
*

* *, ( ( ) ) ( )
( )

, , ( ).0 0 0 2
ε

δ
          (23)

Assume that ε∈(0,εo(h)) . Obviously  ε /εo(h)∈(0,1). Besides the equality

x h
h

x h h
h

x h U h0
0

0 0
0

01+ = + + − ∀ ∈ε ε
ε

ε ε
ε( )

( ( ) ) (
( )

) , ( )

holds.
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According to the assumptions of the Theorem the operator F:X→Y is convex and therefore, we get
the inclusion

ε
ε

ε ε
ε

ε ε ε
0

0 0
0

0 0 01 0
( )

( ( ) ) (
( )

) ( ) ( ) , ( , ( )), ( ).
h

F x h h
h

F x F x h K h h U h+ + − − + ∈ ∀ ∈ ∈

This relation and (23) imply the following chain of inequalities:

< + > ≤ < + > + − < > =+ + +y F x h
h

y F x h h
h

y F x* * *, ( )
( )

, ( ( ) ) (
( )

) , ( )0
0

0 0
0

01ε
ε

ε ε
ε

ε

= < + − > + < > ≤+ +
ε

ε
ε

0
0 0 0 0( )

, ( ( ) ) ( ) , ( )* *

h
y F x h h F x y F x

       ≤ − + < > ∀ ∈ ∈ ∈+
+ + +

δ ε
ε

ε ε
( )

( )
, ( ) , , ( , ( )), ( ).

*
* * *y

h
y F x y K h h U h

2
0

0
0 0        (24)

According to (21) we have

− =<
+ −

>+ +

1

2 20

0 0 0

0ε δ
ε

ε( )
( ) ,

( ( ) ) ( )

( )
.* *

h
y y

F x h h F x

h

But as F(xo)-F(x0+εo(h)h)∈intK, and setting q(h)= -(F(xo)-F(xo+εo(h)h)/2εo(h), we can conclude that
q(h)∈-intK.

Taking into account the  above considerations it easy to obtain the following inequality from (24).
    < + > − − > ≤ ∀ ∈ ∈ ∈+ + +y F x h F x q h y K h h U h* * *, ( ) ( ) ( ) , , ( , ( )), ( ).0 0 00 0ε ε ε ε           (25)

Now using the remark about the zero element 0*∈K*, we can conclude that (25) is valid for an arbi-
trary y*∈K*. Summarizing all the above considerations, we can see that h∈K(F,xo), i.e., inclusion
(18) can be reversed and hence we can conclude that equality (15) holds.

Now let us show the convexity of  the cone K(F,xo). Suppose that  (h1,h2) is an arbitrary point in
K(F,xo)×K(F, xo). Then according to (15) we get F’ (xo,h1),  F’(xo,h2)∈-intK. As the operator F:X→Y
is  convex, we know that for arbitrary λ∈[0,1]  for all ε ∈ +R
λ ε λ ε ε λ λ( ( ) ( )) ( )( ( ) ( )) ( ( ( ) )) ( ) .F x h F x F x h F x F x h h F x K0 1 0 0 2 0 0 1 2 01 1+ − + − + − − + + − + ∈

As (1/ε)K ⊂K we then have for all ε ∈ +R

λ
ε

ε
λ

ε
ε

ε λ λ
ε

F x h F x F x h F x F x h h F x
K

( ) ( )
( )

( ) ( ) ( ( ( ) )) ( )
,0 1 0 0 2 0 0 1 2 01

1+ −
+ −

+ −
−

+ + − −
∈

As K is a closed cone and the sequence defined by the left side of the latter inclusion with ε→+0, is
a sequence in K, according to Theorem 1   a limit exists in K  for ε→+0, i.e.

′ + − − ′ − − ′ ∈−F x h h F x h F x h K( , ( ) ) ( , ) ( ) ( , ) .0 1 2 0 01 1λ λ λ λ
It is obvious that for an arbitrary λ∈[0,1] the following inclusion

λ λ′ + − ′ ∈F x h F x h K( , ) ( ) ( , ) int0 1 0 21
holds, and therefore the inclusion

′ + − ∈− ∀ ∈ ∀ ∈F x h h K h h K F x( , ( ) ) int , , ( , ), [ , ],0 1 2 1 2 01 0 1λ λ λ
holds.

The latter fact  means that the cone K(F,xo) is a convex one.                                                        q.e.d.
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5. K-Bounded Operators

In this section we show that a sufficient condition for a convex operator to be continuous is its K-
boundedness.

Definition 3. Assume that  X and Y are normed spaces, and that the space Y is partially ordered by
means of a normal cone K. The operator F:X→Y is called K-bounded from above iff for an arbitrary
bounded subset U⊂X there exists an element z=z(U)∈Y with a finite norm which satisfies

z - F(x) ∈ K, ∀ x∈U.

Theorem 3. Suppose that  X is a normed space, Y is a Banach space which is partially ordered by
means of a normal cone K, and F:X→Y  is  convex and K-bounded from above. Then the operator F
is  continuous in X.

Proof. Assume that x is an arbitrary point in X, and U  is some bounded neighbourhood of  x, i.e., an
open ball with its center in x and a finite radius. Without loss of generality we can suppose that x=0
and F(x)=0∈Y. In this case U  will be a convex and bounded neighbourhood of the point 0∈X, and
therefore, for ε∈(0,1), εU⊂U holds. As the operator F is  K-bounded from above,  there exists an
element  z=z(U)∈Y  with a finite norm such that it satisfies the following inclusions:

   ε ε ε ε ε ε εz F
v

K z F
v

K v U− ∈ −
−

∈ ∀ ∈ ∈( ) , ( ) , ( , ), .0 1           (26)

As F  is a convex operator  we have

F v F F
v

F v F
v

K( ) ( ) ( ) ( ) ( ) ( ) ,− − − = − ∈−1 0ε ε ε ε ε
and thus we get

      F v z K z F
v

( ) ( ( )).− ∈− + − +ε ε ε ε
          (27)

By taking into account inclusions (26) and convexity of  the cone K, from (27) we get the inclusion
     ε ε εz F v K v U− ∈ ∀ ∈ ∈( ) , ( , ), .0 1           (28)

Note that

      F F
v

v
v

( ) ( ( )).0
1 1

=
+

+
+

−
ε

ε
ε ε

          (29)

As -v/ε , -v/(1+ε )∈U ,  taking into account the convexity of F  for the second time,  (29) implies

F F v F
v

K F v F F
v

K( ) ( ) ( ) ( ) ( ) ( ) ( )0
1

1 1
1 0−

+
−

+
− ∈− ⇒ − + + − ∈

ε
ε

ε ε
ε ε

ε

⇒ + − ∈ ⇒ + ∈ + − −F v F
v

K F v r K z F
v

( ) ( ) ( ) ( ).ε ε ε ε ε ε

Using relations (26) for the second time, we can easily show the validity of the inclusion
F v z K v U( ) , ( , ), .+ ∈ ∀ ∈ ∈ε ε ε0 1           (30)

From (28) and (30) the validity of the following inequality follows:
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      − ≤ ≤ ∀ ∈ ∈ε ε ε εz F v z v U( ) , ( , ), .0 1           (31)

As K is a normal cone in the Banach space Y, and the element z∈Y has a finite norm, from normality
of K (i.e. semimonotony of the norm, see, for instance, [17], [21]), from inequality (31) we can con-
clude that there exists a positive number c>0, such that the following inequality

F v F c v U
Y

( ) ( ) , ( , ), ,− ≤ ∀ ∈ ∈0 0 1ε ε ε
holds.
Note that with ε→0 we get v X → 0.Then from the latter inequality we get

lim ( ) ( ).
v

F v F
→

=
0

0

This exactly means that the operator F is  continuous in X.                                                          q.e.d.

Remark. An analogous result for  convex functionals can be found in [20].

According to Theorem 3 the continuity condition of the operator F in Theorem 2 can be changed to
the condition of its K-boundness from above in X. Also note that F’ (xo ,h) (from Theorem 2) is re-
ferred to as the first variation of the operator F in the point xo∈X and, in general, the operator
F(xo, •):X→Y is nonlinear.
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6. Conclusions

In this paper we have investigated several important properties of convex operators in infinite-
dimensional spaces. We have given a condition for the existence of directional derivatives and  ob-
tained an analythical representation of the direction decrease cone K(F,xo) of a continuous convex
operator F.In this way,  results of Miliutin and Dubovtskiy, developed for singlecriterion optimiza-
tion problems, have been generalized for a vector valued case. The results obtained in this paper are
steps towards solution methods for convex vector optimization problems, and thus may be of inter-
est for researchers in various fields, where vector optimization problems are often encountered.
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