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Abstract

The notion of the balance number introduced in [3, page 139] through a certain set con-
traction procedure for nonscalarized multiobjective global optimization is represented via a
min-max operation on the data of the problem. This representation yields a different com-
putational procedure for the calculation of the balance number and allows us to generalize
the approach for problems with countably many performance criteria.



1 Introduction

Consider a robust bounded closed set X C IR™ and the multiobjective optimization problem
min(f, X),f: X - R™:

min fi(z), 1 =1,...,m. (1)

For each i the corresponding single objective subproblem of (1) has a global optimal solution
over a compact set X represented by the partial global minimum value

e = mip (@) ®)
and the corresponding set of all global minimizers:
X = {x € X: filz) = cg}. (3)
If there is a nonempty intersection

X0i= () X0 #0, (4)

then the multicriteria optimization problem (MCO) of (1) is called balanced, otherwise
unbalanced [3, Chapter 8|. If the problem is unbalanced, we can relax the minimization
requirements (2) — (3) and look for the uniform n-suboptimal solutions

X)) ={xeX: filx) - <n, n>0}. (5)

With increasing 7, the intersection of X?(n) eventually becomes nonempty, and the minimal
value of 7 for which it is nonempty is called the balance number 7y. Thus by definition [3,
page 139],

= min {1 X°0) - N x0) 7 0}. (©

Methods to compute 79 and simultaneously determine the intersection
m
X =NX/(), n=n0 (7)
i=1

are proposed in [3, Chapter 8|. The number 7, represents the minimal equal deviation from
global minimum values for all objective functions yielding a nonempty set (7) of uniform
no-suboptimal solutions for the MCO problem (1).

2 Min-Max Formulation for 7

Introduce the function
6(r) :== max [fz(:r) — c?] . (8)

1<i<m



Theorem 1
o . o . ) 0
o = gg)r(lﬁ(x) o gg)rcl 1%‘2% [fz (2) ci] ) )

Proof:
Note that, due to (2), for z € X all f;(z) > ¥, i=1,...,m. By definition (6), we have

o = min{n:X°(n)#£0}
= min{n:EIx € X such that fi(z) — ¥ <, izl,...,m}
= min {77 : 3z € X such that max [fi(z) — Y] < n} . (10)
Relation 10 represents the following nonlinear optimization problem

minn
subject to max [f,(x) - c?] <nzrxeX (11)
1<i<

m

which, due to nonnegative brackets in (10), (11), has a solution minn = ny > 0 for
x € X%(ng). Thus, minimization with respect to 7 is implied by minimization with respect
to z in (11), yielding
— mi ; _ A0
o = min max [fila) = &].

Remarks:

1. Clearly, the above formula admits generalization for countably many performance
criteria.

2. The operations in (9) are not commutative, indeed:

0 < 7o = min max [fz(:v) cz] # [max min [fz(m) cz] 0,

by definition of ¢, see (2).

3. Formula (9) yielding the balance number ng > 0 (with ny = 0, the problem is balanced,

that 1s, all partial minima ¢ can be attained simultaneously) does not determine the

set X%(no), (7). However, the knowledge of ny is important as an independent measure
of possible improvement, and it can facilitate computation of the set X°(ny) by set
contraction methods.

3 Level Set Computation of X°(n)

In some cases, suboptimal sets (5) rewritten as level sets
X2n) ={zeX: filz) < +n} (12)
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are easy to compute (e.g., if all f;(z) are linear functions). If ny is known, then the solution
is immediately obtained as

X(p0) = () X20m) = () {z€ X : fi() < @ +10) £0 (13)

i=1 i=1
A< file) < +m, 2€X%n), i=1,...,m (14)

Where ¢ = mingex fi(x), yielding the minimal guaranteed deviation of 7y for each f;(x)
from its partial minimum ¢Y. This solution can be readily computed despite the fact that
X C IR™ may be nonconvex and very complicated, see Example 5.1 in [4, pages 542-544].

4 Comparison with Pareto optimality

Here we use a discrete optimization problem to illustrate the determination of the balance
number as compared to the Pareto approach in multiobjective optimization. By definition,
a point x € X is a Pareto solution if there does not exist 2’ € X such that fj(z') <
fi(z), i=1...,m, with strict inequality for at least one i.

Consider X = {x1, %2, z3,24} and three objective criteria f1, f2, f3 evaluated as in the
following matrix:
fi o Js
2113 1 2 |not Pareto
z9| 0 1 3 | Pareto
z3| 3 1 1 |Pareto
z4| 0 4 0 | Pareto

Here z; is not Pareto because of z3 for which f3(z3) =1 < f3(x1) = 2, and x4, 3, x4 are all
Pareto points. Thus, the set of Pareto optimal solutions is given by Xpy, = {x9, 23,24},
as indicated at the right of the matrix.

The vector of partial minima, ¢® = (¢9,¢3,¢3) = (0,1,0). According to definitions

(5) and (6) we have to look at minimal common deviations n > fi(z) — ¢? from global
optimality, or equivalently f;(z) <7+ ¢? with 7 — min. We start choosing n = 0, check if
intersection (7) is nonempty and increase 1 step by step until this is the case. Thus, both
the balance number 7 and the full set X°(n,) are finally determined, as illustrated in the
following matrix.

nl n+q [ X°(n)
010 1 0|0={z2,za}N{z1, 20,23} N{z4}
11 2 1|0={2s,xs}0{x1, 20,23} N {23, 24}
212 3 2|0={xs, x4} N{x1, 22,23} N {21, 73,24}
m=3|3 4 3|X#0
fl f2 f3

We see that the minimal guaranteed deviation from every partial minimum is 79 = 3 which
holds for the whole set X = {x1, z2, 3,24}



In contrast, the Pareto set Xpy = {22, 3,24}, yielding the same guaranteed devia-
tion n = 3 for every function fi, fo, f3 vis-a-vis its partial minimum over Xp,., unjustly
discriminates against x;, despite the fact that at x; the function f, attains its minimum
& =1, the value f3(z;) =2 > =0by n =2 < 3, and only fi(z;) =3 > ) =0 by
n = 3, as for the whole Pareto set. The exclusion of z; is caused by the qualification of
“nondomination” postulated in the definition of Pareto optimality and unrelated to the
optimality represented by the partial minima {c?}.

5 Example

In this section, we use Example 2.1 from [4] to demonstrate the computation of the balance
number by the min-max operation, Theorem 1. At the same time we demonstrate the
difference between the min-max determination of the balance number and the ordinary
min-max problem

min max f;(x). (15)

z€X 1<i<m

We consider the problem with feasible set X = [1, 2] and objective function f = (z, 2z, —x).
The solution of (15) is as follows:

i 27, —x} =2 16
Join max{z, 27, —s} = 2, (16)

att =2,z =1.
Let us now consider determining the balance number. Obviously

= (min x, min 2z, min —:I;) =(1,2,-2). (17)
z€[1,2] " z€[1,2] z€[1,2]

According to Theorem 1 we have to find

No = min max{r — 1,2z — 2, —x + 2}, (18)
z€[1,2]

which differs from (15), (16). We have:

z=1 = max{0,0,1} =1
l<z<1lb = max{z—-1,2z—-2,—z+2} <1
=15 = max{0.5,1,05} =1
15<2<2 = max{z—1,2v—2,—cz+2} > 1
r=2 = max{l,2,0} =2.

In the interval (1,1.5) the minimal value of the maximum is attained at the intersection
of the lines 2z — 2 and —z + 2 which yields 2o = § and 79 = —5 + 2 = 2 as the (unique)



optimal solution. The balance number should thus be equal to %, which is indeed the case,
since the defining inequalities read

r—1
2c — 2
—x+2

ININ A
=

2

for z € [1,2], and are fulfilled for miny = 2 with z = 3, and have no solution if n < 2.
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