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Abstract

Multifacility location problems arise in many real world applications. Often, the facilities can
only be placed in feasible regions such as development or industrial areas. In this paper we
show the existence of a finite dominating set (FDS) for the planar multifacility location problem
with polyhedral gauges as distance functions, and polyhedral feasible regions, if the interacting
facilities form a tree. As application we show how to solve the planar 2-hub location problem
in polynomial time. This approach will yield an ε-approximation for the euclidean norm case
polynomial in the input data and 1/ε.
Keywords: Multifacility Location, Finite Dominating Set, Polyhedral Gauges, Planar Hub Loca-
tion

1 Introduction

Continuous facility location deals with locating one or multiple facilities inRn to serve a finite set of
existing demand points under consideration of minimizing a general cost function. If the underlying
space isR2, these problems are called planar. Other types of location problems are network- or
discrete location problems. In the network type, we consider an underlying graph, where a facility
can be placed on a vertex or an edge. In the discrete case, there is a finite set of possible location
sites to put on the facility. For an overview of location problems, see [LNSdG15]. The most common
cost functions are the Median-objective, which minimizes the weighted distances between the new
facilities and the demand points, and the Center-objective, minimizing the weighted maximum
distance between demand points and facilities. However, only considering these objectives might
fail to model some real life problems in a realistic manner. Often, the facilities can only be sited
within a given region, such as developing or industrial areas.

In this paper, we consider location problems with polyhedral gauges as distance functions and
polyhedral feasible regions. We derive a finite dominating set, i.e., a finite set which contains an
optimal solution. We show how to construct this set based on the geometric interpretation of the
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optimality conditions for this problem.
As an application of this approach we finally consider the planar 2-hub location problem. We show
how to use this set to derive a polynomial algorithm.

Regarding the outline of this paper we start with a literature review in Section 2. In Section 3 we give
a formal definition of the problem and state the optimality conditions. In the remaining Sections
we explain how to construct the Finite Dominating Set (Section 4) and how to apply it to the planar
2-hub location problem to get a polynomial algorithm (Section 5). We conclude the paper with a
summary and an outlook to further research (Section 6).

2 Literature Review

Location problems can be divided in three main types, continuous, network and discrete location
problems. Continuous location problems concern with determining possible sites (for one ore
more new facilities) in a continuous space. Often, there are several fixed (or existing) facilities, also
called demand points. The new facilities interact with each other and the demand points. These
interactions can be the transport of goods, the reachability of service people or a communication
link or any other physical links. For examples refer to [Dre95]. Depending on the interaction, these
location problems are usually modeled by a center or median objective, in which either the weighted
maximum distance between the facilities is minimized, or the weighted sum.

Continuous location problems have a long history, most literature summaries credit Pierre de
Fermat (1601-1665) with proposing a basic form of the median problem [DH02]. In this paper we
will deal with a special type of continuous location problems, namely the ones in the plane. As
distance function we will consider polyhedral gauges and the demand (weights) between each pair of
facilities will be positive. Using polyhedral gauges the planar location problem can be formulated as
a linear programming problem [WW85]. In [DM85], it was shown that for the single facility location
problem in the plane can be partitioned into polyhedral cells and that there exists an optimal
solution that is a cell vertex. This concept was generalized for multifacility location problems, where
the distance function is a block norm with four extreme points [Mic87]. Additionally, the existence
of a solution for which all optimal location sites are contained in the metric hull which is a subset of
the convex hull was shown. Other dominating set results can be found in [Pla92, CF98], where the
classical Dominance Theorem from [Pla65] was generalized to skewed norms. Using subdifferential
calculus and the concept of subgradients, optimality conditions were derived and a geometric
interpretation was given [ILM89, LMP90]. In [ILM89] the dual was stated and a primal-dual solution
approach was given. This was also done in a more general setting, called general Goal Programming
problem [CF02], where optimality conditions were derived and an interior point method was stated
and its polynomial complexity was proven. Another polynomial algorithm for gauge distances can
be found in [Fli98].

Regarding the application part of this paper we also want to give a short review of hub location
literature. The hub location problem as far as we know, was firstly introduced in [O’K86]. Since then
many researchers focused on different versions of the problem, especially on the discrete version.
However, to the best of our knowledge, for the continuous version of the hub location problem there
was a lack of research during the past 20 years. For an extensive review on hub location literature see
for example [FHAN13]. As far as we know, we are the first to apply a finite dominating set approach
to the continuous hub location problem.
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3 Problem Definitions and Optimality Conditions

In this section, we will give exact mathematical definitions of the problems and state optimality
conditions. But first, we will start with some basic notations and definitions.

3.1 Preliminaries

In what follows, we will use the notation [N ] := {1, . . . , N } to denote the set of indices from 1 to
N ∈N>0 and aS := {as ∈Rn | s ∈ S} for a ∈R and S ⊆Rn . By×N

i=1 Si we denote the cartesian product
of some sets Si ⊆Rn and by bd(S), int(S), cl(S), Sc we denote the boundary, interior, closure and
the complement of S, respectively. Finally, by Uε(x) we denote the closed ε-neighborhood of a given
point x. The following definitions from convex analysis (cf. [Roc72]) are needed to understand the
basic concept and the optimality conditions stated in this paper.

Definition 3.1
Let B be a subset ofRn . Then the gauge of B for a given point v ∈Rn is given by

γB (v) := inf{µ> 0 | v ∈µB}.

If B is a polytope with the origin in its interior, γB is called a polyhedral gauge. The set of extreme
points is denoted with Ext(B) = {b1, . . . ,bR }.

If it is clear from context which unit ball B is considered, we will shortly write γ instead of γB .

Definition 3.2
The polar set of B is defined by

B◦ :=
{

v ∈Rn
∣∣∣∣ sup

b∈B
〈b, v〉 ≤ 1

}
.

If B is polyhedral, this can be rewritten as

B◦ = {
v ∈Rn

∣∣ 〈br , v〉 ≤ 1,∀r = 1, . . . ,R
}

with extreme points Ext(B◦) = {b◦
1, . . . ,b◦

R ′}. Its corresponding gauge is called polar gauge and will be
denoted by γ◦B , or shortly γ◦. If B ⊆R2, the number of extreme points is equal, i.e., R = R ′.

Definition 3.3
The normal cone NS

(
p

)
to a convex set S at p ∈ S is defined by

NS
(
p

)
:= {x ∈Rn | ∀q ∈ S : 〈x, q −p〉 ≤ 0}.

3.2 Problem Definitions

The planar multifacility location problem deals with finding locations for K facilities in the plane,
where K ∈N>0. The locations of these (new) facilities will be denoted by x1, . . . , xK ∈ R2. With
X = (x1, . . . , xK ) ∈R2K , we refer to the solution vector. As input data, there are M ∈N>0 demand
points (or also called existing facilities), given by the setA := {

am ∈R2
∣∣ m ∈ [M ]

}
. Between each pair
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of facilities, a weight is given. The weights between the new facilities are denoted by w̃kl ∈R≥0 for
k, l ∈ [K ], and the weights between new and existing facilities with wkm ∈R≥0 for k ∈ [K ] ,m ∈ [M ].
Additionally, to each weight, there will be polyhedral gauges γkm and γ̃kl given by their unit balls

Bkm , B̃km ⊆R2, respectively. The unit balls have the extreme points Ext(Bkm) =
{

bkm
1 , . . . ,bkm

Rkm

}
,

resp. Ext
(
B̃kl

)= {
b̃kl

1 , . . . , b̃kl
R̃kl

}
as input data. For each k ∈ [K ], let Fk ⊆R2 be a closed, convex set.

Definition 3.4
The Multifacility Location Problem finds K locations x1, . . . , xK in the plane minimizing

min Φ(X ) :=
K∑

k=1

K∑
l=1

w̃kl γ̃kl (xk −xl )+
K∑

k=1

M∑
m=1

wkmγkm(xk −am)

s. t. xk ∈ Fk ∀k ∈ [K ] .

(PF )

If Fk is equal to R2 for all k ∈ [K ], the problem is called unconstrained, otherwise it is called
constrained.

The following notations will come in handy to analyze this problem. Let Ak := {am ∈A | wkm > 0}
and Mk := {m ∈ [M ] | wkm > 0} be the set of demand points and their indices associated with facility
k ∈ [K ].

The underlying directed graph, denoted by G = (VX ∪VA ,EX ∪E A) of a planar location problem has
vertex sets VX = {1̃, . . . , K̃ } (where |VX | = K ), VA = {1, . . . , M } and edge sets EX = {(k̃, l̃ ) | k̃, l̃ ∈VX , w̃kl >
0}, E A = {(k̃,m) | k ∈VX ,m ∈VA , wkm > 0}. With GX = (VX ,EX ) we denote the subgraph consisting
of the new facilities. In the following, we will often write (k, l ) ∈ EX and (k,m) ∈ E A instead of
(k̃, l̃ ) ∈ EX , resp. (k̃,m) ∈ E A .

3.3 Optimality Conditions

Since (PF ) is a convex optimization problem, it is possible to state necessary and sufficient optimality
conditions. These conditions can be derived by using sub-differential calculus.

Theorem 3.5 (Optimality Conditions for (PF ), [ILM89] and [LMP90])

3.5(i) Let Fk be convex sets in R2. The feasible point X ∗ = (
x∗

1 , . . . , x∗
K

) ∈×k∈[K ] Fk is optimal for
(PF ) if and only if there exist vectors ũkl ∈R2 for (k, l ) ∈ EX , ukm ∈R2 for (k,m) ∈ E A and
ūk ∈R2 for k ∈ [K ] satisfying:

• the ball conditions

γ̃◦kl (ũkl ) ≤ 1 (k, l ) ∈ EX (1a)

γ◦km(ukm) ≤ 1 (k,m) ∈ E A (1b)

• the cone conditions

x∗
k ∈ x∗

l +NB̃◦
kl

(ũkl ) (k, l ) ∈ EX (2a)

x∗
k ∈ am +NB◦

km
(ukm) (k,m) ∈ E A (2b)

ūk ∈ NFk

(
x∗

k

)
k ∈ [K ] (2c)
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• the flow conservation constraints∑
m:(k,m)∈E A

wkmukm + ∑
l :(k,l )∈EX

w̃kl ũkl −
∑

l :(l ,k)∈EX

w̃lk ũlk + ūk = 0, k ∈ [K ] (3)

3.5(ii) If Fk =R2 for all k ∈ [K ], then if (X ∗,U∗) is a pair satisfying the above optimality condition,
then for any X ∈ OPT(PF ), the pair (X ,U ) must also satisfy the optimality conditions.

4 Finite Dominating Sets

In this section we will consider the problem

min
∑

(k,l )∈EX

w̃kl γ̃kl (xk −xl )+ ∑
(k,m)∈E A

wkmγkm(xk −am)

s. t. xk ∈ Fk ∀k ∈ [K ] ,
(P Tree

F )

where the undirected version of GX = (VX ,EX ) is a spanning tree and each Fk is polyhedral. This
problem can be solved by linear programming algorithms. However, the theoretical result that there
exists a finite dominating set (FDS), is shown in this section.

The cone conditions (2b) for the demand points

xk ∈ am +NB◦
km

(ukm) ∀(k,m) ∈ E A (2b)

will play an important role in this proof. Fixing k, then for any u ∈ ×
m∈Mk

B◦
km let

Gk (u) := ⋂
m∈Mk

am +NB◦
km

(ukm)

be the geometric object – possibly empty – defined by those cone conditions.

Definition 4.1
Given Problem (P Tree

F ). The set of intersection points Ik (P Tree
F ) for a facility k ∈ [K ] is defined as

Ik (P Tree
F ) :=

{
x ∈R2

∣∣∣∣ ∃u ∈ ×
m∈Mk

B◦
km : x ∈ Ext(Gk (u)∩Fk )

}
.

If it is clear which problem is considered we will just write the short version Ik .

Definition 4.2
Given Problem (P Tree

F ). The set of construction lines for a facility k ∈ [K ] is defined as

C Lk (P Tree
F ) :=

{
x ∈R2

∣∣∣∣ ∃u ∈ ×
m∈Mk

B◦
km : x ∈ bd(Gk (u)∩Fk )

}
.

Again, if it is clear which problem is considered we will just write the short version C Lk .

Example 4.3
For a single facility location problem, consider the set of demand points for facility x1 given by
A1 = {(0,0), (4,1), (2,3)} and let

F1 = conv((1.5,0.5), (4.5,0.5), (4.5,3.5), (1.5,3.5))
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(0,0)

(4,1)

(2,3)

A1 : demand points
I1(PF ) : intersection points
C L1(PF ) : construction lines
F1 : constrained area

(a) Construction lines and intersec-
tion points

b◦
1b◦

2

b◦
3

(b) Polar ball B◦

NB◦ (b◦
3)

NB◦ (b◦
2) NB◦ (b◦

1)

(c) Unit ball B with normal cones

Figure 1: Part 1a: Intersection points and Construction lines of Example 4.3. Part 1b: The polar
set is given by the extreme points Ext(B◦) = {(2,−1), (−1,−1), (−1,2)}. Part 1c: the normal
cones are spanned by the extreme points of B .

be the constrained area as depicted in Figure 1a. We consider only a single block norm, induced by
the unit ball with extreme points Ext(B) = {(1,1), (0,−1), (−1,0)}, to measure the distance between
the facility and each demand point. Then the construction lines C L1(P Tree

F ) consist of the boundary
of F1 and the fundamental directions originating at each demand point a ∈ A1 in direction of
the extreme points of B intersecting with F . The intersection points are the intersections of the
construction lines and the extreme points of F . Hereby, we only consider intersections which are
points, i.e., have dimension zero. The set of construction lines and intersection points is shown in
Figure 1a. The polar set B◦ = conv((2,−1), (−1,−1), (−1,2)) and the normal cones incduced by the
extreme points of the polar set are illustrated in Figures 1b and 1c.

Definition 4.4
We say (PF ) has minimal dimension if for all optimal solutions X ∈ OPT holds

xk 6= xl ∀(k, l ) ∈ EX .

To keep the analysis simple, we assume as a first step that the problem has minimal dimension. Note
that any K -facility location problem where xk = xl and (k, l ) ∈ EX in an optimal solution X ∈ OPT
can be reformulated as a (K −1)-facility location problem with the same optimal objective value
by contracting the edge (k, l ). The new constrained area is Fk ∩Fl . Iteratively doing so will yield
a location problem with minimal dimension. However, although the objective value will stay the
same, the solution set OPT might not contain all the solutions of the original problem. We will
extend the results for location problems without minimal dimension later on.

Notation 4.5
In the following we will set w̃l k = w̃kl , B̃l k = B̃kl and R̃lk = R̃kl for each edge (k, l ) ∈ EX . Note that
w̃lk , B̃lk , R̃lk are well-defined, as EX is a tree and, hence, from (k, l ) ∈ EX follows (l ,k) ∉ EX and vice
versa.
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Remark 4.6
Observe that for a gauge γB with unit ball B and a weight w > 0, it holds

wγB (−x) = γB/w (−x) = γ−B/w (x) = wγ−B (x).

Furthermore, the addition of any two gauges can be written as a single third gauge

γB1 (x)+γB2 (x) = γB (x).

This can be seen by using the polar set to reformulate the definition of a gauge

γB1 (x)+γB2 (x) = sup
b1∈B◦

1

〈b1, x〉+ sup
b2∈B◦

2

〈b2, x〉

= sup{〈b1 +b2, x〉 | b1 ∈ B◦
1 ,b2 ∈ B◦

2}

= sup{〈b, x〉 | b ∈ B◦
1 +B◦

2︸ ︷︷ ︸
=:B◦

}

= γB (x),

where B◦
1 +B◦

2 is the Minkowski sum. Hence, by setting B = (B◦
1 +B◦

2)◦, we can write the sum of two
polyhedral gauges as one. Therefore, we can assume without loss of generality that either edge
(k, l ) ∈ EX or edge (l ,k) ∈ EX . For the same reason, there is no need to consider distances γ(am −xk ).

Definition 4.7
Two facilities (locations) xk and xl are called adjacent if (k, l ) ∈ EX or (l ,k) ∈ EX . For short, we write
k and l are adjacent.

Definition 4.8 (Recursive construction of intersection points)
Let a location problem (P Tree

F ) with minimal dimension be given. We say X = (x1, . . . , xK ) is a recur-
sive intersection point if and only if xk ∈ IK−1

k (P Tree
F ) for all k ∈ [K ], where we define the initial set

I0
k (P Tree

F ) := Ik (P Tree
F ) and for i = 1,2, . . . ,K −1 recursively:

xk ∈ I i
k (P Tree

F ) :⇔ One of the following conditions hold
4.8(i) xk ∈ I i−1

k (P Tree
F ).

4.8(ii) There exists an adjacent l to k with xl ∈ I i−1
l (P Tree

F ) and an r ∈ [
R̃kl

]
, such

that

xk ∈
{

Ext
(
(xl +R>0b̃kl

r )∩C Lk (P Tree
F )

)
if (k, l ) ∈ EX ,

Ext
(
(xl −R>0b̃lk

r )∩C Lk (P Tree
F )

)
if (l ,k) ∈ EX .

4.8(iii) There exists two adjacent l1, l2 to k with xl1 ∈ I i−1
l1

(P Tree
F ) and xl2 ∈

I i−1
l2

(P Tree
F ), such that for suitable r1 ∈

[
R̃kl1

]
and r2 ∈

[
R̃kl2

]
, the location

xk is the unique intersection point of the two rays E1,E2 defined by

Ez =
{

xlz +R≥0b̃klz
rz

if (k, lz ) ∈ EX ,

xlz −R≥0b̃lz k
rz

if (lz ,k) ∈ EX

for z = 1,2. In particular
{xk } = E1 ∩E2 ∩Fk .

The set of all recursive intersection points is denoted by Ir ec (P Tree
F ), or shortly, Ir ec if it is clear which

location problem is considered. Also the sets I i
k (P Tree

F ) will be abbreviated by I i
k .
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Example 4.9
Let the gauge γ for all pair of facilities be given by the unit ball

B = conv((2,0), (0,2), (−3,−4)) .

Consider a 5-facility location problem with the following demand points and weights:

a1 = (2,5), a2 = (8,3), a3 = (12,0), a4 = (4,−3), a5 = (6,−1), a6 = (10,5), a7 = (14,5),
w11 = 1, w32 = 1, w33 = 1, w44 = 1, w45 = 1, w56 = 1, w57 = 1,

with weights between the new facilities

w̃21 = 1, w̃32 = 1, w̃35 = 0.5, w̃43 = 1,

Let the following feasible regions be given:

F1 = conv({(5,6), (5,4), (6,4)}) ,

F2 = conv({(0,0), (2,0), (2,2), (0,2)}) ,

F3 = conv({(10,0), (10,3), (7,3), (7,0)}) ,

F4 = conv({(6,−4.5), (6.5,−4.5), (7.25,−3.75), (6,−2.5)}) ,

F5 = conv({(10.5,4), (10.5,7), (13,5)})

This problem can be solved by linear programming algorithms which would return a solution like

x1 = (5,5), x2 = (2,1), x3 = (8.625,1.0), x4 = (6.0,−2.5), x5 = (11.625,5).

Figure 2 illustrates the set of intersection points with the optimal solution of this problem.

Note that xk ∈ I0
k for k = 1,4. Location x2 is not an intersection point, but lies on the construction

line of C L2(P Tree
F ) as it lies on the boundary of its feasible region. Therefore, by setting l = 1, we have

x1 ∈ I1(P Tree
F ) = I0

1 and
x2 ∈ Ext

(
(x1 +R>0(−3,−4))∩C L2(P Tree

F )
)

,

thus, case 4.8(ii) is satisfied for k = 2, making x2 ∈ I1
2 . The facility x3 is not an intersection point

nor lies on a construction line of C L3(P Tree
F ) , therefore, we have to find l1 and l2 such that 4.8(iii)

applies. Setting l1 = 2 and l2 = 4, we have that xli ∈ I1
li

(for i = 1,2) and

x3 ∈ Ext((x2 +R>0(2,0))∩ (x4 −R>0(−3,−4))) ,

which makes x3 ∈ I2
3 . The only point that is not considered yet is x5. However, we have that

x5 ∈ Ext
(
(x3 −R>0(−3,−4))∩C L5(P Tree

F )
)

,

making x5 ∈ I3
5 and, consequently, xk ∈ IK−1

k for all k ∈ [K ].

Theorem 4.10
Given (P Tree

F ) with minimal dimension and polyhedral Fk , then there exists an optimal solution
X ∈ OPT(P Tree

F ) with X ∈ Ir ec (P Tree
F ).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

a1

a2

a3

a4

a5

a6 a7

x1

x2 x3

x4

x5

Ik (P Tree
F ) : intersection points (=i.pt.)

xk ∈ Ik (P Tree
F ) : opt. location lying on i.pt.

xk ∉ Ik (P Tree
F ) : opt. location not lying on i.pt.

Fk : constrained area
am +R≥0br : fundamental directions (m ∈ [7] , r ∈ [3])

xk −xl ⊆±R≥0br : if xk ∈ Ik
1 and l adjacent to k

fulfilling 4.8(ii) or 4.8(iii)

Figure 2: Illustration of Example 4.9 and optimal solution X . The dashed lines show fundamental
directions a +R≥0br for a ∈ A and br ∈ Ext(B), resp. xk ±R≥0br as described in the
example.

Proof. Let X ∗ = (x∗
1 , . . . , x∗

K ),U∗ = (u∗, ũ∗, ū∗) be a pair satisfying the optimality conditions in Theo-
rem 3.5. In the following proof, U∗ stays fixed. For Jk ∈N>0, let Fk = {x ∈R2 | 〈Ωk

i x〉 ≤ωk
i , i ∈ [Jk ]}

be the constrained areas for given suitable vectorsΩk
i ∈R2 and real numbers ωk

i ∈R. Define

J∗k :=
{

i ∈ [Jk ]
∣∣∣Ωk

i x∗
k =ωk

i

}
,

F∗
k :=

{
x ∈ Fk

∣∣∣Ωk
i x =ωk

i , i ∈ J∗k
}

,

where F∗
k is the smallest face containing x∗

k and let

G∗
k :=

( ⋂
m∈Mk

am +NB◦
km

(
u∗

km

))∩F∗
k .

Note that G∗
k might be unbouded. The idea is to translate x∗

k within G∗
k for all k ∈ [K ] such that they

lie in IK−1
k and are still optimal. To do the proof, we first have to consider bounded subsets of all G∗

k .

Observe that minimizing the function

ΦF (X ) :=
K∑

k=1

K∑
l=1

w̃kl γ̃kl (xk −xl )+
K∑

k=1

M∑
m=1

wkmγkm(xk −am)+
K∑

k=1
XFk (xk ),
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where

XF (x) :=
{

0 if x ∈ F,

∞ if x ∉ F,

is equivalent to (P Tree
F ).

Let
OPTk (P Tree

F ) := {
x ∈R2

∣∣ ∃X = (x1, . . . , xK ) ∈ OPT(P Tree
F ) : xk = x

}
.

Since all the level sets for z ∈R≥0

L≤(z) := {
X ∈R2K

∣∣ΦF (X ) ≤ z
}

are compact, the k-th projection of X = (x1, . . . , xK ) ∈ OPT(P Tree
F ) defined by

Pk ((x1, . . . , xK )) = xk

is a projection of the compact set L≤(z∗) for an optimal objective value z∗, and, is again a compact
set, that is OPTk (P Tree

F ).

Hence, there exists a bounding box Q = [a1,b1]× [a2,b2] ⊂ R2, s.t. OPTk (P Tree
F ) ⊂ int(Q) for all

k ∈ [K ]. By definition of OPTk (P Tree
F ) it holds that

x ∈ bd(Q) =⇒ x ∉ OPTk (P Tree
F )∀k ∈ [K ] . (4)

Let

GQ
k

:= (
Gk (u∗)∩F∗

k

)︸ ︷︷ ︸
=G∗

k

∩Q.

We will now redefine the set of recursive intersection points for geometric objects. Therefore,
define for a family of polygons G := (Gk )k∈[K ] analogue to Definition 4.8 the initial set of recursive
intersectionpoints as

I0
k (Gk ) := Ext(Gk )

and recursively for i = 1,2, . . . ,K −1:

xk ∈ I i
k (Gk ) :⇔ One of the following conditions holds

5(i) xk ∈ I i−1
k (Gk )

5(ii) If xk ∈ bd(Gk ), there exists an adjacent l to k with xl ∈ I i−1
l (Gl ) and

u ∈ B̃kl such that

xk ∈
{

Ext
(
(xl +NB̃kl

(u))∩Gk
)

if (k, l ) ∈ EX ,

Ext
(
(xl −NB̃lk

(u))∩Gk
)

if (l ,k) ∈ EX

5(iii) If xk ∈ int(Gk ), there exists two adjacent l1, l2 to k with xl1 ∈ I i−1
l1

(Gl1 ) and

xl2 ∈ I i−1
l2

(Gl2 ), such that for u1 ∈ B̃kl1 and u2 ∈ B̃kl2 , the location xk is an
extreme point of the intersection of the two cones E1,E2 defined by

Ez =
{

xlz +NB̃klz
(uz ) if (k, lz ) ∈ EX ,

xlz −NB̃klz
(uz ) if (lz ,k) ∈ EX

for z = 1,2. In particular
xk ∈ Ext(E1 ∩E2) .

10



a1

a2
G1

G2

G3
G4

(a) Polygons G1,G2,G3,G4

a1

a2

x2

x1

(b) i = 0: Both xk lie in I i
k (Gk ).

a1

a2

x2

x3
x1

(c) i = 1: x3 ∈ I i
3(G3) satisfying condition

5(ii) with l = 1 and cone x1+NB◦ (ũ13) as
depicted.

a1

a2

x2

x3x1

x4

(d) i = 2: x4 ∈ I i
4(G4) satisfying condition

5(iii) with l1 = 2, l2 = 3 and cones E1, E2

as indicated in the picture.

Figure 3: Illustration of the recursive construction of an intersection point X = (x1, x2, x3, x4) ∈
Ir ec (G) with G =×k∈[4] Gk as shown in part (a). Parts (b),(c),(d) show the recursion steps.

For illustration of the concept see Figure 3.

The set of all X = (x1, . . . , xK ) with xk ∈ IK−1
k (Gk ) for all k ∈ [K ] will be denoted by Ir ec (G). Note

that for Gk = G∗
k the above definition is equivalent to Definition 4.8. To see that, recall that all

intersection points Ik (P Tree
F ) can be written as extreme points of some polyhedron( ⋂

m∈Mk

am +NB◦
km

(ukm)

)
︸ ︷︷ ︸

=Gk (u)

∩F̃k (6)

for a suitable u = (ukm)m∈Mk and a face F̃k of Fk . The same holds for the points on the construc-
tion lines, being on the boundary of such a polyhedron. Hence, if we show that X ∈ Ir ec (G∗) :=
Ir ec

(
(G∗

k )k∈[K ]
)

we are done with the proof.

The remaining proof is done in the following way:

Step 1: Given any bounded polyhedral subsets Gk ⊆G∗
k with x∗

k ∈Gk for all k ∈ [K ], we show by
induction that we can construct a vector X ∈G :=×K

k=1 Gk , such that X ∈ Ir ec (G) and
the cone conditions for the new facilities

xk ∈ xl +NB̃◦
kl

(
ũ∗

kl

) ∀(k, l ) ∈ EX (2a)

are still satisfied.
Step 2: As (X ∗,U∗) satisfied the optimality conditions beforehand, U∗ still satisfies the ball

constraints (1) and the flow conservation (3) constraints. Then, for X ∈×K
k=1 Gk ⊆

×K
k=1 G∗

k obtained in the previous step, also satisfies the cone conditions (2b) and (2c)

xk ∈ am +NB◦
km

(
u∗

km

)
(k,m) ∈ E A (2b)

ū∗
k ∈ NFk

(
x∗

k

)
k ∈ [K ] . (2c)

11



G2

G1

G̃2

−NB̃◦
21

(ũ21)

Case 1.1.
Case 1.2.
Case 2.1.
Case 2.2.

Figure 4: Choice if G̃2 and case distinction of induction step.

The last cone condition (2a) is obtained from the induction hypotheses, i.e., (X ,U∗) is
a pair satisfying all optimality conditions in Theorem 3.5, making X optimal.

Step 3: By choosing the subsets GQ :=
(
GQ

k

)
k∈[K ]

we can construct by the first step an X ∈
Ir ec (GQ ) that is still optimal. However, by (4) no xk can lie on the boundary of Q,
making X ∈ Ir ec (G∗).

It remains to show Step 1.

Induction Base: K = 1
Let a polyhedral G1 ⊆G∗

1 be given, such that x∗
1 ∈G1. Then, for only one facility, we can just

choose x1 ∈ Ext(G1) and are done.
Induction Hypotheses: For an arbitrary, but fixed K , given a solution pair (X ∗,U∗) and bounded

sets Gk ⊆ G∗
k with x∗

k ∈ Gk for all k ∈ [K ], we can construct a vector X ∈×K
k=1 Gk , such that

X ∈ Ir ec (G) and the cone conditions

xk ∈ xl +NB̃◦
kl

(
ũ∗

kl

) ∀(k, l ) ∈ EX (7)

are still satisfied.
Induction Step: K 7→ K +1

As before, let (X ∗,U∗) be an optimal pair satisfying the optimality conditions stated in The-
orem 3.5 and assume that x∗

k 6= x∗
l for all k, l ∈ [K ], since (P Tree

F ) is minimal. Without loss of
generality let (2,1) ∈ EX and let 1 be a leaf of GX . Define (see Figure 4)

G̃k :=
{{

x ∈G2

∣∣∣ (
x −NB̃◦

21

(
ũ∗

21

))∩G1 6= ;
}

, if k = 2,

Gk , if k ∈ [K +1] \ {2}.

Note, that all the points in G2 \G̃2 are exactly the points that cannot satisfy the cone condi-
tions (7). Also x∗

2 ∈ G̃2, therefore, we can use the induction hypotheses on facilities 2, . . . ,K +1
and edge set EX \ {(2,1)}. Hence, we can construct X̂ := (x2, . . . , xK+1) ∈×K+1

k=2 G̃k such that for
each xk one point of 5(i) - 5(iii) holds for facilities 2, . . . ,K +1, i.e.,

X̂ ∈ Ir ec

((
G̃k

)
k∈[K+1]\{1}

)
.

12



Choose

x1 ∈


(
x2 −NB̃◦

21

(
ũ∗

21

))∩Ext
(
G1

)
, if

(
x2 −NB̃◦

21

(
ũ∗

21

))∩Ext
(
G1

) 6= ;,

Ext
((

x2 −NB̃◦
21

(
ũ∗

21

))∩G1

)
︸ ︷︷ ︸

6=; by construction of G̃2

, else.

By the choice of x1 and the induction hypothesis, the cone condition (7) are satisfied. Also
observe that by definition of G̃k =Gk for k = 3, . . . ,K +1, it especially holds

Ext
(
G̃k

)= Ext(Gk ) ∧ bd
(
G̃k

)= bd(Gk ) ∀k = 3, . . . ,K +1, (8a)

implying, together with the fact that x1 is only interacting with x2, that for j := min{i | x2 ∈
I i

2(G̃2)}, we also have(
xk ∈ I i

k (G̃k ) =⇒ xk ∈ I i
k (Gk )

)
∀k = 3, . . . ,K +1, i ≤ j . (8b)

This means we are done with the induction step by showing

x2 ∈ I j
2 (G̃2) considering edge set EX \ {(2,1)}

=⇒ x2 ∈ I j+1
2 (G2) considering edge set EX .

(9a)

and
x1 ∈ I j+1

1 (G1). (9b)

From (9) and the induction hypothesis immediately follows for the remaining locations(
xk ∈ I i

k (G̃k ) =⇒ xk ∈ I i+1
k (Gk )

)
∀k = 3, . . . ,K +1 with i > j .

As (P Tree
F ) has minimal dimension, we have x1 6= x2 and there are the following cases (see

Figure 4 for illustration):
Case 1. x2 ∈ Ext

(
G̃2

)
: Since x1 6= x2 we must have x2 ∈ bd(G2). Therefore, we can only

have two subcases:

Case 1.1. x2 ∈ Ext(G2): As Ext(G2) = I0
2 (G2) and x1 is a leaf, we already have by in-

duction hypotheses that xk ∈ IK−1
k (Gk ) for all k ∈ [K +1] \ {1}. Furthermore,

either
x1 ∈ Ext

(
G1

)
or x1 ∈ Ext

(
G1 ∩

(
x2 −NB̃◦

21

(
ũ∗

21

)))
showing that x1 ∈ I0

1 (G1) or x1 ∈ I1
1 (G1). Hence, X = (x1, . . . , xK+1) ∈ Ir ec (G)

for this case.
Case 1.2. x2 ∈ bd

(
G2

)
\ Ext

(
G2

)
: In this case we have not necessarily xk ∈ IK−1

k (Gk ) for
all k = 2, . . . ,K as x2 ∈ I0

k (G̃2) but not x2 ∈ I0
k (G2). However, this case can only

appear if x1 ∈
(
x2 −NB̃◦

21

(
ũ∗

21

))∩Ext
(
G1

)
by definition of G̃2. In particular,

x2 ∈ Ext
(
G2 ∩

(
x1 +NB̃◦

21

(
ũ∗

21

)))
.

Therefore, (9) holds since x1 ∈ Ext
(
G1

) = I0
1 (G1) and x2 ∈ I1

2 (G2). Thus,
xk ∈ IK

k (Gk ), ∀k ∈ [K +1] which means X = (x1, . . . , xK+1) ∈ Ir ec (G).
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Case 2. x2 ∈ bd
(
G̃2

)
\ Ext

(
G̃2

)
: By induction hypotheses x2 ∈ I j

2 (G̃2), thus, there exists an

adjacent l1 > 2 with xl1 ∈ I j−1
l1

(G̃l1 ) such that 5(ii) is fulfilled, i.e.,

x2 ∈
Ext

((
xl1 +NB̃◦

2l1

(
ũ∗

2l1

))
∩G̃2

)
if (2, l1) ∈ EX ,

Ext
((

xl1 −NB̃◦
l12

(
ũ∗

l12

))
∩G̃2

)
if (l1,2) ∈ EX

(10)

for x2. Moreover, by (8), we must have xl1 ∈ I j−1
l1

(Gl1 ) . By construction of G̃2, this
case has two sub-cases:

Case 2.1. x2 ∈ bd
(
G2

)
: Then we already have that x2 ∈ I j

2 (G2). By the same argumen-

tation as above x1 ∈ I j+1
1 (G1), which means X ∈ Ir ec (G).

Case 2.2. x2 ∈ int
(
G2

)
: By the argumentation of Case 1, this is only possible if(

x2 −NB̃◦
21

(
ũ∗

21

))∩Ext
(
G1

) 6= ;,

thus, x1 ∈ Ext
(
G1

)= I0
1 (G1). Therefore, as (10) is satisfied for a l1 ≥ 3, we can

choose l2 = 1, and have that

x2 ∈ Ext(E1 ∩E2) ,

where

Ez =
xlz +NB̃◦

2lz

(
ũ∗

2lz

)
if (2, lz ) ∈ EX ,

xlz −NB̃◦
lz 2

(
ũ∗

lz 2

)
if (lz ,2) ∈ EX

(11)

for z = 1,2. Thus, x2 ∈ I j
2 (G2) by 5(iii).

Case 3. x2 ∈ int
(
G̃2

)
: By induction hypotheses and (8), there exist two different adjacent

l1 > 2 and l2 > 2 with xl1 ∈ I j−1
l1

(Gl1
) and xl2 ∈ I j−1

l2
(Gl2

) such that 5(iii) is satisfied,
i.e.,

x2 ∈ Ext(E1 ∩E2) ,

where

Ez =
xlz +NB̃◦

2lz

(
ũ∗

2lz

)
if (2, lz ) ∈ EX ,

xlz −NB̃◦
lz 2

(
ũ∗

lz 2

)
if (lz ,2) ∈ EX

for z = 1,2. Therefore, x2 ∈ I j
2 (G2) and by the choice of x1 ∈ I j+1

1 (G1).
In all cases we have X = (x1, . . . , xK+1) ∈ Ir ec (G) and (X ,U∗) satisfies the optimality conditions.

Note that for general convex constraints, this proof does not work out as x∗
k might be any point on

the boundary of Fk and we cannot translate xk along the boundary such that the cone conditions

ū∗
k ∈ NFk (xk ) ∀k ∈ [K ]

are still satisfied.
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a1 a2

a3

a4a5

a6

x∗
1

x∗
2x∗

3

G1

G2G3

NB◦
(
ũ∗

12

)
NB◦

(
ũ∗

13

)

NB◦
(
ũ∗

23

)

Figure 5: Counterexample for FDS for location problem without tree structure given in Example 4.11:
Optimal solution with sets Gk :=⋂

m∈Mk
am +NB◦ (ukm) plotted as solid lines. The dashed

lines show the direction of the normal cones NB◦ (ũkl ).

Example 4.11
In this example, we will show that the finite dominating set in Definition 4.8 only works for problems,
where GX is a tree. Consider the 3-facility problem with demand points

a1 = (−2,0), a2 = (2,0), a3 = (4,2), a4 = (2,4), a5 = (−2,4), a6 = (−4,2)

as depicted in Figure 5.

Let the weights between each facility be given by

w11 = w12 = 10,

w23 = w24 = 10,

w35 = w36 = 10,

w̃12 = w̃23 = w̃13 = 1.

All feasible regions will be Fk =R2 for any k ∈ [K ]. There will be a single gauge between the facilities,
which is given by the unit ball

B = conv((1,1), (2,0), (1,−1), (−1,−1), (−2,0), (−1,1)) .

The polar set of B is given by

B◦ = conv((0,1), (0.5,0.5), (0.5,−0.5), (0,−1), (−0.5,−0.5), (−0.5,0.5))

Then an optimal solution pair (X ∗,U∗) of Theorem 3.5 is given by

x∗
1 = (0,0), x∗

2 = (3,3), x∗
3 = (−3,3)

and
u∗

11 = (0.5,−0.35), u∗
12 = (−0.5,0.5),

u∗
23 = (−0.075,0.925), u∗

24 = (0,−1),
u∗

35 = (−0.425,−0.575), u∗
36 = (0.5,0.5),

ũ∗
12 = (−0.25,−0.75), ũ∗

13 = (0.25,−0.75), ũ∗
23 = (0.5,0).
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By Theorem 3.5 all other optimal solutions X ∈ OPT(PF ) fulfill the cone conditions (2), i.e.,

xk ∈ xl +NB◦
(
ũ∗

kl

)
(k, l ) ∈ EX ,

xk ∈ am +NB◦
(
u∗

km

)
(k,m) ∈ E A .

(12)

As the normal cones are spanned by the extreme points of B , any x ∈ NB◦ (u) can be written as

x =


λ1br1 +λ2br2 if u ∈ Ext(B◦)

λ1br1 if u ∈ bd(B◦) \ Ext(B◦)

0 else

for suitable λ1,λ2 ∈R>0 and adjacent extreme points br1 ,br2 ∈ Ext(B). Therefore, as br1 ,br2 are
already defined by U∗, plugging in the above values, the cone conditions (12) form a linear system
of equations:

x1 = a1 +λ11(2,0)

x1 = a2 +λ12(−2,0)+λ′
12(−1,1)

x2 = a3 +λ13(−1,1)

x2 = a4 +λ24(1,−1)+λ′
24(−1,1)

x3 = a5 +λ35(−1,−1)

x3 = a6 +λ36(1,1)+λ′
36(2,0)

x1 = x2 + λ̃12(−1,−1)

x1 = x3 + λ̃13(1,−1)

x2 = x3 + λ̃23(2,0).

This system has 18 variables and 18 equalities. It is easy to verify that the matrix of the equivalent
matrix equation has full rank. Therefore, there exists a unique solution which is x∗

1 = (0,0), x∗
2 =

(3,3), x∗
3 = (−3,3).

Location Problems without minimal Dimension

In the previous theorem we have described a finite dominating set for a problem (PF ) with tree
structure and minimal dimension. However, it is possible that adjacent facilities coincide in an
optimal solution and we do not know which facilities will coincide before solving the problem.
Assume we have a spanning forest T = {Ti = (Vi ,Ei ) | i ∈ [|T |]} of GX , such that for all k, l ∈ Vi we
have xk = xl , i.e., all locations in a tree Ti coincide. Then we can define a |T |-facility location
problem with A′

i :=⋃
k∈Vi

Ak and F ′
i :=⋂

k∈Vi
Fk for i ∈ [|T |]. The edge set between the new facilities

is given by
E ′

X := {
(i , j ) ∈ [|T |]× [|T |] ∣∣ i 6= j ,∃k ∈Vi , l ∈V j : (k, l ) ∈ EX

}
.

Note that if GX is a tree, the cardinality |{(k, l ) | k ∈Vi , l ∈V j }| = 1 for i 6= j . The interaction between
new and existing facilities is given by

Mi := {m ∈ [M ] | ∃k ∈Vi : (k,m) ∈ E A} ,

E ′
A := {(i ,m) | i ∈ [|T |] ,m ∈Mi } .
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By Remark 4.6 the unit balls for (i , j ) ∈ E ′
X are given by

B̃ ′
i j =

 ∑
k∈Vi

∑
l∈V j :

(k,l )∈EX

(
1/w̃kl · B̃kl

)◦

◦

and for (i ,m) ∈ E ′
A

B ′
i m =

 ∑
k∈Vi :

(k,m)∈E A

(1/wkm ·Bkm)◦


◦

.

Then the corresponding location problem to a spanning forest T can be written as

minX ′ Φ′(X ′) := ∑
(i , j )∈E ′

X

γ̃′i j (x ′
i −x ′

j )+ ∑
(i ,m)∈E ′

A

γ′i m(x ′
i −am)

s. t. x ′
i ∈ F ′

i , ∀i ∈ [|T |] .
(PF (T ))

Definition 4.12
A spanning forest T of GX is called optimal for (PF ), if (PF (T )) has the same optimal objective value
as (P Tree

F ).

As consequence we get the following Corollary.

Corollary 4.13
Given problem (P Tree

F ). Then there exists an optimal spanning forest

T = {Ti = (Vi ,Ei ) | i ∈ [|T |]}

of GX , such that there exists an optimal solution X ∈ OPT(PF (T )), such that X is an recursive
intersection point, i.e., X ∈ Ir ec (PF (T )).

In addition, note that the objective value of (PF (T )) is greater or equal than (P Tree
F ). Then by

iterating over all spanning forests T of GX , we will necessarily get a location problem with minimal
dimension and the same objective value. In particular, for this problem the finite dominating set of
Theorem 4.10 holds. We summarize this result in Algorithm 1.

Remark 4.14
Note that it is not necessary to calculate each of the unit balls B̃ ′

i j and B ′
i m of (PF (T )) in Algorithm 1.

Since GX is a tree |{(k, l ) ∈ EX | k ∈Vi , l ∈V j }| = 1, hence, B̃ ′
i j is just the polar set of the sum of one

polar set, thus, B̃ ′
i j = B̃kl with (k, l ) ∈ EX ∩ (

Vi ×V j
)

. Furthermore, since in the definition of the
finite dominating set the demand points do not need to be different, we can introduce |E A| demand
points a(k,m) = am for each (k,m) ∈ E A , and write the objective as∑

(i , j )∈E ′
X

w̃ ′
i j γ̃

′
i j (x ′

i −x ′
j )+ ∑

i∈[|T |]

∑
k∈Vi

∑
m∈Mk

wkmγkm(x ′
i −a(k,m)).

Hence, it is enough to use the original demand points and gauges to calculate the FDS for (PF (T )).
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Algorithm 1: Finding best solution for (P Tree
F )

Data: Location Problem (P Tree
F ) with tree structure

Result: Optimal solution of (P Tree
F )

1 obj =∞
2 for All spanning forests T = {Ti = (Vi ,Ei ) | i ∈ [|T |]} of GX do
3 Construct problem PF (T ) as shown above
4 Calculate the set Ir ec (PF (T )) in Definition 4.8
5 Choose X ′ ∈ argmin{Φ′(X ) | X ∈ Ir ec (PF (T ))}
6 ifΦ′(X ′) <obj then
7 X ∗ = (x∗

1 , . . . , x∗
K ) with x∗

k = x ′
i if k ∈Vi for i ∈ [|T |]

8 obj =Φ′(X ′)

9 return X ∗

Remark 4.15
Note that there are algorithms with a better running time. The number of spanning forests of GX ,
where GX is a tree, is

K−1∑
i=0

(
K −1

i

)
.

In addition, the set Ir ec (PF (T )) is of exponential size, since there exist problem instances with
∣∣I0

i

∣∣=
|Ii (PF (T ))| ∈ Ω(M 2R2) for each i ∈ [|T |], where R := max(k,m)∈E A Rkm . Consequently Ir ec (PF (T ))
has at least (MR)2|T | possibilities that xi ∈ I0

i for all i ∈ [|T |]. Future research will be to decrease the
size of the FDS by also taking the flow conservation constraints into account. Since this is more of a
theoretical result, we will not go too deeply into the running time analysis of Algorithm 1.

Example 4.16
Analogue to Example 4.9, let the gauge γ for all pair of facilities be given by the unit ball

B = conv((2,0), (0,2), (−3,−4)) .

Consider the 6-facility location problem with the following demand points and weights:

a1 = (2,5), a2 = (8,3), a3 = (12,0), a4 = (4,−3), a5 = (6,−1), a6 = (10,5), a7 = (14,5),
w11 = 1, w32 = 1, w33 = 1, w44 = 1, w55 = 1, w66 = 1, w67 = 1,

with weights between the new facilities

w̃21 = 1, w̃32 = 1, w̃36 = 0.5, w̃43 = 1, w̃54 = 60,

Let the following feasible regions be given:

F1 = conv({(5,6), (5,4), (6,4)}) ,

F2 = conv({(0,0), (2,0), (2,2), (0,2)}) ,

F3 = conv({(10,0), (10,3), (7,3), (7,0)}) ,

F4 = conv({(5,−1.5), (8,−4.5), (5,−4.5)}) ,

F4 = conv({(6,0), (6,−5), (9,−2)}) ,

F6 = conv({(10.5,4), (10.5,7), (13,5)})
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Linear programming algorithms would return a solution like

x1 = (5,5), x2 = (2,1), x3 = (8.625,1.0), x4 = x5 = (6.0,−2.5), x6 = (11.625,5).

Therefore, we have a spanning forest T = {T1, . . . ,T5} defined by

T1 := ({1},;), T2 := ({2},;), T3 := ({3},;), T4 := ({4,5}, {(4,5)}), T5 := ({6},;).

As F ′
4 = F4∩F5 = conv({(6,−4.5), (6.5,−4.5), (7.25,−3.75), (6,−2.5)}), the contracted location problem

(PF (T )) becomes the 5-facility location problem in Example 4.9 and, therefore, lies in the FDS.

5 Application to Planar Hub Location

In this section we will show how we can use the FDS result to solve hub location problems in the
plane, in particular, the 2-facility hub location problem. In this problem we have given the set
of demand points A = {am ∈ R2 | m ∈ [M ]} and, in contrast to the planar multifacility problem
(PF ), there is a weight vmn ∈R≥0 between each pair of demand points m,n ∈ [M ]. Additionally,
the polyhedral gauge γ will be a block norm, i.e., it has the symmetry γ(x) = γ(−x) as additional
property. The task is to find not only locations xk in some polyhedral areas Fk ⊆R2 for the two
facilities, but also an assignment

zkm =
{

1 if demand point m is assigned to facility k,

0 else.

The different demand points are interacting through the hub nodes, whereby the key feature is that
a discount factor α ∈ (0,1) is taken into account for inter-hub interactions. Denoting the sum of
ingoing and outgoing traffic of demand point m ∈ [M ] with

Gm :=
M∑

n=1
vnm + vmn ,

the 2-hub median location problem can be written as

min
M∑

m=1

2∑
k=1

Gmγ(am −xk )zkm

+αγ(x1 −x2)
M∑

m=1

M∑
n=1

vmn(z1m z2n + z1n z2m) (13a)

s.t.
2∑

k=1
zkm = 1, ∀m ∈ [M ], (13b)

xk ∈ Fk ∀k ∈ [2], (13c)

zkm ∈B ∀k ∈ [2], m ∈ [M ]. (13d)

The objective (13a) minimizes the overall ingoing and outgoing traffic going from one demand point
am to its assigned hub xk , plus, the interaction between each of the demand point via the hubs.
Constraint (13b) assures that each demand point is assigned to exactly one hub. Constraint (13c)
guarantees that xk lies in its feasible region.

19



In first place this does not look like a classic location problem (PF ), but assume we have already
given a feasible assignment z = (zkm)k∈[K ],m∈[M ] between the demand points and the hubs.

With

wkm :=Gm zkm ,

w̃ :=α
M∑

m=1

M∑
n=1

vmn(z1m z2n + z1n z2m),

we will denote the weights of the multifaciltiy location problem instance and define the location
problem as

min Φ(X ) := w̃γ(x1 −x2)+
2∑

k=1

M∑
m=1

wkmγ(xk −am)

s. t. xk ∈ Fk ∀k ∈ [2] .

(P H
F (z))

Hence, by iterating over every possible assignment for z, we could get for each assignment a finite
dominating set. However, the overall number of possibilities for the assignments is 2M . The next
part shows, that we only need to calculate a finite dominating set once. Therefore, define for
u = (u1, . . . ,uM ) ∈ ×

m∈[M ]
B◦

G(u) :=
( ⋂

m∈[M ]
am +NB◦ (um)

)
.

Analogue to the previous definitions, the set of intersection points for both facilities will be

Ik =
{

x ∈R2
∣∣∣∣ ∃u ∈ ×

m∈[M ]
B◦ : x ∈ Ext(G(u)∩Fk )

}
,

and construction lines

C Lk =
{

x ∈R2
∣∣∣∣ ∃u ∈ ×

m∈[M ]
B◦ : x ∈ bd(G(u)∩Fk )

}
.

Using these sets, the points in I0
k = I and I1

k will be defined as in Definition 4.8.

Theorem 5.1
There exists an optimal solution (x1, x2) of (13) such that one of the following conditions holds:

1. x1 = x2: there exist u ∈×m∈[M ] B◦ with

x1 = x2 ∈ Ext(G(u)∩F1 ∩F2)

2. x1 ∈ I0
1 and x2 ∈ I0

2 : both points are intersection points, thus,

x1 ∈ I1, x2 ∈ I2

3. x1 ∈ I0
1 and x2 ∈ I1

2 \I0
2 : there exist an r ∈ [

R̃
]

with

x1 ∈ I1, x2 ∈ Ext
(
C L2 ∩ (x1 +R>0b̃r )

)
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4. x1 ∈ I1
1 \I0

1 and x2 ∈ I0
2 : there exist an r ∈ [

R̃
]

with

x2 ∈ I2, x1 ∈ Ext
(
C L1 ∩ (x2 +R>0b̃r ))

)
Proof. Assume z := (zkm)k∈[2],m∈[M ] is an assignment to problem (13). Then an optimal solution
X ∗ = (x∗

1 , x∗
2 ) can be found using the planar location problem (P H

F (z)). By Corollary 4.13 there exists
a spanning forest T such that X ∗ also is in Ir ec (P H

F (T )), where (P H
F (T )) denotes in this case the

contracted problem of (P H
F (z)).

First assume X ∗ = (x∗
1 , x∗

2 ) ∈ OPT(P H
F (z)) with x∗

1 = x∗
2 . Then the optimal spanning forest consists

of the spanning tree of GX , i.e., T = {({1,2}, {(1,2)})}. By Corollary 4.13 and the definition of the
contracted problem (i.e, F ′

1 := F1 ∩F2), we obtain the first case.

If x∗
1 6= x∗

2 for all (x∗
1 , x∗

2 ) ∈ OPT(P H
F (z)) then

T = { ({1}, {;}), ({2}, {;}) }.

We can find a (x1, x2) ∈ OPT(P H
F (T )) and by definition of Ir ec (P H

F (T )) only the following three cases
can occur.

1. xk ∈ I0
k (P H

F (T )) = Ik (P H
F (T )) for both k = 1,2:

2. x1 ∈ I0
1 (P H

F (T )) = I1(P H
F (T )) and there exists an r ∈ [

R̃
]

with
x2 ∈ Ext

(
(x1 +R>0b̃r )∩C L2(P H

F (T ))
)

3. x2 ∈ I0
2 (P H

F (T )) = I2(P H
F (T )) and there exists an r ∈ [

R̃
]

with
x1 ∈ Ext

(
(x2 +R>0b̃r )∩C L1(P H

F (T ))
)

Note that we do not have to distinguish the cases (1,2) ∈ EX or (2,1) ∈ EX as γ is symmetric. The
claim for the given spanning forest T follows as

Ik (P H
F (T )) =

{
x ∈R2

∣∣∣∣ ∃u ∈ ×
m∈Mk

B◦ : x ∈ Ext(Gk (u)∩Fk )

}
⊆

{
x ∈R2

∣∣∣∣ ∃u ∈ ×
(k,m)∈[2]×[M ]

B◦ : x ∈ Ext(G(u)∩Fk )

}
= Ik

and

C Lk (P H
F (T )) =

{
x ∈R2

∣∣∣∣ ∃u ∈ ×
m∈Mk

B◦ : x ∈ bd(Gk (u)∩Fk )

}
⊆

{
x ∈R2

∣∣∣∣ ∃u ∈ ×
(k,m)∈[2]×[M ]

B◦ : x ∈ bd(G(u)∩Fk )

}
=C Lk .

As the FDS in Theorem 5.1 is independent of the assignment, we can iterate over all points in the
FDS and then compute an optimal assignment. The assignment will be computed by using the LP
of [SP97]. This is summarized in Algorithm 2.

Runnning time of Algorithm 2
The running time of the Algorithm highly depends on the number of possible locations in the FDS.
Hence, in the following we analyze how many of those points exist. Let the feasible regions be
given by the polyhedrons Fk = {

x ∈R2 |Ωi x ≤ωi , i ∈ [Jk ]
}
, where Jk ∈N≥0 andΩi ∈R2,ωi ∈R for
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Algorithm 2: Solving the 2-hub location problem

Data: Hub Location Problem (13)
Result: Optimal Solution (x∗

1 , x∗
2 ), objective value obj

1 obj =∞
2 Compute FDS of Theorem 5.1
3 for X ∈ FDS do
4 Compute optimal assignment z using the LP of [SP97] with X as input
5 Compute objective value currentOpt of z and X
6 if currentOpt < obj then
7 obj = currentOpt
8 (X ∗, z∗) = (X , z)

9 return (X ∗, z∗), obj

all i ∈ [Jk ]. Let J := maxk∈[2] Jk be the maximum number of facets and extreme points of the feasible
regions and R be the number of extreme points of the gauge γ. We will go through the the different
cases of Theorem 5.1.

1. In the first case the facilities coincide, thus, since there are R lines emerging from each of
the demand points, there is a total of MR lines, which can give at most M 2R2 intersections.
Additionally, each line can intersect the feasible region at most twice, giving another O (MR)
intersection points. Furthermore, there are at most 2J extreme points of the feasible regions.
In total this gives O

(
M 2R2 + J

)
possible choices for x1 = x2.

2. In the second case, by the same argumentation as before, there are O
(
M 2R2 + J

)
possibilities

for each of the facilities, giving a total of O
(
(M 2R2 + J )2

)
for this case.

3. For the third case we analyze the additional number of possible locations for x2 not considered
in the second case. There are O

(
M 2R2 + J

)
possible locations for x1 and R rays emerging

from each of these locations. The possible locations for x2 are the intersection points of these
rays with the construction lines C L2. Since there are O (MR + J ) lines or line segments in the
construction lines C L2, this results in O

(
(M 2R2 + J ) ·R · (MR + J )

)
additional locations for x2

not considered in case 2.
4. Case 4 goes analogue to case 3 by interchanging the roles of x1 and x2.

Adding up all cases we get a total number of

O
(
M 2R2 + J

)+O
(
(M 2R2 + J )2)+2 ·O (

(M 2R2 + J ) ·R · (MR + J )
)

=O
(
M 4R4 +M 2R3 J + J 2R

)
for the locations in the finite dominating set.
For each location in the FDS we have to determine an assignment by solving the LP of [SP97]. We
denote by poly(LP) the running time of an arbitrary polynomial algorithm to solve the LP. We get the
following result.

Theorem 5.2
Algorithm 2 solves the planar 2-hub location problem (13) in

O
(
(M 4R4 +M 2R3 J + J 2R) ·poly(LP)

)
time.
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Corollary 5.3
The planar 2-hub location problem (13) is polynomially solvable.

Remark 5.4
It is possible to extend this approach to different gauges between each xk and am , since it is possible
to simplify the addition of multiple gauges to a single gauge by Remark 4.6. The number of extreme
points of the resulting gauges is at most the sum of the number of extreme points of the original
gauges. Setting R as the maximal number of extreme points of the new gauges, Theorem 5.2 is still
valid.

Theorem 5.5
The 2-facility location problem with euclidean norm

min
M∑

m=1

2∑
k=1

Gml2 (am −xk ) zkm

+αl2 (x1 −x2)
M∑

m=1

M∑
n=1

vmn(z1m z2n + z1n z2m)

s.t.
2∑

k=1
zkm = 1, ∀m ∈ [M ],

zkm ∈B ∀k ∈ [2], m ∈ [M ],

xk ∈ Fk ∀k ∈ [2]

can be approximated with relative error ε> 0 in

O
((

M 4 (1/
p
ε)4 +M 2 (1/

p
ε)3 J + J 2 (1/

p
ε)

) ·poly(LP)
)

time.

Proof. By [CHKN00] it is possible to approximate the unit ball of the euclidean norm by a block
norm with O (1/

p
ε) extreme points, giving an ε-approximation of the objective function. Replacing

the R with 1/
p
ε in Theorem 5.2 gives the desired result.

6 Conclusion and Future Research

In this paper we have shown the existence of a finite dominating set for the planar multifacility
location problem with polyhedral feasible regions. However, this set is only valid if the underlying
structure of the interacting facilities form a tree, as shown by an example where the structure is in
fact a circle. We applied the FDS to the planar 2-hub location problem to get a polynomial procedure
for solving the problem exactly.
For the future we try to decrease the size of the FDS by taking into account the flow conservation
constraints. Furthermore, it would be interesting to see if there are other approaches to describe
a FDS which can handle other interaction-structures than trees. In the example, we were able
to describe the optimal solution set by a system of linear equations, which could be a promising
approach to tackle this problem. Another issue arises when considering the planar K -hub location
problem, with K ≥ 3. Although, we know that for fixed K the size of the FDS is still polynomial, it
is unclear how to efficiently determine an assignment in this case, since the LP of [SP97] can only
handle two hubs. For general K the problem is known to be NP-hard.
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