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Abstract

In this paper we consider the problem of locating one new facility in the plane
with respect to a given set of existing facilities where a set of polygonal barriers
restricts traveling. This non-convex optimization problem can be reduced to a finite
set of convex subproblems if the objective function is a convex function of the travel
distances between the new and the existing facilities (like e.g. the Median and Center
objective functions). An exact Algorithm and a heuristic solution procedure based
on this reduction result are developed.

1 Introduction

In times of increasing transportation costs and just-in-time delivery schedules, good loc-
ational decisions are needed in many different fields. The location of a warehouse with
respect to a given set of customers or the location of an emergency facility in an expanding
neighborhood are only two examples for a wide range of applications.

The development of realistic location models is a crucial step in every locational decision
process. Especially in the case of planar location models we deal with a geometric rep-
resentation of the problem, and the geographical reality has to be incorporated into this
representation. Restrictions of different types occur in almost every real-world location
problem since there are in general regions to exclude from placement of new facilities.
These regions can also often not be used for transportation which can be modeled by the
introduction of barrier regions in the plane IR?. To give only some examples of possible
barrier regions, consider military regions, mountain ranges, lakes, big rivers or highways,
or, on a smaller scale, conveyor belts in an industrial plant.

The increasing interest in location models incorporating restrictions and barrier regions is
reflected in the recent literature. Katz and Cooper 1981 [7] developed a heuristic for the
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Median problem in case that one circular barrier is given and distances are measured with
the Euclidean distance function.

Likewise for the Median problem Aneja and Parlar 1994 [1] and more recently Butt and
Cavalier 1996 [3] developed heuristics for the case that the barriers are closed polygons
and the distance is given by the [,-metric. In the special case of the Manhattan metric /4
discretization results were proven by Larson and Sadiq 1983 [10] and by Batta, Ghose and
Palekar 1989 [2] for arbitrarily shaped barriers. A similar discretization was derived for a
more general class of distance functions in Hamacher and Klamroth 1997 [5], namely the
class of block norms.

Klamroth 1996 [8] considered the Median problem for the case that the barrier is a line
with a finite number of passages. A reduction of the non-convex original problem to a
polynomial number of unrestricted Median problems was given for any metric derived
from a norm. This approach was extended to the multiple criteria case in Klamroth and

Wiecek 1998 [9].

In this paper we develop a reduction result that implies a general solution strategy for
location problems with polygonal barriers. We consider objective functions that are convex
functions of distances between a set of existing facilities and one new facility. This definition
of the objective function includes the well known Median (Weber) and Center objective
functions as well as ordered Weber objective functions.

Let a finite set of convex, closed, polygonal and pairwise disjoint barriers {By,..., By} be
given in IR?, representing those regions in the plane where neither trespassing nor location
of new facilities is allowed. We denote the union of these barrier regions by B := U~ B;
and the sets of extreme points and facets of B by P(B) and F(B), respectively, where
PB):={P:i=1,...,P} and F(B) :={F;:i=1,...,Q}. The feasible region F' for
new locations is given by

F:= IR* \ int(B).

A finite set of existing facilities £z := {Fx,, € ' : me M}, M ={1,..., M} is given in
a connected subset of the feasible region F.

Furthermore we assume that a distance measure d derived from a norm || e ||; is given
by d(X,Y) =|| Y — X |4 for all X,Y € IR?. Taking the restriction due to the barrier
regions into account, we can find the corresponding barrier distance function dg(X,Y’) for
two points X, Y € F as the length of a shortest path between X and Y not intersecting
the interior of a barrier. More formally, let P be a permitted X-Y -path in F, i.e. a curve
connecting X and Y not intersecting the interior of a barrier. Furthermore, let p be a
piecewise continuous differentiable parameterization of P, p : [a,b] — IR* with a,b € IR,

a<b,pla) =X, p(b) =Y and p([a,b]) Nint(B) = 0. Then dp(X,Y) can be defined as
b
dg(X,Y) := min {/ |p'(t) ]|« dt : P permitted X—Y—path} . (1)

A permitted X-Y-path with length dg(X,Y) will be called a d-shortest permitted X-Y -path.



Additionally, we call two points X and Y in F' d-visible if they satisfy dg(X,Y) = d(X,Y),

i.e. the distance between X and Y is not lengthened by the barrier regions.

Note that for dg the triangle inequality is satisfied (provided it holds for the original
distance function d, which is guaranteed by the fact that d is derived from a norm), but
that dp is in general not positively homogeneous.

Using the distance measure dg as defined in (1), we consider the following general location
problem:

mln fB(X) = f(dB(X, E:L’l),,dB(X, EJ}M)) (2)
s.t. X eF,

where f is any convex function with respect to the barrier distance dg between the new
facility X and the existing facilities in £x. Well known examples are the Median object-
ive function f(X) = ¥, .cm wmds(X, Ex,,) and the Center objective function gg(z) =
maXmem Wrndp( X, K, ) where the positive weights w,, represent the demand of the facil-
ity Fx,,, m € M.

Note that the barrier distance function di is in general not convex and that therefore f5
is also in general not convex.

To simplify further notation we will use the classification (Posl/Pos2/Pos3/Pos4/Pos5)
of location problems as introduced in Hamacher 1995 [4] or Hamacher and Nickel 1996 [6].
Following their notation, problem (2) is classified as (1/P/B/dg/f convex), where Posl
gives the number of new facilities sought (1 for a single-facility problem), Pos2 denotes the
type of location problem (P for planar location problems), Pos3 contains special assump-
tions (B for barrier regions), Pos4 contains the information about the distance function
(dg in case of barrier distances) and Pos5 indicates the objective function, which in this
case is a convex function of the distances between the new and the existing facilities (f
convex).

In the following section some basic properties and concepts related to shortest paths in the
presence of polygonal barriers will be derived. In Section 3 a reduction result is developed
that interrelates location problems with polygonal barriers with a set of unrestricted loca-
tion problems. The algorithmic consequences of this result are discussed in Section 4, and
the paper is concluded with Section 5.

2 Shortest paths in the presence of barriers

In this section we focus on shortest permitted paths in the presence of barriers where the
set of barriers B consists of pairwise disjoint convex polygonal sets.

Let d be a given distance function derived from a norm || e ||;. The set of points ¥ € F
that are not d-visible from a point X € F is called the shadow of X with respect to d, i.e.

shadowy(X) :={Y € F : dg(X,Y) > d(X,Y)}.
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In Figure 1 two examples are given for the Fuclidean metric /3 and the Manhattan metric
[1, respectively.

shadowI 2(X) shadowI 1(X)

(a (b)

Figure 1: Part (a) depicts shadow,(X) whereas part (b) shows shadow;, (X).

Note that for some choices of d a point that is d-visible may not be l-visible, i.e. not visible
in the usual sense of straight line visible. On the other hand every pair of [5-visible points is
also d-visible if d is a distance function derived from a norm. This result is a generalization
of an earlier result in [5] where it was proven for symmetric polyhedral gauges.

Lemma 1 Let d be a distance function derived from a norm. Then
shadowy(X) C shadow,(X), X ekl

Furthermore if X,Y € F are ly-visible, X # Y, then the straight line segment connecting
X and Y is a d-shortest permitted path with length d(X,Y).

Proof: Wlog let X = 0 be the origin and let Y € F' be a point that is /5-visible from X.
Then the straight-line segment connecting X and Y is a permitted path P given by the
parameterization p : [0,1] — IR* p(¢{) =t-Y, t € [0,1]. Using (1), the length of P can be
calculated as

1 1 d 1
ds(0,Y) < [ PO ladi= [ @) lade= [ 1Y lladt =]l
0 0 t 0

= d(0,Y).



In the case that distances are measured by an [,-metric, 1 < p < oo Viegas and Hansen
1985 [11] showed that for any two points X, Y € F, X # Y there always exists an [,-
shortest permitted path connecting X and Y that is a piecewise linear path with breaking
points only in extreme points of a barrier. This property was generalized for polyhedral
gauges in [5]. The following result shows that it also holds for any other distance function
d that is derived from a norm.

Lemma 2 Let d be a distance function derived from a norm and let X,Y € F. Then there
exists a d-shortest permitted path SP connecting X and Y with the following property.

SP is a piecewise linear path with breaking points only in extreme points

Property I: of barriers.

Proof: Let X,Y € F and let SP be any d-shortest permitted path connecting X and ¥ in
F that does not satisfy Property 1. Note that, since the set of barriers and correspondingly
the set of extreme points P(B) of barriers is finite, SP can be partitioned by a finite set of
points so that two consecutive points on S P are l5-visible. Lemma 1 therefore implies that
the straight line segment connecting two consecutive points on S P is a d-shortest permitted
path connecting these two points. We can therefore construct a piecewise linear path S P’
with a finite set of breaking points that has the same length as SP. A d-shortest permitted
path SP” with Property 1 can be constructed from SP’ similar to the construction given
in [11] for /,-distances:

Let [T;—1,T;] and [T}, T;11] be two consecutive straight line segments of SP’. First assume
that T;_; and T4y are l5-visible. Then the two segments [T;_1,T;] and [T}, T;11] can be
replaced by one straight line segment [T;_,T;11] without increasing the length of SP’.
Otherwise, using again Lemma 1, the breaking point T; can be moved along [T;_1,T;] or
along [T}, Ti11] towards T;_; or Tiyq, respectively, without increasing the length of SP’,
until one of these line segments becomes tangent to a barrier.

While iterating both operations every extreme point of a barrier which lies on SP’ is
interpreted as a breaking point 7; even if the straight line segment [T;_q,T;41] is part of
SP'. Thus the iteration of both operations yields a path SP” with the desired property
after a finite number of steps since every breaking point of S P’ which is not yet an extreme
point of a barrier can be moved towards X, Y, or an extreme point of a barrier.

O

An immediate consequence of Lemma 2 is that the barrier distance dg(X,Y), X,V € F
can be calculated with respect to a so-called intermediate point Ixy # Y, i.e. a breaking
point on a d-shortest permitted X-Y-path with Property 1 so that Ixy is d-visible from
Y. (Note that in case that X and Y are d-visible the intermediate point Ixy equals X.)

Corollary 1 Let d be a distance function derived from a norm and let X,Y € F. Further-
more let SP be a d-shortest permitted X -Y -path with Property 1 and let the point Ixy #Y
be a breaking point on SP thal is d-visible from Y. Then

ds(X,Y) =dp(X, Ixy) +d(Ixy,Y).



Note that the intermediate points [xy are not necessarily unique. Furthermore, as a
result of Lemma 2, an intermediate point Ixy can always be chosen such that it is not
only d-visible from Y, but also [,-visible from Y.

A visibility graph as proposed in Butt and Cavalier 1996 [3] can be used to determine
distances between the existing facilities and all those points that are candidates for in-
termediate points on a d-shortest permitted path between an existing facility and a point
X € F. The node set of this visibility graph G is given by V(G) := Ex UP(B). Two nodes
v;,v; € V(G) are connected by an edge of length d(v;,v;) if the corresponding points in
the plane are d-visible and have distance d(v;,v;). In Figure 2 an example is given for the
case that distances are measured by the Manhattan metric /.

Ex,

Figure 2: The visibility graph for an example problem where distances are measured with
respect to [;.

The barrier distance dg(Ex,,, X) between an existing facility Fz,, € £z and a point X € F
can now be calculated as

dB(E:L‘m,X) = dG(E$m7[Erm,X)—I_d([Erm,X)X)) (3)
where dg(FEx, [, x) denotes the length of a shortest path between Ex,, and the inter-
mediate point [g,, , x in the visibility graph G.

Another consequence of Lemmas 1 and 2 is that the boundary of shadowg(X),

d(shadowy(X)) = {Y € F : N(Y)Nshadowy(Y)# 0
and N.(Y) € shadowy(Y) Ve > 0},
where N.(Y) :={Z € IR? : d(Z,Y) < ¢}, is piecewise linear for any distance function d

that is derived from a norm. Therefore shadowy(X) has a simple analytic representation

for all X € F.



Obviously those parts of d(shadowy(X)) that are part of the boundary of a barrier re-
gion are piecewise linear. For all other parts of d(shadowy(X)), consider a point Y on
d(shadowy( X)) and let Ixy be an intermediate point on a d-shortest permitted X-Y-path
with Property 1. Note that in this case Y is d-visible from X. If all the points Z on the
line-segment starting at Ixy, passing through Y and ending as soon as it intersects the
interior of a barrier are d-visible from X and thus not in shadowy(X), then d(shadow( X))
is piecewise linear. To simplify further discussion assume wlog that X = 0 is the origin.

Lemma 3 Let d be a distance function derived from a norm. Furthermore let Y € F be
a point thatl is d-visible from the origin and let I := Iyy be an inlermediate point on a
d-shortest permitted 0-Y -path with Property 1. Let Z =14+ XY — 1), A > 0 be a point in
F such that 7 is ly-visible from I.

Then 7 is d-visible from the origin.

Proof: First assume that Y is [y-visible from the origin. Then I = 0 and thus 7 is also
[y-visible and d-visible from the origin.

Now consider the case that Y is not /;-visible from the origin and thus I # 0. Then
d(0,1)+d(1,Y) =d(0,Y) since [ is a point on a d-shortest permitted 0-Y-path.

Assume that there exist A, u € [0,1] such that d(0,7) < Ad(0,1) + pd(I1,Y) where 7 =
M + u(Y —1). Using the triangle inequality we obtain

dO N + (1= NI+ p(Y = I)+ (1 — p)(Y = 1))

< d(0,7Z) + (1= N)d(0,1) + (1 — p)d(I,Y)

< A0, 1) + pd(1,Y) + (1 = \)d(0, ) + (1 — )d(I,Y)
d0, 1)+ d(1,Y),

d(0,Y)

contradicting the assumption that [ is a point on a d-shortest 0-Y-path.

Thus d(0,Z) = Ad(0, 1)+ pd(1,Y) for all A, € [0, 1], which, using A = 1, proves the result
for all p € [0, 1].

The remaining case is that A =1 but g > 1, i.e. that Z = I 4+ p(Y — 1), p > 1. Assume
that there exists g > 1 such that d(0,7) < d(0,1) + pd(1,Y). It follows that

wd(0, 514 (Y — 1) < d(0, 1) + pd(1,Y)

u
e do, %1 LY -1) < do, %1) +d(1,Y)

which completes the proof using the inequalities derived for the previously discussed case.

O

Lemma 3 implies that the boundary of shadow,(X) is piecewise linear for all points X € F.
Note that shadowy(X) is nevertheless not necessarily convex as can be seen in Figure 1.

Corollary 2 Let d be a distance function derived from a norm and let X € F be a feasible
point. Then d(shadowy(X)) is piecewise linear.



3 Reducing the non-convex barrier problem to a set
of convex location problems

For the Median problem with barriers and the Euclidean distance function Butt and Cava-
lier [3] proposed a partitioning of the feasible region into a finite set of subregions Ry C F
such that the shortest barrier distance from every point X € R, to all of the existing
facilities in Kz,, € £x can be calculated with respect to the same intermediate points
Igs,, x, m € M. Using this partitioning an optimal solution to the original problem can
be found by solving a finite set of convex subproblems on each of the subregions Rj. Since
this approach is not efficient in practice due to the nonlinearity of the boundaries of the
regions Ry (their determination is difficult especially as the number of barrier regions and
existing facilities increases) a heuristic method is suggested in [3]. Starting with some
initial solution X € F, the procedure iteratively solves unrestricted Median problems with
respect to the intermediate points corresponding to the current solution.

A different partitioning of the feasible region is suggested in this paper which has two
major advantages. First it uses a smaller number of subregions and second the boundaries
of the subregions are all piecewise linear. A major drawback though is that the objective
function is not necessarily convex on each of the subregions. We will prove a reduction
result that nevertheless implies an exact solution procedure using this grid tessellation of
the feasible region.

Consider the grid G; in the plane that is defined by the boundaries of the shadows of all
existing facilities and all extreme points of the barrier regions, i.e.

Gq = ( U 0(3had0wd(X))) U F(B). (4)

XeExzUP(B)

Ex,
o
Ex,
[ ]
P, 1 acel C
[ ]
Exs

Figure 3: The grids G;, and G, respectively, for the example problem.

Since the barriers are convex polygons and since the boundary of shadow,(X) is piecewise
linear for all X € F' (Corollary 2), the grid G, consists of a finite set of line segments in F'.



The set of cells of Gy, i.e. the set of smallest (not necessarily convex or closed) polyhedra
not intersected by a line segment in Gy, is denoted by C(G,).

Similar to the representation of the barrier distance with respect to intermediate points
in Corollary 1, the objective function fg(X) can be rewritten for every point X in a cell

C € C(Ga).

Corollary 3 Let C € C(Gq) be a cell and let X € C be a feasible solution of
(1/P/B/dg/f convex). Then

f5(X) = fx(X) + gx, (5)

where
fx(Y) = fd(Y, L),...,d(Y,L,)), Y € R, (6)
gx = flds(li, Fz1),...,dg(ln, Fxy)) (7)

= f(dG([laEwl)a'"7dG(Im7E$m))

and 1, := Igz,x # X (m € M) is an intermediate point on a d-shortest permitted
X-FEx,, -path with Property 1 that is d-visible from X.

Note that fx(Y) is convex in IR* since it does not depend on the non-convex distance
function dg. Furthermore gx is a constant not depending on the choice of Y. Therefore
fx(Y) + gx is a convex function of Y in IR

The reformulation of the objective function fz given in Corollary 3 will be used in the
following to interrelate the non-convex problem (1/P/B/dg/f convex) to a finite set of
corresponding convex problems of type (1/P/ o /d/f convex).

Theorem 1 Let C € C(Gy) be a cell and let X} € int(C) be an optimal solution of
(1/P/B/dg/f convex). Then X} is an optimal solution of the corresponding convex prob-
lem

min fXg(Y) —|— ng
s.t. Y e IR?,
where fx:(Y) and gxy are defined with respect to (6) and (7), respectively.

(8)

Proof: Let X € int(C) and let fxx(Y) and gx; be defined with respect to (6) and (7).
Furthermore let 1,, # X}, m € M be the corresponding intermediate points on d-shortest
permitted Xj-Fx,-paths with Property 1 that are d-visible from X}j. Since int(C') is not
intersected by the boundary of the shadow of any candidate for an intermediate point
(i.e. an existing facility or an extreme point of a barrier), the intermediate points I,,,
m € M are d-visible for all points Y € (/. Thus the inequality

f8(Y) = (Y)+gv < fxp(Y) + gxp (9)



holds for all Y € C'. Assume that there exists a point Y* € C such that
Ixx(Y™) 4+ gxp < fxp(X5) + gxz-
Using (9), we can calculate that

f8(Y") = fyro(Y") 4+ gve < fxp(Y7) + gx;
< [xi(XE) +9xy = f5(X5),

contradicting the optimality of Xj.
Using the fact that fxx(Y) + gx» is a convex function of ¥ in IR? and that X} € int(C),
we can conclude that X3 minimizes fxx(Y) + gxz in IR

O

Theorem 1 implies that any problem of type (1/P/B/dg/f convex) can be reduced to a
finite set of convex subproblems within each cell in C(G,) even though the original objective
function fz(X) is in general non-convex within the cells.

Note that Theorem 1 can be generalized to the case that the objective function fz(X)
is a non-convex function of the barrier distances. Nevertheless in this case the resulting
subproblems are also non-convex and the problem difficulty is not reduced as in the convex
case.

In some applications it may be beneficial to consider the grid G;, instead of the grid G, for
a given distance function d, especially in the case that the construction of G, is simpler
than that of G;. This is possible for any distance function d derived from a norm since
Lemmas 1 and 2 imply the following reformulation of Theorem 1:

Corollary 4 Let d be a distance function derived from a norm.  Furthermore, let
C € C(Gy,) be a cell in the grid G, and let X5 € int(C) be an optimal solution of
(1/P/B/dg/f convex). Then X} is an oplimal solution of the corresponding problem

min fXg(Y) + ng

(10)
s.t. Y e IR?,

where fxx(Y) and gx» are defined with respect to (6) and (7), respectively, and the inter-
mediate points I, (m € M) are chosen such that they are ly-visible from X}j.

An important consequence of Theorem 1 is that many of the general properties of unres-
tricted location problems can be transferred to the restricted case (1/P/B/dg/f convex)
if Xj & Gy.

As an example consider location problems for which the set of optimal solutions lies within
the convex hull of the existing facilities in the unrestricted case. Defining the iterative
conver hull Rp of the existing facilities and the barrier regions as the smallest convex
subset of F' such that R Nint(B) = B (see [5] for the construction of Rg), the following
analogous result can be proven in the restricted case:
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Theorem 2 Let Xj & Gy be an optimal solution of (1/P/B/dg/f convex). Then
X[*; € Rg

if, for the corresponding unrestricted problem (1/P/ e [d/f convex), the sel of optimal
solutions is contained in the convex hull of the existing facilities.

Proof: Let X} be an optimal solution of (1/P/B/dg/f convex) such that X} € int(C') for
some cell C' € C(Gy).

Suppose that Xj; ¢ Rp. Wlog we assume that there exists no barrier in IR?* \ Rp since
this assumption does not increase the objective value of any point X € F. Applying
Theorem 1 we can follow that Xj is an optimal solution of problem (8) with respect to
some intermediate points I, € Ex U P(B), m € M. This problem is an unrestricted
location problem of type (1/P/ e /d/f convex) and thus X} € conv{/l,, : m € M} N F.
Since Rp is the convex hull of all existing facilities and all barrier sets intersected with the
feasible region F', we can conclude that

conv{l,:meM} N F C conv(ExUPB)) N F C Rg.
O

Other consequences of Theorem 1 are e.g. the discretization results developed for the
Median problem with Manhattan- or gauge-distances (see [2, 5, 10]).

4 Algorithmic consequences

Reducing a problem of type (1/P/B/dg/f convex) to a set of convex subproblems with
respect to Theorem 1 (or Corollary 4), two different cases may occur. An optimal solution
X of a problem of type (1/P/B/dg/f convex) may either be located on the grid G, or in
the interior of a cell C' € C(Gy). In the first case X} can be easily found by applying a line
search procedure on the line segments of G;4. In the latter case X} is the optimal solution
of a corresponding unrestricted problem (8).

Thus a two step algorithm can be suggested to solve problems of type (1/P/B/dg/f convex).
In a first step, a line search procedure is applied on each line segment of the grid G;. In
a second step, a local minimum is sought in the interior of a cell in F'\ G; by solving
convex subproblems (8) for all feasible reformulations fg(Y) = fx(Y)+ gx of the objective
function. For each solution Y™ of one of these subproblems feasibility has to be tested,

i.e. it has to be verified whether fg(Y*) = fx(Y™*) + gx.
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Algorithm 1
Input: Location problem (1/P/B/dg/f convex).

Step 1:  Construct the grid G,.
Step 2:  Find a local minimum of (1/P/B/dg/f convex) on G,.

Step 3:  For all feasible reformulations of the objective function, i.e. for all
feasible assignments of intermediate points to existing facilities, do:

(a) Find an optimal solution Y™ of the corresponding unrestricted

problem min fx(Y) +gx, Y € R~
(b) If fs(Y*) = fx(Y*) 4+ gx, the solution Y* is a candidate for

an optimal solution.

Step 41 Determine the set of global minima from the candidate set found
in Steps 2 and 3.

Output: Set of optimal solutions of (1/P/B/dg/f convez).
Note that the grid G4 can also be replaced by the grid G, (see Corollary 4).

The time complexity of Step 1 of Algorithm 1 depends on the size of the grid G, (or Gy,
respectively) and thus on the number of existing facilities, the number of extreme points
of the barrier regions and the choice of the distance function d. In the case that distances
are measured by the Euclidean distance function /5, the number of line segments in G, is
bounded by (|Ez|+ |P(B)|) - |P(B)|.

The overall time complexity of Algorithm 1 is dominated by Step 2. If no additional
information is available to reduce the possible assignments of existing facilities to interme-
diate points, the number of subproblems is exponential in the number of existing facilities
and in the number of extreme points of the barrier regions. For specially shaped barrier
regions better results are nevertheless available. As an example consider the case that the
barrier is given by one line with a finite number of passages. In this case a polynomial
number of subproblems is sufficient to determine an optimal solution as was shown in [8].

If no additional information is available a heuristic strategy can alternatively be applied
that, in a large number of cases, finds the optimal solution of (1/P/B/dg/f convex) in
a remarkably smaller number of iterations. Instead of evaluating all the theoretically
possible assignments of existing facilities to intermediate points, a sample set S of (not
necessarily equidistant) grid points can be constructed in Rp. All the points in this sample
set are used as starting points for an unrestricted location problem (8). As in Algorithm
1, the corresponding optimal solution Y™ is used as a candidate for the optimal solution of

(1/P/B/dg/f convex) if Y* is feasible, i.e. if fg(Y™*) = fx(Y™*)+ gx.
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Algorithm 2
Input: Location problem (1/P/B/dg/f convex).
Step 1:  Construct the grid G,.
Step 2:  Find a local minimum of (1/P/B/dg/f convex) on G,.
Step 3:  Define a sample set S of grid points in Rp.
Step 4:  For each grid point X € S do:

(a) Find an optimal solution Y™ of the corresponding unrestricted
problem min fx(Y) + gx, Y € IR%.
(b) If fs(Y*) = fx(Y*) 4 gx, the solution Y* is a candidate for

an optimal solution.

Step 5:  Determine the best solution found in Steps 2 and /.

Output: Approzimation of the optimal solution of (1/P/B/dg/f convex).

An optimal solution of a problem of type (1/P/B/dg/f convex) can be approximated with
increasing accuracy by refining the sample set S. The following result can be easily verified:

Theorem 3 For any problem of type (1/P/B/dg/f convex), Algorithm 2 yields an optimal
solution if the sample set of grid points S is chosen sufficiently fine.

5 Conclusions

In this paper a reduction procedure for a general class of planar location problems with
polygonal barriers is developed that allows the exact solution of this type of non-convex
optimization problems by solving a finite number of related convex location problems.

This result is as well of theoretical as of practical interest. It allows the transfer of the-
oretical results for unrestricted planar location problems to the restricted case and yields
exact and heuristic Algorithms to solve planar location problems with barriers.

Future research topics include the investigation of special cases like simple barrier shapes
(e.g. rectangles or circles) and specific distance functions (e.g. the Manhattan metric /4
or the more general class of block norms). Furthermore reduction based methods should
be combined with modern solution techniques to develop efficient implementations of the
suggested algorithms.
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