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Abstract

A popular model for the locations of fibres or grains in composite materials

is the inhomogeneous Poisson process in dimension 3. Its local intensity func-

tion may be estimated non-parametrically by local smoothing, e.g. by kernel

estimates. They crucially depend on the choice of bandwidths as tuning pa-

rameters controlling the smoothness of the resulting function estimate. In this

thesis, we propose a fast algorithm for learning suitable global and local band-

widths from the data. It is well-known, that intensity estimation is closely

related to probability density estimation. As a by-product of our study, we

show that the difference is asymptotically negligible regarding the choice of

good bandwidths, and, hence, we focus on density estimation.

There are quite a number of data-driven bandwidth selection methods for

kernel density estimates. cross-validation is a popular one and frequently pro-

posed to estimate the optimal bandwidth. However, if the sample size is very

large, it becomes computational expensive. In material science, in particu-

lar, it is very common to have several thousand up to several million points.

Another type of bandwidth selection is a solve-the-equation plug-in approach

which involves replacing the unknown quantities in the asymptotically optimal

bandwidth formula by their estimates.

In this thesis, we develop such an iterative fast plug-in algorithm for es-

timating the optimal global and local bandwidth for density and intensity
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estimation with a focus on 2- and 3-dimensional data. It is based on a de-

tailed asymptotics of the estimators of the intensity function and of its second

derivatives and integrals of second derivatives which appear in the formulae

for asymptotically optimal bandwidths. These asymptotics are utilised to de-

termine the exact number of iteration steps and some tuning parameters. For

both global and local case, fewer than 10 iterations suffice. Simulation stud-

ies show that the estimated intensity by local bandwidth can better indicate

the variation of local intensity than that by global bandwidth. Finally, the

algorithm is applied to two real data sets from test bodies of fibre-reinforced

high-performance concrete, clearly showing some inhomogeneity of the fibre

intensity.
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Zusammenfassung

Ein populäres Modell für die Lokation von Fasern oder Körnern in Verbund-

materialien ist der inhomogene Poisson-Prozess in Dimension 3. Seine lokale

Intensitätsfunktion kann durch lokales Glätten, z.B. durch Kernschätzer, nicht-

parametrisch geschätzt werden. Diese Schätzer hängen wesentlich von der

Wahl der Bandbreiten als Kontrollparameter für die lokale Glattheit der resul-

tierenden Funktionsschätzer ab. In dieser Arbeit schlagen wir einen schnellen

Algorithmus vor, mit dem geeignete globale und lokale Bandbreiten aus den

Daten gelernt werden können. Bekanntlich hängen Intensitätsschätzer eng mit

Schätzern für Wahrscheinlichkeitsdichten zusammen. Als ein Nebenprodukt

unserer Untersuchungen zeigen wir, dass der Unterschied im Hinblick auf die

Wahl guter Bandbreiten asymptotisch vernachlässigbar ist, und daher betra-

chten wir im größten Teil der Arbeit Dichteschätzer.

Für Kerndichteschätzer existieren bereits eine Reihe von Verfahren zur

datengetriebenen Bandbreitenselektion. Kreuzvalidierung ist ein populärer

Ansatz, der oft zur Bandbreitenwahl eingesetzt wird. Wenn der Stichprobe-

numfang sehr groß ist, wird dieses Verfahren allerdings sehr rechenaufwendig.

In den Materialwissenschaften hat man es üblicherweise mit sehr großen Stich-

proben (Tausende bis Millionen von Punkten) zu tun. Ein anderer Ansatz zur

Bandbreitenwahl nutzt asymptotische Approximationen für den Fehler, opti-

miert sie bzgl. der Bandbreite und ersetzt in den resultierenden Ausdrücken
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die unbekannten Größen durch Schätzer (plug-in).

In dieser Arbeit entwickeln wir einen iterativen, schnellen Plug-in Algorith-

mus zur Schätzung der optimalen globalen und lokalen Bandbreiten für Dichte-

und Intensitätsschätzer, insbesondere in den Dimensionen 2 und 3. Er basiert

auf einer detaillierten Asymptotik für die Funktionsschätzer, für ihre zweiten

Ableitungen und für Integrale der zweiten Ableitungen, die in den Formeln für

die asymptotisch optimalen Bandbreiten auftauchen. Aus dieser Asymptotik

ergibt sich für den Algorithmus die exakte Anzahl der Iterationsschritte sowie

die Wahl von gewissen Tuningparametern. Sowohl für globale wie auch für

lokale Bandbreitenwahl reichen weniger als 10 Iterationen aus.

Simulationsstudien zeigen, dass der Intensitätsschätzer mit datengetriebener

lokaler Bandbreite lokale Variationen in der zugrundeliegenden wahren Inten-

sitätsfunktion deutlich besser zeigt als der entsprechende Schätzer mit datengetriebener

globaler Bandbreite. Schließlich wenden wir den Algorithmus auf zwei reale

Datensätze an, die von Testkörpern aus faserverstärktem Hochleistungsbeton

stammen, und finden eine deutliche Inhomogenität in der Faserintensität.
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Chapter 1

Introduction

1.1 Non-parametric intensity estimation for

inhomogeneous Poisson processes

Point processes are random processes for which a set of points are randomly

distributed in time or geographic space. A very important point process is

the Poisson point process for which the numbers of points in any two non-

overlapping regions are independent. An intensity function which may depend

on time or the location governs the distribution of the points. Non-parametric

statistical tools such as kernel estimation have been used to estimate the fea-

ture of the intensity. Kernel estimation has been applied to regression and

probability density over many years. A very crucial parameter for getting a

good estimate which is also the only one is the smoothing parameter or band-

width which controls the smoothness of the estimated intensity. When the

bandwidth is too large, it smooths away the important features of the under-

lying structure. When it is too small, the resulting estimate is too rough and

may contain features which are only noise of the underlying process hence can

be a hindrance to data analysis.
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Kernel estimation of probability density functions and regression functions

are well studied. For choosing the crucial bandwidth parameter a subjective ap-

proach was adopted at the beginning of kernel estimation literature. Later, var-

ious data driven methods were developed for choosing the bandwidth for a more

effective and objective way. Examples include least squares cross-validation

and solve-the-equation plug-in approach. An overview of bandwidth selection

can be found in Jones et al. (1996) or in Heidenreich et al. (2013). It has been

shown that the variability of bandwidth obtained from cross-validation is much

larger than that of plug-in, see Park and Marron (1990). For the particular

problem of kernel intensity estimation, Diggle (1985) and Diggle (2014) pro-

pose a data-adaptive bandwidth selection based on the assumption of a Cox

process, which we discuss in more detail in Section 1.2.

The mean integrated squared error (mise) criterion is a common way for

measuring the error in the estimation. Asymptotically, mise is approximated

by asymptotic mean squared error (amise). Through minimising the amise

with respect to the bandwidth h, we can have an optimal bandwidth formula.

However, the formula is expressed in terms of some to-be-estimated quantities

such as the second derivative of the density function in case of density esti-

mation. The idea of plug-in is to replace the unknown terms by their own

estimates. In the optimal bandwidth formula for kernel density (regression)

estimation, the unknown term is the integral of the second derivative of the

density (regression function). For estimating the integral, Hall and Marron

(1987) and Jones and Sheather (1991) consider using a kernel estimator with a

bandwidth which is different from that for estimating the density. Gasser et al.

(1991) consider an iterative algorithm for estimating the bandwidth for kernel

regression, where the iterated bandwidth converges to a value close to the one

which minimises the mean (integrated) squared error after several iteration
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steps. Engel et al. (1994) discuss how to choose suitable tuning parameters in

the iterative algorithm for desired properties of the estimator for dimension 1.

In this thesis, plug-in approach is applied to intensity estimation of point

process. Following Gasser et al. (1991), an iteration algorithm for estimating h

is considered, and the asymptotic behaviours of the kernel estimates and those

of the iterative bandwidth ĥ for global and ĥ (x) for local are derived.

The main competitors of our method discussed in the literature are Diggle’s

approach, which is tuned to Cox processes, and general resampling methods, in

particular cross-validation and bootstrap. They provide estimates of mise(h)

as a function of h and then optimise w.r.t. to h. This necessitates to calculate

kernel estimates for many different values of h. For resampling methods like

the popular bandwidth selection by cross-validation (compare, e.g., Brockmann

and Marron (1991)), already the estimation of the mise(h) at a given value h

requires the calculation of many kernel estimates. For smaller data sets this is

computationally feasible. However, for many applications in material science,

in particular for fibre directions in a µCT image of fibres in concrete, we have to

deal with several thousands up to several million points. Therefore, resampling

methods may be computationally quite expensive.

By contrast, for the iterative algorithm proposed in this thesis we only have

to calculate a small (depending on dimension, a single digit or a bit larger)

number of kernel estimates. We develop some theories, which show that the

algorithm arrives at the best possible approximation already after a known

finite number of iterations.

In a recent paper, Cronie and van Lieshout (2016) propose a bandwidth

selection algorithm which in spirit follows Diggle’s approach but in contrast to

all other methods including ours does not try to choose h by minimising an

approximation of mise (h). They observe that expectation of the sum of the
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inverse intensity evaluated at the points of the process lying in the observation

window coincides with the window size and therefore is known. Then, they

choose h such that the estimate of the expectation, which we get by replacing

the intensity with its kernel estimate, is as close as possible to the window size.

Diggle’s approach might still be feasible for larger samples as he also fo-

cuses on estimating the asymptotic mean integrated squared error. However,

his method is based on the assumption of a Cox process and only allows to

choose a global bandwidth parameter h. The same remark applies to the algo-

rithm of Cronie and van Lieshout (2016) due to the summation over the whole

observation window. However, we know from the theory of non-parametric

kernel estimates, that optimal bandwidths for estimating a function µ(x) at a

given location x depend on the local characteristics of the function, in partic-

ular on its curvature, i.e. on the square of the second derivative, as we shall

see below. Where the curvature is high, small bandwidths are appropriate

whereas large bandwidths are better suited for rather flat parts of the func-

tion. Therefore, we are also interested in a method allowing for data-adaptive

selection of good local bandwidths h(x) which can be achieved by the same

kind of approach as the global bandwidths.

Note that the algorithm of Cronie and van Lieshout (2016) in principle

could be extended to local bandwidth selection at a location x by considering

a local window centred at x instead of the whole observation window. How-

ever, choosing the size of such a local window is a problem which has to be

investigated in future research.
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1.2 A leisurely introduction to kernel

intensity estimates

In this section, we introduce some basic notions on point processes and the kind

of estimates which are the focus of interest of this thesis. We strongly rely on

the exposition of Diggle (2014), Chapters 5 and 6. To keep notation simple,

we only consider dimension d = 1 here, but the concepts are straightforwardly

generalised to d > 1.

We recall the definition of inhomogeneous Poisson processes with intensity

function µ (x) , x ∈ R. It is characterised by the following three properties,

where N (I) denotes the number of points in an interval I ⊆ R:

P1: If I1, . . . , Im are disjoint intervals, then N (I1) , . . . , N (Im) are indepen-

dent.

P2: N (I) is Poisson distributed with parameter
´
I
µ (x) dx.

P3: Given N (I) = n, the n points of the process lying in I are i.i.d. with

density

λ (x) =
1´

I
µ (y) dy

µ (x) .

Note that these properties imply

µ (x) = lim
dx→0

EN ([x, x+ dx])

dx
.

Analogously the second-order intensity function is given by

µ2 (x, y) = lim
dx,dy→0

EN ([x, x+ dx])N ([y, y + dy])

dxdy
.

As the Poisson parameters of N (I) in P2 depend on the location of I, such a

process is not stationary. To achieve stationarity for modelling purpose, it is

frequently assumed that µ (x) itself is random. This results in a so-called Cox

process characterised by
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CP1: M (x) , x ∈ R, is a stochastic process satisfying M (x) ≥ 0.

CP2: Given M (x) = µ (x) , x ∈ R, the random points form an inhomogeneous

Poisson process with intensity function µ (x).

If the process M (x) is stationary, then the Cox process is stationary too, i.e.

we have

lim
dx→0

EN ([x, x+ dx])

dx
= µ, lim

dx,dy→0

EN ([x, x+ dx])N ([y, y + dy])

dxdy
= µ2 (x− y)

for all x, y ∈ R, i.e. the inhomogeneity averages out if we take expectations

w.r.t. the random intensity functions M (x). In that case, the so-called K-

function is given as

k (t) =
2π

µ2

ˆ t

0

µ2 (s) ds.

Diggle (2014), Section 5.3, considers estimates of the realised value µ (x) of

M (x) of the form

µ̂ (x, h) =
N ([x− h, x+ h])

2h
, h > 0,

i.e. he considers the point density in a small neighbourhood of x. The perfor-

mance of the estimate mainly depends on the tuning parameter, the so-called

bandwidth h. For choosing h, Diggle calculated the mean-squared error w.r.t.

randomness of the point process as well as the randomness of the intensity

function M (x) as a function of h:

mse (h) = E (µ̂ (x, h)−M (x))2 .

Note that, due to the stationarity of the Cox process, this does not depend on x.

Diggle derived a formula for mse (h) or, more precisely, for that part of mse (h)

depending on h, which only depends on µ, k (h) and an integral of µ2 (s). Those

quantities all can be estimated such that an estimate of mse (h) can be derived
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and minimised w.r.t. h. Diggle recommends to plot this estimate and choose

h visually in a range where this function is small and (usually) flat - compare

Diggle’s (2014) discussion of his figure 5.1.

Diggle also points out the relationship of µ̂ (x, h) to general probability den-

sity estimates of the Rosenblatt-Parzen type (compare, e.g., Silverman (1986)).

To illustrate this fact, let us assume now that we observe the point process in

a finite interval, say [0, 1]. Let N = N ([0, 1]) denote the number of points,

and X1, . . . , XN ∈ [0, 1] their locations. Then,

µ̂ (x, h) =
N∑
j=1

1

2h
1[x−h,x+h] (Xj) =

N∑
j=1

Kh (x−Xj) ,

where Kh (u) = 1
h
K
(
u
h

)
and K (u) = 1

2
1[−1,+1] (u). The latter is called the

rectangular kernel in kernel density estimation. It is well-known (compare Sil-

verman (1986)) that the performance of the estimate is improved for smoother

kernel functions provided they satisfy K (u) ≥ 0 and
´
K (u) du = 1.

Note that from P3, X1, . . . , XN are i.i.d. with probability density

λ (x) =
1´ 1

0
µ (y) dy

µ (x)

and

λ̂ (x, h) =
1

N
µ̂ (x, h) =

1

N

N∑
j=1

Kh (x−Xj)

is the usual kernel estimate for the density of X1, . . . , XN given the value of N .

Note also from P2, that N is Poisson distributed with parameter
´ 1

0
µ (y) dy =

µ̄ and, hence, N is the maximum likelihood estimate of µ̄.

1.3 Local mean-squared error expansions

One of our main goals is quality inspection for given specimen of composite

materials like fibre-reinforced concrete. Part of that problem is investigating
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the distribution of fibre locations for a given test volume. We model those

locations as a realisation of an inhomogeneous Poisson process observed in the

given volume. Whether the corresponding intensity function µ(x) is fixed or

- more likely, due to the manufacturing process - random is not so much of

interest if we want to judge the reliability of a given test body under stress.

For that purpose, we want to estimate the given realisation well, using a kernel

estimate µ̂(x, h), which depends on the choice of bandwidth parameters.

Let X1, . . . , XN denote the points of an inhomogeneous Poisson process

with intensity µ(x) which lie in the unit interval [0, 1]. Let

µ̄ =

ˆ 1

0

µ (x) dx = EN, and λ (x) =
µ (x)

µ̄
.

Then, λ(x), 0 ≤ x ≤ 1, is a probability density on [0, 1], and given N , the Xj

are i.i.d. with density λ. We write again

µ̂(x, h) =
N∑
j=1

Kh(x−Xj).

Following Diggle (2014), we first consider the rectangular kernel. Note that

for asymptotic expansions of function estimates we need that the sample size

increases. As here N is random, the corresponding assumption is EN = µ̄ →

∞. Hence, as µ is, then, increasing too, we consider the invariant standardised

mean-squared error for the asymptotic expansion

1

µ̄2
mse µ̂(x, h) =

1

µ̄2
E
(
µ̂(x, h)− µ(x)

)2
.

Proposition 1. Assume that λ(x) is twice continuously differentiable, and the

second derivative λ′′(x) is Hölder continuous with exponent β > 0, i.e. for all

x, z and some cH > 0

|λ′′(x)− λ′′(z)| ≤ cH |x− z|β.

Then, we have for µ̄→∞, h→ 0 such that µ̄h→∞

1

µ̄2
mse µ̂(x, h) =

λ(x)

2µ̄h
+

(
λ′′(x)

6

)2

h4 +O

(
h

µ̄

)
+O(h4+β), 0 < x < 1.
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Proof. To avoid discussion of boundary effects, we assume throughout the

proof that h is already small enough such that [x−h, x+h] ⊂ (0, 1). As usual,

the mse decomposes into variance and squared bias. We first consider the bias

where we use

Eµ̂(x, h) =
1

2h
EN([x− h, x+ h]) =

1

2h

ˆ x+h

x−h
µ(s)ds.

Note also that from the Hölder condition on λ we get

|µ′′(z)− µ′′(x)| ≤ cH µ̄|z − x|β ≤ cH µ̄hβ

for all x− h ≤ z ≤ x+ h. Using a Taylor expansion of µ and
´ h
−h t dt = 0, we

get

bias µ̂(x, h) = E µ̂(x, h)− µ(x) =
1

2h

ˆ x+h

x−h
(µ(s)− µ(x))ds

=
1

2h

ˆ x+h

x−h

(
µ′(x)(s− x) +

µ′′(x) +O(µhβ)

2
(s− x)2

)
ds

=
1

2h

ˆ h

−h

(
µ′(x)t+

µ′′(x) +O(µ̄hβ)

2
t2
)

dt

=
h2

6
µ′′(x) +O(µ̄ h2+β)

Now, looking at the variance, we have from P2

var µ̂(x, h) =
1

4h2
var N([x− h, x+ h])

=
1

4h2
E N([x− h, x+ h]) =

1

2h
Eµ̂(x, h)

=
1

2h
(µ(x) + bias µ̂(x, h))

=
µ̄

2h
[λ(x) +O(h2)] =

1

2h
µ(x) +O(µ̄h)

using the bias expansion and µ′′(x) = µ̄ λ′′(x) = O(µ̄).

Combining both terms, we have

mseµ̂(x, h) = var µ̂(x, h)+bias2µ̂(x, h) =
1

2h
µ(x)+

(
h2

6
µ′′(x)

)2

+O(µ̄h)+O(µ̄h4+β),

which concludes the proof.
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Corollary 1. Under the assumptions of Proposition 1, the mse-optimal band-

width is given asymptotically by

h̄5
a(x) ∼ 9

2

λ(x)

(λ′′(x))2

1

µ̄
.

Proof. The result follows from setting the derivative of

g(h) =
λ(x)

2µh
+

(
λ′′(x)

6

)2

h4

to 0.

Now we replace the rectangular kernel with a general kernel functionK(u) ≥

0 satisfying

K : K(u) = 0 for |u| > 1,

ˆ 1

−1

K(u)du = 1,

ˆ 1

−1

uK(u)du = 0.

The last assumption is, e.g., satisfied if K is symmetric around 0.

The key to the mse expansion now is Campbell’s formula (compare The-

orem 3.1.2 and the following remarks in Schneider and Weil (2008)). As the

point processes which we are considering are simple by Lemma 3.2.1 of Schnei-

der and Weil (2008), i.e. they do not allow for multiple points at the same

location, and as the set of points of our Poisson process in the whole space is

countable, we have

Lemma 1. Let g : R→ R be an integrable function, and let X1, X2, . . . denote

all the points of our inhomogeneous Poisson process. Then,

E
∞∑
j=1

g(Xj) =

ˆ ∞
−∞

g(z)µ(z)dz.

If X1, . . . , XN denote the points which lie in the unit interval [0, 1] then we

conclude from the lemma

E
N∑
j=1

g(Xj) = E
∞∑
j=1

g(Xj)1[0,1](Xj) =

ˆ ∞
−∞

g(z)1[0,1](z)µ (z) dz =

ˆ 1

0

g(z)µ(z)dz.

(1.1)
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We also need a corresponding result for calculating second-order moments.

For that, we use that the second factorial moment measure of a Poisson process

is just the product of the intensity measure with itself by Corollary 3.2.4 of

Schneider and Weil (2008). Hence, we get from Theorem 3.1.3 of Schneider

and Weil (2008)

Lemma 2. Let g : R × R → R be an integrable function, and let X1, X2, . . .

denote all the points of our inhomogeneous Poisson process. Then,

E
∞∑
j=1

∞∑
i=1,i 6=j

g(Xi, Xj) =

ˆ ∞
−∞

g(y, z)µ(y)µ(z)dydz.

If we restrict our attention to the points X1, . . . , XN lying in [0, 1], we get from

the lemma

E
N∑
j=1

N∑
i=1,i 6=j

g(Xi, Xj) = E
∞∑
j=1

∞∑
i=1,i 6=j

g(Xi, Xj)1[0,1](Xi)1[0,1](Xj)

=

ˆ ∞
−∞

g(y, z)1[0,1](y)1[0,1](z)µ(y)µ(z)dydz

=

ˆ 1

0

g(y, z)µ(y)µ(z)dydz. (1.2)

Theorem 1. Under the assumptions of Proposition 1 and if (K) holds for the

kernel, we have for µ̄→∞, h→ 0 such that µ̄h→∞

1

µ̄2
mse µ̂(x, h) =

λ(x)

µ̄h
QK+

(
λ′′(x)

2

)2

h4 V 2
K+O(

1

µ̄
)+O(h4+β), 0 < x < 1,

with the known constants, depending on K only,

QK =

ˆ 1

−1

K2(u)du, VK =

ˆ 1

−1

u2K(u)du.

Proof. As h → 0, we may again assume that it is already small enough such

that h ≤ x ≤ 1− h such that we do not have to worry about boundary effects

in the following calculations. As in the proof of Proposition 1, we investigate

11



bias and variance separately. For the bias, we have

bias µ̂(x, h) = E µ̂(x, h)− µ(x) =

ˆ 1

0

Kh(x− s)(µ(s)− µ(x))ds

=

ˆ 1

0

Kh(x− s)
(
µ′(x)(s− x) +

µ′′(x) +O(µ̄hβ)

2
(s− x)2

)
ds

=

ˆ 1

−1

K(t)

(
µ′(x)th+

µ′′(x) +O(µ̄hβ)

2
t2h2

)
dt

=
h2

2
µ′′(x)VK +O(µ̄ h2+β) =

µ̄h2

2
λ′′(x)VK +O(µ̄ h2+β),

where, for the first line, we use Campbell’s formula (1.1) with g(z) = Kh(x−z)

and the fact that K and, hence, Kh integrate to 1. For the second line, we use

Taylor expansion and Hölder continuity as in the proof of Proposition 1. For

the third line, we substitute t = x−s
h

, and for the last line, we use assumption

K such that the first term vanishes.

For the variance, we first consider the second moment

E µ̂2(x, h) = E
N∑

i,j=1

Kh(x−Xi)Kh(x−Xj)

= E
N∑
j=1

K2
h(x−Xj) + E

N∑
j=1

N∑
i=1,i 6=j

Kh(x−Xi)Kh(x−Xj).

For the first term, we get by Campbell’s formula (1.1) and substituting t = x−s
h

E
N∑
j=1

K2
h(x−Xj) =

ˆ 1

0

K2
h(x− s)µ(s)ds =

1

h

ˆ 1

−1

K2(t)µ(x− ht)dt

=
1

h

ˆ 1

−1

K2(t)(µ(x) +O(µ̄h))dt =
µ(x)

h
QK +O(µ̄),

where the second line follows from the mean-value theorem, µ′(x) = µλ′(x),

the boundedness of λ′ and |t| ≤ 1. From (1.2), we have

E
N∑
j=1

N∑
i=1,i 6=j

Kh(x−Xi)Kh(x−Xj) =

ˆ 1

0

ˆ 1

0

Kh(x− s)Kh(x− z)µ(s)µ(z)dsdz

=

(ˆ 1

0

Kh(x− s)µ(s)ds

)2

=
(
E µ̂(x, h)

)2
.

12



Therefore, we get

var µ̂(x, h) = Eµ̂2(x, h)−
(
E µ̂(x, h)

)2
=
µ(x)

h
QK +O(µ̄).

Combining the bias and variance expansions, we get

mse µ̂(x, h) = var µ̂(x, h) + bias2µ̂(x, h)

=
1

h
µ(x)QK +O(µ̄) +

(
h2

2
µ′′(x)VK +O(µ̄h2+β)

)2

,

which implies the asymptotic expansion of the mean-squared error of µ̂(x, h).

In the same manner as Corollary 1, we get

Corollary 2. Under the assumptions of Theorem 1, the mse-optimal band-

width is

h̄5
a(x) ∼ QK

V 2
K

λ(x)

(λ′′(x))2

1

µ̄
.

Note that the mse expansion of Theorem 1 has been stated already without

proof in Cowling et al. (1996). Unfortunately, we were not able to get a copy of

the long version of the paper, mentioned in the publication, from the authors.

Therefore, we gave here our own proof.

1.4 Optimal bandwidth conditional on N

The asymptotically optimal bandwidth h̄a (x) of Corollary 2 depends, among

other quantities, on the unknown µ̄ = EN , where N = N ([0, 1]). It is well-

known that for a sample of i.i.d. data with density λ (x) and given size N , the

asymptotically optimal bandwidth has exactly the same form with N replacing

µ̄:

h5
a (x) ∼ QK

V 2
K

λ (x)

(λ′′ (x))2

1

N

13



(compare, e.g., the analogous derivation in Section 2.2 for the case of dimension

d = 2). Hence, we have for random N

h̄a (x)

ha (x)
∼
(
N

µ̄

) 1
5

= 1 +Op

(
1√
µ̄

)
as, from P2, N is Poisson distributed with parameter µ̄, and, therefore,

E
N

µ̄
= 1, var

N

µ̄
=

1

µ̄2
varN =

1

µ̄2
EN =

1

µ̄
.

Alternatively, as

1√
µ̄

=

√
N

µ̄

1√
N

=
1√
N

√
1 +Op

(
1√
µ̄

)
=

1√
N

(
1 +Op

(
1√
µ̄

))
,

we could also write the asymptotic equivalence of h̄a (x) and ha (x) in the form

h̄a (x)

ha (x)
∼ 1 +Op

(
1√
N

)
or

h̄a (x) = ha (x) +Op

(
N−

1
2N−

1
5

)
= ha (x) +Op

(
N−

7
10

)
.

For dimension d = 2, we analogously get, compare (2.3), (2.4),

h̄ai (x) = hai (x) +Op

(
N−

2
3

)
, i = 1, 2,

for the two bandwidths involved in the two-dimensional kernel estimates.

As we shall see later in the thesis, the approximation error of, e.g., N−
2
3

for d = 2, is negligible compared to the difference between asymptotically

optimal and optimal bandwidth (compare, e.g., Corollary 6) as well as to

the difference between the asymptotically optimal bandwidth and its plug-in

estimate (compare the derivation in Chapter 6). Therefore, for the purpose of

bandwidth selection, it does not matter if we consider ha (x) or h̄a (x). As the

14



latter contains the unknown parameter µ̄, which anyhow would be replaced by

its maximum likelihood estimate N , we prefer to immediately condition on N ,

treat it as given and work with ha (x). One might also argue that we know

N anyhow and, therefore, should use this information in finding an optimal

bandwidth for the particular sample at hand.

1.5 Outline of the thesis

In Chapter 2, the kernel estimates for the intensity function of an inhomo-

geneous spatial Poisson process for general dimension d will be introduced.

The asymptotic approximations of the mean-squared error and the integrated

mean-squared error are derived under assumptions of smoothness of the inten-

sity and kernel function. The formulae for asymptotically optimal local and

global bandwidths for d = 2 will be derived. All subsequent analysis will be

done for d = 2 from Chapters 2 to 5. The case of d = 3 will be discussed in

Chapter 7. We show that the amse (amise) and mse (mise) are asymptotically

close when the sample size N goes to infinity. Based on this, we also show how

close optimal (for finite sample size) and asymptotically optimal bandwidths

are.

In Chapter 3, following Engel et al. (1994), we present an iterative algo-

rithm for selecting the bandwidths automatically from the data based on the

formulae of the asymptotic optimal bandwidths and plug-in estimates for the

unknown quantities. Then, we present the asymptotics of the kernel estimates

for the intensity itself and the second derivatives of the intensity with random

bandwidths. However, the number of iteration steps and the choice of vari-

ous tuning parameters will be left unspecified and discussed in Chapter 6. In

later chapter, a more careful analysis of the asymptotics of estimates of the
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second derivatives of the intensity function will be done to facilitate choosing

the tuning parameters.

In Chapter 4, we show the asymptotics for the integrated mean-squared

error estimates with random bandwidths for d = 1. The proofs follow those

in Engel et al. (1994). Such asymptotics and proofs are generalised to d =

2. Those asymptotics are necessary for choosing the tuning parameters and

number of iterations steps for the global iteration in Chapter 6.

In Chapter 5, we show the asymptotics for the local mean-squared error esti-

mates with random bandwidths. Those asymptotics are necessary for choosing

the tuning parameters and number of iteration steps for the local iteration in

Chapter 6.

In Chapter 7, those asymptotics presented in previous chapters are gener-

alised to d = 3. Another set of tuning parameters for d = 3 will be chosen

based on the asymptotics.

In Chapter 8, the algorithm presented in Chapter 6 is applied to some

simulated 2 dimensional data sets. The fibre locations projected onto a plane

obtained from concrete test bodies are analysed.
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Chapter 2

Kernel intensity estimates and

optimal bandwidths

In this chapter, we introduce kernel estimates for the intensity function of an

inhomogeneous spatial Poisson process. We derive asymptotic approximations

of the mean-squared error and the integrated mean-squared error which re-

sult in formulae for asymptotically optimal local and global bandwidths. We

also investigate how close optimal (for finite sample size) and asymptotically

optimal bandwidths are.

2.1 Mean squared error and mean integrated

squared error

We consider an inhomogeneous Poisson process with intensity function µ (x) on

Rd. Let X1, . . . , XN be the points of the process lying in the unit cube [0, 1]d.

We condition on N and treat it as a given number due to the discussion in

Section 1.4.
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Given N ≥ 1, X1, . . . , XN are i.i.d. on [0, 1]d with density

λ (x) =
1

µ0

µ (x) ,

where

µ0 =

ˆ 1

0

· · ·
ˆ 1

0

µ (x) dx1 · · · dxd.

As λ (x) is a probability density on [0, 1]d, we may estimate it by the common

Rosenblatt-Parzen kernel estimate in dimension d. For the moment, we allow

for different bandwidths in the coordinate directions, but not for adaptive

smoothing into other directions. Let h1, . . . , hd > 0 denote the bandwidths

and H = diag (h1, . . . , hd) the corresponding d-dimensional bandwidth matrix

and that in particular Πd
k=1hk = detH. Let K : Rd → R be a kernel function

satisfying

Assumption 1. K (u) ≥ 0,
´
· · ·
´
K (u) du1 · · · dud = 1.

Assumption 2. K has a compact support, say [−1,+1]d.

The latter assumption is for convenience only to simplify notation in the

proofs. It may be relaxed to requiring that K (u) → 0 for ‖u‖ → ∞ fast

enough. In particular, we could use the Gaussian kernel, i.e. the probability

density of the d-variate standard normal distribution.

Using the rescaled kernel

KH (u) =
1

detH
K
(
H−1u

)
=

1

Πd
k=1hk

K

(
u1

h1

, . . . ,
ud
hd

)
,

we define the estimate λ̂ (x,H) of λ (x) as

λ̂ (x,H) =
1

N

N∑
j=1

KH (x−Xj) .

We first derive an asymptotic expansion for the mean-squared error

mseλ̂ (x,H) = E
(
λ̂ (x,H)− λ (x)

)2

= varλ̂ (x,H) + bias2λ̂ (x,H) .
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This result is well-known for d = 1 and common knowledge for d > 1, but we

could not find a version of the latter in the literature which suits our particular

needs. We make the following regularity assumption on λ (x):

Assumption 3. λ (x) is a twice continuously differentiable probability density

with support [0, 1]d, and the second partial derivatives

λij (x) =
∂2

∂xi∂xj
λ (x)

are Hölder continuous with exponent β > 0, i.e. for some C > 0

|λij (x)− λij (y)| ≤ C ‖x− y‖β

for all x, y ∈ [0, 1]d.

Moreover, we make the following symmetry and standardisation assump-

tion on the kernel K (u):

Assumption 4. K (u) is symmetric around 0 in the following sense

ˆ
uiK (u) dui = 0

for all −1 ≤ uj ≤ 1, j 6= i, and all i = 1, . . . , d, and appropriately scaled and

that for some VK > 0

ˆ
· · ·
ˆ
u2
iK (u) du1 · · · dud = VK

for i = 1, . . . , d.

Assumption 4 is, e.g., satisfied if K (u) is a product kernel, i.e. for a kernel

K1 : R→ R,

K (u) =
d∏
i=1

K1 (ui) ,

where
´
tK1 (t) dt = 0,

´
t2K1 (t) dt = VK . Moreover, we use the notation

QK =

ˆ
· · ·
ˆ
K2 (u) du1 · · · dud.
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For consistency of the kernel estimate λ̂ (x,H), we need that hi → 0, i =

1, . . . , d, for N → ∞ with appropriate rates. We assume that the speed of

convergence of the bandwidths is the same for all i, i.e. for some sequence

bN → 0 for N →∞, we have

Assumption 5. hi
bN
→ βi, for some constants 0 < βi <∞, i = 1, . . . , d.

Theorem 2. Let the Assumptions 1, 2, 3, 4, 5 be satisfied. Then

a) biasλ̂ (x,H) = 1
2
VK
∑d

i=1 h
2
iλii (x) +O

(
b2+β
N

)
, and

b) varλ̂ (x,H) = 1
NdetH

(QKλ (x) +O (bN)) = O
(

1

Nbd−1
N

)
for all x ∈ (0, 1)d.

Proof. As we consider x in the interior of the unit cube, and as h1, . . . , hd → 0

for N → ∞, we may assume that N is large enough and that hi ≤ xi ≤

1− hi, i = 1, . . . , d. As K has support [−1,+1]d and, hence, KH has support

[−h1, h1]× · · · × [−hd, hd], we do not have to worry about boundary effects.

a) As KH is a probability density, we have

biasλ̂ (x,H) = Eλ̂ (x,H)− λ (x) = EKH (x−X1)− λ (x)

=

ˆ 1

0

· · ·
ˆ 1

0

KH (x− z) (λ (z)− λ (x)) dz1 · · · dzd

=

ˆ ∞
−∞
· · ·
ˆ ∞
−∞

K (u) (λ (x−Hu)− λ (x)) du1 · · · dud

substituting u = H−1 (x− z). Using a Taylor expansion up to order 2,

we get with 0 ≤ θ ≤ 1

biasλ̂ (x,H)

=

ˆ
· · ·
ˆ
K (u)

{
− (Hu)>Oλ (x) +

1

2
(Hu)>O2λ (x− θHu)Hu

}
du1 · · · dud,

where Oλ (x) =
(

∂
∂x1
λ (x) , . . . , ∂

∂xd
λ (x)

)>
denotes the gradient, and

O2λ (x) =

(
∂2

∂xi∂xj
λ (x)

)
1≤i,j≤d

= (λij (x))1≤i,j≤d
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denotes the Hessian of λ (x). The first term in the bias expansion vanishes

due to Assumption 4 which in vector form reads

ˆ
· · ·
ˆ
K (u)udu1 · · · dud = 0.

For the second term we have, using Hölder continuity of λij (x)

∣∣u>H> (O2λ (x− θHu)− O2λ (x)
)
Hu
∣∣

=

∣∣∣∣∣
d∑

i,j=1

hihjuiuj (λij (x− θHu)− λij (x))

∣∣∣∣∣
≤

d∑
i,j=1

hihj |uiuj|C ‖θHu‖β

≤ C
d∑

i,j=1

hihj ‖Hu‖β = O
(
b2+β
N

)
as |ui| ≤ 1, i = 1, . . . , d, for u in the support of K, and as 0 ≤ θ ≤ 1,

using hi = O (bN) , i = 1, . . . , d, from Assumption 5. Therefore, we have

biasλ̂ (x,H) =
1

2

ˆ
· · ·
ˆ
u>H>O2λ (x)HuK (u) du1 · · · dud +O

(
b2+β
N

)
=

1

2
VK

d∑
i=1

h2
iλii (x) +O

(
b2+β
N

)
using Assumption 4.

b) As X1, . . . , XN are i.i.d. given N , we have

varλ̂ (x,H) =
1

N
varKH (x−X1)

=
1

N
EK2

H (x−X1)− 1

N
(EKH (x−X1))2 .

The second term is of order 1
N

and, as we shall see, negligible compared

to the first one, as, from a) and due to bN → 0

EKH (x−X1) = λ (x) + biasλ̂ (x,H) = λ (x) +O
(
b2
N

)
= O (1) .
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So, we have to investigate

EK2
H (x−X1) =

ˆ
· · ·
ˆ
K2
H (x− z)λ (z) dz1 · · · dzd

=
1

detH

ˆ
· · ·
ˆ
K2 (u)λ (x−Hu) du1 · · · dud

again substituting u = H−1 (x− z). By a Taylor expansion of order 1,

we have with 0 < θ < 1

EK2
H (x−X1) =

1

detH

ˆ
· · ·
ˆ
K2 (u) du1 · · · dudλ (x)

− 1

detH

ˆ
· · ·
ˆ
K2 (u)u>H>Oλ (x− θHu) du1 · · · dud

=
QKλ (x)

detH
+

1

detH
O

(
d∑

k=1

hk

)

as Oλ (x) is continuous on [0, 1]d and, hence, bounded, and the range of

integration is the support of K, i.e. [−1,+1]d. Note that from Assump-

tion 5

O
(∑d

k=1 hk

)
detH

=
O (bN)

detH

=
O (bN)∏d
i=1 hi

= O

(
1∏d
i=1 βi

)
O

(
1

bd−1
N

)
= O

(
1

bd−1
N

)
such that finally we get b).

Corollary 3. Under the assumptions of Theorem 2,

a)

mseλ̂ (x,H) = amse (x,H) +O

(
1

Nbd−1
N

)
+O

(
b4+β
N

)
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with asymptotic mean-squared error

amse (x,H) =
QK

NdetH
λ (x) +

1

4
V 2
K

(
d∑
i=1

h2
iλii (x)

)2

.

b) Let wH (x) =
∏d

i=1 1[hi,1−hi] (xi) be the indicator function of the interior

hyper-rectangle [h1, 1− h1]×· · ·× [hd, 1− hd] of [0, 1]d. Then, the mean-

integrated squared error over this region is

miseλ̂ (·, H) = E
ˆ
· · ·
ˆ (

λ̂ (x,H)− λ (x)
)2

wH (x) dx1 · · · dxd

= amise (H) +O

(
1

Nbd−1
N

)
+O

(
b4+β
N

)
with

amise (H) =
QK

NdetH
+

1

4
V 2
K

ˆ
· · ·
ˆ ( d∑

i=1

h2
iλii (x)

)2

dx1 · · · dxd.

Proof. Part a) follows immediately from Theorem 2 and the bias-variance de-

composition of mseλ̂ (x,H). Note that from the proof of Theorem 2, the re-

mainder terms can be chosen uniform with respect to hi ≤ xi ≤ 1 − hi, i =

1, . . . , d. Therefore, integrating the relation a) results in

miseλ̂ (·, H) =

ˆ
· · ·
ˆ

amse (x,H)wH (x) dx1 · · · dxd+O
(

1

Nbd−1
N

)
+O

(
b4+β
N

)
.

As λ (x) and λii (x) , i = 1, . . . , d, are bounded on [0, 1]d and, hence,
(∑d

i=1 h
2
iλii (x)

)2

=

O (b4
N) uniformly in x, we get, using

ˆ 1

0

· · ·
ˆ 1

0

(1− wH (x)) dx1 · · · dxd = 1−
d∏
i=1

(1− 2hi) = O (bN) ,

that
ˆ 1

0

· · ·
ˆ 1

0

λ (x)wH (x) dx1 · · · dxd =

ˆ 1

0

· · ·
ˆ 1

0

λ (x) dx1 · · · dxd+O (bN) = 1+O (bN) ,

ˆ 1

0

· · ·
ˆ 1

0

(
d∑
i=1

h2
iλii (x)

)2

wH (x) dx1 · · · dxd

=

ˆ 1

0

· · ·
ˆ 1

0

(
d∑
i=1

h2
iλii (x)

)2

dx1 · · · dxd +O
(
b5
N

)
.
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Hence, we have

ˆ 1

0

· · ·
ˆ 1

0

amse (x,H)wH (x) dx1 · · · dxd = amise (H)+O

(
1

Nbd−1
N

)
+O

(
b4+β
N

)
which implies the assertion as β ≤ 1.

Note that our definition of miseλ̂ (·, H) neglects the intensity estimates

close to the boundary where boundary effects may lead to different convergence

rates. However, for N → ∞, hi → 0, i = 1, . . . , d, this modification becomes

negligible and has no effect on the asymptotic mean integrated squared error

amise (H).

2.2 Optimal asymptotic bandwidth

We now focus on the case d = 2 to keep notation as simple as possible. For

the function arguments, we now write (x1, x2)> ∈ R2, e.g.

amse (x1, x2, H) =
QK

Nh1h2

λ (x1, x2) +
1

4
V 2
K

(
h2

1λ11 (x1, x2) + h2
2λ22 (x1, x2)

)2
.

This is of the form

A

Nh1h2

+
1

4

(
B1h

2
1 +B2h

2
2

)2
.

To minimise it, we set the partial derivatives with respect to h1 and h2 to 0:

− A

Nh2
1h2

+
(
B1h

2
1 +B2h

2
2

)
B1h1 = 0 (2.1)

− A

Nh1h2
2

+
(
B1h

2
1 +B2h

2
2

)
B2h2 = 0.

Multiplying these equations by h1 respectively h2 and subtracting the second

one from the first one results in

0 =
(
B1h

2
1 +B2h

2
2

) (
B1h

2
1 −B2h

2
2

)
= B2

1h
4
1 −B2

2h
4
2
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and, hence,

h2 = h1

√
|B1|
|B2|

. (2.2)

Plugging this relation into (2.1) results in(
B1 +B2

|B1|
|B2|

)
B1

√
|B1|
|B2|

h6
1 =

A

N
.

Writing Bi = si |Bi|, si = sgnBi = sgnλii (x1, x2) , i = 1, 2, and ρ =
√
|B1|5
|B2| , we

get

(s1 + s2) s1ρh
6
1 = (1 + s1s2) ρh6

1 =
A

N
,

i.e. for s1s2 ≥ 0

h1 =
A

1
6

N
1
6

1

ρ
1
6

1

(1 + s1s2)
1
6

.

Plugging in the expressions for A,Bi, ρ, we then have for the asymptotically

optimal local bandwidths, using also (2.2),

ha1 (x1, x2) =
Q

1
6
K

N
1
6

λ
1
6 (x1, x2)

1

V
1
3
K

|λ22 (x1, x2)|
1
12

|λ11 (x1, x2)|
5
12

1

(1 + s1s2)
1
6

, (2.3)

ha2 (x1, x2) =
Q

1
6
K

N
1
6

λ
1
6 (x1, x2)

1

V
1
3
K

|λ11 (x1, x2)|
1
12

|λ22 (x1, x2)|
5
12

1

(1 + s1s2)
1
6

. (2.4)

Note that our argument only works if λ11 (x1, x2)λ22 (x1, x2) ≥ 0, which, e.g.,

holds if λ (x1, x2) is locally convex or concave around (x1, x2), i.e. the Hessian

of λ (x1, x2) is non-negative or non-positive definite respectively.

If s1s2 < 0, i.e. if λ11 (x1, x2), λ22 (x1, x2) have opposite signs, λ (x1, x2)

has a saddlepoint-like behaviour around (x1, x2) which is rather the exception

than the rule. Therefore, we consider only locations (x1, x2) where s1s2 ≥ 0 in

the following. If s1s2 < 0, i.e. s1s2 = −1, then the dominant term in the bias

expansion of Theorem 2 vanishes for suitable h1, h2. For getting asymptotically

optimal bandwidths for this situation, a more detailed investigation of the

remainder term of order O
(
b2+β
N

)
in that expansion would be necessary.
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Turning now to the choice of global bandwidths, the asymptotic mean

integrated squared error is in the case d = 2

amise (H) =
QK

Nh1h2

+
1

4

(
h4

1I11 + 2h2
1h

2
2I12 + h4

2I22

)
with

Ik` = V 2
K

ˆ 1

0

ˆ 1

0

λkk (x1, x2)λ`` (x1, x2) dx1dx2, k, ` = 1, 2.

Setting the partial derivatives with respect to h1,h2 to 0, we get

− QK

Nh2
1h2

+ h3
1I11 + h1h

2
2I12 = 0 (2.5)

− QK

Nh1h2
2

+ h3
2I22 + h2

1h2I12 = 0.

Multiplying these equations by h1 respectively h2 and subtracting the second

from the first one results in

h4
1I11 − h4

2I22 = 0 =⇒ h2 = h1

(
I11

I22

) 1
4

. (2.6)

Plugging these relation into (2.5) results in

I
5
4
11

I
1
4
22

(
1 +

I12

(I11I22)
1
2

)
h6

1 =
QK

N
.

Note that by the Cauchy-Schwarz inequality, |I12| ≤ (I11I22)
1
2 with equality

only if λ22 (x1, x2) = cλ11 (x1, x2) a.e. for some c ∈ R. Therefore, the term in

brackets only vanishes for λ22 (x1, x2) = cλ11 (x1, x2) with some c < 0, which is

a very special case which we exclude as part of the following assumption which

also requires that λ11 (x1, x2) and λ22 (x1, x2) do not vanish a.e.:

I11, I22,
√
I11I22 + I12 6= 0.

Then, we get

h1 =
Q

1
6
K

N
1
6

(
I22

I11

) 1
8 1(√

I11I22 + I12

) 1
6

.
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Using (2.6) and defining

Λk` =

ˆ 1

0

ˆ 1

0

λkk (x1, x2)λ`` (x1, x2) dx1dx2, k, ` = 1, 2,

such that Ik` = V 2
KΛk`, we get for the asymptotically optimal global band-

widths

ha1 =

(
QK

V 2
K

) 1
6
(

Λ22

Λ11

) 1
8 1(√

Λ11Λ22 + Λ12

) 1
6

(
1

N

) 1
6

(2.7)

ha2 =

(
QK

V 2
K

) 1
6
(

Λ11

Λ22

) 1
8 1(√

Λ11Λ22 + Λ12

) 1
6

(
1

N

) 1
6

. (2.8)

We summarise the above derivations in the following theorem.

Theorem 3. Let the assumptions of Theorem 2 be satisfied, and let d = 2.

a) The bandwidths ha1, ha2 minimising amise (H) of Corollary 3 are given

by (2.7), (2.8) if Λ11,Λ22,
√

Λ11Λ22 + Λ12 6= 0.

b) The bandwidths ha1 (x1, x2), ha2 (x1, x2) minimising amse (x1, x2, H) of

Corollary 3 are given by (2.3), (2.4) if λ11 (x1, x2)λ22 (x1, x2) > 0.

The asymptotically optimal bandwidths, hence, are locally and globally of

order N−
1
6 . The following corollary gives the rates of approximation of mse

and mise by their asymptotic equivalents for this case. It follows immediately

from Corollary 3.

Corollary 4. Let the assumptions of Theorem 2 be fulfilled for d = 2, and let

hiN
1
6 → ci > 0 for N →∞, i = 1, 2. Then for N →∞,

a) mseλ̂ (x1, x2, H)− amse (x1, x2, H) = o
(
N−

2
3

)
,

b) miseλ̂ (·, H)− amise (H) = o
(
N−

2
3

)
.

27



The next result states that the asymptotically optimal bandwidths of The-

orem 3 approximate the finite-sample size optimal bandwidths for N → ∞.

Let h0i (x1, x2), h0i denote for i = 1, 2 the bandwidth minimising mseλ̂ (x,H)

and miseλ̂ (·, H) respectively.

Corollary 5. Let the assumptions of Theorem 3 be fulfilled. Then,

a) h0i (x1, x2) = hai (x1, x2) + o
(
N−

1
6

)
, i = 1, 2, for all x1, x2 ∈ (0, 1);

b) h0i = hai + o
(
N−

1
6

)
, i = 1, 2.

Proof. We only prove a), as b) can be shown analogously with a bit more no-

tation. First we remark that N
1
6h0i (x1, x2) cannot converge to 0 or ∞. Oth-

erwise, by Corollary 3, N
2
3 mseλ̂ (x1, x2, H0)→∞ with H0 being the diagonal

matrix with entries h01 (x1, x2), h02 (x1, x2). Let Ha denote the diagonal matrix

with entries ha1 (x1, x2), ha2 (x1, x2) correspondingly. Then by Corollary 4

N
2
3 mseλ̂ (x1, x2, Ha) = N

2
3 amse (x1, x2, Ha) + o (1)→ C > 0

for N → ∞, using that by Theorem 3, N
1
6hai (x1, x2) → ci > 0, i = 1, 2, and

the expression for amse (x1, x2, H) from Corollary 3. Hence, ifN
2
3 mseλ̂ (x1, x2, H0)→

∞ for large enough N , we would have

mseλ̂ (x1, x2, H0) > mseλ̂ (x1, x2, Ha)

in contradiction to the definition of H0. So, we have N
1
6h0 (x1, x2) → c0

i for

some c0
i > 0, i = 1, 2.

Hence, we have from Corollary 4

mseλ̂ (x1, x2, H0) = amse (x1, x2, H0) + o
(
N−

2
3

)
,

mseλ̂ (x1, x2, Ha) = amse (x1, x2, Ha) + o
(
N−

2
3

)
.

Subtracting the first from the second relationship, we get

mseλ̂ (x1, x2, Ha)−mseλ̂ (x1, x2, H0) = amseλ̂ (x1, x2, Ha)−amseλ̂ (x1, x2, H0)+o
(
N−

2
3

)
.

28



The left-hand side is non-negative as H0 is mse-optimal, and the difference on

the right-hand side is non-positive as Ha is amse-optimal. We conclude that

both differences have to be 0 up to terms of order o
(
N−

2
3

)
, in particular

amse (x1, x2, Ha)− amse (x1, x2, H0) = o
(
N−

2
3

)
. (2.9)

From a Taylor expansion of amse (x1, x2, H) around Ha, we get with δ =

(δ1, δ2)>, δi = h0i (x1, x2)− hai (x1, x2) , i = 1, 2

amse (x1, x2, H0)−amse (x1, x2, Ha) = O>h amse (x1, x2, Ha) δ+
1

2
δ>O2

hamse
(
x1, x2, H̃

)
δ,

(2.10)

where Oh,O2
h denote gradient and Hessian with respect to h = (h1, h2)>, and

H̃ = (1− θ)Ha+θH0 for some 0 ≤ θ ≤ 1. As Ha minimises amse, the gradient

in the first term on the right-hand side is 0. H̃ is a diagonal matrix with entries,

say, h̃1, h̃2 which also satisfy N
1
6 h̃i → c̃i > 0, i = 1, 2. From Corollary 3, we

get for the elements of the Hessian

∂2

∂h21
amse (x1, x2, H) =

2QKλ (x1, x2)

Nh31h2
+ V 2

K

(
3h21λ

2
11 (x1, x2) + h22λ11 (x1, x2)λ22 (x1, x2)

)
,

∂2

∂h22
amse (x1, x2, H) =

2QKλ (x1, x2)

Nh1h32
+ V 2

K

(
h21λ11 (x1, x2)λ22 (x1, x2) + 3h22λ

2
22 (x1, x2)

)
,

∂2

∂h1∂h2
amse (x1, x2, H) =

2QKλ (x1, x2)

Nh21h
2
2

+ 2V 2
Kh1h2λ11 (x1, x2)λ22 (x1, x2) .

By the assumptions of Theorem 3, these terms are all greater than 0, and for

hi = h̃i, i = 1, 2, they are of order N−
1
3 . Hence we get from (2.9) and (2.10)

for some c > 0

o
(
N−

2
3

)
= c ‖δ‖2N−

1
3 ,

i.e.

‖h0 (x1, x2)− ha (x1, x2)‖2 = o
(
N−

1
3

)
which implies the assertion.
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2.3 The case of smoother intensity functions

For later use, we briefly discuss in this section how the previous results change

if we assume more smoothness about λ (x). It is well-known from Stone (1984)

seminal work that optimal bandwidths mainly depend on sample size, dimen-

sion and smoothness, i.e. assumed degree of differentiability, of the function

to be estimated. In particular, we replace Assumption 3 now by

Assumption 6. λ (x) is a four times continuously differentiable probability

density with support [0, 1]d.

Moreover, we augment the symmetry Assumption 4 on K by

Assumption 7.
´
· · ·
´
u3
iK (u) du1 · · · dud = 0 for i = 1, . . . , d.

Then, we get an improved rate for the bias expansion in Theorem 2.

Proposition 2. Let the assumptions of Theorem 2 and Assumptions 6 and 7

be satisfied. Then,

biasλ̂ (x,H) =
1

2
VK

d∑
i=1

h2
iλii (x) +O

(
b4
N

)
.

Proof. We write λi (x) = ∂
∂xi
λ (x), λijk (x) = ∂3

∂xi∂xj∂xk
λ (x) and λijk` (x) =

∂4

∂xi∂xj∂xk∂x`
λ (x). We now can extend the Taylor expansion of λ (x−Hu) in

part a) of Theorem 2 to order 4:

λ (x−Hu)− λ (x) = −
d∑
i=1

hiuiλi (x) +
1

2

d∑
i,j=1

hiuihjujλij (x)

−1

6

d∑
i,j,k=1

hiuihjujhkukλijk (x)

+
1

24

d∑
i,j,k,`=1

hiuihjujhkukh`u`λijk` (x− θHu)

for some 0 ≤ θ ≤ 1. If we multiply this by K (u) and integrate with respect

to u, then the first term on the right-hand side vanishes due to the symmetry
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Assumption 4 on K. Analogously, the third term vanishes by Assumptions 4

and 7, and the components with i 6= j in the second term also vanish. As, by

Assumption 6, λijkl is bounded, as K has compact support and as |hihjhkh`| ≤∑d
i=1 h

4
i , the fourth term is O

(∑d
i=1 h

4
i

)
= O (b4

N) from Assumption 5.

As the dominant term in the bias expansion does not change by assuming

more smoothness of λ, the asymptotically optimal bandwidths do not change.

However, the approximation rate of the mse by the asymptotic mse improves,

and we have the following analogue of Corollary 4. Recall that now we consider

d = 2 only.

Corollary 6. Let the assumptions of Corollary 4 and Assumptions 6 and 7 be

satisfied. Then, for hiN
1
6 → ci > 0, i = 1, 2, we have for N →∞

a) mseλ̂ (x1, x2, H)− amse (x1, x2, H) = O
(
N−

5
6

)
,

b) miseλ̂ (·, H)− amise (H) = O
(
N−

5
6

)
.

Proof. From Proposition 2, we have as in Corollary 3 the mse expansion

mseλ̂ (x,H) = amse (x,H) +O

(
1

NbN

)
+O

(
b6
N

)
.

From the assumption on hi, we have bNN
1
6 → c > 0 such that

O

(
1

NbN

)
+O

(
b6
N

)
= O

(
N−

5
6

)
.

b) follows as in the proof of Corollary 3 from a).

Note that we could get better rates of convergence by using higher-order

kernels if Assumption 6 is satisfied. However, for those kernels we would have
´ ´

u2
iK (u) du1du2 = 0, i.e. K has to assume also negative values. This

might lead to negative estimates λ̂ (x1, x2) of the positive function λ (x1, x2).

Therefore, we do not investigate this direction further. We have to impose
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Assumption 6 due to different reasons below: we need kernel estimates of the

second derivatives λ11 (x1, x2) , λ22 (x1, x2), and for this we assume that they

are twice continuously differentiable, i.e. Assumption 6. Finally, we also get

better approximation rates of the optimal bandwidths by the asymptotically

optimal ones, i.e. the following analogue of Corollary 5.

Corollary 7. Let the assumptions of Corollary 5 and Assumptions 6 and 7 be

satisfied. Then,

a) h0i (x1, x2) = hai (x1, x2) +O
(
N−

1
4

)
, i = 1, 2, for all x1, x2 ∈ (0, 1);

b) h0i = hai +O
(
N−

1
4

)
, i = 1, 2.

Proof. The proof proceeds exactly as the proof of Corollary 5, except that we

use the rate O
(
N−

5
6

)
instead of o

(
N−

2
3

)
for the approximation of mse by

amse. In particular, we get

‖h0 (x1, x2)− ha (x1, x2)‖2 = N
1
3O
(
N−

5
6

)
= O

(
N−

1
2

)
and, hence, ‖h0 (x1, x2)− ha (x1, x2)‖ = O

(
N−

1
4

)
.
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Chapter 3

Data adaptive bandwidth

selection by the plug-in

approach

In this chapter, we use the formulae for the asymptotic optimal bandwidths

and plug in estimates for the unknown quantities to get an iterative algo-

rithm for selecting the bandwidths automatically from the data. Subsequently,

we investigate the asymptotic behaviour of the kernel estimates with random

bandwidths. Note that the algorithm depends on the choice of various tuning

parameters which we leave unspecified for the moment. A rule how to choose

them requires a more careful analysis of the asymptotics of estimates of the

second derivatives of the intensity function which will be done in subsequent

chapters. To keep notation simple, we only consider d = 2 here. The necessary

adaptation to higher dimensions will be discussed later.
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3.1 An algorithm for automatic bandwidth

selection

In this section, we extend the ideas of Engel et al. (1994) to higher dimen-

sions and formulate iterative procedures resulting in estimates ĥ respectively

ĥ (x1, x2) for the globally respectively locally optimal bandwidths h0, h0 (x1, x2).

For this purpose, we use estimates of ha, ha (x1, x2) by (2.7), (2.8) respectively

(2.3), (2.4). As those depend on unknown quantities involving, in particular,

the second derivatives of λ (x1, x2) respectively the integrals Λk`, k, ` = 1, 2,

and, in the local case, also λ (x1, x2) itself, we need an iterative procedure

which we formulate below.

First, we have to briefly discuss how to estimate λk` (x1, x2) respectively Λk`,

k, ` = 1, 2. For the second derivatives, we use as usual the second derivatives

of the kernel estimate λ̂ (x1, x2, H), i.e.

λ̂11 (x1, x2, H) =
∂2

∂x2
1

λ̂ (x1, x2, H) =
1

Nh1h2

N∑
j=1

∂2

∂x2
1

K

(
x1 −Xj1

h1

,
x2 −Xj2

h2

)

=
1

Nh3
1h2

N∑
j=1

K11

(
x1 −Xj1

h1

,
x2 −Xj2

h2

)
,

λ̂22 (x1, x2, H) =
1

Nh1h3
2

N∑
j=1

K22

(
x1 −Xj1

h1

,
x2 −Xj2

h2

)
,

λ̂12 (x1, x2, H) =
1

Nh2
1h

2
2

N∑
j=1

K12

(
x1 −Xj1

h1

,
x2 −Xj2

h2

)
,

where Kk` (u1, u2) = ∂2

∂uk∂u`
K (u1, u2) denote the second derivatives of the ker-

nel function, k, ` = 1, 2.

Following Gasser et al. (1991), in the iteration we use larger bandwidths for

the estimates of λk` (x1, x2) than for the estimates of λ (x1, x2). More precisely,

for some inflation factor Nρ, ρ > 0, if we use h1, h2 for λ̂ (x1, x2, H), then

we use Nρh1, N
ρh2 for estimating λk` (x1, x2), i.e. we consider the estimate
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λ̂k` (x1, x2, N
ρH). We discuss appropriate choices for ρ later.

If we are interested in the local bandwidths, we nevertheless have to start

with global bandwidths first and switch to local ones later in the iteration.

The reason is rather large variability of λ̂k` (x1, x2, N
ρH) for the initially small

bandwidths which would lead to instability of the algorithm. For the integrals

Λk` appearing in amise, this effect is not important as the variability averages

out by integration. For Λk`, we use the estimates

Λ̂k` (NρH) =

ˆ 1

0

ˆ 1

0

λ̂kk (x1, x2, N
ρH) λ̂`` (x1, x2, N

ρH) v (x1, x2) dx1dx2, k, ` = 1, 2,

where v (x1, x2) is a weight function integrating to 1 which we introduce to

avoid boundary effects.

In the following ĥ
(i)
k , k = 1, 2, Ĥ(i) denote the global bandwidths and the

corresponding diagonal bandwidth matrix in the ith step of the iteration, and

ĥ
(i)
k (x1, x2) , k = 1, 2, Ĥ(i) (x1, x2) denote the corresponding local quantities in

later steps of the iteration. We also use the abbreviations

Λ̂
(i)
k` = Λ̂k`

(
NρĤ(i)

)
, k, ` = 1, 2,

λ̂
(i)
k` (x1, x2) = λ̂k`

(
x1, x2, N

ρĤ(i) (x1, x2)
)
, k, ` = 1, 2,

λ̂(i) (x1, x2) = λ̂
(
x1, x2, Ĥ

(i) (x1, x2)
)
.

Step 0: We initialise the algorithm by choosing ĥ
(0)
k = 1√

N
, k = 1, 2.
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Step 1: For i = 1, . . . , i∗, iterate

ĥ
(i)
1 =

(
QK

NV 2
K

) 1
6

(
Λ̂

(i−1)
22

Λ̂
(i−1)
11

) 1
8

1(√
Λ̂

(i−1)
11 Λ̂

(i−1)
22 + Λ̂

(i−1)
12

) 1
6

,

ĥ
(i)
2 = ĥ

(i)
1

(
Λ̂

(i−1)
11

Λ̂
(i−1)
22

) 1
4

,

ĥ
(i)
k = min

(
ĥ

(i)
k ,

1

2
√
N

)
, k = 1, 2,

ĥ
(i)
k = max

(
ĥ

(i)
k ,

1

2

)
, k = 1, 2.

Step 2: Set Ĥ(i∗) (x1, x2) = Ĥ(i∗). For i = i∗+1, . . . , j∗, assuming λ11 (x1, x2)λ22 (x1, x2) >

0:

ĥ
(i)
1 (x1, x2) =

(
QK λ̂

(i−1) (x1, x2)

2NV 2
K

) 1
6

∣∣∣λ̂(i−1)
22 (x1, x2)

∣∣∣ 1
12

∣∣∣λ̂(i−1)
11 (x1, x2)

∣∣∣ 5
12

,

ĥ
(i)
2 (x1, x2) = ĥ

(i)
1 (x1, x2)

∣∣∣∣∣ λ̂(i−1)
11 (x1, x2)

λ̂
(i−1)
22 (x1, x2)

∣∣∣∣∣
1
2

.

3.2 Asymptotics of kernel estimates with

data-adaptive bandwidth

The global and local bandwidths, derived from the data in the last section, de-

pend on estimates of the density and of its second derivatives λii (x1, x2) , i =

1, 2. As a preliminary result, we briefly investigate the asymptotic mean-

squared error of the kernel estimates λii (x1, x2, H) for deterministic band-

widths. In the following, we write

λi (x1, x2) =
∂

∂xi
λ (x1, x2) , Ki (u1, u2) =

∂

∂ui
K (u1, u2) , i = 1, 2,

for the first-order partial derivatives. We assume about the kernel that:
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Assumption 8. K is twice differentiable on [−1,+1]2 with bounded second

derivatives, and satisfies the boundary conditions K (±1, u2) = K (u1,±1) = 0,

K1 (±1, u2) = K1 (u1,±1) = 0 for all −1 ≤ u1, u2 ≤ 1.

Proposition 3. Let the assumptions of Theorem 2, Assumptions 6 and 8

be satisfied. Assume, moreover, that the fourth-order partial derivative of

λ (x1, x2) are Hölder continuous with exponent β > 0. Then, for i = 1, 2

a) Eλ̂ii (x1, x2, H) = λii (x1, x2) + 1
2
VK
∑2

`=1 h
2
`
∂2

∂x2`
λii (x1, x2) +O

(
b2+β
N

)
.

b) varλ̂ii (x1, x2, H) = 1
Nh1h2h4i

(
QiiKλ (x1, x2) +O (bN )

)
with QiiK =

´ ´
K2
ii (u1, u2) du1du2.

Proof. We consider only λ̂11 (x1, x2, H), as the arguments for λ̂22 are the same.

a) As in the proof of Theorem 2, a) we have

Eλ̂11 (x1, x2, H) =
1

h3
1h2

EK11

(
x1 −X11

h1

,
x2 −X12

h2

)
=

1

h2
1

ˆ 1

−1

ˆ 1

−1

K11 (u1, u2)λ (x1 − h1u1, x2 − h2u2) du1du2.

Using integration by parts twice and, in particular, e.g.,

∂

∂u1

λ (x1 − h1u1, x2 − h2u2) = −h1λ1 (x1 − h1u1, x2 − h2u2) ,

we get

Eλ̂11 (x1, x2, H) =
1

h1

ˆ 1

−1

ˆ 1

−1

K1 (u1, u2)λ1 (x1 − h1u1, x2 − h2u2) du1du2

=

ˆ 1

−1

ˆ 1

−1

K (u1, u2)λ11 (x1 − h1u1, x2 − h2u2) du1du2

as the constant terms in the integration-by-parts relations vanish due to

Assumption 8. Using the same Taylor expansion arguments as in the

proof of Theorem 2 with λ11 instead of λ, we get

Eλ̂11 (x1, x2, H) = λ11 (x1, x2) +
1

2
VK

2∑
i=1

h2
i

∂2

∂x2
i

λ11 (x1, x2) +O
(
b2+β
N

)
.
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b) As X1, . . . , XN are i.i.d.,

varλ̂11 (x1, x2, H) =
1

N
var

(
1

h3
1h2

K11

(
x1 −X11

h1

,
x2 −X12

h2

))
=

1

Nh6
1h

2
2

EK2
11

(
x1 −X11

h1

,
x2 −X12

h2

)
− 1

N

{
E

1

h3
1h2

K11

(
x1 −X11

h1

,
x2 −X12

h2

)}2

.

As in the proof of Theorem 2, b), the second term is of order O
(

1
N

)
and

therefore negligible as from part a)

E
1

h3
1h2

K11

(
x1 −X11

h1

,
x2 −X12

h2

)
= λ11 (x1, x2) +O

(
b2
N

)
= O (1) .

For the first term, we use the same Taylor expansion argument as in the

proof of Theorem 2 b) to get

1

h6
1h

2
2

EK2
11

(
x1 −X11

h1

,
x2 −X12

h2

)
=

1

h6
1h

2
2

ˆ ˆ
K2

11

(
x1 − u1

h1

,
x2 − u2

h2

)
λ (u1, u2) du1du2

=
1

h5
1h2

ˆ ˆ
K2

11 (u1, u2)λ (x1 − h1u1, x2 − h2u2) du1du2

=
1

h5
1h2

(ˆ ˆ
K2

11 (u1, u2) du1du2λ (x1, x2) +O (h1 + h2)

)
.

In the following, we impose a Lipschitz condition on Kii.

Assumption 9. Kii is Lipschitz continuous with constant Lii, i = 1, 2,

|Kii (u)−Kii (v)| ≤ Lii |u− v|

for all −1, u, v ≤ 1.

This condition could be relaxed to Hölder continuity with exponent 0 <

β ≤ 1, but for ease of notation we choose β = 1.
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We now consider random bandwidths h1, h2 which may depend on the data

(Xj1, Xj2) , j = 1, . . . , N . We assume the following conditions which we later

on guarantee to hold by construction:

Condition 1. h1, h2 ∈
[

1
2
√
N
, δ
]

for some fixed δ ≤ 1
2
.

Condition 2. For some γ ≥ 0 and deterministic β1, β2 > 0, bN → 0, 1
bN
√
N

=

O (1), hi = βibN (1 + op (N−γ)) , i = 1, 2.

In particular, from Condition 2 we have hi → 0, i = 1, 2, h1
h2
→ β1

β2
> 0. H

again denotes the diagonal matrix with entries h1, h2.

Proposition 4. Let the assumptions of Proposition 3 and Assumption 9 be

satisfied and additionally Conditions 1 and 2. Then, for i = 1, 2,

λ̂ii (x1, x2, H) = λii (x1, x2) +O
(
b2
N

)
+ op

(
N−γb2

N

)
+ op

(
1

αNb4
N

√
logN

N

)

for any sequence αN > 0 with αN → 0 and
√

logN
N

= O (αN).

Corollary 8. Under the conditions of Proposition 4, for i = 1, 2,

λ̂ii (x1, x2, H) = λii (x1, x2) +O
(
b2
N

)
+ op

(
N−γb2

N

)
+ op

(
logN√
Nb4

N

)
.

Proof. The conditions of Proposition 4 are satisfied for αN = 1√
logN

, and

1
αN

√
logN
N

= logN√
N

.

Proof. Proof of Proposition 4:

a) Let

µ11 (H) =

ˆ ˆ
K11

(
x1 − u1

h1

,
x2 − u2

h2

)
λ (u1, u2) du1du2.
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From the proof of Proposition 3 a), which works for random h1, h2 too,

we have

1

h3
1h2

ˆ ˆ
K11

(
x1 − u1

h1

,
x2 − u2

h2

)
λ (u1, u2) du1du2

=
1

h2
1

ˆ ˆ
K11 (u1, u2)λ (x1 − h1u1, x2 − h2u2) du1du2

=

ˆ ˆ
K (u1, u2)λ11 (x1 − h1u1, x2 − h2u2) du1du2

= λ11 (x1, x2) +
1

2
VK

2∑
i=1

h2
i

∂2

∂x2
i

λ11 (x1, x2) +Op

(
h2+β

1 + h2+β
2

)
using substitution, integration by parts and a Taylor expansion. From

Condition 2,

1

h3
1h2

µ11 (H) = λ11 (x1, x2) +O
(
b2
N

)
+ op

(
N−γb2

N

)
.

b) We now consider

λ̂11 (x1, x2, H)− 1

h3
1h2

µ11 (H) =
1

Nh3
1h2

N∑
j=1

{
K11

(
x1 −Xj1

h1
,
x2 −Xj2

h2

)
− µ11 (H)

}
.

To get rid of the technical problems caused by the randomness of h1, h2,

we approximate them by deterministic bandwidths from an equidistant

grid. For some τ > 1
2

to be chosen later, let BN,τ be an equidistant grid

in
[
0, 1

2

]
of width N−τ . Then, for any hi satisfying Condition 1, there is

a h̄i ∈ BN,τ with
∣∣hi − h̄i∣∣ ≤ N−τ , i = 1, 2. Note that h̄i is still random.

By Assumption 8,

1

N

N∑
j=1

{
K11

(
x1 −Xj1

h1

,
x2 −Xj2

h2

)
− µ11 (H)

}
= SN (h1, h2)

is uniformly bounded. Moreover, from Condition 2,

1

h3
1h2

=
1

β3
1β2b4

N (1 + op (N−γ))4 =
1

β3
1β2b4

N

(
1 + op

(
N−γ

))
using that the dominating term in (1 + op (N−γ))

4
is 1 + op (N−γ) and a

Taylor expansion for 1
1+op(N−γ)

= 1 + op (N−γ). Hence,

λ̂11 (x1, x2, H) =
1

h3
1h2

µ11 (H) +
1 + op (N−γ)

β3
1β2b4

N

SN (h1, h2) .
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So, we have to investigate SN (h1, h2). First, note that with h̄i, i = 1, 2,

as above

|SN (h1, h2)| ≤
∣∣SN (h̄1, h̄2

)∣∣+
∣∣SN (h1, h2)− SN

(
h̄1, h̄2

)∣∣ .
The first term is bounded from above by

sN,1 = sup

{
|SN (b1, b2)| ; 1

2
√
N
−N−τ ≤ bi ≤ δ +N−τ , bi ∈ BN,τ , i = 1, 2

}
.

Note that SN (b1, b2) is a mean of, by Assumption 8, bounded, random

variables as here b1, b2 ∈ BN,τ are deterministic. Moreover, ESN (b1, b2) =

0 from the proof of Proposition 3 a). Let C denote an upper bound on

|K11 (u1, u2)|. Then , the summands of SN (b1, b2) are bounded by 2C,

and their variance is bounded by 4C2. Let αN > 0, αN → 0 for N →∞

such that
√

logN
N

= O (αN). Then, from Bernstein’s inequality, we have

for 0 < ε < 1

pr

(
αN

√
N

logN
|SN (b1, b2)| > ε

)
= pr

(
|SN (b1, b2)| > 1

αN

√
logN

N
ε

)

≤ exp

 −Nε2 1
α2
N

logN
N

4C
3
ε 1
αN

√
logN
N

+ 4C2


≤ exp

{
−ε2 logN

α2
N

A

}
for some suitable constant A > 0 and all large enough N , as, for N →∞,

1
αN

√
logN
N

= O (1). As BN,τ is a finite set with less than N2τ elements,

we have with B∗N,τ = BN,τ ∩
[

1
2
√
N
−N−τ , δ +N−τ

]
⊆ BN,τ

pr

(
αN

√
N

logN
sN,1 > ε

)
≤

∑
b1,b2∈B∗N,τ

pr

(
αN

√
N

logN
|SN (b1, b2)| > ε

)

≤ N2τ exp

{
−ε

2

A

logN

α2
N

}
= exp

{
logN

(
2τ − ε2

Aα2
N

)}
→ 0
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for N →∞ as αN → 0 and, hence, the factor of logN becomes negative

for large enough N . Therefore, we have independent of the choice of τ

sN,1 = op

(
1

αN

√
logN

N

)
.

For the second term, we use from Assumption 9 with |z1| , |z2| ≤ 1∣∣∣∣K11

(
z1

b1

,
z2

b2

)
−K11

(
z1

b
′
1

,
z2

b
′
2

)∣∣∣∣ ≤ L11

{∣∣∣∣z1

b1

− z1

b
′
1

∣∣∣∣+

∣∣∣∣z2

b2

− z2

b
′
2

∣∣∣∣}
≤ L11

{∣∣b1 − b
′
1

∣∣
b1b

′
1

+

∣∣b2 − b
′
2

∣∣
b2b

′
2

}
.

As |zi| ≤ 1 holds for z1 = x1 − Xj1, z2 = x2 − Xj2 and, in the integral

defining µ11, z1 = x1 − u1, z2 = x2 − u2, and as λ (u1, u2) integrates to 1,

we get as
∣∣hi − h̄i∣∣ ≤ N−τ

∣∣SN (h1, h2)− SN
(
h̄1, h̄2

)∣∣
≤ 2L11

{
1

h1h̄1

+
1

h2h̄2

}
N−τ

= 2L11

{
1

h2
1 (1 +O (N−τ ))

+
1

h2
2 (1 +O (N−τ ))

}
N−τ

= 2L11

{
1

β2
1

+
1

β2
2

}
N−τ

b2
N (1 + op (N−γ))2 (1 +O (N−τ ))

≤ c
1

N τb2
N

(
1 + op

(
N−γ

)
+O

(
N−τ

))
for some suitable constant c > 0, using Condition 2. Combining this

with the bound on
∣∣SN (h̄1, h̄2

)∣∣, we get

|SN (h1, h2)| ≤ sN,1 +
∣∣SN (h1, h2)− SN

(
h̄1, h̄2

)∣∣
= op

(
1

αN

√
logN

N

)
+O

(
1

N τb2
N

)
+ op

(
N−γ

N τb2
N

)
.

From Condition 2, we then have

1

h3
1h2

SN (h1, h2) =
SN (h1, h2)

β3
1β2 (1 + op (N−γ))4 b4

N

=
SN (h1, h2)

β3
1β2b4

N

(
1 + op

(
N−γ

))
= O

(
1

N τb6
N

)
+ op

(
N−γ

N τb6
N

)
+ op

(
1

αNb4
N

√
logN

N

)
.
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As τ was arbitrary, we now choose τ = 4. Then, as 1
bN
√
N

is bounded, we

have

1

N τb8
N

=
1(

bN
√
N
)8 = O (1)

and

1

N τb6
N

= O
(
b2
N

)
such that

1

h3
1h2

SN (h1, h2) = op

(
1

αNb4
N

√
logN

N

)
+O

(
b2
N

)
+ op

(
N−γb2

N

)
.

c) Combining a) and b), we get finally

λ̂11 (x1, x2, H) =
1

h3
1h2

(µ11 (H) + SN (h1, h2))

= λ11 (x1, x2) +O
(
b2
N

)
+ op

(
N−γb2

N

)
+ op

(
1

αNb4
N

√
logN

N

)

The same arguments analogously hold for λ̂22 (x1, x2, H).

The amse also depends on λ (x1, x2) which for a plug-in method we also have

to replace by an estimate with data-adaptive and, hence, random bandwidth.

We have analogously to the last two results:

Proposition 5. Let the assumptions of Proposition 4 be satisfied. Then

λ̂ (x1, x2, H) = λ (x1, x2) +O
(
b2
N

)
+ op

(
N−γb2

N

)
+ op

(
1

αNb2
N

√
logN

N

)

for any sequence αN > 0 with αN → 0 and
√

logN
N

= O (αN).

Corollary 9. Under the conditions of Proposition 4,

λ̂ (x1, x2, H) = λ (x1, x2) +O
(
b2
N

)
+ op

(
N−γb2

N

)
+ op

(
logN√
Nb2

N

)
.
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Proof. Proof of Proposition 5: The proof is more or less identical to the proof

of Proposition 4, and we only briefly discuss the differences.

a) Instead of µ11 (H), we consider

µ (H) =

ˆ ˆ
K

(
x1 − u1

h1

,
x2 − u2

h2

)
λ (u1, u2) du1du2.

Instead of Proposition 3, we have to refer to Theorem 2 for the bias and

variance expansion for deterministic bandwidth, and we do not need the

integration-by-parts argument to finally get

1

h1h2

µ (H) = λ (x1, x2) +O
(
b2
N

)
+ op

(
N−γb2

N

)
.

b) We decompose λ̂ (x1, x2) into

λ̂ (x1, x2) =
1

h1h2

µ (H) +
1

Nh1h2

N∑
j=1

{
K

(
x1 −Xj1

h1

,
x2 −Xj2

h2

)
− µ (H)

}
=

1

h1h2

µ (H) +
1

h1h2

SN (h1,h2) .

K is uniformly bounded and Lipschitz continuous as K11, such that

SN (b1, b2) is a mean of bounded random variables again. We get by

exactly the same arguments as in the proof of Proposition 4 b)

1

h1h2

SN (h1, h2) = op

(
1

αNb2
N

√
logN

N

)
+O

(
b2
N

)
+ op

(
N−γb2

N

)
,

where, in the last step, we may choose τ = 3 instead of τ = 4.

c) The final result follows again from combining a) and b).
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Chapter 4

Asymptotics for integrated

mean-squared error estimates

with random bandwidths

For estimating the integrated mean-squared error as a function of the band-

widths, let us recall from Corollary 3 that the asymptotic approximation is

amise (H) =
QK

NdetH
+
V 2
K

4

ˆ ˆ ( 2∑
i=1

h2
iλii (x1, x2)

)2

dx1dx2.

Hence, we have to investigate

h4
i

ˆ ˆ
λ̂2
ii (x1, x2, H) dx1dx2

and

h2
1h

2
2

ˆ ˆ
λ̂11 (x1, x2, H) λ̂22 (x1, x2, H) dx1dx2.
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First note that in calculating
´ ´

λ̂2
ii (x1, x2, H) dx1dx2, we can avoid integra-

tion by using, e.g.,

ˆ ˆ
λ̂2

11 (x1, x2, H) dx1dx2

=
1

N2h6
1h

2
2

N∑
i,j=1

ˆ ˆ
K11

(
x1 −Xj1

h1

,
x2 −Xj2

h2

)
K11

(
x1 −Xi1

h1

,
x2 −Xi2

h2

)
dx1dx2

=
1

N2h5
1h2

N∑
i,j=1

ˆ ˆ
K11 (u, v)K11

(
u+

Xj1 −Xi1

h1

, v +
Xj2 −Xi2

h2

)
dudv

=
1

N2h5
1h2

N∑
i,j=1

L11

(
Xj1 −Xi1

h1

,
Xj2 −Xi2

h2

)
by substitution and denoting by L11 (x, y) = K11 ∗K11 (x, y) the convolution

of K11 with itself which may be calculated in advance:

L11 (x, y) =

ˆ ˆ
K11 (u, v)K11 (x− u, y − v) dudv.

The same argument holds for the integral of λ̂2
22 with L22 = K22 ∗K22 and for

the integral of λ̂11λ̂22 with L12 = K11 ∗K22.

4.1 The one-dimensional case

We start with investigating one-dimensional kernel density estimates as this

is more suitable for a first exposition of the ideas. In higher dimensions the

notation becomes more involved.

We prove an analogous result to Proposition 1 of Engel et al. (1994). As

the proof of Engel et al. (1994) is very sketchy, we give our own proof us-

ing sometimes different arguments, in particular using Hoeffding’s exponential

inequality for means of bounded random variables and some properties of U-

statistics. We could not follow every detail of the proof of Engel et al. (1994),

e.g. they refer to Lemma 3.1 of Hall and Marron (1987) to get bound on a
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doubly indexed sum with full range for the two indices, but Hall and Mar-

ron (1987) only consider a summation over i 6= j, i.e. omitting the diagonal,

and this is crucial for the derivation of their results (compare our Lemma 5,

where we prove a version of that part of Hall and Marron’s lemma which we

need). Our modified proof leads to slightly different rates of the remainder

term which, however, is not relevant for the application of the proposition.

First let us introduce notation and assumptions. X1, . . . , XN are i.i.d. with

values in [0, 1], having density λ (x). The kernel density estimate is

λ̂ (x, h) =
1

Nh

N∑
j=1

K

(
x−Xj

h

)
and the corresponding estimate of the second derivative λ′′ (x) is

λ̂′′ (x, h) =
1

Nh3

N∑
j=1

K2

(
x−Xj

h

)
with K2 (u) = K ′′ (u). We want to derive an asymptotic expansion of

ˆ (
λ̂′′ (x, h)

)2

dx

for random, in particular for data-dependent, bandwidth h. We make the

following assumptions:

Assumption 10. λ is 4 times continuously differentiable on [0, 1], and the 4th

derivative λ(4) is Hölder continuous with some exponent β > 0.

Assumption 11. K (u) is a kernel function with support [−1,+1] which is

non-negative, twice continuously differentiable with Lipschitz continuous sec-

ond derivative K ′′ and satisfies

K (±1) = K ′ (±1) = 0.

As notation, we use K2 = K ′′ and VK =
´
u2K (u) du.
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Proposition 6. Let h be a sequence of random bandwidths which can be ap-

proximated by a sequence bN of deterministic bandwidths such that

h = bN
(
1 + op

(
N−γ

))
for some γ ≥ 0. Then,

ˆ (
λ̂′′ (x, h)

)2

dx

=

ˆ
(λ′′ (x))

2
dx+ VK

ˆ
λ′′ (x)λ(4) (x) dxb2

N +
1

Nb5
N

ˆ
K2

2 (u) du+RN

with remainder term

RN = o
(
b2
N

)
+op

(
N−γb2

N +
logN√
N

)
+Op

(
1

Nb4
N

)
+op

(
logN

N
3
2 b5
N

)
+op

(
N−

γ
2

Nb5
N

)
.

Before starting with the proof let us remark that this expansion coincides

with some slight differences in the o- and op- terms, due to the techniques of

proof, with Proposition 1 of Engel et al. (1994). Note that in their formulation

the last term of RN is missing, but it can be inferred from (1.3) of their proof

and is of order op

(
1

Nb5N

)
.

Proof. We introduce

ν (x, h) =
1

h2

ˆ
K2 (u)λ (x− hu) du =

1

h2
µ (x, h) .

Note that for deterministic b, ν (x, b) = Eλ̂′′ (x, b) which immediately follows

from substitution. µ (x, h) corresponds to µ11 (H) in the proof of Proposition

4. Now, we decompose
ˆ (

λ̂′′ (x, h)
)2

dx = E (h) + 2M (h) + V (h)

with

E (h) =

ˆ
ν2 (x, h) dx

M (h) =

ˆ
ν (x, h)

{
λ̂′′ (x, h)− ν (x, h)

}
dx

V (h) =

ˆ (
λ̂′′ (x, h)− ν (x, h)

)2

dx
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a) We first derive an asymptotic expansion for ν (x, h). Integration by parts

implies, using Assumption 10,

ν (x, h) =
1

h

ˆ
K ′ (u)λ′ (x− hu) du =

ˆ
K (u)λ′′ (x− hu) du

=

ˆ
K (u)

{
λ′′ (x)− huλ′′′ (x) +

1

2
u2h2λ(4) (x) +O

(
h2+β

)}
du

= λ′′ (x) +
1

2
VKλ

(4) (x)h2 +O
(
h2+β

)
by Taylor expansion and using Assumption 11 on K. Note that from

the first line and boundedness of K, λ′′ we have that ν (x, h) is uniformly

bounded in x and h. If we approximate the random h by the deterministic

bN from our assumptions, we have

ν (x, h)− ν (x, bN ) =
1

2
VKλ

(4) (x)
(
h2 − b2N

)
+O

(∣∣h2 − b2N
∣∣ ·max (h, bN )β

)
=

1

2
VKλ

(4) (x) · (h+ bN ) (h− bN ) +O
(∣∣h2 − b2N

∣∣ ·max (h, bN )β
)
.

As λ(4) (x) is uniformly bounded, max (h, bN) = max (bN (1 + op (N−γ)) , bN) =

bN (1 + op (N−γ)), and h+ bN ≤ 2 max (h, bN), |h− bN | = bN · op (N−γ),

we get

|ν (x, h)− ν (x, bN)| = op
(
b2
NN

−γ) .
b) As the next step, we look at E (h). Using boundedness of ν (x, b) and a)

E (h) =

ˆ
(ν (x, h)− ν (x, bN) + ν (x, bN))2 dx

=

ˆ
ν2 (x, bN) dx+ op

(
b2
NN

−γ)
=

ˆ (
λ′′ (x) +

1

2
VKλ

(4) (x) b2
N + o

(
b2
N

))2

dx+ op
(
b2
NN

−γ)
=

ˆ
(λ′′ (x))

2
dx+ VK

ˆ
λ′′ (x)λ(4) (x) dx · b2

N + o
(
b2
N

)
+ op

(
b2
NN

−γ) ,
i.e. E (h) is the dominant term of

´ (
λ̂′′ (x, h)

)2

dx as an estimate of
´

(λ′′ (x))2 dx.
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c) For any deterministic b, we have, using ν (x, b) = Eλ̂′′ (x, b)

EV (b) =

ˆ
varλ̂′′ (x, b) dx =

1

Nb6

ˆ
varK2

(
x−X1

b

)
dx

as λ̂′′ (x, b) is a sum of i.i.d. random variables. Hence using that EK2

(
x−X1

b

)
=

b3Eλ̂′′ (x, b) = b3ν (x, b) and that ν is bounded

EV (b) =
1

Nb6

ˆ
EK2

2

(
x−X1

b

)
dx− 1

N

ˆ
ν2 (x, b) dx

=
1

Nb6

ˆ ˆ
K2

2

(
x− u
b

)
λ (u) dudx+O

(
1

N

)
=

1

Nb5

ˆ ˆ
K2

2 (v)λ (x− bv) dxdv +O

(
1

N

)
=

1

Nb5

ˆ ˆ
K2

2 (v) (λ (x)− bvλ′ (x) + o (b)) dxdv +O

(
1

N

)
=

1

Nb5

ˆ
K2

2 (v) dv +O

(
1

Nb4

)
by a Taylor expansion, using the differentiability conditions on λ and

that it integrates to 1.

d) Now, we consider the remainder term V (b)− EV (b). Note that

V (b) =
1

N2b6

ˆ N∑
i,j=1

(
K2

(
x−Xi

b

)
− b3ν (x, b)

)(
K2

(
x−Xj

b

)
− b3ν (x, b)

)
dx

=
1

Nb5
WN (b) +

N − 1

2Nb6
UN (b) ,

where

WN (b) =
1

Nb

N∑
j=1

ˆ (
K2

(
x−Xj

b

)
− b3ν (x, b)

)2

dx =
1

N

N∑
j=1

Qb (Xj)

is a mean of i.i.d. random variables, and

UN (b)

=
2

N (N − 1)

∑
i6=j

ˆ (
K2

(
x−Xi

b

)
− b3ν (x, b)

)(
K2

(
x−Xj

b

)
− b3ν (x, b)

)
dx

=
2

N (N − 1)

∑
i6=j

Rb (Xi, Xj)
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is a U-statistic with symmetric kernel Rb (x, z) (compare Chapter 5 of

Serfling (1980)). First, we consider WN (b). Substituting u =
x−Xj
b

, we

get

Qb (Xj) =

ˆ (
K2 (u)− b3ν (Xj + bu, b)

)2
du ≤ C, 1 ≤ j ≤ N,

due to boundedness of K2 and ν. Applying Hoeffding’s inequality (com-

pare the lemma in Section 2.3.2 of Serfling (1980) for the one-sided ver-

sion), we get for any sequence aN > 0

pr (aN |WN (b)− EWN (b)| ≥ ε) ≤ 2 · exp

(
− 2Nε2

a2
N4C2

)
→ 0

if N
a2N
→ ∞, and, then, WN (b) − EWN (b) = op

(
1
aN

)
. In particular, for

aN =
√
N

logN
, we get

1

Nb5
(WN (b)− EWN (b)) = op

(
logN

N
3
2 b5

)
.

For the second component UN (b), we decompose as in the proof of

Lemma 5, a),

Rb (X1, X2) = b

{
L2

(
X1 −X2

b

)
− EL2

(
X1 −X2

b

)}
−Rb (X1)−Rb (X2)

with L2 (z) = K2 ∗K2 (z) and

Rb (u) =

ˆ
b3ν (x, b)

{
K2

(
x− u
b

)
− b3ν (x, b)

}
dx

=

ˆ
b4ν (u+ bz, b)K2 (z) dz +O

(
b6
)

=

ˆ
b4λ′′ (u+ bz)K2 (z) dz +O

(
b6
)

substituting z = x−u
b

, using boundedness of ν (x, b) and the expansion

of ν (x, b) from a), where the latter implies ν (x, b) = λ′′ (x) + O (b2)

uniformly in x. Using a Taylor expansion of λ′′ and uniform boundedness

of λ(4)

Rb (u) = b4

ˆ
K2 (z)

{
λ′′ (u) + bzλ′′′ (u) +O

(
b2
)}

dz +O
(
b6
)

= O
(
b6
)
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as, from Assumption 11,
´
K2 (z) dz = 0 =

´
zK2 (z) dz. Hence, 1

b6
Rb (u)

is bounded, and we also have ERb (X1) = 0. Using again Hoeffding’s

inequality, we have with
∣∣ 1
b6
Rb (u)

∣∣ ≤ c and aN > 0

pr

(
aN

∣∣∣∣∣ 1

Nb6

N∑
j=1

Rb (Xj)

∣∣∣∣∣ > ε

)
≤ 2 · exp

{
− 2Nε2

a2
N4c2

}
and with aN =

√
N

logN

1

Nb6

N∑
j=1

Rb (Xj) = op

(
logN√
N

)
.

Hence, we have

1

b6
UN (b) =

1

b6
ŨN (b) + op

(
logN√
N

)
,

where ŨN (b) is also a U-statistic with kernel

Λb (x− z) = b

{
L2

(
x− z
b

)
− EL2

(
X1 −X2

b

)}
.

We set `b (x) = EΛb (x−X2), ς1 = var`b (X1), ς2 = varΛb (X1 −X2).

From Lemma A in Section 5.2.1 of Serfling (1980), we have

varŨN (b) =
4 (N − 2)

N (N − 1)
ς1 +

2

N (N − 1)
ς2.

By the same argument as in the proof of Lemma 3 b),

b

ˆ
L2

(
x− z
b

)
λ (z) dz = b2

ˆ
L2 (u)λ (x+ bu) du = O

(
b6
)

uniformly in x, i.e. |`b (X1)| is a random variable bounded by c · b6 for

some c > 0, which implies ς1 = O (b12). From Lemma 3, b) and c), we

have

ς2 = b2varL2

(
X1 −X2

b

)
≤ b2EL2

2

(
X1 −X2

b

)
= O

(
b4
)

such that we conclude

varŨN (b) = O

(
b12

N

)
+O

(
b4

N2

)
,
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and, therefore, by Chebyshev’s inequality

1

b6
ŨN (b) = Op

(
1√
N

)
+Op

(
1

Nb4

)
and, correspondingly,

1

b6
UN (b) = Op

(
1

Nb4

)
+ op

(
logN√
N

)
.

Together with the bound on WN (b)− EWN (b), we finally conclude

V (b)− EV (b) = Op

(
1

Nb4

)
+ op

(
logN

N
3
2 b5

)
+ op

(
logN√
N

)
.

e) For general random bandwidth h, we decompose V (h) into V (h) =

V̄ (h) +
(
V (h)− V̄ (h)

)
, where

V̄ (h) =
1

Nh6

ˆ ˆ
K2

2

(
x− u
h

)
λ (u) dudx− 1

N

ˆ
ν2 (x, h) dx

=
1

Nh5

ˆ ˆ
K2

2 (v)λ (x− hv) dxdv − 1

N

ˆ
ν2 (x, h) dx.

Note, that for deterministic h = b, we have V̄ (b) = EV (b). Using the

same expansion as in c), we also have for random h

V̄ (h) =
1

Nh5

ˆ
K2

2 (v) dv +Op

(
1

Nh4

)
.

As h satisfies h = bN (1 + op (N−γ)), we have for m ≥ 1

hm = bmN
(
1 + op

(
N−γ

))m
= bmN

(
1 + op

(
N−γ

))
1

hm
=

1

bmN (1 + op (N−γ))
=

1 + op (N−γ)

bmN

using a Taylor expansion of 1
1+z

for the last argument. We conclude

V̄ (h) =
1

Nb5
N

ˆ
K2

2 (v) dv
(
1 + op

(
N−γ

))
+Op

(
1

Nb4
N

)
+ op

(
N−γ

Nb4
N

)
=

1

Nb5
N

ˆ
K2

2 (v) dv + op

(
N−γ

Nb5
N

)
+Op

(
1

Nb4
N

)
.
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It remains to study V0 (h) = V (h)− V̄ (h). We decompose it into

V0 (h) = V0 (bN) + (V0 (h)− V0 (bN)) ,

where, from d),

V0 (bN) = V (bN)−EV (bN) = Op

(
1

Nb4
N

)
+op

(
logN

N
3
2 b5
N

)
+op

(
logN√
N

)
.

We split

V0 (h)−V0 (bN) = (V0 (h)− V0 (bN))
(
1{|h−bN |≥bNN−γ} + 1{|h−bN |<bNN−γ}

)
.

As |h− bN | = bN4N with 4N = op (N−γ), we have for all ε > 0, aN > 0

pr
(
aN |V0 (h)− V0 (bN)|1{|h−bN |≥bNN−γ} > ε

)
≤ pr

(
1{|h−bN |≥bNN−γ} = 1

)
= pr

(
bN4N ≥ bNN

−γ)
= pr (Nγ4N ≥ 1)→ 0,

as Nγ4N = op (1). Hence,

(V0 (h)− V0 (bN)) 1{|h−bN |≥bNN−γ} = op

(
1

aN

)
.

As in the proof of Proposition 4, b), we approximate h by h̄ ∈ BN,τ ,

where BN,τ is a grid of finitely many points which are N−τ apart for

some suitably large τ > 0. Let

Bγ
N,τ = BN,τ ∩

(
bN − bNN−γ −N−τ , bN + bNN

−γ +N−τ
)
.

Note that Bγ
N,τ is part of an interval of length bounded by cBbN for some

constant cB > 0 and large enough N , such that the number of points in

Bγ
N,τ satisfies

∣∣Bγ
N,τ

∣∣ ≤ cBN
τbN .
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If |h− bN | < bNN
−γ and as

∣∣h− h̄∣∣ ≤ N−τ , we have h̄ ∈ Bγ
N,τ , and

|V0 (h)− V0 (bN )|1{|h−bN |<bNN−γ}

≤
∣∣V0 (h)− V0

(
h̄
)∣∣1{|h−bN |<bNN−γ} + sup

b∈BγN,τ
|V0 (b)− V0 (bN )|

≤ sup
{∣∣V0 (b)− V0

(
b̄
)∣∣ ;

b, b̄ ∈
[
bN − bNN−γ −N−τ , bN + bNN

−γ +N−τ
]
,
∣∣b− b̄∣∣ ≤ N−τ}

+ sup
b∈BγN,τ

|V0 (b)− V0 (bN )|

= s1 + s2.

For τ,N large enough,

s1 ≤ sup
{∣∣V0 (b)− V0

(
b̄
)∣∣ ; b, b̄ ≥ bN

(
1− 2N−γ

)
,
∣∣b− b̄∣∣ ≤ N−τ

}
≤ 2L · N−τ

b8
N (1− 2N−γ)8 =

2L

N τb8
N

(
1 +O

(
N−γ

))
using

∣∣V0 (b)− V0

(
b̄
)∣∣ ≤ ∣∣V (b)− V

(
b̄
)∣∣+E

∣∣V (b)− V
(
b̄
)∣∣ and the Lip-

schitz property of V (b) from Lemma 4 below.

For getting a bound on s2, we decompose as in d)

V (b) =
1

Nb5
WN (b) +

N − 1

2Nb6
UN (b)

and, as EUN (b) = 0,

V0 (b) =
1

Nb5
(WN (b)− EWN (b)) +

N − 1

2Nb6
UN (b)

=
1

Nb5
WN,0 (b) +

N − 1

2Nb6
UN (b) .

Using
∣∣Bγ

N,τ

∣∣ ≤ cBN
τbN and again Hoeffding’s inequality as in d), we get

with aN =
√
N

logN

pr

(
aN sup

b∈BγN,τ
|WN,0 (b)| ≥ ε

)
≤ cBN

τbN sup
b∈BγN,τ

pr (aN |WN,0 (b)| ≥ ε)

≤ 2cBN
τbN exp

(
− 2Nε2

a2
N4c2

)
= 2cBbN exp

(
τ logN − ε2

2c2
(logN)2

)
→ 0
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for N →∞ such that

sup
b∈BγN,τ

|WN,0 (b)| = op

(
logN√
N

)
and the first component of s2 is

sup
b∈BγN,τ

∣∣∣∣ 1

Nb5
WN,0 (b)− 1

Nb5
N

WN,0 (bN)

∣∣∣∣
≤ sup

b∈BγN,τ

1

Nb5
|WN,0 (b)|+ 1

Nb5
N

|WN,0 (bN)|

≤ op

(
logN

N
3
2 b5
N

)

as, for b ∈ Bγ
N,τ , b ≥ bN (1−N−γ)−N−τ and, hence, for large enough τ ,

1

b5
≤ 1

(bN (1−N−γ)−N−τ )5

=
1

b5
N

(1 + o (1)) .

Finally, we have to study

N − 1

2N
sup

b∈BγN,τ

∣∣∣∣ 1

b6
UN (b)− 1

b6N
UN (bN )

∣∣∣∣
≤ N − 1

2N
sup

b∈BγN,τ

1

b6
|UN (b)− UN (bN )|+ N − 1

2N
sup

b∈BγN,τ

∣∣∣∣ 1

b6
− 1

b6N

∣∣∣∣ |UN (bN )|

=
(N − 1)

2N

(1 +O (N−γ))

b6N
sup

b∈BγN,τ
|UN (b)− UN (bN )|

+
(N − 1)

2N

(1 +O (N−γ))

b6N
|UN (bN )|

as, for τ,N large enough, bN (1− 2N−γ) ≤ b ≤ bN (1 + 2N−γ) for all

b ∈ Bγ
N,τ .

From d), the second term satisfies

(N − 1)

2N

(1 +O (N−γ))

b6
N

|UN (bN)| = Op

(
1

Nb4
N

)
+ op

(
logN√
N

)
.
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For the first term, we use from Lemma 5 with q ≥ 1, aN = bN (1 + 2N−γ),

αN = bN (1− 2N−γ) = aN

(
1− 4N−γ

1+2N−γ

)
= aN (1−O (N−γ))

E
(
UN (b)− UN

(
b̄
))2q ≤ c

(
bN
N

)2q (
1 + 2N−γ

)2q
N−2qγ

≤ c̄

(
bN
N

)2q

N−2qγ

for some suitable constant c̄, not depending on N , and all b, b̄ ∈ [αN , aN ].

Following Engel et al. (1994), we choose an arbitrary ρ > 0, to get

pr

(
N1+γb5

N

1

b6
N

sup
b∈BγN,τ

|UN (b)− UN (bN)| ≥ εNρ

)

≤ cBN
τbN sup

b∈BγN,τ
pr

((
N1+γ

bN

)2q

|UN (b)− UN (bN)|2q ≥ ε2qN2qρ

)

≤ cBN
τbNN

−2qρ 1

ε2q
sup
b∈BγN,τ

E
(
N1+γ

bN
|UN (b)− UN (bN)|

)2q

≤ cB c̄

ε2q
N τ−2qρbN → 0

if q is chosen such that 2qρ ≥ τ . For the second inequality, we have

used Markov’s inequality, and for the third one the bound derived from

Lemma 5. We conclude for arbitrarily small ρ > 0

1

b6
N

sup
b∈BγN,τ

|UN (b)− UN (bN)| = op

(
Nρ

N1+γb5
N

)
.

In particular, this term is of order op

(
N−

γ
2

Nb5N

)
for ρ ≤ γ

2
.

Together with bound on 1
Nb5N
|WN,0 (b)−WN,0 (bN)| and on 1

b6N
|UN (bN)|,

we finally conclude

s2 = sup
b∈BγN,τ

|V0 (b)− V0 (bN)|

=
1

Nb5
N

{
op

(
logN√
N

)
+ op

(
N−

γ
2

)
+Op (bN)

}
+ op

(
logN√
N

)
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and we get the same asymptotic rate for V0 (h)− V0 (bN) as, for suitably

large τ , s1 is asymptotically negligible compared to s2, and

(V0 (h)− V0 (bN)) 1{|h−bN |≥bNN−γ}

is asymptotically negligible too.

Together with the expansions of V̄ (h) and V0 (bN), we conclude

V (h) = V̄ (h) + V0 (bN) + (V0 (h)− V0 (bN))

=
1

Nb5
N

ˆ
K2

2 (v) dv +Op

(
1

Nb4
N

)
+ op

(
N−

γ
2

Nb5
N

)
+op

(
logN

N
3
2 b5
N

)
+ op

(
logN√
N

)
.

f) It remains to discuss M (h) which follows the same line of arguments as

for V (h) with some simplification. First note that for deterministic b

EM (b) = 0

as ν (x, b) = Eλ̂′′ (x, b). For studying the remainder termM (b)−EM (b) =

M (b) as in d), we write

M (b) =
1

Nb3

ˆ N∑
j=1

{
K2

(
x−Xj

b

)
− b3ν (x, b)

}
ν (x, b) dx

=
1

N

N∑
j=1

Rb (Xj)

as a mean of i.i.d. random variables with mean 0 by the definition of

ν (x, b). Substituting x−z
b

= u, we get

Rb (z)

=
1

b2

ˆ {
K2 (u)− b3ν (z + bu, b)

}
ν (z + bu, b) du

=
1

b2

ˆ {
K2 (u)− b3λ′′ (z + bu)−O

(
b5
)} (

λ′′ (z + bu) +O
(
b2
))

du

=
1

b2

ˆ {
K2 (u)− b3λ′′ (z)− b4uλ′′′ (z) +O

(
b5
)} (

λ′′ (z) + buλ′′′ (z) +O
(
b2
))

du

=
1

b2

ˆ {
K2 (u) +O

(
b3
)} {

λ′′ (z) + buλ′′′ (z) +O
(
b2
)}

du

= O (1)
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using the expansion of ν (x, b) from a), a Taylor expansion of λ (x) and

for the last step
´
K2 (u) du = 0 =

´
uK2 (u) du from Assumption 11.

Hence, |Rb (z)| is uniformly bounded in z and b by some constant, say r.

Therefore, we may use Hoeffding’s inequality for means of i.i.d. bounded

random variables (compare, e.g., the lemma in Section 2.3.2 of Serfling

(1980) for the one-sided version) and get for aN > 0

pr (aN |M (b)| > ε) = pr

(
|M (b)| ≥ ε

aN

)
≤ 2 exp

{
− Nε2

4r2a2
N

}
→ 0

if N
a2N
→ ∞, and in that case, we have aNM (b) = op (1) or M (b) =

op

(
1
aN

)
.

It remains to study M (h) for random h, which can be traced back to

the behaviour of M (bN) as for V (h) in e). We decompose

M (h) = M (bN) + (M (h)−M (bN))

and then split the second term into

(M (h)−M (bN))
(
1{|h−bN |≥bNN−γ} + 1{|h−bN |<bNN−γ}

)
.

By the same argument as in c), the first term is asymptotically negligible.

For the second term, we again approximate h by h̄ ∈ Bγ
N,τ , and we get

for aN =
√
N

logN
, for which N

a2N
= (logN)2 →∞ holds,

aN |M (h)−M (bN )|1{|h−bN |<bNN−γ}

≤ aN sup
{∣∣M (b)−M

(
b̄
)∣∣ ;

b, b̄ ∈
[
bN − bNN−γ −N−τ , bN + bNN

−γ +N−τ
]
,
∣∣b− b̄∣∣ ≤ N−τ}

+aN sup
b∈BγN,τ

|M (b)|+ aN |M (bN )| .

From the discussion above

aNM (bN) = op (1) , i.e. M (bN) = op

(
logN√
N

)
.
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Using again Hoeffding’s inequality and the same argument as for the

supremum of |WN,0 (b)| as in e),

pr

(
aN sup

b∈BγN,τ
|M (b)| > ε

)
≤ 2cBbN exp

{
τ logN − ε2

2r2
(logN)2

}
→ 0

i.e.

sup
b∈BγN,τ

|M (b)| = op

(
1

aN

)
= op

(
logN√
N

)
too. Finally, we conclude with the help of Corollary 10 below, that for∣∣b− b̄∣∣ ≤ N−τ with b, b̄ ≥ bN (1− 2N−γ)

aN
∣∣M (b)−M

(
b̄
)∣∣ ≤ L

√
N

logN

N−τ

b5
N

(
1 +O

(
N−γ

))
→ 0

for large enough τ . Combining all terms, we get for N →∞

M (h) = op

(
logN√
N

)
.

g) Combining the expansions for E (h), M (h), V (h), we finally have

ˆ (
λ̂′′ (x, h)

)2

dx

=

ˆ
(λ′′ (x))

2
dx+ VK

ˆ
λ′′ (x)λ(4) (x) dxb2

N + o
(
b2
N

)
+ op

(
b2
NN

−γ)
+

1

Nb5
N

ˆ
K2

2 (u) du+Op

(
1

Nb4
N

)
+ op

(
N−

γ
2

Nb5
N

)
+ op

(
logN

N
3
2 b5
N

)

+op

(
logN√
N

)
.

Lemma 3. Let the assumptions of Proposition 6 be fulfilled, and set

L2 (u) = K2 ∗K2 (u) =

ˆ
K2 (v)K2 (u− v) dv.

a)
´
ukL2 (u) du = 0 for 0 ≤ k ≤ 3,

´
u4L2 (u) du = 6

(´
u2K2 (u) du

)2
=

24.
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b) EL2

(
X1−X2

b

)
= O (b5).

c) EL2
2

(
X1−X2

b

)
= O (b2).

Proof. a) From Assumption 11, we have, using integration by parts for the

last two terms,
´
K2 (u) du = K ′ (1) − K ′ (−1) = 0,

´
uK2 (u) du =

−
´
K ′ (u) du = K (−1) −K (1) = 0. Substituting w = u − v, we then

have

ˆ
L2 (u) du =

ˆ ˆ
K2 (v)K2 (u− v) dvdu =

ˆ ˆ
K2 (v)K2 (w) dwdv = 0

ˆ
uL2 (u) du =

ˆ ˆ
uK2 (v)K2 (u− v) dvdu

=

ˆ ˆ
(v + w)K2 (v)K2 (w) dwdv = 0

ˆ
u2L2 (u) du =

ˆ ˆ
(v + w)2K2 (v)K2 (w) dwdv

=

ˆ
w2K2 (w) dw

ˆ
K2 (v) dv +

ˆ
v2K2 (v) dv

ˆ
K2 (w) dw

+2

ˆ
wK2 (w) dw

ˆ
vK2 (v) dv

= 0

and, analogously, as all factors of the form
´
K2 (v) dv or

´
vK2 (v) dv

vanish,

ˆ
u3L2 (u) du =

ˆ ˆ
(v + w)3K2 (v)K2 (w) dwdv = 0

ˆ
u4L2 (u) du =

ˆ ˆ
(v + w)4K2 (v)K2 (w) dwdv

= 6

ˆ
v2K2 (v) dv

ˆ
w2K2 (w) dw

and, again by integration by parts, using Assumption 11,

ˆ
u2K2 (u) du = −2

ˆ
uK ′ (u) du = 2

ˆ
K (u) du = 2.
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b) By a Taylor expansion up to order 4, we have for 0 ≤ θ ≤ b,

λ (z + bu) =
3∑
`=0

b`λ(`) (z)
1

`!
u` + b4λ(4) (z + θu)

1

4!
u4

=
3∑
`=0

b`λ(`) (z)
1

`!
u` +O

(
b4
)

uniformly in u ∈ [−2, 2], 0 ≤ z ≤ 1, as λ(4) is bounded. Substituting

u = x−z
b

, we have, using a) for the last equality,

EL2

(
X1 −X2

b

)
=

ˆ ˆ
L2

(
x− z
b

)
λ (x)λ (z) dxdz

= b

ˆ ˆ
L2 (u)λ (z + bu) duλ (z) dz

= b

ˆ
λ (z)

{
3∑
`=0

b`λ(`) (z)
1

`!

ˆ
u`L2 (u) du+O

(
b4
)}

dz

= O
(
b5
)
.

c) Substituting u = x
b
, v = z

b
, we have for some C > 0,

EL2
2

(
X1 −X2

b

)
=

ˆ ˆ
L2

2

(
x− z
b

)
λ (x)λ (z) dxdz

= b2

ˆ ˆ
L2

2 (u− v)λ (bu)λ (bv) dudv

≤ C · b2 max
w

L2
2 (w)

(
max
u

λ (u)
)2

= O
(
b2
)

as λ is bounded and L2 has a bounded support.

Lemma 4. Under the assumptions of Proposition 6,

∣∣V (b)− V
(
b̄
)∣∣ ≤ L ·

∣∣b− b̄∣∣
b8
m

, 0 < b, b̄ < 1,

for some suitable constant L > 0 and bm = min
(
b, b̄
)
.
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Proof. Throughout the proof, C denotes a generic constant which may assume

different values. We write

V (b) =

ˆ (
1

b3
G (x, b)

)2

dx,G (x, b) =
1

N

N∑
j=1

gj (x, b)

gj (x, b) = K2

(
x−Xj

b

)
− b3ν (x, b) .

Due to Lipschitz continuity of λ,

∣∣b3ν (x, b)− b̄3ν
(
x, b̄
)∣∣

=

∣∣∣∣b ˆ K2 (u)λ (x− bu) du− b̄
ˆ
K2 (u)λ

(
x− b̄u

)
du

∣∣∣∣
≤ C ·

∣∣b− b̄∣∣+ b̄

∣∣∣∣ˆ K2 (u)
{
λ (x− bu)− λ

(
x− b̄u

)}
du

∣∣∣∣
≤ C ·

∣∣b− b̄∣∣
as K2 is bounded and b̄ ≤ 1. Due to Lipschitz continuity of K2∣∣∣∣K2

(
x−Xj

b

)
−K2

(
x−Xj

b̄

)∣∣∣∣ ≤ C |x−Xj|
∣∣∣∣ b̄− bbb̄

∣∣∣∣ ≤ C ·
∣∣b− b̄∣∣
b2
m

as x,Xj ∈ [0, 1]. Hence, uniformly in j and x

∣∣gj (x, b)− gj
(
x, b̄
)∣∣ ≤ C ·

∣∣b− b̄∣∣
b2
m

and, then, ∣∣G (x, b)−G
(
x, b̄
)∣∣ ≤ C ·

∣∣b− b̄∣∣
b2
m

.

Note that K2 and ν are bounded, such that G (x, b) is bounded too, such that

we also have

∣∣G2 (x, b)−G2
(
x, b̄
)∣∣ =

∣∣G (x, b)−G
(
x, b̄
)∣∣ ∣∣G (x, b) +G

(
x, b̄
)∣∣

≤ C ·
∣∣b− b̄∣∣
b2
m

.
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Finally, we get

∣∣V (b)− V
(
b̄
)∣∣ ≤ 1

b6

ˆ ∣∣G2 (x, b)−G2
(
x, b̄
)∣∣ dx

+

∣∣∣∣ 1

b6
− 1

b̄6

∣∣∣∣ ˆ G2
(
x, b̄
)

dx

≤ 1

b6
C

∣∣b− b̄∣∣
b2
m

+ C

∣∣b− b̄∣∣
b7
m

≤ C ·
∣∣b− b̄∣∣
b8
m

using the mean-value theorem for the function 1
b6

.

Corollary 10. Under the assumptions of Lemma 4

∣∣M (b)−M
(
b̄
)∣∣ ≤ L ·

∣∣b− b̄∣∣
b5
m

, 0 < b, b̄ ≤ 1

for some suitable L > 0.

Proof. As ν (x, b) is uniformly bounded in x, b, which follows from the proof of

Proposition 6, a), using boundedness of K and λ′′, we get from

M (b) =

ˆ
1

b3
G (x, b) ν (x, b) dx

with G as in the proof Lemma 4

∣∣M (b)−M
(
b̄
)∣∣ ≤ ˆ ∣∣∣∣ 1

b3
G (x, b)− 1

b̄3
G
(
x, b̄
)∣∣∣∣ ν (x, b) dx

+

ˆ
1

b̄3
G
(
x, b̄
) ∣∣ν (x, b)− ν

(
x, b̄
)∣∣ dx

≤ C ·
∣∣b− b̄∣∣
b5
m

+ C
1

b3
m

≤ L ·
∣∣b− b̄∣∣
b5
m

,

where, for the first term, we use the same arguments as in the proof of Lemma

4 and for the second term boundedness of G (x, b).

Lemma 5. Let the assumptions of Proposition 6 be satisfied. Let for some

aN > 0 with a4
N = O (N−γ) and NaN → ∞, the bandwidths b, b̄ satisfying

αN = aN (1−O (N−γ)) < b, b̄ < aN . Then, for q ≥ 1 and some c > 0

E
(
UN (b)− UN

(
b̄
))2q ≤ c

(aN
N

)2q

N−2qγ.
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Proof. The proof follows the same line of argument as the treatment of S11 in

the proof of Lemma 3.1 of Hall and Marron (1987). Recall that

UN (b) =
2

N (N − 1)

∑
i 6=j

Rb (Xi, Xj)

with

Rb (X1, X2)

=

ˆ {
K2

(
x−X1

b

)
− EK2

(
x−X1

b

)}{
K2

(
x−X2

b

)
− EK2

(
x−X2

b

)}
dx.

As X1, X2 are independent, ERb (X1, X2) = 0, and we even have

E {Rb (X1, X2) |X2} = 0 = E {Rb (X1, X2) |X1} .

a) Let L2 (z) =
´
K2 (u)K2 (z − u) du be the convolution of K2 with itself.

As K2 has support [−1,+1], L2 has support [−2,+2]. Note that, using

the same notation as in the proof of Proposition 6,

EK2

(
x−X1

b

)
= b3Eλ̂′′ (x, b) = b3ν (x, b) .

Moreover, substituting z = x−v
b

and using symmetry of K2

ˆ
K2

(
x− u
b

)
K2

(
x− v
b

)
dx = b

ˆ
K2

(
z − u− v

b

)
K2 (z) dz = bL2

(
u− v
b

)
.

Due to independence of X1, X2,

bEL2

(
X1 −X2

b

)
=

ˆ
EK2

(
x−X1

b

)
EK2

(
x−X2

b

)
dx = b6

ˆ
ν2 (x, b) dx.

Writing

Rb (u) =

ˆ
b3ν (x, b)

{
K2

(
x− u
b

)
− b3ν (x, b)

}
dx

which satisfies ERb (X1) = 0, we get the decomposition

Rb (X1, X2) = b

{
L2

(
X1 −X2

b

)
− EL2

(
X1 −X2

b

)}
−Rb (X1)−Rb (X2)

= Λb (X1 −X2)−Rb (X1)−Rb (X2) .
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b) Using Lipschitz continuity of K2 and X1, X2 ∈ [0, 1], we have for some

constants c, c̃∣∣∣∣bL2

(
X1 −X2

b

)
− b̄L2

(
X1 −X2

b̄

)∣∣∣∣
≤
ˆ ∣∣∣∣K2

(
x−X1

b

)
−K2

(
x−X1

b̄

)∣∣∣∣ · ∣∣∣∣K2

(
x−X2

b

)∣∣∣∣dx
+

ˆ ∣∣∣∣K2

(
x−X1

b̄

)∣∣∣∣ · ∣∣∣∣K2

(
x−X2

b

)
−K2

(
x−X2

b̄

)∣∣∣∣dx
≤ c

∣∣∣∣1b − 1

b̄

∣∣∣∣ {ˆ |x−X1|
∣∣∣∣K2

(
x−X2

b

)∣∣∣∣ dx+

ˆ
|x−X2|

∣∣∣∣K2

(
x−X1

b̄

)∣∣∣∣dx}
≤ c̃

∣∣∣∣1b − 1

b̄

∣∣∣∣ (b+ b̄
)
≤ 2c̃

aN
α2
N

∣∣b− b̄∣∣
substituting z = x−X2

b
respectively z = x−X1

b̄
. Noting that L2

(
X1−X2

b

)
=

0 for |X1 −X2| ≥ 2aN if b ≤ aN , we also have∣∣∣∣bL2

(
X1 −X2

b

)
− b̄L2

(
X1 −X2

b̄

)∣∣∣∣ ≤ 2c̃
aN
α2
N

∣∣b− b̄∣∣·1[−2,+2]

(
X1 −X2

aN

)
.

Note that from substituting u = x
aN

, v = z
aN

E1[−2,+2]

(
X1 −X2

aN

)
=

ˆ ˆ
1[−2,+2]

(
x− z
aN

)
λ (x)λ (z) dxdz

= a2
N

ˆ ˆ
1[−2,+2] (u− v)λ (aNu)λ (aNv) dudv = O

(
a2
N

)
as λ is bounded. Hence, we have

|Λb (X1 −X2)− Λb̄ (X1 −X2)| ≤ 2c̃
aN
α2
N

∣∣b− b̄∣∣ {1[−2,+2]

(
X1 −X2

aN

)
+O

(
a2
N

)}
.

c) From the proof of Proposition 6, a), we have

∣∣ν (x, b)− ν
(
x, b̄
)∣∣ =

1

2
VK
∣∣λ(4) (x)

∣∣ · ∣∣b2 − b̄2
∣∣+ o

(
a2
N

)
for b, b̄ ≤ aN , and therefore, with some constant c > 0, using b2 − b̄2 =(
b− b̄

) (
b+ b̄

)
,

∣∣ν (x, b)− ν
(
x, b̄
)∣∣ ≤ caN

∣∣b− b̄∣∣+ o
(
a2
N

)
.
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For getting an upper bound on |Rb (X1)−Rb̄ (X1)|, we decompose

ˆ ∣∣∣∣b3ν (x, b)K2

(
x−X1

b

)
− b̄3ν

(
x, b̄
)
K2

(
x−X1

b̄

)∣∣∣∣ dx
≤ a3

N

ˆ ∣∣ν (x, b)− ν
(
x, b̄
)∣∣ ∣∣∣∣K2

(
x−X1

b

)∣∣∣∣ dx
+a3

N

ˆ ∣∣ν (x, b̄)∣∣ ∣∣∣∣K2

(
x−X1

b

)
−K2

(
x−X1

b̄

)∣∣∣∣ dx
≤

{
ca4

N

∣∣b− b̄∣∣+ o
(
a5
N

)} ˆ ∣∣∣∣K2

(
x−X1

b

)∣∣∣∣ dx
+a3

N

ˆ
c̄ |x−X1| ·

∣∣∣∣1b − 1

b̄

∣∣∣∣ dx
≤ c̃a5

N

∣∣b− b̄∣∣+ o
(
a6
N

)
+ c̄

a3
N

α2
N

∣∣b− b̄∣∣
= c̄

a3
N

α2
N

∣∣b− b̄∣∣+ o
(
a6
N

)
with suitable constants c, c̄, c̃, where we have used boundedness of ν (x, b),

x, X1, Lipschitz continuity of K2 and, for the last inequality, substituted

u = x−X1

b
. Note, from αN ≤ b, b̄ ≤ aN , aN − αN = aNO (N−γ), the first

term in the second last line is o (a6
N) too. The same inequality also holds

for the expectations, such that we finally get

|Rb (X1)−Rb̄ (X1)| ≤ c̄
a3
N

α2
N

∣∣b− b̄∣∣+ o
(
a6
N

)
.

Combining this with the inequality for Λb (X1 −X2) from b), we finally

get for some c > 0

|Rb (X1, X2)−Rb̄ (X1, X2)|

≤ c
aN
α2
N

∣∣b− b̄∣∣ {1[−2,+2]

(
X1 −X2

aN

)
+O

(
a2
N

)}
+ o

(
a6
N

)
= O

(
N−γ

){
1[−2,+2]

(
X1 −X2

aN

)
+O

(
a2
N

)}
as
∣∣b− b̄∣∣ ≤ aN−αN = aNO (N−γ), 1

α2
N

= 1
a2N

(1 +O (N−γ)) and o (a6
N) =

a4
No (a2

N) = o (a2
NN

−γ).
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d) Using the abbreviation ρN = 2
N(N−1)

, we write

UN (b)− UN
(
b̄
)

= ρN
∑
i 6=j

(Rb (Xi, Xj)−Rb̄ (Xi,Xj)) = ρN
∑
i 6=j

Dij.

Then, for any q ≥ 1,

E
(
UN (b)− UN

(
b̄
))2q

= ρ2q
N

∑
i1 6=j1,...,i2q 6=j2q

EDi1j1 · · ·Di2qj2q .

Following Hall and Marron (1987), we rearrange the sum with regard to

the number m of different indices in {i1, j1, . . . , i2q, j2q}, m = 2, . . . , 4q.

In the m-th group, there are at most cqN
m terms for some constant cq

depending only on q. Note also, that in the groups m = 2q + 1, . . . 4q,

all expectations are 0, as, in this case, at least one index, say w.l.o.g. i1,

only appears once, and then

EDi1j1 · · ·Di2qj2q = E
(
E
{
Di1j1 |Xj1 , Xi2 , Xj2 , . . . , Xi2q , Xj2q

}
Di2j2 · · ·Di2qj2q

)
= E

(
E {Di1j1 |Xj1}Di2j2 · · ·Di2qj2q

)
= 0

as Di1j1 is independent of Xk, k 6= i1, j1 and E {Rb (Xi, Xj) |Xj} = 0 for

i 6= j.

Using the upper bound on |Dij| from the end of c), we conclude for some

constant c

E
(
UN (b)− UN

(
b̄
))2q ≤ c · ρ2q

N

2q∑
m=2

NmO
(
N−2qγ

)
ηm,

where ηm is a bound on

E
2q∏
`=1

(
1[−2,+2]

(
Xi` −Xj`

aN

)
+O

(
a2
N

))
for i1, j1, . . . , i2q, j2q from group m, i.e. containing exactly m different

indices.

Write 1ij = 1[−2,+2]

(
Xi−Xj
aN

)
, and use 1kij = 1ij for all k ≥ 2. For m = 2,

as i` 6= j`, we only have the case where i1 = · · · = i2q 6= j1 = · · · = j2q,
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and the expectation is

E
(
1i1j1 +O

(
a2
N

))2q
= E1i1j1 +O

(
a2
N

)
· E1i1j1 = O

(
a2
N

)
as, from b), E1ij = O (a2

N) for i 6= j. We conclude η2 = O (a2
N). By

the same argument, the dominant term in the expectation is always

E1i1j1 · · ·1i2qj2q . For given m, this results in an m-fold integral of a prod-

uct of indicator functions 1[−2,+2]

(
zk−z`
aN

)
with respect to λ (z1) , . . . , λ (zm).

Substituting uk = zk
aN

, this becomes amN times the m-fold integral of the

product of indicator functions 1[−2,+2] (uk − u`) with respect to λ (aNu1),. . .,

λ (aNum). As λ is bounded and the indicator functions are bounded with

bounded support, this integral is O (1), and, therefore, ηm = amNO (1),

and we finally have

E
(
UN (b)− UN

(
b̄
))2q

= ρ2q
N

2q∑
m=2

NmamNO
(
N−2qγ

)
≤ ρ2q

N

2q∑
m=0

(NaN)mO
(
N−2qγ

)
= ρ2q

NO
(
N−2qγ

) (NaN)2q+1 − 1

NaN − 1

from the formula of the geometric sum. As ρN = O
(

1
N2

)
and NaN →∞,

the right-hand side is
a2qN
N2qO (N−2qγ).

4.2 The two-dimensional case

We now study the analogous two-dimensional problems where we have to derive

asymptotic expansions for

Λ̂i` =

ˆ ˆ
λ̂ii (x1, x2, H) λ̂`` (x1, x2, H) dx1dx2
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for i, ` = 1, 2 with random diagonal bandwidth matrix H. We need the follow-

ing assumptions:

Assumption 12. λ is 4-times continuously differentiable on [0, 1]2, and the

partial derivatives of order 4 are Hölder continuous with some exponent β > 0.

The kernel K has to satisfy the previous assumptions 1, 2, 4, 7, 8, 9, which

we state again as following:

Assumption 13. We make the following assumption for the kernel:

i) K(u1, u2) is a non-negative kernel function on [−1,+1]2, integrating to

1.

ii) K is twice continuously differentiable, and the second-order derivatives

Kii (u1, u2) = ∂2

∂u2i
K (u1, u2), i = 1, 2, are Lipschitz continuous.

iii) K and its first-order derivatives Ki (u) = ∂
∂ui
K (u) satisfy the symmetry

conditions

a) K (±1, u2) = K (u1,±1) = 0,

Ki (±1, u2) = Ki (u1,±1) = 0, i = 1, 2, for all −1 ≤ u1, u2 ≤ 1.

b)
´
uiK (u) dui = 0 for all uj, j 6= i, i = 1, 2.

c)
´ ´

u2
iK (u) du1du2 = VK, i = 1, 2,

´ ´
u3
iK (u) du1du2 = 0, i =

1, 2.

Note that from iii)a), we in particular have

ˆ ˆ
K11 (u1, u2) du1du2 =

ˆ
(K1 (+1, u2)−K1 (−1, u2)) du2 = 0

and, analogously,
´ ´

K22 (u1, u2) du1du2 = 0 too.
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Theorem 4. Let Assumptions 12 and 13 be fulfilled. Let h1 and h2 be se-

quences of random bandwidths which can be approximated by sequences of de-

terministic bandwidths converging to 0 with the same rate such that for some

0 < bN → 0 (N →∞)

hi = βibN
(
1 + op

(
N−γ

))
for some γ ≥ 0.

Then, for i = 1, 2

Λ̂ii =

ˆ ˆ
λ̂2
ii (x1, x2, H) dx1dx2

=

ˆ ˆ
λ2
ii (x1, x2) dx1dx2 + b2

NVK

ˆ ˆ
λii (x1, x2)

2∑
`=1

β2
`

∂2

∂x2
`

λii (x1, x2) dx1dx2

+
1

Nβ1β2β4
i b

6
N

ˆ ˆ
K2
ii (u) du1du2 +RN,ii

and

Λ̂12 =

ˆ ˆ
λ̂11 (x1, x2, H) λ̂22 (x1, x2, H) dx1dx2

=

ˆ ˆ
λ11 (x1, x2)λ22 (x1, x2) dx1dx2

+b2N
VK
2

ˆ ˆ 2∑
`=1

β2
`

{
λ11 (x1, x2)

∂2

∂x2`
λ22 (x1, x2) + λ22 (x1, x2)

∂2

∂x2`
λ11 (x1, x2)

}
dx1dx2

+
1

Nβ3
1β

3
2b

6
N

ˆ ˆ
K11 (u)K22 (u) du1du2 +RN,12,

where the remainder terms RN,i`, i, ` = 1, 2, are all of the order

RN,i` = o
(
b2
N

)
+op

(
b2
NN

−γ)+Op

(
1

Nb5
N

)
+op

(
N−γ

Nb6
N

)
+op

(
logN

N
3
2 b6
N

)
+op

(
logN√
N

)
.

Note that the transition from dimension 1 to 2 changes the rate of the variance

part from (Nb5
N)
−1

to (Nb6
N)
−1

whereas the rate of the bias part of the expansion

remains b2
N . This is in line with well-known other results on kernel estimates.

Proof. As the proof is completely analogous to that of Proposition 6, we only

formulate the main steps. H, B denote diagonal bandwidths matrices with
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random entries h1, h2 respectively with deterministic entries b1, b2. From

Condition 2, hi
bN
−→
p
βi > 0 for N → ∞. We also consider only deterministic

sequences of bandwidths sharing this asymptotic behaviour, i.e. b1, b2 have the

same rate which is given by bN . In particular, we frequently use O
(
bk1b

`
2

)
=

O
(
bk+`
N

)
, k, ` ≥ 0.

We introduce

νi (x1, x2, H) =
1

h2
i

ˆ ˆ
Kii (u1, u2)λ (x1 − h1u1, x2 − h2u2) du1du2, i = 1, 2

such that for deterministic b1, b2

νi (x1, x2, B) = Eλ̂ii (x1, x2, B) .

We first consider the integral of λ̂2
11 (x1, x2, H), and split it into

ˆ ˆ
λ̂2

11 (x1, x2, H) dx1dx2 = E (H) + 2M (H) + V (H)

with

E (H) =

ˆ ˆ
ν2

1 (x1, x2, H) dx1dx2,

M (H) =

ˆ ˆ
ν1 (x1, x2, H)

{
λ̂11 (x1, x2, H)− ν1 (x1, x2, H)

}
dx1dx2

V (H) =

ˆ ˆ (
λ̂11 (x1, x2, H)− ν1 (x1, x2, H)

)2

dx1dx2.

The treatment of the integral of λ̂2
22 (x1, x2, H) is completely analogous. For

the integral of λ̂11 (x1, x2, H) λ̂22 (x1, x2, H), we discuss it at the end of the

proof.

a) From the proof of Proposition 3, a), we have

ν1 (x1, x2, H) = λ11 (x1, x2) +
1

2
VK

2∑
i=1

h2
i
∂2

∂x2i
λ11 (x1, x2) +Op

(
b2+βN

(
1 + op

(
N−γ

)))
and, then, writing BN for the diagonal matrix with entries β1bN respec-

tively β2bN

ν1 (x1, x2, H)− ν1 (x1, x2, BN ) =
1

2
VK

2∑
i=1

(
h2i − β2

i b
2
N

) ∂2

∂x2i
λ11 (x1, x2) + op

(
b2+βN N−γ

)
= op

(
b2NN

−γ) .
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b) From the boundedness of ν1 (x1, x2, B) and a) we get

E (H) =

ˆ ˆ
λ2
11 (x1, x2) dx1dx2 + VK

ˆ ˆ
λ11 (x1, x2)

2∑
i=1

β2
i
∂2

∂x2i
λ11 (x1, x2) dx1dx2 · b2N

+o
(
b2N
)
+ op

(
b2NN

−γ) .
c) Using ν1 (x1, x2, B) = Eλ̂11 (x1, x2, B), we have for deterministic b1, b2

EV (B) =
1

Nb6
1b

2
2

ˆ ˆ
varK11

(
x1 −X11

b1

,
x2 −X12

b2

)
dx1dx2.

Using again boundedness of ν1 (x1, x2, B) and

EK11

(
x1 −X11

b1

,
x2 −X12

b2

)
= b3

1b2ν1 (x1, x2, B)

we get

EV (B)

=
1

Nb61b
2
2

ˆ ˆ
EK2

11

(
x1 −X11

b1
,
x2 −X12

b2

)
dx1dx2 −

1

N

ˆ ˆ
ν21 (x1, x2, B) dx1dx2

=
1

Nb51b2

ˆ ˆ ˆ ˆ
K2

11 (u1, u2)λ (x1 − b1u1, x2 − b2u2) du1du2dx1dx2 +O

(
1

N

)
=

1

Nb51b2

ˆ ˆ ˆ ˆ
K2

11 (u1, u2)λ (x1, x2) du1du2dx1dx2

+
1

Nb51b2

ˆ ˆ ˆ ˆ
K2

11 (u1, u2)

{
−

2∑
i=1

biuiλi (x1, x2) + o (b1 + b2)

}
du1du2dx1dx2

+O

(
1

N

)
=

1

Nb51b2

ˆ ˆ
K2

11 (u1, u2) du1du2 +O

(
1

Nb5N

)
.

d) To study the asymptotic behaviour of V (B)− EV (B), we decompose

V (B) =
1

Nb5
1b2

WN (B) +
N − 1

2Nb6
1b

2
2

UN (B)

with

WN (B) =
1

Nb1b2

N∑
j=1

ˆ ˆ (
K11

(
x1 −Xj1

b1
,
x2 −Xj2

b2

)
− b31b2ν1 (x1, x2, B)

)2

dx1dx2

=
1

N

N∑
j=1

QB (Xj)
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being a mean of i.i.d. random variables, and

UN (B) =
2

N (N − 1)

∑
i 6=j

ˆ ˆ (
K11

(
x1 −Xi1

b1
,
x2 −Xi2

b2

)
− b31b2ν1 (x1, x2, B)

)
(
K11

(
x1 −Xj1

b1
,
x2 −Xj2

b2

)
− b31b2ν1 (x1, x2, B)

)
dx1dx2

=
2

N (N − 1)

∑
i 6=j

RB (Xi, Xj)

being a U-statistic with kernel RB.

Substituting u1 =
x1−Xj1

b1
, u2 =

x2−Xj2
b2

, u = (u1, u2)>, Bu = (b1u1, b2u2)>

QB (Xj) =

ˆ ˆ (
K11 (u1, u2)− b3

1b2ν1 (Xj +Bu,B)
)2

du1du2 ≤ C, 1 ≤ j ≤ N

and we can again apply Hoeffding’s inequality, to show

1

Nb5
1b2

(WN (B)− EWN (B)) = op

(
logN

N
3
2 b5

1b2

)
= op

(
logN

N
3
2 b6
N

)
.

For the second component, we decompose

RB (X1, X2) = b1b2

{
L2

(
B−1 (X2 −X1)

)
− EL2

(
B−1 (X2 −X1)

)}
−RB (X1)−RB (X2) ,

where L2, RB are defined as

L2 (u) =

ˆ ˆ
K11 (v)K11 (v − u) dv1dv2, u ∈ R2,

RB (u) =

ˆ ˆ
b31b2ν1 (x1, x2, B)

{
K11

(
x1 − u1
b1

,
x2 − u2
b2

)
− b31b2ν1 (x1, x2, B)

}
dx1dx2

=

ˆ ˆ
b41b

2
2ν1 (u+Bz,B)K11 (z) dz1dz2 +O

(
b61b

2
2

)
=

ˆ ˆ
b41b

2
2λ11 (u+Bz)K11 (z) dz1dz2 +O

(
b61b

2
2

)
+O

(
b41b

4
2

)
= b41b

2
2

ˆ ˆ
K11 (z)

{
λ11 (u) +∇>λ11 (u)Bz +O

(
b21 + b22

)}
dz1dz2 +O

(
b8N
)

= O
(
b8N
)
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as from Assumption 11, the integrals of K11 (z) and of zK11 (z) vanish.

Hence, 1
b61b

2
2
RB (u) is bounded, and we also have ERB (X1) = 0, such that

we may again apply Hoeffding’s inequality to get

1

Nb6
1b

2
2

N∑
j=1

RB (Xj) = op

(
logN√
N

)
and

1

b6
1b

2
2

UN (B) =
1

b6
1b

2
2

ŨN (B) + op

(
logN√
N

)
,

where ŨN (B) is the U-statistic with kernel

ΛB (x− z) = b1b2

{
L2

(
B−1 (x− z)

)
− EL2

(
B−1 (X1 −X2)

)}
.

We set `B (x) = EΛB (x−X2), ς1 = var`B (X1), ς2 = varΛB (X1 −X2).

By the same argument as in the proof of Lemma 6, b),

b1b2

ˆ ˆ
L2

(
B−1 (x− z)

)
λ (z) dz1dz2 = b2

1b
2
2

ˆ ˆ
L2 (u)λ (x+Bu) du1du2

= O
(
b8
N

)
uniformly in x, which implies ς1 = O (b16

N ). From Lemma 6, b), c), we

have

ς2 = b2
1b

2
2varL2

(
B−1 (X1 −X2)

)
≤ b2

1b
2
2EL2

2

(
B−1 (X1 −X2)

)
= O

(
b8
N

)
such that from Lemma A in Section 5.2.1 of Serfling (1980)

varŨN (B) = O

(
b16
N

N

)
+O

(
b8
N

N2

)
and

1

b6
1b

2
2

ŨN (B) = Op

(
1√
N

)
+Op

(
1

Nb4
N

)
and, correspondingly,

1

b6
1b

2
2

UN (B) = Op

(
1

Nb4
N

)
+ op

(
logN√
N

)
.
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Together with the bound on WN (B)− EWN (B), we finally have

V (B)− EV (B) = Op

(
1

Nb4
N

)
+ op

(
logN√
N

)
+ op

(
logN

N
3
2 b6
N

)
.

e) For random bandwidths h1, h2, we decompose V (H) into

V (H) = V̄ (H) +
(
V (H)− V̄ (H)

)
,

where

V̄ (H) =
1

Nh6
1h

2
2

ˆ ˆ ˆ ˆ
K2

11

(
H−1 (z − u)

)
λ (u) du1du2dz1dz2

− 1

N

ˆ ˆ
ν2

1 (x1, x2, H) dx1dx2

=
1

Nh5
1h2

ˆ ˆ ˆ ˆ
K2

11 (v1, v2)λ (z −Hv) dv1dv2dz1dz2

− 1

N

ˆ ˆ
ν2

1 (x1, x2, H) dx1dx2.

From c), V̄ (B) = EV (B) for deterministic B. Using the same expansion

as in c), together with hi = βibN (1 + op (N−γ)), i = 1, 2,

V̄ (H) =
1

Nβ5
1β2b6

N

ˆ ˆ
K2

11 (u1, u2) du1du2 +op

(
N−γ

Nb6
N

)
+Op

(
1

Nb5
N

)
.

It remains to study V0 (H) = V (H)− V̄ (H), which we decompose as

V0 (H) = V0 (BN) + (V0 (H)− V0 (BN))

writing BN for the diagonal matrix with entries β1bN and β2bN . From

d),

V0 (BN) = V (BN)−EV (BN) = Op

(
1

Nb4
N

)
+op

(
logN√
N

)
+op

(
logN

N
3
2 b6
N

)
.

We split

V0 (H)− V0 (BN) = (V0 (H)− V0 (BN))
(
1ACN + 1AN

)
,
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where AN = {|h1 − β1bN | < β1bNN
−γ} ∩ {|h2 − β2bN | < β2bNN

−γ}. As

in the proof of Proposition 6, e), we have that, due to hi = βibN (1 + op (N−γ)),

i = 1, 2, the first term of the right-hand side is asymptotically negligible.

For the second term, we approximate h by h̄ from a finite grid B2
N,τ ,

where BN,τ is defined as in the proof of Proposition 6. In particular, we

have
∣∣hi − h̄i∣∣ ≤ N−τ , i = 1, 2. We set

Bγ,2
N,τ = B2

N,τ ∩
(
β1bN

(
1−N−γ

)
−N−τ , β1bN

(
1 +N−γ

)
+N−τ

)
×
(
β2bN

(
1−N−γ

)
−N−τ , β2bN

(
1 +N−γ

)
+N−τ

)
.

Note that Bγ,2
N,τ satisfies

∣∣Bγ,2
N,τ

∣∣ ≤ cBN
2τb2

N for some constant cB > 0.

We decompose, with H̄ denoting the diagonal matrix with entries h̄1, h̄2,

|V0 (H)− V0 (BN )|1AN ≤
∣∣V0 (H)− V0

(
H̄
)∣∣1AN + sup

b∈Bγ,2N,τ

|V0 (B)− V0 (BN )|

≤ S1 + S2,

where, with B̄ denoting a diagonal matrix with entries b̄1, b̄2

S1

= sup
{∣∣V0 (B)− V0

(
B̄
)∣∣ ;∣∣bi − b̄i∣∣ ≤ N−τ , bi, b̄i ∈ [βibN (1−N−γ)−N−τ , βibN (1 +N−γ

)
+N−τ

]
, i = 1, 2

}
≤ sup

{∣∣V0 (B)− V0
(
B̄
)∣∣ ; bi, b̄i ≥ βibN (1− 2N−γ

)
,
∣∣bi − b̄i∣∣ ≤ N−τ , i = 1, 2

}
≤ 4L

Nτ b10N

(
1 +O

(
N−γ

))
from the Lipschitz property of V (B) stated in Lemma 7.

For getting a bound on S2, we decompose as in d)

V (B) =
1

Nb5
1b2

WN (B) +
N − 1

2Nb6
1b

2
2

UN (B)

and, with WN,0 (B) = WN (B)− EWN (B), using EUN (B) = 0,

V0 (B) =
1

Nb5
1b2

WN,0 (B) +
N − 1

2Nb6
1b

2
2

UN (B) .
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Using
∣∣Bγ,2

N,τ

∣∣ ≤ cBN
2τb2

N , we get from Hoeffding’s inequality as in d) and

using the same argument as in the proof of Proposition 6

sup
b∈Bγ,2N,τ

|WN,0 (B)| = op

(
logN√
N

)
and the first component of S2 is

sup
b∈Bγ,2N,τ

∣∣∣∣ 1

Nb5
1b2

WN,0 (B)− 1

Nβ5
1β2b6

N

WN,0 (BN)

∣∣∣∣ = op

(
logN

N
3
2 b6
N

)
.

Finally, we have to study

N − 1

2N
sup
b∈Bγ,2N,τ

∣∣∣∣ 1

b6
1b

2
2

UN (B)− 1

β1β2b8
N

UN (BN)

∣∣∣∣
≤ (N − 1)

2N

(1 +O (N−γ))

b8
N

sup
b∈Bγ,2N,τ

|UN (B)− UN (BN)|

+
(N − 1)

2N

(1 +O (N−γ))

b8
N

|UN (BN)|

as, for large enough N , τ , βibN (1− 2N−γ) ≤ bi ≤ βibN (1 + 2N−γ),

i = 1, 2, for all b ∈ Bγ,2
N,τ . Again, from d), the second term satisfies

(N − 1)

2N

(1 +O (N−γ))

b8
N

|UN (BN)| = Op

(
1

Nb4
N

)
+ op

(
logN√
N

)
.

For the first term, we use Lemma 8 with q ≥ 1, aiN = βibN (1 + 2N−γ),

αiN = βibN (1− 2N−γ), i = 1, 2,

E
(
UN (B)− UN

(
B̄
))2q ≤ c ·

(
b3
N

N

)2q (
1 + 2N−γ

)6q
N−2qγ

≤ c̄

(
b3
N

N

)2q

N−2qγ

for some suitable constant c̄, not depending on N , and all b, b̄ with bi, b̄i ∈

[αiN , aiN ], i = 1, 2. Using the same argument as in Proposition 6, we

conclude for arbitrarily small ρ > 0

1

b8
N

sup
b∈Bγ,2N,τ

|UN (B)− UN (BN)| = op

(
Nρ

N1+γb5
N

)
.
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In particular, this term is of order op

(
N−

γ
2

Nb5N

)
for ρ ≤ γ

2
. We finally

conclude

S2 = op

(
logN

N
3
2 b6
N

)
+ op

(
N−

γ
2

Nb5
N

)
+Op

(
1

Nb4
N

)
+ op

(
logN√
N

)
,

and we have the same rate for V0 (H) − V0 (BN), as S1 is negligible for

large enough τ , and (V0 (H)− V0 (BN)) 1ACN is negligible, too. Together

with the expansion of V̄ (H) and V0 (BN), we conclude

V (H) = V̄ (H) + V0 (BN) + (V0 (H)− V0 (BN))

=
1

Nβ5
1β2b6

N

ˆ ˆ
K2

11 (u) du1du2 +Op

(
1

Nb5
N

)
+ op

(
N−γ

Nb6
N

)
+op

(
logN

N
3
2 b6
N

)
+ op

(
logN√
N

)
.

f) For deterministic B, we write

M (B) =
1

Nb6
1b

2
2

N∑
j=1

RB (Xj) ,

where RB (u) is defined in d). From d), we therefore have M (B) =

op

(
logN√
N

)
.

To study the behaviour of M (H) for random H, we decompose it as

M (H) = M (BN) + (M (H)−M (BN)) ,

where BN is defined in e). We split the second term into

M (H)−M (BN) = (M (H)−M (BN))
(
1ACN + 1AN

)
with AN as in e), and, as there, we conclude that the first term is neg-

ligible. The second term is treated as (V0 (H)− V0 (BN)) 1AN in e) by

approximating h1, h2 by the closest grid points h̄1, h̄2 in BN,τ

|M (H)−M (BN)|1AN ≤
∣∣M (H)−M

(
H̄
)∣∣1AN+ sup

b∈Bγ,2N,τ

|M (B)−M (BN)| .
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The first term is again asymptotically negligible for large enough τ using

the Lipschitz property of M (B) from Corollary 11. For the second term,

we use

sup
b∈Bγ,2N,τ

|M (B)−M (BN)| ≤ sup
b∈Bγ,2N,τ

|M (B)|+ |M (BN)| ,

where M (BN) = op

(
logN√
N

)
from the considerations above. Using Ho-

effding’s inequality, noting that EM (B) = 0, and the same argument as

in the proof of Proposition 6, we also get the same rate for the supremum

sup
b∈Bγ,2N,τ

|M (B)| = op

(
logN√
N

)
,

and, finally,

M (H) = op

(
logN√
N

)
.

g) Combining the expansions for E (H), M (H), V (H), we finally have

ˆ ˆ
λ̂2

11 (x1, x2, H) dx1dx2

=

ˆ ˆ
λ2

11 (x1, x2) dx1dx2 + VK

ˆ ˆ
λ11 (x1, x2)

2∑
i=1

β2
i

∂2

∂x2
i

λ11 (x1, x2) dx1dx2b
2
N

+o
(
b2N
)

+ op
(
b2NN

−γ)+
1

Nβ5
1β2b6N

ˆ ˆ
K2

11 (u) du1du2

+Op

(
1

Nb5N

)
+ op

(
N−γ

Nb6N

)
+ op

(
logN

N
3
2 b6N

)
+ op

(
logN√
N

)
.

h) The asymptotic expansion of the integral of λ̂2
22 (x1, x2, H) is obviously

the same as in g) with 1 and 2 exchanged. The decomposition of the

mixed term is

ˆ ˆ
λ̂11 (x1, x2, H) λ̂22 (x1, x2, H) dx1dx2 = E

′
(H)−M ′

(H) + V
′
(H)
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with

E
′
(H) =

ˆ ˆ
ν1 (x1, x2, H) ν2 (x1, x2, H) dx1dx2

M
′
(H) =

ˆ ˆ
ν1 (x1, x2, H)

{
λ̂22 (x1, x2, H)− ν2 (x1, x2, H)

}
dx1dx2

+

ˆ ˆ
ν2 (x1, x2, H)

{
λ̂11 (x1, x2, H)− ν1 (x1, x2, H)

}
dx1dx2

V
′
(H) =

ˆ ˆ {
λ̂11 (x1, x2, H)− ν1 (x1, x2, H)

}{
λ̂22 (x1, x2, H)− ν2 (x1, x2, H)

}
dx1dx2.

Using a), we get analogously to b)

E
′
(H)

=

ˆ ˆ
λ11 (x1, x2)λ22 (x1, x2) dx1dx2

+
b2N
2
VK

ˆ ˆ 2∑
i=1

β2
i

{
λ11 (x1, x2)

∂2

∂x2i
λ22 (x1, x2) + λ22 (x1, x2)

∂2

∂x2i
λ11 (x1, x2)

}
dx1dx2

+o
(
b2N
)

+ op
(
b2NN

−γ) .
Using νi (x1, x2, B) = Eλ̂ii (x1, x2, B)

EV
′
(B)

=
1

N2b41b
4
2

ˆ ˆ N∑
i,j=1

cov

(
K11

(
x1 −Xi1

b1
,
x2 −Xi2

b2

)
,K22

(
x1 −Xj1

b1
,
x2 −Xj2

b2

))
dx1dx2

=
1

Nb41b
4
2

ˆ ˆ
cov

(
K11

(
x1 −X11

b1
,
x2 −X12

b2

)
,K22

(
x1 −X11

b1
,
x2 −X12

b2

))
dx1dx2

as Xi, Xj are independent for i 6= j. Similar to c), we conclude

EV ′ (B) =
1

Nb3
1b

3
2

ˆ ˆ
K11 (u1, u2)K22 (u1, u2) du1du2 +O

(
1

Nb5
N

)
.

We decompose as in d)

V
′
(B) =

1

Nb3
1b

3
2

W
′

N (B) +
N − 1

2Nb4
1b

4
2

U
′

N (B)

with

W
′
N (B) =

1

N

N∑
j=1

QB (Xj) , U
′
N (B) =

2

N (N − 1)

∑
i 6=j

R
′
B (Xi, Xj)

Q
′
B (Xj) =

1

b1b2

ˆ ˆ {
K11

(
x1 −Xj1

b1
,
x2 −Xj2

b2

)
− b31b2ν1 (x1, x2, B)

}
{
K22

(
x1 −Xj1

b1
,
x2 −Xj2

b2

)
− b32b1ν2 (x1, x2, B)

}
dx1dx2

R
′
B (Xi, Xj) =

ˆ ˆ {
K11

(
x1 −Xi1

b1
,
x2 −Xi2

b2

)
− b31b2ν1 (x1, x2, B)

}
{
K22

(
x1 −Xj1

b1
,
x2 −Xj2

b2

)
− b32b1ν2 (x1, x2, B)

}
dx1dx2.
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As in d), we conclude that Q
′
B (Xj) is bounded, and, then, from Hoeffd-

ing’s inequality

1

Nb3
1b

3
2

(
W
′

N (B)− EW ′

N (B)
)

= op

(
logN

N
3
2 b3

1b
3
2

)
= op

(
logN

N
3
2 b6
N

)
.

For the second component, we decompose

R
′

B (X1, X2) = b1b2

{
L
′

2

(
B−1 (X1 −X2)

)
− EL′2

(
B−1 (X1 −X2)

)}
−R′B (X1)−R′′B (X2)

with

L
′

2 (u) =

ˆ ˆ
K11 (u)K22 (v − u) dv1dv2, u ∈ R2,

R
′

B (u) =

ˆ ˆ
b32b1ν2 (x1, x2, B)

{
K11

(
x1 − u1
b1

,
x2 − u2
b2

)
− b31b2ν1 (x1, x2, B)

}
dx1dx2

=

ˆ ˆ
b42b

2
1λ22 (u+Bz)K11 (z) dz1dz2 +O

(
b8N
)
,

R
′′

B (u) =

ˆ ˆ
b31b2ν1 (x1, x2, B)

{
K22

(
x1 − u1
b1

,
x2 − u2
b2

)
− b32b1ν2 (x1, x2, B)

}
dx1dx2

=

ˆ ˆ
b41b

2
2λ11 (u+Bz)K22 (z) dz1dz2 +O

(
b8N
)
.

By a Taylor expansion of λ22 respectively λ11, we conclude as in d), that

1
b41b

4
2

(
R
′
B (u) +R

′′
B (u)

)
is bounded, and, using that its mean is 0 and

Hoeffding’s inequality,

1

b4
1b

4
2

U
′

N (B) =
1

b4
1b

4
2

Ũ
′

N (B) + op

(
logN√
N

)
,

where Ũ
′
N (B) is the U-statistic with kernel

Λ
′

B (x− z) = b1b2

{
L
′

2

(
B−1 (x− z)

)
− EL′2

(
B−1 (X1 −X2)

)}
.

An analogous result to Lemma 6 with L
′
2 replacing L2 follows by exactly

the same arguments, such that we conclude as in d)

1

b4
1b

4
2

U
′

N (B) = Op

(
1

Nb4
N

)
+ op

(
logN√
N

)
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and, therefore,

V
′
(B)− EV ′ (B) = Op

(
1

Nb4
N

)
+ op

(
logN√
N

)
+ op

(
logN

N
3
2 b6
N

)
.

For random bandwidths h1, h2, we decompose V
′
(H) as V

′
(H) = V̄

′
(H)+(

V
′
(H)− V̄ ′ (H)

)
with

V̄
′
(H)

=
1

Nh4
1h

4
2

ˆ ˆ ˆ ˆ
K11

(
H−1 (z − u)

)
K22

(
H−1 (z − u)

)
λ (u) du1du2dz1dz2

− 1

N

ˆ ˆ
ν1 (x1, x2, H) ν2 (x1, x2, H) dx1dx2

=
1

Nh3
1h

3
2

ˆ ˆ
K11 (u1, u2)K22 (u1, u2) du1du2 + op

(
N−γ

Nb6N

)
+Op

(
1

Nb5N

)
by the same argument as in e). V

′
0 (H) = V

′
(H)− V̄ ′ (H) is decomposed

as

V
′

0 (H) = V
′

0 (BN) +
(
V
′

0 (H)− V ′0 (BN)
)

and it can be shown exactly as in e) that the second term has the same

order as S2 in e). The order of the first term V
′

0 (BN) = V
′
(BN) −

EV ′ (BN) has already been given above as BN is deterministic. We finally

conclude

V
′
(H) =

1

Nβ3
1β

3
2b

6
N

ˆ ˆ
K11 (u)K22 (u) du1du2 +Op

(
1

Nb5N

)
+ op

(
N−γ

Nb6N

)
+op

(
logN

N
3
2 b6N

)
+ op

(
logN√
N

)
.

Finally, M
′
(H) = op

(
logN√
N

)
can be shown analogously to f). Combining

the expansions of E
′
(H), M

′
(H), V

′
(H) we have

ˆ ˆ
λ̂11 (x1, x2, H) λ̂22 (x1, x2, H) dx1dx2

=

ˆ ˆ
λ11 (x1, x2)λ22 (x1, x2) dx1dx2 +

1

Nβ3
1β

3
2b

6
N

ˆ ˆ
K11 (u)K22 (u) du1du2

+
b2N
2
VK

ˆ ˆ 2∑
i=1

β2
i

{
λ11 (x1, x2)

∂2

∂x2i
λ22 (x1, x2) + λ22 (x1, x2)

∂2

∂x2i
λ11 (x1, x2)

}
dx1dx2

+o
(
b2N
)

+ op
(
b2NN

−γ)+Op

(
1

Nb5N

)
+ op

(
N−γ

Nb6N

)
+op

(
logN

N
3
2 b6N

)
+ op

(
logN√
N

)
.
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Lemma 6. Let the assumptions of Theorem 4 be fulfilled, and set

L2 (u) =

ˆ ˆ
K11 (v)K11 (v − u) dv1dv2.

a) For i, j, k = 1, 2 ˆ ˆ
L2 (u) du1du2 = 0,

ˆ ˆ
uiL2 (u) du1du2 = 0,

ˆ ˆ
uiujL2 (u) du1du2 = 0,

ˆ ˆ
uiujukL2 (u) du1du2 = 0.

b) EL2 (B−1 (X1 −X2)) = O (b6
M) with bM = max (b1, b2).

c) EL2
2 (B−1 (X1 −X2)) = O (b2

1b
2
2).

Proof. a) Recall that from our assumptions

ˆ ˆ
K11 (u) du1du2 = 0

and ˆ ˆ
uiK (u) du1du2 = 0, i = 1, 2.

Substituting w = u− v, we then have

ˆ ˆ
L2 (u) du1du2 =

ˆ ˆ ˆ ˆ
K11 (v)K11 (v − u) dv1dv2du1du2

=

ˆ ˆ
K11 (v) dv1dv2

ˆ ˆ
K11 (w) dw1dw2 = 0

ˆ ˆ
uiL2 (u) du1du2 =

ˆ ˆ ˆ ˆ
(vi + wi)K11 (v)K11 (w) dv1dv2dw1dw2 = 0
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ˆ ˆ
uiujL2 (u) du1du2 =

ˆ ˆ
vivjK11 (v) dv1dv2

ˆ ˆ
K11 (w) dw1dw2

+

ˆ ˆ
wiwjK11 (w) dw1dw2

ˆ ˆ
K11 (v) dv1dv2

+

ˆ ˆ
viK11 (v) dv1dv2

ˆ ˆ
wjK11 (w) dw1dw2

+

ˆ ˆ
vjK11 (v) dv1dv2

ˆ ˆ
wiK11 (w) dw1dw2

= 0.

The last relationship is shown analogously.

b) Substituting u1 = x1−z1
b1

, u2 = x2−z2
b2

, u = (u1, u2)>, we have

EL2

(
B−1 (X1 −X2)

)
=

ˆ ˆ ˆ ˆ
L2

(
B−1 (x− z)

)
λ (x)λ (z) dx1dx2dz1dz2

= b1b2

ˆ ˆ ˆ ˆ
L2 (u)λ (z +Bu) du1du2λ (z) dz1dz2.

For a multi-index α = (α1, α2), α1, α2 ≥ 0, we use the common notation

|α| = α1 + α2, α! = α1!α2!, uα = uα1
1 u

α2
2 for u ∈ R2,

Dα
g =

∂|α|

∂uα1
1 ∂u

α2
2

g for a function g : R2 → R.

Then, we have the Taylor expansion of λ (z +Bu)

λ (z +Bu) = λ (z) +
3∑
`=1

∑
|α|=`

1

α!
Dαλ (z) (Bu)α +O

(
b4
M

)
.

Using (Bu)α = bα1
1 u

α1
1 b

α2
2 u

α2
2 = bα1

1 b
`−α1
2 uα1

1 u
`−α1
2 for |α| = `, the integrals

of the first four terms in the Taylor expansion multiplied with L2 (u)

vanish by a). Hence

EL2

(
B−1 (X1 −X2)

)
= b1b2

ˆ ˆ
λ (z) dz1dz2O

(
b4
M

)
= O

(
b6
M

)
.

c) Substituting u1 = x1
b1

, u2 = x2
b2

, v1 = z1
b1

, v2 = z2
b2

, we have

EL2
2

(
B−1 (X1 −X2)

)
=

ˆ ˆ ˆ ˆ
L2

2

(
B−1 (x− z)

)
λ (x)λ (z) dx1dx2dz1dz2

= b2
1b

2
2

ˆ ˆ ˆ ˆ
L2

2 (u− v)λ (Bu)λ (Bv) du1du2dv1dv2

= O
(
b2

1b
2
2

)
85



as λ is bounded and L2 has bounded support.

Lemma 7. Under the assumptions of Theorem 4,

∣∣V (B)− V
(
B̄
)∣∣ ≤ L ·

∥∥b− b̄∥∥
b10
m

, b, b̄ ∈ (0, 1]2

for some suitable constant L > 0 and bm = min
(
b1, b2, b̄1, b̄2

)
.

Proof. For abbreviation, we write

V (B) =

ˆ ˆ (
1

b3
1b2

G (x1, x2, B)

)2

dx1dx2,

G (x1, x2, B) =
1

N

N∑
j=1

gj (x1, x2, B) ,

gj (x1, x2, B) = K11

(
x1 −Xj1

b1

,
x2 −Xj2

b2

)
− b3

1b2ν1 (x1, x2, B) .

From Lipschitz continuity of λ, using C for generic constants with varying

values and bM = max
(
b1, b2, b̄1, b̄2

)
,

∣∣b31b2ν1 (x1, x2, B)− b̄31b̄2ν1

(
x1, x2, B̄

)∣∣
=

∣∣∣∣b1b2 ˆ ˆ K11 (u1, u2)λ (x1 − b1u1, x2 − b2u2) du1du2

− b̄1b̄2
ˆ ˆ

K11 (u1, u2)λ
(
x1 − b̄1u1, x2 − b̄2u2

)
du1du2

∣∣∣∣
≤ C

∣∣b1b2 − b̄1b̄2∣∣
+b̄1b̄2

ˆ ˆ
|K11 (u1, u2)|

∣∣λ (x1 − b1u1, x2 − b2u2)− λ
(
x1 − b̄1u1, x2 − b̄2u2

)∣∣ du1du2

≤ C · bM
(∣∣b1 − b̄1∣∣+

∣∣b2 − b̄2∣∣)+ C · b2M
∥∥b− b̄∥∥ ≤ C · bM ∥∥b− b̄∥∥

as K11 has bounded support, and as bM ≤ 1. From Lipschitz continuity of
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K11, ∣∣∣∣K11

(
x1 −Xj1

b1

,
x2 −Xj2

b2

)
−K11

(
x1 −Xj1

b̄1

,
x2 −Xj2

b̄2

)∣∣∣∣2
≤ C2

(∣∣∣∣x1 −Xj1

b1

− x1 −Xj1

b̄1

∣∣∣∣2 +

∣∣∣∣x2 −Xj2

b2

− x2 −Xj2

b̄2

∣∣∣∣2
)

≤ C2 · 1

b4
m

((
b1 − b̄1

)2
+
(
b2 − b̄2

)2
)

=
C2

b4
m

∥∥b− b̄∥∥2

as x1, x2, Xj1, Xj2 ∈ [0, 1]. Hence, uniformly in j, x1, x2, as bM ≤ 1 ≤ 1
b2m∣∣gj (x1, x2, B)− gj

(
x1, x2, B̄

)∣∣ ≤ C ·
(
bM +

1

b2
m

)∥∥b− b̄∥∥
≤ C · 1

b2
m

∥∥b− b̄∥∥
and, then, ∣∣G (x1, x2, B)−G

(
x1, x2, B̄

)∣∣ ≤ C · 1

b2
m

∥∥b− b̄∥∥ .
As K11, ν1 are bounded, G (x1, x2, B) is bounded too, and we get∣∣G2 (x1, x2, B)−G2

(
x1, x2, B̄

)∣∣ ≤ C · 1

b2
m

∥∥b− b̄∥∥
too. Finally, we have∣∣V (B)− V

(
B̄
)∣∣ ≤ 1

b8
m

ˆ ˆ ∣∣G2 (x1, x2, B)−G2
(
x1, x2, B̄

)∣∣ dx1dx2

+

∣∣∣∣ 1

b6
1b

2
2

− 1

b̄6
1b̄

2
2

∣∣∣∣ˆ ˆ G2
(
x1, x2, B̄

)
dx1dx2

≤ C

b8
m

·
∥∥b− b̄∥∥
b2
m

+ C ·
∥∥b− b̄∥∥
b9
m

≤ C ·
∥∥b− b̄∥∥
b10
m

,

where we use for i = 1, 2, ` = 6 or 2∣∣∣∣ 1

b`i − b̄`i

∣∣∣∣ =

∣∣b̄`i − b`i∣∣
b`i b̄

`
i

=
O
(
max

(
b`−1
i , b̄`−1

i

)) ∣∣b̄i − bi∣∣
b`i b̄

`
i

≤ 1

b`+1
m

∣∣bi − b̄i∣∣ ,
and the boundedness of G2.
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Corollary 11. Under the assumptions of Lemma 7,

∣∣M (B)−M
(
B̄
)∣∣ ≤ L ·

∥∥b− b̄∥∥
b10
m

with bm = min (b1, b2)

for some suitable L > 0.

Proof. From the proof of Proposition 3, a), ν1 (x1, x2, B) is uniformly bounded

in x1, x2, B. We write with G as in the proof of Lemma 7

M (B) =
1

b6
1b

2
2

ˆ ˆ
G (x1, x2, B) b3

1b2ν1 (x1, x2, B) dx1dx2

such that

∣∣M (B)−M
(
B̄
)∣∣

≤ 1

b8
m

ˆ ˆ ∣∣G (x1, x2, B)−G
(
x1, x2, B̄

)∣∣ b3
1b2 |ν1 (x1, x2, B)| dx1dx2

+
1

b8
m

ˆ ˆ ∣∣G (x1, x2, B̄
)∣∣ ∣∣b3

1b2ν1 (x1, x2, B)− b̄3
1b̄2ν1

(
x1, x2, B̄

)∣∣ dx1dx2

≤ C ·
∥∥b− b̄∥∥
b10
m

+ C ·
bM
∥∥b− b̄∥∥
b8
m

≤ L ·
∥∥b− b̄∥∥
b10
m

using the inequalities for G and b3
1b2ν1 from the proof of Lemma 7 and bm ≤ 1,

bM = max (b1, b2) ≤ 1.

Lemma 8. Let the assumptions of Theorem 4 be satisfied. Let the band-

widths b1, b2, b̄1, b̄2 satisfy 0 < αN < bi, b̄i < aN , i = 1, 2, for some αN =

aN (1−O (N−γ)) and aN satisfying a4
N = O (N−γ) and NaN →∞. Then, for

q ≥ 1

E
(
UN (B)− UN

(
B̄
))2q

=
a6q
N

N2q
O
(
N−2qγ

)
,

where UN (B) is defined in the proof of Theorem 4, d).

Proof. The proof is analogous to that of Lemma 5, such that we only discuss

the differences. Note that again

UN (B) =
2

N (N − 1)

∑
i 6=j

RB (Xi, Xj)
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is a U-statistic with symmetric kernel RB (x, z), x, z ∈ R2, and ERB (X1, X2) =

0, and, more generally,

E {RB (X1, X2) |X2} = 0 = E {RB (X1, X2) |X1}

which is crucial for the argument.

a) In the two-dimensional case, we have

L2 (u) =

ˆ ˆ
K11 (v)K11 (v − u) dv1dv2,

and substituting z1 = x1−v1
b1

, z2 = x2−v2
b2

ˆ ˆ
K11

(
x1 − u1

b1

,
x2 − u2

b2

)
K11

(
x1 − v1

b1

,
x2 − v2

b2

)
dx1dx2

= b1b2

ˆ ˆ
K11 (z1, z2)K11

(
z1 −

u1 − v1

b1

, z2 −
u2 − v2

b2

)
dz1dz2

= b1b2L2

(
B−1 (u− v)

)
.

From the independence of X1, X2, we get

b1b2EL2

(
B−1 (X1 −X2)

)
=

ˆ ˆ
EK11

(
x1 −X11

b1

,
x2 −X12

b2

)
EK11

(
x1 −X21

b1

,
x2 −X22

b2

)
dx1dx2

= b6
1b

2
2

ˆ ˆ
ν2

1 (x1, x2, B) dx1dx2.

Setting

ΛB (u− v) = b1b2

{
L2

(
B−1 (u− v)

)
− EL2

(
B−1 (X1 −X2)

)}
,

we decompose

RB (X1, X2) = ΛB (X1 −X2)−RB (X1)−RB (X2) ,

where RB (u) is defined as in the proof of Theorem 4, d), again.

89



b) With b, b̄ denoting the bandwidth vectors with coordinates bi respectively

b̄i, i = 1, 2,

∥∥B−1z − B̄−1z
∥∥2

= z2
1

(
1

b1

− 1

b̄1

)2

+ z2
2

(
1

b2

− 1

b̄2

)2

≤ ‖z‖2

{(
b̄1 − b1

b1b̄1

)2

+

(
b̄2 − b2

b2b̄2

)2
}

≤ ‖z‖2

α4
N

∥∥b− b̄∥∥2

using bi, b̄i ≥ αN . Then, using Lipschitz continuity of K11, we have as in

the proof of Lemma 5, b) for some constant c̃ > 0

∣∣b1b2L2

(
B−1 (X1 −X2)

)
− b̄1b̄2L2

(
B̄−1 (X1 −X2)

)∣∣ ≤ 2c̃
a2
N

α2
N

∥∥b− b̄∥∥ .
As the support of L2 is [−2,+2]2, L2 (B−1 (X1 −X2)) = 0 ifB−1 (X1 −X2) /∈

[−2,+2]2, and, as bi, b̄i ≤ aN , i = 1, 2, we conclude

∣∣b1b2L2

(
B−1 (X1 −X2)

)
− b̄1b̄2L2

(
B̄−1 (X1 −X2)

)∣∣
≤ 2c̃

a2
N

α2
N

∥∥b− b̄∥∥1[−2,+2]2

(
X1 −X2

aN

)
.

As λ is bounded,

E1[−2,+2]2

(
X1 −X2

aN

)
=

ˆ ˆ ˆ ˆ
1[−2,+2]

(
u1 − v1

aN

)
1[−2,+2]

(
u2 − v2

aN

)
λ (u)λ (v) du1du2dv1dv2

= O
(
a4
N

)
by substituting ui

aN
= zi,

vi
aN

= wi, i = 1, 2, and we have

|ΛB (X1 −X2)− ΛB̄ (X1 −X2)| ≤ 2c̃
a2
N

α2
N

∥∥b− b̄∥∥{1[−2,+2]2

(
X1 −X2

aN

)
+O

(
a4
N

)}
.

c) From the proof of Proposition 6, a), we have

∣∣ν1 (x1, x2, B)− ν1

(
x1, x2, B̄

)∣∣ ≤ 1

2
VK

2∑
i=1

∣∣b2
i − b̄2

i

∣∣ ∣∣∣∣ ∂2

∂x2
i

λ11 (x1, x2)

∣∣∣∣+ o
(
a2
N

)
≤ caN

∥∥b− b̄∥∥+ o
(
a2
N

)
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for some c > 0, where we have used
∣∣bi + b̄i

∣∣ = O (aN) , i = 1, 2, and∣∣bi − b̄i∣∣2 ≤ ∥∥b− b̄∥∥2
, i = 1, 2. To get an upper bound for |RB (X1)−RB̄ (X1)|

we get as in the proof of Lemma 5, with x = (x1, x2)>,
ˆ ∣∣b31b2ν1 (x1, x2, B)K11

(
B−1 (x−X1)

)
− b̄31b̄2ν1

(
x1, x2, B̄

)
K11

(
B̄−1 (x−X1)

)∣∣dx
≤ c̃a7N

∥∥b− b̄∥∥+ o
(
a8N
)

+ c̄
a4N
α2
N

∥∥b− b̄∥∥
= c̄

a4N
α2
N

∥∥b− b̄∥∥+ o
(
a8N
)

for suitable c̃, c > 0, and, then, also for some c > 0, using a4
N = O (N−γ),

|RB (X1)−RB̄ (X1)| ≤ c
a4
N

α2
N

∥∥b− b̄∥∥+ o
(
a8
N

)
= c

(
1 +O

(
N−γ

))
a2
N

∥∥b− b̄∥∥+ o
(
a4
NN

−γ) .
Combining this with the inequality for ΛB (X1 −X2) from b), we get

|RB (X1, X2)−RB̄ (X1, X2)| = aNO
(
N−γ

){
1[−2,+2]2

(
X1 −X2

aN

)
+O

(
a3
N

)}
.

d) Writing as in the proof of Lemma 5 with ρN = 2
N(N−1)

,

UN (B)− UN
(
B̄
)

= ρN
∑
i 6=j

Dij,

then, we get by the same argument as in the proof of Lemma 5

E
(
UN (B)− UN

(
B̄
))2q ≤ ρ2q

N

2q∑
m=2

Nma2q
NO

(
N−2qγ

)
ηm,

where ηm is an upper bound on

E
2q∏
`=1

{
1[−2,+2]2

(
Xi` −Xj`

aN

)
+O

(
a3
N

)}
.

As from b),

E1[−2,+2]2

(
Xi` −Xj`

aN

)
= O

(
a4
N

)
for i` 6= j`, we can argue as in the proof of Lemma 5 that ηm = a2m

N O (1),

substituting uki =
zki
aN

, k = 1, . . . ,m, i = 1, 2, in the m-fold integral of

indicator functions

1[−2,+2]2

(
zk − z`
aN

)
= 1[−2,+2]

(
zk1 − z`1
aN

)
1[−2,+2]

(
zk2 − z`2
aN

)
.
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Finally, we have

E
(
UN (B)− UN

(
B̄
))2q

= ρ2q
N

2q∑
m=2

Nma2q
N a

2m
N O

(
N−2qγ

)
=

a6q
N

N2q
O
(
N−2qγ

)
.
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Chapter 5

Asymptotics for local

mean-squared error estimates

with random bandwidths

We now consider a detailed asymptotic analysis of the local estimates of in-

tensity and its second derivatives analogous to the integrated quantities in

the previous chapter. These results are needed for local adaptive bandwidth

selection.

In Proposition 4, we have derived an asymptotic expansion of λ̂ii (x1, x2, H).

For the purpose of bandwidth selection, the remainder terms have to be some-

what improved which we do in the following local version of Theorem 4.

Theorem 5. Let h1, h2 be a sequence of bandwidths satisfying

hi = βibN
(
1 + op

(
N−γ

))
, i = 1, 2

for some fixed β1, β2 > 0, γ ≥ 0 and a deterministic bandwidth rate bN → 0

with b4
N = op (N−γ). We abbreviate Qii =

´ ´
K2
ii (u) du1du2, i = 1, 2. Under

the assumptions of Theorem 4, we have for i = 1, 2 and fixed x1, x2 ∈ [0, 1]
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with λ (x1, x2) > 0

λ̂ii (x1, x2, H) = λii (x1, x2) +
1

2
VK

2∑
`=1

β2
`

∂2

∂x2
`

λii (x1, x2) b2
N + op

(
b2
NN

−γ)
+
√
λ (x1, x2)QiiOp

(
1√
Nb3

N

)
+ op

(
N−

γ
2

√
Nb3

N

)
+Op

(
N−γ√
Nb3

N

)
.

Proof. We decompose as before

λ̂11 (x1, x2, H) = ν1 (x1, x2, H) +
(
λ̂11 (x1, x2, H)− ν1 (x1, x2, H)

)
= ν1 (x1, x2, H) +D (H) ,

where as in the proof of Theorem 4

ν1 (x1, x2, H) =
1

h2
1

ˆ ˆ
K11 (u1, u2)λ (x1 − h1u1, x2 − h2u2) du1du2

such that, for deterministic B, ν1 (x1, x2, B) = Eλ̂11 (x1, x2, B). In the follow-

ing, we write z = (x1, x2)>.

a) From the proof of Theorem 4, a), we have

ν1 (z,H) = λ11 (z) +
1

2
VK

2∑
i=1

β2
i

∂2

∂x2
i

λ11 (z) b2
N + op

(
b2
NN

−γ) .
b) With LB (u) = K11 (B−1 (z − u)) − b3

1b2ν1 (z, B), we have for determin-

istic B

D (B) =
1

Nb3
1b2

N∑
j=1

LB (Xj) =
1

b3
1b2

SN (B) ,

where LB (Xj) , j = 1, . . . , N , are i.i.d. zero-mean random variables with

varLB (Xj) = varK11

(
B−1 (z −Xj)

)
= λ (z)Q11b1b2 +O

(
b3
N

)
as in the proof of Theorem 4, c). Here, we have assumed that bi =

βibN (1 +O (N−γ)), i = 1, 2. Therefore, we have

D (B) = Op

(
1√
Nb5

1b2

)√
λ (z)Q11.
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c) Let BN again denote the diagonal bandwidth matrix with entries βibN .

We decompose

D (H) = D (BN) + (D (H)−D (BN))

=
√
λ (z)Q11Op

(
1√
Nb3

N

)
+ (D (H)−D (BN))

from b). Now, we follow the same line of arguments as in the investigation

of V0 (H) − V0 (BN) in the proof of Theorem 4, e), to conclude that

D (H)−D (BN) coincides up to asymptotically negligible terms with

sup
b∈Bγ,2N,τ

|D (B)−D (BN)| ≤ O (N−γ)

b4
N

|SN (BN)|

+
O (1 +N−γ)

b4
N

sup
b∈Bγ,2N,τ

|SN (B)− SN (BN)| ,

where we have used |bi − βibN | = O (bNN
−γ), i = 1, 2, for b ∈ Bγ,2

N,τ . From

b), we have SN (BN) = β3
1β2b

4
ND (BN) = Op

(
bN√
N

)
, i.e. the first term is

of order Op

(
N−γ√
Nb3N

)
. For the second term, we conclude from Lemma 11

with aN = max (β1, β2) bN (1 + 2N−γ), αN = max (β1, β2) bN (1− 2N−γ)

E (SN (B)− SN (BN))2q = O
(
b2q
NN

−q−2qγ
)
.

As in the proof of Theorem 4, e), this implies

1

b4
N

sup
b∈Bγ,2N,τ

|SN (B)− SN (BN)| = op

(
N−

γ
2

√
Nb3

N

)
.

Together, we have

D (H) =
√
λ (z)Q11Op

(
1√
Nb3

N

)
+Op

(
N−γ√
Nb3

N

)
+ op

(
N−

γ
2

√
Nb3

N

)
which together with a) implies the result.

For λ̂ (x1, x2, H), we have the following analogous expansion:
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Theorem 6. Let h1, h2 satisfy the conditions of Theorem 5. Then, under the

assumptions of Theorem 4, we have for fixed x1, x2 ∈ [0, 1]

λ̂ (x1, x2, H) = λ (x1, x2) +
1

2
VK

2∑
`=1

β2
`λ`` (x1, x2) b2

N + op
(
b2
NN

−γ)
+
√
λ (x1, x2)QKOp

(
1√
NbN

)
+ op

(
N−

γ
2

√
NbN

)
+Op

(
N−γ√
NbN

)
.

Proof. We decompose as in the proof of Theorem 5

λ̂ (x1, x2, H) = µ1 (x1, x2, H) +
(
λ̂ (x1, x2, H)− µ1 (x1, x2, H)

)
= µ1 (x1, x2, H) +D (H) ,

where

µ1 (x1, x2, H) =

ˆ ˆ
K (u1, u2)λ (x1 − h1u1, x2 − h2u2) du1du2

such that, for deterministic B, µ1 (x1, x2, B) = Eλ̂ (x1, x2, B). In the following,

we write z = (x1, x2)>.

a) From the proof of Theorem 2, a), we have

µ1 (z,H) = λ (z) +
1

2
VK

2∑
i=1

β2
i λii (z) b2

N + op
(
b2
NN

−γ) .
b) With MB (u) = K (B−1 (z − u))−b1b2µ1 (z,B), we have for deterministic

B

D (B) =
1

Nb1b2

N∑
j=1

MB (Xj) =
1

b1b2

TN (B) ,

where MB (Xj) , j = 1, . . . , N are i.i.d. with mean 0 and variance

varMB (Xj) = varK
(
B−1 (z −Xj)

)
= λ (z)QKb1b2 +O

(
b3
N

)
as in the proof of Theorem 2, b) with bi = βibN (1 + o (N−γ)), i = 1, 2.

Therefore, we have

D (B) = Op

(
1√
Nb1b2

)√
λ (z)QK .
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c) Now, we argue as in the proof of Theorem 5, c) to get

D (H) =
√
λ (z)QKOp

(
1√
NbN

)
+ (D (H)−D (BN)) ,

where the second term coincides up to asymptotically negligible terms

with

sup
b∈Bγ,2N,τ

|D (B)−D (BN)| ≤ O (N−γ)

b2
N

|TN (BN)|

+
O (1 +N−γ)

b2
N

sup
b∈Bγ,2N,τ

|TN (B)− TN (BN)| .

From b), the first term on the right-hand side is Op

(
N−γ√
NbN

)
. For the

second term we conclude from Lemma 10

E
(
TN (B)− TN

(
B̄
))2q

= O
(
b2q
NN

−q−2qγ
)

which implies as in the proof of Theorem 5, c)

1

b2
N

sup
b∈Bγ,2N,τ

|TN (B)− TN (BN)| = op

(
N−

γ
2

√
NbN

)
,

i.e. we have

D (H) =
√
λ (z)QKOp

(
1√
NbN

)
+Op

(
N−γ√
NbN

)
+ op

(
N−

γ
2

√
NbN

)
which together with a) implies the result.

In the first lemma, we collect some Lipschitz properties needed for the two

subsequent lemmas.

Lemma 9. Let for aN > 0 the bandwidths bi, b̄i, i = 1, 2, satisfying αN =

aN (1−O (N−γ)) < bi, b̄i < aN for some γ ≥ 0. Then,

a) Uniformly in w ∈ R2

∣∣K (w)−K
(
B̄−1Bw

)∣∣ = O
(
N−γ

)
,∣∣K11 (w)−K11

(
B̄−1Bw

)∣∣ = O
(
N−γ

)
.
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b) With µi, νi defined in the proofs of Theorem 5 respectively 6

∣∣µi (z,B)− µi
(
z, B̄

)∣∣ = O
(
a2
NN

−2γ
)

∣∣νi (z,B)− νi
(
z, B̄

)∣∣ = O
(
a2
NN

−2γ
)

for any z ∈ [0, 1]2 and i = 1, 2.

Proof. a) Due to the Lipschitz continuity of K, we have for some c∗, c > 0

and large enough N

∣∣K (w)−K
(
B̄−1Bw

)∣∣ ≤ c

{∣∣∣∣1− b1

b̄1

∣∣∣∣ |w1|+
∣∣∣∣1− b2

b̄2

∣∣∣∣ |w2|
}
· 1[−c∗,c∗]2 (w)

≤ cc∗

{∣∣b1 − b̄1

∣∣
b̄1

+

∣∣b2 − b̄2

∣∣
b̄2

}
= O

(
N−γ

)
as K (w) − K

(
B̄−1Bw

)
has support contained in [−c∗, c∗]2 following

from bi
b̄i
≤ aN

αN
= 1 + O (N−γ) ≤ c∗ for large enough N and suitable

c∗. For the last assertion, we have used
∣∣bi − b̄i∣∣ ≤ aNO (N−γ) and

aN
b̄i
≤ aN

αN
= 1 + O (N−γ). The same argument holds for K11 as it also is

Lipschitz continuous and has a bounded support.

b) As µ1 (z, B) = Eλ̂ (z,B), we get as in the bias expansion in the proof of

Theorem 2, a)

µ1 (z,B)− µ1

(
z, B̄

)
=

ˆ ˆ
K (u)

{
λ (z −Bu)− λ

(
z − B̄u

)}
du1du2

=
1

2

ˆ ˆ
K (u)

{(
B̄ −B

)
u
}> 52 λ

(
z − B̄u+ θ

(
B̄ −B

)
u
) (
B̄ −B

)
udu1du2

=
1

2

2∑
i,`=1

(
b̄i − bi

) (
b̄` − b`

) ˆ ˆ
K (u)uiu`λi`

(
z − B̄u+ θ

(
B̄ −B

)
u
)

du1du2

= O
(
a2
NN

−2γ
)

as λi` is bounded and has a bounded support. Analogously, ν1 (z,B) =
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Eλ̂11 (z,B) such that from the proof of Proposition 3, a)

ν1 (z,B)− ν1

(
z, B̄

)
=

ˆ ˆ
K (u)

{
λ11 (z −Bu)− λ11

(
z − B̄u

)}
du1du2

= O
(
a2
NN

−2γ
)

by the same Taylor expansion argument.

Lemma 10. Let the assumptions of Theorem 5 be satisfied. Let for some

aN > 0 with 1
Na2N

= O (1), the bandwidths bi, b̄i, i = 1, 2, satisfying αN =

aN (1−O (N−γ)) < bi, b̄i < aN for some γ ≥ 0. Let

TN (B) =
1

N

N∑
j=1

MB (Xj)

with

MB (u) = K
(
B−1 (z − u)

)
− b1b2µ1 (z,B) .

Then, for q ≥ 1

E
(
TN (B)− TN

(
B̄
))2q

= O

(
a2q
N

N qN2qγ

)
.

Proof. The proof is similar to those of Lemma 5 and 8 but requires a somewhat

more careful argument, as a direct analogy of the arguments for the integrated

estimates here would lead to suboptimal rates which are not good enough for

the intended application. c denotes various constants in the following.

a) As in the proof of Lemma 8, d), we write

TN (B)− TN
(
B̄
)

=
1

N

N∑
j=1

Dj,

where Dj = MB (Xj) − MB̄ (Xj) , j = 1, . . . , N , are i.i.d. zero-mean

random variables. In particular, we have for any j1, . . . , j2q ∈ {1, . . . , N}

EDj1 · · ·Dj2q = 0
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if j1, . . . , j2q contain more than q different indices such that at least one

index appears only once in the product.

As in the proof of Lemma 5, d), there are at most cqN
m terms EDj1 · · ·Dj2q

with j1, . . . , j2q containing exactly m different values, and we have

E
(
TN (B)− TN

(
B̄
))2q ≤ c

N2q

q∑
m=1

Nmπm,

where πm is an upper bound for
∣∣EDj1 · · ·Dj2q

∣∣ in case of m different

values in {j1, . . . , j2q}.

b) To calculate πm, we set {j1, . . . , j2q} = {k1, . . . , km}, where k1 6= · · · 6=

km, and we write

D (u) = MB (u)−MB̄ (u)

such that Dj = D (Xj). Due to independence of X1, . . . , XN

∣∣EDj1 · · ·Dj2q

∣∣
=

∣∣∣∣∣
ˆ
· · ·
ˆ 2q∏

`=1

D (uj`)
m∏
i=1

λ (uki) duk1,1duk1,2 · · · dukm,1dukm,2

∣∣∣∣∣
=

∣∣∣∣∣bm1 bm2
ˆ
· · ·
ˆ 2q∏

`=1

d (vj`)
m∏
i=1

λ (z −Bvki) dvk1,1dvk1,2 · · · dvkm,1dvkm,2

∣∣∣∣∣
≤ c (b1b2)m

ˆ
· · ·
ˆ ∣∣∣∣∣

2q∏
`=1

d (vj`)

∣∣∣∣∣ dvk1,1dvk1,2 · · · dvkm,1dvkm,2

satisfying vk` = B−1 (z − uk`) , ` = 1, . . . ,m, and writing

d (v) = K (v)−K
(
B̄−1Bv

)
− b1b2µ1 (z, B) + b̄1b̄2µ1 (z,B) .

For the last inequality, we have used boundedness of λ. From Lemma

9, we conclude d (v) = O (N−γ) (1 +O (a2
N)) uniformly in b, b̄ and v, as∣∣bi − b̄i∣∣ ≤ aN − αN = aNO (N−γ), i = 1, 2. We conclude as bi ≤ aN ,

i = 1, 2, that πm = a2m
N O (N−2qγ).
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c) Combining a) and b), we have

E
(
TN (B)− TN

(
B̄
))2q

= O

(
N−2qγ

N2q

) q∑
m=1

Nma2m
N

= O

(
N−2qγ

N2q

) q∑
m=0

(
Na2

N

)m
= O

(
N−2qγ

N2q

)
(Na2

N)
q+1 − 1

Na2
N − 1

= O

(
a2q
NN

−2qγ

N q

)
.

Lemma 11. Let the assumptions of Lemma 10 be satisfied, then

E
(
SN (B)− SN

(
B̄
))2q

= O

(
a2q
N

N qN2qγ

)
,

where

SN (B) =
1

N

N∑
j=1

LB (Xj) .

Proof. The proof uses the same ideas as the proof of Lemma 10.

a) SetDj = LB (Xj)−LB̄ (Xj) such thatD1, . . . , DN are i.i.d. with EDj = 0

and

SN (B)− SN
(
B̄
)

=
1

N

N∑
j=1

Dj.

Note that for j1, . . . , j2q containing more than q different indices,

EDj1 · · ·Dj2q = 0,

and we get as in the proof of Lemma 10, a)

E
(
SN (B)− SN

(
B̄
))2q ≤ c

N2q

q∑
m=1

Nmπm,

where now πm is an upper bound for
∣∣EDj1 · · ·Djq

∣∣ in case of exactly m

different values among j1, . . . , j2q.
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b) We have to calculate πm and set {k1, . . . , km} = {j1, . . . , j2q} with differ-

ent k1, . . . , km. We write

D (u) = LB (u)− LB̄ (u)

such that Dj = D (Xj). Then, we have as in the proof of Lemma 10, b)

∣∣EDj1 · · ·Dj2q

∣∣
=

∣∣∣∣∣
ˆ
· · ·
ˆ 2q∏

`=1

D (uj`)
m∏
i=1

λ (uki) duk1,1duk1,2 · · · dukm,1dukm,2

∣∣∣∣∣
= bm1 b

m
2

∣∣∣∣∣
ˆ
· · ·
ˆ 2q∏

`=1

d (vj`)
m∏
i=1

λ (z −Bvki) dvk1,1dvk1,2 · · · dvkm,1dvkm,2

∣∣∣∣∣
≤ c · (b1b2)m

ˆ
· · ·
ˆ ∣∣∣∣∣

2q∏
`=1

d (vj`)

∣∣∣∣∣ dvk1,1dvk1,2 · · · dvkm,1dvkm,2,

where

d (v) = K11 (v)−K11

(
B̄−1Bv

)
− b3

1b2ν1 (z,B) + b̄3
1b̄2ν1

(
z, B̄

)
= O

(
N−γ

) (
1 +O

(
a4
N

))
uniformly in b̄1, b̄2 and v from Lemma 9, and we again conclude πm =

a2m
N O (N−2qγ) and, finally,

E
(
SN (B)− SN

(
B̄
))2q ≤ c

1

N2q(1+γ)

q∑
m=1

(
Na2

N

)m
≤ c

N2q(1+γ)

(Na2
N)

q+1 − 1

Na2
N − 1

= O

(
a2q
N

N qN2qγ

)
.
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Chapter 6

Tuning parameters of the

plug-in algorithm

In this chapter, we finally complete the description of the algorithm for au-

tomatic bandwidth selection. Using the asymptotics of Chapters 4 and 5, we

recommend an inflation factor Nρ with ρ = 1
12

, but also discuss an alternative.

Then, we illustrate how ρ together with the asymptotic analysis determines

the numbers of iteration steps in the global respectively local bandwidth selec-

tion algorithm. It turns out that a very small number of iterations suffices as

they already lead to approximations of the optimal bandwidths with remaining

approximation errors caused by unavoidable purely random effects.

The algorithm for data-adaptive selection of global and local bandwidth

parameters described in Section 3.1 depends on the choice of some tuning

parameters: the initial bandwidth values ĥ
(0)
i , i = 1, 2, the inflation factor Nρ

for the bandwidths of second derivative estimates and the number of iterations

i∗ respectively j∗ of the global and local part of the algorithm. In particular,

one may ask why we propose a small and fixed number of iterations. This is

inspired by the one-dimensional case studied in Engel et al. (1994), but will
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be explained in the first section below. In the following section, we discuss the

choice of the inflation factor.

Before we start with the derivation, let us briefly explain why the algorithm

is split into global and local part. The asymptotically optimal local bandwidths

from Theorem 3 are of order N−
1
6 globally and locally, and from Corollary

5, we know that they approximate the optimal bandwidths well. So, one

might wonder why we do not immediately start with the local part of the

algorithm with ĥ
(0)
i = 1√

N
, i = 1, 2? This, however, would lead to highly

variable estimates of λii (x1, x2), i = 1, 2, which are needed in the iteration,

and the algorithm would suffer from pronounced random effects.

We get a much more stable behaviour for the global iterations as we only

have to estimate

Λk` =

ˆ ˆ
λkk (x1, x2)λ`` (x1, x2) dx1dx2, k, ` = 1, 2,

which suffers less from randomness as integration acts as a smoothing operation

cancelling the effect of the strong local variation of estimates λ̂ii (x1, x2, H),

i = 1, 2.

The algorithm, in particular through the choice of i∗, is constructed in

a manner such that it uses global bandwidths until the right rate N−
1
6 is

achieved. Then, it switches to local iterations to improve the constant of the

selected bandwidths.

Let us briefly discuss the choice of initial values. We start with small

bandwidths such that the first estimates involve only a little smoothing and

are close to the data, i.e. the density estimate is not far away from the empirical

measure (which would correspond roughly to a bandwidth choice of orderN−1).
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6.1 Data-adaptive choice of global

bandwidths

The numbers i∗ and j∗ of global and local iterations depend crucially on the

inflation factor Nρ. In this section, we illustrate this for ρ = 1
12

which we shall

recommend for reasons explained in the next section.

We use the following abbreviations

CK =
QK

V 2
K

,Mi` =

ˆ ˆ
Kii (u)K`` (u) du1du2, i, ` = 1, 2,

which are known constants depending on the kernel K only. We also write

Ii` (k) =

ˆ ˆ
λii (x1, x2)

∂2

∂x2
k

λ`` (x1, x2) dx1dx2+

ˆ ˆ
λ`` (x1, x2)

∂2

∂x2
k

λii (x1, x2) dx1dx2,

which are constants depending only on λ. From Theorem 4, we have, using

βi` = β1β2β
2
i β

2
` as abbreviation,

Λ̂i` (H) = Λi` +
Mi`

βi`

1

Nb6
N

+
VK
2

2∑
k=1

β2
kIi` (k) b2

N +RN,i`,

where the components of the remainder term are of smaller order than the

second or the third term respectively.

Step 1: Starting with ĥ
(0)
1 = ĥ

(0)
2 = 1√

N
, we can choose β1 = β2 = 1, bN = 1√

N
.

Then, for ρ = 1
12

,

Λ̂i`

(
NρĤ(0)

)
= Λi` +

Mi`

βi`

1

(NρbN)6N
+
VK
2

2∑
k=1

β2
kIi` (k) (NρbN)2 +RN,i`

= N
3
2
Mi`

βi`
(1 + op (1)) for i, ` = 1, 2,

as (NρbN)6N = N
3
2 b6
N = N

3
2N−

6
2 = N−

3
2 and (NρbN)2 = N

1
6

1
N

=

N−
5
6 . Therefore, Λi` is a constant, the dominant term in the expansion

of Λ̂i`

(
NρĤ(0)

)
is the second one. Plugging this into the formula for
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ĥ
(1)
1 , ĥ

(1)
2 , we get

ĥ
(1)
1 = C

1
6
K

(
M22

M11

) 1
8 1(√

M11M22N
3
2 +N

3
2M12

) 1
6

1

N
1
6

(1 + op (1))

= C
1
6
K

(
M22

M11

) 1
8 1(√

M11M22 +M12

) 1
6

N−
5
12 (1 + op (1)) ,

ĥ
(1)
2 = C

1
6
K

(
M11

M22

) 1
8 1(√

M11M22 +M12

) 1
6

N−
5
12 (1 + op (1)) .

Step 2: Let us denote by β
(1)
i the factors depending only on the kernel such that

ĥ
(1)
i = β

(1)
i N−

5
12 (1 + op (1)), and bN = N−

5
12 . Then, the dominant term

in the expansion of Λ̂i`

(
NρĤ(1)

)
is again the second one, and

Λ̂i`

(
NρĤ(1)

)
= N

Mi`

β
(1)
i`

(1 + op (1)) for i, ` = 1, 2,

with β
(1)
i` being defined as βi` with βi = β

(1)
i , i = 1, 2. We get

ĥ
(2)
1 = C

1
6
K

(
M22β

(1)
11

M11β
(1)
22

) 1
8

√
β

(1)
1 β

(1)
2(√

M11M22 +M12

) 1
6

N−
1
3 (1 + op (1)) ,

ĥ
(2)
2 = C

1
6
K

(
M11β

(1)
22

M22β
(1)
11

) 1
8

√
β

(1)
1 β

(1)
2(√

M11M22 +M12

) 1
6

N−
1
3 (1 + op (1))

as β
(1)
11 β

(1)
22 =

(
β

(1)
1 β

(1)
2

)6

=
(
β

(1)
12

)2

.

Step 3: Write again ĥ
(2)
i = β

(2)
i bN (1 + op (1)) with bN = N−

1
3 . Again the second

term is dominant, and, for i, ` = 1, 2,

Λ̂i`

(
NρĤ(2)

)
=
√
N
Mi`

β
(2)
i`

(1 + op (1))

and

ĥ
(3)
1 = C

1
6
K

(
M22β

(2)
11

M11β
(2)
22

) 1
8

√
β

(2)
1 β

(2)
2(√

M11M22 +M12

) 1
6

N−
1
4 (1 + op (1)) ,

ĥ
(3)
2 = C

1
6
K

(
M11β

(2)
22

M22β
(2)
11

) 1
8

√
β

(2)
1 β

(2)
2(√

M11M22 +M12

) 1
6

N−
1
4 (1 + op (1)) .
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Step 4: Write again ĥ
(3)
i = β

(3)
i bN (1 + op (1)) with bN = N−

1
4 . Now, the constant

term in the expansion of Λ̂i`

(
NρĤ(3)

)
is no longer negligible compared

to the second one. Only the third term is of smaller order as (NρbN)2 =

N
1
6N−

1
2 = N−

1
3 . Hence, we have now for i, ` = 1, 2

Λ̂i`

(
NρĤ(3)

)
= Λi` +

Mi`

β
(3)
i`

(1 + op (1)) ,

and we get

ĥ
(4)
1 = β

(4)
1 N−

1
6 (1 + op (1)) ,

ĥ
(4)
2 = β

(4)
2 N−

1
6 (1 + op (1)) ,

where the constants β
(4)
i , i = 1, 2, depend on CK ,Mi`, β

(3)
i` ,Λi`, i = 1, 2.

Now, after the 4th step, we have reached the optimal bandwidth order

N−
1
6 .

For the remaining steps, the main term of the bandwidths will always be

of optimal rate N−
1
6 , and, hence, the inflated bandwidths for the second-

derivative estimates will be of order N
1
12N−

1
6 = N−

1
12 . Now, the remainder

terms in Proposition 4 and 5 for the local case and in Theorem 4 for the global

case become relevant.

We first consider the situation where we are only interested in a global

bandwidth. Then, the remainder terms of Theorem 4 for bandwidth rate

NρbN = N
1
12N−

1
6 = N−

1
12 are

RN,i` = o
(
N−

1
6

)
+ op

(
N−γN−

1
6

)
+Op

(
N−

7
12

)
+ op

(
N−γ√
N

)
+ op

(
logN

N

)
+op

(
logN√
N

)
= o

(
N−

1
6

)
+ op

(
N−γN−

1
6

)
+ op

(
logN√
N

)
,
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i, ` = 1, 2, and, correspondingly,

Λ̂i` (H) = Λi` +
Mi`

βi`
O

(
1√
N

)
+
VK
2

2∑
k=1

β2
kIi` (k)O

(
N−

1
6

)
+RN,i`

= Λi` +O
(
N−

1
6

)
+ op

(
N−γN−

1
6

)
+ op

(
logN√
N

)
= Λi` + rN (γ) .

Step 5: From the expansion of ĥ
(4)
i , they satisfy Condition 2 of Proposition 4

and the subsequent expansions with bN = N−
1
6 and γ = 0. Hence,

rN (γ) = rN (0) = O
(
N−

1
6

)
+ op

(
N−

1
6

)
, and

(
Λ̂22

Λ̂11

) 1
8

1(√
Λ̂11Λ̂22 + Λ̂12

) 1
6

=

(
Λ22

Λ11

) 1
8 1(√

Λ11Λ22 + Λ12

) 1
6

(
1 +O

(
N−

1
6

)
+ op

(
N−

1
6

))
which implies

ĥ
(5)
1 = ha1

(
1 +O

(
N−

1
6

)
+ op

(
N−

1
6

))
= ha1

(
1 +O

(
N−

1
6

))(
1 + op

(
N−

1
6

))
and, analogously, we have the same relation for ĥ

(5)
2 , ha2.

Step 6: As 1 + O
(
N−

1
6

)
+ op

(
N−

1
6

)
=
(

1 +O
(
N−

1
6

))(
1 + op

(
N−

1
6

))
, ĥ

(5)
i

satisfies Condition 2 with bN = N−
1
6 , γ = 1

6
. Hence, rN (γ) = rN

(
1
6

)
=

O
(
N−

1
6

)
+ op

(
N−

1
3

)
, and, as in Step 5,

ĥ
(6)
i = hai

(
1 +O

(
N−

1
6

)
+ op

(
N−

1
3

))
, i = 1, 2.

Step 7: ĥ
(6)
i satisfies Condition 2 with bN = N−

1
6 , γ = 1

3
, such that

rN (γ) = rN

(
1

3

)
= O

(
N−

1
6

)
+ op

(
N−

1
2

)
+ op

(
logN√
N

)
= O

(
N−

1
6

)
+ op

(
logN√
N

)
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and we have

ĥ
(7)
i = hai

(
1 +O

(
N−

1
6

)
+ op

(
logN√
N

))
, i = 1, 2.

Further iterations do not improve the rate with which ĥ
(7)
i approximates

hai, as the term op

(
N−γN−

1
6

)
will stay negligible compared to op

(
logN√
N

)
,

i.e. the algorithm can stop here.

6.2 Data-adaptive choice of local bandwidths

Now, we consider the situation where we are interested in local bandwidth

selection. We start with 4 steps of global iteration with ρ = 1
12

such that the

optimal bandwidth rate bN = N−
1
6 is reached. From Theorems 5 and 6 we

have for i = 1, 2

λ̂2
ii (x1, x2, N

ρH) = λ2
ii (x1, x2) +O

(
N2ρb2

N

)
+Op

(
1√

N (NρbN)3

)
+ r

′

N (γ)

= λ2
ii (x1, x2) +O

(
N−

1
6

)
+Op

(
N−

1
4

)
+ r

′

N (γ)

λ̂ (x1, x2, H) = λ (x1, x2) +O
(
b2
N

)
+Op

(
1√
NbN

)
+ rN (γ)

= λ (x1, x2) +O
(
N−

1
3

)
+Op

(
N−

1
3

)
+ rN (γ)

with

rN (γ) = op
(
b2
NN

−γ)+ op

(
N−

γ
2

√
Nbn

)
+Op

(
N−γ√
NbN

)
= op

(
N−

1
3N−

γ
2

)
+Op

(
N−

1
3N−γ

)
r
′

N (γ) = op
(
(NρbN)2N−γ

)
+ op

(
N−

γ
2

√
N (NρbN)3

)
+Op

(
N−γ√

N (NρbN)3

)
= op

(
N−

1
6N−γ

)
+ op

(
N−

1
4N−

γ
2

)
+Op

(
N−

1
4N−γ

)
.

Therefore, we have

λ̂
1
6 (x1, x2, H)

∣∣∣∣∣ λ̂22 (x1, x2, N
ρH)

λ̂5
11 (x1, x2, NρH)

∣∣∣∣∣
1
12

= λ
1
6 (x1, x2)

∣∣∣∣λ22 (x1, x2)

λ5
11 (x1, x2)

∣∣∣∣ 1
12

+RN (γ)
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with

RN (γ) = O
(
N−

1
6

)
+Op

(
N−

1
4

)
+op

(
N−

1
6N−γ

)
+op

(
N−

1
4N−

γ
2

)
+Op

(
N−

1
4N−γ

)
.

Step 5’: As we use ĥ
(4)
i for the kernel estimates here, we have as in Step 5 of

the global iteration γ = 0 and RN (γ) = O
(
N−

1
6

)
+ op

(
N−

1
6

)
, which

implies

ĥ
(5)
1 (x1, x2) = ha1 (x1, x2)

(
1 +O

(
N−

1
6

)
+ op

(
N−

1
6

))
and, analogously, for ĥ

(5)
2 (x1, x2) and ha2 (x1, x2).

Step 6’: As in Step 6 of the global iteration, we now have γ = 1
6
, and RN (γ) =

O
(
N−

1
6

)
+ Op

(
N−

1
4

)
which is the fastest possible rate as the second

term in the definition of RN (γ) does not depend on γ. Further iterations

would not improve the approximation, and we stop with

ĥ
(6)
i (x1, x2) = hai (x1, x2)

(
1 +O

(
N−

1
6

)
+Op

(
N−

1
4

))
.

Let us close the discussion with a remark on situations where a mixed local-

global bandwidth selection is advisable, even if we are interested in locally

optimal smoothing. If λ (x1, x2) is close to 0 and flat, i.e. λii (x1, x2) ≈ 0,

i = 1, 2, too, then the local bandwidth ĥ
(`)
i (x1, x2) of the algorithm become

quite unstable. The optimal bandwidths should be quite large in these regions

but due to random variations the crucial factor, for e.g. i = 1,λ̂2
(
x1, x2, Ĥ

(`−1) (x1, x2)
) λ̂22

(
x1, x2, N

ρĤ(`−1) (x1, x2)
)

λ̂5
11

(
x1, x2, NρĤ(`−1) (x1, x2)

)


1
12

may assume small and large value alike. In this case, it is recommendable to

stick with a good global bandwidth in those regions, i.e. to use ĥ
(7)
i , i = 1, 2,
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where λ̂
(
x1, x2, Ĥ

(4)
)

and
∣∣∣λ̂ii (x1, x2, N

ρĤ(4)
)∣∣∣ are below some constant, say,

cλ, in a neighbourhood

U (x1, x2) =
{

(u1, u2)> ; |u1 − x1| , |u2 − x2| ≤ δ
}

of (x1, x2)>. E.g. we could check if

min
u∈U(x1,x2)

{
λ̂
(
u, Ĥ(4)

)
,
∣∣∣λ̂ii (u,NρĤ(4)

)∣∣∣ , i = 1, 2
}
> cλ

as a criterion if we proceed with the local bandwidth optimisation or not.

We combine the results of our discussion into the following theorem.

Theorem 7. Under the assumptions of Theorem 4, we have that the algorithm

of Section 3.1 obtains the following rates for approximating the asymptotically

optimal bandwidths for inflation factor Nρ = N
1
12 .

a) ĥ
(7)
i = hai

(
1 +O

(
N−

1
6

)
+ op

(
logN√
N

))
, i = 1, 2,

b) ĥ
(6)
i (x1, x2) = hai (x1, x2)

(
1 +O

(
N−

1
6

)
+Op

(
N−

1
4

))
, i = 1, 2.

Further iterations do not improve these rates. In case b), we have to switch

from the global to the local part of the iteration after 4 steps.

6.3 The inflation factor

In this section, we argue why we have chosen ρ = 1
12

and discuss some al-

ternatives. Note that, from the derivation in the last section, the number of

iterations of the plug-in algorithm crucially depends on the choice of ρ. We

again first consider the case where we are only interested in suitable global

bandwidths.

From Theorem 4 and its proof the two main terms of the approximation

error Λ̂i`−Λi` are the bias term, which is of order O (N2ρb2
N), and the variance
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term, which is of order O
(

1
N(NρbN )6

)
if we use the inflation factor Nρ for the

bandwidths of the estimates Λ̂i`. Let us assume that we already have reached

the optimal rate bN = N−
1
6 . Then, the bias and variance term are O

(
N2ρ− 1

3

)
respectively O

(
1

N6ρ

)
, i.e. the first term increases with ρ, the second decreases

with ρ. Balancing both terms requires 1
3
− 2ρ = 6ρ, i.e. ρ = 1

24
, which would

result in both error terms being of order O
(

1
N6ρ

)
= O

(
N−

1
4

)
.

If we start the plug-in algorithm again with ĥ
(0)
i = 1√

N
, i = 1, 2, then

with inflation factor N
1
24 we need 8 steps for reaching the optimal bandwidth

rate N−
1
6 by the same kind of derivation as for ρ = 1

12
, and we have ĥ

(8)
i =

β
(8)
1 N−

1
6 (1 + op (1)) for some constant β

(8)
i , i = 1, 2. In the next, now the 9th,

step we have to take into account the remainder terms as in Step 5 of the

previous section. Again, we have bN = N−
1
6 , and now, the bandwidth used for

second derivative estimates is of order NρbN = N
1
24N−

1
6 = N−

3
24 = N−

1
8 . In

that case the remainder terms of Theorem 4 are

RN,i` = o
(
N−

1
4

)
+ op

(
N−γN−

1
4

)
+Op

(
1√
N

)
+ op

(
N−

γ
2N−

1
4

)
+op

(
logN√
N

)
+ op

(
logN

N
3
4

)
= o

(
N−

1
4

)
+ op

(
N−

γ
2N−

1
4

)
+ op

(
logN√
N

)
and

Λ̂i` (H) = Λi` +O
(
N−

1
4

)
+ op

(
N−

γ
2N−

1
4

)
+ op

(
logN√
N

)
= Λi` + rN (γ) .

Step 9: As, now, ĥ
(8)
i satisfies Condition 2 with γ = 0, we have rN (γ) = rN (0) =

O
(
N−

1
4

)
+ op

(
N−

1
4

)
and

(
Λ̂22

Λ̂11

) 1
8
(

1√
Λ̂11Λ̂22 + Λ̂12

) 1
6

=

(
Λ22

Λ11

) 1
8
(

1√
Λ11Λ22 + Λ12

) 1
6

(1 + rN (0))
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which implies

ĥ
(9)
1 = ha1

(
1 +O

(
N−

1
4

)
+ op

(
N−

1
4

))
and analogously for ĥ

(9)
2 , ha2. Hence ĥ

(9)
i are a better approximation to

hai, i = 1, 2, than ĥ
(8)
i as the latter provides an approximation only up

to a factor of order 1 + op (1).

Step 10: As ĥ
(9)
i satisfies Condition 2 with γ = 1

4
, we have rN (γ) = O

(
N−

1
4

)
+

op

(
1√
N

)
+ op

(
logN√
N

)
= O

(
N−

1
4

)
+ op

(
logN√
N

)
and we have

ĥ
(10)
i = hai

(
1 +O

(
N−

1
4

)
+ op

(
logN√
N

))
, i = 1, 2.

Further iterations do not improve the approximation rate of ĥ
(10)
i further,

so the algorithm stops here.

For the local bandwidth selection with inflation factor N
1
24 , we have again

λ̂
1
6 (x1, x2, H)

∣∣∣∣∣ λ̂22 (x1, x2, N
ρH)

λ̂11 (x1, x2, NρH)

∣∣∣∣∣
1
12

= λ
1
6 (x1, x2)

∣∣∣∣λ22 (x1, x2)

λ22 (x1, x2)

∣∣∣∣ 1
12

+ r
′

N (γ) ,

where now with ρ = 1
24

r
′

N (γ) = O
(
N−

1
4

)
+ op

(
N−γN−

1
4

)
+ op

(
N−

1
3

)
.

Step 9’: For the first local iteration step with Nρ = N
1
24 , we have γ = 0 and

r
′
N (γ) = r

′
N (0) = O

(
N−

1
4

)
+ op

(
N−

1
4

)
, which implies

ĥ
(9)
i (x1, x2) = hai (x1, x2)

(
1 +O

(
N−

1
4

)
+ op

(
N−

1
4

))
, i = 1, 2.

Step 10’: Similar to Step 10, γ = 1
4
, r
′
N (γ) = O

(
N−

1
4

)
+ op

(
logN√
N

)
, and we stop

with

ĥ
(10)
i (x1, x2) = hai (x1, x2)

(
1 +O

(
N−

1
4

)
+ op

(
N−

1
3

))
, i = 1, 2.
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We summarise our findings to

Proposition 7. Under the assumptions of Theorem 4, the algorithm of Section

3.1 achieves the following rates for inflation factor Nρ = N
1
24

a) ĥ
(10)
i = hai

(
1 +O

(
N−

1
4

)
+ op

(
logN√
N

))
, i = 1, 2.

b) ĥ
(10)
i (x1, x2) = hai (x1, x2)

(
1 +O

(
N−

1
4

)
+Op

(
N−

1
4

))
, i = 1, 2.

In case b), we have to switch from the global to the local part of the iteration

after 8 steps.

The inflation factor N
1
24 provides a better approximation of the asymp-

totically optimal bandwidths compared to N
1
12 , as the deterministic part of

the approximation factor is O
(
N−

1
4

)
instead of O

(
N−

1
6

)
. However, recall

that we are really interested in the mise respectively mse-optimal bandwidth

h0i respectively h0i (x1, x2) from Corollary 7, which coincide with asymptoti-

cally optimal bandwidths hai respectively hai (x1, x2) only up to an error term

of order O
(
N−

1
4

)
. Therefore, it makes no sense to try to approximate the

asymptotically optimal bandwidth better than that. Note that for ρ = 1
24

, we

get from Proposition 7 and Corollary 7, e.g.,

ĥ
(10)
i =

(
h0i +O

(
N−

1
4

))(
1 +O

(
N−

1
4

)
+ op

(
logN√
N

))
= h0i +O

(
N−

1
4

)
, i = 1, 2,

and, using that hai is of order N−
1
6 , for ρ = 1

12
, ĥ

(7)
i = h0i + O

(
N−

1
4

)
, too.

Therefore, for approximating, both choices of ρ finally lead to the same ap-

proximation error of the optimal bandwidth.

We prefer ρ = 1
12

due to two reasons. On the one hand, the algorithm re-

quires fewer iterations for achieving an approximation rate of hai which cannot

be improved further. On the other hand, from the discussion at the begin-

ning of this section it achieves that the random part of Λi` − Λ̂i` is of minimal
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achievable order O
(

1
N6ρ

)
= O

(
1√
N

)
, which leads to more stable estimates.

We have to pay for it with a larger bias order O
(
N2ρ− 1

3

)
= O

(
N−

1
6

)
instead

of the balanced rate O
(
N−

1
4

)
. Note that by Corollary 5, O

(
N−

1
6

)
almost

is the rate of the difference hai − h0i, if λ is only twice continuously differen-

tiable, such that in this case, a further improvement of bias is not worthwhile.

However, for four times continuously differentiable λ, which we have assumed

in our derivation, hai − h0i is of order O
(
N−

1
4

)
by Corollary 7. Nevertheless,

we prefer a slightly more biased, but less variable and more stable estimate,

i.e. ρ = 1
12

.

Analogous arguments hold for preferring ρ = 1
12

for the local part of the

algorithm.
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Chapter 7

Bandwidth selection for spatial

data (d = 3)

In this chapter, we give an overview over the plug-in method for bandwidth

selection in dimension d = 3 which, together, with d = 2, is related to the kind

of applications from material science which motivated this thesis. The results

can be easily extended to arbitrary dimension d.

Note that for a diagonal bandwidth matrix H in dimension d with entries

h1, . . . , hd satisfying (compare Theorem 4, e.g.)

hi = βibN
(
1 + op

(
N−γ

))
, i = 1, . . . , N,

the variance component of the asymptotic mse and mise expansion is of order

O
(

1
NbdN

)
whereas the squared bias component is of order O (b4

N) independent

of d. This follows from Corollary 3. So, the asymptotic mse and mise increase

with d. The approximation results, which are the justification for the plug-in

algorithm in dimension d = 2, change accordingly, but can be used in exactly

the same manner as in d = 2. Technically, the main reason is the observation

that in substituting ui = zi−xi
hi

, i = 1, . . . , d, which is a main tool in the proofs,

we get a factor h1 · . . . · hd = O
(
bdN
)

before the integral w.r.t. u1, . . . , ud which
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takes care of the dimension-dependent increase of the factor 1
NdetH

= O
(

1
NbdN

)
in the mse and mise-expansions.

7.1 Approximation results in dimension d = 3

Recall that for general dimension d, we have considered the kernel estimate

λ̂ (x,H) =
1

N

N∑
j=1

KH (x−Xj)

with

KH (u) =
1

detH
K
(
H−1u

)
with x, u ∈ Rd (compare Section 2.1). In Corollary 3, we have derived asymp-

totic approximations for the mean-squared error and integrated mean-squared

error. They allow the calculation of asymptotically optimal bandwidths ha1, . . . , had

and corresponding local bandwidths ha1 (x) , . . . , had (x) , x ∈ (0, 1)d which are

the basis of the plug-in algorithm. In the following, we discuss the main results

which justify this algorithm for d = 3. Their derivation is largely identical to

the case d = 2, and so, we only discuss the proofs as far as they differ from

dimension d = 2 which has been extensively discussed in the previous chapters.

The only relevant difference between the cases d = 3 and d = 2 is the fact,

that the formula for the asymptotically optimal global bandwidths becomes a

bit more complicated as, in dimension 2, some terms are cancelling which is

no longer true in higher dimensions. Recall from Corollary 3, that

amise (H) =
QK

NdetH
+

1

4
V 2
K

ˆ ( 3∑
i=1

h2
iλii (x)

)2

dx

=
QK

NdetH
+

1

4

3∑
k,`=1

h2
kh

2
`Ik`

with

Ik` = V 2
K

ˆ
λkk (x)λ`` (x) dx = V 2

KΛk`.
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Here and in the following, we write
´
· · · dx as a shorthand notation for

´ ´ ´
· · · dx1dx2dx3. To minimise amise (H), we set the partial derivatives

w.r.t. h1, h2, h3 to 0 and get the following system of polynomial equations:

3∑
k=1

h2
`Ik`h

2
kdetH =

QK

N
, ` = 1, 2, 3,

or, equivalently, using Ik` = I`k,

h4
1I11 + h2

1h
2
2I12 + h2

1h
2
3I13 =

QK

NdetH
, (7.1a)

h4
2I22 + h2

1h
2
2I12 + h2

2h
2
3I23 =

QK

NdetH
, (7.1b)

h4
3I33 + h2

1h
2
3I13 + h2

2h
2
3I23 =

QK

NdetH
. (7.1c)

Subtracting (7.1a) from (7.1b) respectively (7.1c), dividing by h4
1 and setting

u =
h22
h21
, v =

h23
h21

, we get

I22u
2 + I23uv − I13v = I11, (7.2a)

I33v
2 + I23uv − I12u = I11, (7.2b)

which implies

I22u
2 + I12u = I33v

2 + I13v. (7.3)

Now, set w = I33
I23
v + u, i.e. u = w − I33

I23
v, and plug it into (7.2b) such that

I33v
2 + I23v

(
w − I33

I23

v

)
− I12

(
w − I33

I23

v

)
= I11,

i.e. the quadratic term cancels, and

w =
I11 − I12I33

I23
v

I23v − I12

such that

u = w − I33

I23

v =
I11 − I12I33

I23
v − I33

I23
I23v

2 + I12I33
I23

v

I23v − I12

=
I11 − I33v

2

I23v − I12

=
Λ11 − Λ33v

2

Λ23v − Λ12

. (7.4)
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Plugging this into (7.3), we get

I22

(
I11 − I33v

2
)2

+ I12 (I23v − I12)
(
I11 − I33v

2
)

=
(
I33v

2 + I13v
)

(I23v − I12)2 ,

i.e., taking into account that Ik` = V 2
KΛk`, VK > 0, v solves the polynomial

equation of degree 4
4∑

k=0

akv
k = 0 (7.5)

with coefficients

a0 =
(
Λ11Λ22 − Λ2

12

)
Λ11,

a1 = (Λ11Λ23 − Λ12Λ13) Λ12,

a2 = 2 (Λ12Λ13Λ23 − Λ11Λ22Λ33) ,

a3 = (Λ12Λ33 − Λ13Λ23) Λ23,

a4 =
(
Λ22Λ33 − Λ2

23

)
Λ33,

where, in particular, a0, a4 ≥ 0 by definition of Λk` and the Cauchy-Schwarz

inequality.

Finally, we use h2
2 = uh2

1, h
2
3 = vh2

1 and plug it into (7.1a) to get

V 2
K (Λ11 + Λ12u+ Λ13v)h4

1 =
QK

N
√
uvh3

1

.

This implies the first part of the following result which is analogous to Theorem

3. The second part for the local bandwidths follows exactly as in dimension

d = 2. Note that the polynomial equation for v may be solved rather precisely

by using solvers like the MATLAB routine “solve”.

Theorem 8. Let the assumptions of Theorem 2 be satisfied, and let d = 3.

a) The bandwidths ha1, ha2, ha3 minimising amise (H) of Corollary 3 are
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given by

h7
a1 =

QK

V 2
K

1√
uv (Λ11 + Λ12u+ Λ13v)

1

N
,

ha2 =
√
uha1,

ha3 =
√
vha1,

where v solves (7.5) and u is given as a function of v by (7.4), provided

(7.5) has a positive solution for which u > 0 and Λ11 + Λ12u+ Λ13v > 0,

too.

b) The bandwidths ha1 (x) , ha2 (x) , ha3 (x) minimising amse (x,H) of Corol-

lary 3 are given by

h7
ak (x) =

QK

V 2
K

λ (x)

∣∣∏3
i=1 λii (x)

∣∣ 12
|λkk (x)|

7
2

1

3N
,

where k = 1, 2, 3, provided sgnλkk (x) = 1, k = 1, 2, 3, or sgnλkk (x) =

−1, k = 1, 2, 3.

Let us briefly discuss the condition on the signs of λkk (x) in part b). It also

appears in the analogous Theorem 3, but in higher dimensions it seems to be

more and more restrictive. Let us briefly discuss why this condition appears.

With A = QKλ (x) , Bi = VKλii (x) , i = 1, 2, 3, the amse is of the form

amse (x,H) =
A

NP
+

1

4
S2 with P =

3∏
i=1

hi, S =
3∑
i=1

Bih
2
i .

Setting the partial derivatives w.r.t. h1, h2, h3 to 0 results in

SBkh
2
k =

A

NP
, k = 1, 2, 3.

Subtracting the 2nd respectively 3rd equation from the first implies

S
(
B1h

2
1 −B2h

2
2

)
= 0 = S

(
B2h

2
2 −B3h

2
3

)
.
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If S 6= 0, then B1h
2
1 = B2h

2
2 = B3h

2
3 and S = 3B1h

2
1, such that

SB1h
2
1 = 3B2

1h
4
1 =

A

NP
.

Moreover, we can replace h2, h3 in P by
√
|B1|
|Bk|

h1, k = 2 respectively k = 3,

and we get the formula in b). If S = 0, on the other hand, which only may

happen if not all Bi, i.e. all λii (x), have the same sign, we are in a degenerate

situation where the bias term in amse (x,H) vanishes. Replacing hi by chi for

c > 0, we then have

amse (x, cH) =
A

Nc3P
+

1

4
c4S2 =

A

Nc3P
→ 0

for c → ∞. This does not imply that very large bandwidths are recommend-

able, but it means that we would have to take higher-order terms in the bias

expansion into account which are negligible in the usual amse formula (i.e. in

the case where S 6= 0). A detailed examination of this case is beyond the scope

of this chapter. Let us just mention that the assumption of b) covers situations

where λ (x) is locally convex respectively concave at x which will usually hold

for most points.

For the further discussion, it is important to note that the positive solution

of (7.5), if it exists, is an explicit, though complicated function of a0, . . . , a4.

This follows from the subsequent steps: Substituting v̄ = v+ 1
4
a3
a4

and dividing

by a4, (7.5) becomes the reduced equation v̄4 + pv̄2 + qv̄ + r = 0, where p, q, r

are polynomials in ai
a4
, i = 0, 1, 2, 3. Euler’s solution is representing the solution

v̄ as a linear combination of
√
yi, i = 1, 2, 3, where y1, y2, y3 are the solutions

of the cubic equation

y3 + py2 +
(
p2 − 4r

)
y − q2 = 0.

This cubic equation can be brought into reduced form by substituting ȳ =

y+ 1
3
p, resulting in a cubic equation ȳ3+3p̄ȳ+2q̄ = 0, where p̄, q̄ are polynomials
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in p, q, r. Finally, by e.g. the Cardano formula, the solutions ȳ1, ȳ2, ȳ3 are

functions of p̄, q̄ involving polynomials and cubic and square roots (compare,

e.g., Arnold (1965), or any other textbook on calculus).

From Theorem 8, the optimal bandwidth rate for d = 3 is N−
1
7 . Together

with Corollary 3, we get the following analogue of Corollary 4:

Corollary 12. Under the assumptions of Theorem 8, let hiN
1
7 → ci > 0 for

N →∞, i = 1, 2, 3. Then, for N →∞,

a) mseλ̂ (x,H)− amse (x,H) = o
(
N−

4
7

)
,

b) miseλ̂ (·, H)− amise (H) = o
(
N−

4
7

)
.

Analogously to Corollary 5, we also have for the mse and mise optimal

bandwidths h0i (x) , h0i, i = 1, 2, 3:

Corollary 13. Let the assumptions of Theorem 8 be satisfied. Then,

a) h0i (x) = hai (x) + o
(
N−

1
7

)
, i = 1, 2, 3, for all x ∈ (0, 1)3,

b) h0i = hai + o
(
N−

1
7

)
, i = 1, 2, 3.

If we assume that λ is four times continuously differentiable, we have the

analogue of Corollary 6:

Corollary 14. Let the assumptions of Corollary 12 and Assumptions 6 and 7

be satisfied. Then, for hiN
1
7 → ci > 0, i = 1, 2, 3, we have for N →∞

a) mseλ̂ (x,H)− amse (x,H) = O
(
N−

5
7

)
,

b) miseλ̂ (·, H)− amise (H) = O
(
N−

5
7

)
.

Beyond differentiability conditions on λ (x), we also need various regularity

and in particular symmetry conditions on the kernel function K (u) analogous

to Assumption 13. We collect them as
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Assumption 14. i) K(u) is a non-negative kernel function on [−1,+1]3,

integrating to 1.

ii) K is twice continuously differentiable, and the second-order derivatives

Kii (u) = ∂2

∂u2i
K (u), i = 1, 2, 3, are Lipschitz continuous.

iii) K and its first-order derivatives Ki (u) = ∂
∂ui
K (u) satisfy the symmetry

conditions

a) K (±1, u2, u3) = K (u1,±1, u3) = K (u1, u2,±1) = 0,

Ki (±1, u2, u3) = Ki (u1,±1, u3) = Ki (u1, u2,±1) = 0, i = 1, 2, 3,

for all −1 ≤ u1, u2, u3 ≤ 1.

b)
´
uiK (u) dui = 0 for all uj, j 6= i, i = 1, 2, 3.

c)
´
u2
iK (u) du = VK,

´
u3
iK (u) du = 0, i = 1, 2, 3.

For reference, we also formulate the 3-dimensional version of Assumption

12:

Assumption 15. λ is 4-times continuously differentiable on [0, 1]3, and the

partial derivatives of order 4 are Hölder continuous with some exponent β > 0.

We have the following analogue to Proposition 3:

Proposition 8. Let the assumptions of Theorem 2, Assumptions 14 and 15

be satisfied. Then

i) Eλ̂ii (x,H) = λii (x) + 1
2
VK
∑3

`=1 h
2
`
∂2

∂x2`
λii (x) +O

(
b2+β
N

)
,

ii) varλ̂ii (x,H) = 1
Nh4i detH

(Qii
Kλ (x) +O (bN)) with Qii

K as in Proposition 3.
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7.2 Asymptotics for amise and amse

estimates involving random bandwidths

in dimension d = 3

In this section, we formulate the 3-dimensional analogues of the results of

Chapters 4 and 5. As those, we denote by

Λ̂k` =

ˆ
λ̂kk (x,H) λ̂`` (x,H) dx

the estimates of Λk`, 1 ≤ k, ` ≤ 3, which, by Theorem 8, determine the asymp-

totically optimal global bandwidths. The estimates of the second derivatives

λ̂`` (x,H) are given by

λ̂`` (x,H) =
∂2

∂x2
`

λ̂ (x,H)

=
1

Nh2
`detH

N∑
j=1

K``

(
H−1 (x−Xj)

)
, ` = 1, 2, 3,

where K`` (u) denotes the second derivative ∂2

∂u2`
K (u) of the kernel.

First note that as in Chapter 4 we may write, e.g.,

Λ̂11 =
1

N2h6
1h

2
2h

2
3

N∑
i,j=1

ˆ
K11

(
H−1 (x−Xi)

)
K11

(
H−1 (x−Xj)

)
dx

=
1

N2h5
1h2h3

N∑
i,j=1

ˆ
K11 (u)K11

(
H−1 (Xi −Xj) + u

)
du

=
1

N2h5
1h2h3

N∑
i,j=1

L11

(
H−1 (Xj −Xi)

)
,

where L11 = K11 ∗ K11 again denotes the convolution of K11 with itself, i.e.

we have the same kind of relation used in the proof of Theorem 4. We get the

following analogue of Theorem 4.

Theorem 9. Let the Assumptions 14 and 15 be fulfilled. Let h1, h2, h3 be

random bandwidths satisfying for some βi > 0, i = 1, 2, 3, and a deterministic
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sequence 0 < bN → 0 (N →∞)

hi = βibN
(
1 + op

(
N−γ

))
, i = 1, 2, 3

for some γ ≥ 0. Then, for i = 1, 2, 3

Λ̂ii =

ˆ
λ2
ii (x) dx+ b2

NVK

ˆ
λii (x)

3∑
`=1

β2
`

∂2

∂x2
`

λii (x) dx

+
1

Nβ1β2β3β4
i b

7
N

ˆ
K2
ii (u) du+RN,ii, (7.6)

and, for i 6= `

Λ̂i`

=

ˆ
λii (x)λ`` (x) dx+ b2

N

VK
2

ˆ 3∑
k=1

β2
k

{
λii (x)

∂2

∂x2
k

λ`` (x) + λ`` (x)
∂2

∂x2
k

λii (x)

}
dx

+
1

Nβ1β2β3β2
i β

2
` b

7
N

ˆ
Kii (u)K`` (u) du+RN,i`, (7.7)

where the remainder terms RN,i`, i, ` = 1, 2, 3, are all of the order

RN,i` = o
(
b2
N

)
+op

(
b2
NN

−γ)+Op

(
1

Nb6
N

)
+op

(
N−γ

Nb7
N

)
+op

(
logN

N
3
2 b7
N

)
+op

(
logN√
N

)
.

Similarly, we have the following analogue of Theorem 5:

Theorem 10. Under the assumptions of Theorem 9 with hi = βibN (1 + op (N−γ)) , i =

1, 2, 3 again, where in particular b4
N = op (N−γ), we have with Qii =

´
K2
ii (u) du, i =

1, 2, 3, for all x ∈ [0, 1]3 satisfying λ (x) > 0

λ̂ii (x,H) = λii (x) +
1

2
VK

3∑
`=1

β2
`

∂2

∂x2
`

λii (x) b2
N + op

(
b2
NN

−γ)
+
√
λ (x)QiiOp

(
1√
Nb7

N

)
+ op

(
N−

γ
2√

Nb7
N

)
+Op

(
N−γ√
Nb7

N

)
.

We also need the following analogue of Theorem 6.
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Theorem 11. Under the assumptions of Theorem 10, we have for fixed x ∈

(0, 1)3

λ̂ (x,H) = λ (x) +
1

2
VK

3∑
`=1

β2
`λ`` (x) b2

N + op
(
b2
NN

−γ)
+
√
λ (x)QKOp

(
1√
Nb3

N

)
+ op

(
N−

γ
2√

Nb3
N

)
+Op

(
N−γ√
Nb3

N

)
.

7.3 Tuning parameters of the plug-in

algorithm in dimension d = 3

The plug-in algorithm in dimension 3 uses the same kind of iteration as in

dimension 2 (compare Section 3.1). We start with initial guesses for the global

bandwidths ĥ
(0)
k , k = 1, 2, 3, and choose an inflation factor Nρ for the kernel

estimates of second derivatives. We use the abbreviations

Λ̂
(i)
k` = Λ̂

(i)
k`

(
NρĤ(i)

)
, k, ` = 1, 2, 3,

λ̂
(i)
k` (x) = λ̂k`

(
x,NρĤ(i) (x)

)
, k, ` = 1, 2, 3,

λ̂(i) (x) = λ̂
(
x, Ĥ(i) (x)

)
,

where Ĥ(i), Ĥ(i) (x) as usual denote the diagonal bandwidth matrices with

entries ĥ
(i)
k respectively ĥ

(i)
k (x), k = 1, 2, 3. Then, the algorithm starts with

iteratively improving the global bandwidths. If we are interested in local band-

width optimisation, then we switch from a certain point (after i∗ iterations)

on to the iteration improving local bandwidths.

Step 0: Choose initial bandwidths ĥ
(0)
k = 1√

N
, k = 1, 2, 3.

Step 1: (global) For i = 1, . . . , i∗, iterate:
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Find solution v̂(i) of
∑4

`=0 â
(i−1)
` v` = 0, v > 0, with â

(i−1)
` given by the

equations following (7.5) with Λ̂
(i−1)
k` replacing Λk`. Calculate

û(i) =
Λ̂

(i−1)
11 − Λ̂

(i−1)
33

(
v̂(i)
)2

Λ̂
(i−1)
23 v̂(i) − Λ̂

(i−1)
12

,

ĥ
(i)
1 =

 QK

NV 2
K

1
√
û(i)v̂(i)

(
Λ̂

(i−1)
11 + Λ̂

(i−1)
12 û(i) + Λ̂

(i−1)
13 v̂(i)

)


1
7

,

ĥ
(i)
2 =

√
û(i)ĥ

(i)
1 ,

ĥ
(i)
3 =

√
v̂(i)ĥ

(i)
1 .

ĥ
(i)
k = max

{
ĥ

(i)
k ,

1

2
√
N

}
, ĥ

(i)
k = min

{
ĥ

(i)
k ,

1

2

}
, k = 1, 2, 3.

Step 2: (local) Set Ĥ(i∗) (x) = Ĥ(i∗). For i = i∗ + 1, . . . , j∗,

ĥ
(i)
k (x) =

(
QK λ̂

(i−1) (x)

NV 2
K

) 1
7

∣∣∣∏3
`=1 λ̂

(i−1)
`` (x)

∣∣∣ 1
14

∣∣∣λ̂(i−1)
kk (x)

∣∣∣ 12
1{

ŝ
(i−1)
k

(
ŝ

(i−1)
1 + ŝ

(i−1)
2 + ŝ

(i−1)
3

)} 1
7

,

k = 1, 2, 3, where ŝ
(i−1)
` = sgnλ̂

(i−1)
`` (x) , ` = 1, 2, 3.

Let us first discuss the choice of ρ. In dimension 3, the bias term of Λ̂k` − Λk`

is of order O
(
(NρbN)2) by Theorem 9 if we choose the bandwidth NρbN for

calculating Λ̂k`. Correspondingly, the variance term, i.e. the 3rd term in the

expansion of Λ̂k`, is of order O
(

1
N(NρbN )7

)
. Assuming, that bN is already of

optimal order N−
1
7 , the bias term becomes O

(
N2ρ− 2

7

)
and the variance term

O
(

1
N7ρ

)
. Balancing both terms would lead to 2

7
− 2ρ = 7ρ, i.e. ρ = 2

63
, and

both error terms would be of order O
(
N−

2
9

)
.

However, as discussed in Section 6.3, we prefer to concentrate on keeping

the variance term small which leads to the condition 1
N7ρ = 1√

N
, i.e. ρ = 1

14
.

In the following, we choose therefore the inflation factor Nρ = N
1
14 .

We now follow the arguments of Section 6.1 without describing all the

details. We use ck` for some constants with changing values throughout the
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iteration, which are functions of β1, β2, β3 and various known functionals of the

kernel K.

Step 1: We start with ĥ
(0)
k = 1√

N
, k = 1, 2, 3, i.e. bN from Theorem 9 is 1√

N
too.

For ρ = 1
14

, the dominant term in the expansions (7.6), (7.7) in the 3rd

one, and as NρbN = N−
3
7 , we get

Λ̂
(0)
k` = ck`N

2 (1 + op (1)) .

Plugging this into the formulae for ĥ
(1)
k , we use that the solution of (7.5)

is invariant w.r.t. rescaling of the coefficients â
(0)
k , i.e. we may replace

them by 1
N6 â

(0)
k = α̂

(0)
k = O (1) (1 + op (1)), such that v̂(1) = Op (1). The

same holds for û(1), as from (7.4) and the asymptotic approximation of

Λ̂
(0)
k` , numerator and denominator are both of order N2. Hence, ĥ

(1)
k is of

order
{

1
N ·N2

} 1
7 = N−

3
7 .

Step 2: For i = 1, we have bN = N−
3
7 and NρbN = N−

5
14 , such that

Λ̂
(1)
k` = ck`N

3
2 (1 + op (1))

and ĥ
(2)
k is of order

{
1

N ·N
3
2

} 1
7

= N−
5
14 .

Step 3: With bN = N−
5
14 and NρbN = N−

2
7 , we have

Λ̂
(2)
k` = ck`N (1 + op (1))

and ĥ
(3)
k is of order

{
1

N ·N

} 1
7 = N−

2
7 .

Step 4: With bN = N−
2
7 and NρbN = N−

3
14 , we have

Λ̂
(3)
k` = ck`

√
N (1 + op (1))

and ĥ
(4)
k is of order

{
1

N ·
√
N

} 1
7

= N−
3
14 .
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Step 5: With bN = N−
3
14 and NρbN = N−

1
7 , we have

Λ̂
(4)
k` = Λk` + ck` (1 + op (1))

as now the constant term is no longer negligible. The bandwidth approx-

imation ĥ
(5)
k has now reached the optimal rate N−

1
7 .

For the further iterations, we have to take into account the remainder terms

RN,k` of (7.6), (7.7), which with bN = N−
1
7 and NρbN = N−

1
14 are

RN,k` = o
(
N−

1
7

)
+ op

(
N−γN−

1
7

)
+ op

(
logN√
N

)
,

and, correspondingly,

Λ̂k` (H) = Λk` +O
(
N−

1
7

)
+ op

(
N−γN−

1
7

)
+ op

(
logN√
N

)
= Λk` + rN (γ) .

Step 6: ĥ
(5)
k satisfies the approximation assumption of Theorem 9 with bN = N−

1
7

and γ = 0 such that rN (γ) = O
(
N−

1
7

)
+ op

(
N−

1
7

)
, and we get

ĥ
(6)
k = hak

(
1 +O

(
N−

1
7

)
+ op

(
N−

1
7

))
= hak

(
1 +O

(
N−

1
7

))(
1 + op

(
N−

1
7

))
.

Step 7: We now have bN = N−
1
7 , γ = 1

7
such that rN (γ) = O

(
N−

1
7

)
+op

(
N−

2
7

)
,

and

ĥ
(7)
k = hak

(
1 +O

(
N−

1
7

)
+ op

(
N−

2
7

))
.

Step 8: Now bN = N−
1
7 , γ = 2

7
such that rN (γ) = O

(
N−

1
7

)
+ op

(
N−

3
7

)
, and

ĥ
(8)
k = hak

(
1 +O

(
N−

1
7

)
+ op

(
N−

3
7

))
.
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Step 9: Now bN = N−
1
7 , γ = 3

7
such that rN (γ) = O

(
N−

1
7

)
+ op

(
logN√
N

)
as now

N−γN−
1
7 = N−

4
7 is of smaller order. Therefore, further iterations do not

improve the approximation quality, and we stop with

ĥ
(9)
k = hak

(
1 +O

(
N−

1
7

)
+ op

(
logN√
N

))
.

We now turn to the local bandwidth selection. After i∗ = 5 global steps we

have attained the optimal rate bN = N−
1
7 . From Theorem 10 and 11, we have

with bandwidths of order NρbN = N−
1
14 respectively bN = N−

1
7

λ̂2
kk (x,NρH) = λ2

kk (x) +O
(
N−

1
7

)
+Op

(
N−

1
4

)
+ r

′

N (γ) ,

λ̂2 (x,H) = λ2 (x) +O
(
N−

2
7

)
+Op

(
N−

2
7

)
+ rN (γ)

with

rN (γ) = op
(
N−γb2

N

)
+ op

(
N−

γ
2√

Nb3
N

)
+Op

(
N−γ√
Nb3

N

)
= op

(
N−

2
7N−

γ
2

)
+Op

(
N−

2
7N−γ

)
,

r
′

N (γ) = op

(
N−

1
7N−γ

)
+ op

(
N−

1
4N−

γ
2

)
+Op

(
N−

1
4N−γ

)
= op

(
N−

1
7N−γ

)
+ op

(
N−

1
4N−

γ
2

)
and, therefore,

λ̂
1
7 (x,H)

∣∣∣∏3
`=1 λ̂`` (x)

∣∣∣ 1
14

∣∣∣λ̂kk (x)
∣∣∣ 12 = λ

1
7 (x)

∣∣∏3
`=1 λ`` (x)

∣∣ 1
14

|λkk (x)|
1
2

+RN (γ)

with

RN (γ) = O
(
N−

1
7

)
+Op

(
N−

1
4

)
+ op

(
N−

1
7N−γ

)
.

Step 6’: Using ĥ
(5)
k , we have as in Step 6 bN = N−

1
7 , γ = 0, such that RN (γ) =

O
(
N−

1
7

)
+ op

(
N−

1
7

)
, implying

ĥ
(6)
k (x) = hak (x)

(
1 +O

(
N−

1
7

)
+ op

(
N−

1
7

))
.
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Step 7’: With ĥ
(6)
k (x), we have bN = N−

1
7 , γ = 1

7
such that RN (γ) = O

(
N−

1
7

)
+

Op

(
N−

1
4

)
ĥ

(7)
k (x) = hak (x)

(
1 +O

(
N−

1
7

)
+Op

(
N−

1
4

))
.

Step 8’: Here, the term op

(
N−

1
7N−γ

)
= op

(
N−

2
7

)
is negligible to the unavoid-

able term Op

(
N−

1
4

)
. Therefore, further iterations do not improve the

approximation quality.

We summarise the discussion in the following result which is the analogue of

Theorem 7.

Theorem 12. Under the assumptions of Theorem 11, we have that the plug-

in algorithm at the beginning of this section obtains the following rates for

approximating the asymptotically optimal bandwidths with the inflation factor

Nρ = N
1
14 .

a) ĥ
(9)
k = hak

(
1 +O

(
N−

1
7

)
+ op

(
logN√
N

))
, k = 1, 2, 3.

b) ĥ
(7)
k (x) = hak (x)

(
1 +O

(
N−

1
7

)
+Op

(
N−

1
4

))
, k = 1, 2, 3.

Further iterations do not improve these rates. In case b), we switch after

5 steps from the global to the local iteration, i.e. i∗ = 5, j∗ = 2.

It may happen during the iteration that there is more than one positive

solution v̂(i) of the polynomial equation of degree 4 for which also the corre-

sponding û(i) > 0. If this happens prior to the last step of the iteration, i.e.

in local bandwidth selection always, then it does not matter which solution is

chosen. The ambiguity of solutions does influence only a constant factor of the

intermediate bandwidths, but not the rates which are all that counts here. We

prefer to choose the larger one of both solutions to make the algorithm auto-

matic. If we use the algorithm for global bandwidth selection and if more than
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one solution appears during the last step 9, then we recommend to look at the

different resulting vectors of bandwidths and choose that one for which h1h2h3

is largest. This should lead to a smoother appearance of the final intensity

estimate.
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Chapter 8

Application to simulated and

real data

In this chapter, we consider simulated and real data in 2 dimension (d = 2).

The kernel function used is quartic kernel:

K (u, v) =


(

15
16

)2
(1− u2)

2
(1− v2)

2
, |u| ≤ 1, |v| ≤ 1;

0, otherwise,

so that

VK =

ˆ 1

−1

ˆ 1

−1

u2K (u, v) dudv

=

(
15

16

)2 ˆ 1

−1

ˆ 1

−1

u2
(
1− u2

)2 (
1− v2

)2
dudv

=
1

7
,

QK =

ˆ 1

−1

ˆ 1

−1

K2 (u, v) dudv

=

(
15

16

)4 ˆ 1

−1

ˆ 1

−1

(
1− u2

)4 (
1− v2

)4
dudv

=
25

49
.
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8.1 Simulation results for the mixture

bivariate normal distribution

Samples were generated from the following distribution:

X = (1−W )X0 +WX1,

where X0 is a bivariate normal distribution with mean

(
0.5 0.5

)
and co-

variance matrix

 σ2
0 0

0 σ2
0

. Similarly, X1 is a bivariate normal distribution

with mean

(
0.75 0.75

)
and covariance matrix

 σ2
1 0

0 σ2
1

. σ0 and σ1 will

be specified later. W is a Bernoulli random variable such that W = 1 with

probability w and W = 0 with probability 1 − w. Observations outside of

[0, 1]2 were rejected. The total sample size was N = 500.

We chose w = 0.75 and σ2
0 = σ2

1 = 1
144

to illustrate how the bandwidth

changes as the iteration proceeds. The iterated global bandwidths shown in

Tables 8.1 and 8.2 illustrate that the iterated bandwidth becomes steady after

7 steps for global case and 6 steps for local case. Note that in Figure 8.1, the

bandwidth at the point (0.75, 0.75) in the local iteration steps (from step 5

onwards) decreases first and becomes steady afterwards. Probably it is due to

the fact that at the point (0.75, 0.75) at where the peak is located, the second

derivatives of the intensity function λ11 (x, y) and λ22 (x, y) attain a very high

value. Therefore, the algorithm chooses a relatively smaller bandwidth to

accommodate this feature.
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Iteration step t h
(t)
a1 h

(t)
a2

0 0.04472136 0.04472136
1 0.07110748 0.07343927
2 0.08994116 0.09747116
3 0.09833928 0.108044528
4 0.10254668 0.11285674
5 0.10489176 0.11490613
6 0.105874438 0.11606366
7 0.10670693 0.11649906
8 0.10722224 0.11666709
9 0.10734786 0.11681582
10 0.10743845 0.11682822
11 0.10748641 0.11680769
12 0.10752665 0.11682475
13 0.10755093 0.11679476
14 0.10754256 0.11681992
15 0.10755222 0.11680228

Table 8.1: Iterated global bandwidths for observations generated from a 2-
dimensional normal distribution as specified in Section 8.1 with σ0 = σ1 = 1

12

and w = 0.75.
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Figure 8.1: Plots of the iterated global bandwidths ĥ
(t)
1 and local bandwidth

ĥ
(t)
1 (0.75, 0.75) for observations generated from a 2-dimensional normal distri-

bution as specified in Section 8.1 with σ0 = σ1 = 1
12

and w = 0.75.

Next, we conducted a Monte-Carlo study. We generated M = 200 samples

with each sample having the sample size N = 500. For pure global bandwidth

selection, there are 7 iteration steps. For the local case, the first 4 steps will be
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Global iteration step t h
(t)
a1 h

(t)
a2

0 0.04472136 0.04472136
1 0.07110748 0.07343927
2 0.08994116 0.09747116
3 0.09833928 0.10804453
4 0.10254668 0.11285674

Local iteration step t h
(t)
a1 (0.75, 0.75) h

(t)
a2 (0.75, 0.75)

5 0.08720507 0.09686396
6 0.07960701 0.09037397
7 0.07524026 0.08601521
8 0.07287823 0.08635201
9 0.07272479 0.08579517
10 0.07277950 0.08578627
11 0.07273217 0.08581165
12 0.07277762 0.08577490
13 0.07273078 0.08582061
14 0.07278107 0.08576696
15 0.07272592 0.08582843

Table 8.2: Iterated global and local bandwidths at (x, y) = (0.75, 0.75) for
observations generated from a 2-dimensional normal distribution as in Figure
8.1.

global iteration steps followed by 2 local iteration steps. For each sample, the

estimated intensity using the global or local bandwidths at the points (x, y) =

(0.5, 0.5) ,
(

3
4
, 3

4

)
,
(

1
3
, 1

3

)
,
(

2
3
, 2

3

)
, and the squared difference between the true

intensity and estimated intensity EG =
(
λ̂G (x, y)− λ (x, y)

)2

for pure global

case and EL =
(
λ̂L (x, y)− λ (x, y)

)2

for local case were computed. The whole

process was repeated for M = 200 times and we computed ĒG = 1
M

∑M
k=1 E

(k)
G

and ĒL = 1
M

∑M
k=1E

(k)
L to compare the performance between global bandwidth

and local bandwidth.

From Table 8.3, it seems that generally the intensity estimated by local

bandwidth is better than the one by global bandwidth. In some cases, ĒL

is even much smaller than ĒG. On the other hand, there are some occasions

in which ĒL are a bit larger than ĒG, but most of which are the samples in

which there are some invalid local bandwidths showing 0, NaN or infinity due

136



w (x, y) (0.5, 0.5)
(

3
4 ,

3
4

) (
1
3 ,

1
3

) (
2
3 ,

2
3

)
3
4

σ0 = 1
12

σ1 = 1
12

ĒG = 1.9688
ĒL = 2.1334

ĒG = 14.0260
ĒL = 7.3532

ĒG = 0.0215
ĒL = 0.0290∗

ĒG = 0.5160
ĒL = 0.4704∗

σ0 = 1
8

σ1 = 1
12

ĒG = 0.2564
ĒL = 0.4874∗

ĒG = 15.6275
ĒL = 7.3849

ĒG = 0.0400
ĒL = 0.0334∗

ĒG = 0.4384
ĒL = 0.3769

σ0 = 1
8

σ1 = 1
16

ĒG = 0.2956
ĒL = 0.3615∗

ĒG = 48.7982
ĒL = 23.8801

ĒG = 0.0590
ĒL = 0.0275∗

ĒG = 1.5306
ĒL = 2.3907∗

Table 8.3: The difference between the true and estimated intensity by global
bandwidth (ĒG) and local bandwidth (ĒL). Those ĒL marked with * indicated
that at least 1 sample has local bandwidth equal to 0, NaN or infinity. Those
ĒL’s are computed by ignoring those samples. Please refer to Table 8.4 for the
number of samples with local bandwidths = NaN, zero or infinity out of those
200 samples.

w (x, y) (0.5, 0.5)
(

3
4
, 3

4

) (
1
3
, 1

3

) (
2
3
, 2

3

)
3
4

σ0 = 1
12

= σ1 0 0 70 4
σ0 = 1

8
, σ1 = 1

12
48 0 133 0

σ0 = 1
8
, σ1 = 1

16
54 0 131 89

Table 8.4: Number of samples with local bandwidths = NaN, zero or infinity
out of 200 samples.

to numerical issues. The numbers of such samples are tabulated in Table 8.4.

Tables 8.5 and 8.6 show the corresponding statistics with w changed to 1
2
.

Figure 8.2 shows the scatter plot of the points generated from a bivariate

normal distribution with σ0 = 1
12

= σ1 and w = 0.75. Note that at the region

where there are almost no points generated (e.g. x > 0.7 and y < 0.5), the

local iteration cannot proceed as λ̂ (x, y,H) is 0, leading to a sudden drop in

the kernel estimate. At the peak where there is a high variation of intensity,

e.g. (x, y) = (0.75, 0.75), the estimate by local iteration is closer to the true

intensity than the global iteration.
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w (x, y) (0.5, 0.5)
(

3
4 ,

3
4

) (
1
3 ,

1
3

) (
2
3 ,

2
3

)
1
2

σ0 = 1
12

σ1 = 1
12

ĒG = 7.9731
ĒL = 4.4406

ĒG = 8.2182
ĒL = 4.4976

ĒG = 0.0685
ĒL = 0.0827∗

ĒG = 0.2406
ĒL = 0.1615∗

σ0 = 1
8

σ1 = 1
12

ĒG = 0.9142
ĒL = 0.8799

ĒG = 13.5416
ĒL = 5.3731

ĒG = 0.0458
ĒL = 0.0564∗

ĒG = 0.2257
ĒL = 0.2515

σ0 = 1
8

σ1 = 1
16

ĒG = 0.7081
ĒL = 0.8110∗

ĒG = 44.8710
ĒL = 16.1661

ĒG = 0.0832
ĒL = 0.0708∗

ĒG = 0.9734
ĒL = 1.2096∗

Table 8.5: The difference between the true and estimated intensity by global
bandwidth (ĒG) and local bandwidth (ĒL). Those ĒL marked with * indicated
that at least 1 sample has local bandwidth equal to 0, NaN or infinity. Those
ĒL’s are computed by ignoring those samples. Please refer to Table 8.6 for the
number of samples with local bandwidths = NaN, zero or infinity out of those
200 samples.

w (x, y) (0.5, 0.5)
(

3
4
, 3

4

) (
1
3
, 1

3

) (
2
3
, 2

3

)
1
2

σ0 = 1
12

= σ1 0 0 27 23
σ0 = 1

8
, σ1 = 1

12
0 0 136 0

σ0 = 1
8
, σ1 = 1

16
2 0 128 16

Table 8.6: Number of samples with local bandwidths = NaN, zero or infinity
out of 200 samples.

We conclude that the bandwidth selection algorithm usually works quite

well, where the local method is considerably better where the true underlying

intensity function has a high curvature, i.e. at
(

3
4
, 3

4

)
, as it is to be expected

considering the asymptotic mean-squared error approximation.

The local bandwidth selection causes sometimes numerical problems, in

particular at points where the intensity function is close to 0 and where we

have no or few observations in the neighbourhood. For stability, it would

be advisable to modify the algorithm such that the local iterations are only

applied to locations with not too few data in an appropriate neighbourhood,

and, otherwise, the optimal global bandwidth will be used.
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Figure 8.2: True intensity, estimates by local bandwidth and global bandwidth
for a mixture bivariate normal distribution, σ0 = σ1 = 1

12
, w = 0.75.

8.2 Simulation results for a bivariate normal

distribution with large correlation

500 observations were generated from a bivariate normal distribution with

mean

 0.5

0.5

 and covariance matrix

 1
144

0.8
144

0.8
144

1
144

, i.e. the correlation co-

efficient between the first and second component is 0.8. 200 samples were

generated. The differences between the estimated intensity and true intensity

at the points (0.4, 0.4), (0.45, 0.45), (0.55, 0.55)and (0.6, 0.6) are tabulated in

Table 8.7. At the point (0.5, 0.5) where the intensity function has the largest

second order derivatives, the local bandwidth performs much better than the
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(x, y) (0.4, 0.4) (0.45, 0.45) (0.5, 0.5) (0.55, 0.55) (0.6, 0.6)

ĒG 10.3390 43.0134 68.1889 41.7772 12.4429
ĒL 12.6652 31.9088 42.0751 30.7512 15.3291

Table 8.7: Difference between the estimated intensity and true intensity. True

intensity is a bivariate normal distribution with mean

(
0.5
0.5

)
and covariance

matrix

(
1

144
0.8
144

0.8
144

1
144

)
.

(x, y) True value
Estimate by

global bandwidth
Estimate by

local bandwidth

(0.4, 0.4) 17.1631 15.7835 14.6840
(0.45, 0.45) 31.2732 25.5565 26.4292
(0.5, 0.5) 38.1972 32.2937 34.6547

(0.55, 0.55) 31.2732 26.2438 27.6993
(0.6, 0.6) 17.1631 12.8752 11.8492

Table 8.8: True values of the intensity function and the estimates for a bivariate

normal distribution with mean

(
0.5
0.5

)
and covariance matrix

(
1

144
0.8
144

0.8
144

1
144

)
.

global bandwidth does. However, at the points (0.4, 0.4) and (0.6, 0.6) which

are a bit far away from the peak, the local bandwidth performs slightly worse

than the global bandwidth does. The true values of the intensity function and

the estimates from a typical sample are tabulated in Table 8.8.

8.3 Application to concrete fibres projected

onto 2 dimensional plane

Data sets of fibre locations of several concrete test bodies were provided by

the engineering partner, Daniele Casucci, of the research group GrK 1932.

See also Casucci (2018). The image processing software MAVI developed by

140



Fraunhofer ITWM was used to extract the fibre locations. The plug-in algo-

rithm was applied to estimate the intensity of fibre locations projected onto 2

dimensional plane. Both global and local bandwidth iteration algorithms were

deployed. Figures 8.3, 8.4 and 8.5 show the scatter plots and kernel estimates

for the fibre locations projected onto x−y, x−z and y−z planes of a concrete

test body. For each scatter plot, there are three graphs showing the kernel

estimates by global and local bandwidths. For local bandwidth iteration, re-

call that we need to start with 4 steps of global iteration and switch to local

iteration on 5th step. Sometimes the global iteration will lead to a situation

where λ̂11 (x, y,NρH) and λ̂22 (x, y,NρH) have opposite signs violating the as-

sumptions of our theoretical results. We could not proceed the local iteration

and continue the global iteration instead for those local steps. The graph with

the title “Estimate by local and global bandwidth” shows the kernel estimate

for which the local iteration cannot proceed and global iteration proceeds in-

stead for those local steps. It is of interest to note that in Figure 8.4 which

contains the graphs for x − z plane, the kernel estimates by local bandwidth

can better indicate the variation of the fibre intensity than the one by global

bandwidth. Along the close-to-zero z-coordinate (approximately z = 0.15),

the kernel estimate by local bandwidth shows that there is a particularly high

concentration of fibres as illustrated in the scatter plot. Along the close-to-one

z-coordinate (approximately z = 0.85) the kernel estimate by local bandwidth

shows that there are two sharp peaks and a trough where the fibre intensity is

particularly low as illustrated in the scatter plot. Clearly, the kernel estimate

by global bandwidth cannot indicate that along z = 0.85, the fibre intensity is

relatively low compared to the neighbourhood. In Figure 8.5, along the close-

to-one z-coordinate (approximately z = 0.9), the fibre intensity is more or

less constant. The estimate by local bandwidth shows a flat portion while the
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estimate by global bandwidth shows that the intensity changes continuously

along z = 0.9 probably due to over-smoothing.

However, when the fibre intensity is too low, the local iteration fails to

proceed. In fact, at the point (x, z) = (0.4, 0.5), the estimate λ̂11 (x, z,NρH)

and λ̂22 (x, z,NρH) are of opposite signs after 4 steps of global iterations.

Figures 8.6, 8.7 and 8.8 show the same graphs for another test body. As

before, the local iteration can better indicate the variation of intensity than the

global bandwidth can. Note that in all plots, the intensity estimates become

small close to the boundary. That is purely due to the well-known boundary

effects for function estimates based on local smoothing. The estimate pretends

that there are no data outside [0, 1]2 though they only are not observed. In its

current form, our method does not give reliable results close to the boundaries.

As a remedy, we could use special asymmetric boundary kernels (compare,

e.g., Section 4.4 of Härdle (1990), for the regression problem). For purely

global bandwidth selection, this already should suffice if the number of points

close to the boundary is small compared to the whole observation region. For

local bandwidth selection, however, we would have to modify the algorithm

to include boundary kernels as the resulting kernel estimates have a different

kind of asymptotics near the boundary. Of course, for N → ∞ and h → 0,

the boundary effect will become smaller, but it is a problem for finite sample

sizes except for situations like that in Sections 8.1 and 8.2 where all data are

well in the interior.
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Figure 8.3: Scatter plots, kernel estimates by global and local bandwidths for
the fibre locations projected onto x− y plane, test body 1
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Figure 8.4: Scatter plots, kernel estimates by global and local bandwidths for
the fibre locations projected onto x− z plane, test body 1
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Figure 8.5: Scatter plots, kernel estimates by global and local bandwidths for
the fibre locations projected onto y − z plane, test body 1
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Figure 8.6: Scatter plots, kernel estimates by global and local bandwidths for
the fibre locations projected onto x− y plane, test body 2
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Figure 8.7: Scatter plots, kernel estimates by global and local bandwidths for
the fibre locations projected onto x− z plane, test body 2
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Figure 8.8: Scatter plots, kernel estimates by global and local bandwidths for
the fibre locations projected onto y − z plane, test body 2
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Chapter 9

Conclusion

In this thesis, we have developed an iterative plug-in algorithm for bandwidth

selection for kernel intensity estimation. In Chapter 2, we derived the asymp-

totic expressions for the mean squared error (mse) and mean integrated squared

error (mise). From them, we derived, for d = 2, the asymptotically optimal

bandwidth for local and global cases and proved that the difference between

the bandwidth minimising the mse respectively mise and the one minimising

the asymptotic mse respectively asymptotic mise is up to o
(
N−

1
6

)
. In case of

smoother intensity function, the difference is even up to a smaller rate.

In Chapter 4, we derived the asymptotics for the integrated mean-squared

error estimates with random bandwidths. In particular, we have derived the

asymptotic expansions for Λ̂k` =
´ ´

λ̂kk (x1, x2, H) λ̂`` (x1, x2, H) dx1dx2, k, ` =

1, 2 for d = 2. Such expansions are utilised to choose the tuning parameters for

the iterative algorithm. In Chapter 5, we derived the asymptotics for the local

mean-squared error estimates with random bandwidths. In particular, we have

derived the asymptotic expansions for λ̂ij (x1, x2, H) , i = 1, 2 and λ̂ (x1, x2, H)

for d = 2. In Chapter 6, based on the asymptotic expansions derived in Chap-

ters 4 and 5, we recommend an inflation factor Nρ with ρ = 1
12

because the
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algorithm requires fewer iteration steps and it leads to more stable estimates.

Choosing ρ = 1
24

leads to a better approximation of the asymptotically optimal

bandwidths but it does not lead to a better approximation of the mse-optimal

bandwidth. Moreover, choosing ρ = 1
24

leads to more iteration steps. There-

fore, we have chosen ρ = 1
12

. Based on them, we determined the number of

iteration steps in the global and local bandwidth selection algorithm. Only a

small number of iterations suffices. In Chapter 7, the asymptotic analysis and

tuning parameter selection were repeated for d = 3.

In Chapter 8, the iterative bandwidth selection algorithm was applied to

some simulated data sets. As expected, the local bandwidth can better indicate

the variation of point intensity than the global one. However, special attention

is required when only a few points are present. In this case, local bandwidth

iteration cannot proceed and optimal global bandwidth will be used.

In the short future, the data analysis for 3 dimensional data sets will be

done to complete the scope of this thesis.
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