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Abstract

In planar location problems with barriers one considers regions
which are forbidden for the siting of new facilities as well as for tres-
passing. These problems are important since they reflect various real-
world situations. The resulting mathematical models have a non-
convex objective function and are therefore difficult to tackle using
standard methods of location theory even in the case of simple barrier
shapes and distance functions. For the case of center objectives with
barrier distances obtained from the rectilinear or Manhattan metric it
is shown that the problem can be solved by identifying a finite domin-
ating set (FDS) the cardinality of which is bounded by a polynomial
in the size of the problem input. The resulting genuinely polynomial
algorithm can be combined with bound computations which are de-
rived from solving closely connected restricted location and network
location problems. It is shown that the results can be extended to
barrier center problems with respect to arbitrary block norms having
four fundamental directions.



1 Introduction

In real-world location problems one often encounters situations in which re-
gions are neither allowed for siting new facilities nor for trespassing. In
accordance with most of the literature quoted below we call such regions bar-
riers. Examples of barriers include lakes or nature parks when the location
of industrial facilities is considered, obstacles in a production environment,
or high risk areas in the transportation and storing of chemicals.

In spite of this practical importance, there is only a relatively small amount
of literature on location problems with barriers. (Katz and Cooper, 1981)
considered median (total cost) location problems using Euclidean distance
and a forbidden region consisting of one circle. (Klamroth, 1996) considered
the median problem where distance is derived from a norm and with a bar-
rier consisting of a line with passages. (Aneja and Parlar, 1994) and (Butt
and Cavalier, 1996) developed heuristics for the median problem with [, dis-
tance and barriers that are closed polyhedra. (Larson and Sadiq, 1983), and
(Batta et al., 1989) obtained discretization results for median problems with
[1-distance and arbitrarily shaped barriers by transforming these problems
into equivalent network location problems. Their results were generalized
by (Hamacher and Klamroth, 1997) for arbitrary block norms although it is
not possible to transform these problems to the analogous network location
problems. Location problems in which regions are excluded from siting new
facilities, but trespassing is allowed are called restricted location problems.
They have lately drawn some attention and have been successfully tackled
for median and center problems, for instance, in (Hamacher, 1995), (Nickel,

1995), (Hamacher and Nickel, 1995), and (Hamacher and Schobel, 1997).

This paper considers the weighted center problem with barriers, for which -
to the best of our knowledge - no previous results exist. In the next section
we will formally introduce the problem and derive lower and upper bounds on
the objective value by investigating the interrelation between center barrier
problems on one hand and network location and restricted location problems
on the other hand. A discretization result is developed in Sections 3 and 4
for the special case that distances are measured by the Manhattan metric
(l;-metric) and that the barriers are pairwise disjoint convex polyhedra. It is
shown that it is sufficient to consider a finite number of candidates, a finite
dominating set (FDS), to find an optimal location. The resulting polynomial
time algorithm using this FDS is given in Section 4.



Section 5 shows that the results of Sections 3 and 4 are more general than
one might initially think: Any problem with block norms having exactly
four fundamental directions can be tackled in the same way. The paper is
concluded by a final section in which the results of the paper are summarized
and directions for future research are outlined.

2 Formal definition and bounds for center
problems with barriers

In this section we first give a formal definition of center problems with bar-
riers. Then we show that by considering the restricted location problem
as a relaxation we get lower and upper bounds. Further upper bounds are
obtained by investigating a network location problem closely related to the
input of the center problem with barriers.

Let {B1,..., By} be a set of closed, convex and pairwise disjoint sets in the
plane, IR?. Fach set B;, i = 1,..., N is called a barrier. Let B = UY, B;.
The location of new facilities in the interior of B and travel through int(B3)
is forbidden. Thus the feasible region F' C IR* for new facilities is given by

F = R\ int(B).

The distance dg(X,Y') between two points X, Y € F' is defined as the length
of a shortest path from X to Y that does not intersect a barrier. A finite set

Ex ={Fz,, e F :meM={1,.... M}}

of existing facilities is given in a connected subset of the feasible region F.
A positive weight w,, = w(Fz,,), m € M is associated with each existing
facility that represents the demand of facility Fz,,.

Define the function

f8(X) = max W dp( X, Ex,y,).
Then the weighted center problem with barriers is to minimize fg(X) over
all X € F. In the notation of (Hamacher and Nickel, 1996), this problem
has the classification 1/P/B/dg/ max.



While center location problems in the plane without barriers are extensively
discussed in the literature (see, e.g. the books of (Francis et al., 1992),
(Hamacher, 1995), (Drezner, 1995), and (Love et al., 1988)) no references
can be found on the corresponding barrier problems. The decisive distinc-
tion between the former and the latter problem is that the distance measure
dg for the problem considered in this paper reflects the fact that trespassing
of the barriers is not allowed.

Let d be a given distance function derived from a norm || e ||;. Then the
distance dg(X,Y) between two points X,Y € F is defined as the length of
a shortest path (with respect to the given distance function d) from X to Y
that does not intersect the interior of a barrier. Formally, let p be a piecewise,
continuously differentiable parametrization, p : [a,b] — IR* a,b € IR, a < b,
of a permitted path connecting X and Y, i.e. a curve not intersecting the
interior of a barrier, p([a,b]) Nint(B) = @, with p(a) = X and p(b) = Y.
Then dg is given by

b
dp(X,Y) :=inf {/ | p'(t) || dt : p permitted path connecting X and Y} .

Any path connecting X and Y with length dg(X,Y) not intersecting the
interior of B is called a d-shortest permitted path connecting X and Y. Any
two points X and Y in F that satisfy dg(X,Y) = d(X,Y) are called d-visible.
If d is the Manhattan metric, dg(X,Y") is denoted by [; g(X,Y).

Note that dg is symmetric and satisfies the triangle inequality, but is in
general not positively homogeneous. Therefore the objective function fg is
non-convex. However, instead of tackling the problem with methods of non-
convex optimization we will choose a different approach by investigating the
structure of the problem in more detail.

Next, upper and lower bounds for the optimal objective value of the center
problem with barriers, 1/ P/B/dg/ max, will be discussed. These bounds are
analogous to bounds given for the median objective function in (Hamacher
and Klamroth, 1997). Since these results can be easily transferred to other
and more general objective functions we refer to their work for a more detailed
discussion.

Two different approaches are suggested. The first approach is based on a
relaxation of the barrier problem to a restricted location problem of the type
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1/P/R = B/d/ max. Here trespassing through the barrier regions is allowed
whereas the placement of a new facility within the region R = B is prohibited.
The second approach makes use of the visibility graph G of the problem to
relate the barrier problem with a network location problem 1/G/ e /d / max
on (.

In both cases the non-convex optimization problem 1/P/B/dg/max is re-
laxed to a location problem that is easier to solve.

Lemma 1 (see (Hamacher and Klamroth, 1997)) Lel 25 be the oplimal
objective value of the barrier problem 1/P/B/dg/ max and let X3 be an op-
timal solution of the corresponding restricted problem 1/P/R = B/d/ max.
Then

F(Xz) = max{wn, d(Exy, X7)} < 25 < max {w, ds( B, X3)} = fs(Xp).

Corollary 1 (see (Hamacher and Klamroth, 1997)) Let X3 be an op-
timal solution of the restricted problem 1/P/R = B/d/max with objective
value z*. If z* > w,dg(Ex,, X%) for all m € M, then X3 = Xj is an
optimal solution of 1/P/B/dg/ max.

For the case that distances are measured with respect to the Manhattan
metric d = [; or the Chebychev metric d = [, the restricted problem
1/P/R = B/d/max can be solved by an algorithm developed in (Hama-
cher and Nickel, 1995). If distances are measured with respect to polyhedral
gauges d = v, the optimal solution of the restricted problem can be obtained
using an algorithm proposed in (Nickel, 1995).

The second approach to derive bounds for the problem 1/P/B/dz/max
makes use of the visibility graph of the problem in order to relax the non-
convex barrier problem to a network location problem.

In this case an additional assumption is needed, namely that the set of
barriers is given by a set of polyhedra with extreme points P(B) := {p; :
i = 1,...,9}. The embedded visibility graph of £z U P(B) is defined as
G = (V,E) with node set V(G) = €&z U P(B) and weights w(v) = 0
if v =p € PB) and w(v) = w(Ez,,) if v = Ez,, € Ex. Two nodes
v;,v; € V(@) are connected by an edge if the corresponding points are d-
visible in the feasible region F', i.e., dg(v;, vj) = d(v;,v;), and in this case the
length of the edge is d(v;,v;). The embedding of this edge is represented by
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a d-shortest permitted path between the points v; and v;. The length of a
shortest network path between two vertices v and v is denoted by dg(u,v).
Analogously the length of a shortest network path between a vertex v and
a point X on an edge e € F(G) is denoted by dg(X,v). Then the network
location problem 1/G/ o /dg/ max on G is defined by

win fo(X)
where  fg(X) = max w(v)dg(X,v).

veV(G)

Lemma 2 (see (Hamacher and Klamroth, 1997)) If X[, is an optimal
solution of the network location problem 1/G/ e [dg [/ max on G, then a point
X} in the feasible region I that corresponds to the point X} on the embedded
graph, is feasible for 1/P/B/ds/ max and

I8(X3) < fa(XE).

3 The special case of the Manhattan metric
and convex, disjoint polyhedral barriers

In this section a different network than the one used in the previous sec-
tion is constructed for the special case that distances are measured by the
Manhattan metric d = [; and that all barriers are closed, convex, pair-
wise disjoint polyhedra. Using this network we will develop a polynomial
time algorithm that determines at least one optimal solution of the problem

1/P/B/l; 5/ max.

3.1 Shortest /;-paths in the presence of barriers

Let [; 5(X,Y) denote the length of an [;-shortest permitted path connecting X
and Y in F, i.e. a shortest permitted path with respect to length [; 5s(X,Y).
As special case of the d-visibility definition above, any two points X and Y
in F' that satisfy

Le(X,)Y)=04L(X,Y)

are called [ -visible.



The set of points Y € F' that are non [;-visible from a point X € F is called
the shadow of X with respect to Iy, i.e.

shadow;, ,(X) :={Y € F' : 1 5(X,Y) > L(X,Y)}.

Note that for all X € F the set shadow,, ,(X) is bounded by parts of the
boundaries of barriers or by horizontal or vertical line segments in F. Fur-
thermore some [;-visible points are obviously not l3-visible, i.e. not visible in
the usual sense of straight line visibility. On the other hand, the following
result holds.

Lemma 3 Fvery point X € F that is [y-visible from the origin is also [;-
visible from the origin. Furthermore, in this case the straight line segment
connecting the origin and X is an [{-shortest permitted path.

Proof: Let X € F be a point that is l;-visible from the origin. Then the
straight-line segment connecting the origin and X is a permitted path P from

the origin to X = (21, 29)T with length [;(P) = |z1| + |22 = 11(0, X).
O

Since we assume that all barriers are convex polyhedra, the relation between
[1-visibility and [;-visibility can be used to obtain a simpler description of
the barrier distance [; 3. The following lemma is a special case of a result of
(Viegas and Hansen, 1985) for [,-distance functions (1 < p < o0).

Lemma 4 Let XY € F. Then there exists an li-shortest permitted path,
SP, connecting X and Y with the following property.

SP s a piecewise linear path with breaking points only in extreme (1)
points of barriers.

3.2 Constructing a cell partitioning of the feasible re-
gion

In the following a network N will be constructed such that /;-shortest per-

mitted paths between all existing facilities and extreme points of barriers

are represented by network paths in A, similar to the visibility graph given

in Section 2. Additional edges are added resulting in a partitioning of the
feasible region into cells.



The four fundamental directions ¢! = (0,1)T, ¢ = (1,0)T, ¢ = (0, —1)T and
e* = (—1,0)7 defining the unit ball of the Manhattan metric play a central
role in the construction of A" (see Figure 1).

eS

Figure 1: The unit ball of the [;-norm and its four fundamental directions.

Let P(B) and F(B) denote the set of extreme points and facets, respectively,
of the convex barrier polyhedra. For any X € (€x U P(B)) and for any
fundamental direction €', i = 1,...,4, define a construction line

(X—|—€i)3 ::{X—I—/\ei AN E Ry (X+,Lcei)ﬂint(8):@ Vo< pu <A}

as the set of points in the plane which are [,-visible from X in the fundamental
direction e'. Then

G = ( U U+ >) U F(B)

XeExzuUP(B) i=1

defines a grid which is a subset of F. All possible intersection points of
construction lines, or the intersection points of construction lines and facets
of a barrier in G define the set V(G) = V(N) of vertices of the corresponding
network . Two vertices vy, vy € V(N') are connected by an edge in E(N)
if they are adjacent on some construction line or facet in G. The length of
this edge 1s then given by the [;-length of the corresponding line-segment.

The grid defined by G partitions the feasible region F' into a finite set of cells
denoted by C(G), i.e. the set of smallest 2-dimensional convex polyhedra with

8



extreme points in V(G) (see Figure 2). The extreme points of a cell are called
corner points of the cell C'. Note that each cell is bounded by construction
lines or facets of the barriers.

Ex
o .

Acel C

Figure 2: The network N for an example problem with three existing facilities
and one triangular barrier.

(Larson and Sadiq, 1983) defined a similar network omitting some of the con-
struction lines introduced above, namely those construction lines for which
an extreme point of the barrier polyhedra is an end point of the construction
line. Even though the properties of [j-shortest permitted paths with re-
spect to the smaller network need some further discussion, Larson and Sadiq
showed that in case of the median objective function the problem can be
transformed into a network location problem. Note that an analogous result
cannot be proven for the center objective function even in the unrestricted
case as can be seen in Figure 3.

3.3 Grid vertices on /;-shortest permitted paths

The partitioning of F into cells C(G) will be used in this section to derive
further properties of [j-shortest permitted paths to the existing facilities.
Since an extended network is used compared to that defined in (Larson and



Ex, Ex,
@ @
o
NG
@ @
Ex, Ex,

Figure 3: An example with four existing facilities with equal weights (w; = 1,
i =1,...,4). The unique optimal solution X* of 1/P/ e /I, / max lies in the
interior of a cell of the corresponding grid G.

Sadiq, 1983), the following two results which can also be found in (Larson
and Sadiq, 1983) can now be proven in an easier, straight forward way.

Lemma 5 Let v € (Ex UP(B)) be an existing facility or an extreme point
of a barrier, and let C' be a cell in C(G).
If v is [y -visible from some point in int(C'), then v is ly-visible from all points

mn C.

Proof: Let v € (€x U P(B)). Then the shadow of v with respect to /; is
bounded by facets of the barriers and by construction lines rooted at extreme
points of the barriers. Thus the result follows directly from the construction

of the grid G.

O

Lemma 6 Let Ex,, € Ex be an existing facility and let C be a cell in C(G)
with X € C'. Then there exists an li-shortest permitted path connecting Ex,,
and X thatl passes through a corner point of C.

Proof: Let Fx,, € £xr and let X € C. Since the case that X is a corner point
of C' is trivial, assume that X lies either in the interior of C' or on a facet of
C. Furthermore let P(X, Fz,,) be an [;-shortest permitted path connecting
Ez,, and X and satisfying Property (1) of Lemma 4. Then there exists an
intermediate point [, € (€x UP(B)) on P(Fz,,, X) that is [;-visible from
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X. Using Lemma 5 we can conclude that [, is [;-visible from all points in
C.

Let z; := min{z : (z,y)T € C}, 23 := max{z : (z,y)T € C}, y1 := min{y :
(z,y)T € C}, and y, := max{y : (z,y)T € C} and let I, = (a,b)T. Then
ad (xy1,22) and b & (y1,y2) since otherwise there would exist a construction
line intersecting int(C') .

Using the fact that I,, is [;-visible from every corner point of C' and that
the corner points of (' are [-visible from every point in (', we can construct
an [-shortest permitted path connecting X and I,, that passes through a
corner point of C' (see Figure 4).

O

l,=p

cdl C
_l_.

X

L
Ex,

Figure 4: An example of an /i-shortest permitted path connecting Fz; and
X that passes through a corner point of the cell C.

Using Lemma 6 we can always find [;-shortest permitted paths with the
following property: Every cell that is intersected by this path is entered
through one corner point and left through a different corner point.

Thus extending A by all those edges of length Ii(vy,vy) that connect two
corner points vy and vy of the same cell C' that are not yet connected by a
network path of length dy(vi,ve) = li(vy,v2) leads to a network N’ such
that:
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Corollary 2 The length of an li-shortest permitted path between a corner
point of a cell and an existing facility is equal to the length of a shortest
network path connecting the corresponding vertices in N.

Corollary 2 can easily be extended to points on lines or line-segments of
the grid G corresponding to points on edges of . Thus in the case that
an optimal solution of 1/P/B/l; 5/ max exists on G, this solution is also
an optimal solution of the corresponding network location problem 1/A”/ o
/dy/max on N'. Moreover, the network N’ can be used similar to the
visibility graph to derive an improved upper bound for the optimal objective

value of 1/P/B/l; 5/ max (see Lemma 2):

Corollary 3 Let N’ be the extension of N as defined above. If X3, is an
optimal solution of the network location problem 1/N'/ o [dy+/ max on N7,

then the point in the plane corresponding lo the point X3, in the embedding
of N is feasible for 1/P/B/l; 5/ max and

I8(X5) < far(X30).

In general, contrary to the median case (see (Larson and Sadiq, 1983)), this
bound is not sharp (see Figure 3), such that additional arguments are neces-
sary.

3.4 A dominating set for an optimal solution

Corollary 2 enables us to calculate barrier distances between corner points of
G and existing facilities in an efficient way by evaluating network distances in
N’. We can now draw our attention to the properties of an optimal solution

of 1/P/B/l; 5/ max.

The following result has already been developed in the previous section. Since
it will be of importance in the following, we reformulate it here as a theorem.

Theorem 1 If1/P/B/l; g/ max has an optimal solution on G, this solution
is an optimal solution of the network location problem 1/N'/ e [dy+/ max on

N

Thus in the case that 1/P/B/l; g/ max has an optimal solution on G, this
solution can be found by solving a network location problem on the network

N
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In the following we will concentrate on the case that there exists no optimal
solution of 1/P/B/ly 5/ max on the grid G, i.e. X5 NG = 0 (see Figure 3 for
an example). Then all optimal solutions of 1/P/B/l; 5/ max are located in
the interior of cells of C'(G). Note that since the objective function is non-
convex, the set of optimal solutions may also be non-convex and there may
exist optimal solutions in the interior of more than one cell in C'(G).

For two points Y1, Y, € F with positive weights wy, wy € IR, let the weighted
bisector of Y1 and Y3 be defined as

b(wi Y, wYs) :={X € F : wil; 5(X, Y1) = woly 5(X,Y2)}.

To simplify a further discussion of intermediate points on [;-shortest permit-
ted paths we additionally define for the constants d; and dy the weighted
bisector of Y1,dy and Y,, dy as

b(wy (Yy,dy), wy(Ya, dy)) :=
{X e F :w(lhp(X, Y1)+ d) = wa(lh 35(X,Y2) + ds)}.

A well known result for center problems, that also applies to center problems
with barriers, is that every optimal solution has to be located on the weighted
bisector of two existing facilities. (Otherwise the objective value can be im-
proved by moving the new location towards the existing facility at maximum
weighted distance.) Note that therefore an optimal solution can always be
found as a point on the farthest-point Voronoi diagram (see e.g. (Okabe et al.,
1992)) with respect to the existing facilities taking into account the barrier
regions (see e.g. (Shamos and Hoey, 1975) for the unrestricted case).

Since the construction of weighted bisectors as well as the construction of the
corresponding Voronoi diagram is difficult in the presence of barriers, this
result is strengthened in the following theorem yielding a solution strategy
to solve 1/P/B/l1 g/ max without constructing all the weighted bisectors or
the corresponding Voronoi diagram.

Theorem 2 Let X} be the set of oplimal solutions of 1/P/B /11 g/ max such
that X;N G =0 and let z* be the optimal objective value.

Then there exists at least one oplimal solution X € X} thal has the weighted
distance z* from at least three different existing facilities in Ex.

Proof: Let X} be an optimal solution and let C' be a cell such that X} €
C. Let Ez; and Fz; be two existing facilities with z* = w;l; g( X}, Fz;)
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= w;l; s(Xf, Ex;). Furthermore let C; (and C;, respectively) be a corner
point of €' such that there exists an [j-shortest permitted path connecting
Fz;and Xj (Ex; and Xj, respectively) passing through C; (C}, respectively),
see Lemma 6.

Now assume that there exists no existing facility Fz,, € £x other than Ez;
and Fx; such that w,,l g( X}, Fx,) = z*. Then C; # C; since otherwise the
objective value z* could be improved by moving X* towards C; in C'.

Defining d; := 1, g(C;, Ex;) and d; := [ 5(C;, Ex;) we get that
wi(l(Xg, Ci) + di) = w;(L(Xg, C)) + dj) = 2"

and thus XE < (b(wZ(CZ, dz), wj(C]-, d])) N C)

Due to the optimality of X} and to the fact that the weighted distance from
X5 to all other existing facilities is less than z*, X} has to be located on
an [;-shortest permitted path connecting C; and C; in C'. Since there also
exists an [-shortest permitted path connecting C; and C; on the network
N, there exists a point Xy € N’ (not necessarily a node, i.e. Xp» may lie
in the interior of an edge) different from X} on this path (and in the cell (')
such that

wi(ll(X_/\//, CZ) —|— dl) = w]'(ll(X_/\//, C]) —|— d]) = Z*.

Thus Xy # Xj is also a point on the weighted bisector of C;,d; and C}, d;,
ie. Xy € (b(wi(Cs,d;), w;(C,d;))NC). Since C is convex, all points on the
line-segment

Xa Xy = {X €0 X = AX5+ (1 — N Xur, A €0,1]}

connecting X} and Xy lie in C. Furthermore for m € {i,5} all points
X € Xj, Xy satisfy

W (X, Cn)) = wali(X,Ch)
= w,L(AXg+ (1 — )Xy, Cp)
= wn(M(X5, Cn) + (1 = NL(Xy, Cn))
= 2" —w,d,.
Thus X5 € X5, Xav can be moved along the line-segment Xj, X (which is

part of the bisector b(w;(C;, d;), w;(C},d;))) in the cell C' without increasing
the weighted distance to Ez; and Ez;, until it either reaches the boundary
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of C, i.e. the point X/, a case that is excluded due to the assumption
X5 NG = 0, or until the weighted distance to any other existing facility
Ezx,, € Ex equals z*.

Py

Bx,

Figure 5: The bisectors b(Ex;, Fx;) for the example problem introduced
in Figure 2. Note that there exist optimal solutions on A, but not in an
intersection of bisectors.

Theorem 2 enables us to construct a dominating set, DS C F, containing at
least one optimal solution of 1/P/B/l; g/ max. This dominating set consists
of an optimal solution of 1/A”/ e /dy// max on N’ and additionally consists
of points in the interior of cells that are intersection points of two weighted
bisectors determined by choosing pairs of existing facilities from a set of three
existing facilities.

Before we develop an algorithm to solve 1/P/B/ly g/ max, we will reduce this
dominating set by further exploiting the special structure of the problem.

Consider an arbitrary cell ' € C'(G) and let the corner distance between a
point X € F'\ C and the cell C be defined as

leorn (X, C) := min{ly (X, C;) : C;is a corner point of C'}.
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Then we can identify that existing facility Kz € £z with weight w®

max max
that maximizes the distance to C' i.e.

WS Neorn(ExS ., C) = max{wn, lopn (E2m,C) : Bz, € Ex}.

max max’

Furthermore let
|C| := max{l;(C;,C;) : C; and C; are corner points of C'}
denote the maximal distance between two corner points of a cell.

Lemma 7 Let X} be the set of optimal solutions of 1/P/B/li g/ max such
that X5 NG = () and let z* be the oplimal objective value.

Then there exists al least one optimal solution Xj; € X in a cell C € C(G)
that lies at the intersection of at least two bisectors determined by three ex-
isting facilities Ex;, Ex;, Exy, such thal

Wy Leorn( By, O) 4 w0, |C] 2 Wy Leorn( B ay, O), p=1i,7k.

Proof: The first part of this result follows directly from Theorem 2. Namely
there exists at least one optimal solution X3 € A} that has distance z*
from at least three pairwise different existing facilities. Wlog denote these
existing facilities by Ezy, Fxy, Fxs. Then X}j lies at the intersection of
b(wy Exy,wyExy) and b(wyExy, wsFx3) (and thus also in b(wy Bz, wzExs)N
b(wy Exy,wyExy) and in b(wy Bz, wzExs)Nb(wyExe, wsExs3)). Now let X €

C' and assume that wlog wileomn(Ex1, X5) + wi|C| < WS, deorn(Ex$,5, O).
Then
Z* - wlll,B(Exlan) S wllcorn(Exlv 0) —I' ’UJ1|C|
< wgaxlcorn(E'rrcl;aX? O) S wgaxllyB(E'rrcl;ax?Xg)?
contradicting the optimality of X}j.
|

Thus with respect to each cell it is sufficient to consider only those existing
facilities that satisfy the distance requirement given in Lemma 7. Especially
in applications with a high number of existing facilities this result leads to a
significant reduction of intersection points of weighted bisectors that have to
be evaluated.

16



An additional reduction of the dominating set is possible since it can be shown
that the set of optimal solutions X'z is contained in the smallest rectangle R
with sides parallel to the coordinate axes containing all existing facilities such
that the boundary of R, d(R), does not intersect the interior of a barrier.

Theorem 3 Let R be the smallest rectangle with sides parallel to the co-
ordinale axes such that Ex C R and O(R) Nint(B) = (.
Then the set of optimal solutions of 1/P/B [l g/ max lies in R, i.e.

X;CR.

Proof: Assume that X} € A} is an optimal solution that is not located in
R, i.e. Xj; € F\ R. Wlog we can assume that there exists no barrier in
IR* \ R since this assumption does not increase the objective value of any
point X € F. Let R = [z1, 23] X [y1,y2] and let X}; = (a,b)T. Since Xj; € R
we get that a & [z1, x5 or b & [y1,ys]; wlog let a < ;.

Let P, be an [;-shortest permitted path from X} to Fx, with Property
(1) of Lemma 4 and let I, € (P(B)U {Fz,}) be an intermediate point
on P, that is l;-visible from X}, m € M. Then the straight-line segment
connecting X5 and Fz,,, m € M, intersects (R) in a point (a,,,b,)T with
a < Gp. Thus moving X} towards the boundary of R by increasing a to
a + € with a small € > 0 decreases the distance between X} and each of the
intermediate points [,, and thus also between X} and Fx,,, contradicting
the optimality of X7.

O

Analogous to Theorem 3 the following result obviously holds for /1-shortest
permitted paths between two points in R:

Lemma 8 Let X and Y be two points in F' N R. Then every li-shortest
permitted path connecting X and Y lies completely in F' N R.

Note that Theorem 3 implies not only that it is sufficient to consider cells in
the rectangle R, but that, using Lemma 8, we can also reduce the network
N’ to the subnetwork N C A’ that results from the intersection of the
embedding of N" with the rectangle R.

Summarizing the results above, we get the following dominating set for an
optimal solution of 1/P/B/l; g/ max:
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Ex,

Figure 6: The rectangle R and the network N for the example problem
introduced in Figure 2.

Theorem 4 The dominating set DS consisting of

o an optimal solution of the network location problem 1/N" /e [dyn/ max
on N

o for all cells C € (C(G)NR):
the intersection points of the three weighted bisectors determined by

three existing facilities Ex;, Ex;, Exy, satisfying

U)p lcor”(Exlm O) —I_ U)p |O| Z wrcr;ax lCOTn(Exriax7 O)? p= Z.7j7 k

contains at least one optimal solution of 1/P/B/l; 5/ max.

Note that the dominating set DS of Theorem 4 is in general not yet finite
since the intersection of bisectors with respect to rectilinear distance is not
necessarily a finite set. We will however see in the following section that it
is sufficient to consider only a finite subset of the dominating set DS, thus
yielding a finite dominating set FDS.
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4 A finite dominating set and algorithmic con-
sequences

Before we discuss how a finite dominating set FDS can be obtained using
Theorem 4, we focus our attention on the computation of points in the inter-
section set [ = b(w;Fx;, wjEx;)Nb(w;Ex;, wyExy)Nb(wEx;,, Wy Exy)NC of
the weighted bisectors of three existing facilities (Fxz;, Ex;, Fxi) in a given
cell C. Recall that we only have to consider triples (Fz;, Fx;, Exy) of exist-
ing facilities in that subset £2(C') C Ex of existing facilities K., that satisfy
Wil eorn( BTy C) 4w |C| > w8, Loown(EzE,, O).

The individual points in the set I can be found in principle as the intersec-
tion points of weighted bisectors between the corresponding corner points
(', C; and O that lie on [;-shortest permitted paths to the existing facilit-
ies Kx;, Bz, Exy, adding the weighted distances wyly»(Cp, Ex,), p =1, j, k
from the respective corner points to the existing facilities on the network
N (compare Lemma 6). Since these corner points may be difficult to de-
termine in practice, a superset of the set I can be obtained by intersecting
the weighted bisectors between all possible pairs of corner points and their
weighted distances to the existing facilities Fx,, p = 1,7, k. This procedure
is efficient since the weighted bisectors between two corner points of a cell
are linear within the cell independent of the constant distances added. Thus
the intersection sets I,, ¢ = 1,...,r of these bisectors for the ¢’th assign-
ment of corner points C7, C?, C{ to the existing facilities Kz;, Fxj, Ky can
be calculated in constant time. (Note that r < 3% since each cell can have at
most 8 corner points.)

Since for each of the sets I,, ¢ = 1,...,r the distance d (X, Fz;) :=
wy (I (X, CH) 41y (C}, Ex;)) between a point X € [, and the existing facility
FEz; (note that d (X, Fx;) = d,(X, Ex;) = d,(X, Exy) for all X € [,) may
vary for different points in /,, we determine that subset ]Nq C I, for which
the corresponding distance d, to the three existing facilities in question is
minimized and equal to the real distance [y 3, i.e.

‘Zq = )I(nei}l{dq(Xv Exi)}
and ]Nq = {Xel,: LsX Fzr,) = Jq, p=1,75,k}, g=1,...,r.

Let de(i,4,k) = min{dy,...,d,} and let Ic(i,5,k) == {X € ]Nq : Jq =
de, g € {1,...,r}}. Then any representative of I¢(1, j, k) can be chosen as
a candidate for an optimal solution.
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We can conclude that, applying this procedure, a representative of the inter-
section set of weighted bisectors I within a cell C' can be found in constant
time once the cell C' and three existing facilities Fz;, Kz, Bz € Ex(C) are
identified.

Corollary 4 [t is sufficient to take as finite dominating set FDS of the center
problem with barriers, 1/P/B/ly g/ max, an optimal solution of the network
location problem, 1/N" /e [dyn [ max on N, and, for each cell C € C(G)NR
and for each triple of existing facilities (Fx;, Ex;, Exy) in Ex(C), a repres-
entative in the set Io(i, 7, k).

We would like to point out one more time that in case of the center problem
it is not sufficient to consider intersection points of the constructed grid G
(see Figure 3) as it was the case for the median objective function and that
the problem is not equivalent to a network location problem on G (compare
(Larson and Sadiq, 1983)). Instead, it is necessary to consider additionally
points in the intersections of specific weighted bisectors between existing
facilities in order to find an optimal solution of the center problem with
barriers.

Based on Corollary 4 one alternative is to compare the objective values of all
candidates in the finite dominating set FDS. In the following algorithm we
avoid these lengthy computations by combining the determination of the set
FDS with the computation of lower bounds - each derived from three existing
facilities - which ultimately leads to an optimal solution of the center problem

with barriers 1/P/B [l g/ max.
Algorithm for solving 1/P/B/l; 5/ max

Input: A finite set of convex, pairwise disjoint, polyhedral barriers B
and a finite set of existing facilities Ex C F with positive weights.

1. Construct G, R and N according to Section 3.2, Theorem 3 and re-
marks thereafter and calculate the distance matriz of N'.

2. Find the set of optimal solutions X of 1/N"/ e [dyn/max and set
Z_/*\/// = f_/\///(XX///).

3. Set I(i,5,k) :=0 and d(i, j, k) := oo for all triples of existing facililies
(Ex;, Exj, Exy) in Ex.
For all cells C € (C(G)N R) do
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(a) Find the subset Ex(C) C Ex of existing facilities Fx,, with
Wil eorn (B, C) + wy,|C| > w® lcom(E:z:O ).

max max?’

(b) For all triples (Ex;, Ex;, Exy) of existing facilities in Ex(C'), com-
pute that part 1c(1,7,k) - if it exists - of the intersection set I of
the three weighted bisectors that lies in C' and compule its minimal
distance dc(1,7,k) to the three respective facilities (see Corollary

4)-

(¢) If de(i,7,k) < d(i,7,k) set d(i,5,k) := dc(i,7,k) and I(i,7,k) :=
Ie(i, 5,k).
Ifde(i,9,k) = d(v, 9, k) set 1(v,5,k) :=1(1,7,k) U Ic(1, 5, k).

4. Set z:=0 and X := ().
For all triples of existing facilities (Fx;, Fxj, Exy) in Ex do

(a) Determine J(z,],k) = maXp7qe{i7j7k};p¢q{ﬂlN/;(Exp, Fz,)}

Wptwg
(b) If d(i,j,k) < d(i,5, k) and if d(i,j,k) > =z set z := d(i,j, k) and
X = 1(i,7,k).
FElse if d(v,5,k) > J(z,],k) and if J(z,],k) > 2z sel z := J(z,],k)
and X = (.

5. The optimal objective value of 1/P/B/l; 5/ max can be determined as
z* = min{z}n, 2 }.

If 23n > z then X := X,
Else if 230 = z then X := X U X

Output: A subset Xg of the set of optimal solutions X} of 1/ P/B/l; 5/ max
and the optimal objective value z*.

In Step 1 of this algorithm the fundamental data structures are implemented
and in Step 2 the corresponding center problem on the network N is solved.
Step 3 completes the computation of the finite dominating set FDS and in
Steps 4 and 5 the individual candidates are compared to identify an optimal
solution of the problem.

Note that the computation of the set of optimal solutions X}, of the cen-
ter problem 1/N”/ o /dyn»/max on the network AN could be incorpor-
ated into the iterative process in Step 4, avoiding its individual compu-
tation but without reducing the overall time complexity of the algorithm.
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Furthermore the complete set X' could be determined if in the case that

J(i,j, k) < d(i,5,k) in Step 4 (b) of the algorithm the corresponding points

Y that satisfy ly 5(Y, Ex,) = d(i,5,k), p = i,7,k would be determined and
the set X would be updated accordingly.

The overall time complexity of the algorithm is only slightly exceeding the
time complexity of the algorithm for the corresponding median problem
suggested by (Larson and Sadiq, 1983). In Step 1 of the algorithm a net-
work of the same asymptotic size of |V (N")| < O((M + g)*) vertices and
|E(N")| < O((M + g)*) edges is constructed and its distance matrix has to
be determined. (We use M to denote the total number of existing facilities
and g to denote the total number of extreme points of barriers.) In Step 2 the
corresponding center problem on A/ can be solved by an available algorithm,
see e.g. (Kariv and Hakimi, 1979) where an O(|E||V]|log(|V])) algorithm is

given for an arbitrary simple network with |V| vertices and |F| edges.

Different from the case of the median objective function, the additional de-
termination of weighted bisectors is needed in the case of the center objective
function in Step 3 of the algorithm.

The number of intersections of weighted bisectors between three existing
facilities at a time is bounded by O(M?), where each intersection may consist
of a set of points. Even if all of the O((M + g)?) cells of G are enumerated
to identify those cells that contain a candidate from FDS, the overall time
complexity of Step 3 of the algorithm is bounded above by O(M?*(M + g)?).

Note that in this worst case analysis the time complexity of Steps 1 and 2 of
O((M +g)*log(M + g)) and that of Step 4 of O(M?) is dominated by that of
Step 3 of the Algorithm if the number of extreme points of barriers g is not
very large (namely if O((M + g)*log(M + g)) < O(M?)), yielding an overall
time complexity of O(M?(M + g)*). Since the additional reductions of the
finite dominating set due to Lemma 7 and Theorem 3 are not reflected in
this complexity analysis better results seem to be achievable in practice.

5 Extension to block norms with four funda-
mental directions

In this section we will explore possible extensions of the results developed in
Section 3 to other, more general distance functions.
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A block norm is given by a symmetric convex polyhedron P in the plane IR?
containing the origin in its interior. Then P defines a norm ~(e) by

y(X):= min{) : X € AP},

)\ER+

see (Minkowski, 1967). Let d', ..., d* denote the extreme points of P, referred
to as fundamental directions. To simplify further notation we assume that
= d'.

If X lies in the cone C(d', d'*') spanned by d' and d'*!, then X has a unique
representation in terms of d* and d'*!, i.e.

X = Ozidi + Oéi_}_ldH_l

for two nonnegative scalars a;, ojy1 € IR. As was shown in (Hamacher and
Klamroth, 1997; Schandl, 1998), the norm of X = (z1,22)T € C(d', d't) can
be evaluated as

Y(X) = @i + g,

where «; and a;41 can be calculated as

i+1 41
. d21+ .I’Q—dlz—l— T

g+l ; Ji+1
dydy™ — dydy

dixl — dZ T2
d i1 = —2 172 2
an « +1 dédzl-}—l o dzld22+1 ( )

;

Obviously, we can interpret v(.X) as the distance (0, X') between the origin
and X and extend the definition to define the gauge distance

V(X Y) i=2(0,Y — X) = 4(Y - X)

between any two points X, Y € IR?.
Note that the Manhattan metric /; is an example of a block norm with four

fundamental directions €', ..., e* as defined in Section 3.2.

In the following we will consider block norms as defined above with exactly
four fundamental directions (see Figure 7 for an example). To distinguish
these more general distance functions from the Manhattan metric with the
fundamental directions e',...,e*, we will denote the fundamental directions

of any other block norm with four fundamental directions by the vectors

d, ..., d%
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d4

dl
LA

dz

Figure 7: The unit ball of a block norm with four fundamental directions

d, ..., d%

In the following let v be a block norm with the four fundamental directions

d' = (dy,dy)", d* = (di,dy)", d° = (dV,dy)", d'=(dy,dy)"

Y Y Y

such that ¢® = —d" and d* = —d?. We define a linear transformation 7' such
that T'(d') = Td' = €' and T'(d*) = T'd*> = €* are satisfied. This yields
tin t 1 —d?  d?
T = e = i 72 12 11 : (3)
Lo o9 dydi — dyd; dy —d

Denoting T(X) := TX for all X € IR*, we can prove the following result
relating gauge distances to the [y-distance function:

Lemma 9 Let v be a block norm with four fundamental directions and let
the linear transformation T be defined as in (3). Then

V(X Y) = L(T(X), T(Y))
for all X,Y € IR?.
Proof: First consider the special case that Y = (0,0)". Let X € C(d',d""")

for some 1 € {1,...,4} and let X = a;d' + o;41d"T! be the unique rep-
resentation of X in terms of d' and d'*'. Using the fact that v has only
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four fundamental directions we can assume wlog that d' € {d', —d'} and
d*' € {d*, —d*}. Using (2) we can calculate

L(T(X),0) = |tz + tioxz| + |tarxr + taaxs
d%[l?g — d%xl déxl — d%il?g

dydi — did3 | |dydi — dyd3

= Jag| + i
= ~(X,0).

Now consider the general case that X,Y € IR*. Since T is a linear trans-
formation, we immediately get

WT(X),T(Y)) = L(T(X)-T(Y),0) = L(T(X - Y),0)
= (X —Y,0) = 7(X,Y).

O

This result is well known for the special case of the Chebychev-metric [.,. In
this case the transformation 7' can be defined as

1/1 1
T_§<—1 1)’

see e.g. (Hamacher, 1995). Note that the definition of 7' depends on the
choice of the vectors d' and d* for a given gauge v and is therefore not
unique.

In the following we will strengthen the result given in Lemma 9 so that it
can be applied to center problems with barriers. For this purpose let B
be a set of pairwise disjoint convex polyhedral sets in IR? as introduced in
Section 3. By T'(B) and T'(F') we denote the image of B and the feasible
region [’ under the linear transformation 7', respectively. Note that since T
is linear and nonsingular (the fundamental directions d' and d* of a block
norm are linearly independent), the set T'(B) of barriers in the image space
is again a set of closed, convex and pairwise disjoint barriers. Namely T is
a linear bijective mapping that defines a one-to-one correspondence between
the extreme points of B in the original space and the extreme points of
T(B) in the image space. Thus the decision space of a problem of type
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1/P/B/l; 5/ max can be transformed using the transformation 7' resulting in

a problem of type 1/P/T(B)/l r(5)/ max.

Using the fact that Lemmas 3 and 4 also hold in the more general case
of symmetric block norms (even without the restriction on the number of
fundamental directions), see (Hamacher and Klamroth, 1997), we can derive
the following relation between the barrier distances v and Iy 7(z):

Lemma 10 Let v be a block norm with four fundamental directions and let
the linear transformation T be defined as in (3). Then

(X,Y) = Lre)(T(X), T(Y))
forall XY € F.

Proof: Let XY € F be two feasible points and let SP be a ~v-shortest
permitted path connecting X and Y with Property (1) of Lemma4. Thus SP
is a piecewise linear path with a finite number of breaking points Iy,.... I} €

F. Since T is linear and bijective, the image T'(SP) of SP is feasible in T'(F'),
ie. T(SP) C T(F). Furthermore line-segments in SP are transformed into
line-segments in 7'(SP) and thus T(SP) is also a piecewise linear path with
breaking points 7'(1;), ¢ = 1,...,k. Denoting Iy := X and [;1; := Y and
using Lemma 9, we get

k

w(X,Y) = Y (I, L)

=0

= SN, T (1)
> Lre)(T(X), T(Y)).

Analogously let SP’ be an [;-shortest permitted path in T'(F') connecting
T(X) and T(Y') with Property (1) of Lemma 4. Let I],..., I}, € T(F) be
the finite set of breaking points on SP" and let [, := T'(X) and I}, ., := T(Y).
Then

kl

L) (T(X),T(Y)) = S L(ILIL,)

=0

- Z:OV(T_I([D,T_I([;+1))

Z 73(X7 Y)a
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completing the proof.

Lemma 10 enables us to derive the main result of this section.

Theorem 5 Let v be a block norm with four fundamental directions and let
T be a linear transformation defined as in (3). Furthermore let Ex = {Fx,, :
m € M} be a sel of existing facilities in F'.

X5 is an optimal solution of 1/ P/B/[~vg/ max with existing facilities Ex if and
only if T(X}) is an optimal solution of the transformed problem
1/P/T(B)/l 1(5)/ max with existing facilities T(Ex) := {T(Fxy,): m € M}.

Proof: Follows immediately from Lemma 10 since
max {y5(X, Ez,)} = max {1 res)(T(X), T(Exn))}

for all X € F.

6 Conclusions

In this paper a discretization result is developed for center location problems
with Manhattan distance where polyhedral barriers restrict traveling in the
plane. A polynomial time algorithm to solve this non-convex optimization
problem is suggested which is based on this discretization result.

This paper can be seen as a continuation of earlier work on the discretization
of planar location problems which has proven to be a powerful method in
location theory. Future research includes the analysis of level curves for
barrier problems which will be helpful, for instance, in dealing with multi-
criteria location problems with barriers.
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