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Abstract

In this paper a new trend is introduced into the field of multicriteria loca-
tion problems. We combine the robustness approach using the minmax regret
criterion together with Pareto-optimality. We consider the multicriteria We-
ber location problem which consists of simultaneously minimizing a number of
weighted sum-distance functions and the set of Pareto-optimal locations as its
solution concept. For this problem, we characterize the Pareto-optimal solutions
within the set of robust locations for the original weighted sum-distance func-
tions. These locations have both the properties of stability and non-domination
which are required in robust and multicriteria programming.

Keywords: Multicriteria Location, robustness.

1 Introduction

In the last years a trend has become very important in the field of optimization: robust
optimization. There are different reasons for considering robustness and possibly the
most important is because it helps to model uncertainty. Uncertainty affects a wide
range of decision processes such as cost or production processes, investment decisions,
inventory management, scheduling or demand forecasting among others.

There is a wide range of criteria for handling decisions for uncertainty models.
One can mention the deterministic optimization approach, the stochastic optimization
and the robust approach. In the first one, the decision-maker “chooses” one instance
of the input data and then solves the model for this specific choice. In the second
one, some kind of information about the potentially occurrences of the data in the
future is guessed and the model will attempt to generate a solution that maximizes
(or minimizes) an expected effectiveness criterion. The main drawback of these two
approaches is that the input data of both of them leads to a whole range of feasible
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solutions, so that either the most probable (likely) or the expected data scenario does
not cover all of them.

In the robust approach the aim is to produce a solution that behaves acceptably-well
under any likely input data. Among the different criteria that can be used to manage
robustness we will use the minimax regret. It consists of minimizing the “regret” or
difference between the objective value of a feasible solution and the optimal solution
that would have been chosen if the decision-maker would have known the actual data
input (see [KY97] for further details on this kind of analysis).

In this paper, we consider the single facility location problem under the optic of
uncertainty. In this framework, the uncertainty is driven by the different location
scenarios that may occur. We will consider that our location will be taken minimizing
weighted-sum objective functions (Weber functions). Therefore, the uncertainty may
be given by the weights of importance or by the position of the existing facilities.
In addition, we will assume that different decision-makers, each one having different
scenarios to compare, also interact. In this situation, the proposed solution has to be a
compromise between the involved decision-makers. To fulfill this requisite we propose
Pareto solutions with respect to the robust criteria controlled by the decision-makers.
The main goal of this paper is to give a geometric description of the whole set of Pareto-
optimal solutions with respect to several minimax regret criteria. The importance of
these solutions is that they are : 1) robust because they come from the regret criterion
and, 2) Pareto, therefore they are not dominated componentwise.

This model also has another interpretation. It can be seen as an intermediate
situation between multifacility and single facility location. This problem consists of
locating k different servers garaged at an unique center and in only one occasion.
Nevertheless, the determination of such a point cannot be solved by the classical criteria
(sum, maximum, ... ) by aggregation because each server has its own interest and thus
its own scenario to be considered. Each server wishes its objective value to be as close
as possible to its optimal value. Hence, this model leads to a problem where we look for
a location minimizing the maximum deviation of each objective regarding the optimal
objective value for each one of the servers, i.e. minimax regret regarding the different
scenarios:

min  max  [fu(x) — fu(z(w))],

z wef{wl,.. wk}

where w is the set of parameters which specifies a certain scenario, {ws, ... ,wg} are
the different scenarios to be considered, f,, is the objective function under the scenario
w and z(w) is an optimal solution (minimum) of the problem with objective function
S

On the second hand, it may occurs that each server behaves differently in sev-
eral time periods. Thus, we also have different scenarios to consider. Since, only one
location is allowed for all the periods each server may consider its own problem as
a multicriteria problem. The server must find those solutions not dominated in the
objective values with respect to the time horizon. Therefore, for each server a mul-
ticriteria problem may be considered. Combining both features we obtain again the
multicriteria minimax regret. This methodology could be naturally applied to the real
world situation described in the report on “Stationing of Rescue helicopters in South-
ern Tirol” by [Ehr98]). There, the case of three helicopters to be garaged is considered



and different strategies are used.

In order to obtain a description of the solution set we first reduce the problem to
the determination of all the Pareto-optimal solutions for any subset of 3-criteria. Then,
we show how to characterize these sets using only bicriteria Pareto-solutions chains.
Finally, we show that any bicriteria chain is obtained in polynomial time with the
algorithm proposed in Section 4.

The paper is organized as follows. In Section 2 we introduce the single objective
minimax regret location problem and state an equivalent easier formulation. In Section
3, we analyze the geometrical structure of the optimal solution set of the single objective
minimax regret location problem. In Section 4 we characterize the set of Pareto solution
of the bicriteria minimax regret location problem and we give an algorithm to compute
them. In Section 5 we obtain the set of Pareto solutions in the Q-criteria case using
convex analysis and the results of the previous section.

2 The model

Let A be a denumerable set of existing facilities and W a finite set of weight vectors
w € RA. Each w € W satisfies Y wcaWs = 1 and w, > 0,Va € A. In other
words, w € W represents a location scenario for a decision maker (D-M) while w, is
the importance given to the existing facility a € A in the scenario w. We assume that
distances are measured by the squared Euclidean norm. Therefore, our minimax regret
problem for a unique D-M is:

min max [ > waflz - alf = > walla(w) - af} 1)

2 weWw
velr a€A a€A

where z(w) is the optimal solution of Problem (2):

min' > w, |z — a3 2

a€A

DA Wal
2bca Wh
r(w) =Y ,c4 Wea. This fact leads us to reformulate Problem (1) as:

: 2 2
E al|T — - E a E b } 3
m121112{(}[163@([ wel|lz — all; Wl wpb — al|3 (3)

a€A acA beA

It is well-known that z(w) = . Besides, since we have taken normalized weights

We can simplify this formulation even more by using properties of the scalar prod-
uct.

Lemma 2.1 Problem (3) is equivalent to

. Fw :: — 2. 4
i 8 Fe) 1= e = )l )

Proof:



The objective function of Problem (3) can be rewritten using the scalar product

(-,-) as:
ZwaHx —all5 - ZwaH Zwbb —all3 = Zwa [(:v —a,z—a) — (z(w) — a,x(w) — a)]

= Zwa [(x,x) —2(z,a) — (z(w), z(w)) + 2(xz(w), a)}
= (z,z) — 2(z, z(w)) + (z(w), z(w))
= [lz — 2(w)|f5-

(5)
Therefore, both problems are equivalent. O In the following we denote by X* (W) the

optimal solution of Problem (4).

3 The single objective regret location problem

We begin this section by studying some properties of the objective function of Problem

(4):

Ry (z) := max Fy(x). (6)

Proposition 3.1 The function Ry (z) is a strictly convezr function.

The proof is straightforward.
The solution of Problem (4) can be found by solving the equivalent convex problem
with linear objective

min 2z (7)
st. [lz—z)f—2<0 YweW
2>0, ze€lR?

Since (7) is a convex problem, we can apply the Kuhn-Tucker conditions and an optimal
solution can be derived by solving the system:

1- ZweW Aw oz(w
M|z —z(W)|; —2) YweW > wer(xs(w)) Mw

for some choice of {Ay}wew and J(X*(W)) = {w € W : || X*(W) — z(w)|} =
maxuew |X*(W) — 2()[13}-

It is worth noting that Problem (4) is a usual minimax location problem with
respect to the new set of existing locations {z(w) : w € W}. Therefore, there are

also specific methods in the literature to solve this problem such as the well-known
Elzinga-Hearn algorithm [EHT72].



The max operator induces a cell subdivision in the decision space of the problem.
For each p € W consider the set:

C,={x€R”:F,(x) > F,(r) VYweW} (9)

The sets C, are the farthest-point Voronoi diagrams with respect to the functions F.
Therefore, these sets are important because within them the objective function Ry (z)
of Problem (4) coincides with Fj,(z). Hence, provided that the geometry of these
sets is easy, Problem (4) reduces to solving a finite number of classical covering circle
problems, one on each one of these regions. The following result proves that these sets
are polytopes, thus, easy to handle with.

Proposition 3.2 C, is a polytope for any p € W.

Proof:
The set C), is described by the following family of inequalities F),(z) — F,,(z) > 0 Vw €
W. Now, we have that

Fu(z) = Fy(z) =& — 2(p), ¢ — 2(p)) — (z — z(w), z — z(w))
= 2z, x(w) — z(w) + (2(p), 2(n)) — (z(w), z(w)),

which is a linear function in z. Therefore, C}, is a region bounded by linear inequalities.
Hence, it is a polytope. O

It is clear that we can restrict ourselves to the sets C, because the remainder are
included in those regions with int(C,) # 0. See [OBS92] for algorithms to compute
farthest point Voronoi diagrams.

The following result characterizes the optimal solution of Problem (4) within the
region C),. Let us denote by A*(W, p1) the optimal solution within C), and let J(p) :=
{w € W: By(X*(W, 0) = Fu(X*(W, ) = 0}.

Lemma 3.1 The explicit form of the optimal solution of Problem (4) within C, is
given by the following the statements.

1. If X*(W, u) belongs to the interior of C, then X*(W, u) = z ().
2. If X*(W, i) does not belong to the interior of C, then

X*(W,p) = z(p Z Aw —x(p))  for some A, > 0.

weJ (1)

Proof:
Within C),, Problem (4) can be described as

min - (z—z(p),z - z(p)) (10)
w:(ml,zg)EB
st 2z, z(p) —z(w) <zl - lew); Ywe W
(11)



Then, an optimal solution X*(W, 1) within this region can be obtained using the
Kuhn-Tucker conditions:

(@ —2() + X pew Mo (@(p) — z(w)) =
Ao ({2, 2(p) — z(w)) = lz(l3 + lz(w)]3) =0 Yw e W
A >0 YweW.

These conditions lead us to the explicit form of the optimal solution.

1. If X*(W, ) belongs to the interior of C), then only A, # 0. Therefore, X*(W, u) =
().

2. If X*(W, ) does not belong to the interior of C,, let us denote by J(u) := {w €
W F(X*(W, u)) — Fop(X*(W, ) = 0}. In this case, one has:

X*(W, p) = =( Z Aw( —z(p)) for some A\, > 0.

weJ(p)

|

Example 3.1 We are given 8 existing facilities a; = (1,11), as = (1,9), a3 = (0, 10),
as = (2,10), a5 = (1,6), ag = (1,4), az = (0,5) and ag = (2,5).

We have two weight sets w' = (1,1,1,1,0,0,0,0) and w? = (0,0,0,0,1,1,1,1),
W = {w',w?}. For the sake of readability we do not normalize the weight vectors.
First we compute the optimal solution for each weight set by

%“wqf = (4’440) = (1,10) = z(w?)

and
Yoaw;  (4,20)
Ywi 4

Now we find X*(W) by computing the midpoint of the segment [(1,10), (1,5)] which is
(1,7.5). The results are shown in Figure 1.

= (1,5) = z(w?) .

4 The bicriteria regret location problem

Consider two decision makers each one of them having a set of different scenarios and
wishing to make a decision looking for a compromise between themselves. Each D-M
has a set of weights W*¢, i = 1,2 and the bicriteria problem is:

m1n max |z — z(w 1)||§, max ||x—:r(w2)||§] (12)
zelR’ w?eWw?

Let us denote by A7, (W', W?) the Pareto-optimal solution set of Problem (12), by
BZ (W*) the set of orthogonal bisectors of the points z(w"), z(w*?) for all w* # w* €
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Figure 1: Tlustration of Example 3.1. The eight small squares represent the existing facilities. The
two middle sized points indicate the optimal solutions for the weight sets w' and w?, respectively.
The largest point represents the optimal solution X*(W) for the two weight scenarios and the radius
of the two circles illustrate the corresponding optimal objective value.

W* with k = 1,2 and by SEG (W, W?) := U [z(w'), z(w?)], i.e. the set of
wleWlw2ew?
line segments joining the points x(w!) with z(w?) for any w! € W and w? € W2.
Let C(W*' ,W?) be the superposition (intersection) of the two cell subdivisions
C(W?1) and C(W?) which were defined in (9). This is to say,

CW'W?) = {Cupu2 = Cot NCpe :w' € W', w? € W2
Within a set Cy1 4,2, Problem (12) reduces to:

min {|lz — z(w)[3, [z — 2(w?)3}
z€C,1 4,2

Since the squared Euclidean distance is an increasing one-to-one transformation of the
Euclidean distance, the Pareto-optimal solution set of our problem coincides with the



Pareto-optimal solution set of the Euclidean point-objective location problem (with
only two points). For this problem it is known (see [CCFP93|) that its set of Pareto-
optimal solutions consists of the orthogonal projection of the convex hull (line segment
for the case of only two points) of the existing facilities onto the constrained set. Let
us denote by A, (W, W2 Cyi u2) the set of Pareto-optimal solutions of Problem (12)
in Cy1 2. Therefore, using the mentioned equivalence we conclude that:

X;ar (Wla WZ; Cwl,wz) = prOij17w2 ([x(wl)a LL‘(’U)2)]) (13)
where proj y(a) is the orthogonal projection of a onto X. It is worth noting that some
parts of the projection may coincide with the line segment when this intersects the
considered region. Therefore, all the Pareto-optimal solutions of Problem (12) are on
the boundary of Cy1 42 or on [z(w'), z(w?)] N Cyt 42 as shown in the next lemma.

Lemma 4.1 X, (W' W?) C BT (W')U BT (W?)USEG (W', W?).

par
Proof:
Since C(W?', W?) is a subdivision of IR* one has that
Yoo W U A (0w Cune) (14)

wleWw?!, w2eWw?

Then, just note that by (13):

X (0, w?; Cur ) € B (W) UBZ (W?) USEG (W, W?). (15)
Combining (14) and (15) the result follows. O

As a consequence of this result we get

Lemma 4.2 X, (W', W?) is a connected polygonal chain on B (W"') U BZ (W?) U
SEG (W W?) with endpoints at X*(W') and X*(W?).

The proof is a straightforward consequence of Lemma 4.1 and the results on connec-
tivity of Pareto-solution sets for convex multiobjective programming (see [War83]).

Applying this result we can develop an algorithm for solving problem (12). In order
to do that, we will need to check whether or not a particular point x is Pareto-optimal.
The function condition(x) which takes the values true or false makes this operation.
This function is defined in the following lemma. Let us denote by int(A) and 9(A) the
interior and the boundary of the set A, respectively.

Lemma 4.3
1. z € int(Cy 42) for some w' € W and w? € W2.
z—z(w!) z—x(w?)

condition(z) = true i le—z(@Dl: —  [e-a(?)]2
false  otherwise




2. © € O(Cyr y2) for some w' € W' and w? € W2.
Let Jb(z) :={XA € WF*: Fui(z) = ||z — z(V)||3} for k=1,2.

. true 7 0 € conv z—z(A))U r—x
condition(x) = / AEHw)( (V) ueg(w)( (1))

false otherwise

Proof.

Case 1. According to (13), z € int(Cy1,2) is a Pareto-solution if it belongs to the line
segment [z(w'), z(w?)]. This also means that z is a unconstrained Pareto-solution
and therefore, the gradients of the two objective functions must be opposite. This
fact proves the expression of condition(z) in case 1.

Case 2. First note that since the objective function are strictly convex the Pareto-solutions
coincide with proper Pareto-solutions. Therefore, x € 0(C,1 42) is a Pareto-
solution when it fulfills the Pareto-optimality condition: “zero belongs to the
union of the subdifferential sets of the two objective functions at z”. On the
boundary, the objective functions are the pointwise maximum of squared Eu-
clidean distances. The subdifferential set of the maximum is the convex hull of
the subdifferential sets of those functions achieving the maximum at the consid-
ered point x. This is exactly the expression of the function in case 2.

ALGORITHM 4.1
Input:

1. Demand points A C IR™.
2. Weight sets W' = (w})sea and W2 = (w?)4ea.

a

Output:
1. x5, (W w?y.

par

Steps:

~

. Computation of the planar graph generated by C(W*', W?)USEG (W, W?).

[\S

. Compute the optimal solutions of the single criterion problems: X*(W') and
X*(W?).

o

L IF X*(WY) = X*(W?)
4. THEN (% trivial case x)

&

Xr (WL W?) = X (W)

par



6. ELSE (x non trivial case x)
7o A (WLW?) = X(Wh) U X (W)
8. Choose x := X*(W') .
9.  WHILE x # X*(W?) DO
10. BEGIN
11. REPEAT
12. Choose y € Adj(z) (x Adj(x) is the set of adjacent vertices to x x)
13. UNTIL condition(y)
1. X (W W2) 1= X7, (W W2) Uy
15. =y
16. END O

If we analyze the complexity, we first recognize that the optimal solutions for each
w € W i =1,2 can be computed with (8) in linear time with respect to |w|. Also,
the optimal solutions X*(W?), i = 1,2 for a single D-M can be computed in linear
time with respect to |[W’| (see [Meg82]). For the computation of Ay, (W', W?) we
need to determine the planar graph induced by C(W*', W?) and SEG(W', W?). Using
a scan-line-principle [BO79] proved that the computation of a planar graph induced by
n line segments in the plane, can be obtained in O((n + s)logn) time, where s is the
number of intersection points of the line segments. In this case that means that this
process can be done in O(K?log K), where K = max(|W!|,|W?|). The evaluation of
condition can be done in linear time with respect to K (see [FGFZ96]). Since we have
not more than O(K?) vertices in our planar graph the total complexity is O(K?log K).

Example 4.1 We use the data of Example 3.1 and add 8 additional existing facilities
a9 = (8,9), aro = (8,7), a1; = (7,8), a2 = (9,8), a13 = (10,2), a4 = (10,0),
a5 = (9, 1) and 16 = (11, 1)

Now we have two decision makers, each of them having two sets of weights: W' =
{w', w'?} with

e w!' = (1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0) and
e w'?=(0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0)

W? = {w?', w??*} with
e w? = (0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0) and
e w??=(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1).



Figure 2: Tllustration of Example 4.1. The bold part consitutes the set of Pareto solutions.

We get analogous to Ezample 3.1 the optimal single criterion solutions x(w'') = (1,10),
2(w??) = (1,5), X (W) = (1,7.5), s(w”) = (8,8), 2(w?) = (10,1) and X*(W?) =
(9,4.5). Next we compute the set of Pareto solutions X, (W', W?) starting at X*(W*)
(see also Figure 2). According to Algorithm 4.1 we test an adjacent vertex to X*(W1) in
the planar graph induced by C(W*,W?). The only choice is the point P, = (3.52,7.5).
We have Case 2 of Lemma 4.3 and therefore we have to check if

0ecom{ |J (Pi—z(N))u |J (PL—=(w)}.

AeJ! () peJ?(x)

We see that Py is on the bisector between z(w'') and xz(w'?). Therefore J'(P,) =
{w', w?} and J*(P,) = {w?**}. Since P, is on the line segment connecting z(w") and
z(w??) we know that we have 0 already in the convex hull of P,—x(w'') and P, —z(w??).
Therefore P, belongs to X;ar(Wl,WQ). If we would continue on the bisector between
z(w'') and x(w'?), we would still have the same sets J' and J? but we would need
z(w?') for the convexr hull construction. This means that there is no Pareto solution
in this direction and we have to continue with point P, = (4.5,6.5). Now we are in the
interior of Cyu 422 and we have to test Case 1 of Lemma 4.3 which is fulfilled since

P, is also on the line segment joining x(w') and z(w*). Therefore Py is in the set



of Pareto solutions and the unique adjacent vertex is P3 from where we have as an
adjacent vertezx already X*(W?) and we are done.

5 The multicriteria regret location problem

In this section we turn to the ()-criteria case and we will develop an efficient algorithm
for computing X* (Wl, e ,WQ) using the results of the bicriteria case. In order to

par
obtain a geometrical characterization of a Pareto solution we use convex analysis.

For our function Ry, (z) the level and strict level sets for a value z € IR are given
by

L (Rw,z):={r € R" : Rw(z) <z}
and
L.(Rw,z)={z € R" : Rw(z) < z}.
In the same way, we define the complement of the strict level set as
L>(Rw,z):={z € R" : Rw(z) > z}
and the level curve for a value z € IR? is given by
L_(Rw,2) :={z € R* : Ry(z) = z}.
The tangent cone Ts(z) to the set B at point z is:
Tp(x) := cone(B — ),

where for any set S S stands for the topological clousure of S.
For a generic problem let Xy .. denote the set of weak-Pareto solutions. Using

the level sets and level curves [HN96] obtained that a point 2 € IR? is a weak Pareto
solution if and only if the following statement holds:

Q
ﬂ L< (RWq, RWq (I)) = @
g=1
Moreover, if the objective functions are strictly convex [Whi82] proved that Xpar =
D2 A
w—par

Let us denote

I5(x) = L<(Rw:, Rwi(z)) N L<(Rwi, Rwi(z))
I,;(Jf) = L<(RWHRW’(3:)) N L<(RWjaRWj ("E)) [ 7& j: Za] = 152a3-

Recently, [RC98] proved for general location problems geometrical characterizations
of their Pareto-optimal solutions. The following results are consequences of this work.
We will obtain a geometrical description of the three-criteria weak-Pareto solution set.
To this end, several technical lemmas are needed.



Lemma 5.1 Whenever the statements
a) 0?21 L<(Rws, Rwi(z)) = {z}
b) I(x) #0 Vi#j€{1,2,3}

hold, then
i) 4+, T (R, Ry (o)) (T) = {7}

11) ?;Z—paréwia W]) n (I - (TLg (RyyisRyyi()) (‘T) n TLS(RW]',RW;' (m))(x))) = (0’ Vi 7é JE€
1,2,3}.

Proof:

The first assertion is equivalent to prove that (_, T}, <(Rypi Rypi (2)) (7) = {0}. We
prove this fact by contradiction. Assume that there exists y # 0 such that y €
ﬂ?:l Tr (r,,:, Rwi(m))(x), then four cases may occur:

l.yeri (TLS(RWiyRWi(l'))(x)) , 1 =1,2,3 (see Figure 3).

Figure 3: Case ﬂ'?:l ri (TLS(RWi 7RW1' (w))(.’E)) 7é @



Since, y € ﬂz L ri (TL<(RW“ Wi(m))( )), there exists \; > 0 such that x + \;y €
L<(RW¢ Ryi(z)) for 1 = 1,2,3. We define \ := mln{/\l,/\g,/\g} > 0. Using
z €N, L< (sz Ryi(z)) and the convexity of ()._, L< (R, Ryi(x)) we have
that  + Ay € (._, L<(Rw+, Rwi(x)), and this contradlcts a).

2. yeri (TL<(RW“ z(w))(x)), 1=1,2and y ¢ ri (TL<( W3,RW3($))(x)')'

Then, one of the facets of T1_(r,, 5, r,, s (z)) () belongs to N, ri (Toe(ry, i ry i) (2))-
Hence, we have that (_, ri (TLS(RWZ Ryyi(2) (7)) # 0 and we are in Case 1.

3. Yy € ri (TL<(RW1, Ry1(z)) (.’E)) and Y ¢ ri (TL<(RW¢',RW¢'($))($)) . = 2, 3.
Then, one of the facets of (2_, Tro(Ry,:,R,:(x)) () belongs to i (TLS(RWI Ry (2)) (2)).
Moreover, Is3(z) # () then

1 (Moo DL e Ry Ry (@) (€)) = ol (Too(Ryyi Ry (o)) (7)) 7 0.

This implies that

ﬂ?:Qri (TLs(RWi,RWi(CC))(m)) nri (TLs(Rwa,Rws(fﬂ))(m)) # 0’
and we are again in Case 1.

4.y ¢ i (Tro(ry Ry (@) (2)) 5 0 =1,2,3.

We have that y € N, TL (Ryi Ryi(2)) () then y € tbd(TL_(r; R,pi(2)) (2)),
t = 1,2,3. Hence, there exists a common facet for the three cones. Since

Tro(Ryi Ry () () and Tp (g (z))(x) are convex and

W“ WJ’ WJ

I'i (TLS (RWi =RWi ($)) (fL‘)) m ri (TLS (ij ’ij ($)) ('/E)) ?é @

for all i,j € {1,2,3} y the cones TLS(Rwi’Rwi(z))( ) and TL<(RW;, WJ(“”))( ) lie in
the same halfspace generated by the common facet of the three cones. Therefore,
N3_ri (TLS(Rwi ,Rwi(w))(x)) is not empty and we are again in Case 1.
Now, we prove the second assertion. Let y € T1<( )( z), then x—y € L> (R, Ryi(z))N
LZ (ij, ij (SL‘)) because LL'—TIS( )( ) - L>(sz sz( )) ﬁLZ (ij, ij (.T)) Thus,
ij
we have that Ry (z) < Ry (x—y) k =i, j. On the other hand, using b) we obtain that
T §é wpar (W W7). Hence z — y ¢ X, W*, W7) and therefore X _,.(W*, W7)n
~ Tz (@) = 0.
Since 0 # I5(¢) = L<(Rws, Rwi(2)) N Le(Rys, Rwi (z)) C i (LS(RWj, R (x))) N
(L< (Rywi, Rwi(z))) we have that (see Remark 5.3.2 in [HUL93])
TL<(RW1/)RW2 (z)) ( ) N T Ry Ryyi (w))( ) = TI% (z)( ) and the result follows. O

par(



Lemma 5.2 If we have that

3
(V< (Rus, R () # 0 (16)
then
3 3
i (ﬂ Tre(Ryyi Ry (w))(x)) # {0} {0} &ri (ﬂ Too(Ryi Ry (z))(x))
Proof:

First, since (o_, 7%, <(RyiRyi(x)(T) 15 a pointed cone at 0 then its relative inte-
rior does not contain 0. By (16) we have that ()._, ri (L<(Ry:, Rwi(z))) # 0 then
N, Tro(Ryyi Ry () (T) = Trp, LS(RwiaRwi(fE))(x) (see [HUL93]). On the other hand,

since i_, L<(Rwi, Ry:(x)) C = + Trye LS(RWi;RWi(w))(x) then

3 3
0 # ﬂL<(RWi,RWi($)) - ri(ﬂL<(RWi,Rwi($)))
i=1 i=1
C i (2 4+ T, 1oty o) @) = T+ (T iy o (@)) -

Thus, we conclude that ri (Tﬂle Le(Rypi, RWi(Z'))(x)> # () and the result follows. O

Lemma 5.3 If we have that I5(x) # 0 then

I5(x) N X:_ (WL, W?) # 0.

w—par

Proof:
The set I5(z) is the set of points strictly dominating z. That means that any y €
I5(x) verifies Ryi(y) < Ryi(x), i =1,2. Therefore, X (W' W?2)NI5(x) # 0.

w—par
O

The next result shows that the 3—criteria solution is nothing else than a kind of
hull defined by the involved bicriteria solutions.

Definition 5.1 (See Figure /) The curve z(t),t € [0, 00) with z(0) = x and limy_, ||2(2)|| =
400 separates the sets A and B, with respect to a convex cone I' pointed at x, if

a) A,BCT.

b) There ezists no continuous curve y(t) C I', Vt € [0,1] with y(0) € A, y(1) € B
and verifying that {z(t) t € (0,+00)} N{y(t) t € [0,1]} = 0.

Let us denote X . (2) := U Xy par (W', W7), the union of all bicriteria
3,j€{1,2,3}
i#]

chains for three considered criteria.



Figure 4: 2(t) separates the sets A and B with respect to the pointed cone at x.

Proposition 5.1

w—par w—par

X (WL W2 WP = encl(X* (2))

where encl(X* (2)) is the bounded region whose boundary is Xy_ .. (2).

w—par

Remark 5.11t is worth noting that the region encl( par(Q)) is well-defined be-
cause the set X _..(2) is connected (see [War83]). In addition, this region can be

equivalently defined, as the set of points such that if z € encl ( _par (2 )) \ Xy ar(2)

there is no continuous curve z(t), t € [0,00) with 2(0) = z and limy_, ||2(¢)|| = +o0,
verifying that z(t) ¢ Ay, (2), Vi€ [0,00).

Proof:
In order to prove that encl( pm,(2)) C Xp oW, W2 W?), we note that
Xy (W WI) C Xy (WE W2, W?P) Vi, j € {1,2,3}. In the other case take a

point z belonging to encl( _par(2 )) \ Xy _,4r(2) and assume that z does not belong
to Xr . (W1 WQ,W?’).

w—par

Since z & Xj5_o (W', W2, W?) we have that (;_, L<(Rw+, Rw:(z))(z) # 0. Then,
by Lemma 5.2, z—1i (N._, Ti (R R,yi(2) (@) # {x}. Now, since z € encl( il pm,(Q))\



Xy or(2) and x — i (ﬂ?zl Ti. (R, R,i()(x)) is a cone pointed at z then

w—par

3
S:=x—r1 (ﬂ TLS(Rwi:Rwi(w))(x)> N qufpar(z) #* 0.

=1

Lety € S, sincey € z—1i ((Vioy Too(ry e hy o) (@) € RON(Uizy Too(ryy o,y o) (@)
then Ryi(z) < Rwi(y), i = 1,2,3. Therefore, y & X;_paT(Wl, W2 W3) D X par(2)
which contradicts that y € X;_,.(2)-

Hence, we have that

encl (X* (2)) cxr

w—par w—par

(W, w2, w?).

w—par
First, if there exists ¢,j € {1,2, 3} such that I5(z) = 0 then z € X _,.(W*, W7) C
X’l:k;—par (2)
Second, if we have IS (x) # 0, Vi,j € {1,2,3}, since z € A5, (W', W? W?) then
No_, L<(Rw:, Ry:(x)) = B. Therefore, the conditions of Lemmata 5.1 and 5.3 are
fulfilled (see Figure 5). This implies that

Now, let x € X} (W W2 W?3). We must prove that = € encl(é\f';_par@)).

Oy = (@) N X (W, W) # 0 (17)

w—par

Figure 5: Case z € X ., (WL W2 W3\ X .. (2).



We must prove that there exists a chain of efficient points for two criteria surround-
ing the point z. We prove that by contradiction.
Assume that there exists a continuous curve z(t), ¢ € [0, 00) such that (see Figure

L<(Rw1, Ry (z)) 2(t)

Figure 6: z(t) separates the sets C1o and C3 with respect to the cone & + Tr_ (Ry1,Rypi (2)) (%)-

a) z(t) separates the sets C1p and C13 with respect to the cone x+T7_(r, 1 &1 () (T)-

b) X5 (2) O (24 Tu iy 1 (e (@) N {2(8) : € [0,00)} = 0.

First of all, X*(W"') C L<(Rw1, Rw1()) C 2 4 Tp(ryr,my (o)) (@) In addition, we
have that,

1.
X (W ) U 012 C X':) PGT(Wl’ W2) g R2 \ (I - (TLS(RwlaRwl (z))(I) N TLS(RW'A’ aRW2(w))(x)) )
(by Lemma 5.1), and by Remark 5.3.2 [HUL93] we also have that

TL<(RW1, 1(z ))(CL‘) mTLg(sz,Rw2($))( ) sz(z)( )

2. X*WHuC;s C X

w—par

(WLW?3) C R?\ (a: - TIES(z)($)) (by Lemma 5.1).



This means that X (W', W?) and X}_ .. (W' W3) cannot cross z — T 4y (x) and

w—par w—par

z—T <, (z) respectively. On the other hand, we know that both X% (W' W?) and

I(z) w—par

Ao (W, W?) are connected sets containing X*(W™). Then, three cases can occur:

1. X*(W')is separated from C1, by 2(¢) then X (W' W?)N{z(t) : t € [0,00)} #

w—par
0.

2. X*(W?)is separated from Cy3 by 2(t) then X5, (W', W?)N{z(t) : t € [0,00)} #
0.

3. X (WHN{z(t) : te0,00)} #0.

Therefore, all of these three cases contradict the initial hypothesis.

We can use the same arguments with C}5 as well as Cy3, Ci3 and Css to obtain that
the point x belongs to the region surrounded by the set of weakly efficient points for
each two functions. O

Now we have collected all neccessary technical details to state the main result about
the geometrical structure of X, (W', W2, ... ,WQ).

par

Theorem 5.1

X WLW2 L W) = | XL e (W, W, W)

par
0,5,k
Proof:
Since the objective functions Ryy: are strictly convex, it follows that
X, (Wh o We) = X, (W ... ,WQ). Then, z € X;_,, (W',...,W?) iff
ﬂ L (R, Ryi(z)) = 0. This intersection is empty if and only if there exist i, j, k €
1<i<Q
@ such that L (R, Rwi(z))NL<(Rwi, Rwi(x))NL<(Ry#, Ry (x)) = 0 (see Theorem
of Helly [Roc70]) and this is equivalent to z € X .. (W, W7, W*). Since in any case

w—par

U A5 e W07, WF) C &

w—par

whw?,... w9
9,7,k
i£j#k
and the proof is complete. O

As a direct consequence of the results of this section we get the following alogrithm.

ALGORITHM 5.1
Input:

1. Demand points A C IR>.
2. Weight sets W' = (wi)sen, i =1,...,Q.

Output:



10X (W, W),

w—par

Steps:

1. Computation of the set X, (W', W7) Vi< j€1,2,3

2. Compute for all i,k € {1,...,Q} Xy_,,, (W', Wi, W¥).
3. Compute encl(W',... , W) =, x Xo_per W', W/, WF).

4. END O

Example 5.1 We use the data of Example 4.1 and add two additional existing facilities
ay7 = (14, 12) and aig = (15, 13)

X (W?)

X

K’
o O
020000 2020 2070 2002020202020 2 %0 2%

Figure 7: Tlustration of Example 5.1. The bold part constitutes the set of Pareto solutions for all
three criteria.



Now we have three decision makers, each of them having two sets of weights: W' =
{w', w'?} with

e w'l=(1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) and

e w'?=(0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0);
W2 = {w?', w??} with

e w? =(0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0) and

e w??=(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0);
W3 = {w3', w*?} with

e w? = (1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) and

e w3%=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1).

According to the results of this section, we compute the Pareto chain for all three

bicriteria subproblems Xy, (W', W?), X» (W' W3), &> (W?* W?). The result is
shown in Figure 7. Note that according to the results obtained also the marked enclosed

region s Pareto optimal.

The algorithms in this paper were implemented with LOLA [Ham97] and the pro-
gram code is available upon request from lola@mathematik.uni-kl.de.

6 Conclusions

In this paper we have shown how to derive an efficient algorithm for a robustness
concept in multicriteria location. An emphasis was put on the geometrical structure of
this multicriteria model. Extensions to higher dimensions, to other distance measures
and to more general objective function seem to be natural and are currently under
research.
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