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Abstract

In the present master’s thesis we investigate the connection between derivations and
homogeneities of complete analytic algebras. From now on, denote a complete ana-
lytic algebra by R. We prove a theorem, which describes a specific set of generators
for the module of derivations of R, which map the maximal ideal of R into itself. It
turns out, that this set has a structure similar to a Cartan subalgebra and contains
the information regarding the maximal multi-homogeneity of R. In order to prove
this theorem, we extend the notion of grading by Scheja and Wiebe (see [30],[32])
to projective systems and state the connection between multi-gradings and pairwise
commuting diagonalizable derivations. We prove a theorem similar to Cartan’s Con-
jugacy Theorem in the setup of infinite-dimensional Lie algebras, which arise as pro-
jective limits of finite-dimensional Lie algebras. Using this result, we can show that
the structure of the aforementioned set of generators is intrinsic to the analytic algebra
R and does not depend on any choice of coordinates. Finally, we state an algorithm,
which is theoretically able to compute the maximal multi-homogeneity of a complete
analytic algebra.
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1 Introduction

In the present thesis we investigate the relation between homogeneities and deriva-
tions of (complete) analytic algebras. Consider for example the polynomial f :=
x2+y3 ∈ C[[x, y]], then it easy to see, that f is homogeneous with respect to the weights
(3, 2). This induces a grading on the complete analytic algebra R := C[[x, y]]/〈f〉. We
say that R has a (Q,+) grading with respect to the weight-vector (3, 2). An impor-
tant question is, whether there are more possibilities for the grading of R, which
are Q-linear independent. In our example it turns out, that the grading induced by
(3, 2) is the only grading for which R is graded. To investigate this topic, we use
the connection between derivations of R, which map the maximal ideal of R into it-
self, and homogeneities of R. One of the first to investigate the connection between
homogeneities and derivations was K. Saito in 1971 (see [29]). Saito proved, that a
convergent power series f with an isolated hypersurface singularity at 0 is homoge-
neous, if it is an eigenfunction of a derivation δ of R into itself. In 1972, G. Scheja and
H. Wiebe extended this idea to analytic algebras (see [30]). They stated, that homo-
geneities of an analytic algebra correspond to semi-simple derivations of R. In 1977
and 1980 they extend their previous results by using methods from linear algebra and
projective limits (see [31] respectively [32]). One of the most important results was,
that any derivation δ of a complete analytic algebra R, which maps the maximal ideal
of R into itself, has a Chevalley decomposition, that is a decomposition δ = δS + δN ,
where δS is a semi-simple derivation and δN is a nilpotent one. E. Kunz and W. Rup-
pert used the idea of derivations to show, that f ∈ R is homogeneous, if and only if
there exists a derivation δ with δ(f) = λf for some constant λ (see [24]). These are the
most important results connecting derivations to homogeneities. Now the question
is, why do we need to investigate homogeneities of analytic algebras? We do so, for
example, because we can use this information to classify isolated Gorenstein-curve
singularities, as done by G.-M. Greuel, B. Martin and G. Pfister in 1985 (see [17]). Fur-
thermore, the investigation of maximal multi-homogeneities, as in our thesis, is very
useful in the classification of complete analytic algebras in general, as the dimension
s of the Q-vector space generated by the homogeneities is an invariant.
We show, that maximal multi-homogeneities arise from so called multi-gradings, which
are gradings by K-vector spaces. The connection to derivations comes from the fact,
that pairwise commuting derivations can be simultaneously diagonalized. In order
to prove our results, we start Chapter 2 by stating basic results regarding projective
limits, the notion of grading of rings and Lie algebras. Chapter 3 then deals with the
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connection between gradings of analytic algebras and derivations as in [30]. These
chapters are meant to be an introduction into the basic tools and results we are go-
ing to use during the course of our thesis and are not meant to be a full treatment
of the aforementioned topics. They do not contain any new results. In Chapter 4 we
introduce the notion of grading to projective systems and so called Lie-Rinehart al-
gebras to prove a general version of the Formal Structure Theorem by Granger and
Schulze (see [13]), which makes it possible to state, for example, the structure of the
module of mR-invariant derivations Der′(R), where R is a complete analytic algebra.
Chapter 5 is concerned with the topic of profinite Lie(-Rinerhart) algebras. We gener-
alize Cartan’s Conjugacy Theorem (see for example [6, Theorem 3.5.1]) to the setup of
profinite Lie algebras. This seemingly new result makes it possible to prove, that the
dimension s of the K-vector space corresponding to our maximal multi-homogeneity
is uniquely determined, hence can be considered as an invariant of the complete ana-
lytic algebra R. In Chapter 6 we deal with the theory of standard bases in the setup of
convergent power series rings and use methods regarding them to state an algorithm
for the computation of the maximal multi-homogeneity of ideals. This information
is encoded in semi-simple matrices. Our algorithm returns a basis of a Lie algebra
g, containing the needed information, but does not necessarily compute it explicitly.
The latter means, that this basis does not contain all semi-simple matrices, which are
contained in g, but at least gives a lower bound.



2 Projective Limits, Gradings and Lie
Algebras

The following chapter is a summary of basic results regarding projective limits, Lie
algebras and gradings of rings. We stay close to [30] for the results about grading
and [6] for the results regarding Lie algebras. We start by stating results on projective
limits, then about gradings of rings and after that, we state basic results regarding Lie
algebras. We omit proofs in this chapter, as long as they are not of further concern for
our thesis or give any insight on the topic.

2.1 Projective Limits and Completions

In the following section we introduce the notion of projective limits and the notion of
completions. This is the basic object we are going to work with in the course of this
thesis.

We start with the set theoretical definition of projective limits and after that pass to a
category theoretical result. The definition is taken from [27, Chapter 12].
Definition 2.1
Let J be a (partially) ordered set of indexes. Assume further, that J is directed, which means,
that for any j, j′ ∈ J there exists k ∈ J with j ≤ k and j′ ≤ k. Assume given a family
(Gj)j∈J of sets (groups, rings, topological spaces, etc.) together with maps (homomorphisms)

fij : Gj → Gi

for each pair (i, j) of indexes in J , such that i ≤ j. This setup is called projective system, if
in addition we have

fik = fij ◦ fjk,
for all i ≤ j ≤ k. We use (Gj, fij) as a short notation for a projective system.
The projective limit of such a projective system is defined as the following subset of the
Cartesian product of the Gj :

lim←−
j∈J

Gj := {(σj)j ∈
∏
j∈J

Gj|fij(σj) = σi for i ≤ j}.
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The following result is the universal property of projective limits. Sometimes this is
used as the definition of a projective limit, see for example [26, Definition 5.1.19 b)].
Theorem 2.2
Let J be a (partially) ordered and directed set of indexes and (Gj, fij) a projective system of
sets (groups, rings, topological spaces, etc.) as in Definition 2.1. Assume the projective limit
lim←−j∈J Gj exists, then it satisfies the following universal property:
Denote by πi : lim←−j∈J Gj → Gi the natural projections of the projective limit and let X
be an arbitrary set (group, ring,topological space, etc.) with maps (respectively morphisms)
ψi : X → Gi such that fij ◦ψj = ψi for all i ≤ j, then there exists a unique map (respectively
morphism) u : X → lim←−j∈J Gj, such that the following diagram commutes:

X

lim←−j∈J Gj

Gj Gi

ψj
u

ψi

πj πi

fij

Proof:
See [26, Example 5.1.22] for a proof in the category of sets. The proof works analo-
gously in all our other categories like groups, rings or modules.

Corollary 2.3
The projective limit, if it exists, is unique up to unique isomorphism.

Proof:
This follows immediately from the universal property in Theorem 2.2, see for example
[26, Corollary 6.1.2].

Next, we take a look at a setup, in which we have two projective systems with the
same projective limit.
Proposition 2.4
Let J be a (partially) ordered and directed set of indexes and let (Mj, fij)i,j∈J be a projective
system of sets (groups, rings, topological spaces, etc.). Define M := lim←−j∈JMj. Denote by
πj : M → Mj the projections from M to the Mj and define Nj := πj(M). Then (Nj, fij|Nj)
is a projective system and M ∼= lim←−j∈J Nj .
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Proof:
(Nj, fij|Nj) is clearly a projective system, so we only have to show, that it is isomorphic
to M . Consider the following commutative diagram:

lim←−j∈J Nj

lim←−j∈JMj

Mj Mi

πj |Nj
u

πi|Ni

πj πi

fij

Furthermore, we get another commutative diagram:

lim←−j∈JMj

lim←−j∈J Nj

Nj Ni

πj
u′

πi

πj |Nj πi|Ni

fij |Nj

Now, as u◦u′ equals the identity on lim←−j∈JMj , by the universal property of projective
limits, and as u′ ◦ u equals the identity on lim←−j∈J Nj , again by the universal property,
we get, that M = lim←−j∈JMj

∼= lim←−j∈J Nj .

Let us take a look at a simple example of a projective limit.
Example 2.5
Let J be a non-empty set. Then we can define a partial ordering on J by simply stating
a ≤ b : ⇐⇒ a = b for all a, b ∈ J. This implies for any projective system (Gj, fij) of sets
(groups, rings, topological spaces, etc.) indexed by J as in Definition 2.1, that we have:

lim←−
j∈J

Gj
∼=
∏
j∈J

Gj.
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Before we go on with more advanced results, we state a useful lemma regarding the
commutativity of projective limits.
Lemma 2.6
Let (I,≤) and (J,≤) be (partially) ordered and directed sets. Endow I × J with the ordering
(i, j) ≤ (i′, j′) : ⇐⇒ i ≤ j and i′ ≤ j′. Then for any projective system (Gij, f(i,j),(i′,j′)) of
sets (groups, rings, topological spaces, etc.), we have that:

lim←−
i∈I

lim←−
j∈J

Gij
∼= lim←−

(i,j)∈I×J
Gij
∼= lim←−

j∈J
lim←−
i∈I

Gij.

Proof:
See [26, Proposition 6.2.8].

The last topic regarding projective limits in general we are investigating, is the behav-
ior of projective limits as a functor. The following result states, that lim←− is a left-exact
functor.
Lemma 2.7
Let J be a (partially) ordered and directed set of indexes and (Aj, f

A
ij ), (Bj, f

B
ij ) and (Cj, f

C
ij )

be projective systems of sets (groups, rings, topological spaces, etc.). If we have for all j ∈ J
an exact sequence

0→ Aj → Bj → Cj → 0,

then we have an exact sequence

0→ lim←−
j∈J

Aj → lim←−
j∈J

Bj → lim←−
j∈J

Cj.

Proof:
The proof works the same way as in [1, Lemma 1.9].

In general, projective limits do not exist, but these cases are not of our concern. Next,
we work in a setup, where projective limits exists, namely in the setup of completions.
The following results are taken from [9, Chapter 7].
Let us start with the definition.
Definition 2.8
Let R be a Noetherian ring and R = m0 ⊃ m1 ⊃ . . . , where mi, i ∈ N, are ideals of R.
Then we define the completion R̂ of R as the projective limit R̂ := lim←−i∈NR/mi. If we have
mi = mi, then we call R̂ the m-adic completion. Furthermore, if M is an R-module and mi

as before, we define the completion M̂ of M, as M̂ := lim←−i∈NM/miM .
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As the projective limit does not always exist, we need the following theorem.
Theorem 2.9
Let R be a Noetherian ring, m an ideal of R and M an finitely generated R-module. Denote
by R̂ the m-adic completion of R, respectively by M̂ the m-adic completion of M , then:

i) R̂ exists and is Noetherian.

ii) R̂/mjR̂ ∼= R/mj.

iii) M̂ ∼= R̂⊗RM.

Proof:
See [9, Theorem 7.1 and 7.2].

Let us have a look at a standard example in the context of completions.
Example 2.10
Let R be a polynomial ring in n variables over a field K, that is, R = K[x1, . . . , xn]. Consider
the ideal m = 〈x1, . . . , xn〉. Then the m-adic completion R̂ = lim←−i∈NR/m

i ∼= K[[x1, . . . , xn]],

the power series ring over K in n variables.

The last theorem we are stating, is Cohen’s famous Structure Theorem. For details
see [9, Theorem 7.7].
Theorem 2.11
Let R be a complete local Noetherian ring with maximal ideal m and residue field K. If R
contains a field, thenR ∼= K[[x1, . . . , xn]]/I for some n ∈ N and I an ideal ofK[[x1, . . . , xn]].

2.2 Gradings of Rings and Modules

In the following chapter we state a more general definition of the grading of a ring
respectively a module. The definitions we state are taken from [30, Chapter 1]. For
the classical definition of grading in the context of rings or modules, we refer the
reader to [18, Chapter 2.2]. We start with the basic definition of finitely graded rings
and modules:
Definition 2.12
Let (G,+) be an abelian group, R a ring and M an R-module. R is a finitely graded ring,
if we have a system of group homomorphisms πRg : R → R for g ∈ G with the property
πRg (R)πRh (R) ⊆ πRg+h(R) for all g, h ∈ G, such that R can be written as a direct sum of the
subgroups πRg (R). Furthermore, M is a finitely graded module, if R is graded with respect
to a system of group homomorphisms πRg , g ∈ G as before, which is compatible with group
homomorphisms πMg : M →M, that is πRg (R)πMh (M) ⊆ πMg+h(M) for all g, h ∈ G, such that
M can be written as a direct sum of the subgroups πMg (M).
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Remark 2.13
Definition 2.12 basically extends the well known idea of grading rings in the multivariate
polynomial case. Consider for example the polynomial ring R := Q[x1, . . . , xn]. Using multi-
indices α = (α1, . . . , αn) ∈ Nn, we can write any f ∈ R as f =

∑|α|=m
|α|=0 cαx

α1
1 · · ·xαnn , where

m is the total degree of f . To keep notation short, we write f =
∑

α fα, where fα denotes the
homogeneous degree |α| part of f . For more details on the grading of multivariate polynomial
rings see [18]. Now R can be written as R =

⊕
|α|≥0 Qx

α1
1 · · ·xαnn . If we consider the group

(G,+) := (Z,+) and the group homomorphisms

πg : R→ R

f 7→
{

0, if g < 0
fα, with |α| = g

We directly get the desired properties of (πg)g∈G as in Definition 2.12.

The next interesting aspect is the general, not necessarily finite, grading of rings and
modules. We start with the definition of Zariski rings (see for example [2, Chapter 10,
Exercise 6]), as this is the setup in which we are able to define general gradings.
Definition 2.14
Let R be a ring. We say R is a Zariski ring, if R is a commutative unitary Noetherian
topological ring, whose topology is defined by an ideal m contained in the Jacobson ideal of R.

Now we can define general gradings.
Definition 2.15
Let (G,+) be an abelian group, R a Zariski ring and M a finitely generated R-module. R
is a graded ring, if we have a system of group homomorphisms πRg : R → R for g ∈ G,
which induce group homomorphisms πRg : R/mn → R/mn that define a finite grading on
R/mn for all n ∈ N. M is a graded module, if R is graded with respect to a system of
group homomorphisms πRg , g ∈ G as before, which is compatible with group homomorphisms
πMg : M →M which induce group homomorphism πMg : M/mnM →M/mnM that define a
finite grading on M/mnM as an R/mn-module for all n ∈ N.
Remark 2.16
The grading in the sense of Definition 2.15, is basically a grading of m-adic completions, as
we reduce the grading of a ring R, to gradings on all R/mk. The same holds also for modules.
We extend this idea to the grading of projective limits in Chapter 4.
Example 2.17
Let us consider the ring R := Q[[x1, . . . , xn]], m := 〈x1, . . . , xn〉 and (G,+) := (Z,+).
Define πg as in Remark 2.13, just extended to power series. We get that the πg induce a finite
grading on R/mk for all k ∈ N, as R/mk = Q[x1, . . . , xn]/〈x1, . . . , xn〉k by Theorem 2.9 ii),
hence R is graded in the sense of Definition 2.15.
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Due to the fact, that we have a topology on our rings and modules, we can define a
notion of convergence, which is the same notion of convergence, as in the context of
completions.
Definition 2.18
Let M be a graded R-module. The sum

∑
g∈Gmg, mg ∈ M, converges to m ∈ M, if and

only if for any n ∈ N there exists a finite E0 ⊆ G, such that for all E ⊆ G with E0 ⊆ E we
have: m−

∑
g∈Emg ∈ mnM . Then we write m =

∑
g∈Gmg.

The following statements generalize basic results of graded modules, as stated for
example in [18].
Theorem 2.19
Let M be a graded R-module with system of group homomorphisms (πMg )g∈G. Every m ∈M
can be written as m =

∑
g∈G π

M
g (m). If m =

∑
g∈Gmg with mg ∈ πMg (M), then we already

have mg = πMg (m) for all g ∈ G. mg is called the g-th homogeneous component of m.

Proof:
See [30, (1.1)].

Proposition 2.20
For all g, h ∈ G we have: π2

g = πg, πg ◦ πh = 0, if g 6= h, and πRg (R)πMh (M) ⊆ πMg+h(M).

Proof:
See [30, (1.2)].

The next natural step is to take a look at submodules of graded modules.
Definition 2.21
LetM be a gradedR-module andN a subgroup ofM . N is called homogeneous, if πMg (N) ⊆
N for all g ∈ G.

The following three theorems characterize homogeneous submodules, resulting quo-
tient modules and their grading.
Theorem 2.22
Let M be a graded R-module and N a submodule of M . N is homogeneous if and only if N
can be generated by homogeneous elements.

Proof:
See [30, (1.3)].

Theorem 2.23
Let M be a graded R-module with system of group homomorphisms (πMg )g∈G and N a homo-
geneous submodule of M . Then the group homomorphisms πMg |N : N → N , g ∈ G, induce a
grading of N as an R-module.
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Proof:
See [30, (1.4)].

Theorem 2.24
Let M be a graded R-module with system of group homomorphisms (πMg )g∈G and N a homo-
geneous submodule of M . Then the group homomorphisms πMg : M/N → M/N , g ∈ G,
induce a grading of M/N as an R-module.

Proof:
See [30, (1.5)].

2.3 Basic Results on Lie Algebras

In this section we present the basic results regarding Lie algebras, which we are going
to use in the underlying thesis. We stay close to [6], but we use the notation from
[33].
Remark 2.25
All vector spaces in this chapter are finite-dimensional, although the definition of a Lie algebra
naturally extends to the infinite-dimensional case. The latter is not of further concern at the
moment.

2.3.1 Basic Definitions and Constructions regarding Lie Algebras

Let us start with the definition of an algebra.
Definition 2.26
An algebra is vector space g over a field K together with a bilinear map

[·, ·] : g× g→ g.

Remark 2.27
The brackets used in Definition 2.26 are the so called Lie brackets.

Now we can define Lie algebras.
Definition 2.28
An algebra g over a field K is said to be a Lie algebra, if its multiplication has the following
properties:

a) [x, x] = 0 for all x ∈ g,

b) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.
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A Lie algebra is called finite-dimensional, if it is finite dimensional as a Kvector space.
A subspace h of g satisfying the previous properties is called Lie subalgebra.

Let us take a look at a typical example of a Lie algebra, which is our standard example
for a Lie algebra. A Lie subalgebra of the latter is in the focus of our computations in
Chapter 6.
Example 2.29
Let V be an n-dimensional vector space over the fieldK. Denote by End(V ) the set of all linear
maps from V to V . We can turn End(V ) into a Lie algebra using the following definition of
the Lie brackets:

[a, b] := ab− ba

for all a, b ∈ End(V ). It is easy to see, that the properties of Definition 2.28 are satisfied. We
denote this Lie algebra by gl(K,n).

The first natural structure arising in algebra, are quotient algebras.
Definition 2.30
Let g be a Lie algebra and i an ideal of g. Then the algebra g/i is called the quotient algebra
of g and i.
Remark 2.31
The induced operations of quotient algebras are well defined (see [6, Proposition 1.15]) and
g/i is also a Lie algebra.

The next structures regarding Lie algebras we are talking about, are the centralizer
and the normalizer.
Definition 2.32
Let g be a Lie algebra and S ⊂ g. Then the set

C(S) := {x ∈ g| [x, s] = 0 for all s ∈ S}

is called centralizer of S. Furthermore, if S = g, we call C(g) the centre of g.
Definition 2.33
Let g be a Lie algebra and h be a subspace of g. Then the set

Ng(h) := {x ∈ g| [x, h] ∈ h for all h ∈ h}

is called normalizer of h in g.
Remark 2.34
We write N(h) instead of Ng(h), if it is obvious, in which Lie algebra we are working.
Remark 2.35
Let g be a Lie algebra and h a subspace of g. It can be shown, that C(h) and N(h) are subalge-
bras of g. Furthermore, if h is a subalgebra of g, h is an ideal of the Lie algebra N(h).
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2.3.2 Morphisms of Lie Algebras

The next objects, which are typically investigated when dealing with a new algebraic
structure, are morphisms. In the following section we present basic results regarding
morphisms between Lie algebras.
Definition 2.36
Let g and h be Lie algebras over the field K. A K-linear map φ : g→ h satisfying φ([x, y]) =
[φ(x), φ(y)] for all x, y ∈ g is called a morphism of Lie algebras. If φ is a bijection, we call
φ an isomorphism and we say that g and h are isomorphic. The latter is denoted by g ∼= h.
Proposition 2.37
Let g and h be Lie algebras over the field K and φ : g→ h a Lie algebra morphism. Then φ(g)
and φ−1(h) are subalgebras of h resp. g.

To see how to work with morphisms of Lie algebras, we prove the statement about
the preimage, as the one for the image works using the same idea.

Proof:
Set g′ := φ−1(h). Then g′ is a K vector space, as φ is a linear map, thus we only
need to show, that the operation of the Lie brackets is closed. Take x, y ∈ g′, then
φ([x, y]) = [φ(x), φ(y)], hence [x, y] is the preimage of an element of h and we have
shown, that φ−1(h) is a subalgebra of g.

The following example is a morphism of Lie algebras, which is also used for the
representation of Lie algebras (see for example [6, Chapter 1.12]).
Example 2.38
Let g be a Lie algebra and x ∈ g. Then the map [x, ·] : g→ g, y 7→ [x, y] is a morphism of Lie
algebras, which can easily be seen. It is the so called adjoint map, which is denoted by adx.
Remark 2.39
Let φ : g → h be a morphism of Lie algebras. We denote the kernel of φ by ker(φ) and the
image of φ by im(φ). ker(φ) is an ideal of g and im(φ) is a subalgebra of h.

The following results are the isomorphism theorems for Lie algebras.
Theorem 2.40
Let φ : g→ h be a morphism of Lie algebras. Then

g/ ker(φ) ∼= im(φ).

Proof:
See [6, Lemma 1.8.1].



2 Projective Limits, Gradings and Lie Algebras 15

Theorem 2.41
Let g be a Lie algebra with ideals i and j. Then the following statements hold:

i) If i ⊂ j, then the quotient Lie algebra j/i is an ideal of the quotient Lie algebra g/i and
we have (g/i)/(j/i) ∼= g/j.

ii) We have (i + j)/j ∼= i/(i ∩ j).

Proof:
See [6, Proposition 1.8.2].

The next topic we need to talk about are automorphisms of Lie algebras. We start
with their definition.
Definition 2.42
Let g be a Lie algebra. An automorphism of g is an isomorphism of g onto itself. The set of
all automorphisms of g is denoted by Aut(g).
Proposition 2.43
Let g be a Lie algebra. Aut(g) is a group, the so called automorphism group of g.

Proof:
See the discussion in [6] prior to Example 1.11.1.

The next type of morphisms we are taking a look at are the so called inner automor-
phism, which are playing an important role in Chapter 5.
Lemma 2.44
Let g be a Lie algebra and x ∈ g. If adx is nilpotent, that is, there exists some n ∈ N such that
adnx = 0, then exp(adx) ∈ Aut(g), where exp(adx) :=

∑n−1
i=0

adix
i!
.

Proof:
For a proof see [6, Lemma 1.11.2].

Definition 2.45
Let g be a Lie algebra. The automorphisms of the type described in Lemma 2.44 are called
inner automorphisms. The set of all inner automorphisms is denoted by Inn(g).

Proposition 2.46
Let g be a Lie algebra. Inn(g) is a subgroup of Aut(g).

Proof:
See the discussion in [6] after the proof of Lemma 1.11.2.
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We finish this section with an important result regarding the inner automorphisms.
Proposition 2.47
Let K be an algebraically closed field, V a finite-dimensional vector space and g := gl(K,n).
If x ∈ g is diagonalizable, then φ(x) is diagonalizable for all φ ∈ Inn(g).

Proof:
A simple computation shows, that if y ∈ g is a nilpotent endomorphism, we get

exp([y, x]) = exp(y)x exp(−y)

for any x ∈ g. Using this, we get that every element of Inn(g) operates by conjugation
on the elements of g. Due to the fact, that being diagonalizable is invariant under
conjugation (see [25, Chapter XIV, §3]), we get that φ(x) is diagonalizable, if x ∈ g is
so, for any φ ∈ Inn(g).

2.3.3 Nilpotent Lie Algebras and Cartan Subalgebras

An important class of Lie algebras are so called nilpotent Lie algebras. In this subsec-
tion we define them and state important results regarding them. The results regard-
ing the finite-dimensional case are playing an important role in the infinite-dimensional
case, which we are treating in Chapter 5.

Before we can define nilpotent Lie algebras, we need the following result regarding
ideals.
Lemma 2.48
Let g be a Lie algebra and i, j ideals of g. Then [i, j] is an ideal of g.

Proof:
See [6, Lemma 1.7.1].

The next definition is the basis for the definition of nilpotent Lie algebras.
Definition 2.49
Let g be a Lie algebra. Let g(1) := g and g(i) := [g, g(i−1)] for i ∈ N≥2. Then the sequence

g = g(1) ⊃ g(2) ⊃ . . . ⊃ g(i) ⊃ . . .

is called lower central series of g.

Now we can define nilpotent Lie algebras.
Definition 2.50
Let g be a Lie algebra. If there exists an integer k, such that g(k) = 0, then g is called nilpotent.
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An important result concerning nilpotent finite-dimensional Lie algebras, is the fol-
lowing theorem.
Theorem 2.51 (Engel’s Theorem)
Let g be a finite-dimensional Lie algebra. Then g is nilpotent if and only if adx is nilpotent for
all x ∈ g.

Proof:
See [6, Theorem 2.1.5].

Now we can define a special type of nilpotent subalgebras, namely Cartan subalge-
bras.
Remark 2.52
In the following we restrict ourselves to the case of Lie algebras over algebraically closed fields
of characteristic 0.
Definition 2.53
Let g be a Lie algebra and h a subalgebra of g. h is called Cartan subalgebra, if the following
is satisfied:

i) h is nilpotent.

ii) N(h) = h.
Proposition 2.54
Let g be a Lie algebra. Then there exists a Cartan subalgebra h of g.

Proof:
This follows from [6, Corollary 3.2.8], as we are in the case of characteristic zero and
our field has infinite elements.

The following theorem shows, that Cartan algebras of a finite-dimensional Lie alge-
bra form a single conjugacy class. A similar result holds in suitable cases for infinite
dimensional Lie algebras, as we will see in Chapter 5.
Theorem 2.55
Let g be a finite-dimensional Lie algebra. Let h and h′ be two Cartan subalgebras of g. Then
there exists a σ ∈ Inn(g), such that h = σ(h′).

Proof:
See [6, Theorem 3.5.1].

After stating some theory about Lie Algebras, we state an example.
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Example 2.56
Let K be a field and consider the Lie algebra gl(K,n). How does a Cartan subalgebra of
gl(K,n) look like? We claim, that the set of diagonal matrices is a Cartan subalgebra of
gl(K,n). Denote this set by h. It is easy to see, that h is nilpotent, as diagonal matrices
commute with each other. To verify the normalizer property, we need some notation. Denote
by Eij the canonical basis of the vector space gl(K,n), then it can be easily verified, that
[Eij, Ekl] = δjkEil− δliEkj, where δij is the Kronecker delta. Using this relation, it can easily
be seen, that no non-diagonal basis vector satisfies the normalizer property , as all diagonal
matrices are contained in h.

Before we finish this section on Lie algebras, we state two final results regarding the
behavior of Cartan subalgebras under surjective Lie algebra morphisms.
Theorem 2.57
Let g and h be Lie algebras over the field K and φ : g→ g′ a surjective Lie algebra morphism.
Let h ⊂ g be a Cartan subalgebra of g. Then φ(h) is Cartan subalgebra of g′.
Theorem 2.58
Let g and g′ be Lie algebras over the field K and φ : g→ g′ a surjective Lie algebra morphism.
Let h′ be a Cartan subalgebra of g′. Then φ−1(h′) is Cartan subalgebra of φ−1(g′) and also one
of g.

Proof:
For a proof of the previous two results see [6, Lemma 3.6.2 and Lemma 3.6.3].

2.3.4 The Root Space Decomposition

The final topic regarding Lie algebras, we are taking a look at, is the so called root
space decomposition. This is basically the decomposition of our Lie algebra into di-
rect sums, which have some properties regarding a fixed Cartan subalgebra of our Lie
algebra. To keep the computations and definitions as simple as possible, we are going
to work in the context of algebraically closed fields of characteristic 0. Before we start
with the root space decomposition, we need the so called primary decomposition.
Definition 2.59
Let V be a finite-dimensional vector space over a field K of dimension n ∈ N and consider a
Lie algebra h ⊂ gl(K,n). A decomposition

V = V1 ⊕ . . .⊕ Vs

of V into h-submodules Vi is said to be primary, if the minimum polynomial of the restriction
of x to Vi is a power of an irreducible polynomial for all x ∈ h and 1 ≤ i ≤ s. The subspaces
Vi are called primary components.
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In general, a primary decomposition does not exist, but in a suitable setup, it does.
Proposition 2.60
Suppose that h is nilpotent. Then V has a primary decomposition with respect to h.

Proof:
See [6, Corollary 3.1.8].

The next result regarding general primary decompositions is a uniqueness statement.
First of all we need a precise definition for the circumstances, in which we get the
uniqueness result.
Definition 2.61
A primary decomposition of V relative to h is called collected, if for any two primary com-
ponents Vi and Vj , i 6= j, there is an x ∈ h, such that the minimum polynomials of the
restrictions of x to Vi and Vj are powers of different irreducible polynomials.
Theorem 2.62
Let h be nilpotent. Then V has a unique collected primary decomposition relative to h.

Proof:
See [6, Theorem 3.1.10].

Now we can define the root space decomposition. We use the adjoint map, to map
any Lie algebra h to gl(K,n), such that we can compute primary decompositions in
the general setup, where our Lie algebras is not necessarily a subalgebra of gl(K,n).
Definition 2.63
Let g be a finite-dimensional Lie algebra and h a Cartan subalgebra of g. The collected primary
decomposition

g = h⊕ g1 ⊕ . . .⊕ gs

is called roots space decomposition.

Where does the name arise from? Consider any h ∈ h. Then the minimum polynomial
of the restriction of adh to a primary component gi is a power of an irreducible poly-
nomial. As our field is algebraically closed, this polynomial is of the form x − αi(h),
where αi(h) is a scalar depending on i and h. By fixing the primary component gi, we
get a function αi : h → K. This function is called a root. The corresponding primary
component is called a root space. In the further course of this thesis, we index the root
space by the corresponding root. Define

gαi := gi = {g ∈ g| for all h ∈ h there is a k > 0 such that (adh−αi(h))k(g) = 0}.

Then we write
g = h⊕ gα1 ⊕ . . .⊕ gαs .
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3 Derivations and Gradings of
Analytic Algebras

In the following chapter, we state the definition of an analytic algebra in the context
of our thesis, as well as results regarding it. After that, we state results regarding
the module of derivations of analytic algebras. For the latter, we stay close to [32,
Chapter 1]. Results regarding analytic algebras are taken from [16, Chapter 1] and
[14]. To keep notation short and if it is obvious from the context, we write x for
(x1, . . . , xn) and K〈〈x〉〉 for K〈〈x1, . . . , xn〉〉.
Remark 3.1
From now on, we work only over complete real valuation fields of characteristic 0. For details
on valuation fields, see [27, Chapter 23]. We also assume, that the reader is familiar with the
notion of convergent power series rings. For a treatment of the latter, see [14, Chapter 1 and
Chapter 3].

3.1 Analytic Algebras

This section is dedicated to analytic algebras, as we are only concerned with rings
being analytic algebras in the further course of the underlying thesis. We start with
basic definitions. After that, we introduce basic results regarding analytic algebras.
We omit proofs, as long as they are not of further concern for our thesis.
Definition 3.2
Let R be an algebra over the field K. R is called analytic algebra, if it is the quotient ring
of a convergent power series ring, that is, R = K〈〈x1, . . . , xn〉〉/I for some ideal I of the
convergent power series ring K〈〈x1, . . . , xn〉〉.
Remark 3.3
From now on, all algebras R over a field K, are analytic algebras, if not stated otherwise. As
all analytic algebras R are local rings (see for example [16, Chapter 1]), they have a unique
maximal ideal, which we are denoting by mR.
Definition 3.4
LetR be an analytic algebra, such thatR = lim←−k∈NR/m

k
R, thenR is called complete analytic

algebra.
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Lemma 3.5
LetR be a complete analytic algebra, thenR ∼= K[[x1, . . . , xn]]/I for some ideal I ofK[[x1, . . . , xn]]
and n ∈ N.

Proof:
As R is a complete local Noetherian ring containing a field K, we can apply Theorem
2.11 and get the result immediately.

To get a feeling for analytic algebras, we state two examples of analytic algebras,
which show, that the valuation of the field plays an important role.
Example 3.6 i) Let C be the complex numbers endowed with the valuation induced by the

absolute norm. Then the convergent power series ring R := C〈〈x1, . . . , xn〉〉 is a proper
subset of the formal power series ring C[[x1, . . . , xn]] (see [16, Excercise 1.1.3]), where
n ∈ N. Clearly R is an analytic algebra over the complex numbers and its completion
R̂ equals C[[x1, . . . , xn]].

ii) Let C be the complex numbers endowed with the trivial valuation. Then the conver-
gent power series ring R := C〈〈x1, . . . , xn〉〉 is equal to the formal power series ring
C[[x1, . . . , xn]] (see [16, Remark 1.1.1]), where n ∈ N.

In the following we are listing important results regarding analytic algebras.
Theorem 3.7
Let R be an analytic algebra. Then the following hold:

i) R is Noetherian, that is, every ideal of R is finitely generated.

ii) Let R := K〈〈x1, . . . , xn〉〉. Then R is a factorial ring.

Proof:
See [16, Theorem 1.15 and Theorem 1.16].

Our next theorem is the famous Implicit Function Theorem.
Theorem 3.8 (Implicit Function Theorem)
Let K be a field and let fi ∈ R = K〈〈x1, . . . , xn, y1, . . . , ym〉〉, i = 1, . . . ,m, satisfy
fi(0, . . . , 0) = 0 and

det

∂y1f1(0, . . . , 0) . . . ∂ymf1(0, . . . , 0)
...

...
∂y1fm(0, . . . , 0) . . . ∂ymfm(0, . . . , 0)

 6= 0.
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Then R/〈f1, . . . , fm〉 ∼= K〈〈x1, . . . , xn〉〉, and there exists unique power series
Y1, . . . , Ym ∈ mK〈〈x〉〉 solving the implicit system of equations

f1(x, y) = . . . = fm(x, y) = 0

in y, that is, satisfying

fi(x, Y1(x), . . . , Ym(x) = 0, i = 1, . . . ,m.

Moreover, 〈f1, . . . , fm〉 = 〈y1 − Y1, . . . , ym − Ym〉.

Proof:
See [16, Theorem 1.18].

The following theorem is the famous Inverse Function Theorem.
Theorem 3.9 (Inverse Function Theorem)
Let φ : R→ K〈〈x1, . . . , xn〉〉 be a morphism of analytic algebras over the field K, and denote
by mR the maximal ideal of R. Then the following are equivalent:

i) φ is an isomorphism.

ii) φ̇ : mR/m
2
R → mK〈〈x〉〉/m

2
K〈〈x〉〉 is an isomorphism.

Proof:
See [16, Theorem 1.21].

Remark 3.10
The Inverse Function Theorem for analytic algebras states basically, that we can check if a
morphism is an isomorphism, by passing to the morphism induced on the K-vector space
mR/m

2
R.

Our next lemma is a useful result regarding the lifting of morphisms.
Lemma 3.11 (Lifting Lemma)
Let φ be a morphism of analytic algebras over a field K, that is,

φ : R = K〈〈x1, . . . , xn〉〉/I → S = K〈〈y1, . . . , ym〉〉/J.

Then φ has a lifting φ̃ : K〈〈x〉〉 → K〈〈y〉〉, which can be chosen as an isomorphism in the
case that φ is an isomorphism and n = m, respectively as an epimorphism in the case that φ
is an epimorphism and n ≥ m.

Proof:
See [16, Lemma 1.23].
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3.2 Derivations of Analytic Algebras

This section is dedicated to derivations and their properties, which we state in the
context of analytic algebras. For a more detailed treatment of derivations, we refer
the reader for example to [23], as we are only presenting results, which are relevant
for the underlying thesis.

Let us start with the basic definition of this section, namely the definition of a deriva-
tion, which is a modification of [16, Definition 1.105], as we restrict our setup to maps
between R-algebras.
Definition 3.12
Let R be an algebra over a field K and S an R-algebra. A derivation δ is a K-linear map
δ : R→ S satisfying

δ(xy) = δ(x)y + xδ(y)

for all x, y ∈ R. This property is the so called Leibniz rule. The set Der(R, S) denotes the set
of all derivations δ : R→ S.

Example 3.13
We have already seen an example for a derivation, namely the adjoint map of an element of
a Lie Algebra. Let R be a Lie algebra and x ∈ R, then adx is a derivation, as we can use
property b) of Definition 2.28:

adx([y, z]) = [x, [y, z]] = −[z, [x, y]]− [y, [z, x]]

= [[x, y], z] + [y, [x, z]]

= [adx(y), z] + [y, adx(z)]

for all y, z ∈ R.
Remark 3.14
Let R be an algebra over the field K. By Der(R) we denote the set of all derivations of R
into itself. Then Der(R) is a vector space over K and it is also a Lie algebra, if we define the
multiplication as follows:

[δ, σ](xy) := (δ ◦ σ − σ ◦ δ)(xy),

with δ, σ ∈ Der(R), x, y ∈ R. A simple computation yields [δ, σ](xy) = [δ, σ](x)y +
x[δ, σ](y), hence the multiplication is closed. The other properties of a Lie algebra can also
be verified by simple computations.
Proposition 3.15
Let R be an algebra over the field K. Then Der(R) is an R-module.

Proof:
This result follows from the fact, that for any f ∈ R, we have that f ·Der(R) ⊂ Der(R).
Furthermore, we get that for any δ, ε ∈ Der(R), δ + ε ∈ Der(R).
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Next we state, how to write the elements of Der(R) explicitly.
Theorem 3.16
Let R be an analytic algebra over a field K, with R = K〈〈x1, . . . , xn〉〉/I for some n ∈ N and
I an ideal of K〈〈x1, . . . , xn〉〉. Then every δ ∈ Der(R) is of type

δ =
n∑
i=1

ai∂xi ,

where ∂xi denotes the partial derivation with respect to xi and ai ∈ K〈〈x1, . . . , xn〉〉/I.

Before we state the proof, we need the following lemma.
Lemma 3.17
Let P := K〈〈X1, . . . , Xn〉〉, I a proper ideal of P , R := P/I , φ : P → R the natural
projection and xi := φ(Xi). If δ is a derivation on R, then there exists a derivation α on P
with φ ◦ α = δ ◦ φ, such that α(Xi) equals any fixed and prescribed value from the residue
class of φ−1(δ(xi)), with 1 ≤ i ≤ n. Moreover, if δ(xi) = λixi, λi ∈ K, then we can choose α
such that α(Xi) = λiXi.

Proof:
See [30, (2.1)].

Now we can prove Theorem 3.16.

Proof:
We sketch the proof, as its details are technical and do not give us any more insight
on the topic.
We first consider the case I = 0. Let f ∈ R, then we can write f =

∑∞
α∈Nn aαx

α.
Denote by fk the truncation of f up to degree k, that is,

fk :=
∑
α∈Nn,

α1+...+αn≤k

aαx
α.

Consider any δ ∈ Der(R), then for any monomial xki we have δ(xki ) = δ(xi)kx
k−1
i =

δ(xi)∂xix
k
i for all k ∈ N, k ≥ 1. We get the previous result using induction and the

Leibniz rule. As δ(xi) ∈ R, it follows, that δ(mk
R) ⊂ mk−1

R . As R ⊆ K[[x1, . . . , xn]],
we can consider the elements gk :=

∑n
i=1 δ(xi)∂xi(fk) ∈ K[[x1, . . . , xn]]. Due to the

fact, that we are dealing with polynomials, δ(fk) = gk for all k ∈ N. Furthermore, it
follows that δ(f) − gk ∈ mk

R. If we denote the limit of the gk by g ∈ K[[x1, . . . , xn]],
we have that δ(f)− g ∈ mk

RK[[x1, . . . , xn]] for all k ∈ N, hence, by Krull’s intersection
theorem (see for example [16, Theorem B.4.2]), δ(f) = g ∈ K[[x1, . . . , xn]]. Using, that



26 3.2 Derivations of Analytic Algebras

δ(f) ∈ R, we get that δ(f) = g ∈ R and, as this holds for any f ∈ R, we have that any
δ ∈ Der(R) can be written as δ =

∑n
i=1 δ(xi)∂xi . By [14, Satz 1.3], we get ∂xi ∈ Der(R)

for i = 1, . . . , n, hence δ :=
∑n

i=1 ai∂xi ∈ Der(R), with ai ∈ R.
The proof for the case R := K〈〈x1, . . . , xn〉〉/I for some ideal I of K〈〈x1, . . . , xn〉〉 fol-
lows immediately from Lemma 3.17.

Remark 3.18
Let R = K〈〈x1, . . . , xn〉〉 for some n ∈ N. Consider the standard grading on R as introduced
in Example 2.17 and denote Ri the component of degree i. Then every derivation δ ∈ Der(R)
can be written as

δ =
∞∑
i=0

n∑
j=1

aij∂xj ,

where aij ∈ Ri. By δ0 we denote summand
∑n

j=1 a1j∂xj and we call it the linear part of δ.
Denote (x1, . . . , xn) by x and (∂x1 , . . . , ∂xn) by ∂. Then there exists a matrixA ∈ Kn×n, such
that δ0 = xA∂T . We call A the representation matrix of δ0

In the context of analytic algebras we can prove, that Der(R) is a Noetherian module,
which implies, that Der(R) is a finitely generated module. For details on Noetherian
modules see for example [18, p.126 ff.].
Corollary 3.19
Let R be an analytic algebra. Then Der(R) is a Noetherian R-module.

Proof:
We have to show, that Der(R) is finitely generated and R is a Noetherian ring. By
Theorem 3.7, we have that R is a Noetherian ring. By Theorem 3.16, we have that
Der(R) is finitely generated by the partial derivatives ∂xi , i = 1, . . . , n, if x1, . . . , xn is
a minimal generating system for mR, hence Der(R) is a Noetherian module.

Before we can state results, we introduce a subset of Der(R), which is important in
the further course of our thesis.
Definition 3.20
Let R be an analytic algebra, I an ideal of R and δ ∈ Der(R). I is called δ-invariant, if
δ(I) ⊆ I . By Der′(R) we denote the set of derivations for which mR is invariant.

The following two results state, that Der′(R) is a finitely generatedR-module and that
it is complete, if R is complete.
Proposition 3.21
Let R be an analytic algebra. Then Der′(R) is a finitely generated R-module.
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Proof:
Let δ ∈ Der′(R). We have for any f ∈ R, that fδ(mR) ⊆ mR, as δ is mR-invariant and
mR is an ideal. Let ε ∈ Der′(R), then δ + ε ∈ Der′(R), as (δ + ε)(mR) = δ(mR) + ε(mR),
hence Der′(R) is anR-module. As Der′(R) is a submodule of Der(R) and as Der(R) is a
Noetherian R-module by Corollary 3.19, we get that Der′(R) is finitely generated.

In the following, we are presenting three ways of obtaining Der′(R) as a projective
limit. The first one we are presenting seems more appealing, but turns out not to
be very useful. We still state it, as it is helpful for the reader to understand why this
approach is not the right one, at least in our context.
Proposition 3.22
Let R be a complete analytic algebra. Then

Der′(R) = lim←−
k∈N

Der′(R)/mk
R Der′(R).

Proof:
Using the previous proposition, we have that Der′(R) is a finitely generatedR-module.
By Theorem 2.9, we can write

lim←−
k∈N

Der′(R)/mk
R Der′(R) = Der′(R)⊗R R̂.

As R̂ = R, we get that Der′(R) = lim←−k∈n Der′(R)/mk
R Der′(R).

Scheja and Wiebe in [32] work with Der′(R) and its projections to Der(R/mk
R), for

some k ∈ N. We follow this approach, with the difference, that we are also taking the
module structure of Der′(R) into account for our most important result in Chapter 4,
whereas Scheja and Wiebe are considering Der′(R) only as a Lie algebra. The notion
of so called Lie-Rinehart algebras, which we state in Chapter 4, combines both points
of views.

Next we show, that Der′(R) = lim←−k∈N Der(R/mk
R) in the case, where R is a complete

analytic algebra.
Proposition 3.23
Let R be a complete analytic algebra over a field K. Then

Der′(R) = lim←−
k∈N

Der(R/mk
R),

where the projections fkl : Der(R/ml
R) → Der(R/mk

R) for l ≥ k are induced by the projec-
tions R/ml

R � R/mk
R.



28 3.2 Derivations of Analytic Algebras

Proof:
We have projections pk : Der′(R) → Der(R/mk

R), such that the following diagram
commutes:

Der′(R)

lim←−k∈N Der(R/mk
R)

Der(R/ml
R) Der(R/mk

R)

pl u pk

πl πk

fkl

u denotes the unique morphism of Lie algebras from Der′(R) to lim←−k∈N Der(R/mk
R), we

get by the universal property of projective limits. Our claim is, that u is an isomor-
phism. Let us start with injectivity. Consider any δ ∈ Der′(R), with u(δ) = 0. The
latter means, that the projection δk of δ in Der(R/mk

R) is the trivial derivation. From
this it follows, that for all x ∈ R, we have that δk(x̄) = 0 in R/mk

R, which translates to
δ(x) ∈

⋂
k∈N m

k
R for all x ∈ R. Using Krull’s intersection theorem, we get that δ(x) = 0

for all x ∈ R, hence δ can only be the trivial derivation and u is injective.
Now we can prove surjectivity. Consider any δ ∈ lim←−k∈N Der(R/mk

R), then we know,
that we can consider δ as a sequence of elements δk ∈ Der(R/mk

R), as we work with
a projective limit. We are going to construct a δ′ ∈ Der′(R), such that u(δ′) = δ. We
do this, by defining δ′ for all x ∈ R, which also can be considered as a sequence of
elements xk ∈ R/mk

R. Using, that fkl is induced by gkl : R/ml
R → R/mk

R, we get the
compatibility of δk(xk) with the latter projection, that is, gkl(δl(xl)) = δk(xk) for all
l ≥ k. Thus, we can define for any x ∈ R an element yx ∈ R, which is the limit
of the sequence (δk(xk))k∈N and we set δ′(x) := yx. δ′ is clearly a derivation, as for
any a, b ∈ R, we have that δ′(ab) is the limit of the sequence (δk(akbk))k∈N and as
the δk are derivations, we get, using the same argument regarding limits as before,
δ′(ab) = δ′(a)b+ aδ′(b). By construction, we have that u(δ′) = δ.

Next, we state a third way of obtaining Der′(R), which is closely related to the previ-
ous one.
Corollary 3.24
Let R be a complete analytic algebra over a field K. Denote by gk the image of Der′(R) in
Der(R/mk

R). Then
Der′(R) = lim←−

k∈N
gk,

where the projections fkl : gl → gk for l ≥ k are induced by the projections R/ml
R � R/mk

R.
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Proof:
The result follows immediately from Proposition 2.4.

Before we go on, we want to sketch, why the first method of obtaining Der′(R) as
a limit is not very useful in our context. At first, we have that the gk ⊆ End(R/mk

R),
which means, that the elements of gk can be considered as endomorphisms of a finite-
dimensional vector space. It is obvious, that any derivation of Der′(R)/mk

R Der′(R)
maps to a corresponding derivation of Der(R/mk

R). The problem with this map is, that
it is not injective. Consider the derivation δ := 3y2∂x − 2x∂y of R := K[[x, y]]/〈x2 +
y3〉. Clearly, δ ∈ Der′(R), but δ /∈ mR Der′(R), as 2x∂y /∈ mR Der′(R), but 3y2∂x ∈
mR Der′(R). Hence δ is mapped to a non-zero derivation δ̄ in Der′(R)/mR Der′(R).
Now δ̄ operates on R/mR as the zero derivation, thus the natural map

Der′(R)/mR Der′(R)→ Der(R/mR)

is not injective. As our goal is to transfer properties like semi-simplicity and nilpo-
tency from linear algebra on finite-dimensional vector spaces to our limit, this ex-
cludes the first approach, as we cannot state an injective morphism from
Der′(R)/mk

R Der′(R) to End(R/mk
R). Due to this fact, we are from now on always con-

sidering Der′(R) as the projective limit of the Der(R/mk
R), respectively the gk.

Using, that gk ⊆ End(R/mk
R) for all k ∈ N, we can define semi-simple and nilpotent

derivations.
Definition 3.25
Let R be an analytic algebra and δ ∈ Der′(R). We call δ semi-simple, if the linear operator
induced by δ in gk is semi-simple on R/mk

R for all k ∈ N. δ is called nilpotent, if the linear
operator induced by δ in gk is nilpotent on R/mk

R for all k ∈ N. δ is called diagonalizable, if
mR has a system of generators containing only eigenvectors of δ.
Lemma 3.26
Let R be an analytic algebra over a field K and δ ∈ Der′(R). Then δ is nilpotent if and only
if the K-linear operator induced by δ on mR/m

2
R is nilpotent.

Proof:
Assume δ is nilpotent, then it induces a nilpotentK-linear operator on mR/m

2
R by def-

inition. Now assume δ induces a nilpotent K-linear operator on mR/m
2
R. This means,

there exists some n ∈ N, such that δn(mR) ⊆ m2
R. Assume, that we have an n, such

that δn(mk−1
R ) ⊆ δ(mk

R), for some k ∈ N. Our result for k + 1 follows by a application
of the Leibniz rule:

δn(mk
R) = δn(mk−1

R mR) = δn(mk−1
R )mR︸ ︷︷ ︸
⊆mk+1

R

+ mk−1
R δn(mR)︸ ︷︷ ︸
⊆mk+1

R

⊆ mk+1
R .
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Thus, δ induces a nilpotent K-linear operator on mR/m
k
R for all k ∈ N. As δ(K) = 0

and R = K ⊕ mR, we get that it induces a nilpotent operator on R/mk
R for all k ∈ N.

Finally, δ is nilpotent, as we can always take m := n · k and get that δm(R) ⊆ mk
R.

Remark 3.27
If we work over an algebraically closed field, semi-simple derivations are diagonalizable.
Definition 3.28
Let R be an analytic algebra and δ ∈ Der′(R). We say that δ has a Chevalley decomposi-
tion, if δ can be written as δ = δS+δN with [δS, δN ] = 0, where δS is a semi-simple derivation,
δN is a nilpotent derivation and δS, δN ∈ Der′(R).

Obviously the Chevalley decomposition from Definition 3.28 is analogous to the Jor-
dan decomposition known from linear algebra (see for example [25, Chapter XIV,
Theorem 2.4]). Before we go on with results regarding the Chevalley decomposi-
tion, we show, that endomorphisms of finite-dimensional vector spaces, which are
also derivations, have the property, that their semi-simple and nilpotent part are also
derivations.
Proposition 3.29
Let R be a K-algebra as well as a finite-dimensional K-vector space, where K is an alge-
braically closed field. Then for any δ ∈ Der(R) ⊆ EndK(R), we get, that δS, δN ∈ Der(R),
where δS and δN arise from the Chevalley decomposition of δ as an endomorphism.

Proof:
Consider δS ∈ EndK(R), which arises from the Chevalley decomposition as an endo-
morphism of a derivation δ ∈ Der(R). We decompose R into eigenspaces Rλ, where
λ ∈ K is an eigenvalue of δS. By definition of semi-simplicity, we get that there exists
a n ∈ N, such that (δ − λ idR)n(x) = 0, for any x ∈ Rλ. If we take n large enough, we
can get for x ∈ Rλ and y ∈ Rµ :

(δ − (λ+ µ) idR)n(xy) =
n∑
i=0

(
n

i

)
(δ − λ idR)n−i(x)(δ − µ idR)i(y) = 0,

hence RλRµ ⊆ Rλ+µ. Now it suffices to show, that δS acts as a derivation on elements
of the eigenspaces. By the previous result, we get that δS(xy) = (λ+ µ)xy, for x ∈ Rλ

and y ∈ Rµ. This is the same result as for δS(x)y + xδS(y) = λxy + µxy, hence δS is a
derivation. Using δ − δS = δN , we conclude that δN ∈ Der(R).

Remark 3.30
Proposition 3.29 basically states, that if we have a derivation, which operates on a finite-
dimensional vector space, we can compute its Chevalley decomposition by computing its
Chevalley decomposition as an endomorphism.
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As in the linear algebra case, we cannot expect the Chevalley decomposition to exist
without any restrictions to the analytic algebra. The following three theorems are the
most important results regarding derivations, which we are going to use. We state
the proofs for all three results, as they cannot be found explicitly in [32] and as they
show, how to transfer properties from finite-dimensional linear algebra to projective
limits.
Theorem 3.31
Let R be an analytic algebra and δ ∈ Der′(R) admitting a Chevalley decomposition δ =
δS + δN . Then the Chevalley decomposition of δ is unique, that is, if δ = δS + δN = δ′S + δ′N
with [δS, δN ] = [δ′S, δ

′
N ] = 0, then δS = δ′S and δN = δ′N .

Proof:
Denote by δS the image of δS to End(R/mk

R) and by δ̄S the semi-simple part of the
image of δ in End(R/mk

R). The analogous notation is used for the nilpotent parts. We
show, that δS = δ̄S respectively δN = δ̄N , as this implies that δ′S = δS respectively
δ′N = δN in End(R/mk

R) for all k ∈ N. Note that δS, δN , δ̄S, δ̄N ∈ Der(R/mk
R), due to Def-

inition 3.25 respectively Proposition 3.29. We have that the Chevalley decomposition
is unique in End(R/mk

R). Now δ̄S + δ̄N and δS + δN are Chevalley decompositions of
δ̄, hence δS = δ̄S and δN = δ̄N in End(R/mk

R) for all k ∈ N.
Using, that we are dealing with projective limits, due to Proposition 3.23, the corre-
sponding sequence of δS respectively δN is uniquely determined, thus also δS and δN
are uniquely determined.

Theorem 3.32
Let R be an analytic algebra and δ ∈ Der′(R) admitting a Chevalley decomposition δ =
δS + δN . Furthermore let I be an ideal of R and let I be δ-invariant, then I is also δS and
δN -invariant.

Proof:
We are going to use the same idea as in the proof of Theorem 3.31. We show the
result only for δS, as the result for δN follows analogously. Using that δ ∈ Der′(R), we
get δ(I + mk

R) ⊆ I + mk
R for all k ∈ N. Passing to gk, we get that δ̄(Ī) ⊆ Ī in all gk.

Using, that the elements of gk operate on finite-dimensional vector spaces and that
the semi-simple part of a Chevalley decomposition can be written as a polynomial
(see for example [25, Chapter XIV, Exercise 14]) in δ̄, say δS = pk(δ̄) for all k ∈ N,
where pk is a polynomial, we get that δS(I +mk

R) ⊆ I +mk
R for all k ∈ N. Using Krull’s

intersection Theorem, we get that δS(I) = δS(
⋂∞
k=1(I + mk

R)) ⊆
⋂∞
k=1(I + mk

R) = I.

Theorem 3.33
Let R be a complete analytic algebra. Then every δ ∈ Der′(R) admits a Chevalley decomposi-
tion.
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Proof:
For the proof of this theorem, we first of all need to state, how to decompose any
δ ∈ Der′(R). In every End(R/mk

R), δ̄ decomposes into (δ̄)S,k and (δ̄)N,k. By Propo-
sition 3.29, we have that (δ̄)S,k and (δ̄)N,k are derivations, hence they are elements
of Der(R/mk

R), for all k ∈ N. Using Definition 3.25, we get that the (δ̄)N,k, (δ̄)S,k ∈
Der(R/mk

R) form a sequence of nilpotent respectively semi-simple operators for all
k ∈ N, and are uniquely determined, as they arise from the Chevalley decomposi-
tion of δ̄ in End(R/mk

R). It is also obvious, that (δ̄)N,l respectively (δ̄)S,l ∈ Der(R/ml
R)

project onto (δ̄)N,k respectively (δ̄)S,k ∈ Der(R/mk
R) for l ≥ k, as the respective Cheval-

ley decomposition of δ̄ = (δ̄)S,l + (δ̄)N,l ∈ Der(R/ml
R) is unique and as the images of

(δ̄S)S,l and (δ̄S)S,l in Der(R/mk
R) induce a Chevalley decomposition of δ̄ in Der(R/mk

R).
Due to this, we can define the element δN := ((δ̄)N,k)k∈N and δS := ((δ̄)S,k)k∈N, as by
Corollary 3.24 Der′(R) = lim←−k∈N Der(R/mk

R). We get that δ = δS +δN is a Chevalley de-
composition, as [δS, δN ] = 0 follows by the result on all Der(R/mk

R), using Proposition
3.23. Now we have shown, that we can decompose any δ ∈ Der′(R) as δ = δS + δN ,
where [δS, δN ] = 0, δS ∈ Der′(R) is a semi-simple derivation and δN ∈ Der′(R) is a
nilpotent derivation.

Remark 3.34
Example 3.6 i) concerns a setup, where we cannot apply Theorem 3.33. Example 3.6 ii) states,
that if we have a field K of characteristic 0 and if R := K[[x1, . . . , xn]], for some n ∈ N, then
every δ ∈ Der′(R) admits a Chevalley decomposition δ = δS + δN .

Let us take a look at an example for the Chevalley decomposition.
Example 3.35
Let K = C and R := K[[x, y]]. Consider the derivation δ := (x + y)∂x + y∂y. Then δS =
x∂x + y∂y is the semi-simple part of δ and δN = y∂x is the nilpotent part of δ. The first
statement follows, as δS(x) = x and δS(y) = y. The second statement follows from the fact,
that δ2

N = 0.
Now consider δ := (x+ y + xy)∂x + y∂y. We want to show, that the semi-simple part of the
linear part of our derivation is not necessarily the semi-simple part of our derivation. Assume,
that δS = x∂x + y∂y, then δN = (y + xy)∂x. Using the same argument as before, δS is semi-
simple, but [δS, δN ] = xy∂x 6= 0, hence δS cannot be the semi-simple part of δ. This example
shows, that it is a non-trivial task to compute the semi-simple part of a derivation. For details
on the theoretical computation of the Chevalley decomposition see [29].

Before we finish this section, we state a final result, which follows from the proof of
Theorem 3.32.
Proposition 3.36
Let R be a complete analytic algebra and δ, ε ∈ Der′(R). If [ε, δ] = 0, then we have [ε, δS] = 0
and [ε, δN ] = 0.
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Proof:
Denote by δ̄ and ε̄ the images of δ and ε to Der(R/mk

R), for any k ∈ N. As in the proof
of Theorem 3.32, we can write δS as a polynomial in δ̄. Due to the fact, that [ε̄, δ̄] = 0,
we get that ε̄ commutes with any polynomial expression in δ̄, hence with δS . The
analogous result follows for δN . The result follows, as δS and δN can be considered as
sequences of the δS respectively δN by Proposition 3.23.

3.3 Gradings and Derivations

In this section we state results from [30, Chapter 2 and 3] regarding derivations and
the notion of grading from Chapter 2.2.

The first two theorems are very important, as they state, that every grading of an
analytic algebra arises from a derivation and vice versa.
Theorem 3.37
Let R be an analytic algebra over a field K and δ ∈ Der′(R), such that mR has a system of
generators containing only eigenvectors of δ. Then there exits a unique (K,+) grading πg of
R, g ∈ K, such that each πRg (R) contains only g-eigenvectors of δ.

Proof:
See [30, (2.2)].

Theorem 3.38
Let R be an analytic algebra over a field K and let πRg , g ∈ K, be a (K,+) grading of R. Then
there exists a unique diagonalizable derivation δ ∈ Der′(R), such that each πg(R) contains
only g-eigenvectors of δ.

Proof:
See [30, (2.3)].

Remark 3.39
By Theorem 3.37 and 3.38 the diagonalizable derivations are in one-to-one correspondence
with the (K,+) gradings of analytic algebras.

The next theorems are crucial in an application of the Formal Structure Theorem,
which we are going to state in Chapter 4.
Theorem 3.40
Let R be an analytic algebra over a field K, which is (K,+) graded. Furthermore, let I be
an ideal of R and δ ∈ Der′(R) be the derivation corresponding to the grading. Then I is
homogeneous, if and only if I is δ-invariant.
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Proof:
See [30, (2.4)].

Theorem 3.41
Let R be an analytic algebra over a field K, I be an ideal of R and δ ∈ Der′(R). If I is
δ-invariant, then every associated prime ideal P of I is δ-invariant.

Proof:
See [30, (2.5)].

The next theorem in this section is a surprising result, which states, that we can write
every diagonalizable derivation as a finite sum of diagonalizable derivations with
rational eigenvalues.
Theorem 3.42
Let R be an analytic algebra over a field K and let δ ∈ Der′(R) be diagonalizable. Then
there exist diagonalizable δj ∈ Der′(R)\{0} and aj ∈ K, j = 1, . . . , s for some s ∈ N, such
that δ =

∑s
j=1 ajδj , every δj has the same eigenvectors as δ and the δj have only rational

eigenvalues.

Proof:
See [30, (3.2)].

The last lemma in this section characterizes diagonalizable and nilpotent derivations
by their linear part, using Remark 3.18 and Lemma 3.26.
Lemma 3.43
Let R be an analytic algebra over a field K and δ ∈ Der′(R). Then δ is diagonalizable if
and only if there exists a set of coordinates, such that δ = δ0 and the representation matrix is
diagonalizable. δ is nilpotent if and only if δ0 is nilpotent.

Proof:
We start with the statement regarding diagonizability. First assume δ is diagonaliz-
able, then there exists a set of coordinates, say x1, . . . , xn, for some n ∈ N, such that
R = K〈〈x1, . . . , xn〉〉/I for some ideal I of K〈〈x1, . . . , xn〉〉 and with the property that
there exist λi ∈ K, such that δ(xi) = λixi. By the proof of Theorem 3.16 we get that
δ =

∑n
i=1 λixi∂xi , hence δ = δ0 and the representation matrix is obviously diagonal-

izable. Now if δ = δ0 and the representation matrix is diagonalizable, there exists a
linear coordinate change, such that δ is of type

∑n
i=1 λixi∂xi for a set of coordinates

x1, . . . , xn, some λi ∈ K and some n ∈ N. Then δ is obviously diagonalizable. The
statement for nilpotency follows immediately from Lemma 3.26.



4 The Formal Structure Theorem for
Complete Analytic Algebras

In the following chapter, we extend the abstract definition of grading from Chapter
2.2 to projective systems. Furthermore, we introduce a special type of Lie algebras,
namely so called Lie-Rinehart algebras, which combine the structure of a module
with the one of a Lie algebra. We use previous ideas to generalize the Formal Struc-
ture Theorem from [13] to Lie-Rinehart subalgebras of Der′(R), where R is a complete
analytic algebra over an algebraically closed field K of characteristic 0.

4.1 Grading of Projective Systems

In this section we extend the notion of grading from Chapter 2.2 to the setup of pro-
jective limits. For simplicity, we only consider the case, where our indexes are natural
numbers.
Remark 4.1
All rings in the following are assumed to be Noetherian and all modules are assumed to be
finitely generated. By Proposition 2.4, we can assume that all projections from a projective
limit to its component are surjective, hence all fij are surjective, using, that (Mi, fij) is a
projective system over any indexed set.

First of all, we start with the grading of rings.
Definition 4.2
Let (G,+) be an abelian group and (Rk, f

R
kl) a projective system of rings, with k, l ∈ N and

k ≤ l. Define R := lim←−k∈NRk and denote the projections R → Rk by pRk for all k ∈ N. We
write pk, if the ring we are working with is clear. We say (Rk, fkl) is graded with respect to G,
if there are group homomorphisms πRkg : (Rk,+) → (Rk,+) for all g ∈ G, k ∈ N, such that
the group homomorphisms πRkg induce a finite grading on the Rk in the sense of Definition
2.12 for all k ∈ N and such that the following diagram commutes:
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Rk Rk

Rl Rl

π
Rk
g

fRkl

π
Rl
g

fRkl

The commutativity means, that the fRkl have to be compatible with gradings on Rk and Rl for
all l ≥ k and g ∈ G, that is, fRkl(Rl,g) ⊆ Rk,g, where Rk,g is the image of Rk under the group
homomorphism πRkg on Rk. We denote the limit of the πRkg by πRg for all g ∈ G.
Remark 4.3
Consider the case, where R is a complete analytic algebra, then we can set Rk := R/mk

R and
Definition 4.2 generalizes Definition 2.15 to the setup of projective systems.

Now let us extend the notion of grading to projective systems of modules.
Definition 4.4
Let (G,+) be an abelian group, (Rk, f

R
kl) a projective system of rings and (Mk, f

M
kl ) a pro-

jective system of modules, where the Mk are Rk-modules, with k, l ∈ N and k ≤ l. Define
R := lim←−k∈NRk,M := lim←−k∈NMk and denote the projectionsR→ Rk by pRk for all k ∈ N and
the projections M → Mk respectively by pMk . We say (Mk, f

M
kl ) is graded with respect to G,

if there are group homomorphisms πRkg : (Rk,+) → (Rk,+) and πMk
g : (Mk,+) → (Mk,+)

for all g ∈ G, k ∈ N, such that the group homomorphisms πRkg as well as the group homomor-
phisms πMk

g induce a finite grading on the Mk as Rk-modules in the sense of Definition 2.12
for all k ∈ N. Furthermore, the following diagrams have to commute:

Mk Mk

Ml Ml

π
Mk
g

fMkl

π
Ml
g

fMkl

Rk Rk

Rl Rl

π
Rk
g

fkl

π
Rl
g

fkl

The commutativity means, that the fMkl have to be compatible with the gradings on Mk and
Ml for all l ≥ k and g ∈ G, that is, that fMkl (Ml,g) ⊆ Mk,g, where Mk,g is the image of Mk

under the group homomorphism πMk
g induced on Mk. As in the setup of rings, we denote the

limit of the πMk
g by πMg for all g ∈ G.
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Remark 4.5
As before, in the case of a complete analytic algebra R and an R-module M , Definition 4.4
extends Definition 2.15 to the setup of projective systems. It is also important to note, that
Definition 4.2 and 4.4 need, that the Rk and Mk admit a finite grading.

The following theorem extends the property of graded modules, that every element
can be written as a sum of graded elements.
Theorem 4.6
Let (G,+) be an abelian group, (Rk, f

R
kl) a projective system of rings and (Mk, f

M
kl ) a projec-

tive system of modules, where the Mk are Rk-modules, with k, l ∈ N and k ≤ l. Furthermore,
define R := lim←−k∈NRk, M := lim←−k∈NMk and denote the projections R → Rk by pRk for
all k ∈ N and the projections M → Mk respectively by pMk . Assume, that (Mk, f

M
kl ) is a

graded projective system in the sense of Definition 4.4, where the respective systems of group
homomorphisms are denoted by (πRg )g∈G and (πMg )g∈G. Then every m ∈M can be written as

m =
∑
g∈G

πMg (m).

In particular, if m =
∑

g∈Gmg with mg ∈ πMg (M) is another representation of m, then we
have that mg = πMg (m).

Proof:
By assumption, we can write any Mk as Mk =

⊕
g∈GMk,g and

pMk (m) =
∑
g∈G

πMk
g (pMk (m)) =

∑
g∈G

pMk (πMg (m)),

using that πMg is the limit of the πMk
g and thus has to commute with pMk . Define Mg :=

lim←−k∈NMk,g and we get by construction πMg (M) = Mg for all g ∈ G. Using this, we get
the following group homomorphism

u : M →
∏
g∈G

Mg, m 7→ (πMg (m))g∈G.

Next, we show that u is injective, because this already results in our claim, that we can
write any m ∈ M as m =

∑
g∈G π

M
g (m). Let m ∈ M with u(m) = 0, then πMg (m) = 0

for all g ∈ G, hence pMk (m) =
∑

g∈G p
M
k (πMg (m)) = 0 for all k ∈ N. Using that M is a

projective limit, we immediately get m = 0 and u is injective.
Now assume, that m =

∑
g∈Gmg, with mg ∈ πMg (M), then pMk (mg) = pMk (πMg (m)), as

the Mk are decomposed as direct sums. Knowing, that the representation of pMk (m) is
unique in all Mk, we get pMk (m) = πMg (m) for all k ∈ N. Using the fact, that we are
dealing with projective limits, we already have that mg = πMg (m).
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Proposition 4.7
Let (G,+) be an abelian group, (Rk, f

R
kl) a projective system of rings and (Mk, f

M
kl ) a projec-

tive system of modules, where the Mk are Rk-modules, with k, l ∈ N and k ≤ l. Furthermore,
define R := lim←−k∈NRk, M := lim←−k∈NMk and denote the projections R → Rk by pRk for all
k ∈ N and the projections M → Mk respectively by pMk . Assume, (Mk, f

M
kl ) is a graded

projective system in the sense of Definition 4.4, where the respective systems of group homo-
morphisms are denoted by (πRg )g∈G and (πMg )g∈G for any g ∈ G. Then πRg (R)πMh (M) ⊆Mg+h

for all g, h ∈ G.

Proof:
The result holds on the Mk as Rk-modules, by assumption. This means, that for all
g ∈ G and h ∈ H the following holds:

πRkg (Rk)π
Mk
h (Mk) ⊆Mk,g+h.

For l ≥ k, we have that

fMkl (πRlg (Rl)π
Ml
h (Ml)) = fRkl ◦ πRlg (Rl)f

M
kl ◦ π

Ml
h (Ml) = πRkg (Rk)π

Mk
h (Mk),

hence we get our result by passing to the limit and using, that lim←−k∈NMk,g+h = Mg+h.

Before we finish this section, we extend the abstract definition of grading to Lie alge-
bras, as we need this notion from now on.
Definition 4.8
Let (G,+) be an abelian group and g a Lie algebra over a field K. We call the Lie algebra
finitely graded, if there is a system of group homomorphisms (πg

g)g∈G, with πg
g : g→ g, such

that g =
⊕

g∈G π
g
g(g) and [πg

g(g), πg
h(g)] ⊆ πg

g+h(g).

Now we can extend the notion of grading to the case of projective systems of Lie
algebras.
Definition 4.9
Let (gk, f

g
kl) be projective system of Lie algebras over a field K, with k, l ∈ N and k ≤ l.

Define g := lim←−k∈N gk and denote the projections g→ gk by pgk for all k ∈ N. We say (gk, f
g
kl)

is graded with respect to G, if there are group homomorphisms πgk
g : (gk,+)→ (gk,+) for all

g ∈ G, k ∈ N, such that the group homomorphisms πgk
g induce a finite grading on the gk in

the sense of Definition 4.8 for all k ∈ N and such that the following diagram commutes:

gk gk

gl gl

π
gk
g

fgkl
π
gl
g

fgkl
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The commutativity means, that the f g
kl have to be compatible with the gradings on gk and gl

for all l ≥ k and g ∈ G, this means, that f g
kl(gl,g) ⊆ gk,g, where gk,g is the image of gk under

the group homomorphism πg
g induced on gk. As in the setup of rings and modules, we denote

the limit of the πgk
g by πg

g for all g ∈ G.

The following result is the analogous result to Theorem 4.6 for Lie algebras.
Theorem 4.10
Let (gk, f

g
kl) be projective system of Lie algebras over a field K, with k, l ∈ N and k ≤ l.

Furthermore, define g := lim←−k∈N gk and denote the projections g → gk by pgk for all k ∈ N.
Assume, that (gk, f

g
kl) is a graded projective system of Lie algebras in the sense of Definition

4.9, where the respective system of group homomorphisms is denoted by (πg
g)g∈G. Then every

m ∈ g can be written as
m =

∑
g∈G

πg
g(m).

In particular, if m =
∑

g∈Gmg with mg ∈ πg
g(g) is another representation of m, then we have

that mg = πg
g(m).

Proof:
The proof is the same as for Theorem 4.6.

Remark 4.11
It is possible to show, that if we have two graded projective systems (Rk, f

Rkl) and (R′k, f
′R
kl ),

which have the same limit, say R, and induce the same system of group homomorphisms
(πRg )g∈G, then gradings of the projective systems are compatible. By the latter we mean, that
we get a commutative diagram as follows:

R′l R′l

Rk Rk

π
R′l
g

π
Rk
g

ψkl ψkl

We omit a proof for the existence of the ψkl, as we do not need this result for the further course
of our thesis.

Before we go on to the next section, we take a look at substructures of the previous
objects. Scheja and Wiebe did not define gradings on the m-adic completion of a ring,
but on the quotient rings R/mk. This allows us to grade rings like analytic algebras,
which are not necessarily complete. We are now using this idea to define gradings of
projective systems of subrings, submodules or Lie subalgebras of projective systems
of the respective type, as this gives a more general notion of grading. Using this, we
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can grade for example convergent power series rings, which are contained in a formal
power series ring. We are using the notation from Definition 4.2, 4.4 or 4.9.
Definition 4.12
Let (Sk, f

R
kl |Sk) be a projective system of subrings (submodules, Lie subalgebras) of a projective

system of rings (modules, Lie algebras) (Rk, f
R
kl), which is graded as in Definition 4.2 (4.4,

4.9). We define πSkg := πRkg |Sk for all g ∈ G, k ∈ N. Then (Sk, f
R
kl |Sk) is a graded projective

system of subrings (submodules, Lie subalgebras) if and only if πSkg induces a grading of Sk
as a subring (submodule, Lie subalgebra) for all k ∈ N.
Remark 4.13
From now on, we call a ring (module, Lie algebra), which is the projective limit of a graded
projective system, a graded ring (module, Lie algebra). We do so, as the grading of a projective
system induces a system of group homomorphisms, which satisfy all properties postulated by
Scheja and Wiebe in the setup, where R is a Zariski ring.

Using the notation from Definition 4.4, we get the following result.
Lemma 4.14
Let (Nk, f

N
kl ) be a projective system of submodules of the Rk-modules Mk, where the latter is

graded in the sense of Definition 4.4 and fNkl := fMkl |Nl . Assume, that N = lim←−k∈NNk ⊆
M = lim←−k∈NMk and that M is a Noetherian module. Then N is a graded submodule in the
sense of Definition 4.12, if and only if N can be generated by homogeneous elements.

Proof:
First, assume N is graded. Then the Nk are finitely graded submodules of Mk. As the
fNkl are surjective and compatible with our grading, we can lift any homogeneous set
of generators of Nk to Nl, for l ≥ k, and extend it to a set of homogeneous generators
of Nl. This means, that we can lift any set of homogeneous generators of Nk, say Īk,
to a set of homogeneous elements of N , which we denote by Ik. Starting with k = 1,
we can build a sequence of submodules generated by homogeneous elements of N ,
namely

〈I1〉 ⊂ 〈I2〉 ⊂ 〈I3〉 ⊂ . . .

As M is a Noetherian module, the previous chain has to become stationary for some
k ∈ N. This means, that the images of the elements of Ik toNl generateNl for all l ∈ N.
So N is generated by finitely many homogeneous elements. Now assume, N can be
generated by homogeneous elements. Then it is easy to see, that all Nk are generated
by the projection of those, and the result follows from the result in the finitely graded
case.
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4.2 Grading of Lie-Rinehart Algebras

In the following section, we introduce the notion of a Lie-Rinehart algebra, which
combines the structure of a module with the structure of a Lie algebra. We also define
grading of Lie-Rinehart algebras.
Let us start with the definition of a Lie-Rinehart algebra. The definition is taken from
[22] and is slightly modified to fit in our context.
Definition 4.15
Let R be an algebra over a field K. Furthermore, let g be a Lie algebra over the field K. We
call the pair (R, g, ρ) a Lie-Rinehart algebra, if the following conditions are satisfied:

i) g is an R-module.

ii) g acts on the left of R by derivations, that is, there exists a morphism of Lie algebras
ρ : g→ Der(R). Define α(f) := ρ(α)(f) for all α ∈ g and f ∈ R.

iii) [α, fβ] = α(f)β + f [α, β] for all f ∈ R, α, β ∈ g.

iv) (fα)(g) = f(α(g)) for all f, g ∈ R, α ∈ g.
Remark 4.16
Condition iii) in the previous definition implies, that the Lie algebra morphism ρ is also R
linear.

The next topic we need to talk about, is morphisms of Lie-Rinehart algebras. The
following definition is taken from [21, Chapter 1].
Definition 4.17
Let (R, g, ρ) and (S, h, σ) be Lie-Rinehart algebras, where R, S are algebras over a field K.
Then (φ, ψ) is a morphism of Lie-Rinehart algebras, if:

i) φ : R→ S is a morphism of K-algebras,

ii) ψ : g → h is a morphism of Lie algebras, which in the same time is a morphism of
R-modules, where R acts on S by φ and

iii) for all f ∈ R,α ∈ g it holds, that

φ ◦ α(f) = ψ(α)(φ(f)).

Our standard example for a Lie-Rinehart algebra is the module of derivations of an
analytic algebra.
Example 4.18
Let R be an analytic algebra and g = Der(R). Then g is a Lie-Rinehart algebra, as all
properties are basic properties of the module of derivations.
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Let us now define a notion of grading for a special type of Lie-Rinehart algebras.
Definition 4.19
Let (G,+) be an abelian group, R be an algebra over a field K and (R, g, ρ) a Lie-Rinehart
algebra, with g ⊂ Der(R) and ρ : g ↪→ Der′(R) . We say (R, g, ρ) is finitely graded, if the
following conditions hold:

i) R is finitely graded in the sense of Definition 2.12

ii) g is finitely graded as an R-module in the sense of Definition 2.12

iii) The group homomorphisms πg, g ∈ G, arising from Definition 2.12, need to satisfy
[πg(g), πh(g)] ⊆ πg+h(g) for all g, h ∈ G.

Next, we take a look at the grading of projective systems of Lie-Rinehart algebras. We
restrict ourselves to the case, where R is a complete analytic algebra. We denote the
natural projection R/ml

R � R/mk
R by fRkl for l ≥ k.

Definition 4.20
Let (G,+) be an abelian group,R a complete analytic algebra with projective system (Rk, f

R
kl),

where Rk := R/mk
R, and (gk, f

g
kl) a projective system of Lie-algebras, where (Rk, gk, ρk)

are also Lie-Rinehart algebras, with ρk : gk ↪→ Der′(Rk), k, l ∈ N and k ≤ l. Define
g := lim←−k∈N gk and denote the projections R → Rk by pRk for all k ∈ N and the projections
g→ gk respectively by pgk. We say (gk, f

g
kl) is graded with respect to G, if the following hold:

i) for all g ∈ G, k ∈ N, there are group homomorphisms πRkg : (Rk,+) → (Rk,+)
grading R in the sense of Definition 2.12,

ii) for all g ∈ G, k ∈ N, there are group homomorphisms πgk
g : (gk,+)→ (gk,+) grading

(Rk, gk, ρk) in the sense of Definition 4.19

iii) and the following diagrams have to commute:

gk gk

gl gl

π
gk
g

fgkl
π
gl
g

fgkl

Rk Rk

Rl Rl

π
Rk
g

fRkl

π
Rl
g

fRkl

Write ρ for the limit of the ρk, then (R, g, ρ) is called a graded Lie-Rinehart algebra. As in
the setup of rings, modules and Lie algebras, we denote by πg

g the limit of the πgk
g for all g ∈ G.
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Our definition of a graded Lie-Rinehart algebra allows us to use our results regarding
graded modules. We can also switch the perspective from which we are looking at our
Lie-Rinehart algebra, as it is useful to consider it sometimes as a module, sometimes
as a Lie algebra. Before we go on with examples and the most important theorem of
this section, we have the following remark regarding the usual notion of grading of
finite Lie-algebras.
Remark 4.21
The usual grading of a finite Lie algebra g over a field K is a special case of Definition 4.19.
If we let g operate trivially on K, this is, α(f) = 0 for all f ∈ K and α ∈ g, we can
satisfy all conditions from Definition 4.15, hence (K, g, ρ) is a Lie-Rinehart algebra, with
ρ : g → Der(K) being the trivial morphism. Now we can simply take R = K and grade it
trivially. Then condition i) in Definition 4.19 is superfluous and conditions ii) and iii) state
basically, that our Lie algebra can be written as a direct sum of graded components, which are
compatible with the Lie brackets, which is the usual definition of a graded Lie algebra.

The following theorem shows, that gradings of analytic algebras induce gradings of
the corresponding Lie-Rinehart algebra. For simplicity, we assume that our field is
algebraically closed.
Theorem 4.22
Let R be a complete analytic algebra over an algebraically closed field K and let g := Der′(R).
Denote the projections Der′(R) → Der(R/mk

R) by pk, with gk := pk(Der′(R)) for k ∈ N.
Assume, that R is (K,+) graded, where the grading is induced by δ ∈ Der′(R). Then δ
induces a grading on (R, g, ρ) in the sense of Definition 4.20. Every homogeneous ε ∈ g
satisfies adδ(ε) = λε, for some λ ∈ K.

Proof:
In the following proof, we use, that if δ ∈ Der′(R) is semi-simple, also adδ̄ is semi-
simple on the finite-dimensional Lie algebras gk. Next we show, that this property
on the finite-dimensional Lie algebras induces our grading on g. The first property of
Definition 4.20 is satisfied automatically, as we assume, that R is graded. To show the
second property, we use that gk =

⊕
λ∈K gk,λ, where gk,λ denotes the eigenspace with

respect to the eigenvalue λ. Define πgk
λ : (gk,+)→ (gk,+) as the projection to gk,λ, for

any λ ∈ K. Next we show, that the gk are finitely graded as Rk-modules. Consider
any k ∈ N, and λ, µ ∈ K, then we have for any homogeneous elements fµ ∈ Rk and
τλ ∈ gk,λ :

adδ̄(fµτλ) = µfµτλ + λfµτλ = (µ+ λ)fµτλ ∈ gk,µ+λ,

hence gk is a graded Rk-module. The last thing we need to show for the second
property of Definition 4.20, is the finite grading as a Lie algebra, that is [gk,λ, gk,µ] ⊂
gk,λ+µ. Consider any τµ ∈ gk,µ and τλ ∈ gk,λ, then

adδ̄([τµ, τλ]) = −[τµ, [τλ, δ̄]]− [τλ, [δ̄, τµ]] = λ[τµ, τλ]− µ[τλ, τµ] = (µ+ λ)[τµ, τλ],
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hence [gk,µ, gk,λ] ⊆ gk,µ+λ.
The third property of Definition 4.20 has to be shown only for the πgk

λ , as the respec-
tive property for the πRkλ hold trivially. Consider any ε ∈ gl,λ, then [f g

kl(δ̄), f
g
kl(ε)] =

f g
kl([δ̄, ε]) = f g

kl(λε) = λf g
kl(ε). As every element of gl can be written as a sum of homo-

geneous elements, we get that the following diagram commutes:

gk gk

gl gl

π
gk
λ

fgkl
π
gl
λ

fgkl

Let ε ∈ g be homogeneous. Then adδ(ε) = λε follows by the previous computation, as
ε is a limit of homogeneous elements of the gk.

The next corollary is analogous to Theorem 3.40.
Corollary 4.23
Let R be a graded complete analytic algebra over an algebraically closed field K with grading
induced by a diagonalizable derivation δ ∈ Der′(R) and let g ⊆ Der′(R) be a Lie-Rinehart
subalgebra. Assume, that g = lim←−k∈N pk(g). If [δ, g] ⊆ g, then g is a graded Lie-Rinehart
subalgebra of Der′(R) with respect to δ.

Proof:
By Theorem 4.22 we have a grading on h := Der′(R) induced by δ. Let hk :=

Der(R/mk
R) and denote the respective grading by πhk

λ for any k ∈ N and λ ∈ K. As
[δ, g] ⊂ g, we can write gk =

⊕
λ∈K(gk ∩ hk,λ). This means, that πgk

λ := πhk
λ |gk is a group

homomorphism of gk into itself. It satisfies all assumptions of Definition 4.20, using
the exact same computations as in the proof of Theorem 4.22, hence g is a graded
Lie-Rinehart subalgebra of Der′(R).

4.3 A General Formal Structure Theorem

In this section, we generalize the Formal Structure Theorem from [13]. Before we
state our version of the aforementioned theorem, we need a few preparing results
regarding derivations of analytic algebras. To formulate our statements properly, we
need some terminology. We start with so called multi-gradings, that is, a grading
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of an algebra, module or Lie-Rinehart algebra, by Cartesian products of groups. We
show, that we can reconstruct gradings by each factor of the Cartesian product and
that we can induce a grading by a Cartesian product from two given gradings, if a
certain property is satisfied. The following lemmas state our results. We start with a
finitely graded ring and prove the results for this setup, as all other results follow by
(almost) the same computations.
Lemma 4.24
Let (G,+) and (H,+) be abelian groups and R a ring. R is finitely graded by (G × H,+),
say by ΨR

(g,h), (g, h) ∈ G×H , if and only if there exist commuting group homomorphisms πRg
and ψRh , g ∈ G, h ∈ H , finitely grading R with

R =
⊕
g∈G

⊕
h∈H

(πRg (R) ∩ ψRh (R)).

Furthermore, we have ΨR
(g,h) = ψRh ◦ πRg for all (g, h) ∈ G×H .

Proof:
First assume, that ΨR

(g,h) finitely grades R. Then

R =
⊕

(g,h)∈G×H

Ψ(g,h)(R),

and we can write any m ∈ R as m =
∑

(g,h)∈G×H m(g,h), by Theorem 2.19. Now we
define for any m ∈ R and for all g ∈ G, h ∈ H , πRg (m) :=

∑
h∈H m(g,h) and ψh(m) :=∑

g∈Gm(g,h). Both are clearly group homomorphisms form (R,+) into itself. We have
πRg (R)πRg′(R) ⊆ πRg+g′(R), as this property is inherited from the Ψ(g,h). The same holds
for the ψRh . Using Proposition 2.20 and commutativity of ψRh and πRg , we get πRg ◦ ψRh ◦
πRg (R) = ψRh ◦ (πRg )2(R) = ψRh ◦ πRg (R). As the analogous result holds for ψRh , we can
see that

ψRh ◦ πRg (R) = πRg (R) ∩ ψRh (R),

as the decomposition of any m into homogeneous components is unique.
Now consider the πRg and ψRh as given. Define ΨR

(g,h) := ψRh ◦ πRg . By construc-
tion ΨR

(g,h) is group homomorphism of (R,+) into itself. We also get by construc-
tion, that ΨR

(g,h)(R) = πRg (R) ∩ ψRh (R), hence we can decompose R by assumption as
R =

⊕
(g,h)∈G×H Ψ(g,h)(R). Finally, we need to show that for any (g, h), (g′, h′) ∈ G×H ,

we have that ΨR
(g,h)(R)ΨR

(g,h)(R) ⊆ ΨR
(g+g′,h+h′)(R), but this follows immediately from

the corresponding property of the πRg , πRg′ and ψRh , ψ
R
h′ .

Corollary 4.25
Let (G1,+), . . . , (Gk,+) be abelian groups,R a ring. R is finitely graded by (G1×. . .×Gk,+)
with group homomorphism Ψ(g1,...,gk), (g1, . . . , gk) ∈ G1 × . . .×Gk, if and only if there exist
pairwise commuting group homomorphisms πg1 , . . . , πgk , gi ∈ Gi, finitely grading R as in
Lemma 4.24. Furthermore, Ψ(g1,...,gk) = πgk ◦ . . . ◦ πg1 for all (g1, . . . , gk) ∈ G1 × . . .×Gk.
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Proof:
The proof follows by induction from Lemma 4.24.

The next lemmas and corollaries are the analogous results to the previous two.
Lemma 4.26
Let (G,+), (H,+) be abelian groups, R a Zariski ring. R is graded by (G × H,+), say
by Ψ(g,h), (g, h) ∈ G × H, if and only there exist commuting group homomorphisms πg, ψh,
g ∈ G, h ∈ H gradingR, whereR/mk

R can be written asR/mk
R =

⊕
g∈G

⊕
h∈H(πg(R/m

k
R)∩

ψh(R/m
k
R)), for all k ∈ N. Furthermore, we have Ψ(g,h) = ψh ◦ πg for all (g, h) ∈ G×H .

Proof:
As the notion of grading of R depends only on finite gradings, we can define the
grading group homomorphisms in both directions and the remaining steps, which
are to prove, follow as in the proof of Lemma 4.24, as the notion of grading depends
on the notion of finite grading on the R/mk

R for all k ∈ N.
Assume, the ΨR

(g,h) are given. Then we can write by Theorem 2.19 any m ∈ R as

m =
∑

(g,h)∈G×H

ΨR
(g,h)(m).

Now we define for any m ∈ R and for all g ∈ G, h ∈ H , πRg (m) :=
∑

h∈H m(g,h) and
ψh(m) :=

∑
g∈Gm(g,h). The remaining steps of this direction of the proof are as in the

proof of Lemma 4.24.
Now consider the πRg and ψRh as given. Define ΨR

(g,h) := ψRh ◦ πRg . From here, again, the
remaining steps of the proof are identical to the ones in the proof of Lemma 4.24.

Corollary 4.27
Let (G1,+), . . . , (Gk,+) be abelian groups,R a Zariski ring. R is graded by (G1×. . .×Gk,+)
with group homomorphism Ψ(g1,...,gk), (g1, . . . , gk) ∈ G1 × . . . × Gk, if and only if there
exist pairwise commuting group homomorphisms πg1 , . . . , πgk , gi ∈ Gi, grading R, which
induce finite gradings on R/mk

R for all k ∈ N, as in Lemma 4.26. Furthermore, Ψ(g1,...,gk) =
πgk ◦ . . . ◦ πg1 for all (g1, . . . , gk) ∈ G1 × . . .×Gk.

Proof:
The result follows by induction from Lemma 4.26.

As we did not really need the fact, that R is a ring in the proof of Lemma 4.26, we
can state the following two lemmas and corollaries for modules and Lie-Rinehart
algebras. We omit the proofs, as it uses exactly the same idea as the proof of Lemma
4.26.
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Lemma 4.28
Let (G,+), (H,+) be abelian groups, R a graded Zariski ring, M an R-module. M is graded
by (G × H,+), say by ΨM

(g,h), (g, h) ∈ G × H , if and only there exist commuting group
homomorphisms πMg , ψMh , (g, h) ∈ G × H grading M and πRg , ψRh the corresponding grad-
ings of R, where M/mk

RM can be written as M/mk
RM =

⊕
g∈G

⊕
h∈H(πMg (M/mk

RM) ∩
ψMh (M/mk

RM)) andR/mk
R can be written asR/mk

R =
⊕

g∈G
⊕

h∈H(πRg (R/mk
R)∩ψRh (R/mk

R)),
for all k ∈ N. Furthermore, ΨM

(g,h) = ψMh ◦ πMg and ΨR
(g,h) = ψRh ◦ πRg for all (g, h) ∈ G×H ,

where the latter is the corresponding grading of R.
Corollary 4.29
Let (G1,+), . . . , (Gk,+) be abelian groups, R a graded Zariski ring, M an R-module. M is
graded by (G1× . . .×Gk,+) with group homomorphism ΨM

(g1,...,gk), (g1, . . . , gk) ∈ G1× . . .×
Gk, if and only if there exist pairwise commuting group homomorphisms πMg1 , . . . , π

M
gk

, gi ∈ Gi

grading M and ψRg1 , . . . , ψ
R
gk

the corresponding gradings of R, where the gradings induce
finite gradings on M/mk

RM for all k ∈ N, as in Lemma 4.28. Furthermore, ΨM
(g1,...,gk) =

πMgk ◦ . . . ◦ π
M
g1

and ΨR
(g1,...,gk) = ψRgk ◦ . . . ◦ ψ

R
g1

for all (g1, . . . , gk) ∈ G1× . . .×Gk, where the
latter is the corresponding grading of R.

As the previous results also extend naturally to the setup of projective limits, we state
the result in this setup only for Lie-Rinehart algebras, as the other results look similar.
We keep the notation from Definition 4.20.
Lemma 4.30
Let (G,+), (H,+) be abelian groups, R a graded complete analytic algebra and (R, g, ρ) a
Lie-Rinehart algebra as in Definition 4.20. Keeping the notation and conditions of Definition
4.20, we say g is graded by (G×H,+), say by Ψg

(g,h), (g, h) ∈ G×H, if and only there exist
commuting group homomorphisms πgk

g , ψ
gk
h , (g, h) ∈ G × H grading gk and πRkg , ψRkh the

corresponding gradings ofRk,where gk can be written as gk =
⊕

g∈G
⊕

h∈H(πg(gk)∩ψh(gk))
and Rk can be written as Rk =

⊕
g∈G

⊕
h∈H(πRg (Rk)∩ψRh (Rk)), for all k ∈ N. Furthermore,

Ψg
(g,h) = ψg

h ◦ πg
g and ΨR

(g,h) = ψRh ◦ πRg for all (g, h) ∈ G × H , where the latter is the
corresponding grading of R.

Proof:
We only sketch the following proof, as its details are similar to Lemma 4.24 and
Lemma 4.26.
Given πgk

g and ψgk
h , we can set Ψgk

(g,h) := ψgk
h ◦πgk

g and get immediately that the following
diagram commutes

gk gk gk

gl gl gl,

π
gk
g ψ

gk
h

fgkl
π
gl
g ψ

gl
h

fgkl fgkl
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hence this diagram commutes

gk gk

gl gl.

Ψ
gk
(g,h)

fgkl
Ψ

gl
(g,h)

fgkl

The result for the gradings of our ring follow by the exact same argument, thus the
Ψgk

(g,h) induce a grading on the gk as modules. Property (iii) from Definition 4.19,
follows immediately, as the πgk

g and ψgk
h are gradings of Lie algebras.

Assume, we have Ψgk
(g,h), then we can define

πgk
g : (gk,+)→ (gk,+), x 7→

∑
h∈H

Ψgk
(g,h)(x),

for all g ∈ G, k ∈ N. The grading of the gk induced by the πgk
g is inherited from Ψgk

(g,h),
hence nothing needs to be shown, except the compatibility with the f g

kl. Let xl ∈ gl
and xk := f g

kl(xl), then

πgk
g ◦ f

g
kl(xl) =

∑
h∈H

Ψgk
(g,h)(xk) =

∑
h∈H

f g
kl ◦Ψgl

(g,h)(xl) = f g
kl ◦ π

gl
g (xl),

hence the following diagram commutes:

gk gk

gl gl

π
gk
g

fgkl
π
gl
g

fgkl

The analogous construction applies to the ψgk
h , π

Rk
g and ψRkh . This finishes our sketch

of the proof, as the remaining computations are similar to the ones in Lemma 4.24
and Lemma 4.26.

Corollary 4.31
Let (G1,+), . . . , (Gj,+) be abelian groups,R a graded complete analytic algebra and (R, g, ρ)
a Lie-Rinehart algebra as in Definition 4.20. Keeping the notation and conditions of Definition
4.20, we say g is graded by (G1×. . .×Gj,+) with group homomorphism Ψgk

(g1,...,gj)
, (g1, . . . , gj) ∈

G1×. . .×Gj, if and only if there exist pairwise commuting group homomorphisms πgk
g1
, . . . , πgk

gj
,

gi ∈ Gi grading gk and πRkg1 , . . . , π
Rk
gj

the corresponding gradings of R, where the gradings
induce finite gradings on gk respectively Rk for all k ∈ N, as in Lemma 4.30. Furthermore,
Ψgk

(g1,...,gj)
= πgk

gj
◦ . . .◦πgk

g1
and ΨRk

(g1,...,gj)
= πRkgj ◦ . . .◦π

Rk
g1

for all (g1, . . . , gj) ∈ G1× . . .×Gj ,
where the latter is the corresponding grading of R.
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Now we can define multi-graded rings, modules and Lie-Rinehart algebras.
Definition 4.32
Let R be a Zariski ring graded in the sense of Corollary 4.27, M an R-module graded on the
sense of Corollary 4.29 or (R, g, ρ) be a Lie-Rinehart algebra graded in the sense of Corollary
4.31. Then R, M or (R, g, ρ) is called multi-graded with respect to (G1 × . . .×Gk,+).

Next we state terminology, which we need throughout this chapter.
Definition 4.33
Let R be an analytic algebra over a field K and δ ∈ Der′(R) diagonalizable. We call an
element f ∈ R δ homogeneous of degree λ or quasi-homogeneous, if δ(f) = λ · f for
some λ ∈ K. If we have a set of diagonal and commuting derivations, say δ1, . . . , δs, for
some s ∈ N, we call f λ-multihomogeneous, if δj(f) = λj · f for some λj ∈ K and all
j = 1, . . . , s, with λ := (λ1, . . . , λs).

Remark 4.34
From now on, we assume that our fields are algebraically closed. We need this assumption to
assure that all semi-simple derivations are in fact diagonalizable.
Theorem 4.35
Let R be an analytic algebra over a field K and δ1, . . . , δs ∈ Der′(R) diagonalizable and
commuting derivations, then δ1, . . . , δs induce a (Ks,+) multi-grading on R.

Proof:
We do the proof for the case s = 2, as the rest follows by induction. By Theorem
3.37, we get that δ1 and δ2 induce a (K,+) grading on R. As the derivations commute,
also their linear operators induced on R/mk

R commute for all k ∈ N. The latter means,
that we can write R/mk

R as a direct sum of eigenspaces of common eigenvectors of
δ1 and δ2. As these are precisely the graded components of the R/mk

R with respect to
the gradings induced by δ1 and δ2, we are in the setup of Lemma 4.26 and we get a
(K2,+) grading on R applying the latter.

Remark 4.36
Later on we will see, that all (Ks,+) gradings are induced by a set of s diagonalizable and
commuting derivations.

The next lemma we proof, states, that if we have derivations which equal their linear
part, we can compute their Lie bracket by computing the Lie bracket of the represen-
tation matrices.
Lemma 4.37
LetR be an analytic algebra over a fieldK and δ, ε ∈ Der′(R).Assume mR has a minimal set of
generators x1, . . . , xn for some n ∈ N, δ =

∑n
i=1 λixi∂xi and ε = ε0. Then [δ, ε] = x[A,B]∂T ,

where A,B ∈ Kn×n are the representation matrices of the linear parts of δ respectively ε.
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Proof:
See [13, Lemma 2.2].

The next lemma gives a nice criterion, when a given derivation is nilpotent. We use
the grading introduced in Theorem 4.22, Lemma 3.43 and 4.37.
Lemma 4.38
Let R be an analytic algebra over a field K and δ ∈ Der′(R) diagonalizable. Furthermore, let
ε ∈ Der′(R), then [δ, ε] = λ · ε for λ ∈ K∗ implies that ε is nilpotent.

Proof:
Assume with out loss of generality, that mR has a minimal set of generators x1, . . . , xn
for some n ∈ N, δ =

∑n
i=1 λixi∂xi with diagonal representation matrix B ∈ Kn×n and

ε = ε0 with representation matrix A ∈ Kn×n. By Lemma 4.37 and 3.43, we can restrict
ourselves to the respective results regarding the matrices A and B. The following
result from linear algebra then gives our desired result:
Let A,B ∈ Kn×n for some algebraically closed field K of characteristic 0. Then [A,B]
is nilpotent, if [A, [A,B]] = 0.
In our case we have [A,B] = −λA, hence [A, [A,B]] = 0 and −λA is nilpotent. As
λ 6= 0, we get that A is nilpotent, hence ε.

Remark 4.39
The result in the proof of the previous lemma is a typical exercise regarding the connection
between matrices and Lie algebras. It can be proven using, that [A,B]k+1 = [A,B]k · (AB −
BA) = A[A,B]B − [A,B]BA, which has trace 0 for all k ≥ 1. Thus we get that, over an
algebraically closed field, the matrix [A,B] is nilpotent.
Remark 4.40
Lemma 4.38 states, that if we have a homogeneous derivation with weight 6= 0, then this
derivation is already nilpotent.

It is clear, that nilpotent derivations stay nilpotent under arbitrary coordinate changes.
The next lemma states, when diagonal derivations keep their diagonal form.
Lemma 4.41
Let R be a complete analytic algebra over a field K, let x1, . . . , xn be a set of coordinates for
R, where n ∈ N and δ ∈ Der′(R), with δ =

∑n
i=1 λixi∂xi and λ = (λ1, . . . , λn) ∈ Kn. Then

δ is invariant under λ homogeneous coordinate changes, that is, coordinate changes of type
xi 7→ xi + hi for some hi ∈ R with δ(hi) = λ · hi for some λ ∈ K.

Proof:
See [13, Lemma 2.7].
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The next theorem generalizes a well known result from linear algebra, namely that we
can find a linear coordinate change, such that a finite set of commuting diagonalizable
matrices is simultaneously in diagonal form.
Theorem 4.42
Let R be a complete analytic algebra over a field K and δ1, . . . , δs ∈ Der′(R) diagonalizable
and commuting. Then there exists a coordinate change, such that all δi are diagonal.

Proof:
We write m for mR to keep the notation short and we consider the m/mk from now
on as K-vector spaces. It is a well known fact from linear algebra, that a given set
of diagonalizable and commuting matrices has common basis of eigenvectors (see
for example [25, Chapter XIV, Exercise 13]). We use this result and the theory of
projective limits of K-vector spaces, to show that our derivations δ1, . . . , δs have a
common basis of eigenvectors. We start by considering the spaces mk := m/mk. We
have projections pk : m � mk, πk : mk+1 � mk and fij : mj � mi for j ≥ i. As
the derivations commute in Der′(R), they also commute on all Der(R/mk), hence we
get a common basis of eigenvectors for the δi on all mk. We write δki for the linear
operator on mk induced by δi. Assume mk =

⊕nk
j=1E

k
j where Ek

j is an eigenspace of
all derivations δki .We can lift any basis of m2 to a basis of m3, hence we get an injection
σ3 : m2 ↪→ m3, with π2 ◦ σ3 = idm2 . Inductively, we get injections σk+1 : mk ↪→ mk+1

with πk ◦ σk+1 = idmk . Using this construction, we get injections φk : m2 ↪→ mk, such
that the following diagram commutes for j ≥ i:

m2

m

mj mi

φj φi

pj pi

fij

As m = lim←−k∈N mk, we get by the universal property of projective limits a K-linear
map φ : m2 → m, such that the following diagram commutes for j ≥ i:
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m2

m

mj mi

φj
φ

φi

pj pi

fij

φ is injective, as p2 ◦ φ = idm2 .
Now consider any xj ∈ Ek

j , then we have that δki (xj) = λixj for all i. The latter holds
in particular for φk(xj), where xj ∈ E2

j . Using δki ◦ pk = pk ◦ δ, we get

λiφk(xj) = δki (φk(xj)) = δki ◦ pk(φ(xj)) = pk ◦ δ(φ(xj)).

Thus we get for all xj ∈ E2
j :

δi(φ(xj)) = λiφ(xj),

where we consider any element of m as a sequence of elements of elements of mk on
which the δi operate component wise. Applying Nakayama’s Lemma, any basis of
m2 lifts to a minimal set of generators of m as an ideal. By the application of φ to m2,
we get in our case, that m has a set of generators, which are eigenvectors of all δi, so
we have that all derivations are simultaneously diagonalizable.

We can use the idea of the previous proof to prove the following theorem:
Theorem 4.43
Let R be a (Ks,+) multi-graded analytic algebra over a field K. Then there exist diagonaliz-
able and commuting δ1, . . . , δs ∈ Der′(R), such that the (Ks,+) multi-grading is induced by
them.

Proof:
We do the case s = 2, as the rest follows by induction. By Theorem 3.38, there exist di-
agonalizable derivations δ1, δ2 ∈ Der′(R) each inducing a (K,+) grading of R, where
these gradings correspond to the first and second component of our (K2,+) multi-
grading. We now need to show, that they have a common eigenbasis. By Lemma
4.26, we know that δ1 and δ2 have a common eigenbasis on R/mk

R for all k ∈ N, as
the graded components of our ring R are precisely the common eigenvectors of δ1

and δ2. Checking the proof of Theorem 4.42, we see that this suffices to get a set of
generators of mR consisting of common eigenvectors of δ1 and δ2, hence they can be
simultaneously diagonalized and thus are commuting.
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Now we can state our more general version of the Formal Structure Theorem from
[13]. It states, that we can extend a given Lie-Rinehart subalgebra of Der′(R), where
R is a complete analytic algebra, to a larger Lie-Rinehart subalgebra of Der′(R),which
has a concrete known structure. This structure can be used to compute possible grad-
ings of the resulting Lie-Rinehart algebra.
Theorem 4.44 (Formal Structure Theorem)
Let R be a complete analytic algebra and g be a Lie-Rinehart subalgebra of Der′(R). As-
sume, that g = lim←−k∈N pk(g) and for any δ ∈ g, we have that δS, δN ∈ g. Then there exist
δ1, . . . , δs, ν1, . . . , νr ∈ g with a uniquely determined s ∈ N, such that

i) δ1, . . . , δs, ν1, . . . , νr is a minimal set of generators of g as an R-module,

ii) if σ ∈ g with [δi, σ] = 0 for all i, then σS ∈ 〈δ1, . . . , δs〉K ,

iii) δi is diagonal with eigenvalues in Q,

iv) νi is nilpotent, and

v) [δi, νj] ∈ Q · νj

Proof:
We are going to mimic the proof of [13, Theorem 5.4]. Statement iii) follows using
Theorem 3.42 and 4.42. Assume, we already have δ1, . . . , δs ∈ g diagonalizable with s
being maximal. As the δi induce a multi-grading of g, we can take any homogeneous
derivation σ ∈ g, with multi-degree λ = (λ1, . . . , λs) ∈ Qs. If one of the λj is not equal
to zero, Lemma 4.38 already states, that σ is nilpotent. So let us assume all λj are equal
to zero. By Theorem 3.33, we get that σ has a Chevalley decomposition σ = σS + σN ,
with σS, σN ∈ g. As σ has multi-degree 0, also σS and σN have multi-degree 0, due to
Proposition 3.36. Due to the maximality of s, we already get that σS ∈ 〈δ1, . . . , δs〉K .
So we can assume σ = σN . This proves i), ii), iv) and v). We postpone the proof of the
uniqueness of s to Chapter 5.

Remark 4.45
Before we go on with a special case, in which Theorem 4.44 holds, we state a more general
setup. Consider a sequence of K-vector spaces of R, say (Vi)i∈N, such that

V0 ⊇ V1 ⊇ V2 ⊃ . . . ,

and such that RVi ⊆ Vj for j ≥ i Define g := {δ ∈ Der′(R)| δ(Vi) ⊆ Vj for j ≥ i}. It is
easy to see, that g is a Lie-Rinehart algebra. As in the proof of Theorem 3.32, we can show,
that, if δ ∈ g, then also δS, δN ∈ g, as the defining property is kept under taking powers as
morphisms of vector spaces. In the following we consider the setup, where I is an ideal of R
and we have Vi := I for all i ∈ N.
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The Formal Structure Theorem has a nice application in the computation of homo-
geneities of ideals of complete analytic algebras. As all complete analytic algebras
over a field K are of type R = K[[x1, . . . , xn]]/I for some n ∈ N and an ideal I of
K[[x1, . . . , xn]], we can consider a special set of derivations, namely so called logarith-
mic derivations.
Definition 4.46
Let R be an analytic algebra over a field K and let I be an ideal of R. We call the R-module

DerI(R) := DerI := {δ ∈ Der(R)|δ(I) ⊆ I}

the module of logarithmic derivations.
Remark 4.47
It is obvious, that the module of logarithmic derivations is a submodule of Der(R). Further-
more, it is a Lie-Rinehart subalgebra of Der(R).

Now we use Lemma 3.17 to show, that all derivations of K[[x1, . . . , xn]]/I arise from
I-invariant derivations of K[[x1, . . . , xn]].

Corollary 4.48
Consider the setup of Lemma 3.17. Then the derivation α is I-invariant.

Proof:
We clearly have δ(0) = 0, so φ ◦ α(I) = δ ◦ φ(I) = 0 and we get that α(I) ⊆ I.

We know, that the information regarding a (Ks,+) grading of an ideal I can be given
by stating diagonalizable derivations of Der′(R), with δ(I) ⊆ I. This motivates the
following definition.
Definition 4.49
Let R be a complete analytic algebra and I an ideal of R. Define

Der′I(R) := DerI(R) ∩Der′(R).

We call Der′I(R) the module of complete logarithmic derivations.
Remark 4.50
The term complete in the previous definition arises from the fact, that the module turns out
to be complete.

It easy to see, that (R,Der′I(R), ρ) is a Lie-Rinehart algebra, with ρ : Der′I(R) ↪→
Der(R). Next we show, that it satisfies the conditions of Theorem 4.44.
Remark 4.51
From now on, we write g′k for the images of the projections of Der′I(R) to Der(R/mk

R) for all
k ∈ N.
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Corollary 4.52
LetR be a complete analytic algebra and I an ideal ofR. Then Der′I(R) satisfies the conditions
of Theorem 4.44 and there exist δi and νj as in Theorem 4.44, such that:

Der′I(R) = 〈δ1, . . . , δs, ν1, . . . , νr〉R.

Proof:
We want to apply Theorem 4.44 to Der′I(R), hence we need to show, that for any
δ ∈ Der′I(R), we have that δS, δN ∈ Der′I(R) and that Der′I(R) ∼= lim←−k∈N g

′
k. The first

statement follows from the fact, that any δ ∈ Der′I(R) has a Chevalley decomposition
δ = δS+δN and, using that δ(I) ⊆ I , we have that δS(I) ⊆ I and δN(I) ⊆ I by Theorem
3.32. To show Der′I(R) ∼= lim←−k∈N g

′
k, we consider the following commutative diagram,

we get due to the definition of the g′k:

Der′I(R)

lim←−k∈N g
′
k

g′l g′k

pl

u
pk

πl πk

fkl

The injectivity of u follows by same proof as for Proposition 3.23, so we only need
to show surjectivity. We can consider every element δ of lim←−k∈N g

′
k as a sequence of

elements (δk)k∈N with δk ∈ g′k ⊆ gk. As δk(Ī) ⊆ Ī holds for all δk, with Ī being the
projection of I to R/mk

R, we get δ(I + mk
R) ⊆ I + mk

R for all k ∈ N. Using Krull’s
Intersection Theorem, we get that δ(I) ⊆ I and δ ∈ Der′I(R), hence we can find for
any δ ∈ lim←−k∈N g

′
k a δ′ ∈ Der′I(R) with u(δ′) = δ.

Now we can apply Theorem 4.44 to Der′I(R) and our statement follows immediately.

Remark 4.53
Due to Corollary 4.48, we get that every derivation of an complete analytic algebra R =
K[[x1, . . . , xn]]/I arises from a derivation of K[[x1, . . . , xn]], which is I-invariant. Hence
analyzing the derivations of R can be reduced to analyzing Der′I(K[[x1, . . . , xn]]), as these
obviously induce derivations on R. By Theorem 3.40 we get that every diagonalizable deriva-
tion of Der′I(K[[x1, . . . , xn]]) corresponds 1:1 to a grading of I respectively a grading of R, by
Lemma 3.17. We are going to use this approach to compute the possible gradings of analytic
algebras in Chapter 6.
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5 Profinite Lie(-Rinehart) Algebras

In this chapter we take a closer look at so called profinite Lie algebras. The idea
is to investigate Lie algebras, that arise as projective limits of finite-dimensional Lie
algebras. The work of Hofmann and Morris in [20] in the context of topological Lie
algebras serves as a template for our work. We modify their definitions in a sense, that
our definitions are compatible with the ones in [20], if we endow our Lie algebras with
the discrete topology. In this chapter, we are only stating and proving basic results
regarding profinite Lie algebras, as our goal is to prove an analogous statement to
Theorem 2.55 for profinite Lie algebras. We include profinite Lie-Rinehart algebras in
the beginning, as their construction is analogous to the construction of profinite Lie
algebras.
Remark 5.1
In the following chapter, R always denotes a complete analytic algebra over a field K of char-
acteristic 0 and g always denotes a Lie algebra over the field K. We denote a Lie-Rinehart
algebra by (R, g, ρ). We restrict ourselves to the natural numbers as a set of indexes, as the
other cases extend naturally and we only work with this setup in the following chapter.

5.1 Basic Definitions and Results

Let us start with the basic definition of the following chapter.
Definition 5.2
Let (gi, fij) be projective system of finite-dimensional Lie algebras over K, with i, j ∈ N and
i ≤ j. Then we call g := lim←−i∈N gi a profinite Lie algebra.
Remark 5.3
From now on, we assume that the projections pi : g → gi are surjective for all i ∈ N, hence
also all fij are surjective for all j ≥ i, as fij ◦ pj = pi and the pi are surjective. We can do so
due to Proposition 2.4.

Now we can define profinite Lie-Rinehart algebras in the setup of complete analytic
algebras.
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Definition 5.4
Let (Ri, fij) be a projective system of complete analytic algebras, with Ri := R/mi

R. Fur-
thermore, let (gi, f

g
ij) be a projective system of Lie-Rinehart algebras, with gi ⊆ Der(Ri) and

ρi : gi ↪→ Der(Ri). As the (Ri, gi, ρi) are finite-dimensional Lie-Rinehart algebras, we have a
projective system (Der(Ri), f

Der′(R)
ij ) with lim←−i∈N Der(Ri) ↪→ Der(R). Write g := lim←−i∈N gi

and denote by ρ the limit of the ρi, then we call (R, g, ρ) a profinite Lie-Rinehart algebra.
Remark 5.5
We stated the previous result only in the setup of complete analytic algebras, as we have that
the Der(R/I i) have Der′(R) as their limit due to Proposition 3.23. A detailed analysis of the
proof of the aforementioned proposition yields, that we can replace the analytic algebra by any
ring R which arises as an I-adic completion. Let Der′(R) denote the set of derivations, which
are I-invariant. Then we get Der′(R) = lim←−i∈N Der(R/I i), as the proof of Proposition 3.23
only needs

⋂
i∈N I

i = 0.
To guarantee, that Der(R/I i) is finite-dimensional, we need to assume, that R/I is finite-
dimensional as a K-vector space.

Let us see an immediate result from the definition.
Lemma 5.6
Keep the notation from Definition 5.2. Let (R, g, ρ) be a profinite Lie-Rinehart algebra. Set
hi := Der(Ri). Then there exists a morphism of Lie-Rinehart algebras (idR, ψ), with

ψ : g ↪→ lim←−
i∈N

hi = Der′(R).

Proof:
Consider the following exact sequence:

0 gi hi
ρi

Using, that lim←− is a left-exact functor, we get an injection ρ : g ↪→ Der′(R).

An important example for our work is the following:
Example 5.7
Consider the case where R = C[[x1, . . . , xn]], g = Der′(R) and ρ : Der′(R) ↪→ Der(R).
Define the gi as the images of g in Der(R/mi

R). It is clear, that (R, g, ρ) is a Lie-Rinehart
algebra by Example 4.18. Define Ri := R/mi

R and ρi : gi ↪→ Der(Ri) for all i ∈ N and
we get immediately, that the (Ri, gi, ρi) are finite-dimensional Lie-Rinehart algebras. We also
have lim←−i∈N Der(Ri) = Der′(R) ↪→ Der(R) and f g

ij = f
Der′(R)
ij , thus (R, g, ρ) is a profinte

Lie-Rinehart algebra.
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From Example 5.7 we get the following result.
Corollary 5.8
LetK be a field with characteristic 0 andR = K[[x1, . . . , xn]]/I for some ideal I ofK[[x1, . . . , xn]].
Then (R,Der′(R), ρ) is a profinite Lie-Rinehart algebra, with ρ : Der′(R) ↪→ Der(R).

Proof:
The computation from Example 5.7 works in the same way for this statement.

Our next definition extends the notion of nilpotent and solvable Lie algebras to the
profinite case.
Definition 5.9
Let (R, g, ρ) be a profinite Lie-Rinehart algebra with projective systems (Ri, f

R
ij ) and (gi, f

g
ij),

such that R = lim←−i∈NRi and g = lim←−i∈N gi. Then (R, g, ρ) is called pronilpotent (resp.
prosolvable), if gi is nilpotent (resp. solvable) as a Lie algebra for all i. We call an element
x ∈ g nilpotent, if and only if pgi (x) ∈ gi is nilpotent for all i.

Now we can state Engel’s Theorem for profinite Lie-Rinehart algebras.
Theorem 5.10
Let (R, g, ρ) be a profinite Lie-Rinehart algebra with projective systems (Ri, f

R
ij ) and (gi, f

g
ij),

such thatR = lim←−i∈NRi and g = lim←−i∈N gi. Then (R, g, ρ) is pronilpotent if and only if adpgi (x)

is nilpotent for all x ∈ g and i ∈ N.

Proof:
(R, g, ρ) being pronilpotent is equivalent to gi being nilpotent for all i. Applying En-
gel’s Theorem (see Theorem 2.51), gi being nilpotent is quivalent to pgi (x) being nilpo-
tent, which is equivalent to adpgi (x) being nilpotent for all x ∈ g, as pgi is assumed to
be surjective. Combining the results we see, that (R, g, ρ) is pronilpotent if and only
adpgi (x) is nilpotent for all x ∈ g and i ∈ N.

Our next definitions are normalizers and centralizers of profinite Lie-Rinehart alge-
bras.
Definition 5.11
Let (R, g, ρ) be a profinite Lie-Rinehart algebra and h ⊂ g. Then

Ng(h) := {x ∈ g| [x, h] ∈ h for all h ∈ h}

is called the normalizer of h in g.
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Definition 5.12
Let (R, g, ρ) be a profinite Lie-Rinehart algebra and h ⊂ g. Then

C(h) := {x ∈ g| [x, h] = 0 for all h ∈ h}

is called the centralizer of h in g.

Remark 5.13
Let g be a profinite Lie algebra and h a subspace of g. It can be shown that C(h) and N(h) are
subalgebras of g. If furthermore h is a subalgebra of g, h is an ideal of the Lie algebra N(h).

We omit an example at this point, as we are going to work with pronilpotent Lie(-
Rinehart) algebras in the following section.

5.2 Pro-Cartan Subalgebras

In this section, we are going to extend the notion of a Cartan subalgebra to the profi-
nite Lie(-Rinehart) algebra case. We show, that so called pro-Cartan subalgebras exist
and that they are all conjugated in the sense of Theorem 2.55. We restrict our defini-
tions to profinite Lie algebras, as the results only need the Lie algebra structure and
not any module structure.

Let us first define pro-Cartan subalgebras.
Definition 5.14
Let g be a profinite Lie algebra with projective system (gi, f

g
ij), such that g = lim←−i∈N gi and

h a profinite Lie subalgebra of g. We say h is a pro-Cartan subalgebra, if the following are
satisfied:

i) Ng(h) = h,

ii) h is pronilpotent

In Theorem 2.55, we used the group of inner automorphisms of a given finite dimen-
sional Lie algebra. With the next definition, we extend this notion to profinite Lie
algebras.
Definition 5.15
Let g be a profinite Lie algebra with projective system (gi, f

g
ij), such that g = lim←−i∈N gi.

We call Innp(g) := lim←−i∈N Inn(gi) the group of projective inner automorphisms. Fur-
thermore, Inn(g) denotes the group generated by the set {exp(adx)| x is nilpotent}, where
exp(adx(y)) := (exp(pgi ([x, y])))i∈N for any y ∈ g. Inn(g) is called the group of inner
automorphisms.
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We called Inn(g) the group of inner automorphisms, now we need to prove, that
exp(adx) is well-defined for any nilpotent x ∈ g, hence maps g into itself and that it
is an automorphism. The definition, at the moment, only guarantees, that exp(adx)
maps g into the product

∏
i∈N gi. We split the proof regarding the properties of Inn(g)

into two parts. The first part shows, that the exp(adx) are Lie algebra morphisms of g
into itself. The second part shows, that Inn(g) injects into Innp(g) and that the latter is
a subgroup of Aut(g), hence also Inn(g) is a subgroup of Aut(g).
Proposition 5.16
Consider the setup of Definition 5.15. Let x ∈ g be nilpotent, then exp(adx) is a Lie algebra
morphism of g into itself.

Proof:
Let y ∈ g be arbitrary. If we can show, that for any j ≥ i, we have f g

ij(exp(pgj([x, y]))) =
exp(pgi ([x, y])), we haven proven, that exp(adx) maps g into itself. But this is easy
too see, as f g

ij(adlpgj (x)(p
g
j(y))) = adlpgi (x)(p

g
i (y)) for any l ∈ N and as the exp(pgi ([x, y]))

are finite sums, where the summands are powers of adpgi (x). Now for any y ∈ g,
exp(adx(y)) is a sequence of elements compatible with the f g

ij , hence it lies in g. To
see, that exp(adx) is a Lie algebra morphism of g into itself, we only need to take a
look at its behavior on every component of a sequence of elements. As we know,
that exp(adpgi (x)) is a Lie algebra morphism of gi into itself for all i ∈ N, we have that
exp(adx) is a Lie algebra morphism of g into itself.

Our next lemma shows us, that Inn(g) is isomorphic to a subgroup of Innp(g) and that
the latter is a subgroup of Aut(g).
Lemma 5.17
Let g be a profinite Lie algebra with projective system (gi, f

g
ij), such that g = lim←−i∈N gi. Then

Inn(g) ↪→ Innp(g). In particular, all φ ∈ Innp(g) are automorphisms of g.

Proof:
First of all, we get projections pi : Inn(g) � Innp(gi) induced by exp(adx) 7→ exp(adpgi (x)),

where pgi denotes the projection g � gi. The pi are surjective for all i ∈ N, as the pgi
are surjective for all i ∈ N by Remark 5.1. The pi commute with the group homomor-
phisms fij : Inn(gj) → Inn(gi), which are induced by exp(adpgi (x)) 7→ exp(adfgij◦p

g
j (x)) =

exp(adpgi (x)). By the universal property of projective limits, we get the following dia-
gram:
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Inn(g)

lim←−i∈N Inn(gi)

Inn(gj) Inn(gi)

pj
u

pi

πi πj

fij

where fij and πi are as in Definition 2.1 for i ≤ j. Due to the uniqueness of u and the
proof of the universal property, we get that

u : Inn(g)→ lim←−
i∈N

Inn(gi), exp(adx) 7→ (exp(adpgi (x)))i∈N.

Now we can show, that u is injective. Consider any φ ∈ Inn(g), such that u(φ) is the
identity. Then, using the commutativity the previous diagram, we get that pi(φ) = idgi

for all i ∈ N. Thus pgi (φ)(x) = pi(φ)(pgi (x)) = pgi (x), for any x ∈ g and i ∈ N. As
g = lim←−i∈N gi, we get that φ(x) = x for all x ∈ g, hence φ = idg and u is injective.
Finally, we can show the last statement. Let φ ∈ Innp(g), then it is a sequence (φi)i∈N,
with φi ∈ Inn(gi) for all i ∈ N. Due to the construction of the fij , we get the following
commutative diagram for all j ≥ i:

gi gi

gj gj

φi
∼=

φj

∼=

fgij fgij

Figure 5.1: Commutative diagram regarding the φi.

First, we show that φ is injective. Consider the following exact sequence:

0 0 gi gi 0.
φi

Due to the commutativity of the diagram in Figure 4.1, we can apply lim←− as a left-exact
functor and we get the following exact sequence:

0 0 g g.
φ
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By exactness of the previous sequence, we have that φ is injective. Next, we have to
show, that for any y ∈ g, there exists an x ∈ g, such that φ(x) = y. As g is a limit,
we consider y as the sequence (yi)i∈N and show, that there is a sequence (xi)i∈N with
φi(xi) = yi for all i. We already know, that the φi are isomorphisms, hence we have a
unique xi ∈ g, such that φi(xi) = yi. If we can show, that f g

ij(xj) = xi for all j ≥ i, we
are done. We have

φi(f
g
ij(xj)) = f g

ij(φj(xj)) = f g
ij(yj) = yi,

hence f g
ij(xj) = xi.

Our next goal is to prove the existence and conjugacy of pro-Cartan subalgebras of
profinite Lie algebras. Before we state the proof we need a few more preparing defi-
nitions and results.
Definition 5.18
Let g be a finite-dimensional Lie algebra over an algebraically closed fieldK. Let h be a Cartan
subalgebra of g. Furthermore, let g = h ⊕ gα1 ⊕ . . . ⊕ gαs be the root space decomposition
of g relative to h. We denote by Eg(h) the subgroup of Aut(g) generated by elements of type
exp(adx), where x is contained in gαi for some 1 ≤ i ≤ s.
Proposition 5.19
Consider the setup of Definition 5.18. Then Eg(h) does not depend on the choice of h, and we
can write Eg instead of Eg(h).

Proof:
See [11, Proposition 1].

Theorem 5.20
Let g be a finite-dimensional Lie algebra over an algebraically closed field K. Let h and h′ be
be two Cartan subalgebras of g. Then there exists an σ ∈ Eg, such that h = σ(h′).

Proof:
See [11, Theorem 2].

The following two results, combined with the previous theorem, are crucial for the
proof of the existence and conjugacy of pro-Cartan subalgebras.
Lemma 5.21
Let g be a finite-dimensional Lie algebra over an algebraically closed field K. Assume, g can
be written as g = h + i, where h is a nilpotent subalgebra of g and i is an ideal of g. If
g = h⊕ gα1 ⊕ . . .⊕ gαs is a root space decomposition of g with respect to h, then gαi ⊆ i for
all i = 1, . . . , s.
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Proof:
As i is an ideal, we can consider the projection π : g → g/i, which is a morphism of
Lie algebras, as well as a morphism of h-modules. As g/i ∼= (h + i)/i, g/i is nilpotent
and we get that all non-trivial root spaces are 0. Using [4, Chapter 7, Proposition 9
iv)], we get that π(gαi) = 0 for all i = 1, . . . , s, hence gαi ⊆ i for all i = 1, . . . , s.

As an important corollary of the previous lemma, we get the following result.
Corollary 5.22
Let g, g′ be a finite-dimensional Lie algebras over an algebraically closed fieldK and φ : g→ g′

be a surjective morphism of Lie algebras. Furthermore, let h′ be a Cartan subalgebra of g′. Then
every element of Eφ−1(h′) is generated by elements of type exp(adx), with x ∈ ker(φ)∩ gαi for
some 1 ≤ i ≤ s, where the root space decomposition of φ−1(h′) equals h⊕ φ−1(h′)α1 ⊕ . . .⊕
φ−1(h′)αs .

Proof:
By Proposition 2.37, we have that φ−1(h′) is a subalgebra of g. Denote by h a Cartan
subalgebra of φ−1(h′), then φ(h) is a Cartan subalgebra of g′ by Theorem 2.57. Using
that φ(h) = Ng′(φ(h)) = Nh′(φ(h)), we see that φ(h) is a Cartan subalgebra of h′. Due
to the fact, that h′ is nilpotent, it contains only one Cartan subalgebra, namely itself,
hence φ(h) = h′. Now consider any x ∈ φ−1(h′), then there exists a y ∈ h, such that
φ(y) = φ(x), hence x− y ∈ ker(φ). Now we have that any element x of φ−1(h′) can be
written as x = y + z, with y ∈ h and z ∈ ker(φ). By Lemma 5.21 we get φ−1(h′)αi ⊂
ker(φ) for all i = 1, . . . , s. Now by definition of Eφ−1(h′) and due to the fact, that by
Proposition 5.19 Eφ−1(h′) does not depend on the chosen Cartan subalgebra, our claim
follows.

Now we can state the existence and conjugacy results for pro-Cartan subalgebras of
profinite Lie algebras.
Theorem 5.23
Let g be a profinite Lie algebra over an algebraically closed field K. Then there exists a pro-
Cartan subalgebra h of g.

Proof:
As we have done before, we are going to use projective limits to prove our result. The
notation is the same as in the proof of Lemma 5.17, replacing the inner automorphism
groups by g respectively gi for i ∈ N. To keep notation short, we denote a Cartan
subalgebra of gi by hi, as their existence is guaranteed by Proposition 2.54. To show
existence, we need to construct a sequence (hi)i∈N, such that lim←−i∈N hi is a pro-Cartan
subalgebra of g. Due to Theorem 2.57 and Theorem 2.58, we can use that fij is a
surjection between gj and gi, for i ≤ j. Now we can lift any Cartan subalgebra hi
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of gi to a Cartan subalgebra hj of gj, such that hi = fij(hj). Starting with g1, we can
construct a sequence as mentioned before. Clearly h = lim←−i∈N hi is a pronilpotent
subalgebra of g, so that we only need to check the normalizer property. So consider
any x ∈ g, such that [x, h] ∈ h for all h ∈ h. Then the image of x under all projections to
gi, say x̄, satisfies [x̄, h̄] ∈ hi for all i ∈ N and h̄ ∈ hi. Now using that the hi are Cartan
subalgebras, we get that x̄ ∈ hi for all i ∈ N, hence x ∈ h and we get h = Ng(h).

Theorem 5.24
Let g be a profinite Lie algebra over an algebraically closed field K. Then for any two pro-
Cartan subalgebras h and h′ of g there exists a σ ∈ Innp(g), such that h = σ(h′).

Proof:
Let h and h′ be pro-Cartan subalgebras of g. Denote for all i ∈ N the projections
of h (respectively h′) to gi by hi (respectively h′i). We know, that we can lift any
exp(adpgi (x)) ∈ Inn(gi) to exp(adpgj (x)) ∈ Inn(gj) for all j ≥ i and x ∈ g. As g projects sur-
jectively to the gi this implies, that we can lift any σ(i) ∈ Inn(gi) to some σ(j) ∈ Inn(gj),
such that the projection of σ(j) to Inn(gi) equals σ(i). We show the conjugacy using
this idea and an inductive argument. Assume that hi = h′i for all 1 ≤ i < k + 1
for some fixed k ∈ N. Now we know, that hk+1 and h′k+1 are Cartan subalgebras of
f−1
k,k+1(gk+1) ⊂ gk+1. Applying Theorem 5.20 and Corollary 5.22 to the Lie algebra
f−1
k,k+1(gk+1), we get the existence of an element σ(k+1)

k+1 , such that hk+1 = σ
(k+1)
k+1 (h′k+1)

and σ(i)k+1 = idgi for all 1 ≤ i ≤ k, as σ(k+1)
k+1 is a product of elements of type exp(adx),

with x living in a complement of hk+1, but in the kernel of fk,k+1. Iterating this process
by lifting as explained before, we find a sequence of elements (σ

(i)
i ◦ . . . ◦σ

(i)
1 )i∈N, such

that the corresponding elements of Inn(gi) satisfy hi = σ
(i)
i ◦ . . . ◦ σ

(i)
1 (h′i). This means,

that we have constructed an element σ ∈ Innp(g), which satisfies h = σ(h′).

Remark 5.25
In [20, Chapter 7] more results regarding topological profinite Lie algebras can be found,
which basically generalize our previous results. Only Theorem 5.24 has no analogous result,
hence our result, although it is not in a topological context, seems to be a new result, which
has not been proven before.

As an example for the use of pro-Cartan subalgebras, we state the proof of the unique-
ness of the dimension of the vector space s, which is generated by the pairwise com-
muting diagonalizable derivations in Theorem 4.44. If we can show, that the afore-
mentioned vector space is a subspace of a pro-Cartan subalgebra, the conjugacy of
pro-Cartan subalgebras gives us the uniqueness of s.
Lemma 5.26
Let R be a complete analytic algebra over an algebraically closed, complete real valuation
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field K and g ⊂ Der′(R), as in Theorem 4.44. Using the notation from the aforementioned
theorem, we have that

h := {τ ∈ g|[τ, δi] = 0, i = 1, . . . , s}

is a pro-Cartan subalgebra of g.

Proof:
From now on, we denote the projections of τ ∈ g to gk by τ̄ .
First of all, we need to show that h is subalgebra of g. It is obvious, that the sum of two
elements of h is again an element of h, as the Lie bracket is linear in each component.
Now we need to show, that the commutator of any two elements of h lies again in h.
Let τ, τ ′ ∈ h, then

[τ, [τ ′, δi]] + [τ ′, [δi, τ ]] + [δi, [τ, τ
′]] = 0.

As we know from the definition of h, the first two summands equal 0, hence the
third one also equals 0 and [τ, τ ′] ∈ h. The previous computation also shows, that
hk := {τ̄ ∈ gk| [τ̄ , δ̄i] = 0 i = 1, . . . , s} is a subalgebra of gk for all k ∈ N.
Next we show, that every element of the hk is nilpotent. Using Theorem 2.51, we only
need to show, that adτ̄ is nilpotent for all τ̄ . As we can decompose any τ̄ ∈ hk into a
semi-simple part τ̄S and a nilpotent part τ̄N , we get [τ̄S + τ̄N , δ̄i] = [τ̄N , δ̄i] = 0, for all
i = 1, . . . , s. Using, that by construction the semi-simple part of any element of hk is a
linear combination of the δ̄i, we only need to focus on the τ̄N . As we are dealing with
nilpotent derivations, they induce nilpotent linear operators on gk and we get that adτ̄
is nilpotent. As this holds for all τ̄ ∈ hk, we get that the hk are nilpotent subalgebras,
using Theorem 2.51.
Now we show the normalizer property. Clearly hk ⊆ Ngk(hk). Consider any τ̄ ∈
Ngk(hk). Commuting with all δ̄i means, that a derivation is of multi-degree 0, regard-
ing the multi-grading induced by the δ̄i. As τ̄ ∈ Ngk(hk), we get that [δ̄j, [τ̄ , δi]] = 0
for all i, j = 1, . . . , s, hence [τ̄ , δ̄i] is contained in the multi-degree 0 part of gk. As all
δ̄i are also contained in the multi-degree 0 part, we get that τ̄ has to be contained in
there, otherwise [τ̄ , δ̄i] were not contained in it, as the grading is compatible with Lie
brackets. Hence, [τ̄ , δ̄i] = 0 for all i = 1, . . . , s and hk = Ngk(hk).
So far we have shown, that all hk are Cartan subalgebras of the gk. If we can show,
that h = lim←−k∈N hk, we get that h is a pronilpotent subalgebra of g, which satisfies the
normalizer property h = Ng(h), as all hk satisfy this property. Consider the following
commutative diagram:
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h

lim←−k∈N hk

hl hk

pgl |h
u pgk|h

πk πl

fgkl|h

u is clearly injective, as for any τ ∈ h with u(τ) = 0, we have that τ̄ = 0 in all gk,
hence τ = 0, as h ⊆ g. So we can assume, that h ⊆ lim←−k∈N hk. Now consider any
τ ∈ lim←−k∈N hk, then [τ, δi] = 0 for all i = 1, . . . , s as [τ̄ , δ̄i] = 0 in all gk, hence τ ∈ h.
Finally, we have that h = lim←−k∈N hk, h is pronilpotent and satisfies h = Ng(h), hence h

is a pro-Cartan subalgebra of g.

Theorem 5.27
Let R be a complete analytic algebra. Consider the setup from Theorem 4.44. Then the dimen-
sion s of the vector space of pairwise commuting and diagonalizable derivations is uniquely
determined.

Proof:
Using Lemma 5.26, we get that there is a pro-Cartan subalgebra h containing our vec-
tor space. By Theorem 5.24, we have that all pro-Cartan subalgebras are conjugated.
Being pairwise commuting and diagonalizable is kept under conjugation on finite-
dimensional vector spaces (see Proposition 2.47). Due to the latter, the properties
passes on to the limit. This means, that we have at least s semi-simple derivations,
which are pairwise commuting and diagonalizable.
Assume we have a pro-Cartan subalgebra h′ containing an s + 1st diagonalizable
derivation ε, then the image of ε in h is already contained in the vector space gen-
erated by the first s diagonalizable derivations. This means, that it must have already
been contained in the vector space generated by the preimages of the first s diagonal-
izable derivations of h in h′, which contradicts the assumption.

Remark 5.28
Theorem 5.27 states, that for any complete analytic algebra R, the dimension s of the (Ks,+)
multi-grading is uniquely determined and can be considered as an invariant of the algebra R.
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6 Algorithmic Aspects of Power Series
Rings

The following chapter is concerned with the theory of standard bases in the context
of convergent power series rings. We present an overview of the theory of standard
bases in our context and show their importance regarding basic computations in com-
mutative algebra, as well as their usefulness in proving theoretical results. We are not
going to investigate specific algorithms for the computation of standard bases, as this
is a topic of its own. For an overview on the whole topic, we refer the reader for exam-
ple to [34, Chapter 21] or [18, Chapter 1, 2 and 6]. Our goal is to provide a theoretical
background together with a set of algorithms, such that we can compute maximal
multi-homogeneities of a given ideal of an analytic algebra.

6.1 Theoretical Aspects of Standard Bases in Power
Series Rings

Before we start defining standard bases, we refer the reader to [18, Chapter 1.2-1.5
and Chapter 2.5] for the basic notions as monomials, monomial orderings, leading
monomials etc. We use the notation from [18]. Our results are taken from [18, Chapter
2.5, 2.8 and 6.4] and [7, Chapter 7].
Remark 6.1
From now on,K is always a complete real valuation field of characteristic 0 and x = (x1, . . . , xn).
Throughout this section, we fix a local degree ordering> on Mon(x1, . . . , xn), that is, xα > xβ

implies that w-deg(xα) ≤ w-deg(xβ) for suitable weight vector ω = (ω1, . . . ωn) with ωi > 0.
Such orderings are compatible with the 〈x〉-adic topology, which allows us to compute stan-
dard bases in K〈〈x1, . . . , xn〉〉 and K[[x1, . . . , xn]]. Any non-zero f ∈ K[[x1, . . . , xn]] can
be written as f =

∑∞
ν=0 aνx

α(ν), aν ∈ K, a0 6= 0 and xα(ν) > xα(ν)+1 for all ν. We denote
the leading monomial by LM(f), the leading exponent by LE(f), the leading term by LT(f),
the leading coefficient by LC(f) and the tail by tail(f). We denote the leading module of the
module I by L(I).

To get familiar with the notation, we take a look at the following example.
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Example 6.2
Consider the polynomial f := 2x5 +y6 +y4 +x ∈ C〈〈x, y〉〉 and I := 〈f〉. Then the following
table shows, how the leading monomial, leading coefficient and so on, depend on the choice of
the monomial ordering.

Monomial ordering LC(f) LM(f) L(I) tail(f)
lex 1 y4 〈y4〉 y6 + x+ 2x5

deglex 1 x 〈x〉 y4 + 2x5 + y6

In our example lex denotes the local lexicographical ordering and deglex the local degree
lexicographical ordering.

Now we can define standard bases.
Definition 6.3
Let R = K〈〈x1, . . . , xn〉〉 or R = K[[x1, . . . , xn]] and I ⊂ RN an R-module and N ∈ N.
Then a finite set S ⊂ RN is called standard basis of I if

S ⊂ I, and L(I) = L(S).

That is, S is a standard basis, if the leading monomials of the elements of S generate the
leading module of I, or, in other words, if for any f ∈ I\{0} there exists a g ∈ S satisfying
LM(g)|LM(f). If we just say that S is a standard basis, we mean that S is a standard basis
of the ideal 〈S〉 generated by S.

The next lemma guarantees us the existence of the standard basis.
Lemma 6.4
Let I ⊆ RN be an R-module and N ∈ N. Then there exists a standard basis S of I .

Proof:
As R is Noetherian, we can assume that L(I) is finitely generated, that is, L(I) =
〈m1, . . . ,ms〉 for monomials mi ∈ RN . As they arise from elements g1, . . . , gs ∈ I , we
can set S := {g1, . . . , gs} and we have L(S) = L(I), hence S is a standard basis.

Before we state more results regarding standard bases, we need some terminology.
Definition 6.5
Let S ⊂ RN be any subset and N ∈ N.

i) S is called interreduced, if 0 /∈ S and if LM(g) - LM(f) for any two elements f 6= g
in S. An interreduced standard basis S is also called minimal.

ii) f ∈ R is called completely reduced with respect to S, if no monomial in the power
series expansion of f is contained in L(S).
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iii) S is called completely reduced, if S is interreduced and if, for any g ∈ S, LC(g) = 1
and tail(g) is completely reduced with respect to S.

Let us take a look at an example.
Example 6.6
Let I := 〈x3 + y2, y〉 ⊂ C〈〈x, y〉〉 and consider the weight-vector ω := (1, 2). Then S :=
{x3 + y2, y, y5} is a standard basis with respect to the local degree lexicographical ordering.
S is not minimal, but S ′ := {x3, y}, which is also a standard basis, is minimal and also
completely reduced, as it contains only monomials, hence their tail is 0 and nothing has to be
checked.
Theorem 6.7 (Grauert-Hironaka-Galligo Division Theorem)
Let f, f1, . . . , fm ∈ RN , for some N ∈ N, then there exist qj ∈ R and r ∈ RN , such that

f =
m∑
j=1

qjfj + r

and, for all j = 1, . . . ,m,

i) no monomial of r is divisible by LM(fj);

ii) LM(qjfj) ≤ LM(f).

Proof:
This result is the famous Grauert-Hironaka-Galligo Division Theorem. See [15], [19] and
[10]. For a compact presentation of the result, see [28, Theorem 10.1]. The module
case follows, for example, from [10], by replacing the real or complex numbers with
any complete real valuation field of characteristic 0.

Definition 6.8
Using the notation from Theorem 6.7, define S := {f1, . . . , fm} and

NF(f |S) := r.

In this way, we obtain a reduced normal form, that is, a normal form, where r is completely
reduced with respect to S.

Having a reduced normal form, we get the following two corollaries. We prove the
first one, to see how to actually argue with standard bases.
Corollary 6.9
Let I ⊂ RN be an R-module, N ∈ N and S, S ′ two standard bases of I. Then NF(f |S) =
NF(f |S ′) for all f ∈ R\{0}.
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Proof:
Let f ∈ RN\{0}. Define r := NF(f |S) and r′ := NF(f |S ′). Then we have r − r′ ∈ I ,
due to the representation of f in Theorem 6.7. Assume r 6= r′ and, with out loss of
generality, that the leading monomial of r − r′ is a monomial of r. Then we have that
the leading monomial of an element of S divides the leading a monomial of r, which
contradicts Theorem 6.7, Property i), hence r = r′.

Remark 6.10
Due to Corollary 6.9, we can represent any element f of the ring R/I, using its reduced
normal form, with respect to a standard basis S of I, if the latter is actually computable.
Corollary 6.11
Let I ⊂ RN be an R-module, N ∈ N and S, S ′ two reduced standard bases of I. Then S = S ′.

Proof:
See [7, Corollary 7.2.11], using, that we can replace C be any complete real valua-
tion field of characteristic 0 or suitable fields compatible with the Grauert-Hironaka-
Galligo Division Theorem.

For actual computations in power series rings, the following theorems are important.
The first theorem states, that we can reduce the case of a convergent power series
ring to the formal power series ring and the second one states, that we can reduce the
computation in a polynomial setup to the computation in the polynomial ring.
Theorem 6.12
Let f1, . . . , fm ∈ K〈〈x1, . . . , xn〉〉 ⊂ K[[x1, . . . , xn]], both equipped with a compatible local
degree ordering, and I = 〈f1, . . . , fm〉 ⊂ K〈〈x1, . . . , xn〉〉. If S := {f1, . . . , fm} is a standard
basis of I , then S is a standard basis of IK[[x1, . . . , xn]].

Proof:
Let S be a standard basis of I . Every element f ∈ IK[[x1, . . . , xn]] can be written as∑m

i=1 gifi with gi ∈ K[[x1, . . . , xn]]. If f 6= 0 we can find a c ∈ N, such that LM(f) /∈
〈x〉c. So every element of 〈x〉c has a smaller leading monomial than LM(f). Choose
g′i ∈ K[x1, . . . , xn], such that gi − g′i ∈ 〈x〉c. Consider f ′ =

∑m
i=1 g

′
ifi. Then f ′ ∈ I and

f − f ′ ∈ 〈x〉c, hence LM(f) = LM(f ′) ∈ L(I).

Theorem 6.13
Let K[x1, . . . , xn] ⊂ R be equipped with compatible local degree orderings. Let I be an ideal
of K[x1, . . . , xn]. If S is a standard basis of I , then S is a standard basis of IR.

Proof:
It is the same proof as for Theorem 6.12.
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Theorem 6.13 motivates the following definition.
Definition 6.14
Let I ⊂ K[[x1, . . . , xn]] be an ideal. We call I a polynomial ideal, if there exists an ideal
J ⊂ K[x1, . . . , xn], such that I = JK[[x1, . . . , xn]].

Remark 6.15
As we cannot work with infinite sums on a computer, every actual standard basis computation
is reduced to a computation on polynomial ideals.

The last theoretical aspect of standard bases we want to mention are syzygies, as these
can be computed using standard bases. An algorithm for the computation follows in
the upcoming section. Let us define syzygies.
Definition 6.16
A syzygy between k elements f1, . . . , fk of an R-module M is a k-tuple (g1, . . . , gk) ∈ Rk

satisfying
k∑
i=1

gifi = 0.

Assume I := 〈f1, . . . , fk〉, then we write syz(I) := syz(f1, . . . , fk) for the set of syzygies of
I, with respect to the generators f1, . . . , fk.

Lemma 6.17
LetR be a Noetherian ring and f1, . . . , fk be elements of anR-moduleM. Then syz(f1, . . . , fk)
is an R-module. If f1, . . . , fk and g1, . . . , gm are sets of generators for M, then

syz(f1, . . . , fk)⊕
m⊕
i=1

Rei ∼= syz(g1, . . . , gm)⊕
k⊕
i=1

Rei.

If k = m, then syz(f1, . . . , fk) ∼= syz(g1, . . . , gk). Moreover, if R is a local ring and f1, . . . , fk
and g1, . . . , gm are minimal sets of generators for M, then syz(M) is well-defined up to iso-
morphism.

Proof:
Let I := 〈f1, . . . , fk〉 ⊂ M. To show that syz(I) is an R-module, we consider the fol-
lowing map:

ψ :
k⊕
i=1

Rei →M, ei 7→ fi,

where {e1, . . . , ek} denotes the canonical basis of Rk. Now it is obvious, that ker(ψ) =
syz(I), hence syz(I) is an R-module. For the proof, we are going to use Schanuel’s
Lemma (see [18, Excercise 2.5.5]). Assume we have I = 〈f1, . . . , fk〉 = 〈g1, . . . , gm〉,
then we get the following exact sequences:
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0 syz(f1, . . . , fk) Rk I 0

0 syz(g1, . . . , gm) Rm I 0

π1

π2

where π1 :
⊕k

i=1Rei → I, ei 7→ fi and π2 :
⊕m

i=1Rei → I, ei 7→ gi. Using Schanuel’s
Lemma, we get syz(f1, . . . , fk)⊕Rm ∼= syz(g1, . . . , gm)⊕Rk.
Now assume that k = m, then we get the following commutative diagram:

0 syz(f1, . . . , fk) syz(f1, . . . , fk)⊕Rk Rk 0

0 syz(g1, . . . , gk) syz(g1, . . . , gk)⊕Rk Rk 0

∼= ∼= ∼=

As the second and third arrow from the top row to the bottom row are isomorphisms,
we know by basic results from homological algebra, that we can choose the first one
to be an isomorphism, too. If R is a local ring, we have that every minimal set of
generators of a finitely generated module has the same number of elements, due to
Nakayama’s Lemma, hence we can always assume k = m in the local case and we are
done.

As the last result of this section, we state how to compute the syzygy module using
standard bases.
Lemma 6.18
Let I = 〈f1, . . . , fk〉 ⊂ RN =

⊕N
i=1 Rei, where e1, . . . , eN denotes the canonical basis of RN .

Consider the canonical embedding

RN ⊂ RN+k =
N+k⊕
i=1

Rei

and the canonical projection π : RN+k → Rk. Let S = {g1, . . . , gs} be a standard basis
of F = 〈f1 + eN+1, . . . , fk + eN+k〉 with respect to an elimination ordering for e1, . . . , eN .

Suppose that {g1, . . . , gl} = S ∩
⊕N+k

i=N+1Rei, then

syz(I) = 〈π(g1), . . . , π(gl)〉.

Proof:
See [18, Lemma 2.5.3].
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6.2 Algorithmic Aspects of Standard Bases in Power
Series Rings

This section is dedicated to results regarding the algorithmic use of standard bases.
From now, R will denote either K[x1, . . . , xn] or K[x1, . . . , xn]> ∼= K[x1, . . . , xn]〈x〉 and
with a fixed local degree ordering, as we can perform computations only on polyno-
mial input. We do not focus on actual algorithms for the computation of standard
bases or normal forms, as they do not give us any insight for the algorithms we are
going to need. Results on these can be found in [18, Chapter 1.6,1.7 and 2.3]. We are
using SINGULAR (see [8]) for the computation of standard bases.

Before we start with algorithms, we need to argue, why we can pass from S :=
K〈〈x1, . . . , xn〉〉 or S := K[[x1, . . . , xn]] to the polynomial case. The fact, that we can
compute the standard bases of ideals in the polynomial case follows from Theorem
6.12 and Theorem 6.13, so we only need to argue, why we can compute syzygies. First
consider the case R := K[x1, . . . , xn]〈x〉 for some n ∈ N, and f1, . . . , fj ∈ Rk for some
k ∈ N. Denote by φ : R ↪→ S the natural injection of R into S, by mR the maximal
ideal of R and by mS the maximal ideal of S. Using [16, Theorem B.5.1, (4)], with
M := S and I := mR, we get that M/IkM ∼= S/mk

S
∼= R/mk

R for all k ≥ 1, hence S
is R-flat. Now let A := K[x1, . . . , xn], then R is A-flat by [16, Proposition B.3.3 (6)].
Using [16, Proposition B.3.3 (2)], we get that S is A-flat. For more details on the no-
tion of flatness, see [16, Appendix B.3 and B.5]. Now consider the following exact
sequence:

0 syzR(f1, . . . , fk) Rk 〈f1, . . . , fk〉R 0.
(f1,...,fk)

Applying −⊗R S yields:

0 syzR(f1, . . . , fk)⊗R S Rk ⊗R S 〈f1, . . . , fk〉R ⊗R S 0.
(f1,...,fk)

Using 〈f1, . . . , fk〉R ⊗R S ∼= 〈f1 ⊗R 1, . . . , fk ⊗R 1〉S , which holds if S is R-flat, and
Rk ⊗R S ∼= Sk, we get that syzR(f1, . . . , fk)⊗R S ∼= syzS(f1 ⊗R 1, . . . , fk ⊗R 1).

Now we can start with the first use of standard bases, namely testing, whether a given
element is contained in a given finitely generated submodule of RN or not.
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Algorithm 1 Module Membership
INPUT: f, f1, . . . , fk ∈ RN with I = 〈f1, . . . , fk〉R.
OUTPUT: 1, if f ∈ I, 0 else.

1: Compute a standard basis S of I
2: Compute r := NF(f |S)
3: if r = 0 then
4: return 1
5: else
6: return 0
7: end if

Theorem 6.19
Algorithm 1 terminates and works correctly.

Proof:
As the algorithms for standard bases and normal form computation terminate, Al-
gorithm 1 terminates. The algorithm works correctly, due to the fact, that a reduced
normal form returns 0 if and only if our element f is contained in I .

The next algorithm states how to intersect a given finitely generated submodule I of
RN with a free submodule of RN .

Algorithm 2 Intersection with Free Submodules
INPUT: f1, . . . , fk ∈ RN with I = 〈f1, . . . , fk〉R and s ∈ N.
OUTPUT: I ′ = I

⋂⊕N
i=s+1 Rei.

1: Compute a standard basis S of I, with respect to the module ordering

xαei < xβej :⇐⇒ j < i or (j = i and xα < xβ);

2: return S ′ := {g ∈ S|LM(g) ∈
⊕N

i=s+1Rei}

Theorem 6.20
Algorithm 2 terminates and works correctly.

Proof:
As the algorithms for standard bases and normal form computation terminate, Algo-
rithm 2 terminates. The algorithm works correctly due to [18, Lemma 2.8.2].

Our next algorithm is the syzygy computation algorithm.
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Algorithm 3 Computation of Syzygies
INPUT: f1, . . . , fk ∈ RN .
OUTPUT: S = {s1, . . . , sl}, such that 〈S〉 = syz(f1, . . . , fk) ⊂ Rk.

1: Set F := 〈f1 + eN+1, . . . , fk + eN+k〉, where e1, . . . , eN+k denotes the canonical basis
of RN+k = RN ⊕Rk such that f1, . . . , fk ∈ RN ;

2: Compute a standard basis G of F, with respect to an elimination ordering for
e1, . . . , eN ;

3: Set G0 := G ∩
⊕N+k

i=N+1Rei = {g1, . . . , gl}with gi =
∑k

j=1 aijeN+j, i = 1, . . . , l;
4: si := (ai1, . . . , aik), i = 1, . . . , l;
5: return S = {s1, . . . , sl}.

Theorem 6.21
Algorithm 3 terminates and works correctly.

Proof:
Algorithm 3 terminates, as all algorithms used in the steps terminate. The algorithm
works correctly due to Lemma 6.18.

The final algorithm in this section, is an algorithm for the intersection of two finitely
generated submodules of RN . Before we can state the algorithm, we need the follow-
ing lemma.
Lemma 6.22
Let f1, . . . , fk, h1, . . . , hs ∈ RN , I = 〈f1, . . . , fk〉R and I ′ = 〈h1, . . . , hs〉R. Moreover, let
c1, . . . , cN+k+s ∈ R2N be the columns of the 2N × (N + k + s)-matrix



1 0
. . . f1 . . . fk 0 . . . 0

0 1
1 0

. . . 0 . . . 0 h1 . . . hs
0 1


.

Then g ∈ I ∩ I ′ ⊂ RN if and only g appears as the first N components of some g′ ∈
syz(c1, . . . , cN+k+s) ⊂ RN+k+s.

Proof:
Consider any syzygy for the columns of the matrix in Lemma 6.22, say λ1, . . . , λN+k+s.
Due to the structure of our matrix, we get for the first N rows a sum of the type
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∑N
i=1 λiei +

∑N+k
i=N+1 λifi = 0, hence the first N components of our relation lie in I. An

analogous statement yields that they lie in I ′, hence in I ∩ I ′. If g ∈ I ∩ I ′, it is easy to
see that we can construct an element of our syzygy module.

Now we can state the algorithm to compute the intersection of two finitely generated
submodules I and I ′ of RN .

Algorithm 4 Intersection of Submodules
INPUT: f1, . . . , fk, h1, . . . , hs ∈ RN with I = 〈f1, . . . , fk〉R and I ′ = 〈h1, . . . , hs〉R.
OUTPUT: A set P = {p1, . . . , pl}, such that 〈P 〉 = I ∩ I ′.

1: Let ci, i = 1, . . . , N + k + s, be the columns of the matrix in Lemma 6.22;
2: Compute M = {g1, . . . , gl} = syz(c1, . . . , cN+k+s) using Algorithm 3;
3: Define pi, i = 1, . . . , l, to be the projections of the gi to their first N components;
4: return P := {p1, . . . , pl}

Theorem 6.23
Algorithm 4 terminates and works correctly.

Proof:
As the algorithms used Algorithm 4 terminate, it terminates itself. The algorithm
works correctly due to Lemma 6.22.

6.3 Homogeneities of Complete Analytic Algebras

In this section we use standard bases to compute the module of logarithmic deriva-
tions DerI(R), of a given ideal I ⊂ K[x1, . . . , xn]. After that, we are use our results
from the Formal Structure Theorem to state an algorithm for the computation of the
maximal multi-homogeneities of the given ideal, respectively the resulting quotient
ring K[[x1, . . . , xn]]/I. We set K = Q, as we expect a rational result for our multi-
homogeneities, due to Theorem 3.42. At this point we cannot state any results re-
garding the coordinates, in which our ideal has the maximal multi-homogeneity. A
formal coordinate change, consisting of power series, is possible (see [13, Theorem
5.3]), but we cannot guarantee, that it is computable. The latter means, that we do not
know, if we can find a polynomial coordinate change, such that we have a coordinate
system in which our ideal has the maximal multi-homogeneity.

Remark 6.24
In this section we set R := Q[x1, . . . , xn] for some n ∈ N, as long as we consider algorithms.
I ⊂ R denotes an ideal of R generated by f1, . . . , fk for some k ∈ N.
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Let us start with our first result, which is the inspiration for the idea of the computa-
tion of DerI(R).

Lemma 6.25
Let R := Q[x1, . . . , xn] and I := 〈f1, . . . fk〉 ⊂ R an ideal. Furthermore, set

A :=

∂x1f1 . . . ∂xnf1 f1 0 . . . fk 0
...

... . . . . . .
∂x1fk . . . ∂xnfk 0 f1 . . . 0 fk

 .

Then DerI(R) ∼= ker(φ)∩Rn, where φ : Rn+n·k → Rk is the module homomorphism induced
by the matrix A. We consider Rn ⊂ Rn+n·k as the free module generated by the first n
components of Rn+n·k.

Proof:
Let (g1, . . . , gn) ∈ ker(φ) ∩ Rn, then δ :=

∑n
i=1 gi∂xi is a derivation and using the

definition of ker(φ), we get that δ(fj) ∈ I for all j = 1, . . . , k, hence δ ∈ DerI(R).
Now consider any element δ ∈ DerI(R), then δ can be written as δ =

∑n
i=1 gi∂xi ,

with gi ∈ R. As δ(I) ⊆ I, we can write δ(fj) =
∑n

i=1 gi∂xifj =
∑k

l=1 h
(j)
l fl, with

h
(j)
l ∈ R. Using this information, we can construct an element of the kernel of φ, thus

DerI(R) is isomorphic to a submodule of ker(φ)∩Rn. Combining both results, we get
DerI(R) ∼= ker(φ) ∩Rn.

Now we can state our Algorithm to compute a submodule ofRn,which is isomorphic
to DerI(R).

Algorithm 5 Module of Logarithmic Derivations
INPUT: f1, . . . , fk ∈ R with I = 〈f1, . . . , fk〉.
OUTPUT: A set P = {p1, . . . , pl}, such that 〈P 〉R ∼= DerI(R).

1: Let ci, i = 1, . . . , n+ n · k, be the columns of the matrix in Lemma 6.25;
2: Compute M = {g1, . . . , gl} = syz(c1, . . . , cn+n·k) using Algorithm 3;
3: Define pi, i = 1, . . . , l, to be the projections of the gi to their first n components;
4: return P := {p1, . . . , pl}

Theorem 6.26
Algorithm 5 terminates and works correctly.

Proof:
As the algorithms used Algorithm 5 terminate, it terminates itself. The correctness
follows from Lemma 6.25.
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For a SINGULAR implementation of Algorithm 5, see Appendix A.2, Algorithm
find der.

Before we can start the computation of multi-homogeneities, we show, that we can
pass to the linear parts of our result, as we know that there exists a set of coordi-
nates, where our semi-simple derivations, which encode the information regarding
the multi-homogeneity, are simultaneously in diagonal form. As every change of co-
ordinates in a formal power series ring results in a conjugate transformation in the
linear part, hence truncating and working exclusively with the representation matri-
ces of the derivations generating DerI(R) is sufficient.

Let us turn the previous comment into more precise mathematical results. To keep
our notation as simple as possible, we write morphisms of C〈〈x1, . . . , xn〉〉 into itself
using a vector notation. The i-th component of the vector represents the image of
xi.
Lemma 6.27
Let R := C〈〈x1, . . . , xn〉〉 for some n ∈ N. Then every φ ∈ Aut(R) can be written as φ(x) =
AxT + higher order terms in x, where x = (x1, . . . , xn) and A ∈ Cn×n, with det(A) 6= 0.

Proof:
First of all, we have that φ(0) = 0 has to be satisfied, as otherwise a non-unit is
mapped to a unit. Hence, we have that we can write φ as φ(x) = AxT+ higher order terms in x.
Using Theorem 3.9, we have that φ must induce an isomorphism on mR/m

2
R, thus A

has to be an invertible matrix.

Corollary 6.28
Let R := C〈〈x1, . . . , xn〉〉 for some n ∈ N and φ ∈ Aut(R). Assume φ(x) = AxT +
higher order terms in x for some A ∈ Cn×n, with det(A) 6= 0. Then φ−1 = A−1xT +
higher order terms in x.

Proof:
We know, that φ ◦ φ−1(x) = xT . Write φ−1 = BxT + higher order terms in x, with
B ∈ Cn×n and det(B) 6= 0. As all higher order terms do not affect the linear part, we
get that ABxT = xT , hence B = A−1.

Next, we investigate the affect on derivations ofR. We focus on the linear part, as this
is the only part, we are actually interested in.
Lemma 6.29
Let R := C〈〈x1, . . . , xn〉〉 for some n ∈ N and φ ∈ Aut(R). Furthermore, let yT := φ(x),
with φ(x) = AxT + higher order terms in x for some A ∈ Cn×n, with det(A) 6= 0. Further-
more, let yB∂yT , where B ∈ Cn×n, be the linear part of a given derivation δ ∈ Der(R) in
the coordinates given by y. Then xATB(A−1)T∂x

T is the linear part of δ before the coordinate
transformation by φ.
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Proof:
Applying the chain rule (see [14, Chapter 4, Folgerung 1]), we get ∂yi =

∑n
k=1 ∂yi(xk)∂xk .

As higher order terms do not affect our linear part during a coordinate transforma-
tion, we can directly assume φ(x) = AxT . This results in ∂y

T = (A−1)T∂x
T , as Corol-

lary 6.28 yields A−1yT = xT . Combining these results, we can write

yB∂y
T = xATB(A−1)T∂x

T .

Remark 6.30
By Theorem 4.42, we know, that we can find a set of coordinates, in which our semi-simple
derivations already equal their linear part and the latter is of diagonal form. We also know, by
Lemma 6.29, that this information is still contained in the linear part of the derivations after
any coordinate change, hence we can truncate our derivations and only consider the C-vector
space generated by their linear parts. Using Lemma 5.26, we can concentrate on the Cartan
subalgebra of the respective vector space.

Remark 6.30 justifies the following algorithm to compute the Cartan subalgebra from
Lemma 5.26.

Algorithm 6 Linear Part Cartan Subalgebra of DerI(R) ∩Der′(R)

INPUT: f1, . . . , fk ∈ R with I = 〈f1, . . . , fk〉.
OUTPUT: A set C = {A1, . . . , Al}, Ai ∈ Qn×n, such that the Ai span a Cartan subal-
gebra of the Lie algebra generated by the representation matrices of the elements of
DerI(R).

1: Compute a set P ′, such that 〈P ′〉 ∼= DerI(R) using Algorithm 5;
2: Compute a set P ′′, such that 〈P ′′〉 ∼= Der′(R) using Algorithm 5;
3: Compute a set P , such that 〈P 〉 ∼= DerI(R) ∩Der′(R) using Algorithm 4;
4: Compute the set of linear parts of the pi ∈ P . Denote it by N ;
5: Compute a list C = {A1, . . . Ak}, Ai ∈ Qn×n, such that the elements of C are a

basis of a Cartan subalgebra of the Lie algebra generated by the elements of N ;
6: return C

Theorem 6.31
Algorithm 6 terminates and works correctly.

Proof:
Clearly Algortihm 5 terminates by Theorem 6.26. Truncating is also a trivial opera-
tion and terminates. The computation of a Cartan subalgebra also terminates. For
an algorithm, see [6, Algorithm CartanSubAlgebraBigField]. Hence, our algorithm
terminates. The correctness follows by the correctness of the used algorithms.
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In our experiments, we have seen, that in most cases the Cartan subalgebra already
consisted of simultaneously diagonalizable matrices, hence we were able to compute
a set of vectors, generating a maximal multi-homogeneity. The main problem using
our algorithm is the fact, that we compute syzygies using standard bases, which have
a double exponential worst case complexity (see for example [34, Chapter 21.7.]).
Keeping the number of variables small and working with sparse polynomials or with
homogeneous polynomials, we were able to compute some examples. Let us take a
look at one of these examples of Algorithm 6. For further examples, see Appendix
A.1.
Example 6.32
Consider the ring R := C[[X, Y, Z,W ]] and the ideal I = 〈X4 − Y 2 + 8X2Z − 2Y Z −
Z2, 4X2Y +Y 2−9X2Z+3Y Z−XW, 6X2Y −3X2Z+2Y Z−Z2−XW,X3Z+ 4

7
XY Z−

9
7
XZ2 + 1

7
X2W − 2

7
YW − 2

7
ZW,XY Z− 5

3
XZ2 + 1

9
X2W − 1

3
YW − 4

9
ZW,Z3 + 13

21
X3W +

1
3
XYW + XZW − 5

21
W 2〉. Using our implementation of Algorithm 6 (see Appendix A.2,

Algorithm LieAlg der homog), we get the following basis for a Cartan subalgebra:

A =


1
3

0 0 0
0 2

3
0 0

0 0 2
3

0
0 0 0 1

 .

As we have only one element, we know that these are all homogeneities of our ideal. Taking a
closer look at our equations for I , we can see that we are already in a system of coordinates,
where it has its maximal homogeneity.

A problem arises, if we have more than one basis vector in the result of our compu-
tation using Algorithm 6. Theoretically we expect only rational eigenvalues for our
diagonalizable matrices, due to Theorem 4.44. The following example shows, that
we need to be able to handle algebraic numbers in our computation. As we work with
rational matrices, their characteristic polynomials have rational coefficients and we
get that our eigenvalues are algebraic numbers. The main problem is, that SINGU-
LAR, at the moment, cannot handle diagonalization of matrices with non-rational
eigenvalues in a way, in which it extends its base field automatically during the com-
putation. Therefore, we have to use MAGMA (see [5],[3]) for the computation of the
simultaneous diagonalization of our matrices.
Example 6.33
Consider the ring R := C[[X, Y, Z]] and the ideal I = 〈X7 + Y 2 + Z2〉. Using SINGULAR
we get

A =

2
7

0 0
0 1 0
0 0 1

 and B =

0 0 0
0 0 −1
0 1 0


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as the results of Algorithm 6. Computing the simultaneous diagonalization using MAGMA,
we get

A′ =

1 0 0
0 1 0
0 0 2

7

 and B′ =

−i 0 0
0 i 0
0 0 0


as the result, where i is the imaginary unit satisfying i2 = −1. We have to keep in mind, that
we actually work over a C-vector space, hence we can multiply the second matrix with i and
get as a final result:

A1 =

1 0 0
0 1 0
0 0 2

7

 and A2 =

1 0 0
0 −1 0
0 0 0

 .

Remark 6.34
The reader has to be careful in the interpretation of our results. We can compute the maximal
homogeneity of an ideal of a power series ring, but we cannot state, in which coordinate system
our ideal has this maximal multi-homogeneity.
Example 6.35
Consider the setup from Example 6.33. Using the identity a2 + b2 = (a + ib)(a − ib), we
can write the polynomial generating our ideal as x7 + (y + iz)(y − iz). Define a coordinate
change as follows X = x, Y = y + iz and Z = y − iz, then the polynomial can be written as
X7 + Y Z and we can easily see, that (2

7
, 1, 1) and (0, 1,−1) are homogeneities.

An open question is, whether we always have a polynomial coordinate change (possi-
bly over the complex numbers), such that our ideal has its maximal multi-homogeneity
in the new coordinates or not. We are still investigating this aspect, as it is not clear, if
it can be proven in general or at least for some special type of ideals, as for example
for isolated hypersurface singularities.

Our final example shall show another problem we have with our computations. As
we have seen in the previous computations, our resulting Cartan subalgebra con-
sisted only of diagonalizable derivations. Although we do not have any counterex-
amples, we assume this to be false in general. Consider the Lie algebra from Example
2.56 and denote it by g. We know, that a Cartan subalgebra of this special Lie algebra
is the subalgebra generated by all diagonal matrices. In general we cannot expect any
subalgebra of g to have a similar structure for its own Cartan subalgebra. There is a
special type of subalgebras where this holds, namely a subalgebra, where g = h ⊕ i,
with h being a nilpotent subalgebra generated by diagonal matrices and i being an
ideal. Then h̄ is the only Cartan subalgebra of g/i and we get immediately, that h is
a Cartan subalgebra of g. The question is, what is this having to do with our prob-
lem? Assume we have a positively graded Lie algebra g, that is, we can decompose
g as g0 ⊕ ga1 ⊕ . . . ⊕ gak with ak being positive integers. Then it is easy to see, that
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i := ga1 ⊕ . . . ⊕ gak is an ideal of g, as [gai , gaj ] ⊆ gai+aj . This idea can be extended
to a multi-grading on our Lie algebra of linear parts. If we know, that there exists a
grading, which is induced by a diagonalizable derivation and has only positive de-
gree components, we have exactly the previous setup. Our next example, which is
taken from [12, Example 1.2], shows that the previous setup cannot be expected in
general.
Example 6.36
Let R := C[[x1, . . . , x7]] and

f1 := x1x4 + x2x5 + x2
3 − x5

4 + x5
7

f2 := x1x5 + x2x6 + x2
3 + x5

6 + 5x5
7.

Now define I := 〈f1, f2〉. Then our algorithm yields the following representation matrix for
our (Q,+) grading:

A =



4 0 0 0 0 0 0
0 4 0 0 0 0 0
0 0 5

2
0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

This result means, that, after clearing denominators, we only have a grading generated by the
vector (8, 8, 5, 2, 2, 2, 2). Let

σ := 8x1∂x1 + 8x2∂x2 + 5x3∂x3 + 2x4∂x4 + 2x5∂x5 + 2x6∂x6 + 2x7∂x7

and
η := 2x3(x5 − x6)∂x1 − 2x3(x4 − x5)∂x2 + (x4x6 − x2

5)∂x3 .

Simple computations yield σ, η ∈ Der′I(R) and [σ, η] = −η. This result means, that we have
a derivation η, which is contained in a component with negative degree.

6.4 Prospect

Our computational results for Algorithm 6 match the theoretical results, which we
expect by the Formal Structure Theorem (see Theorem 4.44). An important problem
regarding this topic, which is still open, is how to handle the situation, where the
resulting Cartan subalgebra contains nilpotent matrices in its vector space basis. A
non-deterministic solution is to simply compute a random linear combination of our
matrices. If the semi-simple part of the resulting matrix is not a semi-simple matrix,
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which is known to us, we add it to the list of known semi-simple matrices and com-
pute a basis supplement. We did not implement this approach, as SINGULAR does
not contain the necessary tools at the moment. A further question is, if this problem
can be solved deterministically using an algorithm with polynomial complexity. A
further project has to be an algorithm, that is able to state an explicit set of coordi-
nates, in which our ideal has its maximal multi-homogeneity. This task is combined
with the theoretical question, if this coordinate change can be stated constructively
using polynomials, if the initial input was polynomial data. Our proofs in Chapter 4
and Chapter 5 use formal coordinate changes, but we do not know, if it can be shown,
that a polynomial coordinate change suffices. A final question is, if our algorithm can
be optimized in a way, such that is works faster and uses less memory (see Appendix
A.1). To do so, more experimental results are needed, especially with different algo-
rithms for the syzygy computation, as this seems to be the most expensive step in the
computation.



A Appendix

A.1 Experimental Results

The following tables contain experimental results we obtained by using the imple-
mentation of Algorithm 6. The polynomials are randomly generated sparse polyno-
mials, which were generated by using the sparsepoly function of SINGULAR’s ran-
dom.lib. We used the monomial ordering ds.
The first input were two polynomials f, g and we computed the maximal multi-
homogeneities of the ideal I = 〈f, g〉, which was considered as an ideal of Q[[x, y]].

Polynomial f Polynomial g Degree Homogeneities
x+ 2xy + x3 + 3x2y2 5y + 3x2 + 2x2y + 4y4 4 (1, 0), (0, 1)

4y + 4y2 + 3xy2 + 4xy3 + xy4 5y + 2x2 + 4y3 + 3x2 + y2 + 3y5 5 (1, 0), (0, 1)
5x+ 3y2 + 5x3 + 4xy3 + 5x5 + x6 + 5x2y5 + 4y8 5x+ xy + 5xy2 + 5x3y + 2x2y3 + 3x3y3 + 3x6y + 3y8 8 no result

2y + y2 + xy2 + 4y4 + y5 + 4x2y4 + 4y7 + 2x2y6 + 2x3y6 + y10 y + 4xy + 5xy2 + 4x4 + 4x5 + 5y6 + 2y7 + 3x7y + 5x9 + 2y10 10 no result

Table A.1: Experimental results for the computation of maximal multi-homogeneities of
ideals generated by two polynomials

The second input were three polynomials f, g, h and we computed the maximal multi-
homogeneities of the ideal I = 〈f, g, h〉, which was considered as an ideal of Q[[x, y, z]].

Polynomial f Polynomial g Polynomial h Degree Homogeneities
4x+ z2 + 4xyz 4x+ z2 + 3x3 x+ 2y2 + 5x2z 3 (1, 0, 0), (0, 1, 1)

5y + z2 + 5x3 + xyz2 + 3xz4 + z5 4x+ 4z2 + 3x2z + x4 + x3z2 + 2z5 x+ 3y2 + 2yz2 + 5xz3 + 5xy2z2 + 4xyz3 5 no result
2x+ 3z2 + 3xz2 + 2x3y + 3x2z3 + 4yz5 + 2xz6 2x+ 4x2 + 3x2z + xyz2 + 4x5 + xy2z3 + xy6 x+ 3z2 + 5x2y + 3xz3 + 3x4y + 2y4z2 + 2x2y3z2 7 no result

Table A.2: Experimental results for the computation of maximal multi-homogeneities of
ideals generated by three polynomials

No result means, that our working memory, which was around 1000MB, was exceeded
and SINGULAR was not able to finish the computation. This seems to happen due to
coefficient explosions during the computation of the module of logarithmic deriva-
tions. We observed, that the rational coefficients of some derivations were large num-
bers, with more than twenty digits. The number of generators of our module was
around 50, so that SINGULAR seems to deal with a large amount of data. We omit
an example for the coefficient explosion, as we cannot properly include it into our
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thesis. The reader may do the computations for Example 6.32 using our algorithms
and verify our claim.

A.2 SINGULAR Library for Lie Algebras and
Derivations

The following is the SINGULAR library we have written for basic computations re-
garding Lie algebras and for the computations in Chapter 6. For details on the algo-
rithms regarding Lie algebras, we refer the reader to [6].

1 ///////////////////////////////////////////////////////////////////////////////
2 vers ion =" vers ion LieAlg . l i b 4 . 0 . 2 . 0 May_2015 " ; // $Id$
3 category ="Non−commutative Algebra " ;
4 i n f o ="
5 LIBRARY : LieAlg . l i b Compute with Lie Algebras
6 AUTHORS: Raul Epure , epure@mathematik . uni−kl . de
7 LITERATURE :
8 [ Coh00 ] H. Cohen , A Course In Computational Algebraic Number Theory
9 [ DGr00 ] W. deGraaf , Lie Algebras : Theory And Algorithms

10 [ Epe15 ] R.−P . Epure , Homogeneity and Der ivat ions on Analyt ic Algebras , Master Thesis
11 //////////////////////////////////////////////////////////////////////////////
12
13 PROCEDURES:
14
15 ////BASIC ALGORTIHMS FOR LIE ALGEBRAS////////////////////////////////////////
16 LieAlg_Basis ( l i s t l , i n t n ) ; // Given a l i s t of matr ices t h i s algorithm re turns a vec tor space b a s i s f o r the given Lie Algebra
17 LieAlg_dim ( l i s t B) ;// Returns the dimension of the given Lie Algebra with b a s i s B
18 LieAlg_coef f s ( LieAlg L , l i s t B ) ; // Returns the c o e f f i c i e n t s of L with r e s p e c t to the b a s i s B
19 LieAlg_adjointmat ( LieAlg L , l i s t B ) ; // Returns the a d j o i n t r e p r e s e n t a t i o n matrix of L with r e s p e c t to the Lie Algebra Bas i s B
20 LieAlg_nonni lpotente l t ( l i s t B ) ; // Checks whether the Lie Algebra i s n i l p o t e n t or re turns a non−n i l p o t e n t element
21 L i e A l g _ s t r u c t u r e c o n s t ( l i s t B ) ; // Returns the s t r u c t u r e cons tants f o r the Lie Algebra with b a s i s B
22 L i e A l g _ c e n t r a l i z e r ( l i s t B , l i s t C ) ; // Returns the C e n t r a l i z e r of C in B
23 LieAlg_normalizer ( l i s t B , l i s t C ) ; // Returns the Normalizer of C in B
24 LieAlg_complement ( l i s t B , l i s t C ) ; // Returns the Lie Algebra Complement of C in B
25 LieAlg_productspace ( l i s t B , l i s t C ) ; //Returns the Lie Algebra generated by [ B ,C]
26
27 ////COMPUTATION OF DECOMPOSITIONS AND CARTAN SUBALGEBRAS/////////////////////
28 LieAlg_fi t t ingonecomponent ( l i s t B , l i s t C) ;// Returns the f i t t i n g one component of B with r e s p e c t to C ( i f C i s n i l p o t e n t )
29 LieAlg_f i t t ingzerocomponent ( l i s t B , l i s t C) ;// Returns the f i t t i n g zero component of B with r e s p e c t to C ( i f C i s n i l p o t e n t )
30 LieAlg_Cartan ( l i s t B ) ; //Computes a Cartan−subalgebra f o r the Lie Algebra generated by B
31
32 ////ALGORITHMS FOR LIE ALGEBRAS OF DERIVATIONS///////////////////////////////
33 f ind_der ( i d e a l I ) ; // Computes the module of I logar i thmic d e r i v a t i o n s
34 d e r _ m a t l i s t ( module D) ; // Truncates a given module of d e r i v a t i o n s and re turns a generat ing s e t f o r the r e s p e c t i v e Lie Algebra
35 LieAlg_der_homog ( i d e a l I ) ; // Computes the Cartan Subalgebra of the I i n v a r i a n t d e r i v a t i o n s .
36 " ;
37 LIB " l i n a l g . l i b " ;
38 LIB " matrix . l i b " ;
39
40
41 //////////////////////////////////////////////////////////////////////////////
42 ////DEFINITION OF OUR NEW STRUCTURE///////////////////////////////////////////
43 //////////////////////////////////////////////////////////////////////////////
44
45 s t a t i c proc mod_init ( )
46 {
47 newstruct ( " LieAlg " , " matrix Mat " ) ; // D e f i n i t i o n of our new s t r u c t u r e .
48 system ( " i n s t a l l " , " LieAlg " , " = " , LieAlg_eq , 1 ) ; // r e d i f i n i n g "=" f o r " LieAlg "
49 system ( " i n s t a l l " , " LieAlg " , " = = " , LieAlg_eqtest , 2 ) ; // r e d i f i n i n g "==" f o r " LieAlg "
50 system ( " i n s t a l l " , " LieAlg " , " ! = " , L ieAlg_ ineqtes t , 2 ) ; // r e d i f i n i n g " ! = " f o r " LieAlg "
51 system ( " i n s t a l l " , " LieAlg " , " + " , LieAlg_add , 2 ) ; // r e d i f i n i n g "+" f o r " LieAlg "
52 system ( " i n s t a l l " , " LieAlg " ,"−" , LieAlg_sub , 2 ) ; // r e d i f i n i n g "−" f o r " LieAlg "
53 system ( " i n s t a l l " , " LieAlg " , "∗ " , LieAlg_mult , 2 ) ; // r e d i f i n i n g "∗" f o r " LieAlg
54 }
55 ///////////////////////////////////////////////////////////////////////////////
56 ////MAIN ALGORITHMS FOR LIE ALGEBRAS ///////////////////////////////////////
57 ///////////////////////////////////////////////////////////////////////////////
58
59 ///////////////////////////////////////////////////////////////////////////////
60 ////OPERATIONS ON LIE ALGEBRA ELEMENTS/////////////////////////////////////////
61 ///////////////////////////////////////////////////////////////////////////////
62
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63 s t a t i c proc LieAlg_eq ( matrix A)
64 "USAGE: LieAlg_eq (A) ; A matrix .
65 @∗
66 RETURN: An element L of our " LieAlg " s t r u c t u r e , with value s e t to A.
67 NOTE: The matrix A has to be a square matrix .
68 EXAMPLE: example LieAlg_eq ; shows an example
69 "
70 {
71 LieAlg L ;
72 L . Mat=A;
73 return ( L ) ;
74 }
75 example
76 {
77 r ing r =0 ,x , dp ;
78 matrix A=unitmat ( 3 ) ;
79 LieAlg L ; L=A;
80 L ;
81 }
82
83
84 ///////////////////////////////////////////////////////////////////////////////
85 s t a t i c proc LieAlg_add ( LieAlg L , LieAlg G)
86 "USAGE: LieAlg_add ( L ,G) ; L LieAlg , G LieAlg .
87 @∗
88 RETURN: An element M of our " LieAlg " s t r u c t u r e , with value s e t to L+G.
89 NOTE: L and G need to have the same s i z e as matr ices .
90 EXAMPLE: example LieAlg_add ; shows an example
91 "
92 {
93 LieAlg M;
94 matrix A=L . Mat+G. Mat ;
95 M=A;
96 return (M) ;
97 }
98 example
99 {

100 r ing r =0 ,x , dp ;
101 matrix A=unitmat ( 3 ) ;
102 LieAlg L ; LieAlg G;
103 L=A; L=G;
104 L+G;
105 }
106 ///////////////////////////////////////////////////////////////////////////////
107 ///////////////////////////////////////////////////////////////////////////////
108 s t a t i c proc LieAlg_sub ( LieAlg L , LieAlg G)
109 "USAGE: LieAlg_sub ( L ,G) ; L LieAlg , G LieAlg .
110 @∗
111 RETURN: An element M of our " LieAlg " s t r u c t u r e , with value s e t to L+G.
112 NOTE: L and G need to have the same s i z e as matr ices .
113 EXAMPLE: example LieAlg_add ; shows an example
114 "
115 {
116 LieAlg M;
117 matrix A=L . Mat−G. Mat ;
118 M=A;
119 return (M) ;
120 }
121 example
122 {
123 r ing r =0 ,x , dp ;
124 matrix A=unitmat ( 3 ) ;
125 LieAlg L ; LieAlg G;
126 L=A; L=G;
127 L−G;
128 }
129 ///////////////////////////////////////////////////////////////////////////////
130 ///////////////////////////////////////////////////////////////////////////////
131 s t a t i c proc LieAlg_mult ( L , LieAlg G)
132 "USAGE: LieAlg_mult ( L ,G) ; L , G LieAlg .
133 @∗
134 RETURN: An element M of our " LieAlg " s t r u c t u r e , with value s e t to L∗G, where
135 ∗ denotes the c l a s s i c a l Lie Braket m u l t i p l i c a t i o n .
136 NOTE: L and G need to have the same s i z e as matr ices .
137 EXAMPLE: example LieAlg_add ; shows an example
138 "
139 {
140 i f ( typeof ( L)==" LieAlg " )
141 {
142 LieAlg M;
143 M. Mat=L . Mat∗G. Mat−G. Mat∗L . Mat ;
144 return (M) ;
145 }
146 e l s e
147 {
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148 LieAlg M;
149 M. Mat=L∗G. Mat ;
150 return (M) ;
151 }
152 }
153 example
154 {
155 r ing r =0 ,x , dp ;
156 matrix A=unitmat ( 3 ) ;
157 LieAlg L ; LieAlg G;
158 L=A;G=A;
159 L∗G;
160 }
161 ///////////////////////////////////////////////////////////////////////////////
162 ///////////////////////////////////////////////////////////////////////////////
163
164
165 s t a t i c proc LieAlg_eqtes t ( LieAlg L , LieAlg G)
166 "USAGE: LieAlg_eqtes t ( L ,G) ; L LieAlg , G LieAlg .
167 @∗
168 RETURN: 1 i f L equals G, 0 e l s e
169 EXAMPLE: example LieAlg_eqtes t ; shows an example
170 "
171 {
172 //Comparing the matr ices
173 i f ( L . Mat==G. Mat )
174 { re turn ( 1 ) ; }
175 e l s e
176 { re turn ( 0 ) ; }
177 }
178 example
179 {
180 r ing r =0 ,x , dp ;
181 matrix A=unitmat ( 3 ) ;
182 LieAlg L=A; LieAlg G=A;
183 L==G;
184 }
185
186
187 ///////////////////////////////////////////////////////////////////////////////
188 ///////////////////////////////////////////////////////////////////////////////
189
190
191 s t a t i c proc L i e A l g _ i n e q t e s t ( LieAlg L , LieAlg G)
192 "USAGE: L i e A l g _ i n e q t e s t ( L ,G) ; L LieAlg , G LieAlg .
193 @∗
194 RETURN: 0 i f L equals G, 1 e l s e
195 EXAMPLE: example L i e A l g _ i n e q t e s t ; shows an example
196 "
197 {
198 i f ( L==G)
199 { re turn ( 0 ) ; }
200 e l s e
201 { re turn ( 1 ) ; }
202 }
203 example
204 {
205 r ing r =0 ,x , dp ;
206 matrix A=unitmat ( 3 ) ;
207 LieAlg L=A; LieAlg G=A;
208 L!=G;
209 }
210
211
212 ///////////////////////////////////////////////////////////////////////////////
213 ////BASIC ALGORTIHMS FOR LIE ALGEBRAS//////////////////////////////////////////
214 ///////////////////////////////////////////////////////////////////////////////
215 proc LieAlg_Basis ( l i s t l , i n t n )
216 "USAGE: LieAlg_Basis ( l , n ) ; l l i s t , n i n t e g e r .
217 @∗
218 RETURN: A l i s t of elements of type LieAlg , which are the b a s i s of the Lie a lgebra
219 generated by the input matr ices .
220 NOTE: The matr ices contained in the l i s t l need to have the same s i z e .
221 THEORY: This algorithm computes a b a s i s f o r a Lie a lgebra using a simple approach :
222 F i r s t we compute a vec tor space b a s i s . Then we compute a l l pairwise products
223 and add them to our l i s t of elements . Then we compute again a vec tor space b a s i s
224 of the r e s u l t i n g space . Now are two p o s s i b i l i t i e s . The f i r s t , i s t h a t our
225 dimension does not increase , then we have our b a s i s f o r the Lie algebra , as
226 f u r t h e r products can be reduced to the elements already contained in our l i s t .
227 I f the dimension i n cr e as e s , we repeat t h i s procedure u n t i l i t s tops i n c r e a s i n g .
228 As we are deal ing with f i n i t e dimensional Lie algebras , t h i s process has to
229 stop at some point .
230 EXAMPLE: example LieAlg_Basis ; shows an example
231 "
232 {
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233 i n t i ; i n t j ;
234 i n t d ;
235 l i s t l l ;
236 LieAlg L ;
237
238
239 //Construct ing the b a s i s
240 l =matsp_basis ( l , n , n ) ;
241 i f ( s i z e ( l )==0)
242 {
243 matrix O[ n ] [ n ] ;
244 L=O;
245 l l = i n s e r t ( l l , L ) ;
246 return ( l l ) ;
247 }
248
249
250 while ( s i z e ( l ) >d )
251 {
252 d= s i z e ( l ) ;
253 f o r ( i =1 ; i <=d ; i ++)
254 {
255 f o r ( j = i ; j <=d ; j ++)
256 {
257 //We need to s t a r t from the ’ back ’ of the l i s t due to the implementation of i n s e r t
258 l = i n s e r t ( l , l [ s i z e ( l )+1− i ]∗ l [ s i z e ( l )+1− j ]− l [ s i z e ( l )+1− j ]∗ l [ s i z e ( l )+1− i ] ) ;
259 }
260 }
261 l =matsp_basis ( l , n , n ) ;
262 }
263 //Preparing LieAlg Output
264
265 f o r ( i =1 ; i <=d ; i ++)
266 {
267 L= l [ i ] ;
268 l l = i n s e r t ( l l , L ) ;
269 }
270
271 return ( l l ) ;
272 }
273 example
274 {
275 r ing r =0 ,x , dp ;
276 matrix A[ 2 ] [ 2 ] = 1 , 0 , 0 , 0 ;
277 matrix B [ 2 ] [ 2 ] = 0 , 1 , 1 , 0 ;
278 l i s t l =A, B ;
279 l i s t j =LieAlg_Basis ( l , 2 ) ;
280 j ;
281 }
282 ///////////////////////////////////////////////////////////////////////////////
283 ///////////////////////////////////////////////////////////////////////////////
284 proc LieAlg_dim ( l i s t B )
285 "USAGE: LieAlg_dim ( B ) ; B l i s t .
286 @∗
287 RETURN: Returns the dimension d of the Lie a lgebra with Bas i s B .
288 NOTE: We do not check , i f B i s a b a s i s .
289 EXAMPLE: example LieAlg_dim ; shows an example
290 "
291 {
292 i n t d= s i z e ( B ) ;
293 i f ( d>1)
294 { re turn ( d ) ; }
295
296 i f ( d==0)
297 { re turn ( 0 ) ; }
298
299 matrix O[ ncols ( B [ 1 ] . Mat ) ] [ nco ls ( B [ 1 ] . Mat ) ] ;
300 LieAlg OO=O;
301 i f ( B[1]==OO)
302 { re turn ( 0 ) ; }
303 e l s e
304 { re turn ( 1 ) ; }
305
306 }
307 example
308 {
309 r ing r =0 ,x , dp ;
310 matrix A1 [ 2 ] [ 2 ] = 1 , 0 , 0 , 0 ;
311 matrix A2 [ 2 ] [ 2 ] = 0 , 1 , 1 , 0 ;
312 l i s t l =A1 , A2 ;
313 l i s t B=LieAlg_Basis ( l , 2 ) ;
314 i n t d=LieAlg_dim ( B ) ;
315 d ;
316 }
317 ///////////////////////////////////////////////////////////////////////////////
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318 ///////////////////////////////////////////////////////////////////////////////
319 proc LieAlg_coef f s ( LieAlg L , l i s t B )
320 "USAGE: L ieAlg_coef f s ( L , B ) ; L LieAlg , B l i s t .
321 @∗
322 RETURN: The vec tor of c o e f f i c i e n t s of L with r e s p e c t to the b a s i s B .
323 NOTE: The s i z e of L as a matrix has to be compatible with the s i z e
324 of the elements in B . We do not check , i f B i s a b a s i s .
325 THEORY: We compute the r e l a t i o n s f o r our element L with r e s p e c t to
326 the b a s i s B by simply computing the kernel of the matrix , where
327 the f i r s t columns are the elements of B and the l a s t column i s L .
328 EXAMPLE: example LieAlg_coef f s ; shows an example
329 "
330 {
331 //Creat ing a u x i l l i a r y matrix f o r coordinate computation
332 i n t n=nrows ( L . Mat ) ;
333 matrix C[ n∗n ] [ 1 ] ;
334 C=mat2vec ( B [ 1 ] . Mat ) ;
335 f o r ( i n t i =2 ; i <= s i z e ( B ) ; i ++)
336 {
337 C=concat (C, mat2vec ( B [ i ] . Mat ) ) ;
338 }
339 // Computation of our Output
340 i n t m= s i z e ( B ) ;
341 module D;
342 matrix v [m] [ 1 ] ;
343 C=concat (C, mat2vec ( L . Mat ) ) ;
344 D=syz (C ) ;
345 v=D[ 1 ] ;
346 i f (D[ 1 ] [ ncols (C) ] > 0 )
347 {
348 //Correct ing " wrong " sign in the syzygy computation
349 v=(−1)∗v ;
350 return ( v ) ;
351 }
352 e l s e
353 {
354 return ( v ) ;
355 }
356
357
358 }
359 example
360 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
361 r ing r =0 ,x , dp ;
362 matrix A1 [ 3 ] [ 3 ] = unitmat ( 3 ) ;
363 matrix A2 [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ;
364 matrix A3 [ 3 ] [ 3 ] = 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
365 matrix A4 [ 3 ] [ 3 ] = 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ;
366 l i s t l =A1 , A2 , A3 , A4 ;
367 l i s t B=LieAlg_Basis ( l , 3 ) ;
368 LieAlg L=B[1]+5∗B [ 2 ] ;
369 LieAlg_coef f s ( L , B ) ;
370 }
371 ///////////////////////////////////////////////////////////////////////////////
372 ///////////////////////////////////////////////////////////////////////////////
373 proc LieAlg_adjointmat ( LieAlg L , l i s t B )
374 "USAGE: LieAlg_adjointmat ( L , B ) ; L LieAlg , B l i s t .
375 @∗
376 RETURN: The a d j o i n t r e p r e s e n t a t i o n of L with r e s p e c t to Bas i s B
377 NOTE: L must be contained in the Lie Algebra generated by B . We do not check , i f B i s a b a s i s .
378 THEORY: Our algorithm computes the images of our b a s i s elements under the map L∗B [ i ] f o r a l l i .
379 After t h a t we compute the r e p r e s e n t a t i o n matrix of t h i s map by wri t ing the c o e f f i c i e n t s
380 of L∗B [ i ] as the columns of the matrix .
381 EXAMPLE: example LieAlg_adjointmat ; shows an example
382 "
383 {
384 LieAlg G;
385 i n t m=LieAlg_dim ( B ) ;
386 i f (m==0)
387 {
388 matrix A;
389 return (A) ;
390 }
391
392 matrix M[m] [ 1 ] = LieAlg_coef f s ( L∗B [ 1 ] , B ) ;
393
394 f o r ( i n t i =2 ; i <=m; i ++)
395 {
396 G=L∗B [ i ] ;
397 M=concat (M, L ieAlg_coef f s (G, B ) ) ;
398 }
399 return (M) ;
400 }
401 example
402 { //"EXAMPLE: Sturmfels : Algorithms in I n v a r i a n t Theory 2 . 3 . 7 : " ; echo =2;
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403 r ing r =0 ,x , dp ;
404 matrix A[ 2 ] [ 2 ] = 1 , 0 , 0 , 0 ;
405 matrix AA[ 2 ] [ 2 ] = 0 , 1 , 1 , 0 ;
406 l i s t l =A,AA;
407 l i s t B=LieAlg_Basis ( l , 2 ) ;
408 LieAlg L=A;
409 matrix M=LieAlg_adjointmat ( L , B ) ;
410 p r i n t (M) ;
411 }
412 ///////////////////////////////////////////////////////////////////////////////
413 ///////////////////////////////////////////////////////////////////////////////
414 proc LieAlg_nonni lpotente l t ( l i s t B )
415 "USAGE: L ieAlg_nonni lpotente l t ( B ) ; B l i s t .
416 @∗
417 RETURN: A non−n i l p o t e n t element of the Lie Algebra with b a s i s B or the 0 element ,
418 i f the Lie Algebra i s n i l p o t e n t .
419 NOTE: Works only in c h a r a c t e r i s t i c zero . We do not check , i f B i s a b a s i s .
420 THEORY: Algorithm " NonNilpotentElement " in [ DGr00 ] .
421 EXAMPLE: example L i e A l g _ n i l p o t e n t e l t ; shows an example
422 "
423 { LieAlg L ;
424 matrix M;
425
426
427 i f ( LieAlg_dim ( B)==0)
428 {
429 return ( B [ 1 ] ) ;
430 }
431
432
433 f o r ( i n t i =1 ; i <=LieAlg_dim ( B ) ; i ++)
434 {
435 M=LieAlg_adjointmat ( B [ i ] , B ) ;
436 i f ( n i l p _ t e s t (M)==0)
437 {
438 return ( B [ i ] ) ;
439 }
440 }
441 f o r ( i n t i =1 ; i <LieAlg_dim ( B ) ; i ++)
442 {
443 f o r ( i n t j = i +1; j <=LieAlg_dim ( B ) ; j ++)
444 {
445 matrix M=LieAlg_adjointmat ( B [ i ]+B [ j ] , B ) ;
446 i f ( n i l p _ t e s t (M)==0)
447 {
448 return ( B [ i ]+B [ j ] ) ;
449 }
450 }
451 }
452 matrix C[ nrows ( B [ 1 ] . Mat ) ] [ nco ls ( B [ 1 ] . Mat ) ] ;
453 L=C;
454 return ( L ) ;
455 }
456 example
457 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
458 r ing r =0 ,x , dp ;
459 matrix A1 [ 3 ] [ 3 ] = unitmat ( 3 ) ;
460 matrix A2 [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ;
461 matrix A3 [ 3 ] [ 3 ] = 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
462 matrix A4 [ 3 ] [ 3 ] = 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ;
463 l i s t l =A1 , A2 , A3 , A4 ;
464 l i s t B=LieAlg_Basis ( l , 3 ) ;
465 LieAlg L=LieAlg_nonni lpotente l t ( B ) ;
466 L ;
467 }
468 ////////////////////////////////////////////////////////////////////////////////
469 ///////////////////////////////////////////////////////////////////////////////
470 proc L i e A l g _ s t r u c t u r e c o n s t ( l i s t B )
471 "USAGE: L i e A l g _ s t r u c t u r e c o n s t ( B ) ; B l i s t .
472 @∗
473 RETURN: The l i s t of s t r u c t u r e cons tants .
474 NOTE: We do not check , i f B i s a b a s i s .
475 THEORY: We compute the s t r u c t u r e constants , by computing a l l pairwise products .
476 EXAMPLE: example L i e A l g _ s t r u c t u r e c o n s t ; shows an example
477 "
478 {
479 l i s t C ;
480 f o r ( i n t i = s i z e ( B ) ; i >=1; i−−)
481 {
482 l i s t l ;
483 f o r ( i n t j = s i z e ( B ) ; j >=1; j−−)
484 {
485
486 matrix v ;
487 LieAlg L=B [ i ]∗B [ j ] ;
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488 v=LieAlg_coef f s ( L , B ) ;
489 l = i n s e r t ( l , v ) ;
490 }
491 C= i n s e r t (C, l ) ;
492 }
493 return (C ) ;
494 }
495 example
496 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
497 r ing r =0 ,x , dp ;
498 matrix A1 [ 3 ] [ 3 ] = unitmat ( 3 ) ;
499 matrix A2 [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ;
500 matrix A3 [ 3 ] [ 3 ] = 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
501 matrix A4 [ 3 ] [ 3 ] = 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ;
502 l i s t l =A1 , A2 , A3 , A4 ;
503 l i s t B=LieAlg_Basis ( l , 3 ) ;
504 l i s t C=L i e A l g _ s t r u c t u r e c o n s t ( B ) ;
505 p r i n t (C ) ;
506 }
507 ///////////////////////////////////////////////////////////////////////////////
508 ///////////////////////////////////////////////////////////////////////////////
509 proc L i e A l g _ c e n t r a l i z e r ( l i s t B , l i s t C)
510 "USAGE: L i e A l g _ c e n t r a l i z e r ( B ,C ) ; B l i s t , C l i s t .
511 @∗
512 RETURN: Returns the c e n t r a l i z e r of C in B , where B and C are bases f o r Lie Algebras
513 L resp . M with M being an subalgebra of L . The output i s a l i s t .
514 NOTE: We do not check , i f B or C are bases .
515 THEORY: See Algorithm " C e n t r a l i z e r " in DeGraaf .
516 EXAMPLE: example L i e A l g _ c e n t r a l i z e r ; shows an example
517 "
518 {
519 l i s t S=L i e A l g _ s t r u c t u r e c o n s t ( B ) ;
520 matrix M[ s i z e ( B ) ] [ 1 ] = LieAlg_coef f s (C[ 1 ] , B ) ;
521 f o r ( i n t i =2 ; i <= s i z e (C ) ; i ++)
522 {
523 M=concat (M, L ieAlg_coef f s (C[ i ] , B ) ) ;
524 }
525 M=transpose (M) ; // To keep the same i n d i c e s as deGraaf
526
527 matrix L [ s i z e ( B)∗ s i z e (C ) ] [ s i z e ( B ) ] ;
528
529 f o r ( i n t k =1; k<= s i z e ( B ) ; k++)
530 {
531 f o r ( i n t l =1 ; l <= s i z e (C ) ; l ++)
532 {
533 f o r ( i n t i =1 ; i <= s i z e ( B ) ; i ++)
534 {
535 f o r ( i n t j =1 ; j <= s i z e ( B ) ; j ++)
536 {
537 L [ ( k−1)∗ s i z e (C)+ l , i ]=L [ ( k−1)∗ s i z e (C)+ l , i ]+M[ l , j ]∗S [ i ] [ j ] [ k , 1 ] ;
538 }
539 }
540 }
541 }
542
543 module D=syz ( L ) ;
544 l i s t BB ;
545 f o r ( i n t i =1 ; i <= s i z e (D) ; i ++)
546 {
547 matrix E [ nrows ( B [ 1 ] . Mat ) ] [ nco ls ( B [ 1 ] . Mat ) ] ;
548 LieAlg G=E ;
549 f o r ( i n t j =1 ; j <= s i z e ( B ) ; j ++)
550 {
551 G=G+D[ i ] [ j ]∗B [ j ] ;
552 }
553 BB= i n s e r t ( BB ,G) ;
554 }
555 return ( BB ) ;
556 }
557 example
558 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
559 r ing r =0 ,x , dp ;
560 matrix A1 [ 3 ] [ 3 ] = unitmat ( 3 ) ;
561 matrix A2 [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ;
562 matrix A3 [ 3 ] [ 3 ] = 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
563 matrix A4 [ 3 ] [ 3 ] = 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ;
564 l i s t l =A1 , A2 , A3 , A4 ;
565 l i s t B=LieAlg_Basis ( l , 3 ) ;
566 l i s t D= L i e A l g _ c e n t r a l i z e r ( B , B ) ;
567 D;
568 }
569 ///////////////////////////////////////////////////////////////////////////////
570 ///////////////////////////////////////////////////////////////////////////////
571 proc LieAlg_normalizer ( l i s t B , l i s t C)
572 "USAGE: LieAlg_normalizer ( B ,C ) ; B l i s t , C l i s t .
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573 @∗
574 RETURN: Returns the normalizer of C in B , where B and C are bases f o r Lie
575 a lgebras L resp . M, with M being an subalgebra of L .
576 NOTE: We do not check , i f B or C are bases .
577 THEORY: See Algorithm " Normalizer " in [ DGr00 ] .
578 EXAMPLE: example LieAlg_normalizer ; shows an example
579 "
580 {
581 l i s t S=L i e A l g _ s t r u c t u r e c o n s t ( B ) ;
582 LieAlg G;
583 matrix M[ s i z e ( B ) ] [ 1 ] = LieAlg_coef f s (C[ 1 ] , B ) ;
584 f o r ( i n t i =2 ; i <= s i z e (C ) ; i ++)
585 {
586 M=concat (M, L ieAlg_coef f s (C[ i ] , B ) ) ;
587 }
588 M=transpose (M) ; // To keep the same i n d i c e s as deGraaf
589
590 matrix L [ s i z e ( B)∗ s i z e (C ) ] [ s i z e ( B)+ s i z e (C)∗ s i z e (C ) ] ;
591
592 f o r ( i n t k =1; k<= s i z e ( B ) ; k++)
593 {
594 f o r ( i n t l =1 ; l <= s i z e (C ) ; l ++)
595 {
596 f o r ( i n t i =1 ; i <= s i z e ( B ) ; i ++)
597 {
598 f o r ( i n t j =1 ; j <= s i z e ( B ) ; j ++)
599 {
600 L [ ( k−1)∗ s i z e (C)+ l , i ]=L [ ( k−1)∗ s i z e (C)+ l , i ]+M[ l , j ]∗S [ i ] [ j ] [ k , 1 ] ;
601 }
602 }
603 f o r ( i n t m=1;m<= s i z e (C ) ;m++)
604 {
605 L [ ( k−1)∗ s i z e (C)+ l , s i z e ( B ) + ( l−1)∗ s i z e (C)+m]=−M[m, k ] ;
606 }
607 }
608 }
609
610 module D=syz ( L ) ;
611 l i s t BB ;
612 f o r ( i n t i =1 ; i <= s i z e (D) ; i ++)
613 {
614 matrix E [ nrows ( B [ 1 ] . Mat ) ] [ nco ls ( B [ 1 ] . Mat ) ] ;
615 G=E ;
616 f o r ( i n t j =1 ; j <= s i z e ( B ) ; j ++)
617 {
618 G=G+D[ i ] [ j ]∗B [ j ] ;
619 }
620 BB= i n s e r t ( BB ,G) ;
621 }
622 return ( BB ) ;
623 }
624 example
625 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
626 r ing r =0 ,x , dp ;
627 matrix A1 [ 3 ] [ 3 ] = unitmat ( 3 ) ;
628 matrix A2 [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ;
629 matrix A3 [ 3 ] [ 3 ] = 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
630 matrix A4 [ 3 ] [ 3 ] = 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ;
631 l i s t l =A1 , A2 , A3 , A4 ;
632 l i s t B=LieAlg_Basis ( l , 3 ) ;
633 l i s t D= L i e A l g _ c e n t r a l i z e r ( B , B ) ;
634 l i s t C=LieAlg_normalizer ( B ,D) ;
635 C;
636 }
637 ///////////////////////////////////////////////////////////////////////////////
638 ///////////////////////////////////////////////////////////////////////////////
639 proc L i e A l g _ i n t e r s e c t ( l i s t B , l i s t C)
640 "USAGE: L i e A l g _ i n t e r s e c t ( B ,C ) ; B l i s t , C l i s t .
641 @∗
642 RETURN: Returns the i n t e r s e c t i o n of the Lie Algebras generated by B and C.
643 NOTE: Both Lie Algebras have to be subalgebras of the same Lie Algebra .
644 We do not check , i f B or C are bases .
645 THEORY: Having a vec tor space b a s i s of our Lie algebras , we can i n t e r s e c t them
646 as vec tor spaces , and get the i n t e r s e c t i o n as Lie a lgebras .
647 EXAMPLE: example L i e A l g _ i n t e r s e c t ; shows an example
648 "
649 {
650 i n t n=ncols ( B [ 1 ] . Mat ) ;
651 l i s t B1 ; l i s t C1 ;
652 LieAlg L ;
653
654 matrix A[ n∗n ] [ s i z e ( B ) ] ;
655 f o r ( i n t i =1 ; i <= s i z e ( B ) ; i ++)
656 {
657 A[ 1 . . n∗n , i ]= mat2vec ( B [ i ] . Mat ) ;
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658 }
659
660 matrix AA[ n∗n ] [ s i z e (C ) ] ;
661 f o r ( i n t i =1 ; i <= s i z e (C ) ; i ++)
662 {
663 AA[ 1 . . n∗n , i ]= mat2vec (C[ i ] . Mat ) ;
664 }
665
666 matrix AAA= s u b _ i n t e r s e c t (AA,A) ;
667 l i s t l ;
668 matrix E [ n ] [ n ] ;
669 f o r ( i n t i =1 ; i <=ncols (AAA) ; i ++)
670 {
671 E=AAA[ 1 . . n∗n , i ] ;
672 L=E ;
673 l = i n s e r t ( l , L ) ;
674 }
675
676 return ( l ) ;
677 }
678 example
679 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
680 r ing r =0 ,x , dp ;
681 matrix A1 [ 3 ] [ 3 ] = unitmat ( 3 ) ;
682 matrix A2 [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ;
683 matrix A3 [ 3 ] [ 3 ] = 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
684 matrix A4 [ 3 ] [ 3 ] = 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ;
685 l i s t l =A1 , A2 , A3 , A4 ;
686 l i s t B=LieAlg_Basis ( l , 3 ) ;
687 l i s t C= L i e A l g _ c e n t r a l i z e r ( B , B ) ;
688 l i s t D= L i e A l g _ i n t e r s e c t ( B ,C ) ;
689 p r i n t ( " B : " ) ; p r i n t ( B ) ; p r i n t ( "C : " ) ; p r i n t (C ) ; p r i n t ( "D : " ) ; p r i n t (D) ;
690 }
691 ///////////////////////////////////////////////////////////////////////////////
692 ///////////////////////////////////////////////////////////////////////////////
693 proc LieAlg_complement ( l i s t B , l i s t C)
694 "USAGE: LieAlg_complement ( B ,C ) ; B l i s t , C l i s t .
695 @∗
696 RETURN: Returns the complement of the Lie Algebra generated by the b a s i s C in the
697 Lie a lgebra generated by the b a s i s B .
698 NOTE: The f i r s t Lie Algebra has to conta in the second . We do not check ,
699 i f B or C are bases .
700 THEORY: Having a vec tor space b a s i s of our Lie algebras , we can compute a vec tor
701 space supplement and get one as a Lie a lgebra .
702 EXAMPLE: example LieAlg_complement ; shows an example
703 "
704 {
705 i n t n=ncols ( B [ 1 ] . Mat ) ;
706 i n t i ;
707
708 LieAlg L ;
709
710 matrix A[ n∗n ] [ s i z e ( B ) ] ;
711 f o r ( i =1 ; i <= s i z e ( B ) ; i ++)
712 {
713 A[ 1 . . n∗n , i ]= mat2vec ( B [ i ] . Mat ) ;
714 }
715
716 matrix AA[ n∗n ] [ s i z e (C ) ] ;
717 f o r ( i =1 ; i <= s i z e (C ) ; i ++)
718 {
719 AA[ 1 . . n∗n , i ]= mat2vec (C[ i ] . Mat ) ;
720 }
721
722 matrix AAA=sub_supplement (AA,A) ;
723 l i s t l ;
724 matrix E [ n ] [ n ] ;
725 f o r ( i n t i =1 ; i <=ncols (AAA) ; i ++)
726 {
727 E=AAA[ 1 . . n∗n , i ] ;
728 l = i n s e r t ( l , E ) ;
729 }
730 l =LieAlg_Basis ( l , n ) ;
731 return ( l ) ;
732 }
733 example
734 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
735 r ing r =0 ,x , dp ;
736 matrix A1 [ 3 ] [ 3 ] = unitmat ( 3 ) ;
737 matrix A2 [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ;
738 matrix A3 [ 3 ] [ 3 ] = 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
739 matrix A4 [ 3 ] [ 3 ] = 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ;
740 l i s t l =A1 , A2 , A3 , A4 ;
741 l i s t B=LieAlg_Basis ( l , 3 ) ;
742 l i s t C= L i e A l g _ c e n t r a l i z e r ( B , B ) ;
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743 l i s t D=LieAlg_complement ( B ,C ) ;
744 p r i n t ( " B : " ) ; p r i n t ( B ) ; p r i n t ( "C : " ) ; p r i n t (C ) ; p r i n t ( "D : " ) ; p r i n t (D) ;
745 }
746 ///////////////////////////////////////////////////////////////////////////////
747 ///////////////////////////////////////////////////////////////////////////////
748 proc LieAlg_productspace ( l i s t B , l i s t C)
749 "USAGE: LieAlg_productspace ( B ,C ) ; B l i s t , C l i s t .
750 @∗
751 RETURN: Returns the Lie Algebra generated by [ B ,C ] .
752 NOTE: Both Lie Algebras have to be subalgebras of a common Lie Algebra . We do
753 not check , i f B or C are bases .
754 THEORY: See Algorithm " ProductSpace " in [ DGr00 ] .
755 EXAMPLE: example LieAlg_productspace ; shows an example
756 "
757 {
758 l i s t l ; LieAlg G;
759 i f ( LieAlg_dim ( B)==0)
760 {
761 l = i n s e r t ( l , B [ 1 ] ) ;
762 return ( l ) ;
763 }
764 i f ( LieAlg_dim (C)==0)
765 {
766 l = i n s e r t ( l ,C [ 1 ] ) ;
767 return ( l ) ;
768 }
769
770 i n t n=nrows ( B [ 1 ] . Mat ) ;
771
772 f o r ( i n t i =1 ; i <=LieAlg_dim ( B ) ; i ++)
773 {
774 f o r ( i n t j =1 ; j <=LieAlg_dim (C ) ; j ++)
775 {
776 G=B [ i ]∗C[ j ] ;
777 l = i n s e r t ( l ,G. Mat ) ;
778 }
779 }
780 l =matsp_basis ( l , n , n ) ;
781 l i s t l l ;
782 f o r ( i n t i =1 ; i <= s i z e ( l ) ; i ++)
783 {
784 G= l [ i ] ;
785 l l = i n s e r t ( l l ,G) ;
786 }
787 return ( l l ) ;
788 }
789 example
790 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
791 r ing r =0 ,x , dp ;
792 matrix A1 [ 3 ] [ 3 ] = unitmat ( 3 ) ;
793 matrix A2 [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ;
794 matrix A3 [ 3 ] [ 3 ] = 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
795 matrix A4 [ 3 ] [ 3 ] = 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ;
796 l i s t l =A1 , A2 , A3 , A4 ;
797 l i s t B=LieAlg_Basis ( l , 3 ) ;
798 l i s t C=B [ 1 ] ;
799 l i s t D=B [ 3 ] ;
800 l i s t E=LieAlg_productspace ( B ,C ) ;
801 p r i n t ( E ) ;
802 }
803 ///////////////////////////////////////////////////////////////////////////////
804 ////COMPUTATION OF DECOMPOSITIONS AND CARTAN SUBALGEBRAS///////////////////////
805 ///////////////////////////////////////////////////////////////////////////////
806 proc LieAlg_fi t t ingonecomponent ( l i s t B , l i s t C)
807 "USAGE: LieAlg_fi t t ingonecomponent ( B ,C ) ; B l i s t , C l i s t .
808 @∗
809 RETURN: Returns the f i t t i n g one component of the Lie Algebra generated by B
810 with r e s p e c t to the n i l p o t e n t subalgebra generated by C.
811 NOTE: The Lie Algebra generated by C has to be a n i l p o t e n t subalgebra of the
812 one generated by B . We do not check , i f B or C are bases .
813 THEORY: See algorithm " FittingOneComponent " in [ DGr00 ] .
814 EXAMPLE: example LieAlg_fi t t ingonecomponent ; shows an example
815 "
816 { l i s t l =LieAlg_productspace (C, B ) ;
817 l i s t l l =LieAlg_productspace (C, l ) ;
818 // These are a c t u a l l y no Lie Algebras , but LieAlg_dim computes the vec tor space dimension
819 while ( LieAlg_dim ( l ) > LieAlg_dim ( l l ) )
820 {
821 l =LieAlg_productspace (C, l l ) ;
822 l l =LieAlg_productspace (C, l ) ;
823 }
824 return ( l l ) ;
825 }
826 example
827 { "//EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
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828 r ing r =0 ,x , dp ;
829 matrix A1 [ 2 ] [ 2 ] = 1 , 0 , 0 , 0 ;
830 matrix A2 [ 2 ] [ 2 ] = 0 , 1 , 0 , 0 ;
831 matrix A3 [ 2 ] [ 2 ] = 0 , 0 , 1 , 0 ;
832 matrix A4 [ 2 ] [ 2 ] = 0 , 0 , 0 , 1 ;
833 l i s t l =A1 , A2 , A3 , A4 ;
834 l i s t B=LieAlg_Basis ( l , 2 ) ;
835 l i s t E=A1 , A4 ;
836 l i s t C=LieAlg_Basis ( E , 2 ) ;
837 l i s t D=LieAlg_fi t t ingonecomponent ( B ,C ) ;
838 p r i n t (D) ;
839 }
840 ///////////////////////////////////////////////////////////////////////////////
841 ///////////////////////////////////////////////////////////////////////////////
842 proc LieAlg_f i t t ingzerocomponent ( l i s t B , l i s t C)
843 "USAGE: LieAlg_f i t t ingzerocomponent ( B ,C ) ; B l i s t , C l i s t .
844 @∗
845 RETURN: Returns the f i t t i n g zero component of the Lie a lgebra generated by B
846 with r e s p e c t to the n i l p o t e n t subalgebra generated by C.
847 NOTE: The Lie Algebra generated by C has to be a n i l p o t e n t subalgebra of the one
848 generated by B . We do not check , i f B or C are bases .
849 THEORY: The f i t t i n g zero component together with the f i t t i n g one component form
850 our Lie a lgebra as a d i r e c t sum , hence computing a b a s i s supplement of the
851 f i t t i n g one component y i e l d s the f i t t i n g zero component .
852 EXAMPLE: example LieAlg_fi t t ingonecomponent ; shows an example
853 "
854 {
855 i n t n=nrows ( B [ 1 ] . Mat ) ;
856 l i s t l =LieAlg_fi t t ingonecomponent ( B ,C ) ;
857 l =LieAlg_complement ( B , l ) ;
858 l i s t l l ;
859 f o r ( i n t i =1 ; i <= s i z e ( l ) ; i ++)
860 {
861 l l = i n s e r t ( l l , l [ i ] . Mat ) ;
862 }
863 l =LieAlg_Basis ( l l , n ) ;
864
865 return ( l ) ;
866 }
867 example
868 { "//EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS : " ; echo =2;
869 r ing r =0 ,x , dp ;
870 matrix A1 [ 2 ] [ 2 ] = 1 , 0 , 0 , 0 ;
871 matrix A2 [ 2 ] [ 2 ] = 0 , 1 , 0 , 0 ;
872 matrix A3 [ 2 ] [ 2 ] = 0 , 0 , 1 , 0 ;
873 matrix A4 [ 2 ] [ 2 ] = 0 , 0 , 0 , 1 ;
874 l i s t l =A1 , A2 , A3 , A4 ;
875 l i s t B=LieAlg_Basis ( l , 2 ) ;
876 nrows ( B [ 1 ] . Mat ) ;
877 l i s t E=A1 , A4 ;
878 l i s t C=LieAlg_Basis ( E , 2 ) ;
879 l i s t D=LieAlg_f i t t ingzerocomponent ( B ,C ) ;
880 p r i n t (D) ;
881 }
882 ///////////////////////////////////////////////////////////////////////////////
883 ///////////////////////////////////////////////////////////////////////////////
884 proc LieAlg_Cartan ( l i s t B )
885 "USAGE: LieAlg_Cartan ( B ) ; B l i s t .
886 @∗
887 RETURN: Returns the Cartan Subalgebra f o r the Lie Algebra generated by B .
888 NOTE: The c h a r a c t e r i s t i c of the f i e l d has to be a t l e a s t s i z e ( B ) + 1 . We do not check ,
889 i f B i s a b a s i s .
890 THEORY: See Algorithm " CartanSubAlgebraBigField " in DeGraaf .
891 EXAMPLE: example LieAlg_Cartan ; shows an example
892 "
893 {
894 //INITIALIZATIONS
895 matrix O[ nrows ( B [ 1 ] . Mat ) ] [ nco ls ( B [ 1 ] . Mat ) ] ;
896 i n t i ;
897 LieAlg OO=O;
898 LieAlg J J ;
899 l i s t l l l ;
900
901
902 // TEST IF OUR LIE ALGEBRA IS ALREADY NILPOTENT
903 LieAlg GG=LieAlg_nonni lpotente l t ( B ) ;
904 i f (GG==OO)
905 {
906 return ( B ) ;
907 }
908
909 //MAIN COMPUTATIONS
910
911 l i s t C=GG;
912 l i s t l l =LieAlg_f i t t ingzerocomponent ( B ,C ) ;
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913 LieAlg HH=LieAlg_nonni lpotente l t ( l l ) ;
914 while (HH!=OO)
915 {
916 i =1;
917 while ( i <=LieAlg_dim ( B)+ 1)
918 {
919 J J =GG+ i ∗(HH−GG) ;
920 C= J J ;
921 l l l =LieAlg_f i t t ingzerocomponent ( B ,C ) ;
922 i f ( LieAlg_dim ( l l l ) < LieAlg_dim ( l l ) )
923 {
924 GG= J J ;
925 i =LieAlg_dim ( B ) + 4 ;
926 l l = l l l ;
927 }
928 i ++;
929 }
930
931 i f ( i ==LieAlg_dim ( B) + 2)
932 { re turn ( "ERROR " ) ; }
933
934 HH=LieAlg_nonni lpotente l t ( l l ) ;
935 }
936
937 return ( l l ) ;
938
939 }
940 example
941 { "EXAMPLE: NON−GORENSTEIN CURVE : " ; echo =2;
942 r ing r =0 , (X , Y , Z ,W) , ds ;
943 i d e a l I = X4−Y2+8X2Z−2YZ−Z2 , 4X2Y+Y2−9X2Z+3YZ−XW, 6X2Y−3X2Z+2YZ−Z2−XW,
944 X3Z+4/7XYZ−9/7XZ2+1/7X2W−2/7YW−2/7ZW, XYZ−5/3XZ2+1/9X2W−1/3YW−4/9ZW, Z3+13/21X3W+1/3XYW+XZW−5/21W2;
945 module D=find_der ( I ) ;
946 l i s t B= d e r _ m a t l i s t (D) ;
947 B=LieAlg_Basis ( B , nvars ( r ) ) ;
948 l i s t C=LieAlg_Cartan ( B ) ;
949 p r i n t (C ) ;
950 }
951 ///////////////////////////////////////////////////////////////////////////////
952 ///////////////////////////////////////////////////////////////////////////////
953
954
955 ///////////////////////////////////////////////////////////////////////////////
956 ////ALGORITHMS FOR LIE ALGEBRAS OF DERIVATIONS/////////////////////////////////
957 ///////////////////////////////////////////////////////////////////////////////
958
959
960 //Computing the module of logar i thmic d e r i v a t i o n s
961 proc f ind_der ( i d e a l I )
962
963 "USAGE: f ind_der ( I ) ; I i d e a l .
964 RETURN: The Module D of logar i thmic d e r i v a t i o n s .
965 NOTE: Does not work in qring or with mixed order ings .
966 THEORY: [ Epe15 ] , Algorithm 5 .
967 EXAMPLE: example f ind_der ; shows an example "
968 {
969 //Test ing f o r the t r i v i a l case :
970 i f ( I ==0)
971 {
972 return ( freemodule ( nvars ( baser ing ) ) ) ;
973 }
974
975
976 // Dummy v a r i a b l e s and I n i t i a l i z a t i o n :
977 i n t k , i , n ,m;
978
979 //generat ing matrix f o r syzygie computation :
980 n=nvars ( baser ing ) ;
981 m= s i z e ( I ) ;
982 i d e a l j = jacob ( I ) ;
983
984
985 matrix M=matrix ( j ,m, n ) ;
986 f o r ( i =1 ; i <=m; i ++)
987 {
988 M=concat (M, diag ( I [ i ] ,m) ) ;
989 }
990 module C=syz (M) ;
991 module D;
992
993 f o r ( i =1 ; i <= s i z e (C ) ; i ++)
994 {
995 D=D+C[ i ] [ 1 . . n ] ;
996 }
997
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998 //Clear ing memory
999 k i l l j ;

1000 k i l l C ;
1001 k i l l M;
1002 return (D) ;
1003 }
1004
1005 example
1006 {
1007 "EXAMPLE : " ;
1008 echo =2;
1009 r ing A=0 , ( x , y , z ,w) , ds ;
1010 poly f =x4w+y6+y5x+x5y ;
1011 f ind_der ( f ) ;
1012
1013 }
1014 ///////////////////////////////////////////////////////////////////////////////
1015
1016 //Gett ing matr ices from the Module of d e r i v a t i o n s
1017 proc d e r _ m a t l i s t ( module D)
1018
1019 "USAGE: d e r _ m a t l i s t (D) ; D module .
1020 RETURN: L i s t l t r u n c a t i n g the d e r i v a t i o n s generat ing D, leaving only degree 1 c o e f f i c i e n t s .
1021 NOTE: D has to be a module of der iva t ions , l i k e in the output of f ind_der .
1022 EXAMPLE: example d e r _ m a t l i s t ; shows an example "
1023
1024 {
1025 // Dummy v a r i a b l e s and I n i t i a l i z a t i o n :
1026 i n t k , i , j , n ,m;
1027 n=nvars ( baser ing ) ;
1028 D= j e t (D, 1 ) ;
1029 D=compress (D) ;
1030 l i s t l ;
1031
1032 f o r ( i =1 ; i <= s i z e (D) ; i ++)
1033 {
1034 matrix A[ n ] [ n ] ;
1035 f o r ( j =1 ; j <=n ; j ++)
1036 {
1037 poly f ;
1038 f =D[ i ] [ j ] ;
1039 f o r ( k =1;k<=n ; k++)
1040 {
1041 A[ j , k]= d i f f ( f , var ( k ) ) ;
1042 }
1043 }
1044 l = i n s e r t ( l ,A) ;
1045 }
1046 l =matsp_basis ( l , n , n ) ;
1047 return ( l ) ;
1048 }
1049
1050
1051 example
1052 {
1053 "EXAMPLE : " ;
1054 echo =2;
1055 r ing A=0 , ( x , y , z ,w) , ds ;
1056 i d e a l I =x4w+y6+y5x+x5y ;
1057 module D=find_der ( I ) ;
1058 l i s t P= d e r _ m a t l i s t (D) ;
1059 p r i n t ( P ) ;
1060 }
1061 ///////////////////////////////////////////////////////////////////////////////
1062 proc LieAlg_der_homog ( i d e a l I )
1063 "USAGE: LieAlg_der_homog ( I ) ; I i d e a l .
1064 RETURN: Returns the Cartan Subalgebra of the Lie Algebra generated by the I
1065 homogeneous der iva t ions , which keep the maximal i d e a l i n v a r i a n t .
1066 NOTE: A l o c a l ordering l i k e ds has to be used .
1067 THEORY: [ Epe15 ] , Algorithm 6 .
1068 EXAMPLE: example LieAlg_der_homog ; shows an example
1069 "
1070 {
1071 //Construct ing the maximal i d e a l
1072 i n t i =1 ;
1073 i d e a l M;
1074 f o r ( i ; i <=nvars ( baser ing ) ; i ++)
1075 {
1076 M=M+var ( i ) ;
1077 }
1078
1079 //Computing the necessary modules of logar i thmic d e r i v a t i o n s
1080 module D1=find_der ( I ) ;
1081 module D2=find_der (M) ;
1082 module D= i n t e r s e c t (D1 , D2 ) ;
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1083
1084 //Truncating the module and computing the Cartan subalgebra
1085 l i s t B= d e r _ m a t l i s t (D) ;
1086 B=LieAlg_Basis ( B , nvars ( baser ing ) ) ;
1087 l i s t C=LieAlg_Cartan ( B ) ;
1088 return (C ) ;
1089 }
1090 example
1091 { "EXAMPLE: CURVE WHICH IS NOT GORENSTEIN : " ; echo =2;
1092 r ing r =0 , (X , Y , Z ,W) , ds ;
1093 i d e a l I = X4−Y2+8X2Z−2YZ−Z2 , 4X2Y+Y2−9X2Z+3YZ−XW, 6X2Y−3X2Z+2YZ−Z2−XW, X3Z+4/7XYZ−9/7XZ2+1/7X2W−2/7YW−2/7ZW, XYZ−5/3XZ2+1/9X2W−1/3YW−4/9ZW, Z3+13/21X3W+1/3XYW+XZW−5/21W2;
1094 l i s t C=LieAlg_der_homog ( I ) ;
1095 p r i n t (C ) ;
1096 }
1097 ///////////////////////////////////////////////////////////////////////////////
1098 //Computing the product of the r ing v a r i a b l e s
1099 s t a t i c proc var_prod ( )
1100
1101 "
1102 RETURN: Product of a l l r ing v a r i a b l e s
1103 EXAMPLE: example var_prod ; shows an example "
1104
1105 {
1106 i n t i ;
1107 poly f =1;
1108 f o r ( i =1 ; i <=nvars ( baser ing ) ; i ++)
1109 {
1110 f = f∗var ( i ) ;
1111 }
1112 return ( f ) ;
1113 }
1114
1115 example
1116 {
1117 "EXAMPLE : " ;
1118 echo =2;
1119 r ing A=0 , ( x , y , z ,w) , ds ;
1120 var_prod ( ) ;
1121 }
1122
1123 ///////////////////////////////////////////////////////////////////////////////
1124 ////LINEAR ALGEBRA ALGORITHMS//////////////////////////////////////////////////
1125 ///////////////////////////////////////////////////////////////////////////////
1126
1127 // Matrix to Vector
1128
1129 s t a t i c proc mat2vec ( matrix A)
1130
1131 "USAGE: Transforms a given matrix A i n t o a vec tor v .
1132 EXAMPLE: example mat2vec ; shows an example "
1133
1134 {
1135 vector v ;
1136 i n t i ; i n t j ;
1137 i n t k =1;
1138
1139 f o r ( i =1 ; i <=nrows (A) ; i ++)
1140 {
1141 f o r ( j =1 ; j <=ncols (A) ; j ++)
1142 {
1143 v=v+A[ i , j ]∗gen ( k ) ;
1144 k++;
1145 }
1146 }
1147 return ( v ) ;
1148 }
1149
1150 example
1151 {
1152 "EXAMPLE : " ;
1153 echo =2;
1154 r ing r =0 , ( x ) , ds ;
1155 matrix A[ 3 ] [ 3 ] = diag ( [ 1 , 2 , 3 ] ) ;
1156 vec tor v=mat2vec (A) ;
1157 p r i n t ( v ) ;
1158 }
1159
1160 // Matrix Vector Space Bas i s
1161
1162 s t a t i c proc matsp_basis ( l i s t l , i n t n , i n t m)
1163
1164 "USAGE: Given a l i s t of n times m matrices , t h i s procedure
1165 re turns a vec tor space b a s i s f o r the matr ices .
1166 THEORY: Using Gaussian e l iminat ion , we compute a b a s i s f o r
1167 our vec tor space .
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1168 See f o r example Algorithm 2 . 3 . 1 1 in [ Coh00 ] .
1169 EXAMPLE: example matsp_basis ; shows an example "
1170
1171 {
1172 i f ( s i z e ( l )==0)
1173 {
1174 matrix O[ n ] [m] ;
1175 return (O) ;
1176
1177 }
1178
1179 i n t k= s i z e ( l ) ;
1180 i n t i ; i n t j ;
1181 matrix B [ n∗m] [ k ] ;
1182 matrix C[ n ] [m] ;
1183 l i s t p ;
1184
1185 f o r ( i =1 ; i <=k ; i ++)
1186 {
1187 B=concat ( B , mat2vec ( l [ i ] ) ) ;
1188 }
1189 B=gauss_col ( B ) ;
1190 B=compress ( B ) ;
1191 k=ncols ( B ) ;
1192
1193 f o r ( j =1 ; j <=k ; j ++)
1194 {
1195 C=B [ j ] ;
1196 p= i n s e r t ( p ,C ) ;
1197 }
1198
1199 return ( p ) ;
1200 }
1201
1202 example
1203 {
1204 "EXAMPLE : " ;
1205 echo =2;
1206 r ing r =0 , ( x ) , ds ;
1207 matrix A[ 3 ] [ 3 ] = diag ( [ 1 , 2 , 3 ] ) ;
1208 matrix B [ 3 ] [ 3 ] = 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ;
1209 matrix C[ 3 ] [ 3 ] = 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ;
1210 l i s t l =A, B ,C ;
1211 p r i n t ( matsp_basis ( l , 3 , 3 ) ) ;
1212 }
1213
1214
1215 //Test ing ni lpotency
1216 s t a t i c proc n i l p _ t e s t ( matrix A)
1217
1218 "USAGE: Deciding whether a given matrix A i s n i l p o t e n t or not .
1219 RETURN: 1 i f A i s n i lpoten t , 0 e l s e .
1220 NOTE: A has to be a square matrix .
1221 THEORY: I f a matrix A i s n i l p o t e n t i t s c h a r a c t e r i s t i c polynomial has
1222 to be a power of a r ing v a r i a b l e . The maximal degree of the
1223 c h a r a c t e r i s t i c polynomial i s the number of rows/columns of A, say n .
1224 Using t h i s , i t s u f f i c e s to t e s t A^n , i f i t i s the zero matrix .
1225 EXAMPLE: example n i l p _ t e s t ; shows an example "
1226
1227 {
1228 i n t n=nrows (A) ;
1229 matrix O[ n ] [ n ] ; // Dummy t e s t i n g f o r 0 matrix
1230 i f (A==O)
1231 { re turn ( 1 ) ; }
1232
1233 i f ( power (A, n)==O)
1234 { re turn ( 1 ) ; }
1235 e l s e
1236 { re turn ( 0 ) ; }
1237 }
1238
1239 example
1240 {
1241 "EXAMPLE : " ;
1242 echo =2;
1243 r ing r =0 , ( x ) , ds ;
1244 LIB " l i n a l g . l i b " ;
1245 matrix A[ 3 ] [ 3 ] = 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ;
1246 n i l p _ t e s t (A) ;
1247 }
1248
1249
1250 //Supplement of a Bas i s
1251 s t a t i c proc basis_supplement ( matrix A)
1252
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1253 "USAGE: Computes the supplement of a subvectorspace V generated by the columns of the matrix A.
1254 RETURN: A matrix B , such t h a t the columns of B are a b a s i s f o r the supplement of V in the ambient vec tor space .
1255 THEORY: See Algorithm 2 . 3 . 6 in [ Coh00 ] .
1256 EXAMPLE: example basis_supplement ; shows an example "
1257
1258 {
1259 poly d ; poly a ;
1260 i n t s ; i n t t ; i n t j ;
1261
1262 matrix M=compress ( gauss_col (A ) ) ;
1263 i n t n=nrows (A) ;
1264 i n t k=ncols (M) ;
1265
1266
1267 i f ( k==n )
1268 { re turn ( compress (0∗unitmat ( n ) ) ) ; }
1269 i f ( compress ( transpose (M) ) = = 0 )
1270 { re turn ( unitmat ( n ) ) ; }
1271 matrix B=unitmat ( n ) ;
1272 f o r ( s =1; s<=k ; s ++)
1273 {
1274 t =s ;
1275 while (M[ t , s ]==0)
1276 {
1277 t ++;
1278 }
1279 d=1/M[ t , s ] ;
1280 B [ 1 . . n , t ]=B [ 1 . . n , s ] ;
1281 B [ 1 . . n , s ]=M[ 1 . . n , s ] ;
1282 f o r ( j =s +1; j <=k ; j ++)
1283 {
1284 i f ( t != s )
1285 {
1286 a=M[ s , j ] ;
1287 M[ s , j ]=M[ t , j ] ;
1288 M[ t , j ]= a ;
1289 M[ s , j ]=d∗M[ s , j ] ;
1290 f o r ( i n t i =1 ; i <=n ; i ++)
1291 {
1292 i f ( i != t && i != s )
1293 {
1294 M[ i , j ]=M[ i , j ]−M[ i , s ]∗M[ s , j ] ;
1295 }
1296 }
1297 }
1298 }
1299 }
1300
1301
1302 return ( submat ( B , 1 . . n , k + 1 . . n ) ) ;
1303 }
1304 example
1305 {
1306 "EXAMPLE : " ;
1307 echo =2;
1308 r ing r =0 , ( x ) , ds ;
1309 LIB " l i n a l g . l i b " ;
1310 matrix A[ 3 ] [ 3 ] = 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 0 ;
1311 p r i n t ( " Bas i s : " ) ;
1312 p r i n t (A) ;
1313 p r i n t ( " Bas i s Supplement : " ) ;
1314 p r i n t ( basis_supplement (A ) ) ;
1315 }
1316
1317 //Supplement a subsapce in another
1318 s t a t i c proc sub_supplement ( matrix A, matrix B )
1319
1320 "USAGE: Computes the supplement of a subvectorspace F in another subvectorspace E , which conta ins F .
1321 They are generated by the columns of the matrix A resp . B .
1322 RETURN: A matrix M, such t h a t the columns of M are a b a s i s f o r the supplement of F in E .
1323 NOTE: The vec tor space generated by A has to be contained in the one generated by B .
1324 THEORY: See Algorithm 2 . 3 . 7 in [ Coh00 ] .
1325 EXAMPLE: example sub_supplement ; shows an example "
1326
1327 {
1328 matrix N=compress ( gauss_col (A ) ) ;
1329 matrix M=compress ( gauss_col ( B ) ) ;
1330 matrix C=concat (M,N) ;
1331 matrix X=syz (C ) ;
1332 X=submat (X , 1 . . nco ls (M) , 1 . . nco ls (X ) ) ;
1333 matrix D=basis_supplement (X ) ;
1334 return (M∗D) ;
1335 }
1336 example
1337 {
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1338 "EXAMPLE : " ;
1339 echo =2;
1340 r ing r =0 , ( x ) , ds ;
1341 LIB " l i n a l g . l i b " ;
1342 matrix A[ 3 ] [ 2 ] = gen ( 1 ) , gen ( 1 ) ;
1343 matrix B [ 3 ] [ 3 ] = gen ( 1 )+ gen ( 2 ) , gen ( 2 ) , gen ( 2 ) ;
1344 p r i n t ( sub_supplement (A, B ) ) ;
1345 }
1346
1347 // I n t e r s e c t i o n of Subspaces
1348 s t a t i c proc s u b _ i n t e r s e c t ( matrix A, matrix B )
1349
1350 "USAGE: s u b _ i n t e r s e c t (A, B ) ; A matrix , B matrix .
1351 RETURN: A matrix C, whose rows are a b a s i s f o r the i n t e r s e c t i o n of U and V.
1352 THEORY: See Algorithm 2 . 3 . 9 in [ Coh00 ] .
1353 EXAMPLE: example s u b _ i n t e r s e c t ; shows an example "
1354
1355 {
1356 i n t i ;
1357 matrix M=concat (A, B ) ;
1358 matrix N=syz (M) ;
1359 N=submat (N, 1 . . nco ls (A) , 1 . . nco ls (N) ) ;
1360 matrix C=A∗N;
1361 C=gauss_col (C ) ;
1362 return (C ) ;
1363 }
1364
1365 example
1366 {
1367 "EXAMPLE : " ;
1368 echo =2;
1369 r ing r =0 , ( x ) , ds ;
1370 LIB " l i n a l g . l i b " ;
1371 matrix A[ 3 ] [ 2 ] = 1 , 2 , 3 , 5 , 4 , 1 ;
1372 matrix B [ 3 ] [ 2 ] = 1 , 2 , 1 , 2 , 2 , 1 ;
1373 matrix C= s u b _ i n t e r s e c t (A, B ) ;
1374 p r i n t (C ) ;
1375 }
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