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Abstract

In the present master’s thesis we investigate the connection between derivations and
homogeneities of complete analytic algebras. From now on, denote a complete ana-
lytic algebra by R. We prove a theorem, which describes a specific set of generators
for the module of derivations of R, which map the maximal ideal of R into itself. It
turns out, that this set has a structure similar to a Cartan subalgebra and contains
the information regarding the maximal multi-homogeneity of R. In order to prove
this theorem, we extend the notion of grading by Scheja and Wiebe (see [30],[32])
to projective systems and state the connection between multi-gradings and pairwise
commuting diagonalizable derivations. We prove a theorem similar to Cartan’s Con-
jugacy Theorem in the setup of infinite-dimensional Lie algebras, which arise as pro-
jective limits of finite-dimensional Lie algebras. Using this result, we can show that
the structure of the aforementioned set of generators is intrinsic to the analytic algebra
R and does not depend on any choice of coordinates. Finally, we state an algorithm,
which is theoretically able to compute the maximal multi-homogeneity of a complete
analytic algebra.






1 Introduction

In the present thesis we investigate the relation between homogeneities and deriva-
tions of (complete) analytic algebras. Consider for example the polynomial f :=
z*+y® € C[[z,y]], then it easy to see, that f is homogeneous with respect to the weights
(3,2). This induces a grading on the complete analytic algebra R := C[[z, y||/(f). We
say that R has a (Q, +) grading with respect to the weight-vector (3,2). An impor-
tant question is, whether there are more possibilities for the grading of R, which
are Q-linear independent. In our example it turns out, that the grading induced by
(3,2) is the only grading for which R is graded. To investigate this topic, we use
the connection between derivations of R, which map the maximal ideal of R into it-
self, and homogeneities of R. One of the first to investigate the connection between
homogeneities and derivations was K. Saito in 1971 (see [29]). Saito proved, that a
convergent power series [ with an isolated hypersurface singularity at 0 is homoge-
neous, if it is an eigenfunction of a derivation § of R into itself. In 1972, G. Scheja and
H. Wiebe extended this idea to analytic algebras (see [30]). They stated, that homo-
geneities of an analytic algebra correspond to semi-simple derivations of R. In 1977
and 1980 they extend their previous results by using methods from linear algebra and
projective limits (see [31] respectively [32]). One of the most important results was,
that any derivation J of a complete analytic algebra R, which maps the maximal ideal
of R into itself, has a Chevalley decomposition, that is a decomposition § = 65 + dy;,
where dg is a semi-simple derivation and ¢ is a nilpotent one. E. Kunz and W. Rup-
pert used the idea of derivations to show, that f € R is homogeneous, if and only if
there exists a derivation § with 6(f) = \f for some constant A (see [24]). These are the
most important results connecting derivations to homogeneities. Now the question
is, why do we need to investigate homogeneities of analytic algebras? We do so, for
example, because we can use this information to classify isolated Gorenstein-curve
singularities, as done by G.-M. Greuel, B. Martin and G. Pfister in 1985 (see [17]). Fur-
thermore, the investigation of maximal multi-homogeneities, as in our thesis, is very
useful in the classification of complete analytic algebras in general, as the dimension
s of the Q-vector space generated by the homogeneities is an invariant.

We show, that maximal multi-homogeneities arise from so called multi-gradings, which
are gradings by K-vector spaces. The connection to derivations comes from the fact,
that pairwise commuting derivations can be simultaneously diagonalized. In order
to prove our results, we start Chapter 2 by stating basic results regarding projective
limits, the notion of grading of rings and Lie algebras. Chapter 3| then deals with the



connection between gradings of analytic algebras and derivations as in [30]. These
chapters are meant to be an introduction into the basic tools and results we are go-
ing to use during the course of our thesis and are not meant to be a full treatment
of the aforementioned topics. They do not contain any new results. In Chapter 4 we
introduce the notion of grading to projective systems and so called Lie-Rinehart al-
gebras to prove a general version of the Formal Structure Theorem by Granger and
Schulze (see [13]), which makes it possible to state, for example, the structure of the
module of mp-invariant derivations Der'(R), where R is a complete analytic algebra.
Chapter 5|is concerned with the topic of profinite Lie(-Rinerhart) algebras. We gener-
alize Cartan’s Conjugacy Theorem (see for example [6, Theorem 3.5.1]) to the setup of
profinite Lie algebras. This seemingly new result makes it possible to prove, that the
dimension s of the K-vector space corresponding to our maximal multi-homogeneity
is uniquely determined, hence can be considered as an invariant of the complete ana-
lytic algebra R. In Chapter|flwe deal with the theory of standard bases in the setup of
convergent power series rings and use methods regarding them to state an algorithm
for the computation of the maximal multi-homogeneity of ideals. This information
is encoded in semi-simple matrices. Our algorithm returns a basis of a Lie algebra
g, containing the needed information, but does not necessarily compute it explicitly.
The latter means, that this basis does not contain all semi-simple matrices, which are
contained in g, but at least gives a lower bound.



2 Projective Limits, Gradings and Lie
Algebras

The following chapter is a summary of basic results regarding projective limits, Lie
algebras and gradings of rings. We stay close to [30] for the results about grading
and [6] for the results regarding Lie algebras. We start by stating results on projective
limits, then about gradings of rings and after that, we state basic results regarding Lie
algebras. We omit proofs in this chapter, as long as they are not of further concern for
our thesis or give any insight on the topic.

2.1 Projective Limits and Completions

In the following section we introduce the notion of projective limits and the notion of
completions. This is the basic object we are going to work with in the course of this
thesis.

We start with the set theoretical definition of projective limits and after that pass to a
category theoretical result. The definition is taken from [27, Chapter 12].

Definition 2.1

Let J be a (partially) ordered set of indexes. Assume further, that J is directed, which means,
that for any j,j' € J there exists k € J with j < k and j' < k. Assume given a family
(Gj) ;e of sets (groups, rings, topological spaces, etc.) together with maps (homomorphisms)

fij : Gj — GZ

for each pair (i, j) of indexes in J, such that i < j. This setup is called projective system, if
in addition we have

fik = fij © fik,
foralli < j < k. Weuse (Gj, fi;) as a short notation for a projective system.

The projective limit of such a projective system is defined as the following subset of the
Cartesian product of the G:

lim G; := {(0y); € [ [ Gil fis o)) = o fori < j}.

J€J jeJ
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The following result is the universal property of projective limits. Sometimes this is
used as the definition of a projective limit, see for example [26} Definition 5.1.19 b)].
Theorem 2.2

Let J be a (partially) ordered and directed set of indexes and (G, f;;) a projective system of
sets (groups, rings, topological spaces, etc.) as in Definition Assume the projective limit
ILnje , Gj exists, then it satisfies the following universal property:

Denote by w; : anjG , G — G the natural projections of the projective limit and let X
be an arbitrary set (group, ring,topological space, etc.) with maps (respectively morphisms)
Y + X — G, such that f;jo1; =, forall i < j, then there exists a unique map (respectively
morphism) v : X — lglje , G, such that the following diagram commutes:

Proof:

See [26, Example 5.1.22] for a proof in the category of sets. The proof works analo-
gously in all our other categories like groups, rings or modules. O
Corollary 2.3

The projective limit, if it exists, is unique up to unique isomorphism.

Proof:
This follows immediately from the universal property in Theorem[2.2} see for example
[26, Corollary 6.1.2]. O

Next, we take a look at a setup, in which we have two projective systems with the
same projective limit.

Proposition 2.4

Let J be a (partially) ordered and directed set of indexes and let (M;, fi;)i jes be a projective
system of sets (groups, rings, topological spaces, etc.). Define M := @je , M;. Denote by
m; : M — Mj the projections from M to the M; and define N; := m;(M). Then (Nj, fi|n;)
is a projective system and M = @je SN
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Proof:
(Nj, fij|n,) is clearly a projective system, so we only have to show, that it is isomorphic
to M. Consider the following commutative diagram:

1ﬂljeJ N;
U | N,
l'&njej M;
Mj fi > Mz

Furthermore, we get another commutative diagram:

l.&njeJ M;

S

'

l.glje] Nj

fij |Nj

N

J

Now, as uou’ equals the identity on lim . M;, by the universal property of projective
jedJ

limits, and as u' o u equals the .identity on l'gljE , Nj, again by the universal property,

we get, that M = lgljeJ M; = gnjg N;. O

Let us take a look at a simple example of a projective limit.

Example 2.5

Let J be a non-empty set. Then we can define a partial ordering on J by simply stating
a <b:<= a=bforall a,b € J. This implies for any projective system (G, f;;) of sets
(groups, rings, topological spaces, etc.) indexed by J as in Definition that we have:

im&; =[G

Jj€J jeJ
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Before we go on with more advanced results, we state a useful lemma regarding the
commutativity of projective limits.

Lemma 2.6

Let (I, <) and (J, <) be (partially) ordered and directed sets. Endow I x J with the ordering
(i,5) < (I',5") : <= i < jandi' < j'. Then for any projective system (G, fiz)..5)) of
sets (groups, rings, topological spaces, etc.), we have that:

lmln G, = m Gy inlnG,
)

el jeJ (3,5)eIxJ g€J el

Proof:
See [26| Proposition 6.2.8].

O

The last topic regarding projective limits in general we are investigating, is the behav-
ior of projective limits as a functor. The following result states, that lim is a left-exact
functor.
Lemma 2.7
Let .J be a (partially) ordered and directed set of indexes and (A;, f{}), (B;, f) and (C;, f5)
be projective systems of sets (groups, rings, topological spaces, etc.). If we have for all j € J
an exact sequence

0—A; = B; = C; =0,

then we have an exact sequence

0 — lim A; — lim B; — lim Cj.

JjedJ JjeJ JjeJ

Proof:
The proof works the same way as in [1, Lemma 1.9]. H

In general, projective limits do not exist, but these cases are not of our concern. Next,
we work in a setup, where projective limits exists, namely in the setup of completions.
The following results are taken from [9, Chapter 7].

Let us start with the definition.

Definition 2.8

Let R be a Noetherian ring and R = my D my D ..., where m;,i € N, are ideals of R.
Then we define the completion R of R as the projective limit R := lim, _ R/m;. If we have

m; = m’, then we call R the m-adic completion. Furthermore, if M is an R-module and m;
as before, we define the completion M of M, as M := hm, M J; M.
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As the projective limit does not always exist, we need the following theorem.
Theorem 2.9

Let R be a Noetherian ring, m an ideal of R and M an finitely generated R-module. Denote
by R the m-adic completion of R, respectively by M the m-adic completion of M, then:

i) R exists and is Noetherian.
ii) R/mj]:% ~ R/mi.
iii) M= R®p M.

Proof:
See [9, Theorem 7.1 and 7.2]. ]

Let us have a look at a standard example in the context of completions.

Example 2.10

Let R be a polynomial ring in n variables over a field K, that is, R = K[z, ..., x,|. Consider
the ideal m = (x, ..., x,). Then the m-adic completion R = Hm, R/m' = K[[zy,...,x,]],
the power series ring over K in n variables.

The last theorem we are stating, is Cohen’s famous Structure Theorem. For details
see [9, Theorem 7.7].

Theorem 2.11
Let R be a complete local Noetherian ring with maximal ideal m and residue field K. If R
contains a field, then R = K{[x1, ..., x,]|/1 for somen € Nand I an ideal of K[[x1, ..., x,)].

2.2 Gradings of Rings and Modules

In the following chapter we state a more general definition of the grading of a ring
respectively a module. The definitions we state are taken from [30, Chapter 1]. For
the classical definition of grading in the context of rings or modules, we refer the
reader to [18| Chapter 2.2]. We start with the basic definition of finitely graded rings
and modules:

Definition 2.12

Let (G, +) be an abelian group, R a ring and M an R-module. R is a finitely graded ring,
if we have a system of group homomorphisms ©l* : R — R for g € G with the property
i (R)mf(R) € wl, (R) forall g,h € G, such that R can be written as a direct sum of the
subgroups w}'(R). Furthermore, M is a finitely graded module, if R is graded with respect
to a system of group homomorphisms [, g € G as before, which is compatible with group
homomorphisms m)' - M — M, that is 7 (R)m)' (M) C w){, (M) forall g, h € G, such that

M can be written as a direct sum of the subgroups m)" (M ).
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Remark 2.13

Definition basically extends the well known idea of grading rings in the multivariate
polynomial case. Consider for example the polynomial ring R := Q|z1, ..., x,]. Using multi-
indices « = (o, . .., o) € N we can writeany f € Ras f = Z}ZI;? Cax{t - - - o where

m is the total degree of f. To keep notation short, we write f =Y  fo, where f, denotes the
homogeneous degree || part of f. For more details on the grading of multivariate polynomial
rings see [18]. Now R can be written as R = @, >, Q1" - - 3. If we consider the group
(G,+) := (Z,+) and the group homomorphisms

Ty R— R
0, ifg<0
fH{h,MMM:g

We directly get the desired properties of (w,)gec as in Definition 2.12]

The next interesting aspect is the general, not necessarily finite, grading of rings and
modules. We start with the definition of Zariski rings (see for example [2, Chapter 10,
Exercise 6]), as this is the setup in which we are able to define general gradings.

Definition 2.14
Let R be a ring. We say R is a Zariski ring, if R is a commutative unitary Noetherian
topological ring, whose topology is defined by an ideal m contained in the Jacobson ideal of R.

Now we can define general gradings.

Definition 2.15

Let (G,+) be an abelian group, R a Zariski ring and M a finitely generated R-module. R
is a graded ring, if we have a system of group homomorphisms =} : R — R for g € G,
which induce group homomorphisms @ : R/m" — R/m" that define a finite grading on
R/m™ for all n € N. M is a graded module, if R is graded with respect to a system of
group homomorphisms 77, g € G as before, which is compatible with group homomorphisms
m': M — M which induce group homomorphism W : M/m"M — M /m" M that define a
finite grading on M /m™M as an R/m™-module for all n € N.

Remark 2.16

The grading in the sense of Definition is basically a grading of m-adic completions, as
we reduce the grading of a ring R, to gradings on all R/m*. The same holds also for modules.
We extend this idea to the grading of projective limits in Chapter [4

Example 2.17

Let us consider the ring R := Q[[z1,...,x,)], m = (z1,...,2,) and (G, +) = (Z,+).
Define m, as in Remark[2.13} just extended to power series. We get that the m, induce a finite
grading on R/m* for all k € N, as R/m* = Q[a1,...,2,)/(z1, ..., 2,)* by Theorem[2.9ii),
hence R is graded in the sense of Definition [2.15]
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Due to the fact, that we have a topology on our rings and modules, we can define a
notion of convergence, which is the same notion of convergence, as in the context of
completions.

Definition 2.18
Let M be a graded R-module. The sum _ ,mg, m, € M, converges to m € M, if and
only if for any n € N there exists a finite Ey C G, such that for all E C G with Ey C E we

. n / —
have: m — 3y mg € m" M. Then we writem =3, my.

The following statements generalize basic results of graded modules, as stated for
example in [18]].

Theorem 2.19

Let M be a graded R-module with system of group homomorphisms ( Ty )gec- Every m € M
can be writtenasm = 3 ) (m). If m = > gec My With my € w7 (M), then we already
have my = ) (m) for all g € G. my is called the g-th homogeneous component of m.

7TM

Proof:
See [30, (1.1)]. O

Proposition 2.20
Forall g,h € G we have: w; = my, g o m, = 0, if g # h, and wl{(R)m)! (M) C w4, (M).

Proof:
See [30, (1.2)]. o

The next natural step is to take a look at submodules of graded modules.

Definition 2.21
Let M bea graded R-module and N a subgroup of M. N is called homogeneous, if 7' (N) C
N forall g € G.

The following three theorems characterize homogeneous submodules, resulting quo-
tient modules and their grading.

Theorem 2.22
Let M be a graded R-module and N a submodule of M. N is homogeneous if and only if N
can be generated by homogeneous elements.

Proof:
See [30, (1.3)]. O

Theorem 2.23

Let M be a graded R-module with system of group homomorphisms (r)")sec: and N a homo-
geneous submodule of M. Then the group homomorphisms 7)'|x : N = N, g € G, induce a
grading of N as an R-module.



12 2.3 Basic Results on Lie Algebras

Proof:
See [30, (1.4)]. O

Theorem 2.24
Let M be a graded R-module with system of group homomorphisms (w)")gec; and N a homo-

geneous submodule of M. Then the group homomorphisms W : M/N — M/N, g € G,
induce a grading of M /N as an R-module.

Proof:
See [30, (1.5)]. O

2.3 Basic Results on Lie Algebras

In this section we present the basic results regarding Lie algebras, which we are going
to use in the underlying thesis. We stay close to [6], but we use the notation from
[33].

Remark 2.25

All vector spaces in this chapter are finite-dimensional, although the definition of a Lie algebra
naturally extends to the infinite-dimensional case. The latter is not of further concern at the
moment.

2.3.1 Basic Definitions and Constructions regarding Lie Algebras

Let us start with the definition of an algebra.
Definition 2.26

An algebra is vector space g over a field K together with a bilinear map
] exg—e

Remark 2.27
The brackets used in Definition [2.26]are the so called Lie brackets.

Now we can define Lie algebras.

Definition 2.28
An algebra g over a field K is said to be a Lie algebra, if its multiplication has the following
properties:

a) [z,x] =0forall x € g,
b) [x,[y, 2]l + [y, [z, z]] + [z, [z,y]] = 0 forall z,y, = € g.
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A Lie algebra is called finite-dimensional, if it is finite dimensional as a Kvector space.
A subspace b of g satisfying the previous properties is called Lie subalgebra.

Let us take a look at a typical example of a Lie algebra, which is our standard example
for a Lie algebra. A Lie subalgebra of the latter is in the focus of our computations in
Chapter [p]

Example 2.29

Let V' be an n-dimensional vector space over the field . Denote by End (V') the set of all linear
maps from V to V. We can turn End(V') into a Lie algebra using the following definition of
the Lie brackets:

la,b] := ab — ba

forall a,b € End(V). It is easy to see, that the properties of Definition are satisfied. We
denote this Lie algebra by gl(K, n).

The first natural structure arising in algebra, are quotient algebras.

Definition 2.30

Let g be a Lie algebra and i an ideal of g. Then the algebra g/i is called the quotient algebra
of g and i.

Remark 2.31

The induced operations of quotient algebras are well defined (see [6, Proposition 1.15]) and
g/iis also a Lie algebra.

The next structures regarding Lie algebras we are talking about, are the centralizer
and the normalizer.

Definition 2.32
Let g be a Lie algebra and S C g. Then the set

C(S):={zeg|zr,s]=0foralls € S}

is called centralizer of S. Furthermore, if S = g, we call C(g) the centre of g.

Definition 2.33
Let g be a Lie algebra and by be a subspace of g. Then the set

Ng(h) :={z € g| [z,h] € b forall h € b}

is called normalizer of b in g.
Remark 2.34
We write N(b) instead of Ny(b), if it is obvious, in which Lie algebra we are working.

Remark 2.35
Let g be a Lie algebra and b a subspace of g. It can be shown, that C(h) and N(b) are subalge-
bras of g. Furthermore, if Yy is a subalgebra of g, b is an ideal of the Lie algebra N(b).
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2.3.2 Morphisms of Lie Algebras

The next objects, which are typically investigated when dealing with a new algebraic
structure, are morphisms. In the following section we present basic results regarding
morphisms between Lie algebras.

Definition 2.36

Let g and by be Lie algebras over the field K. A K-linear map ¢ : g — b satisfying ¢([x,y]) =
[p(x), ¢(y)] for all x,y € g is called a morphism of Lie algebras. If ¢ is a bijection, we call
¢ an isomorphism and we say that g and b are isomorphic. The latter is denoted by g = b.

Proposition 2.37
Let g and b be Lie algebras over the field K and ¢ : g — b a Lie algebra morphism. Then ¢(g)
and ¢~ (b) are subalgebras of h resp. g.

To see how to work with morphisms of Lie algebras, we prove the statement about
the preimage, as the one for the image works using the same idea.

Proof:

Set g’ := ¢ '(h). Then ¢ is a K vector space, as ¢ is a linear map, thus we only
need to show, that the operation of the Lie brackets is closed. Take z,y € ¢, then
o([z,y]) = [¢(x), d(y)], hence [z,y] is the preimage of an element of h and we have
shown, that ¢! () is a subalgebra of g. ]

The following example is a morphism of Lie algebras, which is also used for the
representation of Lie algebras (see for example [6, Chapter 1.12]).

Example 2.38

Let g be a Lie algebra and x € g. Then the map [x,-| : g — ¢,y — [z, y] is a morphism of Lie
algebras, which can easily be seen. It is the so called adjoint map, which is denoted by ad,.
Remark 2.39

Let ¢ : g — b be a morphism of Lie algebras. We denote the kernel of ¢ by ker(¢) and the
image of ¢ by im(¢). ker(¢) is an ideal of g and im(¢) is a subalgebra of b.

The following results are the isomorphism theorems for Lie algebras.

Theorem 2.40
Let ¢ : g — b be a morphism of Lie algebras. Then

g/ ker(¢) = im(¢).

Proof:
See [6, Lemma 1.8.1]. O]



2 Projective Limits, Gradings and Lie Algebras 15

Theorem 2.41
Let g be a Lie algebra with ideals i and j. Then the following statements hold:

i) Ifi Cj, then the quotient Lie algebra j/i is an ideal of the quotient Lie algebra g/i and
we have (g/1)/(1/1) = 9/).
ii) We have (i+j)/j =i/(inNj).

Proof:
See [6, Proposition 1.8.2]. H

The next topic we need to talk about are automorphisms of Lie algebras. We start
with their definition.

Definition 2.42

Let g be a Lie algebra. An automorphism of g is an isomorphism of g onto itself. The set of
all automorphisms of g is denoted by Aut(g).

Proposition 2.43
Let g be a Lie algebra. Aut(g) is a group, the so called automorphism group of g.

Proof:
See the discussion in [6] prior to Example 1.11.1. O

The next type of morphisms we are taking a look at are the so called inner automor-
phism, which are playing an important role in Chapter

Lemma 2.44
Let g be a Lie algebra and x € g. If ad, is nilpotent, that is, there exists some n € N such that
ad™ = 0, then exp(ad,) € Aut(g), where exp(ad,) == S1 %z

=0 4!

Proof:
For a proof see [6, Lemma 1.11.2]. l

Definition 2.45

Let g be a Lie algebra. The automorphisms of the type described in Lemma |2.44| are called
inner automorphisms. The set of all inner automorphisms is denoted by Inn(g).
Proposition 2.46

Let g be a Lie algebra. Inn(g) is a subgroup of Aut(g).

Proof:
See the discussion in [6] after the proof of Lemma 1.11.2. H
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We finish this section with an important result regarding the inner automorphisms.

Proposition 2.47
Let K be an algebraically closed field, V' a finite-dimensional vector space and g := gl(K,n).
If x € g is diagonalizable, then ¢(x) is diagonalizable for all ¢ € Inn(g).

Proof:
A simple computation shows, that if y € g is a nilpotent endomorphism, we get

exp(ly, z]) = exp(y)z exp(—y)

for any = € g. Using this, we get that every element of Inn(g) operates by conjugation
on the elements of g. Due to the fact, that being diagonalizable is invariant under
conjugation (see [25, Chapter XIV, §3]), we get that ¢(z) is diagonalizable, if = € g is
so, for any ¢ € Inn(g). O]

2.3.3 Nilpotent Lie Algebras and Cartan Subalgebras

An important class of Lie algebras are so called nilpotent Lie algebras. In this subsec-
tion we define them and state important results regarding them. The results regard-
ing the finite-dimensional case are playing an important role in the infinite-dimensional
case, which we are treating in Chapter

Before we can define nilpotent Lie algebras, we need the following result regarding
ideals.

Lemma 2.48
Let g be a Lie algebra and i, j ideals of g. Then [i,j] is an ideal of g.

Proof:
See [6, Lemma 1.7.1]. O

The next definition is the basis for the definition of nilpotent Lie algebras.

Definition 2.49
Let g be a Lie algebra. Let gV := gand g\ := [g, g""V] for i € Ns,. Then the sequence

g=gP>o>g?>.. . og¥>. ..
is called lower central series of g.

Now we can define nilpotent Lie algebras.

Definition 2.50
Let g be a Lie algebra. If there exists an integer k, such that g*) = 0, then g is called nilpotent.
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An important result concerning nilpotent finite-dimensional Lie algebras, is the fol-
lowing theorem.

Theorem 2.51 (Engel’s Theorem)

Let g be a finite-dimensional Lie algebra. Then g is nilpotent if and only if ad, is nilpotent for
all z € g.

Proof:
See [6, Theorem 2.1.5]. H

Now we can define a special type of nilpotent subalgebras, namely Cartan subalge-
bras.

Remark 2.52

In the following we restrict ourselves to the case of Lie algebras over algebraically closed fields
of characteristic 0.

Definition 2.53

Let g be a Lie algebra and b a subalgebra of g. b is called Cartan subalgebra, if the following
is satisfied:

i) b is nilpotent.
ii) N(h) =b.

Proposition 2.54
Let g be a Lie algebra. Then there exists a Cartan subalgebra b of g.

Proof:
This follows from [6, Corollary 3.2.8], as we are in the case of characteristic zero and
our field has infinite elements. O

The following theorem shows, that Cartan algebras of a finite-dimensional Lie alge-
bra form a single conjugacy class. A similar result holds in suitable cases for infinite
dimensional Lie algebras, as we will see in Chapter

Theorem 2.55

Let g be a finite-dimensional Lie algebra. Let b and ' be two Cartan subalgebras of g. Then
there exists a o € Inn(g), such that h = o(b’).

Proof:
See [6, Theorem 3.5.1]. O

After stating some theory about Lie Algebras, we state an example.
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Example 2.56

Let K be a field and consider the Lie algebra gl(K,n). How does a Cartan subalgebra of
gl(K,n) look like? We claim, that the set of diagonal matrices is a Cartan subalgebra of
gl(K,n). Denote this set by b. It is easy to see, that by is nilpotent, as diagonal matrices
commute with each other. To verify the normalizer property, we need some notation. Denote
by E;; the canonical basis of the vector space gl(K,n), then it can be easily verified, that
[Eij, Exi| = 0By — 01 By, where 0;; is the Kronecker delta. Using this relation, it can easily
be seen, that no non-diagonal basis vector satisfies the normalizer property , as all diagonal
matrices are contained in b.

Before we finish this section on Lie algebras, we state two final results regarding the
behavior of Cartan subalgebras under surjective Lie algebra morphisms.

Theorem 2.57
Let g and b be Lie algebras over the field K and ¢ : g — ¢’ a surjective Lie algebra morphism.
Let b C g be a Cartan subalgebra of g. Then ¢(b) is Cartan subalgebra of g'.

Theorem 2.58
Let g and ¢’ be Lie algebras over the field K and ¢ : g — g’ a surjective Lie algebra morphism.
Let b be a Cartan subalgebra of g'. Then ¢=*(y') is Cartan subalgebra of ¢~*(g') and also one

of g.

Proof:
For a proof of the previous two results see [6, Lemma 3.6.2 and Lemma 3.6.3]. O

2.3.4 The Root Space Decomposition

The final topic regarding Lie algebras, we are taking a look at, is the so called root
space decomposition. This is basically the decomposition of our Lie algebra into di-
rect sums, which have some properties regarding a fixed Cartan subalgebra of our Lie
algebra. To keep the computations and definitions as simple as possible, we are going
to work in the context of algebraically closed fields of characteristic 0. Before we start
with the root space decomposition, we need the so called primary decomposition.

Definition 2.59
Let V' be a finite-dimensional vector space over a field K of dimension n € N and consider a
Lie algebra by C gl(K, n). A decomposition

V=Vie...eV;

of V into h-submodules V; is said to be primary, if the minimum polynomial of the restriction
of x to V; is a power of an irreducible polynomial for all x € b and 1 < i < s. The subspaces
V; are called primary components.
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In general, a primary decomposition does not exist, but in a suitable setup, it does.

Proposition 2.60
Suppose that Y is nilpotent. Then V has a primary decomposition with respect to b.

Proof:
See [6, Corollary 3.1.8]. O

The next result regarding general primary decompositions is a uniqueness statement.
First of all we need a precise definition for the circumstances, in which we get the
uniqueness result.

Definition 2.61

A primary decomposition of V' relative to b is called collected, if for any two primary com-
ponents V; and V;, i # j, there is an x € b, such that the minimum polynomials of the
restrictions of x to V; and V; are powers of different irreducible polynomials.

Theorem 2.62
Let b be nilpotent. Then V has a unique collected primary decomposition relative to b.

Proof:
See [6, Theorem 3.1.10]. ]

Now we can define the root space decomposition. We use the adjoint map, to map
any Lie algebra h to gl(K,n), such that we can compute primary decompositions in
the general setup, where our Lie algebras is not necessarily a subalgebra of gl( K, n).

Definition 2.63
Let g be a finite-dimensional Lie algebra and by a Cartan subalgebra of g. The collected primary
decomposition

g=bemmd...04s

is called roots space decomposition.

Where does the name arise from? Consider any & € h. Then the minimum polynomial
of the restriction of ad;, to a primary component g, is a power of an irreducible poly-
nomial. As our field is algebraically closed, this polynomial is of the form = — «;(h),
where «;(h) is a scalar depending on i and h. By fixing the primary component g;, we
get a function «; : h — K. This function is called a root. The corresponding primary
component is called a root space. In the further course of this thesis, we index the root
space by the corresponding root. Define

go, = gi = {g € g| for all h € b there is a k > 0 such that (ad;, —a;(h))*(g) = 0}.

Then we write
g=0Sga, ®... D ga,.



20

2.3 Basic Results on Lie Algebras




3 Derivations and Gradings of
Analytic Algebras

In the following chapter, we state the definition of an analytic algebra in the context
of our thesis, as well as results regarding it. After that, we state results regarding
the module of derivations of analytic algebras. For the latter, we stay close to [32,
Chapter 1]. Results regarding analytic algebras are taken from [16, Chapter 1] and
[14]. To keep notation short and if it is obvious from the context, we write z for
(1,...,2,) and K{((z)) for K{{x1,...,z,)).

Remark 3.1

From now on, we work only over complete real valuation fields of characteristic 0. For details
on valuation fields, see [27, Chapter 23]. We also assume, that the reader is familiar with the

notion of convergent power series rings. For a treatment of the latter, see [14, Chapter 1 and
Chapter 3].

3.1 Analytic Algebras

This section is dedicated to analytic algebras, as we are only concerned with rings
being analytic algebras in the further course of the underlying thesis. We start with
basic definitions. After that, we introduce basic results regarding analytic algebras.
We omit proofs, as long as they are not of further concern for our thesis.

Definition 3.2
Let R be an algebra over the field K. R is called analytic algebra, if it is the quotient ring

of a convergent power series ring, that is, R = K({xy,...,x,))/I for some ideal I of the
convergent power series ring K ({xy,...,x,)).
Remark 3.3

From now on, all algebras R over a field K, are analytic algebras, if not stated otherwise. As
all analytic algebras R are local rings (see for example [16, Chapter 1]), they have a unique
maximal ideal, which we are denoting by mp.

Definition 3.4

Let R be an analytic algebra, such that R = lim _ R Jmk, then R is called complete analytic
algebra.
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Lemma 3.5
Let R be a complete analytic algebra, then R = K{[x1, ..., x,]]/1 for someideal I of K[z, ..., z,]]
and n € N.

Proof:
As R is a complete local Noetherian ring containing a field K, we can apply Theorem
and get the result immediately. O

To get a feeling for analytic algebras, we state two examples of analytic algebras,
which show, that the valuation of the field plays an important role.

Example 3.6 i) Let C be the complex numbers endowed with the valuation induced by the
absolute norm. Then the convergent power series ring R := C((x1, ..., x,)) is a proper
subset of the formal power series ring Cl[x1, ..., x,]] (see [16, Excercise 1.1.3]), where
n € N. Clearly R is an analytic algebra over the complex numbers and its completion
R equals C[xy, . .., x,]].

ii) Let C be the complex numbers endowed with the trivial valuation. Then the conver-
gent power series ring R := C((z1,...,x,)) is equal to the formal power series ring
Cl[z1, . .., z4)] (see [16, Remark 1.1.1]), where n € N.

In the following we are listing important results regarding analytic algebras.

Theorem 3.7
Let R be an analytic algebra. Then the following hold:

i) R is Noetherian, that is, every ideal of R is finitely generated.

ii) Let R := K({x1,...,x,)). Then R is a factorial ring.

Proof:
See [16, Theorem 1.15 and Theorem 1.16]. O]

Our next theorem is the famous Implicit Function Theorem.

Theorem 3.8 (Implicit Function Theorem)
Let K be a field and let f; € R = K{x1,...,Tn, Y1, Ym)), ¢ = 1,...,m, satisfy
fi(0,...,0) =0and

Oy f1(0,...,0) ... 0y, f1(0,...,0)
det : : # 0.

0y, fn(0,...,0) ... 0y, fum(0,...,0)
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Then R/{f1,..., fm) = K{{x1,...,x,)), and there exists unique power series
Y1, ..., Yy € mg ) solving the implicit system of equations

filz,y) = ... = fm(z,y) =0

in y, that is, satisfying
fi(z,Yi(z),...,Ym(z) =0,i=1,... m.

Moreover, (fi,..., fm) = {1 — Y1, .., Ym — Yin).

Proof:
See [16, Theorem 1.18]. H

The following theorem is the famous Inverse Function Theorem.

Theorem 3.9 (Inverse Function Theorem)
Let ¢ : R — K({x1,...,xy,)) be a morphism of analytic algebras over the field K, and denote
by mp the maximal ideal of R. Then the following are equivalent:

i) ¢ is an isomorphism.

ii) ¢ :mp/m% — M () /M 1) 18 an isomorphism.

Proof:
See [[16, Theorem 1.21]. ]

Remark 3.10

The Inverse Function Theorem for analytic algebras states basically, that we can check if a
morphism is an isomorphism, by passing to the morphism induced on the K-vector space
mp/m%.

Our next lemma is a useful result regarding the lifting of morphisms.

Lemma 3.11 (Lifting Lemma)
Let ¢ be a morphism of analytic algebras over a field K, that is,

6 R=K((z1, ... es)V /] =8 =K{ys,. . 0m)/J

Then ¢ has a lifting ¢ = K{((z)) — K ({y)), which can be chosen as an isomorphism in the
case that ¢ is an isomorphism and n = m, respectively as an epimorphism in the case that ¢
is an epimorphism and n. > m.

Proof:
See [16, Lemma 1.23]. O]
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3.2 Derivations of Analytic Algebras

This section is dedicated to derivations and their properties, which we state in the
context of analytic algebras. For a more detailed treatment of derivations, we refer
the reader for example to [23], as we are only presenting results, which are relevant
for the underlying thesis.

Let us start with the basic definition of this section, namely the definition of a deriva-
tion, which is a modification of [16} Definition 1.105], as we restrict our setup to maps
between R-algebras.
Definition 3.12
Let R be an algebra over a field K and S an R-algebra. A derivation 0 is a K-linear map
0 : R — S satisfying

d(zy) = 6(x)y + d(y)
forall z,y € R. This property is the so called Leibniz rule. The set Der(R, S) denotes the set
of all derivations 6 : R — S.
Example 3.13

We have already seen an example for a derivation, namely the adjoint map of an element of
a Lie Algebra. Let R be a Lie algebra and x € R, then ad, is a derivation, as we can use

property b) of Definition |2.28
ady([y,2]) =[x, [y,2]] = =z [x, 9] = [y, [z, 2]]

forally,z € R.

Remark 3.14

Let R be an algebra over the field K. By Der(R) we denote the set of all derivations of R
into itself. Then Der(R) is a vector space over K and it is also a Lie algebra, if we define the
multiplication as follows:

10, 0](zy) := (§ oo — g 0d)(xy),

with 6,0 € Der(R), x,y € R. A simple computation yields [J,c)|(zy) = [0,0](x)y +
x[0, o](y), hence the multiplication is closed. The other properties of a Lie algebra can also
be verified by simple computations.

Proposition 3.15
Let R be an algebra over the field K. Then Der(R) is an R-module.

Proof:
This result follows from the fact, that for any f € R, we have that f-Der(R) C Der(R).
Furthermore, we get that for any 6, ¢ € Der(R), § + € € Der(R). O
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Next we state, how to write the elements of Der(R) explicitly.

Theorem 3.16
Let R be an analytic algebra over a field K, with R = K ({xy,...,x,))/I for some n € N and
I an ideal of K{{(z1,...,x,)). Then every 6 € Der(R) is of type

n

0= a,,

=1
where 0,,; denotes the partial derivation with respect to x; and a; € K{(z1,...,x,))/I.

Before we state the proof, we need the following lemma.

Lemma 3.17

Let P := K{(Xi,...,X,)), I a proper ideal of P, R := P/I, ¢ : P — R the natural
projection and x; := ¢(X;). If § is a derivation on R, then there exists a derivation o on P
with ¢ o a = 0 o ¢, such that a(X;) equals any fixed and prescribed value from the residue
class of ¢~ (8(z;)), with 1 < i < n. Moreover, if §(x;) = Nz, \; € K, then we can choose o
such that OZ(XJ = )\ZXZ

Proof:
See [30, (2.1)]. O

Now we can prove Theorem 3.16]

Proof:

We sketch the proof, as its details are technical and do not give us any more insight
on the topic.

We first consider the case I = 0. Let f € R, then we can write f = > °" . aqz®.
Denote by f}, the truncation of f up to degree k, that is,

fr = Z anx”.

aeN",
al+...+an <k

Consider any § € Der(R), then for any monomial ¥ we have §(2¥) = §(z;)kat™" =
§(z;)0,,xk for all k € N,k > 1. We get the previous result using induction and the
Leibniz rule. As §(x;) € R, it follows, that 6(m%) C mhi'. As R C K[[zy,...,2,]],
we can consider the elements g, = Y ., 6(2;)0,,(fi) € K|[z1,...,z,]]. Due to the
fact, that we are dealing with polynomials, d(fx) = gi for all £ € N. Furthermore, it
follows that 6(f) — g, € mk. If we denote the limit of the g, by g € K[[x1,...,7,]],
we have that §(f) — g € mEK|[z1,...,2,]] for all k € N, hence, by Krull’s intersection
theorem (see for example [16, Theorem B.4.2]), 6(f) = g € K|[[z1, ..., x,]]. Using, that
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d(f) € R, we get that 6(f) = g € R and, as this holds for any f € R, we have that any
§ € Der(R) can be written as § = > | 0(x;)0,,. By [14] Satz 1.3], we get 0,, € Der(R)
fori=1,...,n,henced := > | a;0,, € Der(R), with a; € R.

The proof for the case R := K((x1,...,x,))/I for some ideal I of K((x1,...,x,)) fol-
lows immediately from Lemma O

Remark 3.18
Let R = K((z1,...,xy,)) for some n € N. Consider the standard grading on R as introduced
in Example[2.17|and denote R; the component of degree i. Then every derivation § € Der(R)

can be written as
=3 i,

i=0 j=1

where a;; € R;. By &y we denote summand 7, a1;0,, and we call it the linear part of .
Denote (x1, ..., x,) by x and (Oy,, . .., 0y, ) by 0. Then there exists a matrix A € K™", such
that 6 = zAJ". We call A the representation matrix of 0

In the context of analytic algebras we can prove, that Der(R) is a Noetherian module,
which implies, that Der(R) is a finitely generated module. For details on Noetherian
modules see for example [18} p.126 ff.].

Corollary 3.19
Let R be an analytic algebra. Then Der(R) is a Noetherian R-module.

Proof:

We have to show, that Der(R) is finitely generated and R is a Noetherian ring. By
Theorem we have that R is a Noetherian ring. By Theorem we have that
Der(R) is finitely generated by the partial derivatives 0,,, i = 1,...,n,if z1,..., 2, is
a minimal generating system for mp, hence Der(R) is a Noetherian module. O

Before we can state results, we introduce a subset of Der(R), which is important in
the further course of our thesis.

Definition 3.20

Let R be an analytic algebra, I an ideal of R and § € Der(R). [ is called é-invariant, if
d(I) C I. By Der'(R) we denote the set of derivations for which mpg, is invariant.

The following two results state, that Der’(R) is a finitely generated R-module and that
it is complete, if R is complete.

Proposition 3.21

Let R be an analytic algebra. Then Der'(R) is a finitely generated R-module.
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Proof:

Let 6 € Der’(R). We have for any f € R, that fé(mg) C mg, as d is mg-invariant and
mp, is an ideal. Let € € Der’(R), then ¢ + € € Der’(R), as (§ + €)(mg) = d(mg) + e(mg),
hence Der’(R) is an R-module. As Der’(R) is a submodule of Der(R) and as Der(R) is a
Noetherian R-module by Corollary[3.19} we get that Der’(R) is finitely generated. [

In the following, we are presenting three ways of obtaining Der’(R) as a projective
limit. The first one we are presenting seems more appealing, but turns out not to
be very useful. We still state it, as it is helpful for the reader to understand why this
approach is not the right one, at least in our context.

Proposition 3.22
Let R be a complete analytic algebra. Then

Der'(R) = lim Der’(R) /m}, Der'(R).
keN

Proof:
Using the previous proposition, we have that Der’(R) is a finitely generated R-module.
By Theorem 2.9] we can write

lim Der'(R)/mf, Der'(R) = Der'(R) @ R.

keN

As R = R, we get that Der'(R) = lim, _ Der’(R)/m, Der'(R). O

Scheja and Wiebe in [32] work with Der/(R) and its projections to Der(R/m%), for
some k € N. We follow this approach, with the difference, that we are also taking the
module structure of Der’(R) into account for our most important result in Chapter 4
whereas Scheja and Wiebe are considering Der'(R) only as a Lie algebra. The notion
of so called Lie-Rinehart algebras, which we state in Chapter 4} combines both points
of views.

Next we show, that Der’(R) = Hm, Der(R/mk) in the case, where R is a complete
analytic algebra.

Proposition 3.23
Let R be a complete analytic algebra over a field K. Then

Der'(R) = lim Der(R/mf),
keN

where the projections fi; : Der(R/mb%) — Der(R/m%) for | > k are induced by the projec-
tions R/ml, — R/mk,.
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Proof:
We have projections p;, : Der'(R) — Der(R/mf%), such that the following diagram
commutes:

Der'(R)

DI u Dk
lim, _ Der(R/mb)

Ju » Der(R/mk)

Der (R /mk)

u denotes the unique morphism of Lie algebras from Der’(R) to lm, _ Der(R/ mk), we
get by the universal property of projective limits. Our claim is, that « is an isomor-
phism. Let us start with injectivity. Consider any § € Der’(R), with u(§) = 0. The
latter means, that the projection ), of § in Der(R/m%) is the trivial derivation. From
this it follows, that for all z € R, we have that §;(Z) = 0 in R/m%, which translates to
6(x) € Npeny Mf; for all 2 € R. Using Krull’s intersection theorem, we get that 6(x) = 0
for all x € R, hence ¢ can only be the trivial derivation and u is injective.

Now we can prove surjectivity. Consider any § € lim, _ Der(R/ mk,), then we know,

that we can consider J as a sequence of elements §;, € Der(R/m%), as we work with
a projective limit. We are going to construct a ¢’ € Der’(R), such that u(d’) = 5. We
do this, by defining ¢’ for all # € R, which also can be considered as a sequence of
elements x;, € R/mk,. Using, that fy; is induced by gy, : R/m% — R/m%, we get the
compatibility of §;(z;) with the latter projection, that is, g4 (6;(x;)) = dx(xy) for all
[ > k. Thus, we can define for any * € R an element y, € R, which is the limit
of the sequence (d;(xx))ren and we set ¢'(z) := y,. ¢ is clearly a derivation, as for
any a,b € R, we have that §'(ab) is the limit of the sequence (J;(axby))ren and as
the ¢, are derivations, we get, using the same argument regarding limits as before,
d'(ab) = ¢'(a)b + ad’(b). By construction, we have that u(d') = 9. O

Next, we state a third way of obtaining Der’(R), which is closely related to the previ-
ous one.
Corollary 3.24
Let R be a complete analytic algebra over a field K. Denote by gy, the image of Der’(R) in
Der(R/mk,). Then

Der’(R) = @gk,

keN

where the projections fy : g — g for | > k are induced by the projections R/mb, — R/mk.
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Proof:
The result follows immediately from Proposition O

Before we go on, we want to sketch, why the first method of obtaining Der'(R) as
a limit is not very useful in our context. At first, we have that the g, C End(R/m%),
which means, that the elements of g;, can be considered as endomorphisms of a finite-
dimensional vector space. It is obvious, that any derivation of Der’(R)/m}, Der’(R)
maps to a corresponding derivation of Der(R/m%,). The problem with this map is, that
it is not injective. Consider the derivation ¢ := 3y?d, — 220, of R := K][[z,y]]/{z* +
y*). Clearly, 6 € Der’(R), but § ¢ mgzDer'(R), as 220, ¢ mpyDer'(R), but 3y?0, €
mp Der’(R). Hence ¢ is mapped to a non-zero derivation ¢ in Der’(R)/mg Der’(R).
Now § operates on R/mp as the zero derivation, thus the natural map

Der’(R)/mg Der’(R) — Der(R/mg)

is not injective. As our goal is to transfer properties like semi-simplicity and nilpo-
tency from linear algebra on finite-dimensional vector spaces to our limit, this ex-
cludes the first approach, as we cannot state an injective morphism from

Der’(R)/m% Der'(R) to End(R/m%,). Due to this fact, we are from now on always con-
sidering Der’(R) as the projective limit of the Der(R/mf%), respectively the g;.

Using, that g € End(R/m%) for all £ € N, we can define semi-simple and nilpotent
derivations.

Definition 3.25

Let R be an analytic algebra and 6 € Der'(R). We call § semi-simple, if the linear operator
induced by & in gy, is semi-simple on R/m¥, for all k € N. § is called nilpotent, if the linear
operator induced by & in gy, is nilpotent on R/m¥, for all k € N. § is called diagonalizable, if
mp, has a system of generators containing only eigenvectors of 6.

Lemma 3.26
Let R be an analytic algebra over a field K and § € Der'(R). Then § is nilpotent if and only
if the K-linear operator induced by § on mg/m?% is nilpotent.

Proof:

Assume ¢ is nilpotent, then it induces a nilpotent K-linear operator on mp/m% by def-
inition. Now assume ¢ induces a nilpotent K-linear operator on mp/m%. This means,
there exists some n € N, such that 6"(mz) C m%. Assume, that we have an n, such
that §"(m}, ') C 6(mk), for some k € N. Our result for k + 1 follows by a application
of the Leibniz rule:

0" (mf) = 6" (m "mp) = 6" (my )mp + mp 10" (mp) C my

k+1 k+1
Cm; Cmk;
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Thus, § induces a nilpotent K-linear operator on mp/mf, for all k € N. As §(K) = 0
and R = K @ mp, we get that it induces a nilpotent operator on R/mf, for all k¥ € N.
Finally, J is nilpotent, as we can always take m := n - k and get that §™(R) C m%,. [

Remark 3.27
If we work over an algebraically closed field, semi-simple derivations are diagonalizable.

Definition 3.28

Let R be an analytic algebra and § € Der’(R). We say that § has a Chevalley decomposi-
tion, if § can be written as § = dg+9n with [0s, O] = 0, where &5 is a semi-simple derivation,
dn is a nilpotent derivation and dg, dy € Der’(R).

Obviously the Chevalley decomposition from Definition is analogous to the Jor-
dan decomposition known from linear algebra (see for example [25, Chapter XIV,
Theorem 2.4]). Before we go on with results regarding the Chevalley decomposi-
tion, we show, that endomorphisms of finite-dimensional vector spaces, which are
also derivations, have the property, that their semi-simple and nilpotent part are also
derivations.

Proposition 3.29

Let R be a K-algebra as well as a finite-dimensional K-vector space, where K is an alge-
braically closed field. Then for any § € Der(R) C Endg(R), we get, that 65,y € Der(R),
where dg and Oy arise from the Chevalley decomposition of § as an endomorphism.

Proof:
Consider ds € Endg (R), which arises from the Chevalley decomposition as an endo-
morphism of a derivation § € Der(R). We decompose R into eigenspaces R, where
A € K is an eigenvalue of §g. By definition of semi-simplicity, we get that there exists
an € N, such that (6 — Midg)"(z) = 0, for any = € R,. If we take n large enough, we
cangetforz € Ryandy € R, :
. " /n
6= 0+ ida) ) = Y (1

1=0

z) (6 — Xidg)" “(x)(§ — pidg)"(y) = 0,

hence R\R, C Ry,. Now it suffices to show, that g acts as a derivation on elements
of the eigenspaces. By the previous result, we get that dg(zy) = (A + p)zy, for x € R),
and y € R,,. This is the same result as for dg(x)y + xds(y) = Azy + pry, hence dg is a
derivation. Using § — ds = dn, we conclude that 5 € Der(R). O

Remark 3.30

Proposition basically states, that if we have a derivation, which operates on a finite-
dimensional vector space, we can compute its Chevalley decomposition by computing its
Chevalley decomposition as an endomorphism.
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As in the linear algebra case, we cannot expect the Chevalley decomposition to exist
without any restrictions to the analytic algebra. The following three theorems are the
most important results regarding derivations, which we are going to use. We state
the proofs for all three results, as they cannot be found explicitly in [32] and as they
show, how to transfer properties from finite-dimensional linear algebra to projective
limits.

Theorem 3.31

Let R be an analytic algebra and 6 € Der'(R) admitting a Chevalley decomposition § =
ds + dn. Then the Chevalley decomposition of ¢ is unique, that is, if § = 0g + on = 0 + dy
with [dg,dn] = [0, %] = 0, then o5 = §% and Sy = Oy

Proof:

Denote by ds the image of J5 to End(R/mk%) and by &5 the semi-simple part of the
image of 0 in End(R/m},). The analogous notation is used for the nilpotent parts. We
show, that dg = Jg respectively On = Oy, as this 1mphes that ¢y = = g respectively
Oy = dnin End(R/mR) for all £ € N. Note that &g, dx, 6g, On € Der(R/mR) due to Def-
inition [3.25| respectively Proposition [3.29] We have that the Chevalley decomposition
is umque in End(R/m%). Now dg + dy and 05 + 0y are Chevalley decompositions of
6, hence d5 = 05 and dy = oy in End(R/m%) for all k € N.

Using, that we are dealing with projective limits, due to Proposition the corre-
sponding sequence of Jg respectively dy is uniquely determined, thus also dg and éy
are uniquely determined.

O]

Theorem 3.32

Let R be an analytic algebra and 6 € Der'(R) admitting a Chevalley decomposition § =
ds + On. Furthermore let I be an ideal of R and let I be 0-invariant, then I is also 0g and
O n-invariant.

Proof:

We are going to use the same idea as in the proof of Theorem We show the
result only for dg, as the result for §y follows analogously. Using that 6 € Der'(R), we
get 6(I +mk%) C I+ mk for all k& € N. Passing to g;, we get that 6(I) C I in all gy.
Using, that the elements of g, operate on finite-dimensional vector spaces and that
the semi-simple part of a Chevalley decomposition can be written as a polynomial
(see for example [25, Chapter XIV, Exercise 14]) in §, say ds = p.(d) for all k € N,
where py, is a polynomial, we get that d5(/ +m};) C I +mk, for all k € N. Using Krull’s
intersection Theorem, we get that d5(/) = ds((No, (I +mb)) C N (I +mh) =1. O

Theorem 3.33
Let R be a complete analytic algebra. Then every § € Der'(R) admits a Chevalley decomposi-
tion.
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Proof:

For the proof of this theorem, we first of all need to state, how to decompose any
§ € Der'(R). In every End(R/m%), 6 decomposes into (0)s; and (6)y . By Propo-
sition we have that (0)s; and (0)y, are derivations, hence they are elements
of Der(R/mk,), for all k € N. Using Definition we get that the (§) x4, (§)sk €
Der(R/m%,) form a sequence of nilpotent respectively semi-simple operators for all
k € N, and are uniquely determined, as they arise from the Chevalley decomposi-
tion of § in End(R/mk). It is also obvious, that (), respectively (0)s; € Der(R/mk)

project onto () respectively (6)s € Der(R/m}) for [ > k, as the respective Cheval-
ley decomposition of 6 = (0)s; + (d)n, € Der(R/mf) is unique and as the images of
(05)sy and (8) s, in Der(R/mf,) induce a Chevalley decomposition of § in Der(R/mf).

Due to this, we can define the element dy := ((0)nx)keny and ds = ((9)sx)ken, as by
Corollary Der’(R) = lim, _ Der(R/ mk,). We get that § = 5+ d is a Chevalley de-

composition, as [ds, dy] = 0 follows by the result on all Der(R/m%,), using Proposition
Now we have shown, that we can decompose any § € Der'(R) as § = dg + dy,
where [d5,0n] = 0, ds € Der/(R) is a semi-simple derivation and dy € Der'(R) is a
nilpotent derivation. O

Remark 3.34

Example[3.6]i) concerns a setup, where we cannot apply Theorem Example[3.6]ii) states,
that if we have a field K of characteristic 0 and if R := K|[z1, ..., x,]], for some n € N, then
every § € Der'(R) admits a Chevalley decomposition 6 = dg + dx.

Let us take a look at an example for the Chevalley decomposition.

Example 3.35

Let K = Cand R := K|[z,y]]. Consider the derivation § := (x + y)0, + y0,. Then g =
x0, + y0, is the semi-simple part of 6 and 65 = yO, is the nilpotent part of 6. The first
statement follows, as 6s(x) = x and ds(y) = y. The second statement follows from the fact,
that 6% = 0.

Now consider § := (x + y + xy)0, + y0,. We want to show, that the semi-simple part of the
linear part of our derivation is not necessarily the semi-simple part of our derivation. Assume,
that 6 = x0, + y0,, then o = (y + xy)0,. Using the same argument as before, dg is semi-
simple, but [0g,dn] = xy0, # 0, hence §g cannot be the semi-simple part of 6. This example
shows, that it is a non-trivial task to compute the semi-simple part of a derivation. For details
on the theoretical computation of the Chevalley decomposition see [29].

Before we finish this section, we state a final result, which follows from the proof of

Theorem
Proposition 3.36

Let R be a complete analytic algebra and §, e € Der’(R). If [¢, 6] = 0, then we have [e, 5] = 0
and [e,0n] = 0.
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Proof:

Denote by § and ¢ the images of 6 and € to Der(R/m%), for any k € N. As in the proof
of Theorem we can write dg as a polynomial in §. Due to the fact, that [¢,6] = 0,
we get that € commutes with any polynomial expression in §, hence with §s. The
analogous result follows for Ox. The result follows, as ds and dy can be considered as
sequences of the ds respectively dx by Proposition O

3.3 Gradings and Derivations

In this section we state results from [30, Chapter 2 and 3] regarding derivations and
the notion of grading from Chapter

The first two theorems are very important, as they state, that every grading of an
analytic algebra arises from a derivation and vice versa.

Theorem 3.37

Let R be an analytic algebra over a field K and 6 € Der'(R), such that mp has a system of
generators containing only eigenvectors of §. Then there exits a unique (K, +) grading w, of
R, g € K, such that each w}(R) contains only g-eigenvectors of é.

Proof:
See [30, (2.2)]. O

Theorem 3.38

Let R be an analytic algebra over a field K and let 7, g € K, be a (K, +) grading of R. Then
there exists a unique diagonalizable derivation § € Der'(R), such that each 7,(R) contains
only g-eigenvectors of 6.

Proof:
See [30, (2.3)]. H

Remark 3.39
By Theorem and the diagonalizable derivations are in one-to-one correspondence
with the (K, +) gradings of analytic algebras.

The next theorems are crucial in an application of the Formal Structure Theorem,
which we are going to state in Chapter

Theorem 3.40

Let R be an analytic algebra over a field K, which is (K, +) graded. Furthermore, let I be
an ideal of R and 6 € Der'(R) be the derivation corresponding to the grading. Then I is
homogeneous, if and only if I is d-invariant.
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Proof:
See [30, (2.4)]. O

Theorem 3.41
Let R be an analytic algebra over a field K, I be an ideal of R and 6 € Der'(R). If I is
d-invariant, then every associated prime ideal P of I is §-invariant.

Proof:
See [30, (2.5)]. H

The next theorem in this section is a surprising result, which states, that we can write
every diagonalizable derivation as a finite sum of diagonalizable derivations with
rational eigenvalues.

Theorem 3.42

Let R be an analytic algebra over a field K and let 6 € Der'(R) be diagonalizable. Then
there exist diagonalizable 6; € Der'(R)\{0} and a; € K, j = 1,...,s for some s € N, such
that 6 = 375, a;0;, every 0; has the same eigenvectors as 0 and the 0; have only rational
eigenvalues.

Proof:
See [30, (3.2)]. o

The last lemma in this section characterizes diagonalizable and nilpotent derivations
by their linear part, using Remark and Lemma 3.26

Lemma 3.43

Let R be an analytic algebra over a field K and § € Der'(R). Then § is diagonalizable if
and only if there exists a set of coordinates, such that 6 = , and the representation matrix is
diagonalizable. § is nilpotent if and only if d, is nilpotent.

Proof:
We start with the statement regarding diagonizability. First assume ¢ is diagonaliz-
able, then there exists a set of coordinates, say z, ..., z,, for some n € N, such that

R = K((z1,...,2,))/I for some ideal I of K((x1,...,x,)) and with the property that
there exist \; € K, such that §(z;) = \;x;. By the proof of Theorem we get that
§ = > Nixi0y,, hence 6 = ¢y and the representation matrix is obviously diagonal-
izable. Now if § = ¢) and the representation matrix is diagonalizable, there exists a
linear coordinate change, such that § is of type > | A\;z;0,, for a set of coordinates
x1,...,%T,, some )\; € K and some n € N. Then § is obviously diagonalizable. The
statement for nilpotency follows immediately from Lemma [3.26] O



4 The Formal Structure Theorem for
Complete Analytic Algebras

In the following chapter, we extend the abstract definition of grading from Chapter
to projective systems. Furthermore, we introduce a special type of Lie algebras,
namely so called Lie-Rinehart algebras, which combine the structure of a module
with the one of a Lie algebra. We use previous ideas to generalize the Formal Struc-
ture Theorem from [13] to Lie-Rinehart subalgebras of Der’(R), where R is a complete
analytic algebra over an algebraically closed field K of characteristic 0.

4.1 Grading of Projective Systems

In this section we extend the notion of grading from Chapter 2.2|to the setup of pro-
jective limits. For simplicity, we only consider the case, where our indexes are natural
numbers.

Remark 4.1

All rings in the following are assumed to be Noetherian and all modules are assumed to be
finitely generated. By Proposition we can assume that all projections from a projective
limit to its component are surjective, hence all f;; are surjective, using, that (M,, fi;) is a
projective system over any indexed set.

First of all, we start with the grading of rings.

Definition 4.2

Let (G,+) be an abelian group and (Ry, fi}) a projective system of rings, with k,l € N and
k <l Define R := lim, Ry and denote the projections R — Ry, by pE forall k € N. We
write py, if the ring we are working with is clear. We say (Ry, fi) is graded with respect to G,
if there are group homomorphisms wl* . (R, +) — (R, +) forall g € G, k € N, such that
the group homomorphisms [ induce a finite grading on the Ry, in the sense of Definition
for all k € N and such that the following diagram commutes:
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7I'Rk
Rk L) Rk

fﬁT Tﬂﬁ
7TRl

Rl;)Rl

The commutativity means, that the f5 have to be compatible with gradings on Ry, and R, for
alll > kand g € G, that is, f#(R;,) C Ry, where Ry, is the image of Ry, under the group
homomorphism [ on Ry. We denote the limit of the w}* by 7 ¥ forall g € G.

Remark 4.3

Consider the case, where R is a complete analytic algebra, then we can set R, := R/m% and
Definition[4.2| generalizes Definition to the setup of projective systems.

Now let us extend the notion of grading to projective systems of modules.

Definition 4.4

Let (G, +) be an abelian group, (Ry, fI) a projective system of rings and (My, f) a pro-
jective system of modules, where the M), are Ry-modules, with k,l € N and k < [. Define
R:=lim, Ry, M :=lim, My and denote the projections R — Ry, by pR forall k € Nand
the projections M — Mj, respectively by p¥'. We say (My, f) is graded with respect to G,
if there are group homomorphisms wi* : (Ry, +) — (Ry, +) and ©)* - (M, +) — (My, +)
forall g € G, k € N, such that the group homomorphisms [ as well as the group homomor-
phisms m}' induce a finite grading on the M), as Ry-modules in the sense of Definition m
forall k € N. Furthermore, the following diagrams have to commute:

Mk g—> Mk

ﬁyT Tﬂy
M,

MlL)Ml

Ry,
s
Rk — Rk

szT Tsz
7TRZ

Rl;)Rl

The commutativity means, that the f} have to be compatible with the gradings on M, and
M foralll > kand g € G, that is, that f}(M,,) C My, where My, is the image of M
under the group homomorphism m)'* induced on M. As in the setup of rings, we denote the
limit of the w)" by w) forall g € G.
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Remark 4.5

As before, in the case of a complete analytic algebra R and an R-module M, Definition
extends Definition to the setup of projective systems. It is also important to note, that
Definition .2)and 4.4 need, that the Ry, and M), admit a finite grading.

The following theorem extends the property of graded modules, that every element
can be written as a sum of graded elements.

Theorem 4.6

Let (G, +) be an abelian group, (Ry, f) a projective system of rings and (M, f) a projec-
tive system of modules, where the M), are Ry-modules, with k,l € Nand k < l. Furthermore,
define R := lim, Ry, M := lim M, and denote the projections R — Ry, by pi for
all k € N and the projections M — M, respectively by pM. Assume, that (My, f) is a
graded projective system in the sense of Definition where the respective systems of group
homomorphisms are denoted by () gec and (7" ) jec. Then every m € M can be written as

m= Zﬂé\/[(m).

geG

In particular, if m = 3 m, with m, € ) (M) is another representation of m, then we

have that my = 7} (m).

Proof:
By assumption, we can write any Mj as My = P, M4 and

prl(m) =" wle(py (m)) = p (x) (m)),

geG geqG

using that 7)’ is the limit of the 7}’* and thus has to commute with p;’. Define M, :=
fm, _ M, and we get by construction m! (M) = M, for all g € G. Using this, we get
the following group homomorphism

w: M= [[ My, m— (7} (m))gec.

geG

Next, we show that u is injective, because this already results in our claim, that we can
write any m € M asm = Y, _, 7y (m). Let m € M with u(m) = 0, then 7" (m) = 0
for all g € G, hence pi'(m) = 3 . pr' (7, (m)) = 0 for all k € N. Using that M is a
projective limit, we immediately get m = 0 and v is injective.

Now assume, that m = 3 ., my, with m, € 7,'(M), then pi'(m,) = pp' (7} (m)), as
the M), are decomposed as direct sums. Knowing, that the representation of p!(m) is
unique in all M, we get p/(m) = 7,/ (m) for all k£ € N. Using the fact, that we are

dealing with projective limits, we already have that m, = 7, (m). O
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Proposition 4.7

Let (G, +) be an abelian group, (Ry, fi) a projective system of rings and (My,, f) a projec-
tive system of modules, where the My, are Ry-modules, with k,l € N and k < [. Furthermore,
define R := lim, Ry, M := lim _ M, and denote the pm]ectzons R — Ry by pf for all
k € N and the projectzons M — M, respectzvely by p¥. Assume, (My, fM) is a graded
projective system in the sense of Deﬁnztzon 4| where the respective systems of group homo-
morphisms are denoted by (w}) jec; and (w)") ge: forany g € G. Then wl(R)m) (M) C Mgy
forall g,h € G.

Proof:
The result holds on the M), as R;-modules, by assumption. This means, that for all
g € Gand h € H the following holds:

Ty (Ri)my * (My,) C Mg,
For | > k, we have that

@B (R)m (M) = £ 0wl (R) £ o mp (M) = e (Ry)my ™ (M),

hence we get our result by passing to the limit and using, that lim, _ Mj.gin = Mgyp.
O

Before we finish this section, we extend the abstract definition of grading to Lie alge-
bras, as we need this notion from now on.

Definition 4.8

Let (G, +) be an abelian group and g a Lie algebra over a field K. We call the Lie algebra
finitely graded, if there is a system of group homomorphisms (79)gec, with 7 : g — g, such

that g = e 7§(0) and [7§(a), m,(8)] C 7y, (0)-

Now we can extend the notion of grading to the case of projective systems of Lie
algebras.

Definition 4.9

Let (gx, f1;) be projective system of Lie algebras over a field K, with k,1 € Nand k < I.
Define g := lim, g, and denote the projections g — g by pi forall k € N. We say (g, 1)
is graded with respect to G, if there are group homomorphisms 73* : (g, +) — (gx, +) for all
g € G, k € N, such that the group homomorphisms 3+ induce a finite grading on the gy, in
the sense of Definition {4.8|for all k € N and such that the following diagram commutes:

Tng

9k — 9k

A

g — G
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The commutativity means, that the f}, have to be compatible with the gradings on g and g,
foralll > kand g € G, this means, that f},(g14) C 9k Where gy, , is the image of g;, under
the group homomorphism n§ induced on gi. As in the setup of rings and modules, we denote
the limit of the 73 by mf for all g € G.

The following result is the analogous result to Theorem [4.6|for Lie algebras.
Theorem 4.10

Let (gx, f7)) be projective system of Lie algebras over a field K, with k,l € Nand k < I.
Furthermore, define g := lim, _ gy, and denote the projections g — gi, by py forall k € N.
Assume, that (g, f7,) is a graded projective system of Lie algebras in the sense of Definition
H where the respective system of group homomorphisms is denoted by (78),cc. Then every

m € g can be written as
m = ng(m).

geG

In particular, if m = 3 m, with m, € w§(g) is another representation of m, then we have
that mg = 7§(m).

Proof:
The proof is the same as for Theorem 4.6| O
Remark 4.11

It is possible to show, that if we have two graded projective systems (Ry., f7kl) and (R}, fi1),
which have the same limit, say R, and induce the same system of group homomorphisms
(1) ge, then gradings of the projective systems are compatible. By the latter we mean, that
we get a commutative diagram as follows:

1/)le wsz
Rp

Tg

Rk—>Rk

We omit a proof for the existence of the 1y, as we do not need this result for the further course
of our thesis.

Before we go on to the next section, we take a look at substructures of the previous
objects. Scheja and Wiebe did not define gradings on the m-adic completion of a ring,
but on the quotient rings R/m*. This allows us to grade rings like analytic algebras,
which are not necessarily complete. We are now using this idea to define gradings of
projective systems of subrings, submodules or Lie subalgebras of projective systems
of the respective type, as this gives a more general notion of grading. Using this, we
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can grade for example convergent power series rings, which are contained in a formal
power series ring. We are using the notation from Definition 4.2} 4.4 or

Definition 4.12

Let (S, f|s,) be a projective system of subrings (submodules, Lie subalgebras) of a projective
system of rings (modules, Lie algebras) (Ry, fk), which is graded as in Definition
4.9). We define w3 := f+|g, forall g € G, k € N. Then (Sk, fis,) is a graded projective
system of subrings (submodules, Lie subalgebras) if and only if w5* induces a grading of S
as a subring (submodule, Lie subalgebra) for all k € N.

Remark 4.13

From now on, we call a ring (module, Lie algebra), which is the projective limit of a graded
projective system, a graded ring (module, Lie algebra). We do so, as the grading of a projective
system induces a system of group homomorphisms, which satisfy all properties postulated by
Scheja and Wiebe in the setup, where R is a Zariski ring.

Using the notation from Definition 4.4} we get the following result.

Lemma 4.14

Let (Ny, f) be a projective system of submodules of the Ry-modules My, where the latter is
graded in the sense of Definition @4 and fij = f{|n,. Assume, that N = lim, Ny C
M = lim, M, and that M is a Noetherian module. Then N is a graded submodule in the
sense of Definition if and only if N can be generated by homogeneous elements.

Proof:

First, assume N is graded. Then the N, are finitely graded submodules of M. As the
f{] are surjective and compatible with our grading, we can lift any homogeneous set
of generators of N, to N;, for | > k, and extend it to a set of homogeneous generators
of N;. This means, that we can lift any set of homogeneous generators of Ny, say Iy,
to a set of homogeneous elements of [V, which we denote by I;,. Starting with £ = 1,
we can build a sequence of submodules generated by homogeneous elements of N,
namely

(I1) C (1) C (I3) C ...

As M is a Noetherian module, the previous chain has to become stationary for some
k € N. This means, that the images of the elements of I;, to IV; generate N, forall / € N.
So N is generated by finitely many homogeneous elements. Now assume, /N can be
generated by homogeneous elements. Then it is easy to see, that all V;, are generated
by the projection of those, and the result follows from the result in the finitely graded
case. O
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4.2 Grading of Lie-Rinehart Algebras

In the following section, we introduce the notion of a Lie-Rinehart algebra, which
combines the structure of a module with the structure of a Lie algebra. We also define
grading of Lie-Rinehart algebras.

Let us start with the definition of a Lie-Rinehart algebra. The definition is taken from
[22] and is slightly modified to fit in our context.

Definition 4.15

Let R be an algebra over a field K. Furthermore, let g be a Lie algebra over the field K. We
call the pair (R, g, p) a Lie-Rinehart algebra, if the following conditions are satisfied:

i) gisan R-module.

ii) g acts on the left of R by derivations, that is, there exists a morphism of Lie algebras
p: g — Der(R). Define o(f) := p(a)(f) foralla € gand f € R.

i) [o, fB] = a(f)B+ fla, Bl forall f € R, o, B € g.

iv) (fa)(g) = flalg)) forall f,g € R, a € g.
Remark 4.16
Condition iii) in the previous definition implies, that the Lie algebra morphism p is also R
linear.

The next topic we need to talk about, is morphisms of Lie-Rinehart algebras. The
following definition is taken from [21, Chapter 1].

Definition 4.17
Let (R,g,p) and (S,h,0) be Lie-Rinehart algebras, where R, S are algebras over a field K.
Then (¢,) is a morphism of Lie-Rinehart algebras, if:

i) ¢ : R — Sis amorphism of K-algebras,

ii) ¢ : g — b is a morphism of Lie algebras, which in the same time is a morphism of
R-modules, where R acts on S by ¢ and

iii) forall f € R, € g it holds, that

¢oa(f) =(a)(o(f))

Our standard example for a Lie-Rinehart algebra is the module of derivations of an
analytic algebra.

Example 4.18

Let R be an analytic algebra and g = Der(R). Then g is a Lie-Rinehart algebra, as all
properties are basic properties of the module of derivations.
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Let us now define a notion of grading for a special type of Lie-Rinehart algebras.

Definition 4.19

Let (G, +) be an abelian group, R be an algebra over a field K and (R, g, p) a Lie-Rinehart
algebra, with g C Der(R) and p : g — Der'(R) . We say (R, g, p) is finitely graded, if the
following conditions hold:

i) R is finitely graded in the sense of Definition
ii) g is finitely graded as an R-module in the sense of Definition

iii) The group homomorphisms m,, g € G, arising from Definition need to satisfy
[71-9(9): ﬂ—h(g)] - 7Tg+h(g) fOT all 9, hedG.

Next, we take a look at the grading of projective systems of Lie-Rinehart algebras. We
restrict ourselves to the case, where R is a complete analytic algebra. We denote the
natural projection R/ml, — R/m% by fZ forl > k.

Definition 4.20

Let (G, +) be an abelian group, R a complete analytic algebra with projective system (Ry, fi),
where Ry := R/m%, and (gx, ff)) a projective system of Lie-algebras, where (Ry, g, pr.)
are also Lie-Rinehart algebras, with py : gr — Der'(Ry), k,l € Nand k < l. Define
g := lim _ g, and denote the projections R — Ry by px for all k € N and the projections
g — gy respectively by pi. We say (g, 1) is graded with respect to G, if the following hold:

i) forall g € G, k € N, there are group homomorphisms wi* : (Ry,4+) — (R, +)
grading R in the sense of Definition[2.12}

it) forall g € G, k € N, there are group homomorphisms 78 : (gx, +) — (gk, +) grading
(Rk, Ok, pi) in the sense of Definition [4.19]

iii) and the following diagrams have to commute:

9k

9k — 9k

A

g — G

Ry,
s
Rk — Rk

fﬂ ng
R
T

Rl;)Rl

Write p for the limit of the py, then (R, g, p) is called a graded Lie-Rinehart algebra. As in
the setup of rings, modules and Lie algebras, we denote by 7§ the limit of the S forall g € G.
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Our definition of a graded Lie-Rinehart algebra allows us to use our results regarding
graded modules. We can also switch the perspective from which we are looking at our
Lie-Rinehart algebra, as it is useful to consider it sometimes as a module, sometimes
as a Lie algebra. Before we go on with examples and the most important theorem of
this section, we have the following remark regarding the usual notion of grading of
finite Lie-algebras.

Remark 4.21

The usual grading of a finite Lie algebra g over a field K is a special case of Definition [£.19}
If we let g operate trivially on K, this is, a(f) = 0 forall f € K and o € g, we can
satisfy all conditions from Definition hence (K, g,p) is a Lie-Rinehart algebra, with
p : g = Der(K) being the trivial morphism. Now we can simply take R = K and grade it
trivially. Then condition i) in Definition is superfluous and conditions ii) and iii) state
basically, that our Lie algebra can be written as a direct sum of graded components, which are
compatible with the Lie brackets, which is the usual definition of a graded Lie algebra.

The following theorem shows, that gradings of analytic algebras induce gradings of
the corresponding Lie-Rinehart algebra. For simplicity, we assume that our field is
algebraically closed.

Theorem 4.22

Let R be a complete analytic algebra over an algebraically closed field K and let g := Der’(R).
Denote the projections Der’(R) — Der(R/m%) by py, with g, := px(Der’(R)) for k € N.
Assume, that R is (K,+) graded, where the grading is induced by 6 € Der'(R). Then §
induces a grading on (R, g, p) in the sense of Definition Every homogeneous € € g
satisfies ads(e) = Xe, for some A € K.

Proof:

In the following proof, we use, that if § € Der’(R) is semi-simple, also ad; is semi-
simple on the finite-dimensional Lie algebras g;. Next we show, that this property
on the finite-dimensional Lie algebras induces our grading on g. The first property of
Definition is satistied automatically, as we assume, that R is graded. To show the
second property, we use that g, = @, 9k,», Where g;. y denotes the eigenspace with
respect to the eigenvalue \. Define 73" : (gi, +) — (gk, +) as the projection to g, for
any A € K. Next we show, that the g, are finitely graded as Rj;-modules. Consider
any k € N, and A, 1 € K, then we have for any homogeneous elements f,, € R; and
X € Gk, -

ads(fuma) = pfumn + Afum = (04 A) fuT™n € Gkt

hence g;, is a graded Ry-module. The last thing we need to show for the second

property of Definition is the finite grading as a Lie algebra, that is [gs \, gk,.] C
gr+u- Consider any 7, € g, and 7y € gy, then

adé([TwTA]) = _[Tw (72, 6]] = [T, [0, Tu]] = )‘[TuvTA] - M[TMTH} = (p+ )‘)[TwTA]>
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hence [gk,i; 9k2] S Gkt

The third property of Definition has to be shown only for the 7}", as the respec-
tive property for the 71* hold trivially. Consider any € € g, then [f5 (), f&(e)] =
30, €)) = fi,(Ae) = Afl(¢). As every element of g; can be written as a sum of homo-
geneous elements, we get that the following diagram commutes:

9k

Ik —M 9k

fﬂ T Tfﬂ
kl ﬂ‘il kl

g — g

Let € € g be homogeneous. Then ad;(e) = Ae follows by the previous computation, as
€ is a limit of homogeneous elements of the g;.

]

The next corollary is analogous to Theorem [3.40]

Corollary 4.23

Let R be a graded complete analytic algebra over an algebraically closed field K with grading
induced by a diagonalizable derivation 6 € Der'(R) and let g C Der’(R) be a Lie-Rinehart
subalgebra. Assume, that g = Hm, pi(9). If [0,9] C g, then g is a graded Lie-Rinehart
subalgebra of Der'(R) with respect to §.

Proof:

By Theorem we have a grading on h := Der'(R) induced by 6. Let b :=
Der(R/m%) and denote the respective grading by 7 for any k¥ € Nand A € K. As
[0,9] C g, we can write gr = @, (9% N by»). This means, that 7§* := 7)*|,, is a group
homomorphism of g, into itself. It satisfies all assumptions of Definition using
the exact same computations as in the proof of Theorem hence g is a graded
Lie-Rinehart subalgebra of Der'(R).

O

4.3 A General Formal Structure Theorem

In this section, we generalize the Formal Structure Theorem from [13]. Before we
state our version of the aforementioned theorem, we need a few preparing results
regarding derivations of analytic algebras. To formulate our statements properly, we
need some terminology. We start with so called multi-gradings, that is, a grading
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of an algebra, module or Lie-Rinehart algebra, by Cartesian products of groups. We
show, that we can reconstruct gradings by each factor of the Cartesian product and
that we can induce a grading by a Cartesian product from two given gradings, if a
certain property is satisfied. The following lemmas state our results. We start with a
finitely graded ring and prove the results for this setup, as all other results follow by
(almost) the same computations.

Lemma 4.24

Let (G,+) and (H,+) be abelian groups and R a ring. R is finitely graded by (G x H,+),
say by \I/@,h), (9,h) € G x H, if and only if there exist commuting group homomorphisms m*
and Yf, g € G, h € H, finitely grading R with

R= PR nyi(R)).

geG heH

Furthermore, we have W[\, = ¢t o )l for all (g,h) € G x H.

Proof:
First assume, that \If ) finitely grades R. Then

R_ @ \If(gh

(9,h)eGxH

and we can write any m € R as m = 3y cqxp Mgh), by Theorem 2.19) Now we
define for any m € Rand forall g € G,h € H, nf{(m) := >, 1y Mgy and ¢y (m) =
> gec Mig.n)- Both are clearly group homomorphisms form (R, +) into itself. We have
m(R)m(R) € wl /(R), as this property is inherited from the ¥(, ). The same holds
for the ¢f'. Using Propositionand commutativity of ¢ and 7, we get 7 o ) o
Tl (R) = ¢ff o (w})*(R) = ¥yt o wl(R). As the analogous result holds for ¢}, we can
see that
vy o7y (R) = m (R) Ny (R),
as the decomposition of any m into homogeneous components is unique.

Now consider the 7% and 4 as given. Define ¥, := ¢;’ o 7). By construc-
tion \If@h) is group homomorphism of (R, +) into itself. We also get by construc-
tion, that ¥} ,\(R) = 7 /(R) N ¢;'(R), hence we can decompose R by assumption as

R =, meaxm Y. (R). Finally, we need to show that forany (g, h), (¢, h') € Gx H,

we have that W, (R)U( , (R) C \I/@ o wy(R), but this follows immediately from
the corresponding property of the ), 7% and ¥, v O

Corollary 4.25

Let (G1,4),...,(Gk, +) beabelian groups, R a ring. Ris finitely graded by (G1x...x Gy, +)
with group homomorphism W, oy, (g1,-..,9r) € G1 X ... X Gy, if and only if there exist
pairwise commuting group homomorphisms 7y, , ..., 7, 9; € G, finitely grading R as in
Lemmald.24, Furthermore, Wy, oy =Ty, ©...0my forall (g1,...,qc) € Gy X ... X Gy.

7777 k
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Proof:
The proof follows by induction from Lemma O

The next lemmas and corollaries are the analogous results to the previous two.

Lemma 4.26

Let (G,+),(H,+) be abelian groups, R a Zariski ring. R is graded by (G x H,+), say
by W), (g,h) € G x H, if and only there exist commuting group homomorphisms g, 1y,
g € G,h € H grading R, where R/m}; can be written as R/w}, = @ . Bjcpy (m4(R/mE)N
Un(R/mY)), for all k € N. Furthermore, we have ¥, ) = by, o, for all (g,h) € G x H.

Proof:

As the notion of grading of R depends only on finite gradings, we can define the
grading group homomorphisms in both directions and the remaining steps, which
are to prove, follow as in the proof of Lemma as the notion of grading depends
on the notion of finite grading on the R/m% for all k¥ € N.

Assume, the (!, are given. Then we can write by Theorem any m € R as

m= ) W m).

(9,h)eGxH

Now we define for any m € Rand forall g € G,h € H, nfl(m) := Y, m(gn) and
Yn(m) == 3 e m(g,h). The remaining steps of this direction of the proof are as in the
proof of Lemma 4

Now consider the m, and ¢ as given. Define W[l ) := ;7 o 7}*. From here, again, the
remaining steps of the proof are identical to the ones in the proof of Lemmaf.24 [

Corollary 4.27

Let (G1,+), ..., (G, +) be abelian groups, R a Zariski ring. R is graded by (G Xx...xX Gy, +)
with group homomorphism Vg, .. (g91,...,9x) € G1 x ... x Gy, if and only if there
exist pairwise commuting group homomorphisms w,,, ..., 7, , g; € G;, grading R, which
induce finite gradings on R/m%, for all k € N, as in Lemma Furthermore, Wy, o) =
Mg, O ...0mg forall (gi,...,gx) € G1 X ... x Gy.

Proof:
The result follows by induction from Lemma O

As we did not really need the fact, that R is a ring in the proof of Lemma we
can state the following two lemmas and corollaries for modules and Lie-Rinehart

algebras. We omit the proofs, as it uses exactly the same idea as the proof of Lemma
4.26]
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Lemma 4.28

Let (G, +), (H,+) be abelian groups, R a graded Zariski ring, M an R-module. M is graded
by (G x H,+), say by \Ifé‘;h), (9,h) € G x H, if and only there exist commuting group
homomorphisms 7r;” WM, (g,h) € G x H grading M and , Rl the corresponding grad-
ings of R, where M /m%M can be written as M /mbM = @gec @heH( M(M/mk M) N

M(M /mhM)) and R /mk, can be written as R/mR =@, Phen(mi(R /mR)ﬂwh (R/mk)),
for all k € N. Furthermore, W7, = ¢t omyl and W | = o) o waor all (g,h) € G x H,
where the latter is the corresponding gradmg of R.

Corollary 4.29
Let (G1,+),. .., (Gy,+) be abelian groups, R a graded Zariski ring, M an R-module. M is
graded by (G X ... x Gy, +) with group homomorphism \Ifé” 77777 o (915 - ,gk) €eGrx...x
G, if and only if there exist pmrwzse commuting group homomorphzsms Tl g € G

grading M and . ... Wf the corresponding gradings of R, where the gradings induce
finite gradings on M /m’f%M for all k € N, as in Lemma Furthermore, U/} =

myto.omland Wl =9l o. oyl forall (gi,...,g5) € Gy X ... x Gy, where the

latter is the corresponding grading of R.

As the previous results also extend naturally to the setup of projective limits, we state
the result in this setup only for Lie-Rinehart algebras, as the other results look similar.
We keep the notation from Definition [4.20}

Lemma 4.30

Let (G,+),(H,+) be abelian groups, R a graded complete analytic algebra and (R, g, p) a
Lie-Rinehart algebra as in Definition [4.20, Keeping the notation and conditions of Definition
4.20, we say g is graded by (G x H,+), say by \If (on) (9, h) € G x H, if and only there exist
commuting group homomorphisms n¥ ¥, (g,h) € G x H grading gy, and Wfk,w,f’“ the
corresponding gradings of Ry, where gk can be written as g, = e Dpep (7o (96) Wn(0r))
and Ry, can be written as Ry, = @gea @D, (7 (Rr) N (Ry)), for all k € N. Furthermore,
Uln = Uhonsand Ui, = ¢if o nl for all (g,h) € G x H, where the latter is the
correspondmg gradzrlg of R.

Proof:

We only sketch the following proof, as its details are similar to Lemma and
Lemma [4.26|

Given7g* and 3", we canset U7y, := ¢ orf and get immediately that the following
diagram commutes

9k 9k
Tg

~
~

et

>

Ok

R A T
71.l whl
() ’

g
g

~
<

<

=
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hence this diagram commutes

ok
(g9,h)
O — Bk

fkﬁ Tfkl
(g h)

91—>gz

The result for the gradings of our ring follow by the exact same argument, thus the
U ;) induce a grading on the g; as modules. Property (jii) from Definition |4.19
follows immediately, as the 7§+ and v}* are gradings of Lie algebras.

Assume, we have \I/?;“ By then we can define

ng : (gk, ) gk7 7 T = Z e

heH

forall g € G, k € N. The grading of the g;, induced by the 7§* is inherited from ¥} ,,

hence nothing needs to be shown, except the compatibility with the f},. Let 2; € g
and z, := f(z;), then

ngosz ) Z‘I’ kalo‘llg;h) 1) = fﬁz@ﬂﬁl(xz)’

heH heH

hence the following diagram commutes:

ik
9, — Ok

g g
9]
K

The analogous construction applies to the ¢y, 7/ and . This finishes our sketch
of the proof, as the remaining computations are similar to the ones in Lemma [4.24]
and Lemma O

Corollary 4.31

Let (G1,+), ..., (G}, +) be abelian groups, R a graded complete analytic algebra and (R, g, p)
a Lie-Rinehart algebra as in Deﬁnition“ Keeping the notation and conditions of Definition
4.20}, we say g is graded by (G x. . .x G, +) with group homomorphism \If(g1 77777 0 Ag1,-..,95) €
Gh1Xx...xG;, ifand only if there exist pairwise commuting group homomorphzsms Mok, .., Tk,
gi € G’ grading gy and ©l, ... wl* the corresponding gradzngs of R, where the gmdmgs
induce finite gradings on g respectwely Ry for all k € N, as in Lemma[£.30, Furthermore,
\I/ggl 77777 o) = 7T§k o...omd and \I/g’“ ..... o) = ﬂfk 0. okafor all (g1,...,9;) € Gix...xGj,
where the latter is the correspondmg grading of R.
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Now we can define multi-graded rings, modules and Lie-Rinehart algebras.

Definition 4.32

Let R be a Zariski ring graded in the sense of Corollary M an R-module graded on the
sense of Corollary or (R, g, p) be a Lie-Rinehart algebra graded in the sense of Corollary
Then R, M or (R, g, p) is called multi-graded with respect to (G1 X ... X Gy, +).

Next we state terminology, which we need throughout this chapter.

Definition 4.33

Let R be an analytic algebra over a field K and 6 € Der'(R) diagonalizable. We call an
element f € R § homogeneous of degree A or quasi-homogeneous, if §(f) = A - f for
some N € K. If we have a set of diagonal and commuting derivations, say ¢y, ..., ds, for
some s € N, we call f \-multihomogeneous, if 0;(f) = A; - f for some \; € K and all
jg=1,...,swith A= (A1,..., ).

Remark 4.34

From now on, we assume that our fields are algebraically closed. We need this assumption to
assure that all semi-simple derivations are in fact diagonalizable.

Theorem 4.35

Let R be an analytic algebra over a field K and 6y,...,0s € Der'(R) diagonalizable and
commuting derivations, then 6y, . .., 0 induce a (K*, +) multi-grading on R.

Proof:

We do the proof for the case s = 2, as the rest follows by induction. By Theorem
we get that §; and J, induce a (K, +) grading on R. As the derivations commute,
also their linear operators induced on R/m% commute for all k € N. The latter means,
that we can write R/m%, as a direct sum of eigenspaces of common eigenvectors of
&1 and d,. As these are precisely the graded components of the R/m}, with respect to
the gradings induced by 4; and J,, we are in the setup of Lemma and we get a
(K2, +) grading on R applying the latter. O

Remark 4.36
Later on we will see, that all (K*,+) gradings are induced by a set of s diagonalizable and
commuting derivations.

The next lemma we proof, states, that if we have derivations which equal their linear
part, we can compute their Lie bracket by computing the Lie bracket of the represen-
tation matrices.

Lemma 4.37

Let R be an analytic algebra over a field K and 0, ¢ € Der’(R). Assume mp has a minimal set of
generators ry, ..., x, forsomen € N, § = >" | \ix;0,, and € = €. Then [0, €] = z[A, B]9",
where A, B € K™*™ are the representation matrices of the linear parts of § respectively e.
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Proof:
See [13, Lemma 2.2]. ]

The next lemma gives a nice criterion, when a given derivation is nilpotent. We use

the grading introduced in Theorem Lemma and

Lemma 4.38

Let R be an analytic algebra over a field K and § € Der'(R) diagonalizable. Furthermore, let
e € Der'(R), then [0, €] = X\ - € for \ € K* implies that e is nilpotent.

Proof:

Assume with out loss of generality, that mp has a minimal set of generators x4, ..., z,
forsomen € N, § = Y"1 | \;z;0,, with diagonal representation matrix B € K™*" and
¢ = €o with representation matrix A € K"*". By Lemma and we can restrict
ourselves to the respective results regarding the matrices A and B. The following
result from linear algebra then gives our desired result:

Let A, B € K™ for some algebraically closed field K of characteristic 0. Then [A, B]
is nilpotent, if [A, [A, B]] = 0.

In our case we have [A, B] = —\A, hence [4,[A, B]] = 0 and —\A is nilpotent. As
A # 0, we get that A is nilpotent, hence e. O
Remark 4.39

The result in the proof of the previous lemma is a typical exercise regarding the connection
between matrices and Lie algebras. It can be proven using, that [A, B]*™1 = [A, B]* - (AB —
BA) = A[A, B]|B — [A, B|BA, which has trace 0 for all k > 1. Thus we get that, over an
algebraically closed field, the matrix [A, B) is nilpotent.

Remark 4.40
Lemma states, that if we have a homogeneous derivation with weight # 0, then this
derivation is already nilpotent.

Itis clear, that nilpotent derivations stay nilpotent under arbitrary coordinate changes.
The next lemma states, when diagonal derivations keep their diagonal form.

Lemma 4.41

Let R be a complete analytic algebra over a field K, let 1, ..., x, be a set of coordinates for
R, wheren € Nand § € Der'(R), with § = Y | \jw;0y, and A = (Ai,..., \,) € K". Then
d is invariant under X\ homogeneous coordinate changes, that is, coordinate changes of type
x; — x; + h; for some h; € R with §(h;) = X - h; for some A € K.

Proof:
See [13, Lemma 2.7]. H
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The next theorem generalizes a well known result from linear algebra, namely that we
can find a linear coordinate change, such that a finite set of commuting diagonalizable
matrices is simultaneously in diagonal form.

Theorem 4.42
Let R be a complete analytic algebra over a field K and ¢4, . ..,6; € Der'(R) diagonalizable
and commuting. Then there exists a coordinate change, such that all 6, are diagonal.

Proof:

We write m for mg to keep the notation short and we consider the m/m* from now
on as K-vector spaces. It is a well known fact from linear algebra, that a given set
of diagonalizable and commuting matrices has common basis of eigenvectors (see
for example [25, Chapter XIV, Exercise 13]). We use this result and the theory of
projective limits of K-vector spaces, to show that our derivations d;,...,d, have a
common basis of eigenvectors. We start by considering the spaces m; := m/m"*. We
have projections p, : m — my, T, : mp; — my and f; : m; - m; for j > i, As
the derivations commute in Der’(R), they also commute on all Der(R/m*), hence we
get a common basis of eigenvectors for the §; on all m;. We write 67 for the linear
operator on m; induced by 4;. Assume m;, = @’*, E} where EJ is an eigenspace of
all derivations 6¥. We can lift any basis of m, to a basis of m3, hence we get an injection
o3 1 My — mg, with 7 0 03 = idy,. Inductively, we get injections o1 @ my, — My
with 7, 0 0411 = idy, . Using this construction, we get injections ¢, : my — my, such
that the following diagram commutes for j > i:

Asm = lim _ m;, we get by the universal property of projective limits a /-linear
map ¢ : my — m, such that the following diagram commutes for j >
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¢ is injective, as py 0 ¢ = idp,.
Now consider any z; € E}, then we have that 6/ (z;) = Az, for all 7. The latter holds
in particular for ¢, (z;), where z; € E?. Using 6} o p = pj, 0 9, we get

Nt () = 67 (dr(x5)) = 6F 0 prl((x5)) = pr © 8((x;)).

Thus we get for all z; € E}:
0i(p(x5)) = Aig(;),

where we consider any element of m as a sequence of elements of elements of m; on
which the §; operate component wise. Applying Nakayama’s Lemma, any basis of
my lifts to a minimal set of generators of m as an ideal. By the application of ¢ to m,,
we get in our case, that m has a set of generators, which are eigenvectors of all J;, so
we have that all derivations are simultaneously diagonalizable. O

We can use the idea of the previous proof to prove the following theorem:

Theorem 4.43

Let R be a (K*,+) multi-graded analytic algebra over a field K. Then there exist diagonaliz-
able and commuting 64, ..., 05 € Der'(R), such that the (K*, +) multi-grading is induced by
them.

Proof:

We do the case s = 2, as the rest follows by induction. By Theorem [3.38) there exist di-
agonalizable derivations 0, d, € Der’(R) each inducing a (K, +) grading of R, where
these gradings correspond to the first and second component of our (K?, +) multi-
grading. We now need to show, that they have a common eigenbasis. By Lemma
we know that 4; and d, have a common eigenbasis on R/m}, for all k£ € N, as
the graded components of our ring R are precisely the common eigenvectors of ¢;
and ;. Checking the proof of Theorem we see that this suffices to get a set of
generators of mp consisting of common eigenvectors of d; and d, hence they can be
simultaneously diagonalized and thus are commuting. O
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Now we can state our more general version of the Formal Structure Theorem from
[13]. It states, that we can extend a given Lie-Rinehart subalgebra of Der’(R), where
R is a complete analytic algebra, to a larger Lie-Rinehart subalgebra of Der’(R), which
has a concrete known structure. This structure can be used to compute possible grad-
ings of the resulting Lie-Rinehart algebra.

Theorem 4.44 (Formal Structure Theorem)

Let R be a complete analytic algebra and g be a Lie-Rinehart subalgebra of Der'(R). As-
sume, that g = @kGN pr(@) and for any § € g, we have that §s,dn € g. Then there exist
01y, 05,11, ..., 1 € gwith a uniquely determined s € N, such that

i) 01,...,0s,11,...,V, isa minimal set of generators of g as an R-module,
ii) if o € g with [0;,0] = 0 for all i, then og € (01,...,0s)k,
iii) 0, is diagonal with eigenvalues in Q,
iv) v, is nilpotent, and

v) [(51',Vj] cQ- Vj

Proof:

We are going to mimic the proof of [13, Theorem 5.4]. Statement iii) follows using
Theorem and Assume, we already have ¢y, . ..,0, € g diagonalizable with s
being maximal. As the J; induce a multi-grading of g, we can take any homogeneous
derivation o € g, with multi-degree A = (A, ..., \s) € Q°. If one of the ), is not equal
to zero, Lemmaf4.38|already states, that o is nilpotent. So let us assume all \; are equal
to zero. By Theorem we get that o has a Chevalley decomposition 0 = o5 + oy,
with 0g,0n € g. As 0 has multi-degree 0, also 0g and oy have multi-degree 0, due to
Proposition Due to the maximality of s, we already get that o5 € (d1,...,ds) k.
So we can assume o = oy. This proves i), ii), iv) and v). We postpone the proof of the
uniqueness of s to Chapter O

Remark 4.45
Before we go on with a special case, in which Theorem holds, we state a more general
setup. Consider a sequence of I -vector spaces of R, say (V;);en, such that

Vo2Vi2Ve D,

and such that RV; C V; for j > i Define g := {0 € Der'(R)| 6(V;) C Vj for j > i}. It is
easy to see, that g is a Lie-Rinehart algebra. As in the proof of Theorem we can show,
that, if 0 € g, then also dg,0n € g, as the defining property is kept under taking powers as
morphisms of vector spaces. In the following we consider the setup, where I is an ideal of R
and we have V; := I forall i € N.
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The Formal Structure Theorem has a nice application in the computation of homo-
geneities of ideals of complete analytic algebras. As all complete analytic algebras
over a field K are of type R = K[[z1,...,2,]]/I for some n € N and an ideal I of
K{[z1,...,x,]], we can consider a special set of derivations, namely so called logarith-
mic derivations.

Definition 4.46

Let R be an analytic algebra over a field K and let I be an ideal of R. We call the R-module

Der;(R) := Dery := {d € Der(R)|5() C I}

the module of logarithmic derivations.

Remark 4.47
It is obvious, that the module of logarithmic derivations is a submodule of Der(R). Further-
more, it is a Lie-Rinehart subalgebra of Der(R).

Now we use Lemma to show, that all derivations of K[|y, ..., z,]]/] arise from
I-invariant derivations of K|[x1,...,z,]].

Corollary 4.48
Consider the setup of Lemma Then the derivation « is I-invariant.

Proof:
We clearly have §(0) = 0,s0 ¢ o () = ¢ o ¢(I) = 0 and we get that a(I) C 1. O

We know, that the information regarding a (K*, +) grading of an ideal / can be given
by stating diagonalizable derivations of Der’(R), with (/) C I. This motivates the
following definition.

Definition 4.49

Let R be a complete analytic algebra and I an ideal of R. Define

Der’(R) := Der;(R) N Der'(R).

We call Der;(R) the module of complete logarithmic derivations.

Remark 4.50
The term complete in the previous definition arises from the fact, that the module turns out
to be complete.

It easy to see, that (R, Der}(R),p) is a Lie-Rinehart algebra, with p : Der;(R) —
Der(R). Next we show, that it satisfies the conditions of Theorem [4.44]
Remark 4.51

From now on, we write g}, for the images of the projections of Der’;(R) to Der(R/mk) for all
k € N.
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Corollary 4.52
Let R be a complete analytic algebra and I an ideal of R. Then Der’;(R) satisfies the conditions
of Theorem and there exist 0; and v; as in Theorem such that:

Der’I(R) = <(51, c. 7537 Viy..., VT>R-

Proof:

We want to apply Theorem to Der’(R), hence we need to show, that for any
§ € Der’(R), we have that dg,0x € Der’(R) and that Der’(R) = im _g;. The first
statement follows from the fact, that any ¢ € Der;(R) has a Chevalley decomposition
§ = 6s+06y and, using that §(/) C I, we have that dg(/) C I and ox (/) C I by Theorem
To show Der’(R) = m, g;, we consider the following commutative diagram,
we get due to the definition of the g:

Der’;(R)
¥4 Pk
: /
1&;@ Ok
N
/ iy /

g

The injectivity of u follows by same proof as for Proposition so we only need
to show surjectivity. We can consider every element ¢ of lim, _ g as a sequence of
elements (0x)reny with 6 € g}, C gi. As 0x(I) C I holds for all §;, with I being the
projection of I to R/m}, we get §(I + mf,) C I + mk, for all & € N. Using Krull’s
Intersection Theorem, we get that 6(/) C I and ¢ € Der’;(R), hence we can find for
any 0 € lim, _ g} ad’ € Der}(R) with u(d) = 0.
Now we can apply Theorem to Der(R) and our statement follows immediately.
O]

Remark 4.53

Due to Corollary we get that every derivation of an complete analytic algebra R =
Kl[z1,...,x,]]/1 arises from a derivation of K|[[xy,...,x,]|, which is I-invariant. Hence
analyzing the derivations of R can be reduced to analyzing Der,(K|[x1, ..., x,]]), as these
obviously induce derivations on R. By Theorem we get that every diagonalizable deriva-
tion of Der’; (K |[x1, . . ., x,]]) corresponds 1:1 to a grading of I respectively a grading of R, by
Lemma We are going to use this approach to compute the possible gradings of analytic
algebras in Chapter|[6]
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5 Profinite Lie(-Rinehart) Algebras

In this chapter we take a closer look at so called profinite Lie algebras. The idea
is to investigate Lie algebras, that arise as projective limits of finite-dimensional Lie
algebras. The work of Hofmann and Morris in [20] in the context of topological Lie
algebras serves as a template for our work. We modify their definitions in a sense, that
our definitions are compatible with the ones in [20], if we endow our Lie algebras with
the discrete topology. In this chapter, we are only stating and proving basic results
regarding profinite Lie algebras, as our goal is to prove an analogous statement to
Theorem for profinite Lie algebras. We include profinite Lie-Rinehart algebras in
the beginning, as their construction is analogous to the construction of profinite Lie
algebras.

Remark 5.1

In the following chapter, R always denotes a complete analytic algebra over a field K of char-
acteristic 0 and g always denotes a Lie algebra over the field K. We denote a Lie-Rinehart
algebra by (R, g, p). We restrict ourselves to the natural numbers as a set of indexes, as the
other cases extend naturally and we only work with this setup in the following chapter.

5.1 Basic Definitions and Results

Let us start with the basic definition of the following chapter.

Definition 5.2

Let (gi, fi;) be projective system of finite-dimensional Lie algebras over K, with i, j € N and
i < j. Then we call g := l'&nieN g, a profinite Lie algebra.

Remark 5.3

From now on, we assume that the projections p; : g — g, are surjective for all i € N, hence

also all f;; are surjective for all j > i, as f;; o p; = p; and the p; are surjective. We can do so
due to Proposition

Now we can define profinite Lie-Rinehart algebras in the setup of complete analytic
algebras.
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Definition 5.4

Let (R;, f;;) be a projective system of complete analytic algebras, with R; := R/m%. Fur-
thermore, let (g;, [};) be a projective system of Lie-Rinehart algebras, with g; C Der(R;) and
pi © 9i = Der(R;). As the (R;, g;, pi) are finite-dimensional Lie-Rinehart algebras, we have a
projective system (Der(R;), fl-]?er/(R)) with lim,_ Der(R;) < Der(R). Write g := lim,__ g
and denote by p the limit of the p;, then we call (R, g, p) a profinite Lie-Rinehart algebra.
Remark 5.5

We stated the previous result only in the setup of complete analytic algebras, as we have that
the Der(R/I") have Der'(R) as their limit due to Proposition A detailed analysis of the
proof of the aforementioned proposition yields, that we can replace the analytic algebra by any
ring R which arises as an I-adic completion. Let Der’(R) denote the set of derivations, which
are I-invariant. Then we get Der'(R) = Hm, Der(R/I"), as the proof of Proposition w
only needs ;. I' = 0.

To guarantee, that Der(R/1") is finite-dimensional, we need to assume, that R/I is finite-
dimensional as a K-vector space.

Let us see an immediate result from the definition.

Lemma 5.6
Keep the notation from Definition Let (R, g, p) be a profinite Lie-Rinehart algebra. Set
b; := Der(R;). Then there exists a morphism of Lie-Rinehart algebras (idg, 1), with

g = limb; = Der'(R).
ieN

Proof:
Consider the following exact sequence:

0 g —— b,

Using, that lim is a left-exact functor, we get an injection p : g — Der'(R). O

An important example for our work is the following:

Example 5.7

Consider the case where R = Cl[x1,...,x,]], ¢ = Der'(R) and p : Der'(R) — Der(R).
Define the g; as the images of g in Der(R/mb%). It is clear, that (R, g, p) is a Lie-Rinehart
algebra by Example Define R; := R/wm%, and p; : g; — Der(R;) for all i € N and
we get immediately, that the (R;, i, p;) are finite-dimensional Lie-Rinehart algebras. We also
have lim__ Der(R;) = Der'(R) — Der(R) and fj; = ger,(R), thus (R, g, p) is a profinte
Lie-Rinehart algebra.
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From Example[5.7|we get the following result.
Corollary 5.8

Let K be a field with characteristic 0and R = K|[x1, ..., x,)]/] for someideal I of K[[xy,. .., x,]].
Then (R, Der'(R), p) is a profinite Lie-Rinehart algebra, with p : Der’'(R) < Der(R).

Proof:
The computation from Example 5.7l works in the same way for this statement. O

Our next definition extends the notion of nilpotent and solvable Lie algebras to the
profinite case.

Definition 5.9

Let (R, g, p) be a profinite Lie-Rinehart algebra with projective systems (R;, f}) and (g;, f7),
such that R = hm, R and g = Hm._ . g;. Then (R, g, p) is called pronilpotent (resp.
prosolvable), if g, is nilpotent (resp. solvable) as a Lie algebra for all i. We call an element
x € g nilpotent, if and only if p}(x) € g; is nilpotent for all i.

Now we can state Engel’s Theorem for profinite Lie-Rinehart algebras.

Theorem 5.10

Let (R, g, p) be a profinite Lie-Rinehart algebra with projective systems (R;, f}) and (g, f}}),
s'uc}'l that R = lim, _ R;and g = lim,_g;. Then (R, g, p) is pronilpotent if and only if ad, o)
is nilpotent for all x € gand i € N.

Proof:

(R, g, p) being pronilpotent is equivalent to g; being nilpotent for all i. Applying En-
gel’s Theorem (see Theorem 2.51)), g; being nilpotent is quivalent to p (z) being nilpo-
tent, which is equivalent to ad,s,) being nilpotent for all = € g, as p; is assumed to
be surjective. Combining the results we see, that (R, g, p) is pronilpotent if and only
ads(,) is nilpotent for all 2 € gand i € N. O

Our next definitions are normalizers and centralizers of profinite Lie-Rinehart alge-
bras.

Definition 5.11
Let (R, g, p) be a profinite Lie-Rinehart algebra and by C g. Then

Ng(h) :={z € g| [z,h] € hforall h € b}

is called the normalizer of b in g.
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Definition 5.12
Let (R, g, p) be a profinite Lie-Rinehart algebra and ) C g. Then

C(h) :={z € g|[z,h] =0forall h € b}

is called the centralizer of by in g.

Remark 5.13

Let g be a profinite Lie algebra and b a subspace of g. It can be shown that C(h) and N(b) are
subalgebras of g. If furthermore Y is a subalgebra of g, b is an ideal of the Lie algebra N(b).

We omit an example at this point, as we are going to work with pronilpotent Lie(-
Rinehart) algebras in the following section.

5.2 Pro-Cartan Subalgebras

In this section, we are going to extend the notion of a Cartan subalgebra to the profi-
nite Lie(-Rinehart) algebra case. We show, that so called pro-Cartan subalgebras exist
and that they are all conjugated in the sense of Theorem We restrict our defini-
tions to profinite Lie algebras, as the results only need the Lie algebra structure and
not any module structure.

Let us first define pro-Cartan subalgebras.

Definition 5.14

Let g be a profinite Lie algebra with projective system (g, f;), such that g = Wm, _ g; and
b a profinite Lie subalgebra of g. We say b is a pro-Cartan subalgebra, if the following are
satisfied:

ii) b is pronilpotent

In Theorem we used the group of inner automorphisms of a given finite dimen-
sional Lie algebra. With the next definition, we extend this notion to profinite Lie
algebras.

Definition 5.15

Let g be a profinite Lie algebra with projective system (g;, f;;), such that g = Hm, o gi.
We call Inn,(g) := lim,_ Inn(g;) the group of projective inner automorphisms. Fur-
thermore, Inn(g) denotes the group generated by the set {exp(ad,)| x is nilpotent}, where
exp(ad,(y)) := (exp(pi([z,y])))ien for any y € g. Inn(g) is called the group of inner
automorphisms.
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We called Inn(g) the group of inner automorphisms, now we need to prove, that
exp(ad,) is well-defined for any nilpotent x € g, hence maps g into itself and that it
is an automorphism. The definition, at the moment, only guarantees, that exp(ad,)
maps g into the product [ ], g;- We split the proof regarding the properties of Inn(g)
into two parts. The first part shows, that the exp(ad,) are Lie algebra morphisms of g
into itself. The second part shows, that Inn(g) injects into Inn,(g) and that the latter is
a subgroup of Aut(g), hence also Inn(g) is a subgroup of Aut(g).

Proposition 5.16
Consider the setup of Definition Let © € g be nilpotent, then exp(ad,) is a Lie algebra
morphism of g into itself.

Proof:

Let y € g be arbitrary. If we can show, that for any j > i, we have f7(exp(p§([z,y]))) =
exp(p}([x,y])), we haven proven, that exp(ad,) maps g into itself. But this is easy
too see, as ffj(ad;?(x) (Pj(y))) = ad;?(x) (pi(y)) for any | € N and as the exp(p}([z,y]))
are finite sums, where the summands are powers of adpg(x). Now for any y € g,
exp(ad,(y)) is a sequence of elements compatible with the f, hence it lies in g. To
see, that exp(ad,) is a Lie algebra morphism of g into itself, we only need to take a
look at its behavior on every component of a sequence of elements. As we know,
that exp(ad,s(,)) is a Lie algebra morphism of g, into itself for all i € N, we have that
exp(ad,) is a Lie algebra morphism of g into itself. O

Our next lemma shows us, that Inn(g) is isomorphic to a subgroup of Inn,(g) and that
the latter is a subgroup of Aut(g).

Lemma 5.17
Let g be a profinite Lie algebra with projective system (g;, f7;), such that g = hm, _ g;. Then
Inn(g) — Inny(g). In particular, all ¢ € Inn,(g) are automorphisms of g.

Proof:

First of all, we get projections p; : Inn(g) — Inn,(g;) induced by exp(ad,) — exp(ad,s(s)),
where p} denotes the projection g — g;. The p; are surjective for all i € N, as the pf
are surjective for all i € N by Remark[5.1] The p; commute with the group homomor-
phisms f;; : Inn(g;) — Inn(g;), which are induced by exp(ad,s(,)) — exp(ad I Op?(x)) =
exp(adys(,)). By the universal property of projective limits, we get the following dia-
gram:
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Inn(g)

b, oy Inn(g;)

Ty > Inn(g;)

Inn(g;)

where f;; and 7; are as in Definition 2.1/ for i < j. Due to the uniqueness of v and the
proof of the universal property, we get that

w: Inn(g) — I'Lnlnn(gi), exp(ad,) — (exp(adpg(x)))ieN.
ieN
Now we can show, that u is injective. Consider any ¢ € Inn(g), such that u(¢) is the
identity. Then, using the commutativity the previous diagram, we get that p;(¢) = id,,
for all i € N. Thus pj(¢)(z) = pi()(pi(x)) = pi(z), for any © € gand i € N. As
g =lim._g;, we get that ¢(x) = « for all « € g, hence ¢ = idy and u is injective.
Finally, we can show the last statement. Let ¢ € Inn,(g), then it is a sequence (¢;);en,

with ¢; € Inn(g;) for all € N. Due to the construction of the f;;, we get the following
commutative diagram for all j > i

®i
9 ——=— i

oY

g g
fi]' fij

Figure 5.1: Commutative diagram regarding the ¢;.

First, we show that ¢ is injective. Consider the following exact sequence:

0 > 0 > @i ¢z/gz > 0.

Due to the commutativity of the diagram in Figure 4.1, we can apply lim as a left-exact
functor and we get the following exact sequence:
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By exactness of the previous sequence, we have that ¢ is injective. Next, we have to
show, that for any y € g, there exists an « € g, such that ¢(z) = y. As g is a limit,
we consider y as the sequence (y;);eny and show, that there is a sequence (z;);eny With
¢i(x;) = y; for all i. We already know, that the ¢, are isomorphisms, hence we have a
unique z; € g, such that ¢;(z;) = y;. If we can show, that fzgj(x]) = x; forall j > i, we
are done. We have

oi(fij(w5)) = f35(05(x5)) = f5(u;) = vis

hence f/(z;) = ;. O

Our next goal is to prove the existence and conjugacy of pro-Cartan subalgebras of
profinite Lie algebras. Before we state the proof we need a few more preparing defi-
nitions and results.

Definition 5.18

Let g be a finite-dimensional Lie algebra over an algebraically closed field K. Let h be a Cartan
subalgebra of g. Furthermore, let g = h & go, & ... © ga, be the root space decomposition
of g relative to ). We denote by Ey(h) the subgroup of Aut(g) generated by elements of type
exp(ad,), where x is contained in g,, for some 1 < i < s.

Proposition 5.19
Consider the setup of Definition Then E4(h) does not depend on the choice of b, and we
can write Eg instead of Eq(h).

Proof:
See [11} Proposition 1]. ]

Theorem 5.20
Let g be a finite-dimensional Lie algebra over an algebraically closed field K. Let b and ' be
be two Cartan subalgebras of g. Then there exists an o € Eg, such that h = o(by’).

Proof:
See [11, Theorem 2]. O

The following two results, combined with the previous theorem, are crucial for the
proof of the existence and conjugacy of pro-Cartan subalgebras.

Lemma 5.21

Let g be a finite-dimensional Lie algebra over an algebraically closed field K. Assume, g can
be written as g = b + i, where b is a nilpotent subalgebra of g and i is an ideal of g. If
g=bhDga, D ... D ga, isa root space decomposition of g with respect to b, then g,, C i for
alli=1,...,s.
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Proof:

As iis an ideal, we can consider the projection 7 : g — g/i, which is a morphism of
Lie algebras, as well as a morphism of h-modules. As g/i = (h +i)/i, g/i is nilpotent
and we get that all non-trivial root spaces are 0. Using [4, Chapter 7, Proposition 9
iv)], we get that 7(g,,) =0 foralli =1,...,s henceg,, Ciforalli=1,...,s. O

As an important corollary of the previous lemma, we get the following result.

Corollary 5.22

Let g, g’ be a finite-dimensional Lie algebras over an algebraically closed field K and ¢ : g — ¢
be a surjective morphism of Lie algebras. Furthermore, let by’ be a Cartan subalgebra of ¢'. Then
every element of E4-1y) is generated by elements of type exp(ad,), with x € ker(¢) N gq, for
some 1 < i < s, where the root space decomposition of ¢~ (h') equals h © ¢~ (b)), & ... &

¢~ (B )a.

Proof:

By Proposition we have that ¢'(h’) is a subalgebra of g. Denote by h a Cartan
subalgebra of ¢~*(l'), then ¢(h) is a Cartan subalgebra of g’ by Theorem Using
that ¢(h) = Ny (¢(h)) = Ny (o(h)), we see that ¢(h) is a Cartan subalgebra of h’. Due
to the fact, that b’ is nilpotent, it contains only one Cartan subalgebra, namely itself,
hence ¢(h) = h’. Now consider any = € ¢~ '(’), then there exists a y € b, such that
d(y) = ¢(z), hence x — y € ker(¢). Now we have that any element = of ' (§’) can be
written as z = y + z, with y € h and 2 € ker(¢). By Lemmap.21] we get ¢~ (h'),, C
ker(¢) for all i = 1,...,s. Now by definition of E-1( and due to the fact, that by
Proposition[5.19 E-1(yy does not depend on the chosen Cartan subalgebra, our claim
follows. [

Now we can state the existence and conjugacy results for pro-Cartan subalgebras of
profinite Lie algebras.

Theorem 5.23
Let g be a profinite Lie algebra over an algebraically closed field K. Then there exists a pro-
Cartan subalgebra b of g.

Proof:

As we have done before, we are going to use projective limits to prove our result. The
notation is the same as in the proof of Lemma replacing the inner automorphism
groups by g respectively g, for i € N. To keep notation short, we denote a Cartan
subalgebra of g; by b;, as their existence is guaranteed by Proposition To show
existence, we need to construct a sequence (h;);cn, such that I'LnieN h; is a pro-Cartan
subalgebra of g. Due to Theorem and Theorem we can use that f;; is a
surjection between g; and g;, for ¢ < j. Now we can lift any Cartan subalgebra b;
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of g; to a Cartan subalgebra h; of g;, such that b, = f;;(b,). Starting with g;, we can
construct a sequence as mentioned before. Clearly h = lim _ b; is a pronilpotent
subalgebra of g, so that we only need to check the normalizer property. So consider
any z € g, such that [z, h] € b forall h € h. Then the image of x under all projections to
g, say 7, satisfies [z, h] € h; for all i € Nand & € h;. Now using that the h; are Cartan
subalgebras, we get that z € h; for all i € N, hence = € h and we get h = Ny(h). O

Theorem 5.24
Let g be a profinite Lie algebra over an algebraically closed field K. Then for any two pro-
Cartan subalgebras b and by’ of g there exists a o € Inny(g), such that h = o(hy’).

Proof:

Let h and b’ be pro-Cartan subalgebras of g. Denote for all i € N the projections
of h (respectively h') to g; by b, (respectively h!). We know, that we can lift any
exp(ads(,)) € Inn(g;) to exp(adpg(x)) € Inn(g,) forall j > iand = € g. As g projects sur-
jectively to the g; this implies, that we can lift any ¢ € Inn(g,) to some ¢\) € Inn(g;),
such that the projection of o) to Inn(g;) equals ¢). We show the conjugacy using
this idea and an inductive argument. Assume that h; = b; forall 1 < i < k+1
for some fixed £ € N. Now we know, that b, and b, are Cartan subalgebras of

frrs1(@ks1) C @er1. Applying Theorem and Corollary to the Lie algebra
Srrs1(@r11), we get the existence of an element a,i’f:;l), such that b = o,ﬁ{”(h}cﬂ)

and o'i)g4q = idy, forall 1 <i < k, as a,(ﬁ;l) is a product of elements of type exp(ad,),
with z living in a complement of b1, but in the kernel of fj ;. Iterating this process
o oot

that the corresponding elements of Inn(g;) satisfy h; = Uz@ 0...0 UY)(F);). This means,
that we have constructed an element o € Inn,(g), which satisfies h = o (). O

by lifting as explained before, we find a sequence of elements (o sen, such

Remark 5.25

In [20, Chapter 7] more results regarding topological profinite Lie algebras can be found,
which basically generalize our previous results. Only Theorem 5.24 has no analogous result,
hence our result, although it is not in a topological context, seems to be a new result, which
has not been proven before.

As an example for the use of pro-Cartan subalgebras, we state the proof of the unique-
ness of the dimension of the vector space s, which is generated by the pairwise com-
muting diagonalizable derivations in Theorem If we can show, that the afore-
mentioned vector space is a subspace of a pro-Cartan subalgebra, the conjugacy of
pro-Cartan subalgebras gives us the uniqueness of s.

Lemma 5.26
Let R be a complete analytic algebra over an algebraically closed, complete real valuation
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field K and g C Der'(R), as in Theorem Using the notation from the aforementioned
theorem, we have that

b:={reallno]=0,i=1...s)

is a pro-Cartan subalgebra of g.

Proof:

From now on, we denote the projections of 7 € g to g, by 7.

First of all, we need to show that b is subalgebra of g. It is obvious, that the sum of two
elements of b is again an element of b, as the Lie bracket is linear in each component.
Now we need to show, that the commutator of any two elements of h lies again in b.
Let 7, 7' € b, then

7, [T, 8] + [, [0, 7]] + [6s, [T, T']] = 0.

As we know from the definition of h, the first two summands equal 0, hence the
third one also equals 0 and [r,7'] € h. The previous computation also shows, that
be == {7 € gi| [7, 0] =0i=1,...,s}is a subalgebra of g, for all k¥ € N.

Next we show, that every element of the by, is nilpotent. Using Theorem we only
need to show, that ad: is nilpotent for all 7. As we can decompose any 7 € b, into a
semi-simple part 75 and a nilpotent part 7y, we get [Ts + T, 0;] = [Tw, 6] = 0, for all
i =1,...,s. Using, that by construction the semi-simple part of any element of b, is a
linear combination of the §;, we only need to focus on the 7. As we are dealing with
nilpotent derivations, they induce nilpotent linear operators on g, and we get that ad-
is nilpotent. As this holds for all 7 € b, we get that the b, are nilpotent subalgebras,
using Theorem [2.51}

Now we show the normalizer property. Clearly h, C Ny, (h;). Consider any 7 €
Ng, (hx). Commuting with all §; means, that a derivation is of multi-degree 0, regard-
ing the multi-grading induced by the 6,. As 7 € N, (hi), we get that [5;,[7,;]] = 0
foralli,j = 1,...,s, hence [, ;] is contained in the multi-degree 0 part of gj. As all
§; are also contained in the multi-degree 0 part, we get that 7 has to be contained in
there, otherwise [7, §;] were not contained in it, as the grading is compatible with Lie
brackets. Hence, [7,9;] = O foralli = 1,..., s and by = Ny, (hx).

So far we have shown, that all b, are Cartan subalgebras of the g;. If we can show,
thath = lim, _ by, we get that b is a pronilpotent subalgebra of g, which satisfies the
normalizer property hh = Ny(h), as all b, satisfy this property. Consider the following
commutative diagram:
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"
Ll u Prly
lglk;\l b
T i
by / Tl \ b

u is clearly injective, as for any 7 € h with u(7) = 0, we have that 7 = 0 in all g,
hence 7 = 0, as h C g. So we can assume, that h C @keN hir. Now consider any

7 € lim _ by, then [7,6,] = Oforalli =1,... sas [7,0;] = 01in all g;, hence 7 € b.
Finally, we have that h = lglkeN br, b is pronilpotent and satisfies h = Ny(h), hence h
is a pro-Cartan subalgebra of g. O

Theorem 5.27

Let R be a complete analytic algebra. Consider the setup from Theorem Then the dimen-
sion s of the vector space of pairwise commuting and diagonalizable derivations is uniquely
determined.

Proof:

Using Lemma we get that there is a pro-Cartan subalgebra h containing our vec-
tor space. By Theorem we have that all pro-Cartan subalgebras are conjugated.
Being pairwise commuting and diagonalizable is kept under conjugation on finite-
dimensional vector spaces (see Proposition 2.47). Due to the latter, the properties
passes on to the limit. This means, that we have at least s semi-simple derivations,
which are pairwise commuting and diagonalizable.

Assume we have a pro-Cartan subalgebra h’ containing an s + 1* diagonalizable
derivation ¢, then the image of € in b is already contained in the vector space gen-
erated by the first s diagonalizable derivations. This means, that it must have already
been contained in the vector space generated by the preimages of the first s diagonal-
izable derivations of  in b, which contradicts the assumption. ]

Remark 5.28
Theorem [5.27)states, that for any complete analytic algebra R, the dimension s of the (K*,+)
multi-grading is uniquely determined and can be considered as an invariant of the algebra R.
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6 Algorithmic Aspects of Power Series
Rings

The following chapter is concerned with the theory of standard bases in the context
of convergent power series rings. We present an overview of the theory of standard
bases in our context and show their importance regarding basic computations in com-
mutative algebra, as well as their usefulness in proving theoretical results. We are not
going to investigate specific algorithms for the computation of standard bases, as this
is a topic of its own. For an overview on the whole topic, we refer the reader for exam-
ple to [34, Chapter 21] or [18, Chapter 1, 2 and 6]. Our goal is to provide a theoretical
background together with a set of algorithms, such that we can compute maximal
multi-homogeneities of a given ideal of an analytic algebra.

6.1 Theoretical Aspects of Standard Bases in Power
Series Rings

Before we start defining standard bases, we refer the reader to [18, Chapter 1.2-1.5
and Chapter 2.5] for the basic notions as monomials, monomial orderings, leading
monomials etc. We use the notation from [18]. Our results are taken from [18, Chapter
2.5,2.8 and 6.4] and [7, Chapter 7].

Remark 6.1
From now on, K is always a complete real valuation field of characteristic 0 and x = (xy, ..., x,).
Throughout this section, we fix a local degree ordering > on Mon(z1, . . ., z,), that is, 2 >

implies that w-deg(z®) < w-deg(x”) for suitable weight vector w = (wy, . .. w,) with w; > 0.
Such orderings are compatible with the (x)-adic topology, which allows us to compute stan-
dard bases in K ({x1,...,x,)) and K[[x1,...,,]]. Any non-zero f € K[[z1,...,x,]] can
be written as f = > oo ja, 2" a, € K,ag # 0 and ) > x"* for all v. We denote
the leading monomial by LM(f), the leading exponent by LE( f), the leading term by LT(f),
the leading coefficient by LC(f) and the tail by tail( f). We denote the leading module of the
module I by L(I).

To get familiar with the notation, we take a look at the following example.
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Example 6.2

Consider the polynomial f := 22° +y°+y*+x € C((x,y)) and I := (f). Then the following
table shows, how the leading monomial, leading coefficient and so on, depend on the choice of
the monomial ordering.

Monomial ordering | LC(f) | LM(f) | L(I) |  tail(f)
lex 1 vt (y*) | y°+x+22°
deglex 1 (x) | y*+22°+°

In our example lex denotes the local lexicographical ordering and deglex the local degree
lexicographical ordering.

Now we can define standard bases.

Definition 6.3

Let R= K{{z1,...,z,)) or R= K|[x1,...,z,]] and I C RY an R-module and N € N.
Then a finite set S C R™ is called standard basis of I if

S I, andL(I) = L(5).

That is, S is a standard basis, if the leading monomials of the elements of S generate the
leading module of 1, or, in other words, if for any f € I\{0} there exists a g € S satisfying
LM(g)| LM(f). If we just say that S is a standard basis, we mean that S is a standard basis
of the ideal (S) generated by S.

The next lemma guarantees us the existence of the standard basis.

Lemma 6.4
Let I C RY be an R-module and N € N. Then there exists a standard basis S of I.

Proof:
As R is Noetherian, we can assume that L(/) is finitely generated, that is, L(/) =
(my,...,ms) for monomials m; € RY. As they arise from elements g, ..., g, € I, we

canset S :={g1,...,9s} and we have L(S) = L(I), hence S is a standard basis. ]

Before we state more results regarding standard bases, we need some terminology.

Definition 6.5
Let S C RN be any subset and N € N.

i) S is called interreduced, if 0 ¢ S and if LM(g) 1 LM(f) for any two elements f # g
in S. An interreduced standard basis S is also called minimal.

ii) f € Ris called completely reduced with respect to .S, if no monomial in the power
series expansion of f is contained in L(.S).
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iii) S is called completely reduced, if S is interreduced and if, for any g € S, LC(g) =1
and tail(g) is completely reduced with respect to S.

Let us take a look at an example.

Example 6.6

Let I := (2 + 42, y) C C{{x,y)) and consider the weight-vector w := (1,2). Then S :=
{23 + y*,y,y°} is a standard basis with respect to the local degree lexicographical ordering.
S is not minimal, but S' = {23y}, which is also a standard basis, is minimal and also
completely reduced, as it contains only monomials, hence their tail is 0 and nothing has to be
checked.

Theorem 6.7 (Grauert-Hironaka-Galligo Division Theorem)
Let f, f1,..., fm € RN, for some N € N, then there exist q; € Rand r € R", such that

f=Y afi+r
j=1

and, forall j =1,...,m,
i) no monomial of r is divisible by LM( f;);
i) LM(g; f;) < LM([).

Proof:

This result is the famous Grauert-Hironaka-Galligo Division Theorem. See [15], [19] and
[10]. For a compact presentation of the result, see [28, Theorem 10.1]. The module
case follows, for example, from [10], by replacing the real or complex numbers with
any complete real valuation field of characteristic 0. [

Definition 6.8
Using the notation from Theorem define S := {f1,..., fm} and

NE(f|S) :=r.

In this way, we obtain a reduced normal form, that is, a normal form, where r is completely
reduced with respect to S.

Having a reduced normal form, we get the following two corollaries. We prove the
first one, to see how to actually argue with standard bases.

Corollary 6.9

Let I C RN be an R-module, N € Nand S, S’ two standard bases of I. Then NF(f|S) =
NFE(f]S") forall f € R\{0}.
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Proof:

Let f € RV\{0}. Define r := NF(f|S) and r' := NF(f|S’). Then we have r — 1’ € I,
due to the representation of f in Theorem Assume r # 1’ and, with out loss of
generality, that the leading monomial of r — r’ is a monomial of r. Then we have that
the leading monomial of an element of S divides the leading a monomial of r, which
contradicts Theorem 6.7, Property i), hence r = 1. O

Remark 6.10
Due to Corollary we can represent any element f of the ring R/I, using its reduced
normal form, with respect to a standard basis S of I, if the latter is actually computable.

Corollary 6.11
Let I C RY bean R-module, N € Nand S, S’ two reduced standard bases of I.Then S = 95"

Proof:

See [7, Corollary 7.2.11], using, that we can replace C be any complete real valua-
tion field of characteristic 0 or suitable fields compatible with the Grauert-Hironaka-
Galligo Division Theorem. O

For actual computations in power series rings, the following theorems are important.
The first theorem states, that we can reduce the case of a convergent power series
ring to the formal power series ring and the second one states, that we can reduce the
computation in a polynomial setup to the computation in the polynomial ring.

Theorem 6.12

Let fi,..., fm € K{{(z1,...,2,)) C K[[z1,...,x,]], both equipped with a compatible local
degree ordering, and I = (fy,..., fr) C K{(x1,...,2,)). If S :={f1,..., fm} is a standard
basis of 1, then S is a standard basis of [ K[[xy, ..., x,]].

Proof:

Let S be a standard basis of /. Every element f € IK]|[zy,...,x,]|] can be written as
S gifi with g; € K[[x1,...,2,]]. If f # 0 we can find a ¢ € N, such that LM(f) ¢
(x)°. So every element of (z)° has a smaller leading monomial than LM(f). Choose
gl € Klxy,...,x,), such that g; — ¢} € (z)°. Consider f' = >, ¢;fi. Then f' € I and
f—f" € (z)¢, hence LM(f) = LM(f’) € L(I). O

Theorem 6.13
Let K|x1,...,x,] C R be equipped with compatible local degree orderings. Let I be an ideal
of K(x1,...,xz,). If S is a standard basis of I, then S is a standard basis of I R.

Proof:
It is the same proof as for Theorem[6.12| O
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Theorem motivates the following definition.

Definition 6.14

Let I C Kl[z1,...,x,]] be an ideal. We call I a polynomial ideal, if there exists an ideal
J C Klxy,...,x,)], suchthat [ = JK|[xq, ..., z,]].

Remark 6.15

As we cannot work with infinite sums on a computer, every actual standard basis computation
is reduced to a computation on polynomial ideals.

The last theoretical aspect of standard bases we want to mention are syzygies, as these
can be computed using standard bases. An algorithm for the computation follows in
the upcoming section. Let us define syzygies.

Definition 6.16

A syzygy between k elements fi, ..., fi. of an R-module M is a k-tuple (gi,...,g9x) € R"

satisfying
k
Z gifi = 0.
i=1

Assume I := (fi,..., fx), then we write syz(I) = syz(fi,..., fx) for the set of syzygies of
I, with respect to the generators fi,. .., fi.

Lemma 6.17

Let R be a Noetherian ring and fi, . . ., fi, be elements of an R-module M. Then syz( f1,. .., fx)
is an R-module. If f1, ..., fxand g1, ..., gm, are sets of generators for M, then

syz(fi, -, fx @@Rel_syzgl,...,gm @@Rez
Ifk = m, then syz(fi, ..., fr) = syz(g1, ..., gr). Moreover, if R is a local ring and fi, ..., fi
and g1, . .., gm are minimal sets of generators for M, then syz(M) is well-defined up to iso-
morphism.
Proof:

Let I := (f1,..., fx) C M. To show that syz(I) is an R-module, we consider the fol-
lowing map:

k
Z/} : @Rei%M, ei'_>fi7
i=1
where {e1, ..., e} denotes the canonical basis of R*. Now it is obvious, that ker(¢)) =
syz(l), hence syz(I) is an R-module. For the proof, we are going to use Schanuel’s
Lemma (see [18, Excercise 2.5.5]). Assume we have I = (fi,..., fx) = (g1,--.,9m),
then we get the following exact sequences:
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e}

g

0 —— syz(fi,..., fx) sy RF T T

e}

0 —— syz(g1, -, 9m) sy R 2 T

g

where 7 : @f:l Re; — I,e; — fiand m : @;", Re; — I,e; — g;. Using Schanuel’s
Lemma, we get syz(fi, ..., fx) ® R™ = syz(gy, ..., gm) ® R*.
Now assume that k = m, then we get the following commutative diagram:

0 — syz(fi, ... fo) — syz(fi,.... fr) ® R » R¥ > 0

2 I

0 — syz(gr,....95) — syz(g1,...,9x) ® R RF

~
)

g

As the second and third arrow from the top row to the bottom row are isomorphisms,
we know by basic results from homological algebra, that we can choose the first one
to be an isomorphism, too. If R is a local ring, we have that every minimal set of
generators of a finitely generated module has the same number of elements, due to
Nakayama’s Lemma, hence we can always assume £ = m in the local case and we are
done. [

As the last result of this section, we state how to compute the syzygy module using
standard bases.

Lemma 6.18
Let I = {(fi,..., fr) C RN = @Y, Re,;, wheree,, ..., ey denotes the canonical basis of R".
Consider the canonical embedding

N+k
RY C RN = € Re;
=1

and the canonical projection m : RNk — RF. Let S = {q1,...,9s} be a standard basis
of F = (fi +ent1,--., fx + entr) with respect to an elimination ordering for ey, ... ey.
Suppose that {g1,...,q} = SN @?E\fﬂ Re;, then

syz(I) = (w(g1), .., m(g0)-

Proof:
See [18, Lemma 2.5.3]. H
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6.2 Algorithmic Aspects of Standard Bases in Power
Series Rings

This section is dedicated to results regarding the algorithmic use of standard bases.
From now, R will denote either K[zi,...,x,] or K[x1,...,2,])s = K[z1,..., 2]z and
with a fixed local degree ordering, as we can perform computations only on polyno-
mial input. We do not focus on actual algorithms for the computation of standard
bases or normal forms, as they do not give us any insight for the algorithms we are
going to need. Results on these can be found in [18, Chapter 1.6,1.7 and 2.3]. We are
using SINGULAR (see [8]) for the computation of standard bases.

Before we start with algorithms, we need to argue, why we can pass from S :=
K{(z1,...,2,)) or S := K[[z1,...,2,]] to the polynomial case. The fact, that we can
compute the standard bases of ideals in the polynomial case follows from Theorem
and Theorem|[6.13] so we only need to argue, why we can compute syzygies. First
consider the case R := K|z1,..., 2, for somen € N, and f1,..., f; € R* for some
k € N. Denote by ¢ : R — S the natural injection of R into S, by mp the maximal
ideal of R and by mg the maximal ideal of S. Using [16, Theorem B.5.1, (4)], with
M := S and I := mg, we get that M/I*"M = S/m¥ = R/m} for all k > 1, hence S
is R-flat. Now let A := Klxy,...,x,], then R is A-flat by [16| Proposition B.3.3 (6)].
Using [16, Proposition B.3.3 (2)], we get that S is A-flat. For more details on the no-
tion of flatness, see [16, Appendix B.3 and B.5]. Now consider the following exact
sequence:

0 —— syzp(fi, ..., fr) > R ¥ (fi,.., fsyr — 0.

Applying — ® S yields:

fiyesfr) <

0 — syzp(fisoo f1) @S — RE@r S i py e @rS —— 0.

Using (f1,..., fu)r ®r S = (fi ®r 1,..., fr ®r 1)s, which holds if S is R-flat, and
RF ®@r S = S*, we get that syzz(f1,..., fr) ®r S 2 syzg(fi ®r 1,..., fr ®r 1).

Now we can start with the first use of standard bases, namely testing, whether a given
element is contained in a given finitely generated submodule of R" or not.
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Algorithm 1 Module Membership

INPUT: f, f1,...,fr € RN with I = (f1,..., fe)r.
OUTPUT: 1,if f € I, 0 else.

: Compute a standard basis S of 1
: Compute r := NF(f|95)
if r = 0 then
return 1
else
return 0
end if

NGy

Theorem 6.19
Algorithm 1| terminates and works correctly.

Proof:

As the algorithms for standard bases and normal form computation terminate, Al-
gorithm 1| terminates. The algorithm works correctly, due to the fact, that a reduced
normal form returns 0 if and only if our element f is contained in /. O

The next algorithm states how to intersect a given finitely generated submodule I of
RY with a free submodule of R”.

Algorithm 2 Intersection with Free Submodules

INPUT: f1,..., fr € RN with I = (fi,..., fi)rand s € N.
N
OUTPUT: I' = I D,_,,, Re.
1: Compute a standard basis S of I, with respect to the module ordering

1%; < 1Pe; 1 <= j <ior(j=iand 2* < 2);

2: return S’ := {g € S|LM(g) € @fisﬂ Re;}

Theorem 6.20
Algorithm 2| terminates and works correctly.

Proof:
As the algorithms for standard bases and normal form computation terminate, Algo-
rithm | terminates. The algorithm works correctly due to [18, Lemma 2.8.2]. O

Our next algorithm is the syzygy computation algorithm.
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Algorithm 3 Computation of Syzygies
INPUT: f,,..., f, € RV.
OUTPUT: S = {sy,..., s}, such that (S) = syz(fi,..., fr) C R".
1: Set FF:= (fi+ens1,---, [ +ensk), Whereey, ... ey denotes the canonical basis
of RNtk = RN @ R* such that fi, ..., f, € R";
2: Compute a standard basis G of F, with respect to an elimination ordering for

€1,...,EN]
N+k . k .
3: SetGo:=GnN @i;]rvﬂ Re; ={qg1,...,9} with g; = ijl aijenyi,t=1,...,1;
40 5= (i, ), i =1,...,1;
5: return S = {sy,..., 5}

Theorem 6.21
Algorithm 3| terminates and works correctly.

Proof:
Algorithm 3| terminates, as all algorithms used in the steps terminate. The algorithm
works correctly due to Lemma 6.18| O

The final algorithm in this section, is an algorithm for the intersection of two finitely
generated submodules of RY . Before we can state the algorithm, we need the follow-
ing lemma.

Lemma 6.22
Let fi,..., fx,h1y... hs € RN, T = (f1,..., fr)rand I' = {hy, ..., hs)r. Moreover, let
Cly. .y CNthts € R2N be the columns of the 2N x (N + k + s)-matrix

1 0

fiooo Bl 0 0
0 1
1 0

O O h]_ hs
0 1

Then g € INI'" C RN if and only g appears as the first N components of some g’ €
SYZ(Cl, B 7CN+k+S) - RN+k+8'

Proof:
Consider any syzygy for the columns of the matrix in Lemma say A1, ... ANthts
Due to the structure of our matrix, we get for the first N rows a sum of the type
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SN e + Zjv;;v’“+1 Ai fi = 0, hence the first N components of our relation lie in /. An
analogous statement yields that they liein I, hencein I N I'. If g € I N I', it is easy to
see that we can construct an element of our syzygy module. O

Now we can state the algorithm to compute the intersection of two finitely generated
submodules I and I’ of R".

Algorithm 4 Intersection of Submodules
INPUT: fi,..., fi, by, .. hs € RN with I = (fy,..., filpand I' = (hy, ..., hy)R.
OUTPUT: A set P = {py,...,p},such that (P) =INTI.
1: Letc¢,i=1,..., N + k + s, be the columns of the matrix in Lemma [6.22}
2: Compute M = {g1,...,q:} =syz(ci,...,CN1rts) USING Algorithm
3: Define p;,i =1, ..., to be the projections of the g; to their first N components;
4: return P := {py,...,p}

Theorem 6.23
Algorithm 4| terminates and works correctly.

Proof:
As the algorithms used Algorithm [ terminate, it terminates itself. The algorithm
works correctly due to Lemma [6.22] O

6.3 Homogeneities of Complete Analytic Algebras

In this section we use standard bases to compute the module of logarithmic deriva-
tions Der;(R), of a given ideal I C K]lxy,...,z,]. After that, we are use our results
from the Formal Structure Theorem to state an algorithm for the computation of the
maximal multi-homogeneities of the given ideal, respectively the resulting quotient
ring K|[z1,...,z,]]/I. We set K = Q, as we expect a rational result for our multi-
homogeneities, due to Theorem At this point we cannot state any results re-
garding the coordinates, in which our ideal has the maximal multi-homogeneity. A
formal coordinate change, consisting of power series, is possible (see [13, Theorem
5.3]), but we cannot guarantee, that it is computable. The latter means, that we do not
know, if we can find a polynomial coordinate change, such that we have a coordinate
system in which our ideal has the maximal multi-homogeneity.

Remark 6.24
In this section we set R := Q|x1, ..., x,] for some n € N, as long as we consider algorithms.
I C R denotes an ideal of R generated by fi, ..., fi for some k € N.
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Let us start with our first result, which is the inspiration for the idea of the computa-
tion of Der;(R).

Lemma 6.25
Let R := Q[x1,...,x,) and I := (f1,... fr) C R anideal. Furthermore, set

Ounfi - O fi f 0 ... Jfx 0
A= S

Then Der;(R) = ker(¢p) N R™, where ¢ : R"™* — R is the module homomorphism induced
by the matrix A. We consider R" C R"™™* as the free module generated by the first n
components of Rk,

Proof:

Let (g1,...,9,) € ker(¢) N R", then § := > " | ¢;0,, is a derivation and using the
definition of ker(¢), we get that 6(f;) € I forall j = 1,...,k, hence § € Der;(R).
Now consider any element 6 € Der;(R), then ¢ can be written as 6 = > | ;0.
with ¢; € R. As §(I) C I, we can write §(f;) = > i, 9i0nf; = Zle hl(j)fl, with
hl(j ' e R. Using this information, we can construct an element of the kernel of ¢, thus

Der;(R) is isomorphic to a submodule of ker(¢) N R". Combining both results, we get
Der;(R) = ker(¢) N R™. O

Now we can state our Algorithm to compute a submodule of R", which is isomorphic
to Der T (R) .

Algorithm 5 Module of Logarithmic Derivations

INPUT: fi1,...,fr € Rwith I = (f1,..., fx).
OUTPUT: A set P = {p1,...,p}, such that (P)r = Der;(R).
1: Let¢;,i =1,...,n+ n -k, be the columns of the matrix in Lemma [6.25;
2: Compute M = {g1,...,q1} =syz(ci, ..., Chini) using Algorithm
3: Define p;,i = 1,...,1, to be the projections of the g; to their first n components;
4: return P .= {py,...,pi}

Theorem 6.26
Algorithm 5| terminates and works correctly.

Proof:
As the algorithms used Algorithm 5| terminate, it terminates itself. The correctness
follows from Lemma O
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For a SINGULAR implementation of Algorithm [5| see Appendix Algorithm
find der.

Before we can start the computation of multi-homogeneities, we show, that we can
pass to the linear parts of our result, as we know that there exists a set of coordi-
nates, where our semi-simple derivations, which encode the information regarding
the multi-homogeneity, are simultaneously in diagonal form. As every change of co-
ordinates in a formal power series ring results in a conjugate transformation in the
linear part, hence truncating and working exclusively with the representation matri-
ces of the derivations generating Der;(R) is sufficient.

Let us turn the previous comment into more precise mathematical results. To keep
our notation as simple as possible, we write morphisms of C((z1, ..., z,)) into itself
using a vector notation. The i-th component of the vector represents the image of
;.

Lemma 6.27

Let R := C{(z1,...,x,)) for some n € N. Then every ¢ € Aut(R) can be written as ¢(z) =
Az + higher order terms in x, where x = (x4, ...,x,) and A € C™*™, with det(A) # 0.

Proof:

First of all, we have that ¢(0) = 0 has to be satisfied, as otherwise a non-unit is
mapped to a unit. Hence, we have that we can write ¢ as ¢(z) = Az”+ higher order terms in z.
Using Theorem we have that ¢ must induce an isomorphism on mz/m%, thus A

has to be an invertible matrix. H

Corollary 6.28

Let R := C((x1,...,xy,)) for some n € Nand ¢ € Aut(R). Assume ¢( )
higher order terms in z for some A € C™", with det(A) # 0. Then ¢! =
higher order terms in .

= Az"
A tgT

Proof:

We know, that ¢ o ¢~ !(x) = z”. Write ¢! = Bz” + higher order terms in x, with
B € C™™ and det(B) # 0. As all higher order terms do not affect the linear part, we
get that ABz” = 27, hence B= A" N

Next, we investigate the affect on derivations of R. We focus on the linear part, as this
is the only part, we are actually interested in.

Lemma 6.29

Let R := C((x1,...,x,)) for some n € Nand ¢ € Aut(R). Furthermore, let y* := ¢(z),
with ¢(z) = Az™ + higher order terms in x for some A € C"", with det(A) # 0. Further-
more, let yBO,", where B € C™", be the linear part of a given derivation § € Der(R) in
the coordinates given by y. Then x AT B(A=1)T9," is the linear part of 5 before the coordinate
transformation by ¢.
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Proof:

Applying the chain rule (see [14, Chapter 4, Folgerung 1]), we get 9, = >, _, 0, (1) 0%,
As higher order terms do not affect our linear part during a coordinate transforma-
tion, we can directly assume ¢(z) = Az”. This results in 9,” = (4A71)79,”, as Corol-
lary[6.28]yields A~'y" = 2. Combining these results, we can write

QB@T =z ATB(A™H)To,".

Remark 6.30

By Theorem we know, that we can find a set of coordinates, in which our semi-simple
derivations already equal their linear part and the latter is of diagonal form. We also know, by
Lemma that this information is still contained in the linear part of the derivations after
any coordinate change, hence we can truncate our derivations and only consider the C-vector
space generated by their linear parts. Using Lemma |5.26| we can concentrate on the Cartan
subalgebra of the respective vector space.

Remark justifies the following algorithm to compute the Cartan subalgebra from
Lemma[5.26|

Algorithm 6 Linear Part Cartan Subalgebra of Der;(R) N Der’(R)

INPUT: fl, . ;fk € Rwith [ = <f1, . 7fk>-
OUTPUT: A set C = {A;,..., A}, A, € Q"*", such that the A, span a Cartan subal-
gebra of the Lie algebra generated by the representation matrices of the elements of
Der;(R).

1: Compute a set P’, such that (P’) = Der;(R) using Algorithm [5]
Compute a set P”, such that (P”) = Der’(R) using Algorithm 5
Compute a set P, such that (P) = Der;(R) N Der’(R) using Algorithm 4}
Compute the set of linear parts of the p; € P. Denote it by N;
Compute a list C' = {A;,... Ax}, A; € Q™*", such that the elements of C are a
basis of a Cartan subalgebra of the Lie algebra generated by the elements of V;
6: return C

Theorem 6.31
Algorithm 6 terminates and works correctly.

Proof:

Clearly Algortihm [5| terminates by Theorem Truncating is also a trivial opera-
tion and terminates. The computation of a Cartan subalgebra also terminates. For
an algorithm, see [6, Algorithm CartanSubAlgebraBigField]. Hence, our algorithm
terminates. The correctness follows by the correctness of the used algorithms. O
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In our experiments, we have seen, that in most cases the Cartan subalgebra already
consisted of simultaneously diagonalizable matrices, hence we were able to compute
a set of vectors, generating a maximal multi-homogeneity. The main problem using
our algorithm is the fact, that we compute syzygies using standard bases, which have
a double exponential worst case complexity (see for example [34, Chapter 21.7.]).
Keeping the number of variables small and working with sparse polynomials or with
homogeneous polynomials, we were able to compute some examples. Let us take a
look at one of these examples of Algorithm [6| For further examples, see Appendix

Al

Example 6.32

Consider the ring R := C[[X,Y, Z,W]|| and the ideal I = (X* —Y? 4+ 8X?Z —2Y 7 —
Z2AXPY +Y?—-9X?Z+3YZ — XW,6X?Y —3X2Z+2YZ - 7> - XW, X37Z + ;lXYZ—
9XZ2 1XQVV 2YW 2ZT/V XYZ— X22 1XQI/V 1YV[/' AIW, 73 + 13)(31/1/—|—
1X Yw + XZW — 2 WQ) Using our zmplementatzon of Algorztth@ (see Appendlx .
Algorzthm L1eA1g_der_homog) we get the following basis for a Cartan subalgebra:

S O OoOwi=
O Owivw O
Swiv O O
_ o O O

As we have only one element, we know that these are all homogeneities of our ideal. Taking a
closer look at our equations for I, we can see that we are already in a system of coordinates,
where it has its maximal homogeneity.

A problem arises, if we have more than one basis vector in the result of our compu-
tation using Algorithm [l Theoretically we expect only rational eigenvalues for our
diagonalizable matrices, due to Theorem The following example shows, that
we need to be able to handle algebraic numbers in our computation. As we work with
rational matrices, their characteristic polynomials have rational coefficients and we
get that our eigenvalues are algebraic numbers. The main problem is, that SINGU-
LAR, at the moment, cannot handle diagonalization of matrices with non-rational
eigenvalues in a way, in which it extends its base field automatically during the com-
putation. Therefore, we have to use MAGMA (see [5],[3]) for the computation of the
simultaneous diagonalization of our matrices.

Example 6.33
Consider the ring R := C[[X,Y, Z]] and the ideal I = (X" +Y? + Z?%). Using SINGULAR
we get

200 00 0
A=10 1 0| andB= {0 0 —1
001 01 0
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as the results of Algorithm [6| Computing the simultaneous diagonalization using MAGMA,
we get

1 00 - 0 0
A=101 0]andB =10 i 0
00 2 0 00
as the result, where i is the imaginary unit satisfying i* = —1. We have to keep in mind, that

we actually work over a C-vector space, hence we can multiply the second matrix with i and
get as a final result:

100 1 0 0
Ai=(0 1 0] and Ay =0 —1 0
00 2 0 0 0

Remark 6.34

The reader has to be careful in the interpretation of our results. We can compute the maximal
homogeneity of an ideal of a power series ring, but we cannot state, in which coordinate system
our ideal has this maximal multi-homogeneity.

Example 6.35

Consider the setup from Example Using the identity a®> + b* = (a + ib)(a — ib), we
can write the polynomial generating our ideal as x” + (y + iz)(y — iz). Define a coordinate
change as follows X = x,Y =y + iz and Z =y — iz, then the polynomial can be written as
X"+ Y Z and we can easily see, that (3,1,1) and (0,1, —1) are homogeneities.

An open question is, whether we always have a polynomial coordinate change (possi-
bly over the complex numbers), such that our ideal has its maximal multi-homogeneity
in the new coordinates or not. We are still investigating this aspect, as it is not clear, if
it can be proven in general or at least for some special type of ideals, as for example
for isolated hypersurface singularities.

Our final example shall show another problem we have with our computations. As
we have seen in the previous computations, our resulting Cartan subalgebra con-
sisted only of diagonalizable derivations. Although we do not have any counterex-
amples, we assume this to be false in general. Consider the Lie algebra from Example
and denote it by g. We know, that a Cartan subalgebra of this special Lie algebra
is the subalgebra generated by all diagonal matrices. In general we cannot expect any
subalgebra of g to have a similar structure for its own Cartan subalgebra. There is a
special type of subalgebras where this holds, namely a subalgebra, where g = h @i,
with b being a nilpotent subalgebra generated by diagonal matrices and i being an
ideal. Then b is the only Cartan subalgebra of g/i and we get immediately, that b is
a Cartan subalgebra of g. The question is, what is this having to do with our prob-
lem? Assume we have a positively graded Lie algebra g, that is, we can decompose
gas go D ga, D ... D go, With a; being positive integers. Then it is easy to see, that
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i:= g4 ®...D g, is an ideal of g, as [g,;, gaj] C a;+q;- This idea can be extended
to a multi-grading on our Lie algebra of linear parts. If we know, that there exists a
grading, which is induced by a diagonalizable derivation and has only positive de-
gree components, we have exactly the previous setup. Our next example, which is
taken from [12, Example 1.2], shows that the previous setup cannot be expected in
general.

Example 6.36
Let R := Cl[x1, ..., 27| and

2 5 5
fi = 124+ 2ow5 + 15 — T4 + 27

2, .5 5
fo = X125 + 226 + T3 + TG + S7.

Now define I := (fi, f2). Then our algorithm yields the following representation matrix for
our (Q, +) grading:

4000000
0400000
0020000
A=[000 1000
0000100
0000010
0000001

This result means, that, after clearing denominators, we only have a grading generated by the
vector (8,8,5,2,2,2,2). Let

0 1= 8210y, + 8220, + dx30,, + 2240, + 2250, + 2260, + 2270,

and
n = 2x3(x5 — x6)0p, — 203(T4 — 5)04, + (T476 — x?)@m.

Simple computations yield o,n € Der’;(R) and [o,n] = —n. This result means, that we have
a derivation 1, which is contained in a component with negative degree.

6.4 Prospect

Our computational results for Algorithm |§] match the theoretical results, which we
expect by the Formal Structure Theorem (see Theorem [4.44). An important problem
regarding this topic, which is still open, is how to handle the situation, where the
resulting Cartan subalgebra contains nilpotent matrices in its vector space basis. A
non-deterministic solution is to simply compute a random linear combination of our
matrices. If the semi-simple part of the resulting matrix is not a semi-simple matrix,
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which is known to us, we add it to the list of known semi-simple matrices and com-
pute a basis supplement. We did not implement this approach, as SINGULAR does
not contain the necessary tools at the moment. A further question is, if this problem
can be solved deterministically using an algorithm with polynomial complexity. A
further project has to be an algorithm, that is able to state an explicit set of coordi-
nates, in which our ideal has its maximal multi-homogeneity. This task is combined
with the theoretical question, if this coordinate change can be stated constructively
using polynomials, if the initial input was polynomial data. Our proofs in Chapter
and Chapter[5|use formal coordinate changes, but we do not know, if it can be shown,
that a polynomial coordinate change suffices. A final question is, if our algorithm can
be optimized in a way, such that is works faster and uses less memory (see Appendix
[A.T). To do so, more experimental results are needed, especially with different algo-
rithms for the syzygy computation, as this seems to be the most expensive step in the
computation.



A Appendix

A.1 Experimental Results

The following tables contain experimental results we obtained by using the imple-
mentation of Algorithm [f] The polynomials are randomly generated sparse polyno-
mials, which were generated by using the sparsepoly function of SINGULAR'’s ran-
dom.lib. We used the monomial ordering ds.

The first input were two polynomials f,g and we computed the maximal multi-
homogeneities of the ideal I = (f, g), which was considered as an ideal of Q[[z, y]].

Polynomial f | Polynomial g | Degree | Homogeneities
T+ 2zy + 2® + 32%y? 5y + 3a? + 227y + 4y* 4 (1,0),(0,1)
4y + 4y* + 3zy? + day® + ay? 5y + 22% + 4y° + 32% + y? + 3y° 5 (1,0),(0,1)
5+ 3y? + 5 + day® + 5a® + 28 + 5ay® + 4y° 5z + zy + 5ay? + 5ady + 2223 + 323> + 325y + 3y° 8 no result
2y + 2 +ay? + 4yt + y° + 4oyt + Y7 + 2270 + 2230 + 410 | y + 4wy + Say? + 4ot + 4a® + 598 + 297 + 327y + 5a® + 2910 10 no result

Table A.1: Experimental results for the computation of maximal multi-homogeneities of
ideals generated by two polynomials

The second input were three polynomials f, g, h and we computed the maximal multi-
homogeneities of theideal I = (f, g, h), which was considered as an ideal of Q[[, v, 2]|.

Polynomial f | Polynomial g | Polynomial i | Degree | Homogeneities
4o+ 22+ dxyz 4o+ 22+ 323 x4 2y + 527z 3 (1,0,0), (0,1,1)
5y + 2% + 52 + 2yz? + 3wzt + 2° Az +42% 4 3022 + 2t + 2822 4+ 22° T+ 3y + 2y2® + 523 + Say?2? + day? 5 no result
27 + 327 + 3122 + 22%y + 32%2% + dy2® + 2220 | 22 + 42 + 3222 + zyz? + 42° + 2y?2d + 2yl | v+ 327 + 5ady + 3223 + 3ty + 2y12? + 22%yP2? 7 no result

Table A.2: Experimental results for the computation of maximal multi-homogeneities of
ideals generated by three polynomials

No result means, that our working memory, which was around 1000MB, was exceeded
and SINGULAR was not able to finish the computation. This seems to happen due to
coefficient explosions during the computation of the module of logarithmic deriva-
tions. We observed, that the rational coefficients of some derivations were large num-
bers, with more than twenty digits. The number of generators of our module was
around 50, so that SINGULAR seems to deal with a large amount of data. We omit
an example for the coefficient explosion, as we cannot properly include it into our
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thesis. The reader may do the computations for Example using our algorithms
and verify our claim.

A.2 SINGULAR Library for Lie Algebras and
Derivations

The following is the SINGULAR library we have written for basic computations re-
garding Lie algebras and for the computations in Chapter[6] For details on the algo-
rithms regarding Lie algebras, we refer the reader to [6].

///////////////////////////////////////////////////////////////////////////////
version="version LieAlg.lib 4.0.2.0 May_2015 "; // $Id$
category="Non—commutative Algebra";
info="
LIBRARY: LieAlg.lib  Compute with Lie Algebras
AUTHORS: Raul Epure, epure@mathematik.uni—kl.de
LITERATURE:
[Coh00] H. Cohen, A Course In Computational Algebraic Number Theory
[DGr00] W. deGraaf, Lie Algebras: Theory And Algorithms
[Epel5] R—P. Epure, Homogeneity and Derivations on Analytic Algebras, Master Thesis
//////////////////////////////////////////////////////////////////////////////

PROCEDURES:

////BASIC ALGORTIHMS FOR LIE ALGEBRAS/////////////1////1/1]1//1/11111//7/11]]]/

LieAlg_Basis (list 1, int n); // Given a list of matrices this algorithm returns a vector space basis for the given Lie Algebra
LieAlg_dim(list B);// Returns the dimension of the given Lie Algebra with basis B

LieAlg_coeffs(LieAlg L, list B); // Returns the coefficients of L with respect to the basis B

LieAlg_adjointmat(LieAlg L, list B); // Returns the adjoint representation matrix of L with respect to the Lie Algebra Basis B
LieAlg_nonnilpotentelt(list B); // Checks whether the Lie Algebra is nilpotent or returns a non—nilpotent element
LieAlg_structureconst(list B); // Returns the structure constants for the Lie Algebra with basis B

LieAlg_centralizer(list B, list C); // Returns the Centralizer of C in B

LieAlg_normalizer(list B, list C); // Returns the Normalizer of C in B

LieAlg_complement(list B, list C); // Returns the Lie Algebra Complement of C in B

LieAlg_productspace(list B, list C); //Returns the Lie Algebra generated by [B,C]

////COMPUTATION OF DECOMPOSITIONS AND CARTAN SUBALGEBRAS///////////////1/1///

LieAlg_fittingonecomponent(list B, list C);// Returns the fitting one component of B with respect to C (if C is nilpotent)
LieAlg_fittingzerocomponent(list B, list C);// Returns the fitting zero component of B with respect to C (if C is nilpotent)
LieAlg_Cartan(list B); //Computes a Cartan—subalgebra for the Lie Algebra generated by B

////ALGORITHMS FOR LIE ALGEBRAS OF DERIVATIONS/////////////1//1/11117/11111]]/

find_der(ideal I); // Computes the module of I logarithmic derivations

der_matlist (module D); // Truncates a given module of derivations and returns a generating set for the respective Lie Algebra
LieAlg_der_homog(ideal 1); // Computes the Cartan Subalgebra of the I invariant derivations.

LIB "linalg.lib";
LIB "matrix.lib";

LILPTT10000 7177077 1707777 1707777177777 17777771777771777771177777171771111777]1
////DEFINITION OF OUR NEW STRUCTURE//////////////////////111/1//////////////7/
10171170777 777777177777717777771777771777777177777117777117777711177111177777

static proc mod_init()

{
newstruct (" LieAlg","matrix Mat"); //Definition of our new structure.
system ("install"," ,LieAlg_eq,1); //redifining "=" for "LieAlg"
system ("install"," ,LieAlg_eqtest ,2); //redifining "==" for "LieAlg"

system ("install"," =",LieAlg_ineqtest ,2); //redifining "!=" for "LieAlg"
system ("install"," LieAlg_add ,2); //redifining "+" for "LieAlg"
system ("install"," ',LieAlg_sub ,2); //redifining "—" for "LieAlg"

system ("install"," ",LieAlg_mult,2); //redifining "s" for "LieAlg
}
[I1T11777777777777777777777777777777777777777717777777777771777777777777777777
////MAIN ALGORITHMS FOR LIE ALGEBRAS ////////////1////1/1]///11/]11/1/1/]]]/

[IITTTTI0007 1177771177777 777777777777717777777777777177777171777717777111177777

LILPTT11000T 7177777177777 777777717777777777771777777177777171777717777111171777
////OPERATIONS ON LIE ALGEBRA ELEMENTS//////////////////////////////////////]//
IIITTTTI0777 7177771777777 7777777 17777711777771777777177777111777717717111177771
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A Appendix I

static proc LieAlg_eq(matrix A)
"USAGE: LieAlg_eq(A); A matrix.

@x
RETURN: An element L of our "LieAlg" structure, with value set to A.
NOTE: The matrix A has to be a square matrix.

EXAMPLE: example LieAlg_eq; shows an example

{
LieAlg L;
L.Mat=A;
return(L);
}
example
{
ring r=0,x,dp;
matrix A=unitmat(3);
LieAlg L; L=A;
L;

[ITITT100T 1717701771777 777777777777771777777777777771771777777717711711711177
static proc LieAlg_add(LieAlg L, LieAlg G)
"USAGE: LieAlg_add(L,G); L LieAlg, G LieAlg.

@x
RETURN: An element M of our "LieAlg" structure, with value set to L+G.
NOTE: L and G need to have the same size as matrices.

EXAMPLE: example LieAlg_add; shows an example

{
LieAlg M;
matrix A=L.Mat+G.Mat;
MEA;
return (M);
}
example
(
ring r=0,x,dp;
matrix A=unitmat(3);
LieAlg L; LieAlg G;
L=A;L=G;
L+G;

}
I111770777777777777777177777777777777717777777777777777777777771177777711177777
I117777777777777777777777777777777777717777777777777777177777771177777711171777
static proc LieAlg_sub(LieAlg L, LieAlg G)

"USAGE: LieAlg_sub(L,G); L LieAlg, G LieAlg.

@«
RETURN: An element M of our "LieAlg" structure, with value set to L+G.
NOTE: L and G need to have the same size as matrices.

EXAMPLE: example LieAlg_add; shows an example

(
LieAlg M;
matrix A=L.Mat-G.Mat;
MEA;
return (M);
}

example

ring r=0,x,dp;
matrix A=unitmat (3);
LieAlg L; LieAlg G;
L=A;L=G;

L-G;

}

LI 7777777777777777777777777777777777771771777777777111177777777777

110771107777 1777077 7177777 17777771777777177777177777117777111777711117111117777

static proc LieAlg_mult(L, LieAlg G)

"USAGE: LieAlg_mult(L,G); L , G LieAlg.

@x

RETURN: An element M of our "LieAlg" structure, with value set to LxG, where
* denotes the classical Lie Braket multiplication.

NOTE: L and G need to have the same size as matrices.

EXAMPLE: example LieAlg_add; shows an example

{
if (typeof(L)=="LieAlg")
{

LieAlg M;
M. Mat=L . Mat+G. Mat-G. Mat*L . Mat;
return (M);

else
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LieAlg M;
M. Mat=L+G.Mat;
return (M);
}
}
example
{
ring r=0,x,dp;
matrix A=unitmat(3);
LieAlg L; LieAlg G;
L=A;G=A;
L+G;

}
LILPTTILLPT I 07771170777 17777717777771777777177777177777717777111171771
111711700077 177771177777717777717777771777771777777177777111777717117111177771

static proc LieAlg_eqtest(LieAlg L, LieAlg G)
"USAGE: LieAlg_eqtest(L,G); L LieAlg, G LieAlg.
@x

RETURN: 1 if L equals G, 0 else

EXAMPLE: example LieAlg_eqtest; shows an example

{
//Comparing the matrices
if (L.Mat==G.Mat)
{return(1);}
else
{return (0);}

}

example

ring r=0,x,dp;

matrix A=unitmat(3);
LieAlg L=A; LieAlg G=A;
L==G;

LIPTTITLI7T 7777117777717 7777 7177777177777 717777711777771777777177771111777]/
[I70TT170077 1777771177777 17 77777177777 17777777777771177777171777717777111177777

static proc LieAlg_ineqtest(LieAlg L, LieAlg G)
"USAGE: LieAlg_ineqtest(L,G); L LieAlg, G LieAlg.
@x

RETURN: 0 if L equals G, 1 else

EXAMPLE: example LieAlg_ineqtest; shows an example

{
if (L==G)
{return (0);}
else
{return(1);}
}

example

ring r=0,x,dp;

matrix A=unitmat(3);
LieAlg L=A; LieAlg G=A;
L!I=G;

[I1110007777777777777777777777777777777777717717117777777771777777777777777777

////BASIC ALGORTIHMS FOR LIE ALGEBRAS///////////////////////11/////////////////

[I11111777777777777777777777777777777777777777711111177717711177777777777777777

proc LieAlg_Basis(list 1,int n)

"USAGE: LieAlg_Basis(l,n); 1 list, n integer.

@x

RETURN: A list of elements of type LieAlg, which are the basis of the Lie algebra
generated by the input matrices.

NOTE: The matrices contained in the list 1 need to have the same size.

THEORY: This algorithm computes a basis for a Lie algebra using a simple approach:
First we compute a vector space basis. Then we compute all pairwise products
and add them to our list of elements. Then we compute again a vector space basis
of the resulting space. Now are two possibilities. The first, is that our
dimension does not increase, then we have our basis for the Lie algebra, as
further products can be reduced to the elements already contained in our list.
If the dimension increases, we repeat this procedure until it stops increasing.
As we are dealing with finite dimensional Lie algebras, this process has to
stop at some point.

EXAMPLE: example LieAlg_Basis; shows an example
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int i; int j;
int d;

list 11;
LieAlg L;

//Constructing the basis

I=matsp_basis(l,n,n);

if (size(1)==0)

{
matrix O[n][n];
L=0;
Il=insert (11 ,L);
return(11);

while (size (1)>d)
{

d=size(l);
for (i=1;i<=d; i++)
{
for(j=i;j<=d;j++)
{
//We need to start from the ’back’ of the list due to the implementation of insert
I=insert(l,1[size(1)+1—i]x1[size (1)+1—j]—1[size (1)+1—j]x1[size(l)+1—i]);
}
!
l=matsp_basis(l,n,n);
)
//Preparing LieAlg Output

for(i=1; i<=d;i++)
{
L=1[i];
Il=insert(1l ,L);
}

return(11);

}

example

{
ring r=0,x,dp;
matrix A[2][2]=1,0,0,0
matrix B[2][2]=0,1,1,0
list 1=A,B;
list j=LieAlg_Basis(1,2);
i

}

LIIITI0TI 107 7770777777777777777771777717777177771717717/1717/1117/171711717
LI11117777771077777777777177777777777177171771717777111171771717711111171111717
proc LieAlg_dim(list B)

"USAGE: LieAlg_dim(B); B list.

@x

RETURN: Returns the dimension d of the Lie algebra with Basis B.

NOTE: We do not check, if B is a basis.

EXAMPLE: example LieAlg_dim; shows an example

;
;

{
int d=size(B);
if (d>1)
{return(d);}

if (d==0)
{return (0);}

matrix O[ncols(B[1].Mat)][ncols(B[1].Mat)];
LieAlg OO=0O;

if (B[1]==00)

{return (0);}

else

{return (1);}

}

example

ring r=0,x,dp;
matrix A1[2][2]
matrix A2[2][2]
list 1=A1,A2;

list B=LieAlg_Basis(1,2);
int d=LieAlg_dim(B);

d;

}
1711771077777 77777777777777777777777771777177777711777771777177117711111711177

1,0,0,0;
0,1,1,0;
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318 J///I1IIIIITTITI7TT 0771777777777 177777177777717777771177777111777
319 proc LieAlg_coeffs(LieAlg L, list B)
320 "USAGE: LieAlg_coeffs(L,B); L LieAlg, B list.

321 @«

322 RETURN: The vector of coefficients of L with respect to the basis B.
323  NOIE: The size of L as a matrix has to be compatible with the size
324 of the elements in B. We do not check, if B is a basis.
325 THEORY: We compute the relations for our element L with respect to
326 the basis B by simply computing the kernel of the matrix, where
327 the first columns are the elements of B and the last column is L.
328 EXAMPLE: example LieAlg_coeffs; shows an example

329 "

330 |

331 //Creating auxilliary matrix for coordinate computation

332 int n=nrows(L.Mat);

333 matrix C[nxn][1];

334 C=mat2vec(B[1].Mat);

335 for (int i=2;i<=size(B);i++)

336 {

337 C=concat(C, mat2vec(B[i].Mat));

338 }

339 // Computation of our Output

340 int m=size (B);

341 module D;

342 matrix v[m][1];

343 C=concat(C, mat2vec(L.Mat));

344 D=syz(C);

345 v=D[1];

346 if (D[1][ncols(C)]>0)

347 {

348 //Correcting "wrong" sign in the syzygy computation
349 v=(—1)*v;

350 return(v);

351 }

352 else

353 {

354 return(v);

355 }

356

357

358 }

359  example

360 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;

361 ring r=0,x,dp;

362 matrix AI1[3][3]=unitmat(3);

363 matrix A2[3][3]=1,1,0,0,1,0,0,0,1;

364 matrix A3[3][3]=1,0,0,0,1,1,0,0,1;

365 matrix A4[3][3]=1,0,1,0,1,0,0,0,1;

366 list 1=A1,A2,A3,A4;

367 list B=LieAlg_Basis(1,3);

368 LieAlg L=B[1]+5%B[2];

369 LieAlg_coeffs(L,B);

370

}
K sy
K N s
373 proc LieAlg_adjointmat(LieAlg L, list B)
374  "USAGE: LieAlg_adjointmat(L,B); L LieAlg, B list.

375 @«

376 RETURN: The adjoint representation of L with respect to Basis B

377  NOTE: L must be contained in the Lie Algebra generated by B. We do not check, if B is a basis.
378 THEORY: Our algorithm computes the images of our basis elements under the map LxB[i] for all i.
379 After that we compute the representation matrix of this map by writing the coefficients
380 of L«B[i] as the columns of the matrix.

381 EXAMPLE: example LieAlg_adjointmat; shows an example

382 "

383 |

384 LieAlg G;

385 int m=LieAlg_dim(B);

386 if (m==0)

387 {

388 matrix A;

389 return(A);

390 }

391

392 matrix M[m][1]=LieAlg_coeffs (LxB[1],B);

393

394 for (int i=2; i<=m; i++)

395 {

396 G=LxB[i];

397 Me=concat (M, LieAlg_coeffs (G,B));

398 }

399 return (M) ;

400 )

401  example
402 { //"EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; echo=2;
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ring r=0,x,dp;

matrix A[2][2]=1,0,0,0;

matrix AA[2][2]=0,1,1,0;

list 1=A,AA;

list B=LieAlg_Basis(l,2);
LieAlg L=A;

matrix M=LieAlg_adjointmat(L,B);
print (M);

}

IILLPTTILI7T I L0017 777 717777711 77777777777717777717777771777771777711117777/
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proc LieAlg_nonnilpotentelt(list B)

"USAGE: LieAlg_nonnilpotentelt(B); B list.

@x

RETURN: A non—nilpotent element of the Lie Algebra with basis B or the 0 element,
if the Lie Algebra is nilpotent.

NOTE: Works only in characteristic zero. We do not check, if B is a basis.

THEORY: Algorithm "NonNilpotentElement" in [DGr00].

EXAMPLE: example LieAlg_nilpotentelt; shows an example

{ LieAlg L;
matrix M;
if (LieAlg_dim (B)==0)
{
}

return(B[1]);

for(int i=1; i<=LieAlg_dim(B);i++)
{

Me=LieAlg_adjointmat(B[i],B);
if (nilp_test M)==0)
{

return(B[i]);
}
}
for (int i=1; i<LieAlg_dim(B);i++)
{
for(int j=i+1;j<=LieAlg_dim(B);j++)
{
matrix MeLieAlg_adjointmat(B[i]+B[j], B);
if (nilp_test (M)==0)
{

}

return (B[i]+B[j ]);
}
}
matrix C[nrows(B[1].Mat)][ncols(B[1].Mat)];
L=C;
return(L);
}
example
{ "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;
ring r=0,x,dp;
matrix AI1[3][3]=unitmat (
matrix A2[3][3]=1,1,0,0,
matrix A3[3][3]=1,0,0,0,
matrix A4[3][3]=1,0,1,0,
list 1=A1,A2,A3,A4;
list B=LieAlg_Basis(1,3);
LieAlg L=LieAlg_nonnilpotentelt(B);

;

}

LIPIPIITTI7T 1171771777777 7777777777717777177717717717771771177117/171177/17717
171101077 777777717777771777777177771777771777177711771771777177117711111111177
proc LieAlg_structureconst(list B)

"USAGE: LieAlg_structureconst(B); B list.

@x

RETURN: The list of structure constants.

NOTE: We do not check, if B is a basis.

THEORY: We compute the structure constants, by computing all pairwise products.
EXAMPLE: example LieAlg_structureconst; shows an example

{
list C;
for(int i=size(B); i>=1;i—)
{
list 1;
for(int j=size(B); j>=1;j—)

matrix v;
LieAlg L=B[i]*B[j];
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488 v=LieAlg_coeffs(L,B);
489 l=insert(l,v);

490 }

491 C=insert(C,1);

492 }

493 return(C);

494 )

495  example

496 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;
497 ring r=0,x,dp;

498 matrix A1[3][3]=unitmat(3);

499 matrix A2[3][3]=1,1,0,0,1,0,0,0,1;

500 matrix A3[3][3]=1,0,0,0,1,1,0,0,1;

501 matrix A4[3][3]=1,0,1,0,1,0,0,0,1;

502 list 1=A1,A2,A3,A4;

503 list B=LieAlg_Basis(1,3);

504 list C=LieAlg_structureconst(B);

505 print(C);

506

}
507 S/LILILLILTTITIII77 77777777777 77777777 7777777777777 777777777777777777
L I NI
509 proc LieAlg_centralizer(list B, list C)
510 "USAGE: LieAlg_centralizer (B,C); B list, C list.

511 @«
512 RETURN: Returns the centralizer of C in B, where B and C are bases for Lie Algebras
513 L resp. M with M being an subalgebra of L. The output is a list.

514 NOIE: We do not check, if B or C are bases.

515 THEORY: See Algorithm "Centralizer" in DeGraaf.

516 EXAMPLE: example LieAlg_centralizer; shows an example

517 "

518 |

519 list S=LieAlg_structureconst(B);

520 matrix M[size (B)][1]=LieAlg_coeffs(C[1],B);

521 for(int i=2; i<=size(C);i++)

522 {

523 Meconcat (M, LieAlg_coeffs (C[i],B));

524 }

525 Metranspose M); // To keep the same indices as deGraaf

526

527 matrix L[size (B)xsize(C)][size(B)];

528

529 for (int k=1; k<=size (B);k++)

530 {

531 for (int 1=1;1<=size(C);1++)

532 {

533 for (int i=1; i<=size(B);i++)

534 {

535 for (int j=1;j<=size(B);j++)

536 {

537 L[(k—1)xsize (C)+1,i]=L[(k—1)*size (C)+1,i]+M[1,j]+S[i][j][k,1];
538 }

539 }

540 }

541 }

542

543 module D=syz(L);

544 list BB;

545 for (int i=1; i<=size(D);i++)

546 {

547 matrix E[nrows(B[1].Mat)][ncols(B[1].Mat)];

548 LieAlg G=E;

549 for (int j=1;j<=size(B);j++)

550

551 G=G+DI[i1[j1+Blj1;

552 }

553 BB=insert (BB,G);

554 }

555 return (BB);

556  }

557  example

558 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;

559 ring r=0,x,dp;
560 matrix A1[3][3]
561 matrix A2[3][3] 1,0,
562 matrix A3[3][3] 0,0,
563 matrix A4[3][3]=1,0,1,
564 list 1=Al1,A2,A3,A4;
565 list B=LieAlg_Basis(1l,3);

566 list D=LieAlg_centralizer (B,B);

567 D;

568 }

R YN,
570 /////171771171777777777777777777777777777777777777777777777177777771117777111717
571 proc LieAlg_normalizer(list B, list C)

572 "USAGE: LieAlg_normalizer(B,C); B list, C list.

’
’

nitmat (
, ,

, ,

,
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573  @x
574 RETURN: Returns the normalizer of C in B, where B and C are bases for Lie
575 algebras L resp. M, with M being an subalgebra of L.

576  NOTE: We do not check, if B or C are bases.

577 THEORY: See Algorithm "Normalizer" in [DGr00].

578 EXAMPLE: example LieAlg_normalizer; shows an example

579 "

580 |

581 list S=LieAlg_structureconst(B);

582 LieAlg G;

583 matrix M[size (B)][1]=LieAlg_coeffs(C[1],B);

584 for (int i=2; i<=size(C);i++)

585 {

586 Meconcat (M, LieAlg_coeffs (C[i],B));

587 }

588 Metranspose (M); // To keep the same indices as deGraaf

589

590 matrix L[size (B)xsize(C)][size(B)+size (C)*xsize(C)];

591

592 for (int k=1; k<=size (B);k++)

593 {

594 for (int 1=1;l<=size(C);1++)

595 {

596 for (int i=1; i<=size(B);i++)

597

598 for (int j=1;j<=size(B);j++)

599 {

600 L[(k—1)xsize (C)+1,i]=L[(k—1)xsize (C)+1,i]+M[1,j]*S[i][j]I[k,1];
601 }

602 }

603 for (int m=1;m<=size (C);m++)

604 {

605 L{(k—1)xsize (C)+1,size (B)+(1—1)*xsize (C)+m=—M[m,k ];

606 }

607 }

608 }

609

610 module D=syz(L);

611 list BB;

612 for (int i=1; i<=size(D);i++)

613 {

614 matrix E[nrows(B[1].Mat)][ncols(B[1].Mat)];

615 G=E;

616 for (int j=1;j<=size(B);j++)

617 {

618 G=G+DIi1[j1+B[]1;

619 }

620 BB=insert (BB,G);

621 }

622 return (BB);

623 |}

624  example

625 { "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;

626 ring r=0,x,dp;

627 matrix AI1[3][3]=unitmat (
628 matrix A2[3][3]=1,1,0,0,
629 matrix A3[3][3]=1,0,0,0,
630 matrix A4[3][3]=1,0,1,0,
631 list 1=A1,A2,A3,A4;

632 list B=LieAlg_Basis(1,3);

633 list D=LieAlg_centralizer(B,B);

634 list C=LieAlg_normalizer(B,D);

635 C;

636 |

Y s
638 /////11111111117777117777771777777777777777777777777177777711177777711117771177
639 proc LieAlg_intersect(list B, list C)

640 "USAGE: LieAlg_intersect(B,C); B list, C list.

641 @«

642  RETURN: Returns the intersection of the Lie Algebras generated by B and C.
643 NOTE: Both Lie Algebras have to be subalgebras of the same Lie Algebra.
644 We do not check, if B or C are bases.

645 THEORY: Having a vector space basis of our Lie algebras, we can intersect them
646 as vector spaces, and get the intersection as Lie algebras.
647 EXAMPLE: example LieAlg_intersect; shows an example

648 "

649 |

650 int n=ncols(B[1].Mat);

651 list B1; list C1;

652 LieAlg L;

653

654 matrix A[nxn][size(B)];

655 for (int i=1;i <=size(B);i++)

656 {

657 A[1l..n*n,i]=mat2vec(B[i].Mat);
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}

}

matrix AA[nxn][size (C)];
for (int i=1;i <=size(C);i++)

{
}

matrix AAA=sub_intersect(AAA);
list 1;

matrix E[n][n];

for (int i=1;i<=ncols(AAA);i++)
{

AA[1..n*n,i]=mat2vec(C[i].Mat);

E=AAA[1..nxn,i];
L=E;
l=insert(1,L);

}

return(1l);

example

}

//
//
pr

"EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;
ring r=0,x,dp;

matrix A1[3][3]=unitmat(
matrix A2[3][3]=1,1,0,0,
matrix A3[3][3]=1,0,0,0,
matrix A4[3][3]=1,0,1,0,
list 1=A1,A2,A3,A4;

list B=LieAlg_Basis(1,3);

list C=LieAlg_centralizer(B,B);

list D=LieAlg_intersect(B,C);

print ("B:"); print(B); print("C:"); print(C); print("D:"); print(D);

[ILTTTIIL0TTII0077 1170777117077 7177777 177777717777711777771177777117777111777
11771177777 777777777777771777777777777777777117777711777771177777117177111777
oc LieAlg_complement(list B, list C)

"USAGE: LieAlg_complement(B,C); B list, C list.

@

RETURN: Returns the complement of the Lie Algebra generated by the basis C in the

Lie algebra generated by the basis B.

NOTE: The first Lie Algebra has to contain the second. We do not check,

if B or C are bases.

THEORY: Having a vector space basis of our Lie algebras, we can compute a vector

space supplement and get one as a Lie algebra.

EXAMPLE: example LieAlg_complement; shows an example

}

int n=ncols(B[1].Mat);
int i;

LieAlg L;

matrix A[nxn][size(B)];
for (i=1;i <=size(B);i++)

{
}

A[1..n*n,i]=mat2vec(B[i].Mat);

matrix AA[nxn][size(C)];
for (i=1;i<=size(C);i++)

{
}

matrix AAA=sub_supplement(AAA);
list 1;

matrix E[n][n];

for (int i=1;i<=ncols(AAA);i++)
{

AA[1..n*n,i]=mat2vec(C[i].Mat);

E=AAA[1..nx*n,i];
l=insert(1,E);
}
1=LieAlg_Basis(1l,n);
return(1l);

example

{

"EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;
ring r=0,x,dp;

matrix A1[3][3]=unitmat(3)
matrix A2[3][3]=1,1,0,0,1,
matrix A3[3][3]=1,0,0,0,1,
matrix A4[3][3]=1,0,1,0,1,

list 1=A1,A2,A3,A4;

list B=LieAlg_Basis(1,3);

list C=LieAlg_centralizer(B,B);

3);
1,0,0,0,1;
1,1,0,0,1;
1,0,0,0,1;
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list D=LieAlg_complement(B,C);
print ("B:"); print(B); print("C:"); print(C); print("D:"); print(D);

}

IILTTTTILI0T T L7717 7717777717777 1777777 777777717777771777771777717117777/
IITTTTL00 1707777177777 1 777777777777 7777777777777177777717777717777171177777
proc LieAlg_productspace(list B, list C)

"USAGE: LieAlg_productspace(B,C); B list, C list.

@x
RETURN: Returns the Lie Algebra generated by [B,C].
NOTE: Both Lie Algebras have to be subalgebras of a common Lie Algebra. We do

not check, if B or C are bases.
THEORY: See Algorithm "ProductSpace" in [DGr00].
EXAMPLE: example LieAlg_productspace; shows an example

{
list 1; LieAlg G;
if (LieAlg_dim (B)==0)
{
l=insert(1,B[1]);
return(1);

)

if (LieAlg_dim (C)==0)

{
I=insert(1,C[1]);
return(l);

}
int n=nrows(B[1].Mat);

for (int i=1;i<=LieAlg_dim(B);i++)
{
for(int j=1;j<=LieAlg_dim(C);j++)
(
G=B[i]*C[j ],
l=insert(l,G.Mat);
}
}
I=matsp_basis(l,n,n);
list 11;
for (int i=1;i<=size(l);i++)
{
G=1[i];
1l=insert (11 ,G);

return(11);
}
example
{ "EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;
ring r=0,x,dp;
matrix Al1[3][3]=unitmat (
matrix A2[3][3]=1,1,0,0,
matrix A3[3][3]=1,0,0,0,
matrix A4[3][3]=1,0,1,0,
list 1=A1,A2,A3,A4;
list B=LieAlg_Basis(1,3);
list C=B[1];
list D=B[3];
list E=LieAlg_productspace(B,C);
print(E);

0,0,0,
1,0,0,
0,0,0,

3)
0,1, ;
0,1, ;
0,1, ;

}

IIL0LTIL07 1700071077077 1707777777777777777717777717777771777771777717117777/

////COMPUTATION OF DECOMPOSITIONS AND CARTAN SUBALGEBRAS/////////////////1/////

110711007771 77077 7177777177777 717777777777777777771777777177777111771717177777

proc LieAlg_fittingonecomponent(list B, list C)

"USAGE: LieAlg_fittingonecomponent(B,C); B list, C list.

@x

RETURN: Returns the fitting one component of the Lie Algebra generated by B
with respect to the nilpotent subalgebra generated by C.

NOTE: The Lie Algebra generated by C has to be a nilpotent subalgebra of the
one generated by B. We do not check, if B or C are bases.

THEORY: See algorithm "FittingOneComponent” in [DGr00].

EXAMPLE: example LieAlg_fittingonecomponent; shows an example

{ list l=LieAlg_productspace(C,B);
list ll=LieAlg_productspace(C,1);
// These are actually no Lie Algebras, but LieAlg_dim computes the vector space dimension
while (LieAlg_dim (1)>LieAlg_dim (11))
{
I1=LieAlg_productspace (C, 11);
11=LieAlg_productspace(C,1);

return(11);
}
example
{ "//EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;
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828 ring r=0,x,dp;

829 matrix A1[2][2]=1,0,0,0;
830 matrix A2[2][2]=0,1,0,0;
831 matrix A3[2][2]=0,0,1,0;
832 matrix A4[2][2]=0,0,0,1;
833 list 1=A1,A2,A3,A4;

834 list B=LieAlg_Basis(1l,2);
835 list E=Al,Ad4;

836 list C=LieAlg_Basis(E,2);
837 list D=LieAlg_fittingonecomponent(B,C);
838 print(D);

839

)
840 ////I1TIIIIIITIIIIITTIIL7TTTI077 1177777 1777777 1777777177777 1777777117777111777
841 /////111IIIITTITI777 1177777 1777777177777117777717777711777771177777117777111777
842  proc LieAlg_fittingzerocomponent(list B, list C)
843 "USAGE: LieAlg_fittingzerocomponent(B,C); B list, C list.

844 @«

845 RETURN: Returns the fitting zero component of the Lie algebra generated by B
846 with respect to the nilpotent subalgebra generated by C.

847  NOIE: The Lie Algebra generated by C has to be a nilpotent subalgebra of the one
848 generated by B. We do not check, if B or C are bases.

849 THEORY: The fitting zero component together with the fitting one component form
850 our Lie algebra as a direct sum, hence computing a basis supplement of the
851 fitting one component yields the fitting zero component.

852  EXAMPLE: example LieAlg_fittingonecomponent; shows an example

853 "

854 |

855 int n=nrows(B[1].Mat);

856 list l=LieAlg_fittingonecomponent(B,C);

857 1=LieAlg_complement(B,1);

858 list 11;

859 for (int i=1;i<=size(l);i++)

860 {

861 1l=insert (1l ,1[i].Mat);

862 }

863 I=LieAlg_Basis (1l ,n);

864

865 return(1l);

866 )

867  example

868 { "//EXAMPLE: HEISENBERG ALGEBRA IN 3 DIMENSIONS:"; echo=2;

869 ring r=0,x,dp;

870 matrix A1[2][2]=1,0,0,0;

871 matrix A2[2][2]=0,1,0,0;

872 matrix A3[2][2]=0,0,1,0;

873 matrix A4[2][2]=0,0,0,1;

874 list 1=Al1,A2,A3,A4;

875 list B=LieAlg_Basis(1,2);

876 nrows(B[1].Mat);

877 list E=Al1,A4;

878 list C=LieAlg_Basis(E,2);

879 list D=LieAlg_fittingzerocomponent(B,C);

880 print(D);

881

!
82 J//IIIIIIIITTITI77 1117771777771 1777771777777 17777717777771777717117777111777
R O N
884 proc LieAlg_Cartan(list B)
885  "USAGE: LieAlg_Cartan(B); B list.

886 @«

887 RETURN: Returns the Cartan Subalgebra for the Lie Algebra generated by B.

888 NOIE: The characteristic of the field has to be at least size(B)+1. We do not check,
889 if B is a basis.

890 THEORY: See Algorithm "CartanSubAlgebraBigField" in DeGraaf.
891 EXAMPLE: example LieAlg_Cartan; shows an example

892

893 |

894 //INITIALIZATIONS

895 matrix O[nrows(B[1].Mat)][ncols(B[1].Mat)];
896 int i;

897 LieAlg OO=0O;

898 LieAlg JJ;

899 list 111;

900

901

902 // TEST IF OUR LIE ALGEBRA IS ALREADY NILPOTENT
903 LieAlg GG=LieAlg_nonnilpotentelt(B);

904 if (GG==00)

905 {

906 return(B);

907 }

908

909 //MAIN COMPUTATIONS

910

911 list C=GG;

912 list 1l=LieAlg_fittingzerocomponent(B,C);
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LieAlg HH=LieAlg_nonnilpotentelt(11);
while (HH!=00)
{

i=1;

while (i<=LieAlg_dim(B)+1)
J1=GG+1 » (HH-GG) ;
C=JJ;

111=LieAlg_fittingzerocomponent(B,C);
if (LieAlg_dim(111)<LieAlg_dim(11))
{

GG=]T;
i=LieAlg_dim (B)+4;
11=111;

if (i==LieAlg_dim (B)+2)
{return ("ERROR"); }

HH=LieAlg_nonnilpotentelt(11);
}

return(11);

}
example
{ "EXAMPLE: NON-GORENSTEIN CURVE:"; echo=2;
ring r=0,(X,Y,ZW),ds;
ideal I = X4-Y2+8X2Z—-2YZ-72, 4X2Y+Y2—9X2Z+3YZXW, 6X2Y—3X2Z+2YZ—-7Z2-XW,
XBZ+4/7XYZ—9/7XZ2+1/ 7X2W—2/7YW—2/7ZWN, XYZ—5/3XZ2+1/9X2W—1/3YW—4/9W, Z3+13/21X3W+1/3XYW+XZW—5/21W2;
module D=find_der (1);
list B=der_matlist(D);
B=LieAlg_Basis (B, nvars(r));
list C=LieAlg_Cartan(B);
print(C);

}
IIITTTTILI0T I I77 1777717777711 77777777777 777777717777711777771777711117777/
07T I707 1707771177777 1 77777 77777777777777777777177777117777717777171177777

LILP7TT1L00 7170007 71077771777777177777177777777777717777711777771777717117777/
////ALGORITHMS FOR LIE ALGEBRAS OF DERIVATIONS/////////////////1//////]/1//1]]]
III07TTII707 71700777 17777717777777777777777777177777177777717777717117171777777

//Computing the module of logarithmic derivations
proc find_der(ideal I)

"USAGE: find_der(I); I ideal.

RETURN: The Module D of logarithmic derivations.

NOTE: Does not work in qring or with mixed orderings.
THEORY: [Epel5], Algorithm 5.

EXAMPLE: example find_der; shows an example"”

{

//Testing for the trivial case:

if (I==0)

{

}

return (freemodule (nvars(basering)));

// Dummy variables and Initialization:
int k,i,n,m;

//generating matrix for syzygie computation:
n=nvars(basering);

m=size (1);

ideal j=jacob(I);

matrix Mematrix(j ,m,n);
for (i=1;i<=m;i++)

{

}
module C=syz(M);
module D;

Meconcat (M, diag (I[i],m));

for(i=1;i<=size (C);i++)

{
}

D=D+C[i][1..n];



XIV A.2 SINGULAR Library for Lie Algebras and Derivations

998 //Clearing memory

999 kill j;

1000 kill C;

1001 kill M;

1002  return(D);

1003

1004

1005 example

1006 |

1007 "EXAMPLE: ";

1008 echo=2;

1009  ring A=0,(x,y,z,w),ds;

1010 poly f=x4w+y6+y5x+x5y;

1011 find_der(f);

1012

1013}

1014 ///7717777771777771177777777777717777711777771717777177777111777717777111177771
1015

1016 //Getting matrices from the Module of derivations
1017  proc der_matlist (module D)

1018

1019  "USAGE: der_matlist (D); D module.

1020 RETURN: List 1 truncating the derivations generating D, leaving only degree 1 coefficients.

1021 NOTE: D has to be a module of derivations, like in the output of find_der.
1022 EXAMPLE: example der_matlist; shows an example"

1023

1024 |

1025 // Dummy variables and Initialization:

1026 int k,i,j,n,m;

1027 n=nvars(basering);

1028 D=jet(D,1);

1029  D=compress(D);

1030 list 1;

1031

1032 for(i=1;i<=size(D);i++)

1083 {

1034 matrix A[n][n];

1035 for(j=1; j<=n;j++)

1036 {

1037 poly f;

1038 f=D[i][j];

1039 for (k=1;k<=n;k++)

1040 {

1041 Alj ,k]=diff (f,var(k));
1042 }

1043 }

1044 l=insert(1,A);

1045 )

1046 I=matsp_basis(l,n,n);

1047  return(l);

1048 )

1049

1050

1051  example

1052 |

1053  "EXAMPLE:";

1054 echo=2;

1055 ring A=0,(x,y,z,w),ds;

1056  ideal I=x4w+y6+y5x+x5y;

1057 module D=find_der (I);

1058 list P=der_matlist(D);

1059  print(P);

1060 )

1061 ///7/17777771777771777777177777717777717777771777771117777117777717777111177771
1062  proc LieAlg_der_homog(ideal TI)

1063 "USAGE: LieAlg_der_homog(I); I ideal.

1064 RETURN: Returns the Cartan Subalgebra of the Lie Algebra generated by the I
1065 homogeneous derivations, which keep the maximal ideal invariant.
1066 ~ NOTE: A local ordering like ds has to be used.
1067 THEORY: [Epel5], Algorithm 6.

1068  EXAMPLE: example LieAlg_der_homog; shows an example

1069 "

1070 |

1071 //Constructing the maximal ideal
1072 int i=1;

1073 ideal M;

1074 for (i;i<=nvars(basering);i++)
1075 {

1076 MMivar (i);

1077 }

1078

1079 //Computing the necessary modules of logarithmic derivations

1080 module Dl=find_der(I);
1081 module D2=find_der M);
1082 module D=intersect(D1,D2);
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1083

1084 //Truncating the module and computing the Cartan subalgebra
1085 list B=der_matlist(D);

1086 B=LieAlg_Basis (B,nvars(basering));

1087 list C=LieAlg_Cartan(B);

1088 return(C);

1089  }

1090  example

1091  { "EXAMPLE: CURVE WHICH IS NOT GORENSTEIN:"; echo=2;

1092 ring r=0,(X,Y,ZW),ds;

1093 ideal T = X4-Y2+8X2Z—2YZ-Z2, 4X2Y+Y2—9X2Z+3YZXW, 6X2Y—3X2Z+2YZ-Z2XW, X3Z+4/7XYZ—9/7XZ2+1/7X2W—2/7YW—2/7ZN, XYZ—5/3XZ2+1/9X2W—1/3YW—4/9ZW, Z3+13/21X3}
1094 list C=LieAlg_der_homog(1I);

1095 print(C);

1096

}
1097 ///7711777771777777177777117777717777771777771177777177777111777711177171117777
1098  //Computing the product of the ring variables
1099  static proc var_prod ()
1100
101 "
1102  RETURN: Product of all ring variables
1103 EXAMPLE: example var_prod; shows an example"
1104
1105 |
1106  int i;
1107 poly f=1;
1108 for(i=1;i<=nvars(basering);i++)
1109 {
1110 f=fxvar(i);
1111}
1112 return(f);
1113
1114
1115  example
116 {
1117 "EXAMPLE:";
1118 echo=2;
1119 ring A=0,(x,y,z,w),ds;
1120  var_prod();
1121}
1122
123 ///7711177771777070771777771777777177777177777717777771777771177777177771711777]/
1124 ////LINEAR ALGEBRA ALGORITHMS/////////////7/// /1771111117111 //77/1/1171/1/17]]]
125 ///7711777771777777177777177777717777771777771777777177777117777717177171177771
1126
1127 // Matrix to Vector
1128
1129 static proc mat2vec(matrix A)
1130
1131  "USAGE: Transforms a given matrix A into a vector v.
1132 EXAMPLE: example mat2vec; shows an example”
1133
1134 |
1135 vector v;
1136 int i;int j;
1137  int k=1;
1138
1139 for (i=1;i<=nrows(A);i++)
1140 |
1141 for(j=1;j<=ncols(A);j++)
1142 {
1143 v=v+A[i,j]*gen(k);
1144 k++;
1145 }
1146 )
1147  return(v);
1148
1149
1150  example
1151 {
1152 "EXAMPLE:";
1153 echo=2;
1154 ring r=0,(x),ds;
1155 matrix A[3][3]=diag([1,2,3]);
1156  vector v=mat2vec(A);
1157  print(v);

1158

1159

1160 // Matrix Vector Space Basis

1161

1162 static proc matsp_basis(list 1, int n, int m)

1163

1164 "USAGE: Given a list of n times m matrices, this procedure
1165 returns a vector space basis for the matrices.

1166  THEORY: Using Gaussian elimination, we compute a basis for
1167 our vector space.
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1168 See for example Algorithm 2.3.11 in [Coh00].
1169 EXAMPLE: example matsp_basis; shows an example"
1170

1171 |

1172 if (size(l)==0)

1173 |

1174 matrix O[n][m];

1175 return (O);

1176

1177 )

1178

1179  int k=size(1l);

1180 int i; int j;

1181 matrix B[nxm][k];

1182  matrix C[n][m];

1183 list p;

1184

1185 for (i=1;i<=k;i++)

1186 |

1187 B=concat (B, mat2vec(1[i]));
1188 |

1189  B=gauss_col(B);
1190  B=compress(B);
1191  k=ncols(B);

1192

1193 for(j=1;j<=k;j++)
1194 |

1195 C=B[j1;
1196 p=insert(p,C);
1197 )

1198

1199  return(p);

1200 )}

1201

1202 example

1203 {

1204  "EXAMPLE:";

1205 echo=2;

1206  ring r=0,(x),ds;

1207  matrix A[3][3]=diag([1,2,3]);
1208  matrix B[3][3]=1,1,0,0,1,1,0,0,1;
1209  matrix C[3][3]=0,0,0,0,0,0,0,1,0;

1210  list 1=A,B,C;

1211  print(matsp_basis(1,3,3));

1212 )

1213

1214

1215 //Testing nilpotency

1216  static proc nilp_test(matrix A)

1217

1218  "USAGE: Deciding whether a given matrix A is nilpotent or not.
1219 RETURN: 1 if A is nilpotent, 0 else.

1220  NOTE: A has to be a square matrix.

1221  THEORY: If a matrix A is nilpotent its characteristic polynomial has

1222 to be a power of a ring variable. The maximal degree of the

1223 characteristic polynomial is the number of rows/columns of A, say n.
1224 Using this, it suffices to test A®n, if it is the zero matrix.

1225 EXAMPLE: example nilp_test; shows an example"

1226

1227 |

1228 int n=nrows(A);

1229  matrix O[n][n]; // Dummy testing for 0 matrix
1230 if (A==O)

1231 {return (1);}

1232

1233 if (power (A, n)==0)
1234 { return(1);}

1235 else

1236 { return(0);}
1237}

1238

1239  example

1240

{
1241  "EXAMPLE:";
1242 echo=2;
1243  ring r=0,(x),ds;
1244 LIB "linalg.lib";
1245  matrix A[3][3]=0,1,0,0,0,1,0,0,0;
1246  nilp_test(A);
1247 )
1248
1249
1250  //Supplement of a Basis
1251  static proc basis_supplement(matrix A)
1252
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"USAGE: Computes the supplement of a subvectorspace V generated by the columns of the matrix A.

RETURN: A matrix B, such that the columns of B are a basis for the supplement of V in the ambient vector space.
THEORY: See Algorithm 2.3.6 in [Coh00].

EXAMPLE: example basis_supplement; shows an example"

{
poly d; poly a;
int s;int t;int j;

matrix M=compress(gauss_col(A));
int n=nrows(A);

int k=ncolsM);

if (k==n)
{return (compress(0*unitmat(n)));}
if (compress (transpose (M))==0)
{return (unitmat(n));}
matrix B=unitmat(n);
for(s=1;s<=k;s++)
(

t=s;

while M[ t,s]==0)

{

}

d=1/M[t,s];
B[1..n,t]=B[1..n,s];
B[1..n,s]=M[1..n,s];
for (j=s+1;j<=k;j++)

{

t++;

if (t!=s)
{
aM[s,j];
M[s,jl=M[t,j];
M[t,jl=a;
Ms,jl=d:M[s,j 1;
for(int i=1;i<=n;i++)
{
if(il=t && i!=s)
{

M[i,j]=M[i,j]-M[i,s]+«M[s,j];

return (submat(B,1..n,k+1..n));

example

{

"EXAMPLE: ";

echo=2;

ring r=0,(x),ds;

LIB "linalg.lib";

matrix A[3][3]=0,1,1,0,1,1,1,0,0;
print (" Basis:");

print(A);

print ("Basis Supplement:");
print(basis_supplement(A));

//Supplement a subsapce in another
static proc sub_supplement(matrix A, matrix B)

"USAGE: Computes the supplement of a subvectorspace F in another subvectorspace E, which contains F.
They are generated by the columns of the matrix A resp. B.

RETURN: A matrix M, such that the columns of M are a basis for the supplement of F in E.

NOTE: The vector space generated by A has to be contained in the one generated by B.

THEORY: See Algorithm 2.3.7 in [Coh00].

EXAMPLE: example sub_supplement; shows an example"

{

matrix N=compress(gauss_col(A));
matrix M=compress(gauss_col(B));
matrix C=concat(M,N);

matrix X=syz(C);
X=submat(X,1..ncols(M),1..ncols(X));
matrix D=basis_supplement(X);

return (V«D);

}

example

{
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1338  "EXAMPLE:";

1339 echo=2;

1340  ring r=0,(x),ds;

1341 LIB "linalg.lib";

1342 matrix A[3][2]=gen(1),gen(1);

1343  matrix B[3][3]=gen(1)+gen(2),gen(2),gen(2);

1344  print(sub_supplement(A,B));

1345 |}

1346

1347 // Intersection of Subspaces

1348 static proc sub_intersect(matrix A, matrix B)

1349

1350 "USAGE: sub_intersect(A,B); A matrix, B matrix.

1351 RETURN: A matrix C, whose rows are a basis for the intersection of U and V.
1352 THEORY: See Algorithm 2.3.9 in [Coh00].

1353 EXAMPLE: example sub_intersect; shows an example"

1354

1355 |

1356 int i;

1357 matrix M=concat(A,B);

1358  matrix N=syz(M);

1359 N=submat(N,1..ncols(A),1..ncols(N));

1360 matrix C=AsN;

1361 C=gauss_col(C);

1362  return(C);

1363}

1364

1365  example

1366 {

1367  "EXAMPLE:";

1368 echo=2;

1369 ring r=0,(x),ds;

1370 LIB "linalg.lib";

1371  matrix A[3][2]=1,2,3,5
1372 matrix B[3][2]=1,2,1,
1373 matrix C=sub_intersect
1374 print(C);

1375 |

4,15
,2,1;
(A,B);
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