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1 The data and the model

In the following, we discuss a procedure for interpolating a spatial-temporal
stochastic process. We stick to a particular, moderately general model but
the approach can be easily transfered to other similar problems. The ori-
ginal data, which motivated this work, are measurements of gas concentra-
tions (SO2, NO, O3) and several meteorological parameters (temperature,
sun radiation, precipitation, wind speed etc.). These date have been and
are still recorded twice every hour at several irregularly located places in
the forests of the state Rheinland-Pfalz as part of a program monitoring
the air pollution in forests. Let ((t,z;) , j=1,...,N, t=0,...T ,
denote the observations of e.g. SOy concentration which we model as part
of a spatial-temporal stochastic process ((t,z), t € Z, x € R%. A partic-
ular feature is a large amount of data in the time direction (T very large),
but only few locations in the plane where data are available (N small). A
more detailed description of the data has been given in Franke and Griinder
(1992) and Griinder (1992).

One of the goals which had to be achieved by modelling the data was a
procedure for interpolating the gas concentration, i.e. for z ¢ {z1,...,zy5},
¢(t, ) should be estimated from ((s,z;), 0 < s<t¢t, j=1,...,N. The
procedure had to be adaptive with respect to new incoming data, and it
should allow for the information contained in the meteorological observa-
tions. We start from the following model for the gas concentration (or some
monotone normalizing transformation of it):

C(t,x) = f(z) B(t) +n(t,z), teZ, xeR? (1)

where f(2)T is a known vector of simple functions of # which allows for
systematic differences between the various locations due, e.g., to the to-
pography of the country. The vector 3(t) of regression coefficients forms
a multivariate random time series which is independent of the residual
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spatial-temporal process 7(t,z). We assume £n(t,z) = 0 and that (¢, z)
is stationary in ¢ and homogeneous in z, i.e. the joint distribution of
n(t1,21),. .. ,n(tk, Tx) is invariant against a common translation of the ar-
guments. The main assumption of model (1) is the presence of a global
time-varying effect represented by ((t) which influences the data at all loc-
ations z. Due to the size of the region and due to the specification of the
places where the data come from, this assumption is satisfied for our data.
f(x)" B(t) explains even the major part of variability whereas (¢, z) takes
care of smaller local fluctuations only.

We assume that ((t) is a m—variate autoregressive process of order p
with an exogenous part of order r or an ARX(p, r)—process:

Bty =D A Bt—3)+0() + D _ Csé(t =) 2)

0(t) are i.i.d. m—dimensional Gaussian random vectors with mean 0 and
covariance matrix ¥s. £(t) is the [—dimensional vector of exogenous vari-
ables representing temperature, precipitation etc. at time ¢. The seasonal-
ity of these variables also takes care of the well-known seasonality in gas
concentrations. We assume that for

P P
A(z) =L, —ZA]-zj, C(z) :ZC]-zj
J=1 J=1

det A(z) # 0 for all |z| < 1, and that A(z), C(z) have no common left-
divisor (up to unimodular matrices).

Due to prevailent wind directions in the area under consideration, we can-
not assume that the fluctuation process 7(t, ) is isotropic with respect to
its spatial coordinates, i.e. the covariance cov(n(t, z), n(t,y)) does not only
depend on the distance ||y — z||. Looking at the rather scarce information
on spatial dependence we cannot consider general homogeneous processes.
We therefore follow Vecchia (1988) and consider so-called (a, A)—isotropy,
i.e., for fixed ¢, the covariance between n(t,z) and n(t,y) depends only on
the norm of the suitably rotated and dilated difference y — x :

cov(n(t,z), n(t,y)) = cy(||SaRa(y — z)|)
with

Ro=( €% 750 4nd Sy = A 91 for 0<a<m A>0.
sin o cos 0 A

In practice, ¢, would be a given function up to few unknown parameters
which have to be estimated from the data.
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With respect to the temporal dependence structure of 7(t, z), we assume
that it is a temporal Markovian process, i.e. for all (s1,vy1),(s2,¥2),... €
{t,t—=1,...} x R?, (sj,y;) # (t,x) for all j, we have

E{n(t, 2)n(s;,v;), 7 =1} = E{n(t,z)|n(s;,y;), s; =t—1ors; =t}.

We even assume that 7(t, z) has an autoregressive structure of order 1 if
we consider it only at a finite number of locations z1,...,zy :

Y(t) =LY (t—1)+¢e(t) with Y(t) = (n(t,z1),...,0(t,zy)). (3)

e(t) is N-variate, mean-zero Gaussian white noise with covariance X, and
L satisfies the stationarity condition det(Iy — Lz) # 0 for all |z| < 1.

2 Estimating the random regression coeffi-
cients

To interpolate ((t, z) using the past and present data at z1, ...,z y we have
to estimate 3(t). For this purpose, we consider a state-space representation
of this ARX-process. Let Z(t)' = ({(t,x1),---,((t,zn)) be the observa-
tions at time t, F = (f(z1),-.., f(zn)) the m x N—matrix of regression
functions evaluated at z1,...zxN, and Y (t) be, as above, the fluctuation
process at time ¢ evaluated at z1,...,zy. Then we have from (1) the
observation equation

Z() = F' B(t) + Y (1 (4)

The ARX-equation (2) has the state—space representation (compare, e.g.,
Priestley, 1981)

b(t+1)=Ab(t)+ Dt +1)+CE&) (5)

with coefficient matrices A, D, C of dimensions mq x mq, mqg xm, mq X1 :

A1 Im e Om I Cl
Ay | O Om Om .
Ager |0 .. I, ' ;
A, [0m 0 0 Orm Cq

Here, ¢ := max(p,r), and we set A; = 0,, if p < j < gand C; = 0 if
r < j < g. The first m coordinates of the state vector b(t) € R™? coincide
with 8(t) : b;(¢t) = B;(t), j=1,...,m. The remaining part of b(¢) can be
easily written down recursively from (5), starting with

(b(m—l)q+1(t)7 ) bmq(t))l = 4 Bt —1)+ Cq—lg(t)

(b(m_g)q_;'_l (t), - ,b(m_l)q(t))l = Aq_lﬁ(t — 1) + Aq ﬂ(t — 2)
+Cq—28(t) + Cq—1£(t — 1)
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and so on. Setting H = F'(I,,,0, . ..0,,) we get from (4) the equation
Z(t) = Hb(t) + Y (2). (6)

For some s let b(t|s) denote the best (in mean-square sense) estimate for
b(t) based on the observations Z(k) and the exogenous variables £(k), 0 <
k < s. b(t|s) may be calculated recursively in time using the Kalman filter,
though the linear system given by (5), (6) is non-standard due to the pres-
ence of exogenous variables and the serial dependence of the observational
noise Y (t). We assume that we observe the system from time 0 onwards,
that the initial state b(0) is a Gaussian vector independent of p(t), t > 1,
and Y'(¢t), t > 0. Following Hannan and Deistler (1988, ch. 3.2), we treat
the exogenous variables £(t) as deterministic, i.e. all calculations are done
conditionally on these data.

To formulate the algorithm, we need some notation: For s < t, Z(t|s)
is the best estimate for Z(t) given Z(k), &(k), k < s.

du(t|s) = b(t) — b(t|s), d.(t|s) = Z(t) — Z(t|s)

are the corresponding estimation errors with covariance and cross covari-
ance matrices

P(t|s) = € dy(t|s)dy(t]s) , R(t]s) = € d-(t|s) d_(t]s) , Q(t]s) = Eb(t) d.(t]s).

Theorem 2.1 Let b(0|—1) = £ b(0) and P(0|—1) be the covariance matriz
of b(0). Under the conditions stated above for the linear system (5), (6),
we have fort >1

btlt—1) = Abt—1jt—1)+CE(t—1)
btt) = b(t|t —1) + K(t)d.(t]t — 1)
P(tt—1) = AP({t-1]t—-1)A'+DX;D’
Pty = P(tt—1)— K@®R(tt - 1)K(t)
d.(tlt—1) = Zt)—(HA-LH)b(t—-1t—1)-L Z(t—1)-HC £(t—1)
K({t) = Q@t—1) R(tt—1)""*
R(tlt—1) = (HA-LH)Pt-1t—1)(HA — L H)

+HDX;D'H + %,
Q(tlt—1) = AP(t-1t—-1)(HA - L H) + DS;D'H’



For starting the algorithm the relations
d.(0]—1)=Z(0)-Hb0|—1), RO|-1)=HP0O|—1)'H + %,
Q0] -1)=P(0| - 1) H'
may be used, where Yo denotes the covariance matriz of Y (0).

Proof: Let P, denote the orthogonal projection onto the span of
Z(0),...,7Z(s), £(0),...,&(s). Using (3) and (6), we have

dy(tlt —1) = Y(t) —P,_1Y(t)
= Y(t)—Pi—1(L Z(t—1)— L Hb(t — 1) +£(t))
= Y(@)-LZ(t—-1)+LHbt—1t—1)

—L Hdp(t — 1|t — 1) +(t)
Using (5) we immediately have
b(tt—1) = Ab(t— 1|t —1)+ CE(t— 1)
and therefore the following three relations, using also (6),

do(tlt—1) = Ady(t— 1|t — 1) + D4(t) (7)

Z@tt—1) = Hb(tt—1)+ Y (¢t —1)
= H(Ab(t—1jt—1)+C&t—1))+ L Z(t—1)
—L Hb(t — 1]t — 1)
= Ab(t—1|t—1)+HCE{t—1)+ L Z(t —1)
d(tt—1) = Adp(t — 1]t — 1) + HD&(t) +(t) , (8)

where A = HA — L H. (8) and the independence of dy(t — 1|t — 1), 4(¢)
and e(t) imply immediately the recursions for R(t|t — 1) and Q(¢[t — 1).
Now, the rest of the algorithm follows analogously as in Theorem 3.2.3 of
Hannan and Deistler (1988) which includes our result for the special case
L=0. [ |
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In Griinder (1993) it is shown that the error covariance matrices P(t|t)
converge to some limit Py, in the strong sense:

D IP(EE) — Po|| < o0,
t=0

and the same type of limit behaviour is shared by the Kalman gain K (t)
and by the matrices R(t|t — 1), Q(t|t — 1). As a consequence of these limit
results it follows that the spectral radius, i.e. the maximum of the abso-
lute values of eigenvalues, of the matrices A — K(t) (HA — L H) is less
than 1 for all ¢ large enough. This implies the asymptotic stability of the
algorithm.

The following result allows for fixed interval smoothing, i.e. for calcu-
lating b(t|s) for all t < s, s fixed. It is analogous to Theorem 3.2.2 of
Hannan and Deistler (1988) with some slight modification necessary due
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to the serial dependence of Y (t). As there, P(t+ 1|t + 1)~ is a generalized
inverse of the error covariance matrix.

Theorem 2.2 Let A = HA — L H, and let the assumption of Theorem
2.1 be satisfied. Then, for s >t

bt|s) = btt+ 1)+ F(¢){b(t+1]s) — b(t+ 1]t + 1)}
Fit) = PHt){A-K@t+1) AY P@t+1|t+1)""
b(tlt+1) = b(t|t) + P(tlt) A’ R(t+ 1]t) dz(t + 1]t).

Proof: We give the proof only for the case C = 0. Then, the general case
follows exactly as in the proof of Theorem 3.2.3 of Hannan and Deistler
(1988). As abbreviations, we use e(t) = d,(t|t — 1) with the corresponding
covariance matrix R; = R(t|t —1). From Theorem 2.1, (7) and (8) we have

dy(t+1t+1) = dp(t+1]t) - K(t+1)e(t+1)
{A—-K(@{t+1) A}dy(t]t) +{I/ — K(t+1)H} Dot + 1)
—K({t+1)e(t+1)

Using this relation and the orthogonality of §(¢ + 1), (¢ + 1) and b(t)
we get

Eb(t) dy (t+1]t+1) = Eb(t) dy(t|t) {A—K (t+1) A} = P(t|t) {A—K(t+1) A}
As, by definition, £b(t + 1) dy(t + 1|t + 1) = P(t + 1|t + 1) we have
EbE)—F)bt+1)}dy(t+1t+1)=0
By iteration, using the above equation for dy(¢ + 1|t + 1) repeatedly,
E{b(t) —F) b(t+1)}e'(j) =0 forall j>t+1. (9)

As e(t+7) spans the linear space, representing the new information at time
t + 7 and orthogonal to the past, we have for ¢t < s

b(tls) —b(tlt +1) = Y €{b(t) €'()} B;el))
j=t+2
and, using (9),
F(){b(t+1]|s) —bt+1t+1)} = F(t) Z E{b(t+1)€()} Rj_le(j)

j=t+42
b(t|s) — b(t[t + 1).
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Finally, again using (8),

b(tlt+1) = b(t|t) +E{b(t) €'(t + 1)} Rje(t + 1)
= b(t|t) + P(t|t) A'R ] e(t + 1)

In practice, we do not know the parameters of the linear system given by
(3), (5) and (6), but we have to work with estimates. Let us assume that
we use the algorithm of Theorem 2.1 with approximations A, L, C, Z;, =,
replacing the true system matrices. Then, the additional error in es-
timating the state b(t) is of the same size as the approximation errors
||A—A||, ||L—L|| etc. To make this statement precise let us assume that
we have sequences A, L,,Cn,%s, and ., converging for n — oo to
A L,C,%s and X, at least with the rate O(v,,) for some sequence v,, — 0.
Let P, (t|t) be the error covariances matrices resulting in the use of A, etc.
instead of A etc. in the Kalman filter. Then:

Theorem 2.3 tlim [|P(t|t) — Pn(tlt)|| = O(vn)
— 00

3 Spatial-temporal Kriging

Knowing how to estimate the random regression coefficients 3(t) of (1),
we return to the original interpolation problem. We want to estimate
¢(t,x) from &(s), ((s,z;), j = 1,...,N, s =0,...,T. Let Ar denote
the o—algebra generated by the latter random variables. Furthermore, we
use the following notation:

7(0)
Z(t) = = (C(07‘T1)7" -,C(O,.TN),-- "C(t7xN)),
Z(t)
Y (0)
Y() = : = (n0,z1),...,m(0,zN),...,n(t,zN))
Y (#)
5(0)
B(t) = : = (81(0),-- -, Bm(0), .., Bm(t))’
B(t)
F 0 0
0 F 0

F,

asa m(t+1) x N(t + 1) — matrix
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In particular, we have from (4) the relation
Z(t) =F, B8() +Y(t) .

Under the normality assumptions which we have imposed in paragraphs 1
and 2, the best estimate of ((¢,z) is by (1)

(r(t, @) = E{((t, @)l Ar} = f(x) E{B()|Ar} + E{n(t,z)|Ar}
where with S; denoting the covariance matrix of Z(t)
ir(t,e) = € {n(t,z)|Ar} = €@t 2) Z'(T)) ST'Z(T)

= £n(t,2) Y'(T)) SPUE(T)
= gh(t,x) STZ(T)

Analogously, we have for the vector of sample residuals
Y(T) = (ir(0,21),...,0970(T,zn)) = E{Y(t)|Ar}
= GrS;'Z(T)

where G; denotes the covariance matrix of Y (t). Therefore, #jr(t,z) can
also be written as a linear combination of the sample residuals

ir(t, ) = gr(t,z) Gz Y(T)
Otherwise, as
ir(t, ) = € {¢(t,x) — f'(2)B(t)|Ar}
we have
Y(T) = E{Z(T)-FyB(T)|Ar}
Z(T) — ¥4 B(T)

where B(T') denotes the best estimate of 3(T') given the information in Az-.
Finally, we get as the desired interpolator for ((, z)

~

(r(t,e) = f(2) BEIT) + ir(t,«)
= f@)'B
= f(@)' BUT) + g7 (t,2) G (Z(T) —Fr B(T))  (10)

(10) generalizes the interpolation procedure known in geostatistics as ”Kri-
ging” (compare, e.g., Ripley, 1982). If our model (1) is reduced to

((z) = f(z)' B +n(z)

without any time dependence and with deterministic regression parameter
(3 then (10) is just the well-known ”Universal Kriging”. If f(x)' 8 = p even



reduces to a constant, then (10) is the original ”Kriging”.

For the original practical problem we are mostly interested in estim-
ating ((t,z) using all data up to time ¢, i.e. in calculating (¢, ). For
this purpose, the first summand f(z)’ B(t|t) on the right-hand side of
(10) can be calculated recursively in ¢ using the Kalman filter of Theorem
2.1. In the second summand ,3 (t) appears which consists of the subvectors
B(0]t), . .., B(t]t). They can be calculated efficiently using Theorem 2.2.
The resulting procedure works quite well, and it is fast enough to allow
real-time calculations of f (t,z), t=0,1,2,... for all knots z of an equis-
paced lattice in the plane such that the spatial-temporal evolution of the
process can be studied as an animated graphic in detail.

For sake of illustration we consider one particular example with sim-
ulated data. Figure la and 1b show c¢o(y — z) = En(t,z) n(t,y) and
ca(ly —xz) = En(t,z) n(t + 1,y) . This corresponds to a nonisotropic de-
pendency where the peak of ¢; (y — ) is shifted in a direction corresponding
to the prevailing wind direction. Observations were taken at 16 irregularly
spaced locations, and as a function representing general topographic trends,
only linear functions were allowed, i.e. f(z) = (1,z1,22)". Figure 2a and 2b
show two snapshots of the spatial-temporal interpolations ((t, z) for t = 4
and t = 18.
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4 Some remarks on estimation of model para-
meters

Up to now we have pretended to know the model parameters like the ARX—
coefficient matrices Ay, ..., A,, Co,...,C; of (2), the AR(1)-matrix L of
(3) or the noise covariance matrices X5 and X.. As in the known procedures
for Kriging of purely spatial data, these parameters have to be estimated
(compare, e.g., Ripley, 1982). We do not want to go into details but point
out some special features which follow from our modelling approach.

Hannan and his coworkers have given over the years an extensive the-
oretical treatment of maximum likelihood estimates for the parameters of
multivariate Gaussian ARMA—- and ARMAX-systems. A compilation of
the relevant results is provided by Hannan and Deistler (1988). In our
case, we cannot use this estimation theory directly as we do not observe
the ARX—process 3(t). However, let F~ denote a pseudo inverse of F’, e.g.
F~ = (FF')7'F for m < N and FF' invertible, and let U~! be the one
time unit backshift operator: U~13(t) = 3(t — 1). Then, we have from (2)
and (4):

AU YWFZ({t) = AU™Y) F(F B(t)+Y(t)
= AU")(B() +FY(t)
AU FTY(t) +6(t) + C(UTLE(®)

If L® decreases fast enough for s — oo such that Y (t) = >°!_ L°e(t — ),
then we have for the observable time series Z*(t) = F~Z(t)

AU Zz*t) =~ AU F~ zq: Lee(t —s) +6(t) + C(U™Y) &(t)

s=0
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As the first two summands of the right-hand side form a (p+ g)—dependent
time series we have for suitable white noise 1¥(t) and matrix coefficients
By,...,Bpig

p+aq

AU Z7 () =~ BUT) %) + C(UT) £(t), B(z) = ZBJ' 2,

i.e. Z*(t) is approximately an ARMAX(p, p + ¢, r)—process with the same
autoregressive and exogenous part A(U~!), C(U~!) as the ARX-process
B(t). Therefore, fitting an ARMA (p, p+ ¢, r)-model to Z*(0),...,Z*(T) as
described in Hannan and Deistler (1988) provides estimates of Ay,..., Ap,
Ci...,Cy.

In a similar manner, the parameters of the AR(1)-model (3) may be
estimated. If we could observe the time series Y (¢) directly, we could
estimate the autocovariances

So=EY(@#)Y(t) and B, =EY () Y(t+ 1)
directly by the corresponding sample autocovariances, and then, using
L=%%"and 8, = 5p — %, 5515,
we would have estimates of L and X, too. Now, let

Z(t) = (IN—F'F7) Z(t)=(Iy - F'F7)(F'B(t) + Y (t))
= (In-FF)Y(t)

as F! F~ F' = F'. Therefore, we may consider the sample autocovariances
of the observable time series Z(t) and calculate from them estimates of
Yo, X1. Here, the properties of Iy — F' F~ have to be exploited, in par-
ticular the fact that it has eigenvalues 1 and 0 only and that its rank is
N — m. The details of the somewhat involved procedure have been given
by Grnder (1993).
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