Heuristics for the K-Cardinality Tree and Subgraph Problems

Matthias Ehrgott * Jorg Freitag Horst W. Hamacher *
Universitat Kaiserslautern Colonia Insurance Universitat Kaiserslautern

Francesco Maffioli
Politecnico di Milanof

Abstract

In this paper we consider the problem of finding in a given graph a minimal weight subtree
or connected subgraph, which has a given number of edges. These NP-hard combinatorial
optimization problems have various applications in the oil industry, in facility layout and
graph partitioning. We will present different heuristic approaches based on spanning tree and
shortest path methods and on an exact algorithm solving the problem in polynomial time if
the underlying graph is a tree. Both the edge- and node weighted case are investigated and
extensive numerical results on the behaviour of the heuristics compared to optimal solutions
are presented. The best heuristics yielded results within an error margin of less than one
percent from optimality for most cases. In a large percentage of tests even optimal solutions
have been found.

1 Introduction

The problem of finding in a given graph a subtree of minimal weight with a fixed number K
of edges, called the K-cardinality tree problem, is a combinatorial optimization problem first
described in [HIJM91]. Its structure was investigated in detail in [FHIM94]. A closely related
problem is the K-cardinality subgraph problem, which was the topic of a thesis by the first author
[Ehr92].

There are several applications which require to find a connected subset of a given graph. The
first application is in oil field leasing in the Norwegian part of the North Sea, see [HJ93]. The
policy of the Norwegian Government is to give blocks of an oil field to the companies allowing
them to explore these fields for six years. After this period at least half of the block has to
be returned, under the restriction that the returned part is connected. This problem can be
modeled mathematically using a grid graph, the nodes of which represent the subsquares of the
blocks. Subsquares have a size of one longitudinal by one latitudinal minute. Edges are introduced
between two nodes if the corresponding subsquares are neighbours. The objective is then to find
a connected subgraph of the grid graph of minimal value and containing at least half of the nodes.
The part of the block which is represented by this subgraph is then returned. The values of the
subsquares will be established by the company based on their explorations during the first six
years.

A second possible application is in the area of facilities layout and graph partitioning, see [FH92].
In facilities layout we consider a total office area or machine hall which has to be subdivided to
accommodate the particular rooms. An office is then a connected subarea consisting of a given
number a; of unit squares. Feasible solutions are provided by a partition of a grid graph G into L
connected subgraphs of a; nodes, | =1,..., L.

*Partially supported by a grant of the Deutsche Forschungsgemeinschaft and grant ERBCHRXCT930087 of the
European HC&M Programme
TPartially supported by grant ERBCHRXCT930087 of the European HC&M Programme

The outline of the paper is as follows. Section 2 provides the mathematical formulation of the two
problems under consideration. We also review complexity results and lower bounds. In Section
3 we will present heuristics for both problems for the case of edge-weighted graphs. Section 4
deals with the node-weighted case. We will prove that for K-Cardinality Tree the node-weighted
case can be transformed to the edge weighted case and give heuristics for K-Card Subgraph on
node-weighted graphs, where the transformation is not valid. Finally in Section 5 the numerical
results for the heuristics developed in Sections 3 and 4 are given. We will show that the heuristics
we present yield very good solutions (in 80% of the test problems an optimal solution was found)
within a few seconds, whereas exact methods were not applicable to find optimal solutions for
larger problems.

2 Mathematical Formulations

First we will provide a formal graph theoretical definition of the two problems considered in this
paper. Let G = (V, E,w) be an undirected edge-weighted graph. The number of nodes of G
is given by |V| = n, the number of edges by |E| = m. Edge weights are defined according to
(edge-) weight function w : E — IR,. For any subset E' C E we denote the weight of E' by

w(E') = Xeem wle).

Definition 1 o A K-cardinality tree is a subtree T of G such that |E(T)| = K. The K-Card
Tree problem is to find a K-cardinality tree of minimal weight, i.e.

min{w(E(T)) |T is a K-cardinality tree}

o A K-cardinality subgraph is a connected subgraph S of G such that |E(S)| = K. The K-Card
Subgraph problem is to find a K-cardinality subgraph of minimal weight, i.e.

min{w(E(S))| S is a K-cardinality subgraph}

Notice that we do not require a K-cardinality subgraph to be an induced subgraph of G. We just
understand it as a subset of edges, which together with the nodes incident to these edges form
a connected graph. It is also important to note that K may range from 1 to n — 1 for K-Card
Tree, whereas for K-Card Subgraph values for K up to m — 1 are possible. If K =n — 1 K-Card
Tree reduces to the Minimum Spanning Tree problem, and hence is easily solvable. In general,
however, both problems are NP-hard, as was shown in [FHJM94]. We also refer to [Woe92], where
NP-completeness of the problem on grid graphs has been shown. The interesting cases occur
for K > 3, since for K € {1,2} both problems are also easily solvable. (In fact the problems
are solvable in polynomial time if K is fixed, i.e. not a part of the input, by just checking all
K —element subsets of edges.)

Exact algorithms for both problems have been derived on the basis of a Branch&Cut approach,
for which formulations as 0-1 Programming problems are necessary. To this end binary variables
for nodes and edges are introduced. Let S,T be a subgraph, respectively subtree of G and define

(e) = 1 ee E(T),E(S) respectively
€)=\ 0 otherwise

(i) = 1 ieV(T),V(S) respectively
YW= 0 otherwise

The 0-1 Programming formulation corresponding to K-Card Tree is

min Z w(e)z(e) (1)

dale) = K (2)
ecE
doyli) = K+1 (3)
[1S%
Y oz(e) < D yli)—ylt) YUCV, |U>2,teS (4)
ecE(U) ieU

where E(U) = {[i,j] € E|i,j € U}

The interpretation of (1) - (4) is as follows. Minimize total edge weight subject to the constraints
that K edges and K +1 nodes are chosen and (4) is fulfilled. Hence (4) should guarantee acyclicity,
which it indeed does, since it implies that from all edges which have both endnodes in a subset
U of V(G) at most |[U| — 1 can be chosen. A formal proof of the correctness of (1)-(4) as 0-1
Programming formulation for K-Card Tree is given in [FHIM94].

The corresponding formulation for K-Card Subgraph cannot make use of (3) and (4). But it must
guarantee connectedness, which means that whenever a node s in some subset U of V(G) and a
node t in V' \ U are contained in a solution, i.e. y(s) = y(t) = 1, there must be at least one edge
with one endnode within U and the other outside U. This is expressed by (7) below. Furthermore
if an edge e = [i, j] belongs to a solution it must hold that y(i) = y(j) = 1, i.e. both endnodes
also belong to the solution. Thus the 0-1 Programming formulation for K-Card Subgraph is given

by (5)-(9).

min Z w(e)z(e) (5)
ecE
Z z(e) = K (6)
ecE
Yo wle) = yls)+y) -1 YUCV,s€U, teV\U (7
ecE(U:V\U)
where E(U : V\U) ={[i,jle E|ieU,j e V\U}
z(e) < y(i) Ve=[i,jle E (8)
z(e) < y(j) Ve=[i,jle E 9)

For a proof we refer to [Ehr92] and [Ehr95].

The structure of the polyhedra defined by the convex hull of all integral solutions of (2)-(4) and
(6)-(9) have been investigated in detail in [FHJM94] and [Ehr92], [Ehr95] respectively. The most
important results for our purposes are two separation algorithms for inequalities (4) and (7),
based on network flow techniques, which were used to implement Branch&Cut algorithms for
both problems. For more detailed analysis of these algorithms and also for implementations we
refer to [FHIM94], [Ehr92], [Ehr95], [Fre93] and especially [EF96]. We used these implementations
to find the optimal solutions for the numerical tests presented in Section 5.

We should note that for the special case where G is itself a tree the K-Card Tree problem (and thus
the K-Card Subgraph problem, since both problems coincide in that case) is solvable in polynomial
time. An algorithm based on Dynamic Programming was given in [Maf91] and implemented in
[Fre93]. Another algorithm for this special case has been developed in [FK94].

Lower bounds for both problems can easily be obtained. The lower bound for an instance of
K-Card Subgraph is given by the K edges with the K smallest weights. This subset of edges
can be shown to be the solution of the linear relaxation of (5)-(9) without constraints (7), i.e.
min), w(e)z(e) subject to (6), (8), (9) and z(e),y(i) > 0, which therefore always has an
integral optimal solution.

For K-Card Tree we can apply Kruskal’s [Kru56] well-known greedy algorithm for the Minimum
Spanning Tree problem to G and stop as soon as K edges have been selected. Obviously the result

is an acyclic subgraph of G with K edges, i.e. a K-cardinality forest. This solution is also the
optimal solution of the Integer Program (1)-(4) without constraint (3).

This indicates that the difficulty of solving K-cardinality tree and K-cardinality subgraph problems
is caused by the connectivity requirement. Recall that connectivity for trees is implied by acyclicity
and the fact that the number of nodes is the number of edges plus one. Thus relaxing (3) for
K-Card Tree and (7) for K-Card Subgraph we omit the connectivity property and the resulting
problems are easy.

The following section will be devoted to heuristic methods for the problems under discussion.
We will present several different approaches for the K-Card Tree problem, some of which will be
modified and adapted for K-Card Subgraph.

3 Heuristics

This section is subdivided. In Section 3.1 we will describe three classes of heuristics for K-Card
Tree which were developed in [Fre93]. Section 3.2 is concerned with the heuristics for K-Card
Subgraph. Throughout, the input is always an edge-weighted graph G = (V, E,w) together with
a cardinality K, as described in Section 1. The solution produced by the heuristic will always be
denoted by Theyr for K-Card Tree heuristics and by Sheq for K-Card Subgraph heuristics. We
also remark that the formulation of the methods is rather informal. For implementations we refer
to [Fre93] and [Ehr92]. The codes are also available within the Operations Research Software
Exchange Program, see [EF96].

3.1 Heuristics for K-Card Tree

A straightforward approach to solve K-Card Tree is to look at spanning tree algorithms. In Section
2 we already mentioned that Kruskal’s algorithm can be used to derive a lower bound. The first
class of heuristics will also be based on a greedy approach. The first heuristic proceeds as the
second well-known algorithm for minimum spanning trees, the one by Prim [Pri57].

K-CardPrim (K-CaPr)

1 ForallseV
V(Ts) :={s}, E(Ts) := 0
Fork=1,...,K
Let e € E\ E(T}) be an edge of minimal weight such that
T, U {e} is a tree
T, :=Ts;U{e}
2 Theyr := argmin{w(Ts)|s=1,...,n}

The algorithm constructs n K-cardinality trees, starting once from each node s of G' according to
Prim’s method. That means edges of minimal weight are added to the current solution, which
is initially set to {s}, until it contains K edges. In each step it is guaranteed that the current
solution is a subtree of G. Finally the best of the n trees is chosen as heuristic solution.

Since Kruskal’s greedy approach in general will only produce a K-cardinality forest it cannot be
applied as a heuristic. But we may start from the given graph G and delete edges in a greedy
fashion until a K-cardinality tree is encountered. In each step we have to make sure that the
remaining graph contains at least one connected component with at least K + 1 nodes. The
procedure stops as soon as a K-cardinality tree is found.

DualGreedyl (DuGrl)

1 T:=G
2 Repeat
Let e € E(T') be an edge of maximal weight such that
T \ {e} has at least one component with at least K + 1 nodes
T :=T)\ ({e} U {components of T with at most K nodes})
until |E(T)| = K
3 Thewr:=T

Instead of checking if a large enough component exists it is also possible to require that the graph
resulting from deletion of an edge remains connected. This is done in the following version of the
dual greedy approach.

DualGreedy2 (DuGr2)

1 T:=G
2 Repeat
Let e € E(T') be an edge of maximal weight such that
T \ {e} is connected and has at least K + 1 nodes

T.=T\{e}
until [E(T)| =K
3 Thewr:=T

Numerical tests (see Section 5) indicated that the performance of DualGreedy?2 is bad for small
values of K. However it yields better results than DualGreedy1 for larger K. DualGreedyl
on the other hand is good for small K. Moreover the dual greedy heuristics often found good or
optimal solutions exactly in those cases where K-CardPrim did not.

The example given in Figure 1 shows why both versions are considered: in general it is not possible
to say that one dominates the other.

We have found small examples illustrating nonoptimality for all the heuristics to be presented
below. Especially in the cases where we included several slightly different versions of one approach
examples showing that none of the versions is dominating the other(s) are known. However we
will omit them for the sake of brevity.

The second class of algorithms is based on shortest path methods. The idea of the approach
is the following: First try to find paths that have at most K edges and extend these paths to
K-cardinality trees using Prim’s method. Before we can describe these methods we will have to
present a modified version of Dijkstra’s Shortest Path algorithm [Dij59], which accomplishes the
construction of paths of at most K edges.

We need two labels, len[z] and dist[z] to denote the number of edges and the total weight of the
best path from specified node s to x found so far. The node from which the labeling is done, i.e.
the one which has most recently been labeled permanently, is denoted by recent. What we have
to do is to change the labeling procedure in such a way that a node x is only relabeled if the path
involving recent is shorter (i.e. has a smaller weight) than the current label dist[z] and does not
have more than K edges. The choice of the next node which gets a permanent label is only among
nodes to which the best path found so far has not more than K edges.

10 7 10

1 2 3 4
5 2 2 4 Graph 1, K=3
52 ol 5 1 <

DualGreedy1 solution: 3-7, 7-8, 4-8, weight 7
DualGreedy? solution: 2-3, 3-7, 7-8, weight 10

® Graph2, K=3

DualGreedy1 solution: 5-6, 5-7, 6-8, weight 9
DualGreedy? solution: 2-3, 3-5, 5-6, weight 7

Figure 1: Example Illustrating DualGreedyl and DualGreedy2 for K-Card Tree

K-Dijkstra-A

1 W:={s}
distlz] ;=00 Vz eV \{s}, dist[s]:=0
len[z] ;=00 Vz eV \{z}, len[s]:=0
recent := s
2 While W #V
a For all x ¢ W such that [recent,z] € E
If (dist|z] > dist[recent] + w([recent, z])) and (len[recent] + 1 < K)
then dist[z] := dist[recent] + w([recent, x]), len[z] := len[recent] + 1
b If{y|lenfy] < K} #0
then z := argmin{dist[y] |y € W,len[y] < K}, W := W U {z}, recent := z
else W:=V

K-Dijkstra-A will produce paths from node s to some other nodes of V' the number of edges of
which is at most K. But if the algorithm finds a path from s to, say, ¢ it is not necessarily the
shortest path between s and ¢ with at most K edges.

As mentioned before in K-Dijkstra-A a new label for node z is set if the path using recent has
strictly smaller weight and not more than K edges. We could change that in the following manner.
Provided that the path using recent has at most K edges, relabel z if this path has smaller weight
or more edges. Thus in some cases, when the path using recent has the same weight as given by
dist[z] and z would not be relabeled, it will be in this version, if it has more edges than the path
found so far. That means the priority is more on the cardinality of the paths instead of on the
weights as in the first version. Hence paths of cardinality K will be found more often. The second
modified Dijkstra version is obtained by substituting 2a in K-Dijkstra-A by

For all z ¢ W such that [recent,z] € E
If len[recent] + 1 < K
then if (dist[z] > dist[recent] + w([recent,x])) or (len[recent] +1 > len|x])
then dist[z] := dist[recent] + w([recent, x]),len[z] := len[recent] + 1

The second version is called K-Dijkstra-B. The next step is to incorporate K-Dijkstra-A and
K-Dijkstra-B in a heuristic for the K-Card Tree problem. We first apply the modified Dijkstra
algorithms to G once for each node s of V. The resulting set of paths {P;;|i,j € V} is checked
for paths of k edges, where k € {1,...,K}. Note that possibly P;; = (), which means that there
is no path from ¢ to j of no more than K edges. For each k the best of these paths is chosen and
extended, if necessary, to a K-cardinality tree. The best of the resulting trees defines the heuristic
solution.

DijkstraPrim-A (B)

1 ForallseV
Apply K-Dijkstra-A(B)
Let {P;;|i,j € V'} be the resulting set of paths
Let dist[i, j] be the weights and let len[i, j] be the cardinalities of P;;
2 Fork=1,...,.K
If {(i,5) € V x V |len[i,j] = k} # 0
then Py, = argmin{dist[i, j]|len[i, j] = k;i,5 € V'}
Apply Prim’s method to extend Py to a K-cardinality tree T}
3 Thewr := argmin{w(T}) |k =1,...,K}

The final heuristic combines DijkstraPrim-A and DijkstraPrim-B, by choosing as heuristic
solution the better solution of the two algorithms. It should be remarked that in general neither
of the two versions performs better than the other.

DijkstraPrim (DiPr)

1 Let T4 be the K-cardinality tree resulting from DijkstraPrim-A
2 Let Ts be the K-cardinality tree resulting from DijkstraPrim-B
3 Thewr := argmin{w(T4),w(Tr)}

In DijkstraPrim we extended “short” paths to K-cardinality trees. But since the problem of
finding shortest paths from a specified node s of G to all other nodes having at most K edges is
polynomially solvable (see [Ehr92]) it would also be possible to use exact algorithms instead of the
modified Dijkstra versions presented above. But numerical tests indicated that both the quality
of the results and time (due to increased complexity) are worse for the resulting heuristics, see
[Fre93]. We will therefore not go into details here.

The last class of heuristics is based on the Dynamic Programming algorithm of [Maf91] for K-
cardinality subtrees of trees. This algorithm will be called DynamicTree. For an implementation
of the algorithm, which has a complexity of O(nK?), see [Fre93]. The idea of the heuristic is simple:
Find a “good” spanning tree of G and then apply DynamicTree. Proceeding in that way we can
guarantee that at least an optimal K-cardinality tree in the spanning tree, to which DynamicTree
was applied, is found.

The performance of this approach depends very much on the choice of the spanning tree, which
need not necessarily be a minimum spanning tree. Others sometimes yield better solutions. We will
present three versions which differ only in the spanning trees to which we apply DynamicTree.
The first version uses spanning trees found by Prim’s algorithm.

DynamicPrimTree (DPT)

1 ForallseV
Apply Prim’s algorithm starting at s to find a minimum spanning tree ST}
Apply DynamicTree to ST to find a K-cardinality tree T

2 Theyr := argmin{w(T)|[s = 1,...,n}

To have a still greater variety of spanning trees to start with we combine the DynamicTree
algorithm with the path heuristics we described before. First paths as in DijkstraPrim are
generated, these are this time extended to spanning trees of G before DynamicTree is applied.

DynamicDijkstraPath (DDP)

1 ForallseV
Apply K-Dijkstra-A and K-Dijkstra-B
Let {Pfj1 |i,j € V} be the set of paths resulting from K-Dijkstra-A
Let dist[i, j]* be the weights and len[i, 5] be the cardinalities of P;;1
Let {P} |i,5 € V} be the set of paths resulting from K-Dijkstra-B
Let dist[i, j]° be the weights and len][i, j]® be the cardinalities of P}
2 Fork=1,...,.K
It {(i,j) € V x V |len[i,] = k} # 0
then P := argmin{dist*[i, j]|len?[i,] = k; 4,5 € V'}
Apply Prim’s method to extend P,;“ to a spanning tree ST,;4
Apply DynamicTree to ST,;4 to find a K-cardinality tree T,;A
If {(i,5) € V x V |lenB[i,j] =k} # 0
then PP := argmin{dist®[i, j]|len®[i,j] = k; i,j € V}
Apply Prim’s method to extend PP to a spanning tree ST}?
Apply DynamicTree to ST to find a K-cardinality tree T}°
3 Thewr := argmin{w(TX) | X € {A,B}, k€ {1,...,K}}

In the last version we will again use K-Dijkstra-A(B). But now we make use of the fact that
the sets of paths {P;; |i,j € V} found by these algorithms define subtrees of G, which follows
from the definition of Dijkstra’s algorithm. (This property in general does not hold for the set of
shortest paths of at most K edges). However in general the number of edges of these subtrees is
not known and will in most cases be greater than K. Hence, applying Prim’s method to these
subtrees we construct spanning trees before we apply DynamicTree.

DynamicDijkstraTree (DDT)

1 ForallseV
Apply K-Dijkstra-A and K-Dijkstra-B to find two subtrees PTA, PTE of G
Apply Prim’s method to extend PTA, PTP to spanning trees ST, ST?
Apply DynamicTree to STSA, ST yielding TA, TE

8§ 1778

2 Thewr := argmin{w(TX)|s € {1,...,n},X € {4, B}}

We should remark that none of the three dynamic tree heuristics is generally better than another.
Given any of the three there are examples where this one outperforms the other two.

3.2 Heuristics for K-Card Subgraph

Compared to the variety of approaches for K-cardinality trees we only have one approach for this
problem. It is the counterpart of the greedy type heuristics of Section 3.1.

K-CardPrim-Subgraph (K-CaPr-S)

1 ForallseV
V(Ss) := {s}, E(Ss) := 0
Fork=1,...,K
Let e € E\ E(S;) be an edge of minimal weight such that
Ss U {e} is connected
Ss =S5 U {e}
2 Shewr = argmin{w(S;) s =1,...,n}

Hence we just relax the condition that S is acyclic. Thus the heuristic will produce subgraphs of
G containing cycles, if edges generating cycles have smaller weight than others.

To apply the dual greedy approach we take the same heuristics as for K-Card Tree and modify the
selection rule for edges: after deleting an edge the remaining graph has to contain a component
with at least K edges, respectively has to remain connected. We get the two following heuristics.

DualGreedy1-Subgraph (DuGrl-S)

o

S:=G
2 Repeat
Let e € E(S) be an edge of maximal weight such that
S\ {e} has at least one component with at least K edges
S =S\ ({e} U {components of S with less than K edges})
until [E(S)| = K

3 Sheuwr =8

DualGreedy2-Subgraph (DuGr2-S)
1 S:=0G
2 Repeat

Let e € E(S) be an edge of maximal weight such that
S\ {e} is connected

S:=5\{e}
until |E(S)| = K
3 Sheur =5

Comparing K-CardPrim-Subgraph and the dual greedy heuristics the same remarks we made
in the case of K-Card Tree apply.

Concerning the other approaches of Section 3.1 we note that the path based approaches are not
advantageous here since they unnecessarily stress acyclicity of (partial) solutions: a path is always
a tree. Obviously the DynamicTree-type heuristics are not applicable for K-Card Subgraph.
Furthermore it is not known if K-Card Subgraph is solvable polynomially for any specific class of
graphs (except trees, since both problems coincide in that case). This would possibly provide an
algorithm that can be transformed to a heuristic for the general case.

4 Node Weighted Problems

In applications, especially in the oil field leasing problem mentioned in Section 1, it sometimes
seems more natural to formulate the problem for a graph with node weights instead of edge weights.
The weight of a node would then just represent the value of the corresponding subsquare of the
block in the oil field problem.

Thus let us now consider a node-weighted graph G = (V, E,wy) where wy : V — IR,. The
problem is to find a K-cardinality tree (subgraph) in G minimizing total node weight. Both K-
Card Tree and K-Card Subgraph are also NP-hard for the node-weighted case as has been shown

in [Ehr92]. In the IP-formulations (1)-(4) ((5)-(9)) we only have to change the objective function
to

min Z wy (i)y(i)

to deal with the new problem.

The heuristics, however, are designed for the edge-weighted case and could not directly be used for
the node-weighted case. To avoid the development of new heuristics we will prove a transformation
of K-Card Tree for node-weighted graphs to the edge-weighted case. Hence the methods of Section
3.1 will be applicable to solve node-weighted problems as well.

Given a node-weighted graph G = (V, E,wy) we will define the related edge-weighted graph
G' = (V',E',w) with weight-function w : E' — IR*, where V! = VU {J'|v € V}, E' =
EU{v,v']|veV}and

w(e) = { wy (v) e =[v,0]

M := (m+1)max,cy wy (v) e€E

Thus we just duplicate the nodes and introduce edges between the two copies of each node which
carry the original node weight. The edges of G are charged with a large weight M. A property
which is implied by the definition of G’ is given in Lemma 1, the proof of which is straightforward.

Lemma 1 Let S' = (V(S'), E(S")) be a connected subgraph of G'. Then S = (V(S), E(S)) is a
connected subgraph of G, where E(S) = E(S")\{[v,v']|[v,v'] € E(S)} and V(S) =V (S)\{v'|v' €
E(S"}.

As a corollary we state the implication of Lemma 1 for subtrees of G'.
Corollary 1 Any (2K + 1)-cardinality tree in G' contains at most K + 1 edges of the type [v,v'].

We want to relate (2K + 1)-cardinality trees of G' and K-cardinality trees of G. In that respect
the most important property of the transformation is that for minimal weight (2K + 1)-cardinality
trees of G’ we can prove the converse of Corollary 1.

Lemma 2 Any minimal weight (2K + 1)-cardinality tree in G' contains at least K + 1 edges of
the type [v,v'].

Proof:

Let T be a minimal weight (2K + 1)-cardinality tree of G’ and assume that T' contains not more
than K edges of {[v,v']|v € V}. Then w(T) > (K + 1)M + K min,cy wy (v). Now let 7' be any
K-cardinality tree of G and define T* = T" U {[v,v'] |v € V(T")}. By the choice of M we conclude

w(T*) < KM + (K + 1)r51€a‘3cwv(v) <(K+1)M <w(T)

contradicting optimality of T' (Note that we only consider cases where K <m — 1).
O

Combining Corollary 1 and Lemma 2 it is easy to prove the validity of the transformation, as
stated in Theorem 1.

Theorem 1 T is a minimal K -cardinality node weighted tree in G if and only if T U {[v,v']|v €
V(T)} is a minimal (2K + 1)-cardinality edge-weighted tree in G'.

This transformation makes use of the fact that a tree with K edges has K +1 nodes. As there is no
similar result for general connected subgraphs the transformation fails for the K-Card Subgraph
problem. Hence we modify the heuristics for K-Card Subgraph of Section 3.2 in order to have
methods to deal with node-weighted graphs in K-Card Subgraph. The presentation of these
heuristics will close this section.

10

K-CardPrim-NodeWeight (K-CaPr-NW)

1 ForallseV
V(Ss) := {s}, E(Ss) := 0
Repeat
Let ig € V' \ V(S5) be a node such that

. (i) . . .
MmiGev\v(S,) {min(K—|V(S)u\],‘\/{[li,j]:jEV(S,)}l)} is attained at ig

V(Ss) :==V(Ss) U{io}
E(S;) := E(S,) U{[io,j] : j € V(Ss)}
until [E(S)| = K
2 Shewr = argmin{w(S;)|s=1,...,n}

That means starting once from each node we add additional nodes and incident edges in such a
way that the weight per additional edge is as small as possible. The denominator in the minimum
operation is equal to the maximal number of edges we can include in S when adding node 1.

The dual greedy procedure on the other hand starts with the graph G and deletes nodes and their
incident edges. Again the node to be deleted is chosen according to the maximal weight reduction
per deleted edge. Additionally we require that a connected graph is retained in each step. When
no more nodes can be deleted we will eventually have to remove some edges to get a K-cardinality
subgraph. This can be done without changing the weight of the solution found so far.

Another version of dual greedy type, where only components of the graph which contain enough
edges are considered turned out to be inferior in almost all tests and we will not describe it here.

DualGreedy-NodeWeight (DuGr-N'W)

s

S:=G
2 Repeat
Let ig € V(Ss) be a node such that
max;cy(s) {7‘ {[i,ji‘:’]?’e(‘z)(7] } is attained at 49 and
E(S)\{[i,j] : € V(S)} is connected and has at least K edges
V()= V(S)\ i)
E(S) := E(S) \ {li0,j] : 5 € V(S)}
until no g can be found
3 Delete |[E(S)| — K edges from S such that it remains connected
4 Shewr =S8

5 Numerical results
In this section we will present the results of computational tests carried out with the heuristics of

Sections 3 and 4.
We begin the section by summarizing the worst-case complexities of all the heuristics in Table 1.

11

K-CaPr Kn?

Greedy heuristics DuGrl n?(m — K)
DuGr2 n*(m — K)
DiPr-A n® + Kn®? + K°n

Path heuristics DiPr-B n3 + Kn? + K%n
DiPr n3+ Kn? + K?n
DPT n3 + n?K?

DynamicTree heuristics DDP n3 + K3n + Kn?
DDT n® +n?K?
K-CaPr-S Kn?

Subgraph EdgeWeight heuristics | DuGr1-S n?(m — K)
DuGr2-S n?(m — K)

Subgraph NodeWeight K-CaPr-NW || Kn?

heuristics DuGr-NW n*(m — K)

Table 1: Computational Complexity of K-Card Tree Heuristics

The complexities can be subsumed under O(n?), except for the dynamic tree and dual greedy
heuristics which in the worst case need O(n*) operations. But the more detailed analysis gives
an indication to the average running times of the algorithms. However we remark that for the
heuristics for the node-weighted problem the worst case bounds will only be attained if in each
step only one edge is included or deleted. This situation will occur only very rarely.

We do not claim to have the best implementations possible, since no special data structures such
as binary trees or heaps (see e.g. [Meh84]) have been used. Therefore it is possible to reduce worst
case bounds for the heuristics which, however, was not the intention of this paper.

All heuristics were implemented in TURBO-PASCAL and run on PC’s. The implementations
can be found in [EF96]. As mentioned in Section 1 optimal solutions for the test problems were
obtained by a Branch&Cut algorithm implemented in C++ on an IBM RS 6000 using CPLEX
2.1 as LP-solver. These Branch&Cut algorithms can also be found in [EF96].

The tests were carried out in the following way: We randomly generated 20 connected graphs and
20 grid graphs with 10, 20, and 30 nodes (i.e. 120 in total for K-Card Tree and 120 for K-Card
Subgraph). The minimal and maximal number of edges are are given in Table 2 below.

Nodes Edges
K-Card Tree K-Card Subgraph K-Card Subgraph Node-Weight
Graphs | Grid Graphs | Graphs | Grid Graphs | Graphs | Grid Graphs
10 9-35 12-13 9-45 12-13 9-38 12-13
20 24-120 | 25-30 30-153 | 26-30 40-148 | 25-30
30 179-235 | 39-48 100-268 | 35-47 149-272 | 39-47

Table 2: Graphs for Numerical Tests

All K-Card Tree heuristics were tested with randomly generated weights between 1 and 100 ac-
cording to three distributions: exponential, uniform, and normal. As there was no significant
difference in the overall behaviour, we will only present the results for the uniform distribution.
Results for exponentially or normally distributed weights were often slightly better.

For the K-Card Subgraph heuristics we therefore restricted ourselves to uniformly distributed
weights, but we also tested weights depending on the number of nodes, i.e. distributed uniformly
in the interval [1,2n], which also did not lead to a significant change in the results.

The tests were carried out for cardinality K ranging from 3 to n — 2 (K-Card-Tree) and 3 to 3n
(K-Card Subgraph). However we remark that very small values of K (K < 10) do not seem to

12

be very reasonable for practical examples. There larger values of K will appear most often, e.g.
K = % in the oil field leasing problem.

As the results for smaller examples on 10 and 20 nodes were generally better than for 30 nodes
we will only present the results for the series with 30 nodes.

That means, considering tests for graphs on 10, 20 and 30 nodes that 2880 K-Card Tree problems
have been solved to optimality, plus the same number of problems on grid graphs. For K-Card
Subgraph we solved 3316 problems on graphs and 3080 on grid graphs for the edge weighted case
and 3303 respectively 3091 problems for the node-weighted case. The numbers differ because some
of the randomly generated graphs did not have 37" edges. For each value of K € {3,...,n — 2}
and K € {3,..., %}, respectively, we calculated the average relative deviation from the optimal
objective value, based on the results of the 20 tests. These values are shown graphically in Figures
2 to 6.

Concerning running times we remark that even the most time consuming heuristics produced a
solution for all 30 nodes examples within a few seconds. A complete series of up to 860 tests for
one heuristic could be run within at most one hour of CPU-time. On the other hand a complete
series of tests for graphs with 30 nodes took several days on the IBM RS6000. Furthermore it was
not possible to solve a reasonably large number of problems on graphs with 40 nodes optimally.
For this reason we couldn’t test larger examples than the ones presented here. Recall that for
examples on graphs with 30 nodes we have about 250 0-1 variables and on graphs with 40 nodes
we would already have more than 400.

Let us summarize: All results we present are for graphs and grid graphs with 30 nodes and weights
uniformly distributed in {1,...,100}. Looking at the results we make the following observations:

e Most of the heuristics were better for general graphs than for grid graphs, with few excep-
tions. E.g. DDT gave better results on grid graphs.

e Dual greedy approaches are not very good considered alone. But they show an interesting
complementarity to the K-CardPrim approach for all problems: They find good or optimal
solutions in cases where the latter doesn’t. This is especially evident in the results for K-Card
Subgraph.

¢ DynamicTree approaches were in most, although not all, cases the best for K-Card Tree.

e In most of the problems the best results were obtained for the smallest and largest values
for K whereas for values in the middle of the range deviations were bigger. This is to be
expected for all heuristics since the number of alternative solutions is largest for those values.

e Taking the best of the solutions any of the heuristics produced we calculated the column
BEST. The improvement compared to any single heuristic is clear, indicating that each has
its advantages. These results are very good for all problems.

e The quality of the heuristics is also indicated by the number of problems for which the
optimal solution was found by at least one of them. These numbers (as percentage of the
total number of problems) are given in Table 3.

13

Problem | Graph Type | Optimal

K-Card Tree Graphs 94%

Grid Graphs 90%
K-Card Subgraph | Graphs 90%
Edge Weights Grid Graphs 2%
K-Card Subgraph | Graphs 91%
Node Weights Grid Graphs 57%

Table 3: Percentage of Problems where Optimal Solution Has Been Found (30 Nodes Examples)

We conclude that the heuristics presented in Sections 3 and 4 yield very good results in a few
seconds of time as indicated in Table 3 and Figures 2 - 6. Therefore they supposedly will perform
well on larger real world examples, which cannot be solved optimally within a reasonable amount
of time.

They furthermore can be incorporated as upper bounds within Branch& Cut algorithms to improve
their performance. However this was beyond the scope of this paper and is a topic of future
research. We also refer to the possibility of applying local search heuristics such as Tabu Search
either from the beginning or using the solution of some of the heuristics as an initial solution.
The former has been done in [JL96]. The latter however seems not to be very promising for the
size of examples we studied here if we take into account the quality of the solutions our heuristcs
produce and the increased time needed to apply local search methods.

References

[Dij59) E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1:269-271, 1959.

[EF96] M. Ehrgott and J. Freitag. A program package for solving k-cardinality tree and
subgraph problems. European Journal of Operational Research, 1996. to appear.

[Ehr92] M. Ehrgott. Optimization problems in graphs under cardinality restrictions (in Ger-
man). Master’s thesis, University of Kaiserslautern, Department of Mathematics, 1992.

[Ehr95] M. Ehrgott. K-cardinality subgraphs. In OR-Proceedings 94, Selected Papers of the
International Conference on Operations Research Berlin, 30.8-2.9.199/4, pages 86-91.
Springer: Berlin, Heidelberg, New-York, 1995.

[FH92] L.R. Foulds and H.W. Hamacher. A new integer programming approach to (restricted)
facilities layout problems allowing flexible facility shapes. Technical Report 1992-3,
University of Waikato, Department of Management Science, 1992.

[FHIM94] M. Fischetti, H.W. Hamacher, K. Joernsten, and F. Maffioli. Weighted k-cardinality
trees: Complexity and polyhedral structure. Networks, 24:11-21, 1994.

[FK94] U. Faigle and W. Kern. Computational complexity of some maximum average weight
problems with precedence constraints. Operations Research, 42(4):688—-693, 1994.

[Fre93] J. Freitag. Minimal k-cardinality trees (in German). Master’s thesis, University of
Kaiserslautern, Department of Mathematics, 1993.

[HJ93] H.W. Hamacher and K. Joernsten. Optimal relinquishment according to the norwegian
petrol law: A combinatorial optimization approach. Technical Report 7/93, Norwegian
School of Economics and Business Administration, Bergen, 1993. submitted to Applied
Mathematical Modelling.

14

[HIMO1]

[JL96]

[Kru56]

[Maf91]

[Meh84]

[Pri57)

[Woe92]

H.W. Hamacher, K. Joernsten, and F. Maffioli. Weighted k-cardinality trees. Technical
Report 91.023, Politecnico di Milano, Dipartimento di Elettronica, 1991.

K. Joernsten and A. Lokketangen. Tabu search for weighted k-cardinality trees. Asia
Pacific Journal of Operational Research, 1996. to appear.

J.B. Kruskal. On the shortest spanning subtree of a graph and the travelling salesman
problem. Proceedings of the American Mathematical Society, 7:48-50, 1956.

F. Maffioli. Finding a best subtree of a tree. Technical Report 91.041, Politecnico di
Milano, Dipartimento di Elettronica, 1991.

K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer
Verlag, Berlin, 1984.

J.C. Prim. Shortest connection networks and some generalizations. Bell System Tech-
nics Journal, 36:1389-1401, 1957.

G.J. Woeginger. Computing maximum valued regions. Acta Cybernetica, 10(4):3030—
315, 1992.

15

Deviation in %

Deviation in %

K-Card-Tree, Graphs

100,00

10,00

0,10

001

0,00

K-Card-Tree, Graphs

Figure 2: Results for K-Card Tree on Graphs (30 Nodes)

16

Deviation in %

Deviation in %

K-Card-Tree, Grid Graphs

100,00

1000 F

1,00

0,10 1|

001]

0,00

K-Card-Tree, Grid Graphs

10,00

1,00

0,10

0,01

Figure 3: Results for K-Card Tree on Grid Graphs (30 Nodes)

17

Deviation in %

Deviation in %

K-Card-Subgraph, Edge Weights, Graphs

100,00

10,00

K-Card-Subgraph, Edge Weights, Grid Graphs

100,00

10,00 |

1,00

010

0,01

P I
0,00

Figure 4: Results for K-Card Subgraph with Edge Weights (30 Nodes)

18

K-Card-Subgraph, Node Weights, Graphs

N
£
c
g
g
8
=]
000 S —tN NS —
K
K-Card-Subgraph, Node Weights, Grid Graphs
100,00
1000 |
B
.E 1'00 DSR2 O-0-N 7
c e e —N--N- -
2
3
3
o 010 |

001 1

‘ K-CaPr-NW

¢ K-CaPr-NW

0,00 Al

Figure 5: Results for K-Card Subgraph with Node Weights (30 Nodes)

19

Deviation in %

Deviation in %

——
. Graphs
BEST: K-Card-Tree B Giid Graphs

Deviation in %

——
Kol R f Graphs
BEST: K-Card-Subgraph, Edge Weights ‘

——

BEST: K-Card-Subgraph, Node Weights Gr.aphs

Figure 6: Results Choosing Best Solutions

20

K || K-CaPr | DuGrl | DuGr2 | DiPr | DPT | DDP | DDT | BEST
3 0 1.111 | 86.861 0 0 0 0 0
4 0 4.017 | 56.962 0 0 0 0 0
5 1.429 4.684 | 37.817 0 0 0 0 0
6 3.384 1.983 | 31.978 | 0.323 0 0 0 0
7 5.289 6.665 | 24.649 | 2.288 | 1.454 | 0.882 | 1.141 | 0.822
8 1.435 5.055 | 22.423 | 0.250 0.5 | 0.250 | 1.475 | 0.250

9 5.885 7.501 | 23.420 | 0.444 | 2.222 | 0.444 | 1.789 | 0.444
10 7.548 8.810 | 12.460 | 1.300 | 2.431 | 0.821 | 2.247 | 0.821
11 6.458 9.450 | 10.134 | 1.917 | 2.008 | 0.545 | 1.955 | 0.545
12 6.757 6.368 6.839 | 2.891 | 0.505 | 0.154 | 1.824 | 0.154
13 6.812 8.237 7.756 | 2.291 0 0| 3.450 0
14 5.653 4.017 7.285 | 1.270 0 0| 3.591 0
15 6.260 1.987 6.692 | 1.324 0 0| 4.153 0
16 6.425 1.616 5.957 | 2.296 0] 0435 | 4.388 0
17 3.867 1.052 3.341 | 1.445 01]0.392 | 3.830 0
18 3.781 1.651 1.392 | 1.830 0] 0.556 | 4.581 0
19 2.751 1.583 1.444 | 1.792 010339 | 5.540 0
20 1.046 1.610 0.593 | 1.211 | 0.320 | 0.560 | 6.562 | 0.320
21 1.348 0.856 0.669 | 1.345 | 0.074 | 0.593 | 7.882 | 0.074

22 1.164 1.060 0.301 | 1.061 0]0274| 8390 0
23 0.446 1.234 0.218 | 0.853 00.191| 8.390 0
24 0.059 0.059 0 | 1.565 0] 0.069 | 8.963 0
25 0.110 0.755 0| 0.536 0| 0.110 | 10.322 0
26 0 0.995 0| 0.227 0 0 | 10.390 0
27 0 0 0 0 0 0 | 10.580 0
28 0 0 0 0 0 0| 11.270 0

Table 4: Deviations from Optimality in Percent: K-Card Tree on Graphs with 30 Nodes

21

K || K-CaPr | DuGrl | DuGr2 | DiPr | DPT | DDP | DDT | BEST
3 0 2.206 | 81.240 0 0 0 0 0
4 0.246 0| 71.889 0 0 0 0 0
) 0 0| 42.472 0 0 0 0 0
6 0 4.841 | 61.056 0 0 0 0 0
7 1.576 6.983 | 40.321 | 0.895 0 0 0 0
8 2.038 5.501 | 33.780 | 1.430 0 0 0 0
9 3.561 5.770 | 28.609 | 2.376 | 2.043 | 0.762 0 0
10 5.190 | 11.195 | 16.402 | 2.035 | 1.092 0 | 0.892 0
11 8.569 | 12.313 | 21.113 | 1.795 | 1.967 0] 1.276 0
12 13.477 | 15.107 | 22.914 | 2.708 | 2.195 0| 1.310 0
13 13.066 7.886 | 18.827 | 2.246 | 2.085 0 | 1.085 0
14 15.124 | 10.133 | 20.618 | 3.431 | 2.165 0| 1.872 0
15 11.870 9.577 | 16.922 | 2.286 | 0.954 | 0.021 | 2.279 0
16 6.699 7.652 | 14.460 | 2.929 | 0.708 0| 2.458 0
17 4.022 4.786 8.269 | 1.948 | 0.635 | 0.107 | 3.191 0
18 5.296 5.543 9.428 | 3.299 | 0.789 | 0.039 | 3.713 | 0.033
19 4.723 3.380 8.719 | 1.267 | 0.821 | 0.278 | 3.644 0
20 4.732 4.428 8.826 | 1.863 | 1.115 | 0.741 | 3.683 | 0.125
21 4.202 5.210 6.578 | 2.947 | 1.000 | 0.716 | 4.059 | 0.140
22 4.108 3.765 3.821 | 3.500 | 1.133 | 0.886 | 4.503 | 0.468
23 2.384 3.651 2.445 | 2.741 | 0.878 | 0.283 | 3.711 | 0.119
24 2.710 3.885 1.455 | 2.939 | 0.852 | 0.117 | 4.368 | 0.117
25 2.652 2.046 0.677 | 2.069 | 0.240 0 | 5.022 0
26 1.752 1.212 0.578 | 1.993 | 0.213 0| 5.071 0
27 1.462 0.896 0.231 | 2.123 | 0.211 0] 5314 0
28 0.479 0 00671 0 0| 5.607 0

Table 5: Deviations from Optimality in Percent: K-Card Tree on Grid Graphs with 30 Nodes

22

K Graphs Grid Graphs
K-CaPr-S | DuGrl | DuGr2 | BEST || K-CaPr-S | DuGrl | DuGr2 | BEST

3 0.625 8.967 | 79.966 0 0.770 3.515 | 140.037 | 0.770
4 0.729 8.643 | 67.170 | 0.417 2.012 2470 | 87.773 | 2.012
) 4.362 6.011 | 49.874 | 1.981 4.873 | 10403 | 76.434 | 3.228
6 5.887 | 10.483 | 37.645 | 3.857 4.678 8.880 | 61.834 | 4.048
7 4.774 7.883 | 31.259 | 3.362 1.868 6.820 | 47.631 | 1.740
8 5.891 7.522 | 25.324 | 2.461 2.897 5.518 | 38.059 | 2.238
9 5.682 5.807 | 18.200 | 2.578 6.224 8.883 | 33.432 | 4.985
10 5.525 7.175 | 15.481 | 1.646 6.144 | 11.786 | 28.667 | 5.084
11 5.864 6.107 | 13.616 | 2.318 7.671 | 12.307 | 24.228 | 5.531
12 5.089 5.199 | 10.761 | 1.979 8.035 | 12,932 | 18.161 | 5.563
13 4.090 4.315 | 11.016 | 1.685 9.674 | 15.054 | 18.404 | 6.258
14 3.858 3.809 | 10.825 | 0.943 8.657 8.002 | 15.924 | 4.645
15 3.538 4.099 8.174 | 0.580 10.140 6.611 | 12.475 | 4.095
16 2.758 4.069 7793 | 0.190 9.458 8.296 | 11.890 | 4.564
17 2.349 3.777 5.980 | 0.055 8.928 8.523 | 10.666 | 4.446
18 1.612 3.679 3.977 | 0.040 9.647 6.407 | 10.150 | 3.412
19 1.511 4.396 2.941 | 0.184 8.224 6.720 8.004 | 3.189
20 1.430 4.350 2.792 | 0.393 7.747 6.930 6.956 | 2.679
21 0.739 3.756 2.309 | 0.253 6.771 6.145 6.006 | 1.908
22 0.521 2.796 2.112 | 0.101 6.274 6.679 4.680 | 1.726
23 0.527 2.558 1.630 | 0.180 4.872 4.824 3.370 | 1.273
24 0.699 1.245 1.434 | 0.249 3.621 3.840 2.544 | 1.099
25 0.240 0.574 1.357 | 0.082 2.723 3.276 1.399 | 0.718
26 0.664 0.847 1.386 0 2.938 2.731 0.698 | 0.492
27 0.205 1.139 1.153 0 2.790 3.220 0.265 | 0.180
28 0.201 1.343 0.886 0 2.091 2.613 0.437 | 0.252
29 0 1.581 0.674 0 1.253 2.262 0.512 | 0.291
30 0 1.729 0.439 0 0.915 2.089 0.156 | 0.124
31 0 1.535 0.303 0 0.478 1.164 0.089 | 0.045
32 0 1.545 0.415 0 0.296 1.150 0.017 0
33 0.116 1.394 0.378 0 0.197 1.316 0 0
34 0.200 1.342 0.271 0 0.236 0.775 0 0
35 0.127 2.073 0.191 0 0.268 0.834 0 0
36 0 1.665 0.154 0 0.117 0.668 0.017 0
37 0.012 1.056 0.121 0 0.117 0.344 0 0
38 0.036 0.161 0.103 0 0.147 0.132 0 0
39 0.045 0.138 0.086 0 0 0.136 0 0
40 0.065 0.183 0.070 0 0 0 0 0
41 0 0.140 0.045 0 0 0 0 0
42 0 0.153 0.032 0 0 0.687 0 0
43 0 0.174 0.021 0 0 1.324 0 0
44 0 0.203 0.010 0 0 0.865 0 0
45 0 0.094 0.009 0 0 2.754 0 0

Table 6: Deviations from Optimality in Percent: K-Card Subgraph with Edge Weights (Graphs
and Grid Graphs with 30 Nodes)

23

K Graphs Grid Graphs
K-CaPr-NW | DuGr-NW | BEST || K-CaPr-NW | DuGr-NW | BEST
3 0.120 5.685 0 0 46.203 0
4 0.634 8.256 | 0.424 2.507 51.198 | 2.069
5 0 5.625 0 0.941 47.570 | 0.941
6 0 2.650 0 2.547 38.511 | 2.019
7 0 7.555 0 0.418 38.199 | 0.418
8 0.143 4.845 | 0.143 0.566 31.244 | 0.566
9 0.338 3.458 | 0.222 1.082 25.825 | 1.082
10 0.296 5.426 | 0.110 1.161 23.330 | 0.907
11 0.705 4.928 | 0.341 0.606 20.831 | 0.552
12 0.459 4.108 | 0.243 1.441 18.016 | 1.082
13 1.476 3.320 | 0.359 1.195 16.503 | 0.846
14 0.492 4.079 0 1.552 12.433 | 1.057
15 0.337 4.500 | 0.112 2.169 11.320 | 1.095
16 0.569 4.734 | 0.090 2.484 10.640 | 1.861
17 1.163 3.860 0 3.152 8.789 | 1.700
18 0.895 4.057 | 0.339 2.483 7.658 | 1.016
19 0.420 3.140 | 0.072 2.959 7.063 | 1.301
20 0.891 3.068 | 0.119 1.803 6.802 | 1.173
21 0.808 3.314 | 0.535 2.273 5.693 | 1.251
22 0.217 3.015 | 0.217 1.335 5.713 | 1.019
23 0.825 2.813 | 0.244 1.808 6.145 | 1.257
24 0.622 1.811 | 0.116 1.544 5.785 | 1.255
25 1.028 3.432 | 0.040 2.052 5.451 | 1.381
26 0.778 2.241 0 1.218 5.561 | 0.841
27 0.339 2.779 | 0.134 1.474 4.217 | 0.679
28 0.941 1.960 | 0.395 1.010 4.121 | 0.614
29 0.443 1.991 | 0.310 1.200 2.342 | 0.515
30 0.469 1.961 | 0.236 0.964 3.743 | 0.633
31 0.540 2.343 | 0.255 1.692 2.560 | 0.727
32 0.981 2.411 | 0.169 0.730 2.317 | 0.229
33 0.614 2.070 | 0.356 1.195 2.409 | 0.474
34 0.718 2.076 | 0.089 1.069 1.440 | 0.437
35 0.262 2.301 0 1.003 1.771 | 0.237
36 0.589 1.489 | 0.158 1.142 1.195 | 0.328
37 0.491 1.395 | 0.089 0.595 1.017 | 0.036
38 1.131 0.803 | 0.235 0.417 1.001 | 0.090
39 0.298 1.617 | 0.032 0.391 0.543 | 0.159
40 0.397 2.267 | 0.041 0.472 0.702 | 0.023
41 0.201 1.896 | 0.111 0.527 0.204 | 0.055
42 1.001 1.677 | 0.307 0.174 0.595 | 0.050
43 0.288 1.495 | 0.183 0.457 0.289 | 0.052
44 0.271 1.150 | 0.147 0.233 0.147 0
45 0 2.120 0 0 0 0

Table 7: Deviations from Optimality in Percent: K-Card Subgraph with Node Weights (Graphs
and Grid Graphs with 30 Nodes)

24

