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ABSTRACT 

Benzene is a natural constituent of crude oil and a product of incomplete combustion of petrol 

and has been classified as “carcinogenic to humans” by IARC in 1982 (IARC 1982). (E,E)-

Muconaldehyde has been postulated to be a microsomal metabolite of benzene in vitro 

(Latriano et al. 1986). (E,E)-Muconaldehyde is hematotoxic in vivo and its role in the 

hematotoxicity of benzene is unclear (Witz et al. 1985).  

We intended to ascertain the presence of (E,E)-muconaldehyde in vivo by detection of a protein 

conjugate deriving from (E,E)-muconaldehyde.  

Therefore we improved the current synthetic access to (E,E)-muconaldehyde. (E,E)-

muconaldehyde was synthesized in three steps starting from with (E,E)-muconic acid in an 

overall yield of 60 %.  

Reaction of (E,E)-muconaldehyde with bovine serum albumin resulted in formation of a 

conjugate which was converted upon addition of NaBH4 to a new species whose HPLC 

retention time, UV spectra, Q1 mass and MS2 spectra matched those of the crude reaction 

product from one pot conversion of Ac-Lys-OMe with (E,E)-muconaldehyde in the presence 

of NaBH4 and subsequent cleavage of protection groups.  

Synthetic access to the presumed structure (S)-2-ammonio-6-(((E,E)-6-oxohexa-2,4-dien-1-

yl)amino)hexanoate (Lys(MUC-CHO)) was provided in eleven steps starting from (E,E)-

muconic acid and Lys(Z)-OtBu*HCl in 2 % overall yield. Additionally synthetic access to (S)-

2-ammonio-6-(((E,E)-6-hydroxyhexa-2,4-dien-1-yl)amino)hexanoate (Lys(MUC-OH)) and 

(S)-2-ammonio-6-((6-hydroxyhexyl)amino)hexanoate (IS) was provided. 

 

With synthetic reference material at hand, the presumed structure Lys(MUC-OH) could be 

identified from incubations of (E,E)-muconaldehyde with bovine serum albumin via HPLC-

ESI+-MS/MS. 

 

Cytotoxicity analysis of (E,E)-muconaldehyde and Lys(MUC-CHO) in human promyelocytic 

NB4 cells resulted in EC50 ≈ 1 µM for (E,E)-muconaldehyde. Lys(MUC-CHO) did not show 

any additional cytotoxicity up to 10 µM. 

 

B6C3F1 mice were exposed to 0, 400 and 800 mg/kg b.w. benzene to examine the formation 

of Lys(MUC-OH) in vivo. After 24 h mice were sacrificed and serum albumin was isolated. 

Analysis for Lys(MUC-OH) has not been performed in this work.  
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ZUSAMMENFASSUNG 

Benzol ist ein natürlicher Bestandteil von Rohöl und entsteht bei unvollständiger Verbrennung 

von fossilen Treibstoffen. Benzol wurde von der IARC 1982 als kanzerogen für den Menschen 

eingestuft (IARC 1982). (E,E)-Muconaldehyd ist als mikrosomaler Metabolit von Benzol in 

vitro postuliert worden (Latriano et al. 1986). (E,E)-Muconaldehyd ist hämatotoxisch in vivo 

and seine Rolle für die Hämatotoxizität von Benzol ist nicht geklärt (Witz et al. 1985).  

Wir beabsichtigten die Präsenz von (E,E)-Muconaldehyd in vivo durch Detektion eines (E,E)-

Muconaldehyd abgeleitetes Proteinkonjugates zu verifizieren.  

Im Zuge dieser Arbeit wurde der synthetische Zugang zu (E,E)-Muconaldehyd verbessert. 

(E,E)-Muconaldehyd wurde in drei Schritten ausgehend von (E,E)-Muconsäure in einer 

Gesamtausbeute von 60 % synthetisiert.  

Reaktion von (E,E)-Muconaldehyd mit Rinderserumalbumin resultierte in der Bildung eines 

Konjugates, welches nach Umsetzung mit Natriumborhydrid hinsichtlich HPLC-Retentionszeit, 

UV-Spektrum, Q1 Masse und MS2 Spektrum mit dem übereinstimmte, welches eine 

Reaktionsmischung aus Ac-Lys-OMe mit (E,E)-Muconaldehyd in Gegenwart von 

Natriumborhydrid und anschließender Abspaltung der Schutzgruppen ergab. 

Synthetischer Zugang zu der vermuteten Struktur (S)-2-Ammonio-6-(((E,E)-6-oxohexa-2,4-

dien-1-yl)amino)hexanoat (Lys(MUC-CHO)) gelang in elf Schritten ausgehend von (E,E)-

Muconsäure und Lys(Z)-OtBu*HCl in 2 % Gesamtausbeute. Zusätzlich gelang die Synthese 

von (S)-2-Ammonio-6-(((E,E)-6-hydroxyhexa-2,4-dien-1-yl)amino)hexanoat (Lys(MUC-

OH)) sowie (S)-2-Ammonio-6-((6-hydroxyhexyl)amino)hexanoat (IS).  

Mit Zugang zu Referenzmaterial wurde die vermutete Struktur Lys(MUC-OH) in Inkubationen 

von (E,E)-Muconaldehyde mit Rinderserumalbumin nachgewiesen. 

 

Die Cytotoxizität von (E,E)-Muconaldehyd und Lys(MUC-CHO) in humanen 

promyelozytischen NB4 Zellen resultierte in EC50 ≈ 1 µM für (E,E)-Muconaldehyd. Lys(MUC-

CHO) zeigte keine relevante Cytotoxizität im Konzentrationsbereich bis 10 µM. 

 

B6C3F1 Mäusen wurde 0, 400 und 800 mg/kg KG Benzol peroral verabreicht um die Bildung 

von Lys(MUC-OH) in vivo zu untersuchen. Nach 24 h wurden die Tiere getötet und 

Serumalbumin isoliert. Lys(MUC-OH) wurde im Rahmen dieser Arbeit nicht mehr analysiert.
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PROLOGUE 

“WISHING,	with	the	poor	widow,	to	give	something	to	the	Lord’s	treasury	out	of	our	

penury	and	poverty,	we	have	dared	to	scale	the	difficult	heights	and	to	undertake	a	

work	beyond	our	strength.	We	have	grounded	our	confidence	of	completion	and	the	

reward	for	our	labor	in	the	Good	Samaritan,	who,	after	giving	two	silver	pieces	for	

the	 care	 of	 the	man	 left	 half‐dead,	 promised	 to	 repay	 all	 the	 expenses	 of	 the	

caregiver,	who	might	have	to	spend	more.	The	truthfulness	of	the	one	making	that	

promise	delights	us,	but	the	immensity	of	the	work	terrifies	us;	the	desire	to	make	

progress	spurs	us	on,	but	the	weakness	of	failure	discourages	us,	and	only	the	zeal	

for	the	house	of	God	overcomes	it.”	

Peter	Lombard,	The	Sentences,	Book	1:	The	Mystery	of	the	Trinity,	Prologue	
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1. INTRODUCTION 

BENZENE (Figure 1) is a natural constituent of crude oil and is formed as side product during 

incomplete combustion of organic matter. Due to its exceeding solvent properties, it is still used 

today in parts of rubber and paint industries as well as chemical manufacturing. “Since 1989 

the concentration of benzene in [these] preparations is limited to 0.1 % (w/w) within the EU” 

except for gasoline which limits benzene content to a maximum of 1 % (v/v) since January of 

2000 (EU 2008). Cause for this regulation roots in the toxicity of benzene.  

 

In humans, cells of the blood forming organs are most damaged by chronic exposure to low 

levels of atmospheric benzene. A set of different parameters in blood count is affected adversely 

ultimately leading to an increased risk for malignancies in these tissues, specifically acute 

myelogenous leukemia and non-Hodgkin lymphomas. There is strong evidence that metabolites 

of benzene, acting alone or in concert, produce several genotoxic effects at the level of the 

pluripotent hematopoietic stem cell which results in chromosomal changes consistent with 

those seen in hematopoietic cancer (IARC 2012). 

 

Despite extensive research cellular mechanisms leading to benzene induced myelotoxicity have 

not been fully understood. 

 

Our research is focused on elucidating the role of (E,E)-muconaldehyde, an oxidative 

metabolite of benzene in benzene induced myelotoxicity (Figure 1). To this day, the in vivo 

presence of (E,E)-muconaldehyde has not been proven following exposure to benzene.  

 

 

 

 

 

 

Figure	1	Oxidative	formation	of	(E,E)‐muconaldehyde	from	
benzene	in	vivo 
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2. SCIENTIFIC BACKGROUND 

2.1. USE OF BENZENE 

Historically, benzene has been used as a component of inks in the printing industry, as a solvent 

for organic materials, as starting material and intermediate in chemical and drug industries (e.g. 

to manufacture rubbers, lubricants, dyes, detergents, pesticides), and as an additive to unleaded 

gasoline (NTP 2004; ATSDR 2007; Williams et al. 2008). 

The primary use of benzene today is in the manufacture of organic chemicals. In Europe, 

benzene is mainly used for production of styrene, phenol, cyclohexane, aniline, maleic 

anhydride, alkylbenzenes and chlorobenzenes. It is an intermediate in synthesis of 

anthraquinone, hydroquinone, benzene hexachloride, benzene sulfonic acid and other products 

used in drugs, dyes, insecticides and plastics (Burridge 2007). 

In the United States of America (USA), benzene is used primarily in the production of 

ethylbenzene, accounting for 52% of the total benzene demand in 2008. Ethylbenzene is mostly 

consumed by the manufacture of styrene, which is used in turn in synthesis of polystyrene and 

various styrene copolymers, latexes and resins. 22 % of the benzene demand in the USA goes 

to the manufacture of cumene (isopropylbenzene), nearly all of which is consumed in the 

production of  phenol (IARC 2012). 

Benzene is also used to manufacture chemical intermediates: cyclohexane, used in production 

of nylon monomers (15%); nitrobenzene, an intermediate for aniline and other products (7%); 

alkylbenzene, used in detergents (2%); chlorobenzenes, used in engineering polymers (1%); 

And miscellaneous other uses (1%) (Kirschner 2009). Benzene occurs naturally in petroleum 

products (e.g. crude oil and gasoline) and is also added to unleaded gasoline for its octane-

enhancing and anti-knock properties (IARC 2012). 

 

2.2. LEGAL PRODUCT CONCENTRATION LIMITS OF 

BENZENE 

Since 1989, the concentration of benzene in preparations has been restricted to 0.1 % (w/w) 

within the European Union except for gasoline, which contains up to 1 % (v/v) benzene. Until  

1999, the upper limit of benzene content in gasoline was 5 % (v/v) (EU 2008). 
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2.3. TOXICITY OF BENZENE 

2.3.1. HEMATOTOXICITY 

The most characteristic systemic effect resulting from intermediate and chronic benzene 

exposure is the arrest in development of blood cells.  A common early clinical finding in 

benzene hematotoxicity is cytopenia, which is a decrease in cellular blood elements manifesting 

as anemia, leukopenia, or thrombocytopenia.  Benzene associated cytopenias vary from a 

reduction in one (unicellular cytopenia) to all three (pancytopenia) cellular elements of the 

blood.  

Benzene also causes a potentially lethal disorder called aplastic anemia. This disorder is 

characterized by reduction of all cellular components in the peripheral blood and in bone 

marrow, leading to fibrosis, an irreversible replacement of bone marrow tissue. Hematotoxicity 

of benzene is believed to be the prerequisite for development of different kinds of benzene 

related cancer (ATSDR 2007). 

 

2.3.2. CARCINOGENICITY 

Benzene is known to be carcinogenic in humans (group 1) causing a variety of different types 

of cancer of the blood forming system. With very few exceptions, overwhelming statistical 

evidence is provided for a correlation between exposure to benzene and increased risk for acute 

myeloid leukemia as well as acute non-lymphocytic leukemia. Besides, evidence for other types 

of cancer such as acute lymphocytic leukemia, chronic lymphocytic leukemia, multiple 

myeloma and non-Hodgkin lymphoma is also well documented (IARC 1982).  

Carcinogenicity of benzene can be reproduced in experimental animals, however there are 

differences in susceptibility (Huff et al. 1988). Mice show an overall greater capacity to 

metabolize benzene than do rats and cynomolgus monkeys (Sabourin et al. 1992; Sabourin et 

al. 1987) and develop more and more varied tumors than rats (Henderson 1996) . Therefor mice 

are considered today to be the animal model closest to mirroring benzene’s toxicity in humans. 

As to the mechanism of benzene induced cancers, there is good experimental evidence that 

benzene metabolites produce multiple genotoxic effects at the level of the pluripotent 

hematopoietic stem cell resulting in adverse chromosomal changes. A variety of genotoxic 

changes, including chromosomal abnormalities, could be detected in workers exposed to 

benzene (IARC 2012). 
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2.3.3. CARCINOGENIC MODES OF ACTION 

Despite a tremendous amount of mechanistic studies, the mode of action in benzene induced 

carcinogenicity still poses several unresolved questions. Several mechanisms acting alone or in 

consort are considered to be relevant in tumor formation. 

1. Genotoxicity. It is believed that metabolites of benzene are responsible for genotoxic 

lesions. Several metabolites are reasonable candidates for genotoxicity and may be 

responsible for primary genotoxicity such as DNA mutations or damage and secondary 

genotoxicity such as clastogenity 1 . However, genotoxic potency of individual 

metabolites might be underestimated by synergistic effects of different metabolites 

(IARC 2012). Furthermore, metabolites of benzene might cause indirect DNA damage 

e.g. by formation of reactive oxygen species and raising the level of oxidative stress in 

sensitive target tissue2. 

2. Hematotoxicity. Proliferation stimuli of the damaged bone marrow cells as 

compensating response to cytotoxicity of benzene are reported (Aksoy 1989). As a 

result, enhanced proliferation of genetically modified cells might occur, thus favoring 

tumor formation. However, cases of leukemia without previous damage to the blood 

forming system have been reported. (Albertini et al. 2003; ATSDR 2007; Khan 2007; 

Rothman et al. 1996). 

3. Topoisomerase-II inhibition. Topoisomerase-II is an enzyme essential for cell cycle. It 

cleaves both strands of DNA and recombines them with higher degree of coiling. 

Inhibition of Topoisomerase-II can lead to an increase of DNA double strand breaks 

thus marking an indirect genotoxic mechanism. 1,4-Benzoquinone and hydroquinone 

have been shown to be potent inhibitors of Topoisomerase-II in vitro (Bird et al. 2005; 

Eastmond et al. 2005; Lindsey Jr. et al. 2005; Whysner et al. 2004). 

4. Mismatched DNA repair. Genetic alterations by benzene are thought to include DNA 

double strand breaks (DSBs) (see above). DSBs are repaired by either homologous 

recombination (HR) or nonhomologous end-joining (NHEJ). NHEJ is usually 

considered to be error prone “by causing small deletions or small insertions” (Hartwig 

2010).  

5. Poor DNA repair in bone marrow. Furthermore, a reduced capacity to repair DNA 

damage in bone marrow progenitor cells has to be considered. When comparing primary 

                                                 

1 The possible modes of action of individual metabolites are discussed in detail in section 2.6 
(Benzene metabolism) 
2 Discussed in detail in section 2.6.2 (Phenol & hydroquinone) 



SCIENTIFIC BACKGROUND 

5 

human hematopoietic cells, CD34 progenitor cells show consistently lower repair 

capacities as compared to more differentiated CD34 cells (Ren et al. 2008; Hartwig 

2010; BAuA 2012). 

 

2.4. BENZENE EXPOSURE 

The data presented here referring to benzene exposure is limited as much as possible to data 

referring to Germany. For more detailed information on exposure assessment of benzene in the 

European Union and Germany in particular, one might refer to the European Union Risk 

Assessment Report on benzene (EU 2008). 

 

2.4.1. OUTDOOR EXPOSURE 

Benzene is released from a number of anthropogenic sources. The main sources of 

environmental benzene are automobile exhaust emissions, losses via evaporation and emissions 

by refueling. Benzene in automotive exhaust stems from incompletely burned benzene and 

benzene produced in the combustion cycle through dealkylation of toluene and xylenes. From 

industrial sources benzene enters the environment primarily as fugitive emission from industrial 

intermediate production and processing operations as well as through air emissions from waste 

water treatment plants. Additionally, benzene is released from natural sources such as volcanos 

or forest fires. 

Benzene is produced and emitted in industrial quantities. Because of its high volatility, benzene 

is emitted mainly to the air. Emissions to soil and water partly add to atmospheric emission. As 

a result, most of benzene is found in the air compartment (EU 2008). 

Benzene emissions in Germany have decreased significantly from 66 214 t/a in 1990 to an 

estimated 2 887 t/a in 2010 (BUA 2006) (Table 1). 

Table	1	Development	of	benzene	emissions	since	1990	in	Germany	(BUA	2006).	

Emission	 1990	 1995	 2000	 2010	

Benzene	ሾt/aሿ	 66	214	 26	387	 8	229	 2	887	ሺest.ሻ	
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Atmospheric benzene concentration limits are set by European and implemented by German 

law (Umweltbundesamt 2010). Legal bases are: 

1. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 

on ambient air quality and cleaner air for Europe (EUP 2008). 

2. Neununddreißigste Verordnung zur Durchführung des Bundes-

Immissionsschutzgesetzes Verordnung über Luftqualitätsstandards und 

Emissionshöchstmengen. (39. BImSchV 2010). 

In Germany, atmospheric benzene levels have decreased continually over the past years, 

underscoring the most recent enforced legal limit by the European Union of 5 µg/m³. 

(Umweltbundesamt 2010) (Figure 2). Current estimations of median atmospheric benzene 

concentrations range around 2 µg/m³ (Table 2).  

 	

Figure	 2	 Latest	 data	 on	 median	 atmospheric	 benzene	 concentrations	 for	 selected
monitoring	stations	in	Germany,	modified	from	(Umweltbundesamt,	2010)	
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Table	2	Median	atmospheric	benzene	concentration	(indoor	+	outdoor)	estimation	exposures	in	Germany,	
taken	from	(Umweltbundesamt,	2013).	

Area	 Benzene	ሾµg/m³ሿ	

Rural	 1.70	

Suburb	 1.73	

City	 2.04	

 

2.4.1.1. GASOLINE 

As we have seen in section 2.2 the concentration of benzene in preparations is legally limited 

to 0.1 % (w/w) within the EU. However, an exception is gasoline, which is allowed to contain 

up to 1 % (v/v) benzene. Until end of 1999, the maximum content of benzene in gasoline was 

5 % (v/v) (EU 2008). 

Aside from the legal requirement, how much benzene can actually be detected in automobile 

fuels? One of the few reports in the literature listing benzene concentrations in gasoline 

separately, names 6140 mg L−1 or 0.96 % (v/v). According to the authors, this level reflects the 

current average for gasoline from US refineries, which is expected to fall from 1.05 % (v/v) in 

2007 to 0.62 % (v/v) in 2015 (EPA 2010; Chin & Batterman 2012).  

 

However, it must be noted that due to its volatility, benzene accounts for up to one fifth (m/v) 

of gasoline vapor (Chin & Batterman 2012). That is the reason why since 1998 gas stations in 

Germany must be equipped with systems that redirect excessive air in the tank back to the gas 

station upon refueling, so called Gasrückführsysteme (21. BImSchV 2014). This way gasoline 

emissions upon fueling are reduced by at least 85 % (LfU 2006). 

 

2.4.1.2. DIESEL 

Diesel fuel has a substantial higher boiling point than gasoline, which ranges between 160 – 

360°C. Therefore, “the boiling range of diesel fuel […] largely exc1udes the presence of 

benzene […]” (IARC 1989). That is the reason why volatile organic compounds including 

benzene compositions of diesel and biodiesel blends have been reported “rarely”. (Chin & 

Batterman 2012). Nevertheless, diesel fuels may contain minor amounts of benzene (< 0.02 % 

(v/v)) (IARC 1989).  
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2.4.1.3. FUEL EXHAUST EMISSIONS 
One might suspect, benzene emissions of diesel motors are lower than benzene emissions of 

gasoline motors since not only diesel reflects newer technology but also benzene content of 

diesel is by nature lower than benzene content of gasoline. To test this hypothesis, Louis et al. 

compared benzene emissions (among others) of 6 different engines with state of the art 

environmental protection technology (Louis et al. 2016) such as:   

 Euro 4 gasoline 

 Euro 5 gasoline with direct injection 

 Euro 4 Diesel catalyzed Diesel particulate filter 

 Euro 5 Diesel catalyzed Diesel particulate filter 

 Euro 5 Diesel additive Diesel particulate filter 

The following observations could be made: 

1. There is no blanket advantage regarding benzene emissions when comparing diesel or 

gasoline motors even though diesel consumption is generally lower compared to 

gasoline motors. 

2. Benzene emissions per driven km rank independently from gasoline or diesel motors 

between ~ 10 and 1000 µg/km. 

3. Benzene emissions generally fallow the order urban area > rural roads > motorways. 

4. Benzene emissions are substantially higher driving with cold machines compared to 

motors who reached optimal operating temperature. 

5. In any scenario benzene emissions could be not be dropped below ~ 10 µg/km. 

Since EURO 5 as well as the coming EURO 6 norm keep the amount of emission-related 

hydrocarbons of 0.1 g/km set by EURO 4, we expect no substantial change in benzene 

emissions for next generation cars (EUP 2007). Therefore, in the short term, fuel emissions will 

probably remain the single largest source of atmospheric benzene. 
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2.4.2. UPTAKE 

Benzene can be absorbed by inhalative, dermal and oral exposure. The main route of exposure 

in the general population to benzene is via inhalation (BAuA 2012). However, atmospheric 

benzene degrades with a half-life of two to five days due to its reaction with hydroxyl radicals. 

Yet approximately half of inhaled benzene is taken up by the human body (Nomiyama & 

Nomiyama 1974). In contrast absorption of benzene via oral exposure is virtually complete 

however this route can be neglected in the general population due to the low concentration of 

benzene in foodstuff (see chapter 2.4.3.2 Intake by food). Dermal exposure is less than 1 % and 

therefor merely of relevance during exhaustive contact with benzene e.g. in the workplace (LfU 

2006).  

Total benzene uptake estimates for a person living in Germany have not been determined but 

are available for a person living in Canada and the United States and range around 200 µg/day 

for Canada (Table 3) (Hughes et al. 1994) and 320 µg/day for the United States (Wallace 1996). 

Since the current atmospheric exposure levels to benzene have decreased, these values seem to 

overestimate the current uptake levels and should not be overstressed. 

Table	3	Daily	uptake	estimations	for	benzene	in	Canada	by	(Hughes	et	al.,	1994)	taken	from	(WHO	2010).		

Source Intake 

Ambient air 14 µg/day 

Indoor air 140 µg/day 

Food & drinking water 1.4 µg/day 

Car related acitivies 49 µg/day 

Total  ~ 200 µg/day 
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2.4.3. INDOOR EXPOSURE 

Domestic atmospheric concentration of benzene is dependent on two factors 

1. Atmospheric benzene concentration outdoors 

2. Additional sources for benzene formation indoors 

 

2.4.3.1. INTAKE BY SMOKING 

Combustion of tobacco products is the single largest domestic source of benzene. The estimated 

number of smokers in Germany as of 2015 counts 19 Mio people which is 26 % of the whole 

population (WHO 2015, p. 131).  

“The average smoker (32 cigarettes per day) takes in about 1.8 milligrams (mg) of benzene per 

day. This amount is about 10 times the average daily intake of benzene by nonsmokers.” 

(ATSDR 2007) 

Are non-smokers also endangered by other people’s smoking? Leaving aside multiple other 

toxic ingredients in cigarette smoke: Cigarette side stream smoke contains five to ten times as 

much benzene as mainstream smoke (NRC 1986, p. 30). Atmospheric benzene concentrations 

in households inhabiting smokers tend to exceed the median nonsmoking household level by 

30 to 50 % in average (LfU 2006). Therefore, domestic passive smoking leads to an increase of 

14–50 µg/day benzene in addition to the average daily intake of 200 µg/day (Nazaroff & Singer 

2004). Since benzene is classified a genotoxic carcinogen, no safe level of exposure can be 

recommended3. We therefore strongly advice smokers to leave the apartment while smoking to 

prevent other inhabitants from additional exposure to carcinogenic agents including benzene 

and to even end their habit at all. 

  

                                                 

3 See section 2.5 (Risk assessment of benzene) 
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2.4.3.2. INTAKE BY FOOD 

2.4.3.2.1. RELEVANCE 

Recent studies measuring benzene concentrations in food support the conclusion that food and 

beverages are minor pathways for benzene exposure (Rose & Chin 1990; Wallace 1996; 

Duarte-Davidson et al. 2001; Bruinen de Bruin et al. 2005; WHO 2003; Smith et al. 2010).  

Therefore, in this work we restrain from a detailed dietary exposure assessment. However, since 

this work has been conducted at the department of food chemistry a relation of benzene to the 

original field of study seems appropriate. For this reason, elected sources of dietary exposure 

of benzene are be presented in the following section. 

 

2.4.3.2.2. FOOD 

Data regarding concentrations in and uptake of benzene from foods is limited, and the quality 

of the existing data is “highly questionable” (Bruinen de Bruin et al. 2005). Among others, 

benzene has been reported to occur in fruits, fish, vegetables, nuts, dairy products, beverages, 

and eggs (ibd.). 

Eggs contained the highest concentrations of benzene up to 2100 ppb (uncooked) and 500–

1900 ppb (hard-boiled)4, followed by haddock (100 – 200 ppb), Jamaican rum (120 ppb), 

irradiated beef (19 ppb), heat-treated canned beef (2 ppb), and butter (0.5 ppb). Lamb, mutton, 

veal, and chicken contained < 10 ppb benzene if the meat was cooked.  

A survey of more than 50 foods collected from 1991 to 1992 revealed that foods (including 

eggs) without added benzoates contained benzene at concentrations ≤ 2 ng/g. The concentration 

of benzene in foods containing benzoates and ascorbates ranged from < 1 to 38 ng/g (McNeal 

et al. 1993). In many foods, the presence of benzene is likely due to contamination from air 

(Smith et al. 2010). This conclusion is supported by the fact that the uptake of benzene 

decreases with a reduction in exposed surface of foods and contact time with air (Grob et al. 

1990). 

  

                                                 

4 Concentration data in eggs from (IARC, 1982) 
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2.4.3.2.3. FORMATION THROUGH ADDITIVES 

In addition to trace contamination of foods, benzene may be formed in situ in products 

containing certain food preservatives or additives. Benzoate salts, used as anti-microbial agents 

in certain carbonated beverages and naturally present in some fruits and their juices, may react 

with ascorbic acid to form benzene, especially in the presence of metal contaminants, sunlight 

and elevated temperatures. Ascorbic acid may be present either naturally from a fruit juice 

ingredient in the drink or added as an antioxidant food additive (Smith et al. 2010). 

 

The mechanism proposed for formation of benzene in foods is depicted in Figure 3. 

 

Figure	3	Proposed	mechanism	for	benzene	formation	in	foods	from	benzoic	acid	in	the	presence	of	transition	
metals	such	as	Cu2+	and	ascorbic	acid.	Taken	from(Gardner	&	Lawrence,	1993)	
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2.5. RISK ASSESSMENT OF BENZENE 

2.5.1. HOW BENZENE IS ASSESSED AS A CARCINOGEN AND 

WHY 

There is no one-size-fits-all method used in risk assessment for genotoxic carcinogens. Rather 

there are different approaches which all have specific limitations. This circumstance makes it 

necessary to evaluate on a case by case basis which model is applied to evaluate (and 

communicate) the hazard that is conferred by the exposure to a genotoxic carcinogen. 

 

2.5.2. THE MARGIN OF EXPOSURE (MOE) APPROACH 

The MOE approach uses a reference point, also “point of departure” (POD), often taken from 

an animal study and corresponding to a dose that causes a low but measurable response in 

animals. This point of departure is then compared with total dietary intake estimates in humans. 

(EFSA 2005). 

ܧܱܯ ൌ	
ܦܱܲ

݁ݎݑݏ݋݌ݔܧ
 

The EFSA Scientific Committee recommends the use of the BMDL10 (benchmark dose lower 

confidence limit 10%) as the point of departure which is an estimate of the lowest dose which 

is 95% certain to cause no more than a 10% cancer incidence in rodents. The Scientific 

Committee also notes that the benchmark dose approach can be applied to human data when 

available (EFSA 2005). 

 

The European Food Safety Authority argues that the margin of exposure approach should be 

applied “in cases where substances that are both genotoxic and carcinogenic have been found 

in food […]” (EFSA 2005). The World Health Organization (WHO) and the Food and 

Agriculture Organization of the United Nations (FAO) seem to share this assessment, saying 

that “advice on compounds that are both genotoxic and carcinogenic should be based on 

estimated MOEs” (FAO/WHO 2005).  

  



SCIENTIFIC BACKGROUND 

14 

As shown above, benzene is commonly evaluated to be both genotoxic and carcinogenic and 

does occur in several foods. However, generally risk assessment of benzene is not performed 

based on application of MOE values, but rather by extrapolation from existing human data 

(Umweltbundesamt 2013). We will take a moment here to discuss why the MOE approach is 

generally not applied in the risk assessment in case of benzene. 

 

The following reasons argue against the application of the MOE concept in risk assessment of 

benzene. 

1. Poor quality of exposure data. The margin of exposure is calculated using various 

dietary intakes in humans (EFSA 2005). However, the reported data on benzene 

concentrations in foods are rife with controversy. Due to the potential formation of 

benzene e.g. in fruit juices, it is difficult to generalize which foods are major 

contributors to an individual’s exposure to benzene. Further uncertainties abound as to 

the occurrence of benzene in food due to its volatility (Smith et al. 2010). 

2. Dietary exposure is negligible. The intake of benzene by the general population through 

food products is estimated to be “less than 1.5 % of the inhalation exposure” (Bruinen 

de Bruin et al. 2005). 

3. Relevance of animal data. Since the mode of action in benzene induced cancer formation 

has not been fully understood, interpretation of a MOE value derived from animal 

studies seems highly questionable (Cartus & Schrenk 2016). 

4. Sufficient human data. Due to the ubiquitous sources found for benzene exposure at the 

workplace, especially in countries such as the United States or China, there are 

numerous studies dealing with the formation of malignancies in the blood forming 

system in humans after benzene exposure (Roller et al. 2006). Little if any extrapolation 

is necessary in these cases to calculate an effect dose which is correlated with an excess 

risk of 10 % for tumor formation (ED10)5 (BAuA 2012). 
 

  

                                                 

5 Calculated for exposure at the workplace: 40 years for 8 h/day for 5 d/week 
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2.5.3. COMPARISON OF CARCINOGENIC POTENCY WITH 

OTHER ATMOSPHERIC CARCINOGENS 

As we’ve seen benzene is evaluated to be carcinogenic. But how dangerous a carcinogen really 

is benzene? To assess the carcinogenic potency of benzene compared to other carcinogens, one 

must compare potencies for tumor formation upon exposure. Table 4 lists the estimated 

individual risk for additional formation of one malignant tumor of known or suspected 

atmospheric human carcinogens at an air concentration of 1 µg/m3 after lifetime exposure (unit 

risk). One has to keep in mind, that risk estimates derive from extrapolation of studies with 

higher atmospheric compound concentrations. Therefor these data have to be regarded with 

certain caution. Nonetheless, these studies may serve to get a rough idea as to the magnitude of 

carcinogenic potency. As an example, within the margin of error for extrapolation, at a lifetime 

exposure of 1 µg/m3 benzene6 the additional formation of six malignancies of the blood forming 

system per 1 000 000 residents can statistically be accounted to exposure to benzene. This 

incidence puts benzene at the lower end of carcinogenic potency compared to other carcinogens 

occurring in the atmosphere. 

Benzene (6 × 10-6) is estimated to be more potent than vinyl chloride (1 × 10-6) or trichloro-

ethylene (4 × 10-7) but less potent than e.g. arsenic (2 × 10-3), chromium (VI) (4 × 10-2) or 

benzo[a]pyrene (9 × 10-2). 

 

Table	4	Carcinogenic	risk	estimates	of	known	or	suspected	human	atmospheric	carcinogens	based	on	human	
studiesa,	taken	and	modified	from	(WHO	2000)	

Substance IARC group Unit riskb Site of tumor 
Acrylonitrile 2A 2 × 10-5 Lung 
Arsenic 1 2 × 10-3 Lung 
Benzene 1 6 × 10-6 Blood forming system 
Butadiene 2A n.a. Multisite 
Chromium (VI) 1 4 × 10-2 Lung 
Nickel compounds 1 4 × 10-4 Lung 
Benzo[a]pyrenec 1 9 × 10-2 Lung 
Trichloroethylene 2A 4 × 10-7 Lung, testis 
Vinyl chloride 1 1 × 10-6 Liver (mainly) 

a Calculated with average relative risk model.  

b Cancer risk estimates for lifetime exposure to a concentration of 1 µg/m3.  

c Based on a benzo[a]pyrene concentration of 1 µg/m3 in air as a 
component of benzene-soluble coke-oven emissions.  

                                                 

6 Calculated for exposure at the workplace: 40 years for 8 h/day for 5 d/week 
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2.5.4. DOSE RISK ASSESSMENT 

Figure	4	Graphic	depiction	of	unit	risk	estimates	 (×	10‐6)	for	malignancies	of	 the	blood	 forming	system	 for	
lifetime	exposure	to	1	µg/m3	benzene.	CEC	(Commission	of	European	Countries,	1998)),	U.S.	EPA	(United	States	
Environmental	 Protection	 Agency,	 1998)),	 WHO	 (World	 Health	 Organization,	 2000),	 DKFZ	 (Deutsches	
Krebsforschungszentrum,	 1990),	 LAI	 (Länderausschuss	 für	 Immissionsschutz,	 1992,	 2004).	 Taken	 and	
modified	from	(Umweltbundesamt,	2013).	

 

To show the variability of unit risk factors, Figure 4 depicts some unit risk estimates for 

malignancies of the blood forming system after lifetime exposure to benzene by different risk 

management institutions (Umweltbundesamt 2013). Unit risk estimates range from 0.05 – 11.3 

× 10-6 and the median of 6 × 10-6 given above by the WHO is covered by every agency except 

for DKFZ and poses a reasonable middle ground for risk assessment. 

 

Calculating from this number, at the current median rural background level for benzene in 

Germany of 1.7 µg/m3 (Table 2), which is a conservative approach considering the many people 

living in cities, extrapolation results in an additional risk of 1 × 10-5 cases of leukemia or similar 

types of cancer of the blood forming system over lifetime exposure to benzene (WHO, World 

Health Organization 2000). 
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2.6. BENZENE METABOLISM 

2.6.1. INTRODUCTION TO BENZENE METABOLISM 

Benzene has to be metabolized to become carcinogenic (Ross 2000; Snyder 2004). CYP2E1 is 

considered to be the primary enzyme responsible for mammalian metabolism of benzene 

(Valentine et al. 1996; Nedelcheva et al. 1999; IARC 2012). Phase I metabolism of benzene is 

summarized in (Scheme 1). 

  

Scheme	1	Phase	I	metabolism	of	benzene.	Taken	and	modified	from	(Rappaport	et	al.	2010).	ADH	=	
Alcohol	dehydrogenase,	NIH	=	National	Institute	of	Health	
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Metabolic activation of benzene involves cytochrome P450 (CYP)-dependent oxidation to 

benzene oxide, which exists in equilibrium with its tautomer oxepin. Most benzene oxide 

spontaneously rearranges to phenol, the primary Phase I metabolite of benzene (IARC 2012). 

This reaction has been named NIH-shift in remembrance to the location, where it has been 

reported first, the US National Institute of Health. 

 

Oxidative metabolism of benzene oxide/oxepin is thought to open the aromatic ring, yielding 

reactive muconaldehydes (IARC 2012), initially the Z,Z-isomer which isomerizes to the E,Z- 

and subsequently to the E,E-isomer within minutes in presence of cellular nucleophiles such as 

glutathione (Henderson et al. 2005), the latter one being the only isomer claimed to be identified 

in vitro so far (Latriano et al. 1986). 

 

Further hydroxylation of phenol leads to formation of catechol, hydroquinone and, to a lesser 

degree, trihydroxybenzene. Commonly accepted is the idea, that Phase I metabolism of benzene 

is toxicologically more significant than Phase II or III metabolism (conjugation and excretion). 

There is, however, dissidence within the scientific community, as to which extent the different 

metabolic routes of Phase I metabolism can be accounted for the hematotoxicity of benzene. 

There are currently three different approaches focusing on different Phase I metabolites (Ross 

2000; EPA 2002): 

1. Phenol & hydroquinone 

2. Benzene oxide/oxepin 

3. (E,E)-Muconaldehyde. 
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2.6.2. PHENOL & HYDROQUINONE  

The first model focuses on phenol and hydroquinone as primary responsible agents in 

genotoxicity of benzene. This model has received growing support in the 1980s rooting from 

the observation that simultaneous high dosage of phenol and hydroquinone to mice resulted in 

a similar hematological profile found after benzene exposure (Eastmond et al. 1987). Formation 

of reactive benzoquinones such as p-benzoquinone is thereby considered to be responsible for 

cytotoxicity of benzene in the bone marrow. P-benzoquinone can be formed by oxidation from 

hydroquinone catalyzed by myeloperoxidase, an enzyme primarily found in the bone marrow 

(Bainton et al. 1971; Schlosser & Kalf 1989). The presence of phenol acts synergistically on 

the oxidation of hydroquinone (Smith et al. 1990). 

 

Several objections in the literature argue against a key role of phenol and hydroquinone in 

benzene induced genotoxicity. 

 

1. Peroxidases. The biological plausibility of this mechanism is mainly based on the 

peroxidase content of target tissues which would result in the production of reactive 

quinones. However, an absolute requirement for peroxidases for benzene induced 

hematotoxicity has not been demonstrated yet (Ross 2000). 

2. Background levels. High background levels of  1,2- and 1,4-benzoquinone-albumin and  

-hemoglobin adducts have also been found in unexposed animals (McDonald et al. 1994).  

3. Metabolism. Phenol itself does not reproduce the myelotoxicity of benzene. This issue is 

perhaps the major problem associated with the phenolic mechanism. Phenol is metabolized 

to hydroquinone, catechol and other polyphenolics, so its inability to reproduce the 

myelotoxicity of benzene is “puzzling” (Ross 2000). 

 

These considerations argue against a key role of phenolic metabolites in benzene induced 

hematotoxicity. 
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2.6.3. BENZENE OXIDE / OXEPINE 

The second model used for explanation of genotoxicity of benzene targets benzene oxide as 

primary responsible agent. Benzene oxide is the primary product of benzene oxidation (Tunek 

et al. 1978; Lovern et al. 1997; Lindstrom 1997), and therefore, a considerable amount of 

metabolism via this pathway could be expected. Benzene oxide released from the liver into 

systematic circulation has an estimated half-life of 7.9 minutes (Lindstrom 1997). 

Although it was originally suggested that benzene oxide had little reactivity with proteins 

(Tunek et al. 1978) and primarily reacted with nucleic acids (Krewet et al. 1993), benzene 

oxide-protein adducts have been found in mice (McDonald et al. 1994) and workers exposed 

to benzene (Yeowell-O'Connell 1998). 

Benzene oxide is therefore generated in vivo from benzene metabolism, released from liver into 

blood, and can reach the bone marrow7.  Benzene oxide can react with both proteins and nucleic 

acids and must therefore be considered a viable candidate as a potential toxic metabolite of 

benzene (Ross 2000). 

 

Several objections in the literature argue against a key role of benzene oxide in benzene induced 

genotoxicity. 

 

1. Selectivity. It remains unclear why benzene oxide might exert toxicity selectively at the 

bone marrow (Ross 2000).  

2. Reactivity. In vitro studies focusing the reactivity of benzene oxide revealed that the 

reactivity of benzene oxide with DNA is very low and can therefore hardly account for 

a significant genotoxic damage caused by benzene (Micova & Linhart 2012). 

3. DNA-Adducts. 7-Phenylguanine, formed by reaction of benzene oxide with DNA, 

could not be detected in DNA isolated from mice treated with benzene as well as 

leukocyte DNA isolated from smokers (Zarth et al. 2014). 

 

These findings argue against a key role of benzene oxide in benzene induced hematotoxicity 

.  

                                                 

7 Blood circulation takes ca. 50 s in a 70 kg human (Lin 1995) 
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2.6.4.  (E,E)-MUCONALDEHYDE 

An additional metabolic pathway which cleaves the benzene ring also takes place in liver.  

Oxidation of benzene oxide leads to formation of (E,E)-muconaldehyde, a highly reactive 

 unsaturated bis-aldehyde (Latriano et al. 1986). Metabolites of (E,E)-muconaldehyde-ߜ,ߛ,ߚ,ߙ

including (E,E)-muconic acid are detected in the urine of benzene treated animals and benzene-

exposed humans (Grotz et al. 1994; Zhang et al. 2012), giving evidence that the oxidative ring-

opening pathway of benzene oxide is utilized in vivo. The administration of (E,E)-

muconaldehyde or benzene to mice gives rise to similar toxic consequences and similarly leads 

to the excretion of (E,E)-muconic acid (Witz et al. 1985). (E,E)-Muconic acid has also been 

detected in the bone marrow of mice, indicating that (E,E)-muconaldehyde or one of its 

metabolites is capable of reaching this site (Zhang et al. 1997). 

 

(E,E)-Muconaldehyde has been shown to be highly hematotoxic in mice (Witz et al. 1985).  

At the cellular level, (E,E)-Muconaldehyde inhibits the maturation of erythroid cells in the bone 

marrow (Snyder 2000) and interferes with gap–junction intercellular communication (Rivedal 

& Witz 2005). (E,E)-Muconaldehyde causes formation of micronuclei in bone marrow cells in 

vivo (Oshiro et al. 2001). As an unsaturated aldehyde, (E,E)-muconaldehyde reacts with 

primary amines of protein and DNA. Although not strongly mutagenic in cell-based assays, 

(E,E)-muconaldehyde has been shown to produce DNA damage in a variety of cell lines and 

the bone marrow in vivo (Witz et al. 1990; Chang et al. 1994). (E,E)-Muconaldehyde is 

cytotoxic by reaction with intercellular sulfhydryl groups which leads to damage in proteins 

and enzymes (Witz et al. 1985) and to the formation of DNA–protein crosslinks in cell lines 

(Schoenfeld & Witz 1999). The reaction of (E,E)-Muconaldehyde with glutathione proceeds 

rapidly, supposedly in a Michael addition type reaction among others (Witz 1989). In addition 

to its potent toxicity when administered to mice, (E,E)-muconaldehyde also exacerbates the 

toxic effects of hydroquinone (Witz et al. 1990; Short et al. 2006). 
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Several objections in the literature argue against a key role of (E,E)-muconaldehyde in benzene 

induced genotoxicity. 

 

1. Selectivity. A reason for organ specific toxicity of (E,E)-Muconaldehyde towards the 

bone marrow instead of the liver, the location of its formation, is currently unavailable. 

2. Diffusibility. Less than 0.05 % of (E,E)-Muconaldehyde administered to mice 

intraperitoneally or by intravenous injection reaches the bone marrow, and it is not clear 

in what form (E,E)-Muconaldehyde reaches the marrow (Zhang et al. 1997; Ross 2000). 

3. Lack of evidence. Because of its profound reactivity, (E,E)-muconaldehyde itself has 

not been detectable in vivo following benzene administration, though it was reported to 

be detected following in vitro microsomal metabolism of benzene (Latriano et al. 1986; 

Grotz et al. 1994; Zhang et al. 1995; Short et al. 2006). 

 

Especially the missing proof for the presence of (E,E)-muconaldehyde in vivo needs to be 

addressed assessing the role of (E,E)-muconaldehyde in benzene induced hematotoxicity. 
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2.7. PREVIOUSLY REPORTED CONJUGATES OF (E,E)-

MUCONALDEHYDE 

To assess the relevance of (E,E)-muconaldehyde lysine conjugates, we will consider previously 

reported conjugates deriving from (E,E)-muconaldehyde. 

 

2.7.1. SYNTHETIC CONJUGATES 

One purely synthetic conjugate of (E,E)-muconaldehyde has been reported in the literature 

(Bleasdale et al. 1993) (Figure 5). The missing yield and failure to crystallize the compound 

indicates, that polymerization issues upon reaction of (E,E)-muconaldehyde with propylamine 

have not been overcome. 

In our lab we were able to obtain analogue conjugates from reaction of (E,E)-muconaldehyde 

with simple amines such as benzylamine, aniline or L-valine methyl ester. 

 

2.7.2. GLUTATHIONE (GSH) 

Reaction between (E,E)-muconaldehyde and GSH occurs rapidly at physiological conditions. 

In the presence of 10 mM GSH half-life of (E,E)-muconaldehyde is calculated to be 6.2 s (Kline 

et al. 1993). Formation of two distinct GSH conjugates of (E,E)-muconaldehyde have been 

reported so far (Henderson et al. 2005) (Figure 6). However, identification was only achieved 

by means of mass spectrometric techniques. The authors were not able to isolate or synthesize 

these conjugates. One reason might be the inherent reactivity of both molecules. Both GSH 

conjugates still own reactive aldehyde moieties which e.g. are able to form inter- or 

intramolecular imines with primary amino groups. 

  

Figure	 5	 ((E,E)‐hexa‐2,4‐diene‐1,6‐
diylidene)bis(propanamine) 
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Figure	6	GSH	conjugates	detected	after	incubation	with	(E,E)‐muconaldehyde	(Henderson	et	al.	2005)	

That is the reason, why the development of an analytical methodology failed. The question 

remains whether these GSH-conjugates of (E,E)-muconaldehyde are of biological relevance in 

vivo. 

 

2.7.3. DNA 

Harris et al. reported about DNA conjugates derived from (E,E)-muconaldehyde (Harris et al. 

2011) (Figure 7). The reaction between (E,E)-muconaldehyde and desoxyguanosine is highly 

complex and involves at least 7 distinct intermediate steps, which are partly reversible. After 

two months (!) reaction time and subsequent reduction with sodium borohydride, four distinct 

stereoisomers could be isolated.  

 

Figure	7	Final	adducts	formed	after	reaction	of	(E,E)‐muconaldehyde	with	deoxyguanosine	and	reduction	
with	sodium	borohydride	(Harris	et	al.	2011)		

The authors did not report, whether these compounds could be detected after incubation of 

(E,E)-muconaldehyde with DNA, thereby giving rise to questions about the biological 

relevance of the compounds. Since in double stranded DNA guanine pairs with cytosine, it is 

doubtful whether a conjugate between two guanines could be formed. As in the case of GSH, 

biological relevance seems difficult to prove giving the complex reaction mechanism needed 

for formation. 
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2.7.4. PROTEIN 

2.7.4.1. GENERAL REMARKS & SENSITIVITY  

DNA adducts are merely available in trace quantities and are subject to enzymatic repair and 

cell division. For this reason, blood proteins may become more preferable monitors for the 

presence of reactive xenobiotic metabolites. The majority of chemical species that form DNA 

adducts also form protein conjugates. Few proteins have been considered worthwhile to 

investigate for their assignment as suitable biomarkers to benzene exposure. This is because 

some proteins quickly loose structural or functional integrity as a consequence of conjugate 

formation. Two prominent protein targets, that have been positively evaluated for biomarker 

monitoring purposes, are hemoglobin and serum albumin. 

Hemoglobin as well as serum albumin are available in large quantities, neither one of them is 

target for enzymatic repair and both are easily available from blood samples, which favors their 

suitability as  biomarkers (Barnes 2000) (Table 5). 

 

Table	5	Biomacromolecules	in	blood	used	as	monitor	molecules,	their	availability	and	turnover	rates	
(modified	from	(Törnqvist	et	al.,	2002))	

Macromolecule 
Type of 

sample 

Amount 

available in 

blood 

Turnover8 [d] 

   Human  rat mouse 

Hemoglobin  Erythrocytes ~ 150 mg/ml 126  60  40  

Serum albumin  Blood plasma 30–45 mg/ml 20  2.5  1.9  

5’-Desoxynucleic acid 

(DNA) 
Leukocytes ~ 6 mg/ml Complex kinetics 

 

2.7.4.2. PROTEIN CONJUGATES OF (E,E)-MUCONALDEHYDE 

There are currently no reports on distinct protein conjugates deriving from (E,E)-

muconaldehyde. Taken together with the missing proof of existence for (E,E)-muconaldehyde 

in vivo, this missing link in understanding the role of (E,E)-muconaldehyde in myelotoxicity of 

benzene gave birth to the idea for this project.  

                                                 

8 Half-life for serum albumin 
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3. OBJECTIVES 

This project focused on formation of a protein conjugate derived from (E,E)-muconaldehyde 

which could be used to proof its existence in vivo indirectly. Therefore, the following steps 

needed to be accomplished. 

1. Testing whether or not (E,E)-muconaldehyde forms a protein conjugate under 

physiological conditions. 

2. If so, identification and characterization of this conjugate. 

3. Establishment of an analytical procedure for this compound and testing whether this 

compound is formed in vivo following benzene administration. 

4. Assessing in vitro toxicity of this compound to answer the question whether a transient 

conjugate of (E,E)-muconaldehyde might be responsible for genotoxicity of benzene. 

5. Discussing the utility of this conjugate as a biomarker of benzene.  

 



RESULTS 

27 

4. RESULTS 

4.1. REACTION OF (E,E)-MUCONALDEHYDE WITH 

SINGLE AMINO ACIDS 

In a first step (E,E)-muconaldehyde has been reacted with alpha amino protected amino acids 

in  aqueous media simulating in vivo conditions (Figure 9 – Figure 11). Amino acids lysine 

(primary amines), histidine (secondary amines) and cysteine (thiol) were chosen based on 

several reports regarding their reactivity towards ߚ,ߙ-unsaturated carbonyls such as acrolein 

(Uchida et al. 1998; Esterbauer et al. 1991) and (E,E)-muconaldehyde itself (Bleasdale et al. 

1996; Henderson et al. 2005) (Scheme 2).  

	

Fluorenylmethyloxycarbonyl (Fmoc) was chosen as an ߙ-amino protecting group due to its 

characteristic UV-absorbance spectrum and to mimic amino acid reactivity within the protein 

(Figure 8). Every potential amino acid adduct deriving from reaction with (E,E)-

muconaldehyde should therefore own the characteristic UV spectrum provided by Fmoc even 

if no other chromophores are present within the molecule.  

  

Scheme	2	Simplified	reaction	outcome	expectations	for	reaction	of	(E,E)‐muconaldehyde	with	different
nucleophiles,	ZH	=	thiols	or	secondary	amines.	R1,R2	=	alkyl	 
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Figure	8	Fluorenylmethyloxycarbonyl	(Fmoc)	

 

Reactions were run for 48 hours with equimolar concentrations at three different pH values of 

3, 7 and 10 before HPLC analysis. Chromatograms at pH = 3 and pH = 10 are not depicted here 

since they point to the same results as with pH = 7, they are however attached in the electronic 

attachments (cf. ME 34). The only major difference at basic pH was a reduction in UV 

absorbance intensity from (E,E)-muconaldehyde probably resulting from reduced stability at 

alkaline pH. Compounds were measured individually and chromatograms were compared with 

those of reaction mixtures. Reaction products were expected to elute in between the two educts 

due to their combined polarity.  

 

Chromatograms of reaction mixtures of (E,E)-muconaldehyde with Fmoc-Lysine and Fmoc-

Histidine however revealed no additional peaks aside from starting materials. Reaction of 

(E,E)-muconaldehyde with Fmoc-cysteine resulted in diffuse reaction products aside to 

complete consumption of (E,E)-muconaldehyde. One distinct peak between 5 to 6 minutes 

could be detected, however bearing no UV maximum at 266 nm characteristic for Fmoc. It was 

concluded therefore that no Fmoc group is still present within the molecule and thus this peak 

does not qualify as an amino acid adduct, rather a polymerization byproduct deriving from 

(E,E)-muconaldehyde generated by Fmoc-Cysteine. 
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Figure	10	HPLC‐UV	chromatogram	of	a	reaction	mixture	of	(E,E)‐muconaldehyde	(0.5	mM)	with	Fmoc‐
Lys‐OH	(0.5	mM)	in	aqueous	MOPS	buffer	(10	mM,	pH	7.4)	after	48	h.	

Figure	9	HPLC‐UV	chromatogram	of	a	reaction	mixture	of	(E,E)‐muconaldehyde	(0.5	mM)	with	Fmoc‐His‐
OH	(0.5	mM)	in	aqueous	MOPS	buffer	(10	mM,	pH	7.4)	after	48	h.	
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Figure	11	HPLC‐UV	chromatogram	of	a	reaction	mixture	of	(E,E)‐muconaldehyde	(0.5	mM)	with	Fmoc‐
Cys‐OH	(0.5	mM)	in	aqueous	MOPS	buffer	(10	mM,	pH	7.4)	after	48	h.	
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4.2. REACTION OF (E,E)-MUCONALDEHYDE WITH 

BOVINE SERUM ALBUMIN 

As a result of not being able to sort out a single amino acid forming a distinct individual amino 

acid conjugate, a “top down” approach was used next. (E,E)-muconaldehyde was tested in 

reaction with bovine serum albumin (BSA). BSA was chosen as a model protein because of its 

use in biomarker studies as well as its low UV absorbance above 300 nm which proved to be 

useful in monitoring the reaction. Additionally, in contrast to bovine hemoglobin, BSA owns a 

functional cysteine which is able to react with electrophiles and is used in exposure monitoring 

as biomarker, e.g. in the case of sulfur mustard (Noort et al. 1999). 

 

Reaction of bovine serum albumin with (E,E)-muconaldehyde lead to a visible change in color 

from colorless to reddish (Figure 12). Spectroscopically, formation of two distinct absorbance 

maxima at 325 and 490 nm could be detected following the reaction (Figure 13). After 15 hours 

virtually no increase in absorbance could be seen for the absorbance maximum at 490 nm in 

contrast to the absorbance maximum at 325 nm. The absorbance maximum at 325 nm increased 

continually for more than three days indicating that reaction between (E,E)-muconaldehyde and 

bovine serum albumin still had not finished at that point (Figure 14). 

 

  

Figure	 12	 Reaction	 mixtures	 of	 bovine	 serum	 albumin	 (12	 mg/ml)	 with	 varying
concentrations	of	(E,E)‐muconaldehyde	(750	µM	–	7.5	mM)	after	24	h	at	pH	=	7.4 
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Figure	14	Progression	of	UV	absorbance	of	two	prominent	absorbance	maxima	every	2	hours	over	72	h	
of	a	reaction	mixture	of	bovine	serum	albumin	(4	mg/ml)	and	(E,E)‐muconaldehyde	(100	µM).	

Figure	13	Overlay	of	UV/VIS‐spectra	(300	–	600	nm)	taken	every	2	hours	over	72	h	of	a	reaction	mixture
of	bovine	serum	albumin	(4	mg/ml)	and	(E,E)‐muconaldehyde	(100	µM).	Red	arrows	indicate	distinct	
shifts	in	absorption	maxima.	The	black	line	indicates	the	UV/VIS‐absorption	immediately	after	mixture
of	reagents.	
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Due to the unusual reaction color the possibility of a non-covalent ligand reaction of (E,E)-

muconaldehyde involving traces of transition metals present in the commercial protein sample 

such as iron or copper was considered. However, addition of EDTA (100 µl 0.1 M Na2EDTA) 

to the reaction mixture consisting of (E,E)-muconaldehyde (1 ml, 0.1 mM) and bovine serum 

albumin (4 mg/ml) did not result in the extinction of the formed chromophore. Furthermore 

addition of Fe(III) (100 µl 60 – 6000 µM Fe(III)(NO3)3) to an aqueous solution of (E,E)-

muconaldehyde (1 ml, 100 µM) did not result in the formation of the same chromophore. 

 

Several methods for protein hydrolysis were employed to elucidate which amino acids were 

involved in the reaction. However, neither acidic (6 N HCl, 24 h, 110°C) nor alkaline (4.2 M 

NaOH, 24 h, 110°C) nor enzymatic hydrolysis (1% Pronase (w/w), 24 h, 37°C) resulted in 

preservation of the chromophore (Figure 15, cf. MSE 10). Furthermore addition of (E,E)-

muconaldehyde to the reaction mixture (100 µl 0.1 mM) after enzymatic hydrolysis (1% w/w, 

24 h, 37°C)  of BSA (12 mg/ml) did not result in formation of the chromophore. 

Figure	15	UV/VIS	spectra	from	different	reaction	mixtures	containing	bovine	serum	albumin	(BSA)	(16	mg/ml)	
and	(E,E)‐muconaldehyde	(0.1	mM)	after	hydrolysis.	
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The first hint in identification of the compound, which we were not able to interpret at the time, 

was the observation that addition of trichloroacetic acid led to a colorful intensification of the 

red chromophore followed by a slower decrease in intensity until no visible color remained. 

 

4.2.1. DETERMINATION OF ENZYMATIC HYDROLYSIS 

EFFICIENCY 

To assess enzymatic hydrolysis efficiency, a microplate-based detection of amino acids by 

derivatization with fluorescamine was employed (Bantan-Polak et al. 2001). Calibration was 

achieved using a polynomial fit with R2 = 1.00 over 2.5 – 2000 µM using L-glycine as external 

calibration standard (Figure 16). Enzymatic hydrolysis using pronase, aminopeptidase M & 

prolidase was compared to acidic hydrolysis using 6 N HCl. Compared to acidic hydrolysis 

(relative fluorescence intensity (RFI) = 100 ± 3 %, n = 2) enzymatic hydrolysis resulted in 

RFI = 63 ± 5 %, n = 3 (Figure 17).  

  

Figure	 16	 Calibration	 curve	 using	 microplate‐based	 detection	 of	 amino	 acids	 by	 derivatization	 with
fluorescamine	using	L‐glycine	(2.5	–	2000	µM)	as	external	calibration	standard	(Bantan‐Polak	et	al.,	2001) 
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Figure	17	Relative	fluorescence	intensity	(RFI)	from	hydrolysates	of	bovine	serum	albumin	(3	mg/ml)	using
fluorescamine	(Bantan‐Polak	et	al.,	2001)	after	acidic	hydrolysis	using	6	N	HCl	(n	=	2)	or	enzymatic	hydrolysis
using	pronase,	aminopeptidase	M	and	prolidase	(n	=	3). 
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4.2.2. HPLC-UV ANALYSIS OF THE ENZYMATIC 

HYDROLYSATE 

Following HPLC analysis of enzymatic hydrolysates of bovine serum albumin a distinct peak 

not present in control incubations without (E,E)-muconaldehyde could be detected. However, 

a distinct mass belonging to this signal could not be determined by mass spectrometric analysis 

(cf. ME 50). 

 

A closer study of the literature revealed the second hint leading to a major breakthrough in the 

identification process of a compound related to the described peak. In Roger L. Lundblad’s 

book Chemical reagents for protein modification the following note was found: 

 

“Shapiro and coworkers investigated the reaction of PLP [sc. pyridoxal-

phosphate] with rabbit muscle aldolase. The initial reaction produced a species 

with an absorbance maximum at 430-435 nm, reflecting the protonated Schiff 

base form of the PLP-protein complex. After reduction with sodium borohydride, 

the absorbance maximum was at 325 nm characteristic of the reduced Schiff 

base.” (Lundblad 2015) 

 

Due to the similarity of the described chromophore with our unidentified compound we seized 

immediately on the idea of a reduction of the species with sodium borohydride.  

 

Reduction of the crude reaction mixture with sodium borohydride diminished the red 

chromophore, leaving a faint yellow solution (Figure 18). However, no characteristic 

absorbance maximum above the common absorbance maximum of proteins of 280 nm could 

be detected. Upon HPLC-UV analysis a distinct signal not present in control incubations could 

be detected (Figure 19).  

 

However, repetition of this reaction on a preparative scale and isolation of the peak failed to 

produce an evaluable NMR spectrum (Figure 20, cf. ME 40).  
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Figure	 18	 Reaction	 mixtures	 of	 bovine	 serum	 albumin	 (12	 mg/ml)	 with	 varying	
concentrations	 of	 (E,E)‐muconaldehyde	 (750	 µM	 –	 7.5	mM)	 after	 reduction	with	 sodium	
borohydride.	

Figure	19	Comparison	of	HPLC‐UV	chromatograms	(214	nm)	of	an	enzymatic	hydrolysate	of	bovine	serum	
albumin	reacted	with	(E,E)‐muconaldehyde	after	reduction	with	sodium	borohydride.	
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Figure	20	1H	NMR	spectrum	of	preparative	eluate	of	the	isolated	additional	HPLC	peak	after	reaction	of	bovine	
serum	albumin	with	(E,E)‐muconaldehyde	and	subsequent	reduction	with	sodium	borohydride	and	enzymatic	
hydrolysis.	No	specific	NMR	signals	can	be	detected.	

 

A possible explanation for failure of successful compound isolation lies in the inability of 

enzymatic hydrolysis to cleave all peptide bonds of the protein. Therefor many different short 

peptides attached to (E,E)-muconaldehyde might elute simultaneously so that there is no chance 

to single out a distinct amino acid conjugate. In retrospect, a lack of chemical stability 

furthermore compromised a successful compound isolation. 
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4.2.3. HPLC-MS ANALYSIS OF THE ENZYMATIC 

HYDROLYSATE 

Mass spectrometric analysis revealed a distinct Q1 mass of m/z = 241.1 belonging to this new 

signal observed after reaction of (E,E)-muconaldehyde with bovine serum albumin following 

reduction with sodium borohydride and enzymatic hydrolysis (Figure 19 – Figure 23, cf. 

ME 43). A reasonable structure for m/z = 241.1 confirming the observation from Shapiro and 

coworkers (see above) would be the reduced Schiff base of a (E,E)-muconaldehyde-Lysine 

conjugate with a calculated m/z (M+H+) = 241.1 (Figure 24). 

  

Figure	21	Progression	of	Peak	height	of	the	new	HPLC‐MS‐Signal	with	m/z	=	241.1	at	RT	=	5.8	min	detected	
from	an	enzymatic	digests	of	bovine	serum	albumin	(12	mg/ml)	after	reaction	with	different	concentrations
of	 (E,E)‐muconaldehyde	 (0.6	mM	 –	 6	mM),	 reduction	with	 sodium	 borohydride	 (2	mg)	 and	 enzymatic
hydrolysis	of	the	protein	using	pronase	
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Figure	22	HPLC‐MS	chromatogram	 (XIC)	 for	m/z	=	240.5‐241.5	 from	an	enzymatic	digests	of	bovine	serum	
albumin	(12	mg/ml)	without	reaction	with	(E,E)‐muconaldehyde,	reduction	with	sodium	borohydride	(2	mg)	
and	enzymatic	hydrolysis	of	the	protein	using	pronase.	

 

 
Figure	23	 	HPLC‐MS	chromatogram	(XIC)	 for	m/z	=	240.5‐241.5	 from	an	enzymatic	digests	of	bovine	serum	
albumin	(12	mg/ml)	after	reaction	with	(E,E)‐muconaldehyde	(6	mM),	reduction	with	sodium	borohydride	(2	
mg)	and	enzymatic	hydrolysis	of	the	protein	using	pronase.	
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4.2.4. ONE POT CONVERSION OF Nߙ-ACETYL LYSINE 

METHYL ESTER WITH (E,E)-MUCONALDEHYDE  

In an attempt to verify the assumption that mass signal 241.1 from incubation of (E,E)-

muconaldehyde with bovine serum albumin belongs to a substituted lysine species, a one pot 

conversion was developed using Nߙ-acetyl lysine methyl ester (Ac-Lys-OMe).  

 

Protection groups of the lysine component were changed from Fmoc for the following reasons: 

1. The possibility could not be precluded that protection of the carboxyl group of the lysine 

compound (as in the protein) was necessary to form the conjugate9. 

2. If both carboxyl group and amino groups of the lysine compound are protected, adequate 

solubility for synthesis in aqueous media may be not given because of increased 

hydrophobicity.  

3. The acetyl and methyl group are both small protecting groups, therefore Ac-Lys-OMe 

is sufficiently soluble in water10. 

4. Both acetyl and methyl ester protecting groups are enzymatically cleavable by the same 

conditions using one single enzyme, e.g. aminoacylase I.   

                                                 

9 No reaction was observed previously from reaction of (E,E)-muconaldehyde with Fmoc-Lys-
OH, which possesses an unprotected carboxyl moiety (see section 4.1 Reaction of (E,E)-
muconaldehyde with single amino acids) 
10 Aqueous solubility of Ac-Lys-OMe*HCl > 50 mg/ml at 25°C (Sigma-Aldrich 2018) 

Figure	24	Structural	proposal	for	the	initial	reaction	product	from	reaction	of	bovine	serum	albumin	with	(E,E)‐
muconaldehyde	upon	reduction	with	sodium	borohydride	and	enzymatic	hydrolysis.	
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Aminoacylase I from Aspergillus melleus is a readily available and inexpensive enzyme mainly 

used in the industrial production of enantiopure L-amino acids from their N-acetyl derivatives, 

and also hydrolyzes the esters and amides of natural and non-natural amino acids with high 

enantioselectivity. (Youshko et al. 2004). 

 

After reaction of Ac-Lys-OMe with (E,E)-muconaldehyde and subsequent reduction with 

sodium borohydride as well as enzymatic cleavage of the protecting groups using aminoacylase 

I, a signal was detected whose HPLC retention time (Figure 25), UV spectrum (Figure 26), Q1 

mass (Figure 27) and MS2 spectrum11 (Figure 28 & Figure 29, cf. KS 111/114) matched  those 

of the signal detected after incubation of (E,E)-muconaldehyde with bovine serum albumin (cf. 

ME 42/46). Therefore, we got evidence enough to verify the structure of the chromophore 

formed upon reaction of (E,E)-muconaldehyde with BSA.  

 

Next, we strived to achieve synthetic access to the compound m/z = 241.1 for three main reasons. 

1. Identification. Synthesis of a compound is necessary to conclude the verification 

process, that the substance obtained analytically belongs to the postulated structure. 

2. Analysis. Optimization of analytical procedures and quantification requires the 

possession of the analyte as reference material. 

3. Toxicological testing. To assess the relevance in benzene toxicity, employment of the 

substance in toxicological screening is necessary. 

  

                                                 

11 MS2 spectra were performed by Katrin Schmidt. 



RESULTS 

43 

 

 

Figure	26	Comparison	of	UV‐Spectra	of	 the	additional	HPLC	signal	observed	after	reaction	of	bovine
serum	 albumin	 with	 (E,E)‐muconaldehyde,	 reduction	 with	 sodium	 borohydride	 and	 enzymatic
hydrolysis	 (black)	 or	 reaction	 of	 	 Ac‐Lys‐OMe	 with	 (E,E)‐muconaldehyde,	 reduction	 with	 sodium
borohydride	and	enzymatic	cleavage	of	protecting	groups	(blue). 

Figure	25	Overlay	of	HPLC‐UV‐chromatograms	from	analysis	of	reaction	mixtures	of	bovine	serum	albumin
with	 (red)	or	without	 (black)	 (E,E)‐muconaldehyde,	 reduction	with	 sodium	borohydride	and	enzymatic
hydrolysis	or	reaction	of	Ac‐Lys‐OMe	with	(E,E)‐muconaldehyde,	reduction	with	sodium	borohydride	and
enzymatic	cleavage	of	protecting	groups	(blue). 
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Figure	27	Comparison	of	HPLC	‐MS	signals	(XIC)	for	m/z	=	240.5‐241.5	after	reaction	of	bovine	serum	albumin	with
(E,E)‐muconaldehyde,	reduction	with	sodium	borohydride	and	enzymatic	hydrolysis	(black)	or	reaction	of	Ac‐Lys‐
OMe	with	(E,E)‐muconaldehyde,	reduction	with	sodium	borohydride	and	enzymatic	cleavage	of	protecting	groups
(blue). 
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Figure	29	MS2	spectrum	of	the	additional	HPLC	MS	signal	(Q1)	with	m/z	=	241.1	after	reaction	of	Ac‐Lys‐OMe	
with	(E,E)‐muconaldehyde,	reduction	with	sodium	borohydride	and	enzymatic	cleavage	of	protecting	groups.	

Figure	28	MS2	spectrum	of	 the	additional	HPLC	MS	signal	(Q1)	with	m/z	=	241.1	after	reaction	of	bovine	
serum	albumin	with	(E,E)‐muconaldehyde,	reduction	with	sodium	borohydride	and	enzymatic	hydrolysis.	
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4.3. SYNTHESIS OF (E,E)-MUCONALDEHYDE-LYSINE 

CONJUGATES  

4.3.1. PREPARATORY STEPS 

At first attempts for the synthesis of imine conjugates were undertaken in an effort to maintain 

simplicity of the synthetic route by directly coupling commercially available monoprotected 

lysine derivatives with (E,E)-muconaldehyde according to protocols reported in the literature 

for structurally similar terephtalaldehyde (Pettersson et al. 2008; Kumar et al. 2009) (Scheme 

3). 

 
Scheme	3	First	attempt	for	imine	conjugate	formation	starting	from	(E,E)‐muconaldehyde	

However, observations made from these reactions were that no monomeric product could be 

isolated. Supposedly due to (E,E)-muconaldehyde induced polymerization a rapid coloration of 

the reaction mixture from colorless to black was seen. At the end of the reaction a black residue 

could be recovered which was insoluble in most organic solvents. Additionally, no product spot 

could be detected by thin layer chromatography on either silica gel or aluminum oxide.  

To preclude the possibility of the amine being the cause for this behavior, reactions were 

repeated with simple amines such as alanine methyl ester (Figure 30) with the same result. 

 
Figure	30	L‐Alanine	methyl	ester	

At the time, we attributed (E,E)-muconaldehyde induced polymerization to the bifunctionality 

of the molecule and concluded that removal of one aldehyde function would lead to imine 

formation. Therefore we performed reduction of one aldehyde moiety starting from (E,E)-

muconaldehyde with sodium borohydride. However, repetition of imine formation according 

to scheme 2 with (E,E)-6-hydroxyhexa-2,4-dienal also lead to formation of unidentifiable black 

polymerization products (Scheme 4).  
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Scheme	4	Second	attempt	for	imine	conjugate	formation	starting	from	(E,E)‐6‐hydroxyhexa‐2,4‐dienal	

To facilitate monitoring the reactions by TLC, the amino compound was switched to 

benzylamine (Figure 31) in following experiments due to its UV active chromophore. 

 
Figure	31	Benzylamine	

We reasoned that despite reduction of one aldehyde moiety there might be linking possible 

between the remaining aldehyde moiety and the hydroxyl group within the molecule, therefore 

protection of the hydroxyl function should lead to inhibition of polymerization upon reaction 

with simple amines. Therefore we synthesized (E,E)-6-((tert-butyldimethylsilyl)oxy)hexa-2,4-

dienal (Figure 32) starting from commercial available muconic acid (see section 4.3.2 below). 

 
Figure	32	(E,E)‐6‐((tert‐Butyldimethylsilyl)oxy)hexa‐2,4‐dienal	

To our surprise, reaction of (E,E)-6-((tert-butyldimethylsilyl)oxy)hexa-2,4-dienal with 

benzylamine proceeded analogously as previous reactions leading to polymerization and 

formation of insoluble black organic matter (Figure 33).  

 
Figure	33	Third	attempt	for	imine	conjugate	formation	starting	from	(E,E)‐6‐((tert‐

butyldimethylsilyl)oxy)hexa‐2,4‐dienal	

We concluded from this reaction that it is not the bifunctionality of (E,E)-muconaldehyde that 

is responsible for polymerization upon reaction with amines. This conclusion could be 

confirmed by successful reaction of benzylamine with commercially available (E)-hexa-2-enal 

(Figure 34). N-((E)-Hex-2-en-1-ylidene)-1-phenylmethanamine could be successfully isolated 

in quantitative yield. Reaction protocol hereby was changed to guarantee most safe reaction 

conditions by use of trimethyl orthoformate which is promising due to being an aprotic solvent 
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as well as its ability to scavenge traces of water generating as side product from imine formation 

to yield methanol (Look et al. 1995). 

Figure	34	Reaction	of	benzylamine	with	(E)‐hexa‐2‐enal	to	N‐((E)‐hex‐2‐en‐1‐ylidene)‐1‐phenylmethanamine	

 

A second important observation came with successful isolation of N-((E)-hex-2-en-1-ylidene)-

1-phenylmethanamine. N-((E)-Hex-2-en-1-ylidene)-1-phenylmethanamine degraded upon 

contact to silica gel or aluminum oxide used for reaction monitoring in thin layer 

chromatography. Instability on silica gel makes purification by column chromatography 

virtually impossible. Therefore, we concluded in accordance with the literature that linear 

conjugates imines not adjacent to an aromatic system e.g. imines of benzaldehyde or 

terephtaldehyde, are not stable enough to be purified by chromatography on silica gel or 

aluminum oxide (Oberg & Rovis 2011). 

Formation of a substituted bis-imine derived from (E,E)-muconaldehyde with isopropylamine 

is reported in the literature (Bleasdale et al. 1993). In our lab we were also able to isolate several 

substituted bisimines derived from (E,E)-muconaldehyde with different simple amines. Key to 

isolation is their ability to crystallize from the reaction mixture after filtration and simultaneous 

removal of polymerization byproducts. However, this approach comes with great loss of 

isolated product yield. Furthermore, this approach does not seem applicable with biological 

substrates being not suited for crystallization such as protected lysine compounds.  

Final key to prevention of polymerization was achieved by kinetically controlling the reaction 

progress. Thereby both reactants are not mixed in high concentrations but rather a diluted 

solution of the amine is added dropwise to a diluted solution of the aldehyde compound (final 

concentration 150 mM). Using this protocol we were able for the first time to isolate (E,E)-

muconaldehyde derived imines in 80 % yield after crystallization (Figure 35).  

 
Figure	35	Successful	reaction	of	benzylamine	with	(E,E)‐muconaldehyde	
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We could find additional proof that polymerization upon reaction with amines could be 

attributed to the presence of an ߜ,ߛ,ߚ,ߙ-unsaturated aldehyde moiety rather than bifunctionality 

of (E,E)-muconaldehyde by reaction of benzylamine with commercial available (E,E)-hexa-

2,4-dienal which upon reaction without kinetically controlled reaction conditions resulted in 

rapid polymerization (Figure 36). 

 

 
Figure	36	Fourth	attempt	for	imine	conjugate	formation	starting	from	benzylamine	with	(E,E)‐hexa‐2,4‐dienal		

To circumvent isolation of the crude imine which could not be purified from starting material 

or side products we decided to look for a protocol to reduce the formed imine in situ yielding 

the secondary amine. Promising results delivered a protocol from Abdel-Magid which 

employed sodium triacetoxyborohydride in dichloroethane (Abdel-Magid et al. 1996). This 

approach takes advantage of the reduced potency of sodium triacetoxyborohydride compared 

to sodium borohydride as a reducing agent so that reduction of aldehydes and imines proceeds 

too slowly at room temperature to be of synthetic use whereas imines are reduced to secondary 

amines at sufficient rate. Using this protocol we were able to isolate (E,E)-N-benzylhexa-2,4-

dien-1-amine (Figure 37). 

 
Figure	 37	 Successful	 reaction	 of	 benzylamine	with	 (E,E)‐hexa‐2,4‐dienal	 in	 dichloroethane	 (DCE)	 using	 a	
modified	procedure	given	by	(Abdel‐Magid	et	al.	1996).	

Since (E,E)-N-benzylhexa-2,4-dien-1-amine inhabits no imine group but a secondary amine we 

were able to detect this species using thin layer chromatography on silica gel using visualization 

with ninhydrin producing a yellow spot, typically seen for secondary amines (Bottom et al. 

1978). At this point we resumed the synthesis of Lys(MUC-CHO). 
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4.3.2. FINAL SYNTHETIC PROCEDURE TO (E,E)-

MUCONALDEHYDE LYSINE CONJUGATES  

Synthetic access to the compound m/z = 241.1 referred to as (S)-2-ammonio-6-(((E,E)-6-

oxohexa-2,4-dien-1-yl)amino)hexanoate (Lys(MUC-CHO)), (S)-2-ammonio-6-(((E,E)-6-

hydroxyhexa-2,4-dien-1-yl)amino)hexanoate (Lys(MUC-OH)) and (S)-2-ammonio-6-((6-

hydroxyhexyl)amino)hexanoate (IS) was finally accomplished by the following procedure 

(Scheme 5). 

 

Lys(MUC-CHO) was synthesized from commercial available (E,E)-muconic acid, which was 

esterified with methanol in presence of catalytic amounts of acetyl chloride to give the 

corresponding methyl ester (1) in 95% yield. The ester was dissolved in chloroform and reduced 

to the alcohol (2) with diisobutyl aluminium hydride in quantitative yield. Regio preferred mono 

protection of the alcohol was accomplished in dimethyl formamide (DMF) with tert-

butyldiphenylchlorosilane (TBDPS-Cl) with catalytic diisopropylethylamine. Flash 

chromatography yielded the mono protected alcohol (3) in 61 % yield aside from the bis 

protected alcohol (not shown). The alcohol was cleanly oxidized with manganese oxide in 

dichloromethane in 70 % yield to give the desired aldehyde (4). 

 

Nߙ‐Boc-Lys-OtBu synthesis commenced from commercial available H-Lys(Z)-OtBu*HCl 

which was deprotonated with aqueous sodium bicarbonate and reacted with di-tert-butyl 

dicarbonate in chloroform to yield Nߙ‐Boc-Lys(Z)-OtBu (5) in quantitative yield after flash 

chromatography. The protecting group of the epsilon amino function of the protected lysine 

was readily removed by hydrogenation in ethanol with elementary hydrogen over palladium on 

carbon as catalyst to yield Nߙ‐Boc-Lys-OtBu (6) quantitatively. 

 

Coupling of the aldehyde (4) and Nߙ‐Boc-Lys-OtBu (6) was achieved by careful addition of the 

aldehyde to a diluted solution of the amine and reduction of the formed Schiff base in situ with 

sodium triacetoxyborohydride (NaBH(OAc)3). The resulting secondary amine (7) was 

recovered in 40 % yield after purification by column chromatography. Removal of the silyl 

ether was readily accomplished by tetrabutylammonium fluoride (TBAF) in tetrahydrofuran in 

70 % yield after purification using flash chromatography to give the alcohol (8).  
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For the synthesis of Lys(MUC-CHO), the secondary amine (8) was protected with Boc using 

di-tert-butyl dicarbonate in chloroform in 76 % yield after purification by flash column 

chromatography to give the amino protected alcohol (9). The amino protected alcohol was 

oxidized cleanly with manganese oxide in dichloromethane in 70 % yield to the corresponding 

amino protected aldehyde (10). Final removal of two Boc groups and one tert-butyl ester was 

performed in dioxane after the addition of aqueous perchloric acid to yield Lys(MUC-CHO). 

 

Lys(MUC-OH) was prepared analogously omitting alcohol oxidation with manganese oxide. 

Purification was achieved using semipreparative HPLC chromatography in 56 % yield. 

 

IS was synthesized by two additional steps after removal of the silyl ether by hydrogenation in 

ethanol with elementary hydrogen over palladium on carbon as catalyst to yield the saturated 

alcohol (11), however yield was merely 13 %. Final removal of one Boc group and one tert-

butyl ester was performed in 1 M aqueous hydrochloric acid in 88 % yield. 
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Scheme	5	Final	synthetic	procedure	to	(E,E)‐muconaldehyde	lysine	conjugates	Lys(MUC‐OH),	Lys(MUC‐CHO)	

and	IS 
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4.3.3. SYNTHESIS OF (E,E)-DIMETHYL HEXA-2,4-

DIENEDIOATE (1) 

 

Synthesis of (E,E)-muconic acid dimethyl ester was performed in accordance to the procedure 

given by Gudipati by acidic esterification of (E,E)-muconic acid in methanol (Gudipati 2002). 

Addition of acetyl chloride to the reaction mixture leads to generation of hydrochloric acid in 

situ which proves efficient in catalysis of the reaction. The ester (1) was recovered in 95 % 

yield after crystallization at - 20°C.  

 

4.3.4. SYNTHESIS OF (E,E)-HEXA-2,4-DIENE-1,6-DIOL (2) 

 

Synthesis of (E,E)-hexa-2,4-diene-1,6-diol was performed in accordance to a procedure given 

by Gudipati by reduction of the ester (1) with diisopropyl aluminium hydride in chloroform 

(Gudipati 2002). The diol (2) was recovered in 99 % yield after crystallization at - 20°C. Due 

to the high polarity of the diol it was essential to stick closely to the protocol, otherwise 

substantially decreased yields were observed potentially since much of the product could not 

be extracted anymore once transferred into aqueous phase. 
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4.3.5. SYNTHESIS OF (E,E)-6-((TERT-BUTYL-

DIPHENYLSILYL)OXY)-HEXA-2,4-DIEN-1-OL (3) 

  

Synthesis of (E,E)-6-((tert-butyldiphenylsilyl)oxy)-hexa-2,4-dien-1-ol (3) was performed with 

a modified procedure for silylation of 1,n-primary diols given by Yu (Yu et al. 2000).  

Reaction of the diol with TBDPS-Cl in presence of excess diisopropylethylamine (Hünig’s 

base) yielded the desired mono-TBDPS ether in 61 % alongside TBDPS-OH and the bis-

TBDPS2 ether. The pure mono ether (3) was isolated from side products by column 

chromatography on silica gel with 25 % ethyl acetate in n-hexane as eluent.  

 

The protocol was chosen because of the reported regioselectivity for silylation of primary 1,n-

diols which were to result in high concentrations of the mono silylated product, up to 90 % 

according to the authors. However, we could confirm only minor improved yields when 

comparing this protocol to conventional reaction conditions for silylation e.g. using 

trimethylchlorosilane (TMCS) and imidazol in DMF, which produced yields of 40 % (Corey & 

Venkateswarlu 1972). The advantage of using TMCS instead of TBDPS-Cl comes with the 

reduced molecular weight of the protecting group (151 vs. 275 g/mol). Since the crude reaction 

product needs to be purified by SC because of the presence of the bis-silylated diol and 

hydrolyzed silyl reagent, the factor to determines the scale size of the reaction is crude product 

weight. 

 

Table 6 shows comparison of both methods using the maximum available SC for purification 

with d = 6 cm. Therefore, we conclude that under these conditions both methods are comparable 

and can be used compatibly. Corey’s protocol should be preferred when larger reaction scale 

than ~ 3.6 g crude product weight is possible. Aside, from an ecological point of view Yu’s 

protocol is disadvantageous for two reasons. 	

1. The excessive need for auxiliary base instead of the stochiometric amounts needed by 

Corey.  

2. Higher price of the reagents and lesser atomic econometry producing more waste. 
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Table	6	Comparison	of	yields	for	silylation	of	(E,E)‐hexa‐2,4‐diene‐1,6‐diol	(2).	Estimated	maximum	amount	of	
starting	material	is	calculated	for	crude	product	weight	of	3.6	g	for	SC	using	a	glass	column	with	d	=	6	cm	

Protocol Starting 

Material 

Product 

Yield (3) 

Est. max. starting 

Material 

Est. max. 

product Yield (3) 

Yu et al., 2000 

(TBDPS-Cl) 

8.2 mmol 4.9 mmol (61 %) 9.0 mmol 5.5 mmol 

Corey et al, 1972 

(TMCS) 

5.3 mmol 2.6 mmol (40 %) 14 mmol 5.6 mmol 

 

Conclusively for future experiments we recommend using the protocol given by Corey for 

silylation of (E,E)-hexa-2,4-diene-1,6-diol (2) instead of the protocol given by Yu et al (Corey 

& Venkateswarlu 1972; Yu et al. 2000). 

 

4.3.6. SYNTHESIS OF (E,E)-6-((TERT-

BUTYLDIPHENYLSILYL)OXY)HEXA-2,4-DIENAL (4) 

 

Synthesis of (E,E)-6-((tert-butyldiphenylsilyl)oxy)hexa-2,4-dienal (4) performed in accordance 

to the literature (Fernández & Tojo 2006).  

(E,E)-6-((tert-Butyldiphenylsilyl)oxy)-hexa-2,4-dien-1-ol (3) was  dissolved in dry 

dichloromethane and reacted with excess manganese dioxide at room temperature for 3 hours. 

The aldehyde (4) was recovered in 70 % yield in analytical purity after filtration and 

evaporation of the solvent. 
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4.3.7. SYNTHESIS OF Nߙ-BOC-LYS(Z)-OTBU (5) 

 

Synthesis of Nߙ-Boc-Lys(Z)-OtBu (5) was performed in accordance to a procedure given by 

Bergeron (Bergeron et al. 1997).  

H-Lys(Z)-OtBu*HCl was thereby dissolved in chloroform in the presence of aqueous sodium 

bicarbonate solution and di-tert-butyl dicarbonate was added. The reaction mixture was 

refluxed for 1.5 h. The desired Boc protected amine (5) was recovered in 98 % yield after 

separation from unreacted starting material by flash column chromatography on silica gel with 

25 % ethyl acetate in n-hexane as eluent. 

 

4.3.8. SYNTHESIS OF Nߙ-BOC-LYS-OTBU (6) 

 

Synthesis of Nߙ-Boc-Lys-OtBu (6) was performed with a modified procedure taken from 

Bergeron (Bergeron et al. 1997).  

Nߙ-Boc-Lys(Z)-OtBu (5) was dissolved in ethanol and reduced with palladium on carbon in an 

atmosphere of hydrogen at an overpressure of about 30 cm water. The product could be 

recovered in quantitative yield.  

The original protocol operated with the addition of equimolar amount of hydrochloric acid to 

the reaction mixture to produce the corresponding ammonium hydrochloride. Using this 

protocol, we observed considerable loss of the acid sensitive Boc protecting group. Omission 

of addition of hydrochloric acid yielded the free amine while fully preserving Boc. The product 

(6) was recovered quantitatively in analytical purity after filtration and evaporation of the 

solvent. 
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4.3.9. SYNTHESIS OF (S)-TERT-BUTYL 2-((TERT-

BUTOXYCARBONYL)AMINO)-6-(((E,E)-6-((TERT-

BUTYLDIPHENYLSILYL)OXY)HEXA-2,4-DIEN-1-

YL)AMINO)HEXANOATE (7) 

 

Synthesis of (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-((tert-

butyldiphenylsilyl)oxy)hexa-2,4-dien-1-yl)amino)hexanoate (7) was performed with a 

modified procedure taken from (Abdel-Magid et al. 1996). Nߙ-Boc-Lys-OtBu (6) was dissolved 

in dichloroethane and (E,E)-6-((tert-butyldiphenylsilyl)oxy)hexa-2,4-dienal (4) was added 

dropwise as solution in dichloroethane. After addition was complete NaBH(OAc)3 was added 

and the reaction mixture was stirred overnight. The secondary amine (7) was recovered in 40 % 

yield after separation from unreacted starting material and several side reaction products by 

column chromatography on silica gel with 15 % 2-propanol in toluene with 1 % triethylamine 

as eluent. 

Considering the reaction conditions worked out in chapter 4.3.1 Preparatory steps, reaction was 

initially performed with a concentration of starting compounds of 150 mM. However these 

reaction conditions proved difficult to be performed large scale resulting often times in 

polymerization observed from reaction of (E,E)-muconaldehyde with primary amines. 

Following reaction was driven carefully more diluted with a final compound concentration of 

40 mM which seemed to be uncritical for polymerization. However, product yield could not be 

increased above ~ 40 % despite an increased reaction time for up to 72 h. Refluxing of the 

reaction mixture was excluded since previous experiments under similar conditions using 

CH(OMe)3 as solvent indicated increased tendency of the reaction components to polymerize 

upon heating. 
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Alternative reaction pathways for this step should be considered for future experiments since 

synthesis of the intact Schiff base can be precluded due to its instability and different 

methodologies for formation of secondary amines exist (Salvatore et al. 2001) (Figure 38).  

 
Figure	38	Alternative	synthetic	route	for	secondary	amine	formation	

To replace the aldehyde component, formation of the alkyl bromide starting from the alcohol 

with PBr3 might prove preferential because of 

1. Prevention of polymerization. The coupling step consisting of the bromide and the 

protected lysine replaces the polymerization prone structural element (the ߜ,ߛ,ߚ,ߙ-

unsaturated aldehyde). Therefore, the reaction can be done with reactant 

concentrations > 40 mM resulting in higher yields than observed with the diluted 

amine/aldehyde setting.  

2. Similarity to reports in the literature. Formation of (E,E)-hexa-2,4-dienyl bromide, 

which is a close analogue to our hypothetical starting compound, has been reported 

starting from the alcohol and reaction with PBr3 in the literature (Ferri et al. 2015) 

(Figure 39). Therefore, there is good chance for positive reaction outcome.  

 
Figure	39	Comparison	of	 synthetic	 routes	 for	 formation	of	 (E,E)‐muconaldehyde‐lysine	 conjugates	
(Ferri	et	al.,	2015).	
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4.3.10. SYNTHESIS OF (S)-TERT-BUTYL 2-((TERT-

BUTOXYCARBONYL)AMINO)-6-(((E,E)-6 -

HYDROXYHEXA-2,4-DIEN-1-YL)AMINO)HEXANOATE 

(8) 

 

Synthesis of (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-hydroxyhexa-2,4-dien-

1-yl)amino)hexanoate (8) was performed in accordance to a protocol given by Hanessian 

(Hanessian et al. 2011).  

(S)-tert-Butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-((tert-butyldiphenylsilyl)oxy)hexa-

2,4-dien-1-yl)amino)hexanoate (7) was dissolved in THF and equimolar amounts of a solution 

of tetrabutyl ammonium fluoride in THF was added. The reaction mixture was stirred overnight. 

The product (8) could be isolated in 70 % yield after separation from TBDPS-OH by flash 

column chromatography on silica gel with 40 % 2-propanol in toluene with 1 % triethylamine 

as eluent. 

 

  



RESULTS 

60 

4.3.11. SYNTHESIS OF (S)-TERT-BUTYL 6-((TERT-

BUTOXYCARBONYL)((E,E)-6-HYDROXYHEXA-2,4-

DIEN-1-YL)AMINO)-2-((TERT-

BUTOXYCARBONYL)AMINO)HEXANOATE (9) 

 

Synthesis of (S)-tert-butyl 6-((tert-butoxycarbonyl)((E,E)-6-hydroxyhexa-2,4-dien-1-

yl)amino)-2-((tert-butoxycarbonyl)amino)hexanoate (9) was performed in accordance to a 

procedure given by (Bergeron et al. 1997).  

(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-hydroxyhexa-2,4-dien-1-

yl)amino)hexanoate (8) was thereby dissolved in chloroform in the presence of aqueous sodium 

bicaronate solution and di-tert-butyl dicarbonate was added. The reaction mixture was refluxed 

for 1.5 h. The desired amino protected alcohol (9) was recovered in 76 % yield after separation 

from unreacted starting material by flash column chromatography on silica gel using 40 % ethyl 

acetate in n-hexane as eluent. 

The 1H-NMR spectrum shows trace impurities in the area 5.0-6.5 ppm where proton signals 

adjacent to a double bond appear. Upon careful inspection, trace impurities surrounding the 

TLC spot could be detected as well. We therefore suppose that isomerization of the two 

conjugated double bonds occurred resulting in traces of (E,Z), (Z,E), and (Z,Z) isomers. Since 

no starting material was further available and the amount of impurities calculated from the 1H-

NMR spectrum was below 2 %, reaction cascade was continued.  
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4.3.12. SYNTHESIS OF (S)-TERT-BUTYL 6-((TERT-

BUTOXYCARBONYL)((E,E)-6-OXOHEXA-2,4-DIEN-1-

YL)AMINO)-2-((TERT-

BUTOXYCARBONYL)AMINO)HEXANOATE (10) 

 

Synthesis of (S)-tert-butyl 6-((tert-butoxycarbonyl)((E,E)-6-oxohexa-2,4-dien-1-yl)amino)-2-

((tert-butoxycarbonyl)amino)hexanoate (10) was performed by a modified procedure given by 

(Gudipati 2002). 

(S)-tert-Butyl 6-((tert-butoxycarbonyl)((E,E)-6-hydroxyhexa-2,4-dien-1-yl)amino)-2-((tert-

butoxycarbonyl)amino)hexanoate (9) was dissolved in dichloromethane and excess manganese 

dioxide was added. The reaction mixture was stirred for 45 min, filtered and the solvent 

removed in vacuo to afford the product (10) in 70 % yield. Mass spectrometric analysis (HRGC-

MS) revealed no distinct mass signal but rather massive fragmentation which could not be 

assigned with certainty to the loss of distinct structural elements. 

 

Three different approaches were tested beforehand to perform oxidation to obtain the aldehyde 

moiety without protection of the free secondary amine, however unsuccessfully (Figure 40):  

1. Aqueous oxidation. mIBX is a water-soluble analogue of 2-iodoxybenzoic acid (IBX) 

(Thottumkara & Vinod 2002). Oxidation of Lys(MUC-OH) with mIBX, did not result 

in traceable amount of the presumed Lys(MUC-CHO) via LC-MS (cf. ME 140+141) 

independent from chosen pH.  

2. Aprotic oxidation. Oxidation of (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-

(((E,E)-6-hydroxyhexa-2,4-dien-1-yl)amino)hexanoate (8) in the presence of 

manganese dioxide lead to polymerization as observed from reaction of (E,E)-

muconaldehyde with primary amines. A possible explanation lies in the formation of a 

polymerization prone structural element in the course of the reaction, the ߜ,ߛ,ߚ,ߙ-

unsaturated aldehyde, in the presence of a nucleophile group, the secondary amine.  
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3. Diluted oxidation. Oxidation at ~ 40 mM product concentration using Dess Martin 

Periodane in dichloromethane prevented polymerization and two distinct signals could 

be detected on TLC and isolated preparatively: Despite presence of an aldehyde function 

according to the 1H NMR, the lack of the signals for protecting groups Boc and tert-

butyl ester indicated an unintended reaction outcome. Despite the spectroscopic purity 

of at least one of the compounds we were not able to conclude a reasonable structure 

(cf. ME 130).  

 
Figure	40	Failed	synthetic	approaches	to	formation	of	an	ߜ,ߛ,ߚ,ߙ‐unsaturated	aldehyde	moiety.	

The problem that arises from the presence of an aldehyde function in the presence of a 

secondary amine is the combination of a nucleophilic center (the secondary amine) with a 

polymerization prone structural element (the ߜ,ߛ,ߚ,ߙ-unsaturated aldehyde) (Figure 41). The 

same behavior could be observed in the reaction of (E,E)-hexa-2,4-dienal with benzylamine. In 

aprotic media such as dichloromethane protonation of the secondary amine cannot occur. That 

is the reason why, even though a conversion might have been successful, the intended product 

could not be isolated.  

 
Figure	 41	 Reasonable	 locations	 for	 intermediate	 polar	 interactions	 leading	 to	 polymerization	 between	
nucleophilic	 and	 electrophilic	 sites	 in	 (S)‐tert‐butyl	 6‐((tert‐butoxycarbonyl)((E,E)‐6‐oxohexa‐2,4‐dien‐1‐
yl)amino)‐2‐((tert‐butoxycarbonyl)amino)hexanoate	(10).	

Therefore, we concluded protection of the secondary amine to be a requirement to 

simultaneously obtain the structural element of an ߜ,ߛ,ߚ,ߙ-unsaturated aldehyde in the presence 

of a secondary amine.  

 ‐ߜ

 ൅ߜ ൅ߜ ൅ߜ
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4.3.13. SYNTHESIS OF (S)-TERT-BUTYL 2-((TERT-

BUTOXYCARBONYL)AMINO)-6-((6-

HYDROXYHEXYL)AMINO)HEXANOATE (11) 

 

Synthesis of (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-((6-

hydroxyhexyl)amino)hexanoate (11) was performed by hydrogenation with elementary 

hydrogen in ethanol. (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-hydroxyhexa-

2,4-dien-1-yl)amino)hexanoate (8) was dissolved in ethanol and palladium on carbon was 

added. Apparatus was filled with hydrogen, and the reaction mixture was stirred for 7 hours at 

30 cm H2O. The reaction mixture was filtered, and the crude product was purified by column 

chromatography on silica gel using 80 % 2-propanol in toluene with 1 % triethylamine as eluent. 

The product could only be recovered in 13 % yield.  

 

A side product could be recovered alongside with similar NMR characteristics suggesting side 

reactions might have taken place producing product dimers such as dimerization (cf. ME 118 

V1) (Figure 42). Such behavior might have been caused by a too concentrated reaction mixture 

or an insufficient hydrogen atmosphere in the reaction chamber. Future experiments should 

ascertain sufficient solvent dilution and full and rapid flooding of the reaction chamber 

equipped with excess airspace to provide enough hydrogen to hydrogenate both double bonds 

simultaneously. 

 
Figure	42	Hypothetical	dimerization	 of	 two	 insufficiently	hydrogenated	 radical	 species	 of	 (S)‐tert‐butyl	2‐
((tert‐butoxycarbonyl)amino)‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐yl)amino)hexanoate	(8)	 	
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4.3.14. SYNTHESIS OF (E,E)-MUCONALDEHYDE (12) 

 

A novel synthetic route was developed for synthesis of (E,E)-muconaldehyde (12). (E,E)-hexa-

2,4-diene-1,6-diol (2) was dissolved in acetonitrile and excess manganese dioxide was added. 

The reactions mixture was stirred for one hour, filtered and the solvens removed in vacuo, 

yielding (E,E)-muconaldehyde (12) as a bright yellow solid in 64 % yield. 

 

4.3.15. SYNTHESIS OF (S)-2-AMMONIO-6-((6-

HYDROXYHEXYL)AMINO)HEXANOATE (IS) 

 

Synthesis of (S)-2-ammonio-6-((6-hydroxyhexyl)amino)hexanoate (IS) was performed by 

acidic removal of the protecting groups Boc and tert-butyl ester, which were chosen due to their 

similar conditions of removal. (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-((6-

hydroxyhexyl)amino)hexanoate (11) was therefore taken up in 1 M deuterochloric acid in D2O. 

After 31 h 1H NMR indicated completion of the reaction and solvent was removed in vacuo. 

The product was obtained as yellow oil in 88 % yield. No product workup was performed since 

cleavage of both protecting groups results in gaseous byproducts isobutene and CO2 aside from 

traces of tert-butanol (Figure 43).  

 
Figure	 43	Mechanism	 of	 acid	 catalyzed	 Boc	 and	 tert‐butyl	 ester	 cleavage	 shown	 for	 formation	 of	 (S)‐2‐
ammonio‐6‐((6‐hydroxyhexyl)amino)hexanoate	(IS)	
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Mass spectrometric analysis for m/z = 247.2 [M+H]+ revealed very little fragmentation which 

can be explained by the absence of ionizable structural elements (cf. ME 179, Figure 45). 

Detected fragments derive from the lysine residue which provides polar amino groups which 

are readily ionized via electrospray ionization (ESI) (Figure 44). 

 

 

Figure	44	ESI+‐MS/MS	Fragmentation	proposal	of	(S)‐2‐ammonio‐6‐((6‐hydroxyhexyl)amino)hexanoate	(IS)	
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Figure	45	ESI+‐MS/MS	spectrum	of	1000	ng/ml	(S)‐2‐ammonio‐6‐((6‐hydroxyhexyl)amino)hexanoate	(IS)	for	
m/z	(Q1)	=	247.2	(M+H)+		 	



RESULTS 

67 

4.3.16. SYNTHESIS OF (S)-2-AMMONIO-6-(((E,E)-6-

HYDROXYHEXA-2,4-DIEN-1-YL)AMINO)HEXANOATE 

(LYS(MUC-OH)) 

 

Synthesis of (S)-2-ammonio-6-(((E,E)-6-hydroxyhexa-2,4-dien-1-yl)amino)hexanoate 

(Lys(MUC-OH)) was performed by acidic removal of Boc and tert-butyl ester protecting 

groups from the reduced Schiff base (8) (Wuts 2014). Due to a low solubility of the starting 

material, a 1+1 mixture of 1,4-dioxane and aqueous 4 M perchloric acid was employed. One 

advantage from using perchloric acid comes from its easy removal by precipitation of potassium 

perchlorate upon neutralization with potassium hydroxide. Table 7 lists different reaction 

conditions tested for removal of Boc and tert-butyl ester. 

 

Table	7	Reaction	conditions	tested	for	removal	of	Boc	and	tert‐butyl	ester	

Reaction conditions 

TFA in CH2Cl2 (1+1) 

1 M HCl in Et2O 

Formic acid 

1 M H3PO4 

1 M HCl 

 

Experiments were observed via HILIC-HPLC-UV (cf. electronic attachment ME 117 & 119). 

In contrast to the reactions performed in the absence of water, fewest side products were 

detected using aqueous acids. However, organic extraction workup of the product failed due to 

its high solubility in the aqueous phase. To separate the product from traces of UV-active 

impurities and residual potassium perchlorate the product was isolated using preparative 

HILIC-HPLC. 

 

Future work up might attempt to employ ion-exchange resins and the products ability to change 

its state of ionization dependent of pH of the solution to remove potassium perchlorate from the 

reaction mixture. 
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Mass spectrometric analysis for m/z = 243.2 [M+H]+ reveals ready fragmentation which can be 

explained by the presence of additional ionizable structural elements, i.e. two conjugated double 

bonds compared to IS (cf. ME 179, Figure 47). Aside from the known fragments of the lysine 

residue, additional fragments m/z = 79.1 and 96.9 can be accounted to the 1-hydroxy-hexa-2,4-

dienyl side chain (Figure 46). 

 
Figure	 46	 ESI+‐MS/MS	 Fragmentation	 proposal	 of	 (S)‐2‐ammonio‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐
yl)amino)hexanoate	(Lys(MUC‐OH))	
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Figure	 47	 ESI+‐MS/MS	 spectrum	 of	 250	 ng/ml	 (S)‐2‐ammonio‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐
yl)amino)hexanoate	(IS)	for	m/z	(Q1)	=	243.2	[M+H]+	
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4.3.17. SYNTHESIS OF (S)-2-AMMONIO-6-(((E,E)-6-

OXOHEXA-2,4-DIEN-1-YL)AMINO)HEXANOATE 

(LYS(MUC-CHO)) 

 

Synthesis of (S)-2-ammonio-6-(((E,E)-6-oxohexa-2,4-dien-1-yl)amino)hexanoate  

(Lys(MUC-CHO)) was performed by acidic removal of Boc and tert-butyl ester similarly to 

Lys(MUC-OH). (S)-tert-butyl 6-((tert-butoxycarbonyl)((E,E)-6-oxohexa-2,4-dien-1-

yl)amino)-2-((tert-butoxycarbonyl)amino)hexanoate (10) was dissolved in a 1+1 mixture of 

1,4-dioxan and 4 M HClO4. After 16 h the product could be isolated via preparative HPLC in 

33 % yield.   

 

Resolution between the two signals seen in the reaction mixture was satisfactory so that 

attempts were made to isolate the product via solid phase extraction (Figure 48). However, 

degradation of the product was observed after elution (cf. ME 149). 

 

 
Figure	48	ESI+‐HPLC‐MS	 (above)	 (XIC	 for	m/z	=	241.1)	and	HPLC‐UV	 (below)	 	(nm	269	=	ߣ) spectra	 for	 the	
reaction	mixture	of	(S)‐2‐ammonio‐6‐(((E,E)‐6‐oxohexa‐2,4‐dien‐1‐yl)amino)hexanoate	(Lys(MUC‐CHO))		
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Mass spectrometric analysis for m/z = 241.1 [M+H]+ revealed less fragmentation compared to 

Lys(MUC-OH) (cf. ME 164, Figure 50). Aside from the known fragments of the lysine residue, 

the only additional fragment m/z = 223.2 can be interpreted as a simultaneous loss of ammonia 

and the carboxyl group (Figure 49). This resilient behavior to fragmentation might indicate 

greater stability of the alkyl side chain to fragmentation from the parent molecule compared to 

Lys(MUC-OH). 

 
Figure	 49	 ESI+‐MS/MS	 Fragmentation	 proposal	 of	 (S)‐2‐ammonio‐6‐(((E,E)‐6‐oxohexa‐2,4‐dien‐1‐
yl)amino)hexanoate	(Lys(MUC‐CHO))	

Minor fragment signals can be seen with m/z = 99.0, 139.8, 158.8, 200.2 which were still 

present despite the absence of the substance and can likely be accounted to impurities within 

the solvent or the apparatus. 

 

Isolation was attempted via concentration of the preparative HPLC eluate and subsequent 

lyophilization. However, two observations were made 

1. Lyophilization resulted in reddish colorization of the product. Upon reconstitution, the 

product did not dissolve completely. 

2. HPLC-UV analysis after reconstitution revealed degradation of the formerly uniform 

peak.  

 

Therefore, isolation and determination of concentration for quantification was not possible due 

to lack of compound stability. For this reason, alternative ways of quantification were tested.  
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Figure	 50	 ESI+‐MS/MS	 spectrum	 of	 200	 ng/ml	 (S)‐2‐ammonio‐6‐(((E,E)‐6‐oxohexa‐2,4‐dien‐1‐
yl)amino)hexanoate	(Lys(MUC‐CHO))	for	m/z	(Q1)	=	247.2	[M+H]+	 	
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4.4. QUANTIFICATION OF LYS(MUC-CHO) 

Quantification of Lys(MUC-CHO) was achieved using 2,4-dinitrophenylhydrazine (DNPH), a 

reagent commonly employed for total quantification of carbonyl compounds present in aqueous 

media (Yukawa et al. 1993) (Figure 51). The determination is performed by UV-spectroscopy. 

Thereby a calibration curve is prepared from a solution with known concentration of an 

arbitrary aldehyde and tested against the solution with unknown aldehyde concentration. The 

test is reported to be sufficiently accurate and does not require structural knowledge of the 

aldehyde which is to be determined. Nonetheless, we chose to employ (E,E)-hexa-2,4-dienal as 

a structural similar aldehyde to Lys(MUC-CHO). 

 
Figure	51	Mechanism	of	Derivatization	with	2,4‐dinitrophenylhydrazine	 (DNPH)	 shown	 for	 (E,E)‐hexa‐2,4‐
dienal	and	chromophore	formation.	Taken	and	modified	from	(Yukawa	et	al.	1993)	

UV-spectra of DNPH conjugates of (E,E)-hexa-2,4-dienal and Lys(MUC-CHO) show 

similarity, facilitating quantification (Figure 52). Calibration using (E,E)-hexa-2,4-dienal was 

sufficiently linear in the calibration range of 17 – 130 µM, covering the analyte concentration 

of Lys(MUC-CHO) in the sample (Figure 53). Aldehyde concentration of the preparative HPLC 

eluate (about 125 ml) was determined to contain 28 mg/l Lys(MUC-CHO) (cf. ME 164/166).  
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Figure	 52	 UV‐spectra	 of	 (E,E)‐hexa‐2,4‐dienal	 (black)	 and	 (S)‐2‐ammonio‐6‐(((E,E)‐6‐oxohexa‐2,4‐dien‐1‐
yl)amino)hexanoate	 (Lys(MUC‐CHO))	 (red	 and	 blue)	 after	 derivatization	 with	 2,4‐dinitrophenylhydrazine	
(DNPH)	

 

Figure	 53	 Calibration	 curve	 of	 (E,E)‐hexa‐2,4‐dienal	 at	 	exߣ =	 425	 nm	 after	 derivatization	 with	 2,4‐
dinitrophenylhydrazine	(DNPH)	
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4.5. HPLC-METHOD DEVELOPMENT FOR LYS(MUC-

CHO) 

A RP-HPLC-method for analysis of Lys(MUC-CHO) was developed using 0.1 % acetic acid 

and acetonitrile. Due to the ionic interactions peak shape deformation in width was observed 

unless a rash change in organic gradient of 20 % per minute was performed. Manual compound 

optimization resulted in three transitions suited for multiple reaction monitoring: 241.1  223.2, 

130.2 and 84.2 (cf. ME 164, Figure 54). Calibration samples for Lys(MUC-CHO) were 

analyzed in the range of 0.1 – 1000 ng/ml. LOD for Lys(MUC-CHO) was estimated 

experimentally to be 0.5 ng/ml. However, we did not succeed in detection of Lys(MUC-CHO) 

in incubations of serum albumin with (E,E)-muconaldehyde. A possible explanation lies within 

a modified experimental protocol. Since animal experiments had started before finishing the 

analytical method development determining Lys(MUC-CHO), the modified workup procedure 

used in the animal experiments operated using higher amounts of sodium borohydride which 

supposedly lead to full reduction of the aldehyde moiety. Therefore, analytical focus was shifted 

to Lys(MUC-OH). 

 

Figure	54	Excerpt	 from	an	HPLC‐ESI‐MS/MS	 chromatogram	 for	Lys(MUC‐CHO)	 (100	ng/ml)	 following	MRM	
transitions	241.1		223.2	(red),	130.2	(green)	and	84.2	(blue).	
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4.6. HPLC-METHOD DEVELOPMENT FOR LYS(MUC-

OH) 

A HILIC-HPLC-method for analysis of Lys(MUC-OH) was developed due to a lack of 

retention in polarly modified RP-HPLC using 10 mM ammonium acetate pH = 4.8. Manual 

compound optimization resulted in three transitions suited for multiple reaction monitoring: 

243.2  147.1, 130.0 and 79.1 (Figure 55). 

Following incubation of serum albumin with (E,E)-muconaldehyde, reduction with sodium 

borohydride and enzymatic hydrolysis using pronase, detection of Lys(MUC-OH) was 

achieved (Figure 56) (cf. ME 192). 

 

Figure	55	HILIC‐HPLC‐ESI+‐MS/MS	chromatogram	 for	Lys(MUC‐OH)	 (250	ng/ml)	 following	MRM	 transitions	
243.2		147.1	(red),	130.0	(green)	and	79.1	(blue)	
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Figure	56	HILIC‐HPLC‐ESI+‐MS/MS	 chromatogram	 for	 incubation	of	 serum	 albumin	 (16	mg/ml)	with	 (E,E)‐
muconaldehyde	(10	mM)	following	reduction	with	serum	albumin	(4	mg/ml)	and	subsequent	hydrolysis	using	
pronase	(2	mg/ml)	following	MRM	transitions	243.2		147.1	(red),	130.0	(green)	and	79.1	(blue)	
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4.7. ANIMAL EXPERIMENT 

4.7.1. SERUM ALBUMIN YIELD 

Finally, we strived to ascertain the principal hypothesis of (E,E)-muconaldehyde formation in 

vivo. Therefore, B6C3F1 mice were exposed to 0, 400 and 800 mg/kg b.w. benzene. After 24 h 

mice were sacrificed, serum albumin was isolated. Protein content of serum albumin samples 

was determined after elution from blue sepharose affinity chromatography column using optical 

density measurement at 280 nm (Table 8). Linear calibration for serum albumin was achieved 

previously in the range of 0.5 – 5 mg/ml12.  

Table	8	Protein	yields	of	serum	albumin	in	animal	experiment	

Sample Protein yield 

ME 161 (Control) 12 mg 

ME 163 (Control) sample 1 17 mg 

ME 163 (Control) sample 2 24 mg 

ME 165 (400 mg/kg bw) sample 1 18 mg 

ME 165 (400 mg/kg bw) sample 2 27 mg 

ME 167 (400 mg/kg bw) sample 1 19 mg 

ME 167 (400 mg/kg bw) sample 2 30 mg 

ME 171 (800 mg/kg bw) sample 1 20 mg 

ME 171 (800 mg/kg bw) sample 2 25 mg 

ME 172 (800 mg/kg bw) sample 1 27 mg 

ME 172 (800 mg/kg bw) sample 2 15 mg 

  

4.7.2. LYS(MUC-OH) DETERMINATION 

Lys(MUC-OH) determination results in the animal experiment have not been included in this 

work due to technical failure of the mass spectrometer, which could not be reinstalled in due 

time. Since our earlier experiments indicated LOD above incubation concentrations of 100 µM 

(E,E)-muconaldehyde (cf. ME 192), detection of Lys(MUC-OH) might probably have been 

unsuccessful due to analytical limitations.  

  

                                                 

12 Calibration y = 0.2489 × x – 0.0005 with R² = 0.995 performed by Christian Haase. 
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4.8. CYTOTOXICITY OF (E,E)-MUCONALDEHYDE AND 

LYS(MUC-CHO)13 

In our lab, it is common to test cytotoxicity using hepatic cancer cell lines or primary 

hepatocytes. However, toxicity of benzene does not target the liver but rather the bone marrow. 

To shed some light onto the mechanism of benzene induced hematotoxicity it is therefore 

necessary to employ cell culture models with the toxic sensitivity of hematopoietic stem cells 

towards benzene. Today, there is no generally accepted cell culture model to mirror the 

hematotoxicity of benzene. In order to test the assumption that (E,E)-muconaldehyde or (E,E)-

muconaldehyde-related conjugates such as Lys(MUC-CHO) might be responsible for benzene 

induced hematotoxicity, we strived to test these compounds in a suitable cell culture model.  

 

The NB4 cell line was established in 1991 and is derived from the marrow of a 20 year old 

female patient who suffered from acute promyelocytic leukemia in relapse (Lanotte et al. 1991). 

Morphologically they are characterized as myeloblasts. Myeloblasts are cells in the early stage 

of differentiation from a common myeloid progenitor cell. Myeloblasts do still have a cell 

nucleus and are able to perform full cell cycle. After addition of e.g. all-trans retinoic acid these 

cells are able to restore cell maturation leading down the myeloid pathway to cells which are 

important for the human immune system such as basophils, neutrophils, eosinophils, 

macrophages or myeloid dendritic cells (ibd.). 

 

Since acute myeloid leukemia is a disease pattern closely connected with exposure to benzene, 

we considered a promyelocytic cell line to be a suitable model to test hematotoxicity of (E,E)-

muconaldehyde or (E,E)-muconaldehyde-related conjugates such as Lys(MUC-CHO). So far, 

hematotoxicity of (E,E)-muconaldehyde has been only been shown after application in vivo. 

 

  

                                                 

13 Cytotoxicty analyses have been conducted in collaboration with the Institute für Toxikologie 
at Universitätsmedizin Mainz. FACS-analyses have been kindly provided by Viviane Ponath. 
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(E,E)-Muconaldehyde has been shown to be a potent cytotoxin in NB4 cells (Figure 57). Total 

cell death count after incubation with (E,E)-muconaldehyde for 24 h results in an EC50 = 0.98 

µM. No margin of error could be calculated due to missing data points. Apoptosis and necrosis 

were determined above 2 µM however standard deviation increased dramatically, which was 

caused by interference in fluorescence by the (E,E)-muconaldehyde. Therefore, fluorescence-

activated cell sorting (FACS) results above 2 µM could not be interpreted with sufficient 

accuracy. Increased apoptosis compared to control is statistically significant from 0.5 µM 

upwards. Increased necrosis compared to control is statistically significant from 2 µM. 

 

Lys(MUC-CHO) does not show relevant cytotoxicity in NB4 cells compared to (E,E)-

muconaldehyde (Figure 58). No EC50 could be calculated. Concentrations above 10 µM could 

not be tested since the substance was not available at a higher stock concentration in aqueous 

media. 

 

 

Figure	57	Cytotoxicity	of	NB4‐cells	after	incubation	with	different	concentrations	of	(E,E)‐muconaldehyde	for	
24	h	(n=4)	with	*p<0.05,	**p<0.01.		
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Figure	58	Cytotoxicity	of	NB4‐cells	after	incubation	with	different	concentrations	of	(S)‐2‐ammonio‐6‐(((E,E)‐
6‐oxohexa‐2,4‐dien‐1‐yl)amino)hexanoate	(Lys(MUC‐CHO))	for	24	h	(n=1).	
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5. DISCUSSION 

5.1. SYNTHESIS OF (E,E)-MUCONALDEHYDE 

(E,E)-Muconaldehyde has traditionally been prepared via either triphenylphosphoranylidene-

acetaldehyde mediated homologous elongation of glyoxal or (E)-butenedial or via oxidation of 

benzene oxide (Scheme 6).  

 
Scheme	6 Traditional	syntheses	of	(E,E)‐muconaldehyde	(MUC).	Reagents:	(a)	FMTP,	DMF;	(b)	Br2,	CH2Cl2;	(c)	

mCPBA,	CH2Cl2;	(d)	DBU,	Et2O;	(e)	NBS,	DMSO/H2O	

The first route has been conducted e.g. by Adger starting from furan which was oxidized in situ 

to (E)-butenedial (Adger et al. 1993). Twenty years ago Koßmehl accomplished synthesis of 

(E,E)-muconaldehyde similarly starting from glyoxal (Koßmehl & Bohn 1974). Both routes 

have come with difficulties. Adger’s approach results in a 1:2 mixture of (E,E)- and (E,Z)-

muconaldehyde. Koßmehl’s approach has been revised in our laboratory. Unfortunately, it 

caused significant problems in specificity. Even though the (formylmethylen)-

(tripheny1)phosphoran(FMTP)-reagent had been employed in exact stoichiometric amounts, 
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substantial quantities of side products were formed due to the reactivity of the newly 

synthesized product. Whereas the reaction has to be conducted in the strict absence of water, 

glyoxal on the opposite is commercially provided as dihydrate. Therefore, even little 

stoichiometric differences in the reagent scale may lead to a different array of products.  

 

Davies and Whitman established in 1977 the second route and synthesized (E,E)-

muconaldehyde in a biomimetic fashion via oxidation of benzene oxide/oxepin. In our lab, the 

final conversion from benzene oxide to (E,E)-muconaldehyde using N-bromo-succinimide 

resulted in formation of a mixture of different stereoisomers and phenol. Purification by 

recrystallization twice from light petroleum – ether (1 + 1), did not provide sufficient purity. 

Separation of (E,E)-muconaldehyde could only be achieved using column chromatography. 

Unfortunately, distinct identical retention of stereoisomers of (E,E)-muconaldehyde did not 

allow for analytical purity under these conditions. 

 

For synthesis of isomeric pure (E,E)-muconaldehyde we found the conversion of (E,E)-hexa-

2,4-diene-1,6-diol in presence of manganese oxide to be advantageous compared to previously 

described methods (Scheme 7). The reaction occurs under neutral conditions in aprotic solvents 

with remarkable selectivity. No side products such as C2-homologues as in Adger’s or 

Koßmehl’s approach or traces of (E,Z)- or (Z,Z)-muconaldehyde using the route of Davies and 

Whitman could be detected. We account isomeric purity of (E,E)-muconaldehyde to the 

mechanism of the manganese oxide catalyzed oxidation preventing the formation of 

stereoisomers.  

 
Scheme	7	Synthesis	of	(E,E)‐Muconaldehyde	(MUC).	Reagents:	(a)	AcCl,	MeOH;	(b)	DIBAL‐H,	CHCl3;	(c)	MnO2,	

CH3CN	
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5.2. PREVIOUSLY REPORTED CONJUGATES 

We report the formation of the distinct conjugate Lys(MUC-OH) upon reaction of (E,E)-

muconaldehyde with serum albumin after reduction with sodium borohydride and enzymatic 

hydrolysis using pronase. To our knowledge, no distinct protein conjugate of (E,E)-

muconaldehyde has been reported previously. In the following sections we will discuss:  

1. Cytotoxicity of Lys(MUC-CHO) and consequences for benzene toxicity. 

2. Potential in vivo metabolism of (E,E)-muconaldehyde-lysine conjugates. 

3. Potential mechanisms of toxicity of (E,E)-muconaldehyde-lysine conjugates.  

4. Relevance of (E,E)-muconaldehyde-lysine conjugates as potential biomarkers of 

benzene. 

5. Future work regarding (E,E)-muconaldehyde-lysine conjugates in benzene toxicity. 

 

5.3. CYTOTOXICITY OF (E,E)-MUCONALDEHYDE AND 

LYS(MUC-CHO) 

(E,E)-Muconaldehyde has been tested previously for cytotoxicity in bacterial and mammalian 

cells (Table 9).  

Table	9	Cytotoxicity	estimates	for	(E,E)‐muconaldehyde	taken	from	the	literature.	

Cell model EC50 est. Reference 

Chinese hamster ovary (CHO) 4 µM (Witz et al. 1990) 

Chinese hamster cell line (V79) 3 µM (Chang et al. 1994) 

Primary rat hepatocytes (PRH) 40 µM (Witz et al. 1990) 

 

Calculated EC50 ≈ 1 µM in human NB4 cells seems in good concordance with values given in 

the literature for Chinese hamster ovary (CHO) and V79 cells given the fact that incubation 

procedures and assays used for cytotoxicity vary.  

One might expect to see a more pronounced cytotoxic effect especially using a human & bone 

marrow derived cell line compared to bone marrow unrelated & mammalian cells from a 

different species. Such a positive result might have provided additional evidence to the 

hypothesis that (E,E)-muconaldehyde might be the key agent responsible for myelotoxicity of 

benzene in humans. However, our cytotoxicity results do not support this hypothesis. Does this 
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result exclude the possibility of (E,E)-muconaldehyde being the responsible agent for 

myelotoxicity in humans?14 There are different ways to interpret our results. 

 

5.3.1. THE TEST SUBSTANCE 

One could argue, (E,E)-muconaldehyde is missing additional cytotoxicity in NB4 cells 

compared to mammalian cells since (E,E)-muconaldehyde might not be the toxic agent 

responsible for myelotoxicity of benzene in humans or synergistic factors in the metabolism of 

benzene are the real cause for myelotoxicity and cannot be reproduced using one single 

metabolite. However, these reasons seem to be ruled out since (E,E)-muconaldehyde alone has 

been proven to be highly hematotoxic in vivo (Witz et al. 1985). 

 

5.3.2. THE IN VITRO MODEL 

One could further argue, NB4 cells are missing additional cytotoxicity compared to mammalian 

cells upon treatment with (E,E)-muconaldehyde due to the inapt transfer from an in vivo system 

to an in vitro model which mirrors the myelotoxicity of benzene. 

Two main reasons argue in advance of this position. 

1. Missing literature. To our knowledge, an in vitro model capable of mirroring 

myelotoxicity of benzene has not been reported yet, mirroring the difficulty in finding 

a system which incorporates both the myelotoxic sensitivity as well as the metabolic 

competence.15 

2. Cell line limitations. NB4 cells might not be a suitable cell line for benzene derived 

myelotoxicity in humans since the metabolism, morphologic or physiologic 

characteristics of the cell line do not represent the in vivo situation and where cell 

damage might occur at an even earlier stage of cell maturation.   

                                                 

14 On the contrary, these results can also be interpreted as a strengthening of our favored 
working hypothesis which will be discussed at length in section: 5.5.3 Deliverance of (E,E)-
muconaldehyde to the bone marrow via a proteinogenic carrier.  
In short, it may not be organ specificity of a single metabolite, namely (E,E)-muconaldehyde, 
which causes myelotoxicity of benzene. Rather, based on our results, (E,E)-muconaldehyde 
seems to be ubiquitously toxic and organ selectivity might be explained by a carrier mechanism, 
which transports (E,E)-muconaldehyde to the bone marrow where it can exert its toxic effects.  
15 Meaning that substantially higher cytotoxicity in bone marrow derived cells can be detected 
upon treatment with benzene (or its metabolites) compared to cells not related to the bone 
marrow 
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5.3.3. SPECIFICITY 

Due to the similarity of the cytotoxicity results in our work compared to the literature, it seems 

that cytotoxicity of (E,E)-muconaldehyde in NB4 cells is unrelated to physiological 

characteristics owned uniquely by bone marrow cells. Rather it seems that (E,E)-

muconaldehyde shows unspecific potential for cytotoxicity in various kinds of cells. However, 

the missing organ specificity implies, that NB4 cells are no suitable model to mirror in specific 

regard to the myelotoxicity of (E,E)-muconaldehyde. 

 

Since (E,E)-muconaldehyde has been proven to be highly hematotoxic in vivo, instead of 

selecting one cell line with specific limitations, isolation of primary bone marrow cells might 

be an alternative to study hematotoxicity of benzene. A problem with that solution is that bone 

marrow progenitor cells lean towards differentiation. Since research in this area is advancing 

slowly, cultivation of undifferentiated primary bone marrow cells poses a difficult undertaking. 

Alternatively, one could treat mice with benzene first and analyze afterwards the bone marrow 

cells more closely for the kind and magnitude of cellular damage. 

 

Lys-(MUC-CHO) does not show any relevant cytotoxicity up to 10 µM in NB4 cells. Therefore, 

the unspecific mechanism of toxicity that provides cytotoxicity to (E,E)-muconaldehyde does 

not seem to apply in the case of Lys(MUC-CHO) despite the presence of a potential reactive 

structural element, an ߜ,ߛ,ߚ,ߙ-unsaturated aldehyde. Since NB4 cells do not seem to be a 

suitable cell model to analyze myelotoxicity of benzene (as discussed above), the question 

cannot be answered whether Lys(MUC-CHO) does in fact have cytotoxic properties pertaining 

to the myelotoxicity of benzene.  
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5.4. METABOLISM OF (E,E)-MUCONALDEHYDE-

LYSINE CONJUGATES 

5.4.1. FORMATION OF LYS(MUC-CHO) IN VIVO? 

Lys(MUC-CHO) is generated in vitro after reduction of serum albumin modified with (E,E)-

muconaldehyde using sodium borohydride. Can reduction of the Schiff base occur in vivo? Or 

are cytotoxicity data of Lys(MUC-CHO) biologically insignificant since Lys(MUC-CHO) 

resembles an artificial artifact of the original conjugate (Figure 59)? 

 

Figure	59	Possible	formation	of	Lys(MUC‐CHO)	in	vivo	via	reduction	of	the	initially	formed	Schiff	base	

Studies examining this question have been performed in the past for reaction of proteins with 

acetaldehyde, the primary metabolite of ethanol, which covalently binds to proteinogenic lysine 

residues (Donohue et al. 1983; Moncada & Israel 1999; Thiele et al. 1994; Tuma et al. 1987; 

Tuma et al. 1991) (Figure 60). 

 

Figure	60	Proteinogenic	lysine	modification	by	acetaldehyde	in	vivo.	Modified	from	(Nicholls	et	al.	1992)	

In vitro studies to stabilize Schiff bases have relied on the use of non-physiological reducing 

agents such as sodium (cyano)borohydride. Tuma and coworkers showed that ascorbate but not 

glutathione was able to stabilize Schiff bases deriving from acetaldehyde (Tuma et al. 1984). 

However, other reducing agents may also be able to perform Schiff base reduction such as 

NADH. In the case of ethanol consumption, large amounts of NADH are formed in the liver by 

oxidation of ethanol. Thus, strongly reducing conditions prevailing in the liver may enhance 

reduction of Schiff base adducts (Nicholls et al. 1992). 
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Recent studies analyzing proteinogenic N6-ethyl lysine after alcohol consumption refrained 

from additional reduction in the sample workup (Mabuchi et al. 2012). Additional reduction, 

e.g. via sodium cyanoborohydride, did not result in increases for analytically detected N6
-ethyl 

lysine (ibd.). 

Taken these information into account, in vivo formation of Lys(MUC-CHO) by reduction of 

the initially formed Schiff base seems reasonable and might be relevant especially considering 

that (E,E)-muconaldehyde might be present in the liver at far lower concentrations compared 

to hepatic concentrations of acetaldehyde after alcohol consumption. 

Therefore, we believe there is reasonable evidence that supports the formation of proteinogenic 

Lys(MUC-CHO) in vivo. 

 

5.4.2. RESIDUAL REACTIVITY OF LYS(MUC-CHO) 

Based on the presence of an ߜ,ߛ,ߚ,ߙ-unsaturated aldehyde moiety, Lys(MUC-CHO) bears 

residual reactivity towards cellular nucleophiles. Two specific reaction types can be postulated 

aside from unspecific polymerization in presence of nucleophiles as seen with (E,E)-hexa-2,4-

dienal. The reaction with hard nucleophiles, e.g. amines, attacking the aldehyde carbon, 

followed potentially by intracellular NADH mediated reduction, or reaction with soft 

nucleophiles, e.g. thiols, attacking the ߚ- and/or ߜ-carbon of the adjacent double bond acting as 

a Michael-type acceptor (Figure 61). 

 

Figure	61	General	reaction	scheme	 for	residual	reactivity	of	Lys(MUC‐CHO)	(R1‐NH2	=	proteinogenic	 lysine)	
with	amines	(R2‐NH2)	and	thiols	(R3‐SH).	

Therefore, reduced half-life of proteinogenic Lys(MUC-CHO) due to covalent interaction with 

physiological nucleophiles such as glutathione must be considered an important factor in 

determining its biological significance.  
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5.4.3. METABOLISM OF LYS(MUC-CHO) 

Is Lys(MUC-CHO) expected to undergo further metabolism in vivo aside from further adduct 

formation with cellular nucleophiles?  

Precedence is provided by the metabolism of acrolein, resulting in the formation of S-(3-

oxopropyl)-mercapturic acid (OPMA) which bears structural resemblance to Lys(MUC-CHO) 

(Parent et al. 1998). Both reduction and oxidation of the carbonyl group can be observed 

following acrolein exposure in humans resulting in the urine excretion of S-(3-hydroxypropyl)-

mercapturic acid (3-HPMA) (Carmella et al. 2007) and carboxypropyl-mercapturic acid 

(CEMA) (Ding et al. 2009) (Figure 62). Both compounds were detected recently at University 

of Technology in Kaiserslautern in the group of Prof. Dr. Elke Richling following digestion of 

commercially available potato crisps by five volunteers (Watzek et al. 2012).  

 

On the assumption of metabolic competence at the location of protein hydrolysis, metabolites 

Lys(MUC-OH) and (E,E)-6-(((R)-5-ammonio-5-carboxylatopentyl)ammonio)hexa-2,4-

dienoate (Lys(MUC-CO2H)) are therefore reasonably expected to occur from in vivo 

metabolism of Lys(MUC-CHO) (Figure 63). 
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Figure	62	Metabolism	of	3‐Oxopropyl	mercapturic	acid	(OPMA)	to	3‐Hydroxyproylmercapturic	acid	(3‐HPMA)	
and	Carboxyethyl	mercapturic	acid	(CEMA)	ADH	=	Aldehyde	dehydrogenase,	AlDH	=	Alcohol	dehydrogenase.	
Taken	and	modified	from	(Parent	et	al.	1998)	

 

 

Figure	 63	 Proposal	 for	 further	 metabolism	 of	 (R)‐2‐ammonio‐6‐(((2,4)‐6‐oxohexa‐2,4‐dien‐1‐
yl)amino)hexanoate	 (Lys‐MUC(CHO))	 to	 (E,E)‐6‐(((R)‐5‐ammonio‐5‐carboxylatopentyl)ammonio)hexa‐2,4‐
dienoate	 (Lys(MUC‐CO2H)	 and	 (R)‐2‐ammonio‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐yl)amino)hexanoate	
(Lys(MUC‐OH)),	ADH	=	Aldehyde	dehydrogenase,	AlDH	=	Alcohol	dehydrogenase	following	protein	hydrolysis.	

 

Since either metabolic pathway leads to elimination of the electrophilic target (the aldehyde 

moiety), it may be regarded as detoxification of Lys(MUC-CHO).  
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5.5. MECHANISM OF TOXICITY  

We will discuss the hypothesis that transient conjugates of (E,E)-muconaldehyde might be the 

reason for benzene mediated hematotoxicity. There might be three different modes of action. 

1. Hapten formation  

2. Inherent conjugate toxicity  

3. Deliverance of (E,E)-muconaldehyde to the bone marrow via a proteinogenic carrier. 

 

5.5.1. HAPTEN FORMATION 

Haptens (gr. haptein) are low molecular weight compounds (MW < 1000 g/mol) that must bind 

to a carrier molecule to become antigenic (Landsteiner & Jacobs 1936). “The carrier is usually 

an endogenous or exogenous protein to which the […] chemical is covalently bound. […] 

Prohaptens are chemicals that are not protein reactive unless they are metabolically activated 

to electrophilic species.” (Chipinda et al. 2011). Supposedly as a response to failure in 

recognition of an altered protein structure, the immune system is urged into antibody production, 

generating specific protein markers which can be detected in the blood following an immune 

response. 

Benzene has been shown to elicit albeit weak immune responses in exposed workers (Dimitrova 

et al. 2005; Kirkeleit et al. 2006; Uzma et al. 2010). It is believed that HQ and 1,4-BQ are 

responsible agents for haptenic activity (Basketter & Gooodwin 1988; Basketter & Liden 1992; 

Rombach & Hanzlik 1997; Ewens et al. 1999).  

There have been reports about haptens damaging the blood forming system, most notably 

methyldopa (Worlledge et al. 1966), high-dose intravenous penicillin (Ries 1975), and 

cefotetan, a cephalosporin (Garratty et al. 1992). However, pathologically these conditions can 

be described as hemolytic anemias, originating from antibodies targeting the late stage 

erythrocyte membrane. Hemolytic anemia is a condition not seen in chronic exposure to 

benzene.  
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As we’ve shown in section 2.3.1, hematotoxicity of benzene is thought to occur at a very early 

stage in hematopoiesis targeting bone marrow progenitor cells rather than fully developed 

erythrocytes. Since these two conditions differ by origin, we do not see experimental evidence 

to support the hypothesis, that (E,E)-muconaldehyde-lysine conjugates acting as haptens are be 

responsible for the myelotoxicity observed in chronic exposure to benzene.  

 

5.5.2. INHERENT TOXICITY OF AMINO ACID CONJUGATES  

5.5.2.1. FUNCTIONAL IMPAIRMENT OF TARGET PROTEINS 

Another hypothetical mechanism of benzene toxicity operates by the impairment of functional 

proteins by covalent modification through (E,E)-muconaldehyde in the bone marrow. 

There is only one publication addressing the reaction of (E,E)-muconaldehyde with proteins 

which addresses the decrease in free primary amino groups but leaves out functional 

impairment (Udupi et al. 1994). Therefore, we relate to structural analogues of (E,E)-

muconaldehyde such as acrolein or 4-hydroxy-non-2-enal. 

Incubation studies of purified proteins such as glyceraldehyde-3-phosphate dehydrogenase with 

acrolein or 4-hydroxy-non-2-enal reveal that proteinogenic lysine, histidine and cysteine 

residues are subject to adduct formation and enzyme function is impaired (Szweda et al. 1993; 

Uchida et al. 1994; Friguet et al. 1994; Ishii et al. 2003; Carbone et al. 2005; Tamamizu-Kato 

et al. 2007; LoPachin et al. 2008; Tran et al. 2014). 

Due to structural analogy functional impairment of proteins by (E,E)-muconaldehyde seems 

plausible and might be in part responsible for myelotoxicity observed in chronic exposure to 

benzene. Organ specificity targeting the bone marrow seems plausible if the bone marrow can 

qualify as location of formation or location of uptake of (E,E)-muconaldehyde. However, 

cellular specificity towards early stage progenitor cells remains to be answered at this point. 

To prove that amino acid conjugates generally can convey organ-specific toxic responses, we 

will illustrate with the example of GSH-HQ conjugates.   
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5.5.2.2. GLUTATHIONE-HYDROQUINONE CONJUGATES 

In 1996, Bratton et al. discovered (glutathion-S-yl)-hydroquinone (GS-HQ) conjugates present 

in bone marrow following concomitant administration of phenol and hydroquinone (Bratton et 

al. 1997) (Figure 64).  

 

Figure	 64	 Glutathione‐hydroquinone	 conjugates	 identified	 after	 concomitant	 administration	 of	 phenol	 &	
hydroquinone.	Modified	from		(Bratton	et	al.	1997).	

GS-HQ conjugates have been shown to cause erythrotoxicity in rats decreasing 59Fe 

incorporation into reticulocytes (sc. bone marrow erythrocyte progenitor cells) and reduce the 

blood lymphocyte count (Lau et al. 2010). Redox cycling to glutathione benzoquinone 

conjugates is believed to be responsible for hematotoxic effects by formation of electrophilic 

species as well as ROS formation (Monks et al. 2010) (Figure 65).  

 

Figure	65	Redox	cycling	from	GS‐HQ	to	BQ‐HQ	possible.	Taken	and	modified	from	(Monks	et	al.	2010).	

 

Based on these findings, the authors conclude, that GS-HQ conjugates “may contribute to 

benzene-mediated hematotoxicity” (ibd.).  
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There are three reasons arguing against a key role of GS-HQ conjugates in benzene mediated 
hematotoxicity. 

1. Nephrotoxicity. 2-GS-HQ & 2,3,5-GS-HQ have been shown to be potent nephrotoxins 

ex vivo (Hill et al. 1994), explaining the nephron carcinogenicity observed in rats 

following chronic exposure to hydroquinone (Shibata et al. 1991; Kari et al. 1992). 

However, nephrotoxicity is a condition observed neither in acute nor chronic poisoning 

with benzene. 

2. Erythropoietin (EPO) ↓. EPO is a hormone in maturation process of erythrocytes. GS-

HQ conjugates “are capable of damaging cells within the proximal tubules of the kidney 

(Lau et al. 1988), the major site of EPO production” (Lau et al. 2010). The question 

arising now whether hematotoxicity observed with GS-HQ conjugates is due to damage 

of the bone marrow by itself or indirectly due to depression of EPO. GS-HQ conjugates 

were “capable of indirectly inducing anemia by reducing serum EPO levels […]  both 

2,3,5-GS-HQ and 2,6-GS-HQ significantly reduced circulating EPO levels.” (ibd.) 

3. GS-HQ levels after benzene administration. Even though GS-HQ conjugates could be 

detected after administration of PH & HQ, levels of GS-HQ conjugates after benzene 

administration are low, in fact so low, that reporting authors did not use coherent 

quantification units (e.g. nmol/2 femurs for phenol & hydroquinone administration vs. 

pmol/mg protein for benzene administration), thereby making it impossible to calculate 

a percentage of the fraction for GS-HQ formed in animals treated with phenol and 

hydroquinone versus animals treated with benzene. (ibd.) 

Therefore, experimental evidence suggests GS-HQ conjugates not to be primarily responsible 

for benzene mediated hematotoxicity.  

The example of GS-HQ conjugates shows that electrophilic amino acid conjugates of benzene 

metabolites are principally able to retain inherent organ specific toxic properties. Therefore, 

myelotoxicity of benzene occurring via formation of (E,E)-muconaldehyde-lysine conjugates 

does not appear to be an unreasonable hypothesis. The question arises: Does the literature 

provide evidence for the toxicity of related lysine conjugates? 
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5.5.2.3. LYSINE CONJUGATES OF BIS-ALDEHYDES 

Literature about isolated lysine conjugates is restricted to biomarker analyses and toxicity of 

modified poly-L-lysine peptides, making it difficult to draw a comparison to cytotoxicity data 

of Lys(MUC-CHO).  

Based on the missing positive cytotoxicity results for Lys(MUC-CHO) in NB4 cells, we cannot 

provide experimental evidence to add to the hypothesis that (E,E)-muconaldehyde-lysine 

conjugates might be responsible for the myelotoxicity observed in chronic exposure to benzene. 

 

5.5.3. DELIVERANCE OF (E,E)-MUCONALDEHYDE TO THE 

BONE MARROW VIA A PROTEINOGENIC CARRIER 

Another mechanism of benzene toxicity which we favor includes  

1. Formation of (E,E)-muconaldehyde in the liver,  

2. (Non-)covalent binding of (E,E)-muconaldehyde to a transient proteinogenic carrier  

3. Excretion of the carrier into systemic circulation,  

4. Selective uptake of the carrier into the bone marrow  

5. Degradation of the proteinogenic vehicle followed by release of (E,E)-muconaldehyde 

itself or its conjugate  

 

Release of (E,E)-muconaldehyde or (E,E)-muconaldehyde-lysine conjugates within 

hematopoietic stem cells might explain the organ specificity observed in benzene related 

hematotoxicity. We will address each point of this proposed mechanism of toxicity in the 

fallowing subsections. 
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5.5.3.1. BINDING OF (E,E)-MUCONALDEHYDE TO A 

TRANSIENT CARRIER 

Based on our findings, two requirements seem to qualify a transient carrier for (E,E)-

muconaldehyde. 

1. Molecular size. In our experiments we did not observe covalent binding of (E,E)-

muconaldehyde to Nߙ-Fmoc-lysine but rather to bovine serum albumin16. We therefore 

conclude that a transient carrier for (E,E)-muconaldehyde favors a proteinogenic carrier 

over a single amino acid or peptide-like carrier. Chemically, the reason for a favorable 

reaction outcome of (E,E)-muconaldehyde with serum albumin might be the partial 

hydrophobicity of (E,E)-muconaldehyde (log P = -0.38), which causes it to align to semi 

polar domains of the protein. Schiff base formation in areas with reduced activity of 

water is entropically favored since Schiff base formation occurs through loss of water. 

2. Reversibility of covalent interaction. A second requirement for a transient (E,E)-

muconaldehyde carrier to the bone marrow consists in the presence of amino acids 

capable of reversible conjugate formation. Kline et al. proposed reversible thiol 

conjugates e.g. with cysteine to act as transporters for (E,E)-muconaldehyde to reach 

the bone marrow (Kline et al. 1993) (Figure 66).  

 
Figure	66	Reversibility	of	thioether	formation	of	(E,E)‐muconaldehyde	with	proteinogenic	cysteine.		

R	=	protein	chain.	

Release of the aldehyde component from cysteine-conjugates has been shown for 

acrolein, a structural analogue to (E,E)-muconaldehyde (Ramu et al. 1995).  

We add that not only thiol conjugates but also imine conjugate formation is reversible 

(Cordes & Jencks 1963). Schiff base conjugates of (E,E)-muconaldehyde with 

proteinogenic lysine might therefore serve as transient transport vehicles to reach the 

bone marrow (Figure 67).  

                                                 

16 In absence of sodium borohydride. 
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Figure	67	Reversibility	of	Schiff	base	formation	of	(E,E)‐muconaldehyde	with	proteinogenic	lysine.		
R	=	protein	chain.	

Absence of lysine and cysteine in the protein sequence does not necessarily exclude the 

suitability of a transient protein carrier as long as the protein contains semi polar 

domains suitable to temporarily accommodate (E,E)-muconaldehyde for transport to the 

bone marrow, thereby shielding it from reactive scavengers such as GSH.  

 

Williams et al. specifically focused on identification of modified proteins following treatment 

with [14C]benzene in mice (Williams et al. 2002). Modified liver and bone marrow proteins 

were reported including hemoglobin and several histones. However, the study does not seem 

suitable to answer the question regarding transient protein transporters of (E,E)-muconaldehyde 

for three reasons. 

1. Choice of target proteins. No blood proteins were targeted for analysis.  

2. Missing conjugate stabilization. No reducing agent was employed in order to stabilize 

(E,E)-muconaldehyde-lysine or GS-HQ conjugates.  

3. Harsh Sample workup procedures. Conditions during protein isolation, gel 

electrophoresis and staining reported are so harsh17, that likely neither lysine conjugates 

from (E,E)-muconaldehyde nor GS-HQ conjugates18 retained structural integrity. 

 

  

                                                 

17  Homogenization buffer contained 5 % mercaptoethanol, gels were equilibrated in 
5 % dithiothreitol and staining was performed in 10 % acetic acid (Williams et al. 2002). 
18 GSH-HQ conjugates are reported to be unstable, especially in absence of a reducing agent 
(Kuhlman 2013). 
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5.5.3.2. SELECTIVE UPTAKE OF A TRANSIENT CARRIER OF 

(E,E)-MUCONALDEHYDE INTO BONE MARROW 

5.5.3.2.1. LIPOSOMES 

There are vast reports in the literature about artificially engineered colloidal particles, called 

liposomes, which can be manufactured to transport drugs specifically to the bone marrow. 

Liposomes are generally generated using four components: 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), cholesterol, N-(3-carboxy-1-oxopropyl)-1,5-dihexadecyl glutamic 

acid (SA) and poly(ethylene glycol) (PEG) (Sou et al. 2011) (Figure 68). 

 

 

Figure	68	General	lipid	components	of	bone	marrow‐targeted	liposomes.	Taken	and	modified	from	(Sou	et	al.	
2011).	

While poly(ethylene glycol) lipids, cholesterol and phospholipids are interchangeable 

constituents, organ specificity for the bone marrow is achieved using carboxylic acid lipids. 
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Due to anionic carboxyl groups the liposome is attributed a negatively charged surface structure. 

This structural element causes endocytosis by bone marrow macrophages and selectivity is 

achieved (Sou et al. 2011).  

Since anionic charged protein surface structures, e.g. by glutamic or aspartic acid, is no rare 

criteria of selection, many proteins and peptides should be to able enter the bone marrow via 

this route of uptake. Further selection of a suitable transient carrier of (E,E)-muconaldehyde is 

complicated by the fact, that bone marrow cells own more than one uptake mechanisms which 

can be used for transient carrier uptake. 

However, serum albumin does not seem to be the appropriate transport vehicle for (E,E)-

muconaldehyde to reach the bone marrow since it is neither the location of significant albumin 

distribution nor the location of albumin degradation (Rothschild et al. 1975; Peters 1995).  

 

5.5.3.2.2. CELL-PENETRATING PEPTIDES 

Cell-penetrating peptides are relatively short peptides, usually 5 – 40 amino acids, with the 

ability to access the cell interior using different mechanisms, including endocytosis. Cell-

penetrating peptides are capable to promote the intracellular delivery of covalently or 

noncovalently conjugated bioactive cargoes (Langel 2007, Preface). (E,E)-Muconaldehyde 

could enter hematopoietic stem cells by using cell-penetrating peptides as a transient vehicle. 

Chemotherapeutics that have been shown to increase cellular uptake upon coupling with cell-

penetrating peptides in vivo include doxorubicin (Rousselle et al. 2000), methotrexate (Kóczán 

et al. 2002), paclitaxel (Eldar-Boock et al. 2011) and organometal conjugates such as 

cymantrene (Hoyer et al. 2012).  

Direct translocation mechanisms of cell-penetrating peptides as well as endocytosis 

mechanisms such as phagocytosis or pinocytosis exist to promote cellular uptake of cell-

penetrating peptides. However, these mechanisms are ubiquitously present in all human cells 

and are nonspecific in the substance they transport. Therefore, mechanisms that might account 

for chronic toxicity of benzene have to consider substrate specificity. Receptor-mediated uptake 
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mechanisms such as caveolin19- or clathrin20-mediated endocytosis might fill this gap since they 

are exhibit substrate specificity and might explain target organ selectivity (Kiss & Botos 2009; 

McMahon & Boucrot 2011)21. The ability of (E,E)-muconaldehyde to induce intermolecular 

cross links might thereby alter the cell-penetrating peptide structure so that substrate specificity 

is altered and ligand-receptor interaction increased22. Both clathrin and caveolin coated vesicles 

are able to follow the lysosomal degradation pathway (Kiss & Botos 2009; McMahon & 

Boucrot 2011). 

Lysosomal lumen is acidic (pH ~ 4.6) and filled with over 60 different types of hydrolases 

including lipases, proteases, and glycosidases for catabolic degradation (Kolter & Sandhoff 

2005). Degradation transporters are removed from lysosomes via specific exporters in the 

organelle membrane (Ruivo et al. 2009) or via vesicular membrane trafficking (Saftig & 

Klumperman 2009). While insoluble catabolites such as lipids are transported through vesicular 

trafficking, soluble catabolites e.g. carbohydrates and amino acids, are exported to the cytosol 

by specific transporters on the perimeter membrane (Ruivo et al. 2009; Sagné & Gasnier 2008). 

However, only a few lysosomal amino acid transporters have been identified. PQLC2/LAAT-

1 is a lysosomal, H+-dependent exporter of arginine/lysine (Jézégou et al. 2012). 

Caenorhabditis elegans lacking the LAAT-transporter exhibits accumulation of arginine and 

lysine in enlarged lysosomes (Liu et al. 2012; Xu & Ren 2015). (E,E)-Muconaldehyde-lysine 

conjugates could be potential substrates of PQLC2/LAAT-1 reaching the cytosol of 

hematopoietic stem cells engaging in activities related to myelotoxicity observed in chronic 

exposure to benzene. 

                                                 

19 Caveolin-mediated endocytosis is used e.g. for the uptake of serum albumin in endothelial 
cells (Lajoie & Nabi 2010).  
 
20 Clathrin-mediated endocytosis is employed e.g. in the uptake of transferrin (Motley et al. 
2003). 
 
21 The first step in either mechanism constitutes interaction of the positively charged cell-
penetrating peptide with negatively charged components of outer cell membrane such as 
heparan sulfate or the phospholipid bilayer. Clathrin resp. caveolin pits are thereby involved in 
the mechanism of uptake. Both clathrin and caveolin cover the intracellular side of the cellular 
membrane. They are required for invagination of the membrane and help to form the vesicles 
after binding of an extracellular ligand to the membrane receptor (Madani et al. 2011). 
 
22  Structure activity relationship studies have shown the importance of positive charges, 
especially arginine residues, in the uptake mechanism of cell-penetrating peptides (Elmquist et 
al. 2006; Madani et al. 2011; Wender et al. 2000).  
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Literature on cell-penetrating peptides specifically entering bone marrow derived cells is scarce. 

The synthetic peptide octa-arginine (R8) and the physiological protein HOXB4 have been 

reported to enter bone marrow derived cells (Nakamura et al. 2014; Langel 2007, pp. 259–271). 

However, the entry mechanism has not been fully elucidated, and it is likely that cells unrelated 

to the bone marrow can be entered similarly, which diminishes chances for organ selectivity. 

Therefore, we have not been able to single out distinct carriers that fulfill the broad criteria 

outlined in section 5.5.3.1 for the proposed mechanism of toxicity, which is formation in the 

liver, excretion into systemic circulation, selective uptake followed by degradation in the bone 

marrow.  

One reason might argue against the selection of a specific carrier. 

1. Selectivity. Focusing on identification of a specific carrier must be regarded with 

caution, since selectivity might be implied in the choice of the proteinogenic carrier 

which (E,E)-muconaldehyde reacts with. But reactivity of (E,E)-muconaldehyde is not 

restricted to specific proteins or peptides but rather to certain functional groups such as 

amines or thiols. One could therefore argue: Why should (E,E)-muconaldehyde be 

myelotoxic when its reactivity reaches out to all sorts of proteinogenic carriers? The 

argument however can be strengthened if it can be proven, that carriers to the bone 

marrow have chemical superior reactivity with (E,E)-muconaldehyde compared to other 

carriers. Alternatively, increased susceptibility of hematopoietic stem cells towards 

toxicity of (E,E)-muconaldehyde compared to other cells should be considered, but such 

a finding would argue against the existence of a bone marrow specific carrier.  
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5.6. RELEVANCE OF (E,E)-MUCONALDEHYDE-LYSINE 

CONJUGATES AS BIOMARKERS TO BENZENE 

EXPOSURE  

A biomarker of exposure is a marker in a biological system that indicates whether or not 

exposure to a certain chemical has taken place. A biomarker may be the compound itself or its 

metabolites measured in tissues, body fluids, or exhaled air. Biomarker may also be adducts 

formed in the DNA of white cells or conjugates with hemoglobin in red cells or with serum 

albumin (Medeiros et al. 1997). 

To assess the utility of Lys(MUC-CHO) and Lys(MUC-OH) as potential biomarkers of 

exposure for benzene, we’ll discuss briefly already established biomarkers for benzene. There 

are several established biomarkers of exposure available to for benzene. 

 

5.6.1. UNMETABOLIZED BENZENE 

Benzene has been used as one of the earliest biomarkers of exposure to benzene in the past. 

Measurement was performed by exhaled breath analysis to monitor short term workplace 

exposure (Srbova et al. 1950; Sherwood 1972a, 1972b; Berlin et al. 1980; Money & Gray 1989). 

Due to declined benzene concentrations at the workplace and complex analysis procedure, 

benzene analysis in breath nowadays is obsolete. 

In contrast, urinary benzene has been considered as a biomarker of choice especially at 

atmospheric concentrations ranging below 1 ppm benzene because it is a specific, sensitive and 

non-invasive method (Ghittori et al. 1995; Ghittori et al. 1993; Ong et al. 1996; Mirzaei et al. 

2016). Additionally, benzene analysis via solid phase micro extraction headspace gas 

chromatography (SPME-HS-GC) has simplified the analysis procedure greatly (Fustinoni et al. 

1999; Waidyanatha et al. 2001; Mirzaei et al. 2016).  

Other biomarkers of exposure proposed for benzene require metabolism to occur first to allow 

the desired analyte to be formed. Since the rations of these metabolite levels to unmetabolized 

benzene showed evidence of saturable CYP 450 metabolism, urinary benzene can also be 

regarded as a measure of the total internal dose of benzene (Mirzaei et al. 2016). 

Before that, urinary phenol was used as a biomarker for benzene exposure but was abandoned 

due to lacking specificity for benzene (Ducos et al. 1990). 
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5.6.2. PHENOLIC METABOLITES 

Since catechol and hydroquinone are formed by enzymatic hydroxylation of phenol, we will 

focus on phenol discussing its use as biomarker of exposure to benzene. Therefore, conclusions 

about the (un)suitability of phenol equally apply to catechol and hydroquinone. 

Two reasons argue for phenolic metabolites as biomarkers for benzene.  

1. Amount of biomarker formed. “In humans, phenol is the primary metabolite of benzene 

excreted in the urine accounting for 70–88% of the total urinary metabolites […] (Inoue 

et al., 1988; Kim et al., 2006b)” (Arnold et al. 2013). 

2. Analytical procedures are easily available. Numerous “GC and HPLC methods have 

been described for the determination of phenol in the past 30–40 years (Angerer & 

Horsch, 1992; Weisel, 2010).” (Arnold et al. 2013) 

However, one major drawback has caused researchers to avoid phenol as well as catechol and 

hydroquinone as biomarkers for benzene: The missing specificity for benzene. In humans 

formation phenol may be caused by sources other than benzene that confound the interpretation 

of air benzene exposure up to a concentration of approximately 5 ppm (Inoue et al. 1986) (Table 

10). Humans ingest or produce endogenously through conversion of amino acids such as 

tyrosine or other simple phenols in the gut approximately 0.2 mg/kg-body weight of phenol per 

day (McDonald et al. 2001). Phenol is present in cigarette smoke (Hoffmann & Wynder 1986), 

and individual over-the-counter medicines have been shown to increase phenol excretion in the 

urine up to 40-fold (Fishbeck et al. 1978; McDonald et al. 2001; Arnold et al. 2013).  

Table	10	Non‐benzene	sources	of	urinary	phenol.	Taken	and	modified	from	(Arnold	et	al.	2013)	

Source Amount Reference 

Diet and endogenous sources 0.2 mg/kg-bw/d (McDonald et al. 2001) 

Mainstream cigarette smoke 60–140 µg/cigarette (Hoffmann & Wynder 1986) 

Sidestream cigarette smoke 1.6–3.0 × mainstream 

smoke 

(Hoffmann & Wynder 1986) 

Over the counter medicines Not quantified (McDonald et al. 2001) 
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5.6.3. (E,E)-MUCONIC ACID 

(E,E)-Muconic acid is the only ring opened metabolite used nowadays for benzene exposure 

assessment for atmospheric benzene concentrations greater than 0.5 ppm (Arnold et al. 2013). 

Interestingly, the excreted amount of (E,E)-muconic acid (2–25% of the total benzene uptake) 

in urine shows an inverse dose relationship: The higher the dose of benzene, the lower the 

relative excreted amount of (E,E)-muconic acid (Inoue et al. 1989; Boogaard & van Sittert 

1996; Yu & Weisel 1996; Arnold et al. 2013). 

However, there are background concentrations of (E,E)-muconic acid that are not explained by 

environmental benzene exposure may partly be due to dietary habits (Table 11). (E,E)-muconic 

acid is a metabolite of sorbic acid and sorbates can be present in various foodstuffs at 

concentrations up to 800 mg/kg (van Dokkum et al. 1982; Lück 1990; Serrano et al. 1991; Yu 

& Weisel 1996; Ruppert et al. 1997). For example, dietary supplementation with 500 mg sorbic 

acid significantly increases the mean urinary (E,E)-muconic acid excretion from 0.08 mg/24 h 

to 0.88 mg/24 h in eight non-smokers, although only 0.12% of the sorbic acid dose is excreted 

in urine as (E,E)-muconic acid (Ruppert et al. 1997). The authors conclude that a typical dietary 

intake of 6–30 mg/d sorbic acid accounts for 10–50% of the background (E,E)-muconic acid 

excretion in non-smokers, and for 5–25% in smokers (Ruppert et al. 1997; Arnold et al. 2013).  

Table	11	Non‐benzene	sources	of	urinary	(E,E)‐muconic	acid.	Taken	and	modified	from	(Arnold	et	al.	2013)	

Source Amount Reference 

Diet (sorbitol) Europe 6–30 mg/d (Ruppert et al. 1997) 

Diet (sorbitol) USA 25 mg/d (Yu & Weisel 1996) 

Percentage of (E,E)-muconic acid in non-smokers 

attributed to dietary sorbic acid 

10–50 % (Ruppert et al. 1997) 

Percentage of (E,E)-muconic acid in smokers 

attributed to dietary sorbic acid 

5–25 % (Ruppert et al. 1997) 

 

Although there is no shortage in analytical procedures for (E,E)-muconic acid, its specificity is 

inadequate for the assessment of environmental benzene exposure when dietary sources are 

present simultaneously, “which is usually the case for western populations” (Arnold et al. 2013). 
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5.6.4. S-PHENYL MERCAPTURIC ACID (SPMA) 

S-Phenyl mercapturic acid (SPMA) derives from the condensation of benzene oxide with 

glutathione (Figure 69). SPMA is considered a very specific short-term urinary biomarker of 

benzene (Arnold et al. 2013). 

 

Figure	69	Formation	of	S‐phenyl	mercapturic	acid	(SPMA)	in	vivo.	Modified	from	(ATSDR	2007).	

Although SPMA is only a minor (0.01–0.9% of the dose) urinary metabolite of benzene in 

humans (Boogaard & van Sittert, 1995, 1996; Ghittori et al., 1999; Melikian et al., 2002; 

Stommel et al., 1989; van Sittert et al., 1993), the urinary concentration of SPMA is a reliable 

parameter to determine internal benzene exposures from recent sources (Arnold et al. 2013). 

There is currently no information indicating the formation of SPMA from sources other than 

benzene. 
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5.6.5. DNA ADDUCTS 

Benzene has been shown to bind to DNA in vivo by radiochemical analysis (Lutz & Schlatter 

1977; Synder et al. 1978; Snyder et al. 1978; Arfellini et al. 1985; Mazzullo et al. 1989; 

Turteltaub & Mani 2003). Metabolites of benzene that have been shown to covalently bind to 

DNA in vitro are benzene oxide (Norpoth et al. 1988; Norpoth et al. 1996), o- and p-

benzoquinone (Levay et al. 1991; Pongracz & Bodell 1991; Gaskell et al. 2002), hydroquinone 

(Bodell et al. 1996; Gaskell et al. 2005a, 2005b) and (E,E)-muconaldehyde (Bleasdale et al. 

1996; Harris et al. 2011). 

However, literature about in vivo data is scarce. There are indications of DNA-adducts deriving 

from hydroquinone in mice following exposure to benzene (Bodell et al. 1993; Bodell et al. 

1996). Also, N7-Phenyl guanine, which is formed from reaction of benzene oxide with DNA, 

was shown to be in the urine of rats following exposure to benzene (Mueller et al. 1987) (Figure 

70).  

 

Figure	70	Formation	of	N7‐phenyl	guanine	from	reaction	of	benzene	oxide	with	guanine	(taken	and	modified	
from	(Norpoth	et	al.	1996)).	

However, there are currently no studies reporting on benzene derived DNA adducts in humans. 

There may be two reasons why. 

1. Missing funds. Risk assessment has determined benzene to be genotoxic in humans 

(IARC 1982). It poses some difficulty to communicate the need for structural 

elucidation of DNA adducts, given the fact that the relevant information for risk 

assessment – benzene is genotoxic in humans at environmental concentrations – does 

not change even if the molecular structures of DNA adducts were to be identified. 

2. Low covalent binding index. The ratio of benzene that finally forms DNA adducts at 

environmental benzene levels is very low. To quantify DNA adducts of benzene might 

therefore require expensive analytical equipment (Arnold et al. 2013).  

Therefore, analysis of DNA adducts is not considered relevant assessing exposure to benzene 

in humans. 
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5.6.6. PROTEIN CONJUGATES 

5.6.6.1. PROTEIN CONJUGATES DERIVED FROM PHENOLIC 

METABOLITES 

Cysteine-S-yl hydroquinone is a conjugate postulated from reaction of 1,4-benzoquinone with 

cysteine sites of proteins (Figure 71). Reaction of 1,2-benzoquinone with cysteine yields the 

corresponding cysteine-S-yl catechol (Figure 72). Cysteine-S-yl hydroquinone and cysteine-S-

yl catechol have been detected in hemoglobin and bone marrow proteins in rats and mice 

following benzene administration (Melikian et al. 1992; McDonald et al. 1994; Rappaport et 

al. 1996). Cysteine-S-yl hydroquinone has also been detected in human serum albumin 

following benzene exposure (Rappaport et al. 2002). 

 
Figure	71	Formation	of	cysteine‐S‐yl	hydroquinone	(taken	and	modified	from	(Melikian	et	al.	1992)).	

 

 

Figure	72	Formation	of	cysteine‐S‐yl	catechol	

There is one major drawback in employing protein conjugates of benzoquinones in exposure 

assessment of benzene: Their lack of specificity. As we’ve seen with phenolic metabolites used 

in exposure assessment, there are sources other than benzene which cause formation of phenol 

and, following metabolism, benzoquinones as well.  

High levels of 1,4-benzoquinone conjugates in albumin are related to demographics, diet and 

lifestyle factors for persons occupationally not exposed to benzene (Lin et al. 2006). Therefore, 

1,2- and 1,4-benzoquinone conjugates are not considered specific to benzene exposure (Arnold 

et al. 2013). 
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5.6.6.2. PROTEIN CONJUGATES DERIVING FROM BENZENE 

OXIDE / OXEPINE 

S-phenyl cysteine (SPC) is a conjugate, which has been postulated from reaction of benzene 

oxide with cysteine sites of proteins, and has been found and measured in hemoglobin in rats 

and mice (Bechtold et al. 1992). Rat hemoglobin possesses an additional reactive cysteine at ߚ-

128, not present in humans, and consequently higher levels of SPC have been found in rats. 

Studies have also described the formation of SPC in the serum albumin of benzene-exposed 

workers (Yeowell-O'Connell et al. 1996; Barnes 2000; Rappaport et al. 2005). 

 

Figure	73	Formation	of	S‐phenyl	cysteine	(SPC)	

Hemoglobin and plasma protein adducts of benzene oxide are not considered sensitive enough 

to monitor environmental exposures (Arnold et al. 2013). Nonetheless, determination of S-

phenyl cysteine levels in combination with short term biomarkers such as (E,E)-muconic acid 

or S-phenyl mercapturic acid might show promise to distinguish workers from occupational 

and non-occupational exposure to benzene (Bechtold & Henderson 1993). 
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5.6.6.3. PROTEIN CONJUGATES DERIVING FROM (E,E)-

MUCONALDEHYDE 

(E,E)-Muconaldehyde-lysine conjugates have not been proven to be formed in vivo upon 

exposure to benzene. Upon the premise of formation of (E,E)-muconaldehyde-lysine 

conjugates in vivo, different reasons argue for and against the employment as biomarkers of 

exposure to benzene. 

Pro: 

1. Specificity towards benzene. (E,E)-Muconaldehyde-lysine conjugates are formed 

by reaction of serum albumin with (E,E)-muconaldehyde. To our knowledge, there 

is neither relevant environmental exposure to (E,E)-muconaldehyde nor another 

environmentally relevant xenobiotic, which leads to formation of Lys(MUC-OH) in 

vivo. Therefore, we expect little background levels in the general population which 

marks (E,E)-muconaldehyde-lysine conjugates specific for exposure to benzene. 

2. Mechanistic information. Analysis of (E,E)-muconaldehyde-lysine conjugates after 

benzene exposure could provide evidence for the formation of (E,E)-

muconaldehyde in vivo. There is currently no other biomarker capable to answer the 

question if (E,E)-muconaldehyde is formed in vivo. 

Contra:  

1. Missing legal requirement for long term biomarker determination. Due to its toxicity, 

benzene exposure in the workplace has to be contained according to German law 

(BAuA 2014). However, samples for benzene biomonitoring have to be taken at the 

end of the work shift, and therefore, short term biomarkers are monitored (ibd.). In 

the case of benzene, urinary benzene, urinary (E,E)-mercapturic acid and urinary 

SPMA are accepted biomarkers of exposure to benzene in the workplace (ibd.). 

German law does not require to monitor human benzene exposures which date back 

more than one work shift. Therefore, analysis of long term biomarkers is not 

required. 

2. Invasive sampling. Since protein conjugates between (E,E)-muconaldehyde and 

serum albumin are not excreted via urine, invasive sampling is necessary for 

biomarker analysis. This is not the case for urinary biomarkers. 

3. Low levels of biomarkers. Even if oxidative ring opening of benzene might account 

for a major pathway of benzene metabolism at environmental concentrations 

(Rappaport et al. 2010), reactivity of (E,E)-muconaldehyde towards thiols such as 
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glutathione (Kline et al. 1993; Henderson et al. 2005) indicates that a considerable 

amount might be consumed before reaching target proteins. Therefore, biomarker 

levels are likely influenced from factors other than benzene concentration such as 

GSH-status. 

4. Dose-response relationship. Ideally the relationship to exposure of a xenobiotic and 

the level of a corresponding biomarker is simply linear. However, (E,E)-

muconaldehyde-lysine conjugates initially bear residual reactivity towards cellular 

nucleophiles due to the presence of an unsaturated aldehyde moiety. Additionally, 

Schiff base formation is complicated due to its dependency on reactant 

concentrations and the loss of water in aqueous media. However, (E,E)-

muconaldehyde-lysine conjugate formation is facilitated at high concentrations of 

(E,E)-muconaldehyde and low (resp. high) concentrations of water (protein). 

Therefore, we assume no linear dose-response relationship between exposure to 

benzene and e.g. formation of Lys(MUC-OH).  

5. Missing stability. Even though Lys(MUC-OH) is stable at physiological conditions, 

we assume degradation upon acidic or alkaline protein hydrolysis. In contrast, S-

phenyl cysteine inherits a superior chemical stability making it suitable for acidic 

protein hydrolysis. 

6. Well documented alternatives. There are many alternative long-term biomarkers 

which have been studied (see above). There is no evidence that analysis of (E,E)-

muconaldehyde-lysine conjugates as biomarker of exposure to benzene bears 

advantage over established biomarkers such as urinary benzene or S-phenyl 

mercapturic acid. 

Therefore (E,E)-muconaldehyde-lysine conjugates might not be suited as biomarkers of 

exposure to benzene. However, legitimacy for research purpose is provided to answer 

mechanistic questions concerning the formation of (E,E)-muconaldehyde following in vivo 

metabolism of benzene.  
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5.7. FUTURE WORK 

5.7.1. PRESENCE OF (E,E)-MUCONALDEHYDE IN VIVO 

In order to verify the presence of (E,E)-muconaldehyde in vivo following benzene exposure, 

analytical methodology of Lys(MUC-OH) has to be improved twofold.  

1. Sample preparation. Residual amino acids and short peptides resulting from enzymatic 

protein hydrolysis need to be removed to obtain low mass spectrometric background 

noise. Since alkaline amino acids lysine, histidine and arginine can be readily separated 

from non-alkaline amino acids and short peptides by cation exchange chromatography 

(Thiele et al. 2008), application of solid phase extraction techniques on the rough 

enzymatic hydrolysate might be a reasonable strategy. After retention under slightly 

acidic conditions, which have Lys(MUC-OH) protonated bearing one net positive 

charge, alkaline amino acids may thereby be eluted comfortably by changing the solvent 

pH above the isoelectric point of lysine. 

2. Sample analysis. Analytical HPLC-MS methodology presented in this work for 

Lys(MUC-OH) required the presence of ammonium acetate in the mobile phase. Future 

efforts targeting the need for buffer in the mobile phase are desirable. However, the use 

of buffer has been shown to be necessary for retention of Lys(MUC-OH) using 

zwitterionic stationary HILIC phases. So abdication thereof needs to be coupled with 

changing the stationary phase, which needs to fulfill one major priority: Satisfactory 

retention of highly polar, alkaline compounds in the presence of non-buffer additives 

tolerable for mass spectrometric analysis. 

Following refinery in analytical methodology, we give great promise to the detection of 

Lys(MUC-OH) following benzene exposure in vivo and thereby finding evidence for the 

formation of (E,E)-muconaldehyde in vivo. 
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5.7.2. EXPLORATION OF MECHANISMS OF BENZENE 

TOXICITY  

5.7.2.1. HAPTEN FORMATION 

The possibility of hapten formation of (E,E)-muconaldehyde as promotor for benzene derived 

myelotoxicity can be excluded by repeated exposure of experimental animals towards (E,E)-

muconaldehyde modified protein, such as serum albumin. After initial sensitization, immune 

response markers should be detected systematically in concert with early signs of myelotoxicity. 

 

5.7.2.2. INHERENT TOXICITY OF LYS(MUC-CHO) 

To answer the question whether the inherent toxicity of Lys(MUC-CHO) might be responsible 

for benzene induced myelotoxicity, animal experiments with Lys(MUC-CHO) as test substance 

need to be carried out. If adverse hematological and cytotoxic parameters can be detected as in 

the case of (E,E)-muconaldehyde, additional evidence would be provided that (E,E)-

muconaldehyde or (E,E)-muconaldehyde-related biological conjugates might bear a 

responsibility in benzene induced myelotoxicity.  

Alternatively, development of a suitable cell culture model for benzene induced myelotoxicity 

could be targeted. However, development of a suitable cell culture model for myelotoxicity of 

benzene is hindered for three main reasons: 

1. Missing mechanistic knowledge. The missing knowledge of cellular and subcellular 

targets of benzene induced myelotoxicity hinders the choice of a suitable bone marrow 

cell type (Whysner et al. 2004; Snyder 2004; Smith 1996). 

2. Requirement for different cell types. Toxicity of benzene requires metabolic activation 

predominantly by CYP2E1 (Gut et al. 1996; Valentine et al. 1996). CYP2E1 is present 

in bone marrow of mice, rats and rabbits, however CYP2E1 activity in these tissues is 

about 0.1 % of the corresponding activity in liver (Bernauer et al. 2000). Therefore, if 

one wants to refrain from working with synthetic metabolites, he has to bring together 

metabolic competence of liver cells as well as the target sensitivity of bone marrow cells 

in a single cell culture model. 

3. Economic considerations. Myelotoxic effects in experimental animals following 

benzene administration have been well documented. To reach this level of biological 

resemblance using in vitro based methods probably requires costly investments for 

development, implementation and maintenance of a suitable cell culture model 

considering the price of experimental animals. 
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Therefore, in vivo studies providing information to the mechanism of toxicity in benzene 

exposed experimental animals seem to be preferable. However, these experiments are 

complicated by the missing stability of Lys(MUC-CHO). That is why studies aiming to 

determine half-life and degradation behavior of Lys(MUC-CHO) need to be taken into account. 

  

5.7.2.3. SELECTIVE UPTAKE OF A TRANSIENT CARRIER OF 

(E,E)-MUCONALDEHYDE INTO BONE MARROW  

Systemic application of caveolin- or clathrin mediated endocytosis inhibitors such as methyl-

β-cyclodextrin or concanavalin A to keep bone marrow cells from taking up potential 

proteinogenic carriers of (E,E)-muconaldehyde would not qualify as legitimate options, since 

other receptor-mediated endocytosis mechanisms in the organism will be inhibited as well (Guo 

et al. 2015). Such a condition would not be sustainable for prolonged toxicological experiments. 

Selective genetic alteration of bone marrow cells resulting in specific PQLC2/LAAT-1, 

caveolin- or clathrin mediated endocytosis receptor knockouts would be preferable. Under the 

assumption that these animals are still viable, exposure to benzene could confirm whether these 

transport mechanisms were involved in benzene derived myelotoxicity.  

Genetic alterations of bone marrow cells in vivo could be achieved either by using in vivo 

hematopoietic stem cell transduction (Richter et al. 2017) or by administration of genetically 

modified hematopoietic stem cells to an experimental animal that has undergone myeloablation 

by whole-body irradiation (Duran-Struuck & Dysko 2009).   
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6. EXPERIMENTAL SECTION 

Chemical structures are drawn using ChemDraw 12.01 from CamebridgeSoft. This thesis has 

been written using Microsoft Word 2016 MSO 32-bit. 

 

6.1. GENERAL 

Proton nuclear magnetic resonance spectra and carbon nuclear magnetic resonance spectra were 

recorded on a Bruker DPX 400 and DPX 600 spectrometer. Signal shifts are given in parts per 

million (δ) relative to the residual proton signal. Signals for 1H NMR coupling constants (J-

values) are given in Hz.  

Low-resolution mass spectra were obtained on an Agilent 6890 N equipped with an Agilent 

7683 injector and an Agilent 5973 inert mass detector. High resolution gas chromatography 

mass spectrometry data (HRGC-MS) were obtained from the organic analysis facility of the 

organic chemistry department at the TU Kaiserslautern on a GCT Premier Micromass from 

Waters (EI, 70 eV).  

Thin layer chromatography was performed on commercially available alumina backed plates 

(25 x 25 cm), coated with silica gel 60 and fluorescence indicator (ALUGRAM SIL G) from 

Macherey-Nagel. Visualization was accomplished using ultraviolet light (254 nm) or heating 

the chromatogram after staining with a solution of 0.1 % (w/v) ninhydrin in 5 % acetic acid in 

butanol. Conventional chromatography was performed on silica gel 60, 63 – 200 µm, whilst 

flash column chromatography was performed on silica gel 60, 40 – 63 µm.  

Dry solvents were stored in glassware that had been thoroughly dried under vacuum for at least 

ten minutes. Dried dichloromethane and chloroform were obtained by refluxing over 

phosphorous pentoxide for three hours. Tetrahydrofuran was dried over molecular sieves (40 

nm).   

All synthetic chemicals were purchased in analytical purity (p.a.) or alternatively highest grade 

available from Sigma-Aldrich, Acros Organics, VWR, Alfa Aesar, Carl Roth and Carbolutions. 

Exemptions are pronase E from streptomyces griseus min. 5.0 DMC-U/mg (Serva), 

aminopeptidase M from porcine kidney (Merck, 164598), prolidase from porcine kidney 

(Sigma Aldrich, P6675), acylase I from Aspergillus melleus (Sigma-Aldrich, 01818), (E,E)-

hexa-2,4-dienal (Alfa Aesar, predominantly trans, trans, 95 %), benzene ሺMerck, ≥99.5 %, 

1017822500) and corn oil (Mazola, “100% reines Kaimöl”). (E,E)-muconaldehyde, Lys(MUC-

CHO), Lys(MUC-OH) and IS were synthesized as a part of this thesis.  
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6.2. UV/VIS-SPECTROSCOPY 

Spectroscopic experiments were conducted on a Cary 300 by Varian using 3 ml quartz glass 

cuvettes 10.00 mm in depth from Hellma for measurements below 350 nm and similar cuvettes 

(OS) or disposable 70 µl micro UV cuvettes from BRAND above 350 nm. 

 

6.3. PREPARATIVE RP-HPLC-UV/VIS 

Preparative reversed phase was conducted on an Agilent 1200 Series HPLC assisted with a 

binary high-pressure gradient system (G1361A), fraction collector (G1364B) and UV/VIS-

multiwavelength detector (MWD G1315A). Two columns have been used: VDS Optilab C18-

SE 250 × 20 mm and VDS Optilab HILIC-Z 250 × 5 mm. 

 

6.4. ANALYTICAL HPLC-UV/VIS 

Analytical HPLC-UV was performed on two different HPLC systems 

 Jasco HPLC system – “Snoopy”: Jasco 1500 equipped with a Jasco MD 2015 UV 

detector, Jasco PU-1580 HPLC pump, Jasco DG-1580-53 3-Line Degasser, Jasco LG-

1580-02 Ternary Gradient Unit and a Jasco AS-1550 autosampler. 

 Agilent HPLC system – “Bert”: Agilent 1200 equipped with an Agilent G1315D UV 

detector, G1316A column oven, G1329A autosampler, G1311A HPLC pump and a 

G1322A degasser. 

 

6.5. ANALYTICAL HPLC-MS/MS 

Mass spectrometric analyses were performed on a PE Sciex (today AB Sciex) API 2000 

equipped with an Agilent 1100er HPLC system using an Agilent G1314A VWD, G1316A 

column oven, G1313A autosampler, G1311A HPLC pump and G1322A degasser.  

Compound optimization was performed by individual compound infusion at concentration of 

200 – 1000 ng/ml at 10 µl/min. 
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6.5.1. LYS(MUC-CHO) 

Lys(MUC-CHO) was analyzed using a Phenomenex Kinetex C18 150 × 4.0 mm, 5 µm, 100 Å. 

The gradient is listed in Table 12. Hardware specific parameters are listed in Table 13. 

Substance specific parameters are listed in Table 14. 

Table	12	RP‐HPLC	gradient	for	Lys(MUC‐CHO)	with	0.1	%	HOAcaq	(A)	and	0.1	%	HOAc	in	CH3CN	(B)	

Time %A % B Flow [ml/min] 

0 95 5 1 

5 95 5 1 

9.25 10 90 1 

10.25 10 90 1 

11 95 5 1 

17.5 95 5 1 

 

Table	13	Hardware	related	parameters	for	analysis	of	Lys(MUC‐CHO)	resulting	from	flow	injection	analysis	
(FIA).	Potentials	are	given	in	eV.	

Parameter value 

CUR 45 

CAD 2 

IS  5500  

TEM 550 

GS1 55 

GS2 60 

 

Table	14	Compound	related	parameters	for	analysis	of	Lys(MUC‐CHO)	resulting	from	substance	specific	
tuning.	Potentials	are	given	in	eV.	

Q1 Q3 Time [ms] DP FP EP CEP CE CXP 

241.131 84.100  400 11 370 6 10 25 12 

241.131 223.100 400 11 370 6 10 13 12 

241.131 130.100 400 11 370 6 10 17 18 
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6.5.2. LYS(MUC-OH) 

Lys(MUC-OH) was analyzed using a VDS Optilab VDSpher PUR HILIC-Z 100 × 2.0 mm, 

5 µm, 100 Å. The gradient is listed in Table 15. Hardware specific parameters are listed in 

Table 16. Substance specific parameters are listed in Table 17. 

Table	15	HILIC‐HPLC	gradient	for	Lys(MUC‐OH)	with	10	mM	NH4OAc,	50	%		acetonitrile	,	pH	=	4.8	(A)	and	
10	mM	NH4OAc,	90	%		acetonitrile	,	pH	=	4.8	(B)		

Time %A % B Flow [ml/min] 

0 0 100 0.2 

2.5 0 100 0.2 

10.5 100 0 0.2 

14.5 100 0 0.2 

15 0 100 0.4 

22 0 100 0.4 

	

Table	16	Hardware	related	parameters	for	analysis	of	Lys(MUC‐OH)	resulting	from	flow	injection	analysis	
(FIA).	Potentials	are	given	in	eV.	

Parameter value 

CUR 55 

CAD 2 

IS  4500  

TEM 550 

GS1 45 

GS2 50 

 

Table	17	Compound	related	parameters	for	analysis	of	Lys(MUC‐OH)	resulting	from	substance	specific	tuning.	
Potentials	are	given	in	eV.	

Q1 Q3 Time [ms] DP FP EP CEP CE CXP 

243.245 79.100 800 11 350 5 12 29 8 

243.245 147.100 800 11 350 5 12 15 22 

243.245 130.200 800 11 350 5 12 19 20 
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6.6. IN VITRO METHODS 

6.6.1. REACTION OF (E,E)-MUCONALDEHYDE WITH 

SINGLE AMINO ACIDS  
Table	18	Solutions	and	preparation	thereof	for	incubation	of	(E,E)‐muconaldehyde	with	single	amino	acids	

Solution Substance Amount 

0.1 M MOPS MOPS +  H2Odd 25 mg ad 1.2 ml 

0.1 M NaH2BO3 B(OH)3+ H2Odd 

8 M NaOH 

618 mg ad 100 ml 

Adjust to pH = 10  

0.1 M NaHCO3 NaHCO3  

H2Odd 

Formic acid 

68 mg 

10 ml 

Adjust to pH = 3  

5 mM Fmoc-Lys-OH Fmoc-Lys-OH 

0.1 M HCl 

2.0 mg 

Ad 1.2 ml 

5 mM Fmoc-Cys-OH Fmoc-Cys-OH 

0.1 M HCl 

2.0 mg 

Ad 1.1 ml 

5 mM Fmoc-His-OH Fmoc-His-OH 

0.1 M HCl 

2.0 mg 

Ad 1.1 ml 

Sample diluent 1 % Formic acidaq  

Acetonitrile 

H2Odd 

1 ml 

1 ml 

6 ml 

 

Table	19	Pipetting	scheme	for	reaction	of	(E,E)‐muconaldehyde	with	single	amino	acids	

Solution Volume/µl 

Buffer 100 

(E,E)-Muconaldehyde 100 

Amino acid 100 each 

H2Odd Ad 1 ml 

 

Reaction of (E,E)-muconaldehyde was performed with single amino acids as well as mixtures. 

Sample blanks were prepared by use of water instead of (E,E)-muconaldehyde. Samples were 

left for 48 h at 37°C at 120 rpm (TH 30, Edmund Bühler), diluted 1:5 with sample diluent and 

filtered over regenerated cellulose (0.2 µm). Samples were stored at 4°C until HPLC-UV 

analysis.  
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6.6.2. REACTION OF (E,E)-MUCONALDEHYDE WITH 

SERUM ALBUMIN 
Table	20	Solutions	and	preparation	thereof	for	incubation	of	(E,E)‐muconaldehyde	with	serum	albumin	

Solution Substance Amount 

20 mg/ml BSA solution Bovine serum albumin (BSA) 

H2Odd 

200 mg 

Ad 10 ml 

0.01 M MUC  (E,E)-Muconaldehyde  

H2Odd 

11 mg  

Ad 10 ml 

0.5 M KH2PO4 buffer  KH2PO4  

H2Odd  

1 M KOH 

14 g 

Ad 0.2 l 

Adjust to pH = 7.4  

0.05 M NaH2BO3 buffer B(OH)3 

H2Odd  

8 M NaOH 

1.6 g 

Ad 0.5 l  

Adjust to pH = 9.0  

1.0 M NaBH4 solution NaBH4 

0.1 M NaOH (4°C) 

40 mg 

Ad 1 ml 

0.05 M NH4HCO3 buffer NH4HCO3 

CaCl2*2 H2O  

H2Odd 

2.0 g 

74 mg (1 mM) 

Ad 0.5 l 

Pronase enzyme diluent 

 

NaOAc  

CaCl2*2 H2O  

H2Odd 

0.1 M HCl 

41 mg (10 mM) 

37 mg (5 mM) 

Ad 50 ml 

Adjust to pH = 7.5  

Pronase  Pronase E lyophil.  

Pronase E enzyme diluent (4°C) 

30 mg 

Ad 1 ml 
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To 800 µl of 20 mg/ml BSA solution is added 100 µl of 0.5 M KH2PO4 buffer and 100 µl of 

(E,E)-muconaldehyde solution. The resulting solution is incubated for 24 hours at 37°C. 

 

The solution is applied to a 10 ml Zeba™ Spin Desalting Column (ThermoFisher, 7 kDa 

MWCO) equilibrated to 0.05 M sodium borate pH = 9 and centrifuged at 1500 × g for 2 minutes 

(Thermo Scietific 2016).  

 

The resulting solution is transferred to a 1.5 ml reaction tube and put on ice, 100 µl of 1.0 M 

NaBH4 solution is added and the reaction is left for 30 minutes with open lids. 

 

The solution is applied to a 10 ml Zeba™ Spin Desalting Column (ThermoFisher, 7 kDa 

MWCO) equilibrated to 0.05 M NH4HCO3 buffer and centrifuged at 1500 × g for 2 minutes 

(Thermo Scietific 2016).  

 

400 µl of the resulting solution is transferred to a 1.5 ml reaction tube, 6 µl of Pronase is added 

(1:50) (w/w) and the reaction mixture is incubated for 24 hours at 37°C.  

 

Afterwards ethanol (-20°C) is added to 66 % (v/v) and the resulting mixture is stored at -20°C 

for at least 30 minutes. The mixture is centrifuged for 10 minutes at 12 000 × g at 4°C. The 

supernatant is stored at 4°C until subjection to HPLC analysis. 
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6.6.3. ONE POT CONVERSION OF Nߙ-ACETYL LYSINE 

METHYL ESTER WITH (E,E)-MUCONALDEHYDE 
Table	21	Solutions	and	preparation	thereof	for	one	pot	conversion	of	Nߙ‐acetyl	lysine	methyl	ester	with	(E,E)‐

muconaldehyde	

Solution Substance Amount 

0.04 M (E,E)-Muconaldehyde  (E,E)-Muconaldehyde  

H2Odd 

44 mg  

Ad 10 ml 

1 M EPPS buffer  4-(2-Hydroxyethyl)-1-

piperazinepropanesulfonic acid  

H2Odd  

1 M KOH 

 

2.52 g 

Ad 10 ml 

Adjust to pH = 8.0  

0.1 M Nߙ‐Acetyl-Lysine-

methyl ester 

Acetyl-Lysine-methyl ester 

hydrochloride 

H2Odd  

 

24 mg 

Ad 1 ml  

0.1 M NaBH4 solution NaBH4 

0.1 M NaOH (4°C) 

40 mg 

Ad 10 ml 

Acylase I   powder, brown, >0.5 U/mg  q.s. 

 

 

To 50 µl of 40 mM (E,E)-muconaldehyde solution in water (740 µl) is added 100 µl of 1 M 

EPPS buffer and 10 µl of 0.1 M Nߙ-acetyl-Lysine-methyl ester solution. The reaction mixture 

is stirred overnight at 37°C at 120 rpm (TH 30, Edmund Bühler). The reaction tube is put on 

ice and 100 µl of 0.1 M NaBH4 solution is added. The reaction tube is left on ice for 30 minutes 

and incubated at 37°C for another 30 minutes. Acylase I (2U) is added and the reaction mixture 

is stirred overnight at 37°C at 120 rpm. Ethanol (-20°C) is added to 66 % (v/v). The mixture is 

centrifuged for 10 minutes at 12 000 × g at 4°C. The supernatant is stored at 4°C until subjection 

to HPLC-UV analysis. 
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6.6.4. FLUORESCAMINE TEST 
Table	22	Solutions	and	preparation	thereof	for	fluorescamine	test	

Solution Substance Amount 

20 mg/ml BSA solution Bovine serum albumin (BSA) 

H2Odd 

200 mg 

Ad 10 ml 

0.5 M HEPPS  3-[4-(2-Hydroxyethyl)-1-

piperazinyl]propanesulfonic acid (HEPPS) 

H2Odd 

8 M NaOH 

636 mg 

 

Ad 5 ml 

Adjust to pH = 8.0 

Fluorescamine solution Fluorescamine 

Acetonitrile 

6 mg 

Ad 6 ml 

0.2 M Glycine  L-Glycine 

H2Odd 

15 mg 

1 ml  

0.1 M NaH2BO3 buffer B(OH)3 

H2Odd  

8 M NaOH 

62 mg 

Ad 10 ml  

Adjust to pH = 8.0  

8 M NaOH NaOH + H2Odd 3.2 g ad 10 ml 

8 M HCl HCl 25 %  q.s. 

Pronase  Pronase E lyophil. + H2Odd 66 mg ad 1 ml 

Aminopeptidase M Aminopeptidase M, crystalline solution.  

Stored at -20°C. 

Prolidase Prolidase lyo. 

0.1 M Glutathionaq  

0.1 M MnCl2 

H2Odd (4°C) 

250 U 

20 µl 

20 µl 

Ad 1 ml 

 

The test is performed according to Table 22. Acidic hydrolysis samples were incubated for 24 h 

at 110°C. Enzymatic hydrolysis samples were first incubated with pronase for 24 h. Incubation 

was continued for 16 h after addition of aminopeptidase M. Prolidase was added last and 

samples were incubated for another 2 h. 
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Table	23	Pipetting	scheme	for	fluorescamine	test	

Sample Substance Volume 

Acidic hydrolysis Blank H2Odd 

8 M HCl  

150 µl 

450 µl 

Acidic hydrolysis BSA 20 mg/ml 

8 M HCl  

150 µl 

450 µl 

Enzymatic hydrolysis Blank H2Odd 

HEPPS pH = 8.0 

0.1 M CaCl2 

0.1 M MnCl2 

Pronase 

Aminopeptidase M 

Prolidase 

895 µl 

50 µl 

10 µl 

10 µl 

10 µl 

15 µl 

10 µl 

Enzymatic hydrolysis BSA 20 mg/ml 

HEPPS pH = 8.0 

0.1 M CaCl2 

0.1 M MnCl2 

Pronase 

Aminopeptidase M 

Prolidase 

895 µl 

50 µl 

10 µl 

10 µl 

10 µl 

15 µl 

10 µl 

 

1. Samples are diluted 1:225 (4 µl ad 900 µl).  

2. 4 µl of each sample is mixed with 90 µl of fluorescamine solution, 15 µl of 0.1 M 

NaH2BO3 buffer, and 191 µl of H2Odd in wells of a flat-bottomed 96-well microplate.  

3. Samples are allowed to react at room temperature for 5 min.  

4. Relative fluorescence intensity (RFI) is measured with ߣex=390 nm and ߣem=475 nm 

(Bantan-Polak et al. 2001). 
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6.6.5. 2,4-DINITROPHENYLHYDRAZINE (DNPH) TEST 
Table	24	Solutions	and	preparation	thereof	for	2,4‐Dinitrophenylhydrazine	(DNPH)	test	

Solution Substance Amount 

DNPH stock solution 2,4-Dinitrophenylhydrazine  

Ethanol 

38 mg 

Ad 100 ml 

DNPH usage solution DNPH stock solution 

HClconc.  

10 ml 

350 µl 

KOH-solution  KOH 

Ethanolaq 80 % (v/v) 

5.0 g 

Ad 50 ml 

0.5 M Hexa-2,4-dienal stock  Hexa-2,4-dienal  

Ethanol 

58 µl 

Ad 1 ml 

0.1 mM Hexa-2,4-dienal usage  Hexa-2,4-dienal stock solution 

Ethanol  

20 µl 

Ad 1000 ml 

	

Table	25	Pipetting	scheme	for	2,4‐Dinitrophenylhydrazine	(DNPH)	test	

Solution Volume (µl) 

Sample tube I II III IV V VI VII VIII IX X 

H2Odd 0 290 280 260 220 140 0 290 150 - 

0.1 mM Hexa-2,4-dienal 0 10 20 40 80 160 300 - - - 

Sample - - - - - - - 10 150 300 

 

1. 300 µl of DNPH usage solution is added to each sample tube, the resulting solution is 

vortexed briefly and incubated for 30 min at 50°C. 

2. 240 µl of KOH-solution is added and the resulting mixture is briefly vortexed, 

afterwards centrifuged for 5 minutes at 13 000 × g. 

3. 700 µl of supernatant is transferred to an empty 1 ml disposable cuvette and absorbance 

is measured at λ = 479 and 425 nm (Yukawa et al. 1993). 
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6.6.6. CELL CULTURE – CYTOTOXICITY VIA ANNEXIN 

V/PROPIDIUM IODIDE STAINING 

Solution Substance Amount 

Annexin Binding Buffer  

(10 × stock) 

HEPES (0.1 M) 

NaCl (1.4 M) 

CaCl2*2 H2O (25 mM)  

BSA (1%) 

H2Odd 

8 M NaOH 

1.2 g 

4.1 g 

185 mg 

500 mg 

Ad 50 ml 

Adjust to pH = 7.4 

PBS (1×) NaCl 

KCl 

NaH2PO4 

KH2PO4 

H2Odd 

1 M NaOH/1 M HCl 

8.0 g 

200 mg 

920 mg 

200 mg 

Ad 1 l 

Ad pH = 7.4 

AnnexinV-FITC Ready to use solution 

MACS Miltenyi Biotec 

 

PI solution Propidium Iodide 

H2Odd 

50 mg 

Ad 1 ml 

 

Cell culture experiments were performed by Viviane Ponath from Institut für Toxikologie at 

Universitätsmedizin Mainz. 

 

The promyelocytic cell line NB4 in cultured in Roswell Park Memorial Institute (RPMI) 

medium containing 10% fetal calf serum (FCS) and 0.5% gentamicin in a humidified incubator 

at 37°C and 5% CO2. 

 

Annexin V/propidium iodide staining allows for simultaneous detection of early apoptotic, late 

apoptotic, and necrotic cells. Fluorescein isothiocyanate (FITC)-labeled Annexin V (MACS 

Miltenyi Biotec) binds to phospholipid phosphatidylserine, which translocates from the inner 

leaflet of the plasma membrane to the outer leaflet in early and late apoptotic cells. Propidium 

iodide is the standard flow cytometric dye used to distinguish viable from nonviable cells. The 

membranes of dead and damaged, necrotic cells are permeable to propidium iodide, but usually 
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negative for Annexin V (viable cells exclude propidium iodide). Late apoptotic cells are 

propidium iodide positive, but additionally stain positive for Annexin V (Noack et al. 2016) 

(Figure 74). 

 

NB4 cells are seeded into 12-well plates at a density of 2 × 105 cells/ml; 24 h later, cells are 

treated with (E,E)-muconaldehyde or Lys(MUC-CHO) for 24 h. Subsequently, cells are 

collected in FACS tubes, put on ice and centrifuged for 5 min at 1200 × g at 4°C. The 

supernatant is aspirated, and the cells resuspended once with cold PBS (1 ml), and centrifuged 

again for 5 min at 1200 × g at 4°C. The supernatant is aspirated, and the cell pellet is 

resuspended in Annexin V Binding Buffer (1×, 50 µl) + AnnexinV-FITC (1.5 µl). Cells are 

incubated for 15 min on ice in the dark. The DNA of the cells is stained with Annexin V Binding 

Buffer (1×, 430 µl) + propidium iodide solution (10 µl). The suspension is vortexed briefly. 

 

Samples are measured directly on a FACSCanto II flow cytometer (BD Biosciences). 

Data is evaluated with the FACSDiva software 7.0 (BD Biosciences) (Noack et al. 2016). 

 
Figure	74	Exemplary	Graph	 for	FACS	analysis	of	a	 cell	population	 stained	with	Propidium	 iodide	 (PI)	and	
AnnexinV‐FITC.	 Early	 apoptotic	 cells	 are	 considered	 to	 die	 from	 apoptosis	 and	 late	 apoptotic	 cells	 are	
considered	to	die	from	necrosis.	Picture	by	Viviane	Ponath.	
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6.7. IN VIVO METHODS 

6.7.1. ANIMAL EXPERIMENT 
Table	26	Solutions	and	preparation	thereof	for	animal	experiment	

Solution Substance Amount 

Benzene 800 mg/kg b.w.  

solution 

Benzene  

 

 

Corn oil  

V(benzene) [µl] =  

1.06*b.w.(mouse [g]) - 4.4 

 

V(corn oil) [µl] =  

250 µl – V(benzene) 

Benzene 400 mg/kg b.w.  

solution 

Benzene  

 

 

Corn oil  

V(benzene) [µl] =  

0.74*b.w.(mouse)(g) - 8.5 

 

V(corn oil) [µl] =  

250 µl – V(benzene) 

Chloralhydrate solution  

(7 %) 

Chloralhydrate 

PBS (1×) 

70 mg 

Ad 1 ml 

PBS (1×)  NaCl 

KCl 

NaH2PO4 

KH2PO4 

H2Odd 

1 M NaOH/1 M HCl 

8.0 g 

200 mg 

920 mg 

200 mg 

Ad 1 l 

Ad pH = 7.4 

 

The animal experiment was authorized by the Landesuntersuchungsamt Rheinland-Pfalz under 

the reference number 23 177-07/A 14-2-002 E 1.2.  

 

Eleven B6C3F1 male mice (~8 weeks of age; 25–30 g) were obtained from Janvier Labs (Genest 

saint isle, France) and left for a minimum of one week at animal facility of the TU 

Kaiserslautern before start of the experiment. Animals were housed one or two per cage in 

polycarbonate cages with hardwood chip bedding and paper tissues. They were given drinking 

water and food ad libitum, kept on a 12 h dark/light cycle, and maintained at about 22°C 

throughout the study. 
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Animals were divided into three groups. Three animals received no benzene, four animals each 

received 400 and 800 mg/kg bodyweight benzene dissolved in corn oil (250 µl) in a single dose 

by gavage. 24 h after treatment animals were anesthetized intraperitoneally with chloralhydrate 

using 100 µl per 10 g bodyweight. The Thorax is opened and 100 µl of Heparin (1000 U/ml, 

Serva, Heidelberg, Germany) is injected into the vena cava inferior after which a blood sample 

is taken with a hypodermic needle (21G) and a disposable syringe. The vena porta is punctuated 

and the liver perfused retrograde with PBS (42°C) until the red color of the liver has vanished. 

The liver is removed, immediately frozen in liquid nitrogen and stored at –80°C. 

 

6.7.2. ISOLATION OF SERUM ALBUMIN 
Table	27	Solutions	and	preparation	thereof	for	isolation	of	serum	albumin	

Solution Substance Amount 

0.9 % NaCl NaCl  

H2Odd 

900 mg 

Ad 100 ml 

0.2 M NaH2BO3 buffer B(OH)3 

H2Odd  

8 M NaOH 

6.2 g 

Ad 0.5 l  

Adjust to pH = 9.0  

1.0 M NaBH4 solution NaBH4 

0.1 M NaOH (4°C) 

40 mg 

Ad 1 ml 

0.5 M sodium citrate Citric acid monohydrate 

H2Odd  

8 M NaOH 

10.5 g 

Ad 100 ml 

Adjust to pH = 4.0 

0.5 M KH2PO4 buffer  KH2PO4  

H2Odd  

1 M KOH 

14 g 

Ad 0.2 l 

Adjust to pH = 7.4  

2 M KCl KCl 

H2Odd  

15 g 

Ad 100 ml 

50 mM NH4HCO3 buffer NH4HCO3 

CaCl2*2 H2O (1 mM) 

H2Odd 

2.0 g 

74 mg  

Ad 0.5 l 

Pronase  Pronase E lyophil.  

H2Odd (4°C) 

20 mg 

Ad 1 ml 

  



EXPERIMENTAL SECTION 

129 

About 0.6 ml of blood is transferred into a 1.5 ml Eppendorf tube and centrifuged for 10 minutes 

at 2500 × g and 4°C. The supernatant (blood plasma) is transferred to a new 2 ml Eppendorf 

tube and stored on ice. The resulting blood cell pellet is washed twice with 0.6 ml of 0.9 % 

sodium chloride solution and centrifuged again for 10 minutes at 2500 × g and 4°C.  

The combined supernatants are centrifuged for 3 minutes at 9000 × g and 4°C.  

 

The supernatant is applied to a 10 ml Zeba™ Spin Desalting Column (ThermoFisher, 7 kDa 

MWCO) equilibrated to 0.2 M sodium borate pH = 9 and centrifuged at 1500 × g for 2 minutes 

(Thermo Scietific 2016). 100 µl of 1.0 M NaBH4 solution is added and the solution left on ice 

for 30 minutes.  

 

The resulting solution is diluted to a final volume of 10 to 15 ml with 50 mM sodium citrate 

pH = 4.0 and applied to a 2 ml Blue Sepharose CL-6B column equilibrated to 50 mM sodium 

citrate pH = 4.0 (GE Healthcare Life Sciences 2013). The column is washed with 10 ml of 

50 mM sodium citrate pH = 4.0 and eluted with 10 ml of 1.6 M KCl, 50 mM KH2PO4, pH = 7.0. 

Protein content of fractions is checked by absorbance measurement at ߣ	280 = nm. 

 

The resulting solution is applied to a 20 ml protein concentrator (ThermoFisher, 30 kDa MWCO, 

88531) and concentrated according to the manufacturers protocol at 4700 × g to ~ 0.5 ml. The 

solution is diluted twice to 20 ml with 50 mM NH4HCO3 buffer and concentrated again to a 

final protein concentration of 25 mg/ml.  

 

Pronase is added to a final concentration of 2 mg/ml. The solution is stirred for 72 h at 40°C at 

120 rpm (TH 30, Edmund Bühler). Afterwards ethanol (-20°C) is added to 80 % (v/v) and the 

resulting mixture is stored at -20°C for at least 30 minutes. The mixture is centrifuged for 10 

minutes at 12 000 × g at 4°C. The supernatant is concentrated to 100 µl by vacuum 

centrifugation. Ethanol (100 µl) is added, centrifuged for 5 minutes at 12 000 × g and the 

supernatant is stored at 4°C until subjection to HPLC-ESI+-MS/MS analysis. 
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6.8. SYNTHESES 

6.8.1. SYNTHESIS OF N-((E)-HEX-2-EN-1-YLIDENE)-1-

PHENYLMETHANAMINE 

 

To a solution of benzyl amine (441 µl, 4.0 mmol) in trimethyl orthoformate (8 ml) is added (E)-

hexa-2-enal (472 µl, 4.0 mmol) after five minutes. The reaction mixture is stirred for 8 hours, 

taken up in diethyl ether (25 ml) and extracted with water (3 x 50 ml). The organic extract is 

dried over sodium sulfate and the solvent is removed in vacuo. 

 
1H NMR (400 MHz, CHLOROFORM-d) ߜ ppm 0.88 (t, J=7.40 Hz, 3 H) 1.42 (sxt, J=7.38 Hz, 

2 H) 2.09 - 2.17 (m, 2 H) 4.56 (s, 2 H) 6.11 - 6.27 (m, 2 H) 7.07 - 7.26 (m, 5 H) 7.90 (d, J=8.03 

Hz, 1 H) 
13C NMR (101 MHz, CHLOROFORM-d) ߜ ppm 13.66, 21.69, 34.63, 65.00, 126.89, 128.00, 

128.45, 130.68, 139.34, 146.02, 163.70  

 

6.8.2. SYNTHESIS OF ((2,4)-HEXA-2,4-DIENE-1,6-

DIYLIDENE)BIS(1-PHENYLMETHANAMINE) 

 

To a solution of benzylamine (104 µl, 0.94 mmol) in trimethyl orthoformate (2 ml) is added 

slowly a solution of (E,E)-muconaldehyde (52 mg, 0.47 mg) in trimethyl orthoformate (1 ml). 

The reaction mixture is stirred for 8 hours, the solvent is removed in vacuo and the crude 

product is taken up in diethyl ether (2 ml) and added to hexane (20 ml) at -20°C for 

crystallization. 

 
1H NMR (400 MHz, CHLOROFORM-d) ߜ ppm 4.71 (s, 4 H) 6.51 - 6.66 (m, 2 H) 6.71 - 6.85 

(m, 2 H) 7.22 - 7.41 (m, 10 H) 8.06 (d, J=8.91 Hz, 2 H) 
13C NMR (101 MHz, CHLOROFORM-d) ߜ ppm 65.39, 127.10, 128.05, 128.55, 135.35, 138.77, 

139.84, 162.59 
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6.8.3. SYNTHESIS OF (E,E)-N-BENZYLHEPTA-2,4-DIEN-1-

AMINE 

 

To a solution of benzylamine (1.0 mmol, 111 µl) in dichloroethane (4 ml) is slowly added (E,E)-

hexa-2,4-dienal (1.0 mmol, 116 µl) in dichloroethane (2 ml). Afterwards, sodium 

triacetoxyborohydride (1.4 mmol, 312 mg) is added and the reaction mixture is stirred overnight. 

The reaction mixture is quenched with saturated sodium bicarbonate solution (5 ml), and 

extracted with diethyl ether (2 × 10 ml). The combined organic extracts are dried over 

magnesium sulfate and the solvent is removed in vacuo.  

 
1H NMR (400 MHz, CHLOROFORM-d) ߜ ppm 1.71 (d, J=6.78 Hz, 3 H) 3.24 (d, J=6.40 Hz, 

2 H) 3.74 (s, 2 H) 5.57 – 5.66 (m, 2 H) 5.91 - 6.16 (m, 2 H) 7.19 - 7.29 (m, 5 H) 
13C NMR (100 MHz, CHLOROFORM-d) ߜ ppm 18.03, 50.83, 53.20, 126.87, 128.13, 128.35, 

128.73, 129.06, 131.07, 131.97, 140.24  

 

6.8.4. SYNTHESIS OF (E,E)-DIMETHYL HEXA-2,4-

DIENEDIOATE (1) 

 

Acetyl chloride (30 ml) is added slowly to an ice-cooled solution of (E,E)-muconic acid (10.0 

g, 69 mmol) in methanol (200 ml), stirred at that temperature for 5 minutes and then refluxed 

for 2 h. Afterwards the reaction mixture is cooled to room temperature and the solvent removed 

under reduced pressure to yield the title compound (11.5 g, 98 %) as a white solid. 

 
1H NMR (400 MHz, CHLOROFORM-d) δ 3.79 (s, 6 H), 6.16 - 6.26 (m, 2 H), 7.28 - 7.38 (m, 

2 H) 
13C NMR (100 MHz, CHLOROFORM-d) δ 51.9, 128.0, 141.0, 166.3 

HRMS for C8H10O4: Calc. 170.0579; found 170.0587 (M+) 
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6.8.5. SYNTHESIS OF (2,4)-HEXA-2,4-DIENE-1,6-DIOL (2) 

 

To an ice-cooled solution of (E,E)-dimethyl hexa-2,4-dienedioate (3.23 g, 19.0 mmol) in 

chloroform (190 ml) is added DIBAL-H (1.0 M in toluene, 95 ml) and the reaction mixture is 

stirred at 0°C for one hour. The reaction mixture is treated dropwise with methanol (19 ml) and 

stirred for additional 15 min at 0°C. Saturated aqueous sodium potassium tartrate (150 ml) is 

added to the reaction mixture and stirred at ambient temperature for one hour. The aqueous 

layer is extracted with ethyl acetate (3 x 100 ml). The combined organic layers are dried over 

MgSO4 and concentrated. The title compound crystallizes at -20°C as colorless needles (2.05 

g, 18.0 mmol, 95 %). 

 
1H NMR (400 MHz, METHANOL-d4) δ ppm 4.08 - 4.09 (d, J=5.27 Hz, 4 H) 5.74 - 5.84 (m, 2 

H) 6.21 - 6.34 (m, 2 H) 
13C NMR (101 MHz, METHANOL-d4) δ ppm 63.4, 131.5, 133.6  

HRMS for C6H10O2: Calc. 114.0681; found 114.0688 (M+) 
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6.8.6. SYNTHESIS OF (E,E)-6-((TERT-

BUTYLDIPHENYLSILYL)OXY)HEXA-2,4-DIEN-1-OL (3) 

 

To a solution of (E,E)-hexa-2,4-diene-1,6-diol (913 mg,  8.2 mmol) in dry DMF (25 ml) at 

ambient temperature is added diisopropyl ethyl amine (82 mmol) and tert-butyldiphenylsilyl 

chloride (2.4 g, 8.6 mmol). The reaction mixture is stirred for 12 h followed by quenching with 

water (160 ml) and dilution with ethyl acetate (160 ml). The organic layer is separated and the 

aqueous layer is extracted with ethyl acetate (3 x 400 ml). The combined organic layers are 

extracted with 2 N aqueous hydrogen chloride solution (2 x 160 ml), saturated sodium 

bicarbonate solution (160 ml) and brine (160 ml), dried over magnesium sulfate, concentrated 

and the crude product is purified by flash column chromatography (25 % ethyl acetate in 

hexane) to yield the title compound (1.8 g, 45 %) as an oil. 

 
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.08 (s, 9 H) 4.17 - 4.30 (m, 4 H) 5.70 - 5.91 

(m, 2 H) 6.20 - 6.39 (m, 2 H) 7.32 - 7.53 (m, 6 H) 7.61 - 7.77 (m, 4 H) 
13C NMR (101 MHz, CHLOROFORM-d) δ ppm 19.2, 26.8, 63.4, 64.0, 127.7, 128.8, 129.4, 

131.1, 131.3, 132.9, 133.6, 135.1 

HRMS for C22H28O2Si: Calc. 352.1859; found 334.1752 (M+
 - H2O) 
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6.8.7. SYNTHESIS OF (E,E)-6-((TERT-

BUTYLDIPHENYLSILYL)OXY)HEXA-2,4-DIENAL (4) 

 

To a solution of (2,4)-6-((tert-butyldiphenylsilyl)oxy)hexa-2,4-dien-1-ol (1.7 g, 4.9 mmol) in 

dichloromethane (66 ml) at ambient temperature is added manganese oxide (4.8 g, 49 mmol). 

The reaction mixture is stirred for three hours, filtered and concentrated in vacuo to yield the 

title compound as a white solid (1.4 g, 82 %). 

 
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.10 (s, 9 H) 4.37 (d, J=2.13 Hz, 2 H) 6.12 - 

6.22 (m, 1 H) 6.27 - 6.36 (m, 1 H) 6.61 - 6.73 (m, 1 H) 7.09 - 7.20 (m, 1 H) 7.36 - 7.50 (m, 6 

H) 7.68 (dd, J=7.91, 1.51 Hz, 4 H) 9.59 (d, J=8.03 Hz, 1 H) 
13C NMR (101 MHz, CHLOROFORM-d) δ ppm 19.25, 26.75, 63.55, 126.83, 127.78, 129.86, 

131.26, 133.03, 135.44, 143.84, 151.68, 193.87 

HRMS for C22H26O2Si: Calc. 350.1702; found 350.1672 (M+) 
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6.8.8. SYNTHESIS OF Nߙ-BOC-LYS(Z)-OTBU (5) 

 

To a solution of H-Lys(Z)-OtBu*HCl (5.1 g, 13.4 mmol) in chloroform (40 ml) is added sodium 

bicarbonate (1.2 g, 14.2 mmol) in water (30 ml) and stirred vigorously. After 15 minutes di-

tert-butyl dicarbonate (2.9 g, 13.4 mmol) in chloroform (20 ml) is added and the reaction 

mixture is refluxed for 1.5 hours. The reaction mixture is cooled to room temperature, the 

organic layer is separated and the aqueous layer is extracted with chloroform (2 x 40 ml). The 

combined organic extracts are dried over sodium sulfate, concentrated in vacuo and the crude 

product is purified by flash column chromatography (25 % ethyl acetate in hexane) to yield the 

title compound (5.5 g, 98 %) as an oil. 

 
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.30 - 1.38 (m, 2 H) 1.41 (s, 9 H) 1.43 (s, 9 H) 

1.46 - 1.53 (m, 2 H) 1.53 - 1.65 (m, 1 H) 1.65 - 1.80 (m, 1 H) 3.14 (q, J=6.36 Hz, 2 H) 4.06 - 

4.18 (m, 1 H) 5.06 (s, 2 H) 5.20 (d, J=6.40 Hz, 2 H) 7.20 - 7.38 (m, 5 H) 
13C NMR (101 MHz, CHLOROFORM-d) δ ppm 22.11, 27.74, 28.09, 29.13, 32.23, 40.43, 

53.51 , 66.24, 79.30, 81.48, 127.78, 127.84, 128.22, 136.45, 155.29, 156.29, 171.76 

HRMS for C23H36N2O6: Calcd 436.2573; found 436.2594 (M+) 
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6.8.9. SYNTHESIS OF Nߙ-BOC-LYS-OTBU (6) 

 

To a solution of Nߙ-Boc-Lys(Z)-OtBu (5.8 g, 13.8 mmol) in ethanol (50 ml, technical grade) is 

added 10 % palladium on carbon (480 mg) and hydrogen gas is let in. After one hour, the 

solution is filtered, concentrated in vacuo to yield the title compound (3.9 g, 93 %) as an oil. 
 

1H NMR (400 MHz, METHANOL-d4) δ ppm 1.39 - 1.48 (m, 2 H) 1.51 (s, 9 H) 1.53 (s, 9 H) 

1.56 - 1.86 (m, 4 H) 2.69 (t, J=6.90 Hz, 2 H) 4.01 (dd, J=8.78, 5.02 Hz, 1 H) 
13C NMR (101 MHz, METHANOL-d4) δ ppm 24.37, 28.44, 28.92, 32.66, 33.50, 42.41, 55.89, 

80.42, 82.49, 158.20, 173.91 

HRMS for C15H30N2O4: Calc. 302.2206; found 302.2183 (M+) 
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6.8.10. SYNTHESIS OF (S)-TERT-BUTYL 2-((TERT-

BUTOXYCARBONYL)AMINO)-6-(((E,E)-6-((TERT-

BUTYLDIPHENYLSILYL)OXY)HEXA-2,4-DIEN-1-

YL)AMINO)HEXANOATE (7) 

 

To a solution of Nߙ-Boc-Lys-OtBu (500 mg, 1.7 mmol) in dichloroethane (20 ml) is slowly 

added a solution of (E,E)-6-((tert-butyldiphenylsilyl)oxy)hexa-2,4-dienal (580 mg, 1.7 mmol) 

in dichloroethane (20 ml). After addition is completed, sodium triacetoxyborohydride (536 mg, 

2.4 mmol) is added and the solution is stirred for 24 h. Saturated sodium bicarbonate solution 

(10 ml) is added and the mixture is stirred for 10 minutes. The layers are separated, and the 

aqueous layer is extracted with chloroform (2 x 20 ml). The combined organic extracts are dried 

over sodium sulfate and concentrated. The crude product is purified by column chromatography 

(20 % ethanol in ethyl acetate containing 1 % triethylamine) to yield the title compound (437 

mg, 40 %) as an oil. 

 
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.04 - 1.09 (m, 9 H) 1.27 - 1.40 (m, 2 H) 1.45 

(s, 9 H) 1.47 (s, 9 H) 1.49 - 1.70 (m, 4 H) 1.70 - 1.92 (m, 2 H) 2.62 (t, J=7.15 Hz, 2 H) 3.29 (d, 

J=6.27 Hz, 2 H) 4.17 (d, J=5.52 Hz, 1 H) 4.24 (d, J=4.52 Hz, 2 H) 5.07 (d, J=8.28 Hz, 1 H) 

5.67 - 5.78 (m, 2 H) 6.12 - 6.36 (m, 2 H) 7.34 - 7.46 (m, 6 H) 7.63 - 7.78 (m, 4 H) 
13C NMR (101 MHz, CHLOROFORM-d) δ ppm 19.21, 22.89, 26.77, 27.98, 28.31, 29.56, 

32.77, 48.96, 51.39, 53.84, 64.02, 77.20, 79.54, 81.70, 127.62, 129.26, 129.60, 131.12, 131.33, 

131.67, 133.59, 135.49, 155.37, 171.98  

HRMS for C28H38N2O2Si: Calc. 636.3958; found 462.2703 (M+ – C4H9O – C5H9O2), 405.1998 

(M+ – C4H9O – C5H9O2 – C4H9), 327.1529 (M+ – C4H9O – C5H9O2 – C4H9 – C6H6) 
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6.8.11. SYNTHESIS OF (S)-TERT-BUTYL 2-((TERT-

BUTOXYCARBONYL)AMINO)-6-(((E,E)-6-

HYDROXYHEXA-2,4-DIEN-1-YL)AMINO)HEXANOATE 

(8) 

 

To a solution of (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-((tert-

butyldiphenylsilyl)oxy)hexa-2,4-dien-1-yl)amino)hexanoate (437 mg, 0.67 mmol) in THF (3 

ml) is added tetra butyl ammonium fluoride (TBAF) (0.8 mmol, 800 µl of a 1.0 M solution in 

THF). The solution is stirred overnight. Saturated sodium bicarbonate solution is added and the 

aqueous phase is extracted three times with chloroform. The combined organic layers are dried 

over sodium sulfate and concentrated in vacuo. Purification is achieved by flash 

chromatography (40 % isopropanol in toluene containing 1 % triethylamine) to yield the title 

compound as a faint yellow oil (234 mg, 90 %). 

 
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.25 - 1.40 (m, 2 H), 1.44 (s, 9 H) 1.46 (s, 9 

H) 1.50 - 1.84 (m, 4 H) 2.62 (t, J=7.28 Hz, 2 H) 3.31 (d, J=6.53 Hz, 2 H) 4.09 - 4.25 (m, 3 H) 

5.10 (d, J=8.16 Hz, 1 H) 5.70 - 5.87 (m, 2 H) 6.14 - 6.31 (m, 2 H) 
13C NMR (101 MHz, CHLOROFORM-d) δ ppm 0.97, 22.84, 27.97, 28.30, 29.02, 32.68, 48.67, 

51.04, 53.82, 62.94, 79.59, 81.75, 130.36, 130.69, 131.83, 132.25, 155.40, 171.95 

HRMS for C21H38N2O5: Calc. 398.2781; found 398.2746 (M+), 380.2657 (M+ - H2O) 
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6.8.12. SYNTHESIS OF (S)-TERT-BUTYL 2-((TERT-

BUTOXYCARBONYL)AMINO)-6-((6-

HYDROXYHEXYL)AMINO)HEXANOATE (9) 

 

To a solution of (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-hydroxyhexa-2,4-

dien-1-yl)amino)hexanoate (50 mg, 0.13 mmol) in ethanol (4 ml, technical grade) is added 10 % 

palladium on carbon (50 mg) and hydrogen gas is let in. After one hour, the solution is filtered, 

concentrated in vacuo and the crude product is purified by column chromatography (80 % 

isopropanol in toluene containing 1 % triethylamine) to yield the title compound (6.4 mg, 12 %) 

as an oil. 

 
1H NMR (600 MHz, CHLOROFORM-d) ߜ ppm 1.32 - 1.82 (m, 14 H) 1.46 (s, 9 H) 1.48 (s, 9 

H) 2.68 - 2.74 (m, 4 H) 3.66 (t, J=6.42 Hz, 2 H) 4.15 – 4.19 (m, 1 H) 5.15 (d, J=8.07 Hz, 1 H) 
13C NMR (151 MHz, CHLOROFORM-d) ߜ ppm 22.83, 25.42, 26.73, 28.00, 28.33, 28.62, 

32.42, 32.69, 48.98, 49.10, 53.79, 62.57, 79.65, 81.84, 155.46, 171.91 
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6.8.13. SYNTHESIS OF (S)-TERT-BUTYL 2-((TERT-

BUTOXYCARBONYL)AMINO)-6-(((E,E)-6-

HYDROXYHEXA-2,4-DIEN-1-YL)AMINO)HEXANOATE 

(10) 

 

To a solution of (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-hydroxyhexa-2,4-

dien-1-yl)amino)hexanoate (300 mg, 0.75 mmol) in chloroform (10 ml) is added a solution of 

sodium bicarbonate (30 mg) in water (3 ml). Di-tert-butyl dicarbonate (167 mg, 0.75 mmol) in 

chloroform (2 ml) is added and the reaction mixture is refluxed for 1.5 hours. The reaction 

mixture is cooled to room temperature, the organic layer is separated and the aqueous layer is 

extracted with chloroform (2 x 5 ml). The combined organic extracts are dried over sodium 

sulfate, concentrated in vacuo and the crude product is purified by flash column 

chromatography (40 % ethyl acetate in hexane) to yield the title compound (285 mg, 76 %) as 

an oil. 

 
1H NMR (600 MHz, CHLOROFORM-d) δ ppm 1.19 - 1.38 (m, 2 H) 1.43 (s, 9 H) 1.44 (s, 9 H) 

1.45 (s, 9 H) 1.47 - 1.82 (m, 4 H) 3.11 – 3.16  (br. d, 2 H) 3.78 - 3.84 (br. d., 2 H) 4.04 - 4.15 

(m, 1 H) 4.17 (d, J=5.45 Hz, 2 H) 5.01 – 5.09 (br. d., 1H) 5.62 (br. s., 1 H) 5.75 - 5.85 (m, 1 H) 

6.09 (br. s., 1 H) 6.24 (dd, J=14.63, 10.80 Hz, 1 H) 
13C NMR (151 MHz, CHLOROFORM-d) δ ppm 22.35, 27.95, 28.28, 28.40, 29.63, 32.37, 

46.20, 48.80, 53.83, 63.09, 79.45, 79.52, 81.63, 129.69, 130.39, 130.90, 131.98, 155.37, 

155.44, 171.94  
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6.8.14. SYNTHESIS OF (S)-TERT-BUTYL 6-((TERT-

BUTOXYCARBONYL)((E,E)-6-OXOHEXA-2,4-DIEN-1-

YL)AMINO)-2-((TERT-

BUTOXYCARBONYL)AMINO)HEXANOATE (11) 

 

To a solution (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-hydroxyhexa-2,4-

dien-1-yl)amino)hexanoate (250 mg, 0.50 mmol) in dichloromethane (25 ml) is added 

manganese dioxide (500 mg, 5 mmol) and the reaction mixture is stirred vigorously for three 

hours. The reaction mixture is filtered and concentrated to give the title compound (175 mg, 

70 %). 

 
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.21 - 1.39 (m, 2 H) 1.42 (s, 9 H) 1.44 - 1.48 

(m, 18 H) 1.49 - 1.90 (m, 4 H) 3.17 (br. s., 2 H) 3.93 (d, J=15.43 Hz, 2 H) 4.13 (br. s., 1 H) 4.95 

- 5.13 (m, 1 H) 6.12 (dd, J=15.37, 7.97 Hz, 1 H) 6.15 - 6.25 (m, 1 H) 6.27 - 6.42 (m, 1 H) 7.10 

(dd, J=15.25, 10.73 Hz, 1 H) 9.54 – 9.56 (d, J=8.03 Hz, 1 H) 
13C NMR (101 MHz, CHLOROFORM-d) δ ppm 22.30, 27.91, 28.23, 28.31, 29.58, 32.40, 

46.79, 48.34, 48.77, 53.70, 79.48, 79.86, 81.66, 129.06, 131.44, 141.08, 151.08, 155.31, 171.80, 

193.62 
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6.8.15. SYNTHESIS OF (E,E)-MUCONALDEHYDE (12) 

 

To a solution of (E,E)-hexa-2,4-diene-1,6-diol (243 mg, 2.1 mmol) in acetonitrile (25 ml) is 

added manganese(IV)-oxide (4 g, 42 mmol, 90 %) and the reaction mixture is stirred at room 

temperature for 45 min. Reaction progress is monitored via TLC (25 % ethyl acetate in hexane). 

After 45 min, the reaction mixture is filtered and concentrated to yield the title compound (151 

mg, 1.40 mmol, 64 %) as a bright yellow solid.  

 
1H NMR (400 MHz, CHLOROFORM-d) d ppm 6.39 - 6.65 (m, 2 H) 7.19 - 7.39 (m, 2 H) 9.72 

(d, J=7.65 Hz, 2 H) 
13C NMR (101 MHz, CHLOROFORM-d) δ ppm 137.9, 146.4, 192.5 

HRMS for C6H6O2: Calc. 110.0368; found 110.0370 (M+) 

 

6.8.16. SYNTHESIS OF (S)-2-AMMONIO-6-((6-

HYDROXYHEXYL)AMINO)HEXANOATE (IS) 

 

(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-((6-hydroxyhexyl)amino)hexanoate (6.4 mg, 

16 µmol) is taken up in DCl (0.5 ml, 1.0 M in D2O) and left at ambient temperature for 31 h. 

The solvent is removed in vacuo to give the title compound as yellow oil (4.7 mg, 88 %). 

 
1H NMR (400 MHz, DEUTERIUM OXIDE) ߜ ppm 0.85 - 1.58 (m, 14 H) 2.48 - 2.61 (m, 4 H) 

3.09 (t, J=6.65 Hz, 2 H) 3.53 + 3.63 (t, J=6.40 Hz, 1 H)  
13C NMR (101 MHz, ACETONITRILE-d3) ߜ ppm 22.32, 25.28, 25.87, 26.22, 29.97, 30.40, 

30.42, 31.69, 48.38, 53.25, 62.46, 172.44 

HPLC-ESI+-MS/MS: 247.2  202.2, 129.9, 84.0 
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6.8.17. SYNTHESIS OF (S)-2-AMMONIO-6-(((E,E)-6-

HYDROXYHEXA-2,4-DIEN-1-YL)AMINO)HEXANOATE 

(LYS(MUC-OH)) 

 

To a solution of (S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-6-(((E,E)-6-((tert-

butyldiphenylsilyl)oxy)hexa-2,4-dien-1-yl)amino)hexanoate (10 mg, 16 µmol) in dioxane (0.5 

ml) is added a aqueous solution of perchloric acid (0.5 ml, 4.0 M)  and the solution is left at 

4°C for 20 h. An ice cold aqueous solution of potassium hydroxide (1 ml, 2.0 M) is added and 

the solution is left at 4°C for 20 minutes following by centrifugation for 20 min at 4°C and 

9 000 × g. The supernatant is purified by preparative hydrophilic interaction liquid 

chromatography using the following linear gradient using 0.1 % acetic acid (A) and acetonitrile 

(B) as mobile phase (Table 28). 

 

Table	28	Preparative	HPLC	gradient	for	(S)‐2‐ammonio‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐
yl)amino)hexanoate	with	0.1	%	acetic	acid	(A)	and	acetonitrile	(B)		

Time % B flow 

0 90 1 

2 90  5 

5 90 5 

9 50 5 

10 50 5 

 

1H NMR (400 MHz, D2O+ ACETONITRILE-d3)  ppm 1.29 - 1.50 (m, 2 H) 1.59 - 1.71 (m, 2 

H) 1.78 - 1.86 (m, 2 H) 2.93 - 3.03 (m, 2 H) 3.63 (d, J=7.28 Hz, 2 H) 3.67 (m, 1 H) 4.10 (d, 

J=5.52 Hz, 2 H) 5.67 (dt, J=15.00, 7.43 Hz, 1 H) 5.93 (dt, J=15.31, 5.65 Hz, 1 H) 6.21 - 6.32 

(m, 1 H) 6.38 - 6.52 (m, 1 H) 

13C NMR (101 MHz, D2O+ACETONITRILE-d3)  ppm 21.14, 24.84, 29.47, 45.75, 48.34, 

54.07, 61.15, 120.78, 128.79, 134.40, 137.60, 174.09 

 max(HPLC-UV/VIS) = 229 nmߣ

HPLC-ESI+-MS/MS: 243.2  147.1, 130.0, 96.9, 84.0, 79.1. 
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6.8.18. SYNTHESIS OF (S)-2-AMMONIO-6-(((E,E)-6-

OXOHEXA-2,4-DIEN-1-YL)AMINO)HEXANOATE 

(LYS(MUC-CHO)) 

 

To a solution of (S)-tert-butyl 6-((tert-butoxycarbonyl)((E,E)-6-oxohexa-2,4-dien-1-yl)amino)-

2-((tert-butoxycarbonyl)amino)hexanoate (22.5 mg, 45 µmol) in dioxane (0.5 ml) is added a 

aqueous solution of perchloric acid (0.5 ml, 4.0 M)  and the solution is left at 4°C for 20 h. An 

ice cold aqueous solution of potassium hydroxide (1 ml, 2.0 M) is added and the solution is 

centrifuged for 20 min at 4°C and 9 000 × g. The crude product is purified by preparative 

reversed phase high pressure liquid chromatography using the following linear gradient using 

0.1 % acetic acid (A) and acetonitrile (B) as mobile phase (Table 29). 

 

Table	29	Preparative	HPLC	gradient	for	(S)‐2‐ammonio‐6‐(((E,E)‐6‐oxohexa‐2,4‐dien‐1‐yl)amino)hexanoate	
with	0.1	%	acetic	acid	(A)	and	acetonitrile	(B)	

Time % B flow 

0 5 1 

3 5  15 

7 5 15 

11.5 95 15 

13 95 15 

 
1H NMR (400 MHz, H2O+D2O+ACETIC ACID-d4) δ ppm 1.35 - 2.0 (m, 6 H) 3.01 - 3.07 (m, 

2 H) 3.80 (d, J=7.03 Hz, 2 H) 3.96 (t, J=6.53 Hz, 1 H) 6.23 - 6.36 (m, 2 H) 6.72 (dd, J=15.31, 

10.79 Hz, 1 H) 7.37 (dd, J=15.31, 10.79 Hz, 1 H) 9.45 (d, J=8.03 Hz, 1 H) 
13C NMR (151 MHz, H2O+D2O+ACETIC ACID-d4) δ ppm 20.91, 24.47, 28.81, 46.01, 47.75, 

52.61, 132.03, 132.22, 134.45, 151.94, 168.31, 197.41 

 max(HPLC-UV/VIS) = 265 nmߣ

2,4-Dinitrophenylhydrazine-reactivity: positive  

HPLC-ESI+-MS/MS: 241.1  223.2, 178.2, 130.2, 84.2 
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7. DIRECTORIES 

7.1. TABLE OF ABBREVIATIONS 

Abbreviation Translation 

BSA Bovine serum albumin 

Boc tert-Butyloxycarbonyl 

CAT Catechol (o-Dihydroxybenzen) 

Cf. (Lat. conferatur) eng. compare; reference to experiment number in the 

digital attachment 

CYP Cytochrom P-450 

dd Distilled twice 

DMSO Dimethylsulfoxide 

EFSA European Food Safety Authority 

Est. Estimated 

FAO Food and Agriculture Organization of the United Nations 

GS-HQ (Glutathion-S-yl)-hydroquinone 

GSH Glutathion (l-γ-Glutamyl-l-cysteinylglycin) 

HILIC Hydrophilic interaction liquid chromatography 

HQ Hydroquinone (p-Dihydroxybenzene) 

i.e. (Lat. id est) eng. that means 

Ibd. (Lat. ibidem) eng. in the same place; referring to the literature cited 

before 

IS (S)-2-Ammonio-6-((6-hydroxyhexyl)amino)hexanoate 

ME/MSE Refers to the corresponding reaction number in the electronic attachment 

Mol. Eq. Molar equivalent 

MOPS 3-(N-morpholino)propanesulfonic acid 

NaBH(OAc)3 Sodium triacetoxyborohydride  

Lys L-Lysine 

Lys(MUC-CHO) (S)-2-Ammonio-6-(((E,E)-6-oxohexa-2,4-dien-1-yl)amino)hexanoate 

Lys(MUC-OH) (S)-2-Ammonio-6-(((E,E)-6-hydroxyhexa-2,4-dien-1-

yl)amino)hexanoate 

OtBu tert-Butyl ester 

PH Phenol 
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q.s. (Lat. quantum satis) eng. as much as needed 

RP Reversed phase 

ROS Reactive oxygen species 

sc. (Lat. scilicet) eng. which means 

SDS-PAGE Sodium dodecyl sulfate - polyacrylamide gel electrophoresis 

TBAF Tetra butyl ammonium fluoride 

TLC Thin layer chromatography 

USA United States of America 

WHO World Health Organization 

Z Benzyloxycarbonyl 
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8. ATTACHMENT 

 

Figure	75	1H	NMR	spectrum	of	((E)‐hex‐2‐en‐1‐ylidene)‐1‐phenylmethanamine,	400	Mhz	
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Figure	76	13C	NMR	spectrum	of	((E)‐hex‐2‐en‐1‐ylidene)‐1‐phenylmethanamine,	100	Mhz	
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Figure	77	1H	NMR	spectrum	of	((E,E)‐hexa‐2,4‐diene‐1,6‐diylidene)bis(1‐phenylmethanamine),	400	Mhz	
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Figure	78	13C	NMR	spectrum	of	((E,E)‐hexa‐2,4‐diene‐1,6‐diylidene)bis(1‐phenylmethanamine),	100	Mhz	
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Figure	79	1H	NMR	spectrum	of	(E,E)‐N‐benzylhepta‐2,4‐dien‐1‐amine,	400	Mhz	
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Figure	80	13C	NMR	spectrum	of	(E,E)‐N‐benzylhepta‐2,4‐dien‐1‐amine,	100	Mhz	



ATTACHMENT 

161 

 

Figure	81	1H	NMR	spectrum	of	(E,E)‐dimethyl	hexa‐2,4‐dienedioate,	400	Mhz 
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Figure	82	13C	NMR	spectrum	of	(E,E)‐dimethyl	hexa‐2,4‐dienedioate,	100	Mhz 
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Figure	83	1H	NMR	spectrum	of	(E,E)‐hexa‐2,4‐diene‐1,6‐diol,	400	Mhz 
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Figure	84	13C	NMR	spectrum	of	(E,E)‐hexa‐2,4‐diene‐1,6‐diol,	100	Mhz	
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Figure	85	1H	NMR	spectrum	of	(E,E)‐6‐((tert‐butyldiphenylsilyl)oxy)hexa‐2,4‐dien‐1‐ol,	400	Mhz	
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Figure	86	13C	NMR	spectrum	of	(E,E)‐6‐((tert‐butyldiphenylsilyl)oxy)hexa‐2,4‐dien‐1‐ol,	100	Mhz	
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Figure	87	1H	NMR	spectrum	of	(E,E)‐6‐((tert‐butyldiphenylsilyl)oxy)hexa‐2,4‐dienal,	400	Mhz 
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Figure	88	13C	NMR	spectrum	of	(E,E)‐6‐((tert‐butyldiphenylsilyl)oxy)hexa‐2,4‐dienal,	100	Mhz 
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Figure	89	1H	NMR	spectrum	of	Nߙ‐Boc‐Lys(Z)‐OtBu,	400	Mhz 
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Figure	90	13C	NMR	spectrum	of	Nߙ‐Boc‐Lys(Z)‐OtBu,	100	Mhz	
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Figure	91	1H	NMR	spectrum	of	Nߙ‐Boc‐Lys‐OtBu,	400	Mhz	
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Figure	92	13C	NMR	spectrum	of	Nߙ‐Boc‐Lys‐OtBu,	100	Mhz 
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Figure	93	1H	NMR	spectrum	of	tert‐butyl	2‐((tert‐butoxycarbonyl)amino)‐6‐(((E,E)‐6‐((tert‐
butyldiphenylsilyl)oxy)hexa‐2,4‐dien‐1‐yl)amino)hexanoate,	400	Mhz 
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Figure	94	13C	NMR	spectrum	of	tert‐butyl	2‐((tert‐butoxycarbonyl)amino)‐6‐(((E,E)‐6‐((tert‐
butyldiphenylsilyl)oxy)hexa‐2,4‐dien‐1‐yl)amino)hexanoate,	100	Mhz 
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Figure	95	1H	NMR	spectrum	of	(S)‐tert‐butyl	2‐((tert‐butoxycarbonyl)amino)‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐
dien‐1‐yl)amino)hexanoate,	400	Mhz 
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Figure	96	13C	NMR	spectrum	of	(S)‐tert‐butyl	2‐((tert‐butoxycarbonyl)amino)‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐
dien‐1‐yl)amino)hexanoate,	400	Mhz	
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Figure	97	1H	NMR	spectrum	of	(S)‐tert‐butyl	6‐((tert‐butoxycarbonyl)((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐

yl)amino)‐2‐((tert‐butoxycarbonyl)amino)hexanoate,	600	Mhz	
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Figure	98	13C	NMR	spectrum	of	(S)‐tert‐butyl	6‐((tert‐butoxycarbonyl)((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐

yl)amino)‐2‐((tert‐butoxycarbonyl)amino)hexanoate,	150	Mhz	
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Figure	99	1H	NMR	spectrum	of	(S)‐tert‐butyl	6‐((tert‐butoxycarbonyl)((E,E)‐6‐oxohexa‐2,4‐dien‐1‐yl)amino)‐
2‐((tert‐butoxycarbonyl)amino)hexanoate,	400	Mhz,	residual	solvent	signal	removed 
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Figure	100	13C	NMR	spectrum	of	(S)‐tert‐butyl	6‐((tert‐butoxycarbonyl)((E,E)‐6‐oxohexa‐2,4‐dien‐1‐
yl)amino)‐2‐((tert‐butoxycarbonyl)amino)hexanoate,	100	Mhz,	residual	solvent	signal	removed 
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Figure	101	1H	NMR	spectrum	of	(S)‐2‐ammonio‐6‐((6‐hydroxyhexyl)amino)hexanoate	(IS),	400	Mhz 	
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Figure	102	13C	NMR	spectrum	of	(S)‐2‐ammonio‐6‐((6‐hydroxyhexyl)amino)hexanoate	(IS),	100	Mhz	
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Figure	103	1H	NMR	spectrum	of	(S)‐2‐ammonio‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐yl)amino)hexanoate	
(Lys(MUC‐OH)),	400	Mhz,	residual	solvent	signals	removed	
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Figure	104	13C	NMR	spectrum	of	(S)‐2‐ammonio‐6‐(((E,E)‐6‐hydroxyhexa‐2,4‐dien‐1‐yl)amino)hexanoate,	100	
Mhz,	residual	solvent	signal	removed	
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Figure	105	1H	NMR	spectrum	of	(S)‐2‐amino‐6‐(((E,E)‐6‐oxohexa‐2,4‐dien‐1‐yl)amino)hexanoic	acid,	400	Mhz,	
residual	solvent	signal	removed 
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Figure	106	13C	NMR	spectrum	of	(S)‐2‐amino‐6‐(((E,E)‐6‐oxohexa‐2,4‐dien‐1‐yl)amino)hexanoic	acid,	150	
Mhz,	residual	starting	compound	signals	removed
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