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Abstract

The system of shallow water waves is one of the classical examples for nonlinear,
twodimensional conservation laws. The paper investigates a simple kinetic equation
depending on a parameter ¢ which leads for ¢ — 0 to the system of shallow water
waves. The corresponding ’equilibrium’ distribution function has a compact support
which depends on the eigenvalues of the hyperbolic system. It is shown that this kind
of kinetic approach is restricted to a special class of nonlinear conservation laws. The
kinetic model is used to develop a simple particle method for the numerical solution
of shallow water waves. The particle method can be implemented in a straightforward
way and produces in test examples sufficiently accurate results.

1 Introduction

A well-known example for the relation between a macroscopic and a microscopic description
of transport phenomena is given by the Euler equations for equilibrium flows on one side
and the Boltzmann equation for rarefied gas flows on the other side.

The Euler equations are defined by a nonlinear system of partial differential equations for the
macroscopic quantities density, stream velocity and temperature, whereas the Boltzmann
equation is a nonlinear transport equation of the form

of 1
S+ 6Vl = I D) (1)

for the kinetic distribution function f(t,z,&).
Using an expansion of the function f(¢,z,&) with respect to the parameter ¢ in the form

f(t7$7€) = fo(t,$,£)‘|‘5f1(t,$,€) _|_O(52)

one can derive the Euler equations using (1) in the singular limit ¢ — 0.
The 0% order of the expansion is given by a Maxwellian fg

£ uy?
Jolp,u,T] = W;WQXP (—%)

The function fy is often called equilibrium distribution because the relation

J(fo. fo)lp,u, T] = 0

holds for arbitrary (p,u, 7).



Several authors have used the relation between the Fuler equation and the Boltzmann
equation to construct kinetic schemes for Euler equations (see for example references [3],[4]
and [7]). For of a general nonlinear scalar conservation law Backer and Dressler ([2]) have
developed a kinetic distribution function such that the 0%
function gives a solution of the scalar conservation law. A much more elaborated form of
this approach can be found in [1].

moment of the distribution

In the present paper we develop a kinetic model for the nonlinear system of shallow water
waves. Furthermore we present a very simple particle method for the numerical solution of
shallow water waves. The paper is organized as follows:

In the sequel we give a short description of the system of shallow water waves. A detailed
description including many examples of practical relevance can be found in [5]. In section 2
we give the construction of the kinetic model used in the current investigation. Furthermore
it is shown in section 3 that this kind of kinetic approach is restricted to a special class of
nonlinear twodimensional conservation laws. The particle method for shallow water waves
based on the kinetic model is presented in section 4 together with a simple example.
Shallow water waves are described by the system of partial differential equations for the
unknown functions h(t,z) (the height of the water) and u(¢,z) (the velocity) in the form

(Z) —|—M(u,h)-(2) 0

where the matrix M (U) is given by
u h
1 u

The matrix M(U) possesses the two eigenvalues

AN ) = u(t,z) — \Jh(t,z) AP a) = u(t,z) + (L, z)
If we assume that h(¢,z) > 0 the two eigenvalues are real and distinct and hence the system

is strictly hyperbolic.
The characteristic curves are defined by

w2 e

Along the characteristic curves the Riemann invariants
rM =y —2vh r@ =y 4+ 2vh

remain constant.
By introducing the conservation variables (v, w) we can write the system in the form

(o)t ) =0 @)

’U(t,.T)I h(tvx) w(t,x) = (hu)(t,x)
For simplicity we denote the flux of w by flv, w].

where

flo,wl(t,2) = (5o + ) (t,2)

Concerning the theory of hyperbolic systems we refer to reference [5].



2 A Kinetic Equation for Shallow Water Waves
In this section we construct a scalar kinetic equation in the form
Gi+ & -Gy = P[G] e>0 (3)

which should lead formally to the system of shallow water waves in the singular limit ¢ — 0.
The relation between the conservation variables of (2) and the kinetic distribution function

G(t,z,v) should be given by
wte) = [Gltade (4)
R

o) = [€Gltz,)d (5)
R

v and w are the 0** and 1°® moment of the G.
Furthermore — to get the correct singular limit — we force the operator P, to have the
properties

eP[G] = O(1) for ¢ —0
/PE[G] de = 0

R
/m[a] de¢ 0 Ve>0
R

To ensure a consistency between the descriptions (2) and (3) the flux function f[v,w] must
be given by the second moment of G

Jo.wl(ta)= [ €8-Gtz )d¢ (6)
R

It follows from a straighforward calculus that in the singular limit the first and second
moment behave according to the system of shallow water waves.

Besides this formal description one has to check if it is possible to define a kinetic function
G such that the relations (4), (5) and (6) hold. In analogy to the Euler equations (see
reference [4]) we assume that G' depends only implicitly on (¢, ) and take an ansatz in the

form
gy =& a<f<y
G(t,z,6)=4 9(§—7) 7<E<P (7)
0 elsewhere

where 7 = (a + )/2 and (a, 8) = (a, A)(1,2).
Taking this ansatz the operator P. may be defined by

PGl = -(G= @) (8)

where (G denotes the projection of a arbitrary function G to the ansatz (7). The operator P,
plays the role of a relaxation to the ’equilibrium’ distribution given by (7) with relaxation



parameter ¢.

Assuming the ansatz (7) one has to define the free parameters a, 8 and g in order to get a
consistency between the two approaches.

By differentiating (4),(5) and (6) with respect to a and § one gets

e = —g(y-a) (9)
wa = —a-g(y-a) /ﬁ —7)d¢ (10)
fo = —a”gw—a)—?vlﬂf—ﬂdﬁ—vﬁf (11)
vg = g(B-7) ' (12)
wg = B-g(B-7)- /ﬁ(ﬁ —7)g'(€ —7)d¢ (13)
Js = BgB-1)-2-7 /ﬁ(ﬁ ~7)9'(§ —7)d¢ (14)

Because f is a function of v and w we have

foz:fv"voz‘l'fw'wa fﬁ:fvvﬁ—l_fwwﬁ (15)

and using (11) and (14) yields

B
(@ fua—f) 9’50 = Uu-29) [€-nde-nde ()
5 - Wﬁ
(8= Lo B= 1) 9("5%) = ~Uu-27)- [E-nge-nde (1)

The quadratic equation on the left hand side of (16) and (17) is exactly the characteristic
equation for the eigenvalues of the hyperbolic system (2) and by defining o and § as the
two eigenvalues it follows directly

fw_2'720

Lemma 1  If o and § are the eigenvalues of the system (2) then equations (16) and (17)
hold.

Furthermore, to get a consistency between (2) and (3) the compatibility condition between
vy and w,, respectively vg and wg must be satisfied. The condition are given by substituting
(9) in (10), respectively (12) in (13):

B
w =X = (€= g€ - ) (18)

~



for A € {a, B}.
The compatibility conditions may be fulfilled by playing with the shape of the function g:
Introducing the transformation

7

1 1
/g($)dx = 5(“)7 —7vy) - 5(“’77 =7 vy)
0
7

1 1
/g(x)dx - §(w7 —7vy) 5(1”77 7 vp)
0

It is obvious that this system can only have a solution if

Wy =70y (19)
If we assume that (19) holds we get

which defines the shape of g.

Remark 1
One has to be careful: Equation (20) is valid only if wy, — v - v, does not depend on 7,
otherwise the system given above has no solution.

For the system of shallow water waves it holds that

and equation (20) becomes
g(n) =1
The result can be summarized in the following lemma.

Lemma 2  Given the system of shallow water waves in the form (2). Then it is possible
to construct a kinetic function which solves the equation

Gy + €& -Gy = P.[G]

where the quantities v, w and f[v, w] are given by the moments of the function G(¢,z,£) in
the form (4),(5) and (6).
The function G(¢,z,£) depends only implicitly on ¢ and z and is given by

7-§ a<{<y
Gt,z,§)=4 £-7 7<E<P (21)

0 elsewhere

where a and § are the two eigenvalues of (2) and v = (a 4 §)/2. For the singular limit
€ — 0 the system of shallow water waves can be formally derived from the scalar kinetic
equation.



Remark 2
The relation between the two descriptions (2) and (3) can also be explained by defining a
set M., of distribution functions with

M., = {G(£) € L'(IR) : Fv,w| G [v, w] — G|o = 0}

where (7 denotes a function in the form given by (21).
Starting from the scalar kinetic equation

Gi+EG, = PGl PGl = =(G -G)

oM | =

with initial condition (7 (z,€) € Mg, for all z € IR we consider the time evolution of the
distribution function G(¢,z,v) under the constraint

G(t,z,6) € M, V(t,z) € IRy x IR

The parameters (¢, 2 ) and w(t, ) which describe the function G(t, z,£) € M., are a solution
of the macroscopic system (2).

3 The General Case

We now investigate a general system of the form

(o), # ()= &

where f[v,w]is an arbitrary function of (v, w) and we try to construct — as in the case of
shallow water waves — a scalar kinetic equation in the form

Gi+ €& -Gy = P.[G] (23)
where
gy =& a<f<y
Gt,z,§)=1{ 9(§—7) v<E<P (24)
0 elsewhere

Again v(t,z) and w(t,2) should be the 0** and 1° moments of G and P, should be the
relaxation term of an arbitrary function G to the form (24).

Using the same techniques as in the section above we choose the bounds a(t,z) and §(¢, z)
as the eigenvalues of the general system (22), i.e.

aftr) = 22— (2 )
Bla)= 204 L (4 g

It is obvious that the transformation from (v, w) — (a,3) must be local invertible which
can only hold if f[v,w] is a strictly nonlinear function of both v and w.



We assume that (v, w) — (o, 3) is everywhere local invertible.
The first condition to find consistency using the ansatz (24) is

Wy =7 Uy

This requirement can be transformed into a condition on f(v,w) — f, must be a solution

of a Burger’s like equation.

Lemma 3 A necessary condition to get a consistency between the system (22) and the
scalar kinetic equation (23) with the ansatz (24) is that f,, is a solution of the scalar

conservation law )
h

hv+(4

Jw =0

with an arbitrary initial condition h(v,w) =h (w).

o
Proof We define © such that f,, (%, w) < oo and h= f(0, w).
Furthermore we assume that f,, is a solution of

h2

hv‘|‘(4

Yo = 0

with initial condition f, (0, w) =h (w).

Consider the transformation of variables T'(y,n) = (v(v,n),w(7,7)), then

pr=| " ™
Uy Wy

By the inverse function theorem it follows that DT - DT~! = idp2 and

prt= (7 "\ _(pryr=i( v "®
TYw T ¢ — Uy Vny
where ¢ = det(DT).
Therefore equation (26) can be written as

Yo+ 7 Yw=0

and relation (28) yields
wy — 7wy =0

Corollary 1 f, is a solution of equation (25) if and only if 7, = 0

Proof We have
' (fz% + 4fv)1/2

N | —

‘]7 =
Differentiating with respect to w yields

Th = % ) (fz% + 4fv)_1/2 : (%fww + fwv)

(25)

(27)



By substituting h = f,, equation (32) gets

1 _ h?
Mo = 5 (T3 +4L) 7 (bt (B ) (33)
|
The second consistency condition for a general system is given by
wy =7 - vy = p(n) (34)

where p is an arbitrary function of 7.

Lemma 4  Suppose that 7, = 0, then w, — v - v, is independent of v if there exists a
function p such that

1 Lo 1/2
(= 4. f, =
bR L)) =
where ¢ is an arbitrary constant.
Proof By substituting the variables (v,w) — (7,7n) and using DT - D(T7!) = idpe

equation (34) becomes
1

c

(o + 7 1w) = p(n)

where ¢ = vy * D — My * Y-
By the assumption 7, = 0 one gets

Using v = %“’ yields
1 L o 1/2
(= 4-f,
= pGUE A L)

Now we are able to formulate a consistency condition between the system (22) and the
scalar kinetic equation (23) with the ansatz (24).

Theorem 1  The scalar kinetic equation
Gi+€-Gp = P[G]
with the ansatz
g —§&) a<E<y
G(t,z,6) =1 9(6—7) 7<E<P
0 elsewhere

leads to a consistent description for a general system of nonlinear conservation laws

(),+ (o) =

if and only if the function f[v,w]is given by

w2

w
f[v7w]_Cl—l-?J—I_CQ.Cl—}—U—I_CB(U)

where ¢1, ¢y are arbitrary constants and c3(v) is an arbitrary function of v.



Proof Using Corollary 1 we have 5, = 0, which means that 5 depends only on w.

Therefore by Lemma 4 we have the relation

fww = p(T))

where p(v) is an arbitrary function of v.
Then it follows directly that

fo,w) = a(v) - w? + b(v) - w + ¢(v)

Now

n=Sc(fEa )

S Nl

must be a function of v because 7, =
Substituting (35) into (36) yields

b*(v)

@

n=[(a'(v) +a*(v)) - w? + ((v) + a(v)b(v)) - w +

Because the right hand side must be independent of w the differential equations

must hold.

By integration we get
1 C2

a(v) = b(v) =

¢+ v 1+ v

where ¢q, ¢y are arbitrary constants.

Remark 3

The shape of the ’equilibrium’ distribution function is defined by the equation (20).

4 A Particle Method for Shallow Water Waves

The scalar kinetic equation developed in section 2 can be used to construct a simple particle

method for the numerical solution of shallow water waves.

The technique is very similar to particle methods for Euler equations which can be found for
example in the references [3] and [4]. Concerning the general concept of particle methods
we refer to [6] where the reader may find a much more elaborated particle method for the

full Boltzmann equation.

The general idea of a particle method for a nonlinear transport equation is the following;:

The kinetic distribution function G(¢,z,£) is considered as the density of a continuous
measure g; on the phase space @ x IR which varies with time ¢ according to the given
transport equation. Using the concept of weak convergence of measures one can approximate

the given continuous measure p; by a sum of discrete measures in the form

N
,MN(t) = Z 5$¢ X 6111'
=1



such that the finite pointset px(?) converges for N — oo weakly to ps — which means that
(6. uv (D) == (@) ¥ @ € CGUR) L2 0

The main task is to construct a time evolution of the finite pointset such that the above
relation holds for all ¢ > 0.

In the case of the scalar kinetic equation given by (3) the construction of a time evolution
is very simple:

We consider first a time discretized form of the equation (3)

G(At,z,8) = G(0,2,8) + AtP[G(0, 2, )] (37)

The density function G is approximated by a sum of step functions based on a gridstructure
of the spatial domain 2

m

G(nAt) = Z Gn(nAt,€)

=1
where

Q= |J 2 ZieQ ZnZj=0 i#j

1=1,...,m

The operator P, of the kinetic equation operates as a relaxation term to the ’equilibrium’
distribution given by (7). Using the discretized equation and a splitting method for the time
evolution the particle method — in the limit ¢ — 0 — will consists of the following steps:

1) Given the initial condition G(0,z,§) of equation (3).
Approximate the function G(0,z,£) by a discrete set of particles uny = (z;, v;)i=1,..N
such that

where ,lOLZ is given by

2) Perform the translation of the points (2;);=1,. N

Tt = w; + Alv; YVi=1,..,N

3) Sample the finite pointset (x;»,vi)i:17...7N according to the given gridstructure and
modify — in every cell — the given point set with respect to the ansatz.

Remark 4
1) By the use of a splitting method the time evolution is divided in the steps 2) and 3).

2) In the limit ¢ — 0 the operator P acts as a projection of the given particle distribution
to the ’equilibrium’ state given by (7).

10



3) The generation of a point approximation of the initial condition and the projection
with respect to (21) is almost trivial because the shape of the function G is very
simple.

Example 1
We consider the system

The problem has a classical solution for all £ > 0 given by

1

to)= ——
The characteristic curves z()(¢) and z(?)(¢) — illustrated in figure 1 — are defined by the
equations
.(1) 1‘(1) 1 .(2) 37(2) 1
x

= — _ xT = _I_ R
1+1¢ 141 1+1¢ 141

Fig. 1: Characteristic Curves z()(¢) and z(?(1)

For the implementation of the particle method we consider the spatial domain [—1, 1] over
the time interval [0, 3].

Because it is necessary to prescribe artificial boundary conditions at the points 1 = —1
and z9 = 1 the ingoing fluxes are modelized using the exact solution. Particles which will
cross this points in the direction of the outer normal are deleted.

For the particle method the bounded spatial domain is divided into a regular gridstructure
with parameter Az = 0.1. The time discretization parameter At is given by 0.05. At

11



time ¢ = 0 the kinetic distribution function which is homogenized over a single cell is
approximated using 500 discrete points. In order to reduce the fluctuations in the numerical
results 50 independent samplings are used. The results are obtained on a HP 9000/710
workstation with a CPU time of about 160 seconds.

The numerical results given in figure 2 and 3 show a comparison between the numerical
solution — plotted with points — and the exact solution — plotted with lines — at various
discrete times ¢, = nAt.

h(t,x)
1.2
1
t=0 < t=1 o
0.8  t=05 + t=3 x 7
SR S S
0.6 - _
o o o a Iml Iml (ml | o (=l ] (=l (ml (ml a Iml iml 0 ) u|
04 _
X
0.2 ]
0 | | | |
-1.5 -1 -0.5 0 0.5 1 1.5
X-ax1s

Fig. 2: Function Ai(¢,z) at different times ¢,.

1.5
1 t=0 < -
t=0.5 +
0.5 t=1 o -
t=3 x
u(t,x)
| |
0.5 1 1.5
Fig. 3: Function u(¢{,z) at different times ¢,.
Example 2

The following example is the so—called dam—breaking problem. We consider this problem

12



in terms of the conservation variables v(¢, ) and w(t,z).
The initial conditions are given by

0 1 2<0 0
v(,r):{o >0 w(z)=0

The problem has a weak solution in the form

1 z < =1
vz, t) =3 $2-%)? —t<az>2
0 A<
and
0 T < —t
w(t,e) =4 w(F+1(2-%)? ~t<e>2
0 W<

The numerical solution is calculated in the spatial domain [—1.2,2.4] where again the fluxes
at the artificial boundaries are given by the exact solution.

The cell size is given by Az = 0.05 and we use a time discretization A¢ = 0.005. The initial
distribution is approximated by 800 points per cell and 20 independent runs are used to
calculate the solution.

The computational costs for this example are 580 seconds.

The agreement between the numerical and exact solution is quite good in the positive
xz—region. In the negative z—region the sharp edge at the point z = —{ is smeared out.

v(t,x)

1.2 T

0.8

04 F

0.9 | | | | | |

Fig. 4: Function v(¢,z) at different times ¢,.
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0.35 | |
0.3
0.25
0.2
0.15
0.1
0.05

-0.05 | | | | | |
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Fig. 5: Function w({,z) at different times ¢,,.
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