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Abstract

A proof of the famous Huygens’ method of wavefront construction is reviewed
and it is shown that the method is embedded in the geometrical optics theory for
the calculation of the intensity of the wave based on high frequency approxima-
tion. It is then shown that Huygens’ method can be extended in a natural way
to the construction of a weakly nonlinear wavefront. This is an elegant nonlinear
ray theory based on an approximation published by the author in 1975 which
was inspired by the work of Gubkin. In this theory, the wave amplitude correc-
tion is incorporated in the eikonal equation itself and this leads to a system of ray
equations coupled to the transport equation. The theory shows that the nonlinear
rays stretch due to the wave amplitude, as in the work of Choquet-Bruhat (1969);
followed by Hunter, Majda, Keller and Rosales, but in addition the wavefront ro-
tates due to a non-uniform distribution of the amplitude on the wavefront. Thus
the amplitude of the wave modifies the rays and the wavefront geometry, which
in turn affects the growth and decay of the amplitude. Qur theory also shows
that a compression nonlinear wavefront may develop a kink but an expansion one
always remains smooth. In the end, an exact solution showing the resolution of
a linear caustic due to nonlinearity has been presented. The theory incorporates
all features of Whitham’s "geometrical shock dynamics”.

1 Huygens’ method of construction of a linear wave-
front

This paper is a tribute to the great mathematician Christiaan Huygens (1629-1695),
who proposed in 1690 that all points of a wavefront of light may be regarded as new
sources of wavelets that expand in every direction at a rate depending on their velocities.
At a later time, the envelope of the wavefronts emitted by these sources constitute the
new wavefront. This rule of Huygens for the construction of the successive positions of a
wavefront implies that the wavefront is self propagating in the sense that the geometry
and the position of the wavefront at any later time depend only on its initial geometry
and position (and of course, on the property of the medium) and are not influenced by



the wavefronts which follow or precede it. Thus a wavefront, which may be embedded in
a one parameter family of wavefronts in an infinity of ways, has its own predetermined
course of motion.

Huygens discovered the method intuitively, but his method is capable of being given
an exact mathematical proof, which we present briefly for the wave equation in a ho-
mogeneous medium with constant wave speed ao:

uy — a2 Viu = 0. (1.1)

If we represent a characteristic surface of (1.1) in the form ¢ = ¢(z), then the function
1 satisfies the reduced characteristic partial differential equation

ad (2, + 9%, +¢%) =1. (1.2)

Let us consider for (1.1) the spherical wavefronts t = S(z,z*) originating from a point
z*, then

1
S=—|z—-2" 1.3
—le -] (1.3

containing three parameters z* = (z},z3},23), is a complete integral of the equation
 (1.2). Let £ = z*(m1,7n2) be a parametric representation of the position of a wavefront
at t = 0, then the method of solution of a Cauchy problem, using the complete integral
(1.3), shows that the envelope of the two parameter family of the spherical wavefronts
S = S(z,z*(n1,72)) gives a solution 1(z) of (1.2) such that ¢t = 1(z) is the equation of
the wavefront at time ¢. This is nothing but Huygens’ method.

It is a remarkable mathematical fact that Huygens stated a method of construction
of a wavefront, which is true not only for light waves but also for waves governed by
an arbitrary hyperbolic system of linear partial differential equations in any number of
independent variables. Hyperbolicity of the system ensures that there exist "spherical
wavefronts” ¢t = S(z,z*). The method of construction of the wavefront at any time ¢
with the help of this complete integral S is exactly the same as that outlined for (1.1)
even in this most general case [1].

A method of construction of the wavefront, equivalent to that contained in the original
statement of Huygens, makes use of rays, which for light waves or sound waves in a
uniform medium at rest are straight lines normal to the wavefronts. Starting from an
initial position of the wavefront, the wavefront at any time ¢ is obtained as the locus
of the end points of the normals to the initial wavefront, the length the normals being
equal to the distance travelled by the wave in time ¢. It is simple to deduce this method
of wavefront construction by using the bicharacteristic equations [2] of (1.1):

dz dn

@ a
where n is the unit normal to the wavefront. Equation (1.4) says that the position z
on the wavefront at time ¢ is obtained by

0 (1.4)



z =2z + aont (1.5)

where z* is a point on the wavefront at ¢t = 0.

In this paper, we shall show that Huygens’ method can be extended to weakly nonlinear
waves and these wavefronts are also self propagating. In the end we shall present one
interesting solution of the weakly nonlinear ray equations.

2 Linear ray theory in high frequency approxima-
tion

Huygens’ method of wavefront construction tells only about the location of the wave-
front and not about the intensity of the wave on the wavefront. The latter problem
cannot be solved exactly and hence its approximate solution, in various limiting cases,
has been a subject of study by many. Huygens’ method of wavefront construction is
embedded in a mathematical theory of finding an approximate value of the intensity
of the wave based on the assumption that either a solution in the neighbourhood of a
leading wavefront is nearly discontinuous and hence, is dominated by high frequency
waves or the solution is a periodic function of a rapidly changing phase function.

We first define a ray starting from a given point z* of an initial position of a wavefront
to be the spatial projection of a bicharacteristic curve (in space-time) starting from
(z = z*,t = 0). Next we define a function A, called ray tube area, along a ray as the
limit (as the maximum diameter of the ray tube tends to zero) of the ratio of the cross-
sectional area at any location along the ray tube to the area at a standard reference
cross section.

Let us consider now the wave equation (1.1). Here, the rays given by (1.5) are orthogonal
to the successive positions of a wa.vefront The ray tube area is related to the mean
curvature {2 of the wavefront by

L_da
2Aaq dit

where £ is the time rate of change along the ray moving with the wavefront. Let us
write the equation (1.1) in terms of new variables (z/,, ¢) instead of (z4,t), where

(2.1)

1
mean curvature = () = —Ediv (n) =—

T =2a,1=1,2,3 and ¢ =1t — 9(z). (2.2)
The equation (1.1) becomes [2]
d (Ou)  1dAdu 2, u -
—\ =)+ 2.3
() + X8 oo ot - o

where we have used the result div(n) = — (¢« — a3V?¢) / {a3|V4|}. For a solution u of
(1.1) for which the first order derivatives are continuous and the second order derivatives
are discontinuous across ¢ = 0, we get the transport equation



dw 1 dA [aﬂu]
dt  2Adt 04? ¢=0
Thus, the amplitude w of the discontinuity in the second derivative satisfies
w = wo/Alfzo (2'5)

This is an exact ressult, the second derivatives (and also the higher derivatives [1]) tend
to become infinite at a focus or a caustic where A — 0.

Linear ray theory in the well known high frequency approximation (geometrical optics
[3]) gives a value of the amplitude u of the wave whose leading term is also given in
terms of the ray tube area by the same law as (2.5). This is only an approximate result;
the amplitude of the wave when evaluated more accurately at points where A — 0,
does remain finite [4].

3 Nonlinear ray theory (NLRT)

A NLRT or kinematic wave theory for any system requires derivation of two equations,
the first one being a dispersion relation in the form

w = Qk,z,t,w(z,t)) (3.1)

where w is the frequency, k the wave number and w the amplitude of the wave. The
second equation is a transport equation for the amplitude along nonlinear rays defined
below. In terms of the phase function ¢, the frequency and the wave number are given

by

w=—¢;and k= V4. (3.2)

The dispersion relation (3.1) is then equivalent to a partial differential equation

Q(V¢1 ¢\‘.s z,t, w(a:,t)) =0 (3'3)

for the function ¢. The nonlinear rays are the curves z = z(t) obtained from the
solution of the characteristic equations or Hamilton-Jacobi equations of (3.3). We define
a wave to be hyperbolic if the equation (3.3) is a homogeneous function of ¢; and the
components of V. Thus, for a hyperbolic wave, the ray equations can be expressed as
equations for r and the unit normal n = V¢/|V4|. These equations, together with the
transport equation for the amplitude along the nonlinear rays, form the basic equations
of a NLRT.

We first review the derivation of the equations of NLRT for a hyperbolic system of
quasilinear equations

Aug+ B@u, +C =0 (3.4)



where a repeated suffix represent sum, u € R*, z = (z,,... ,Zm) ER™ A€ R™™ Be
R"*" and C € R", and A = A(u,z,t) etc. Let c be a simple root of the characteristic
equation, ¢(z,t) = constant be the corresponding one parameter family of characteristic
surfaces and let £ and r be the generalized left and right eigenvectors satisfying

IM =0, Mr =0 with M = Ap, + B¢, (3.5)

Sections of the characteristic surface by ¢ = constant planes give successive positions of
a wavefront. Unit normal n to the wavefront and c are given by

n=Vp/|Vy|, c=—p/|Veg|. (3.6)

For the waves corresponding to the simple characteristic velocity c, the eikonal equation
(3.3) can be taken to be

Q = (CAr)p: + (¢Br)p,, = 0. (3.7)

It is easy to prove the following theorem [5], see appendix.

Theorem

Along the rays of (3.4), given by

dzo, (B©)r
dt T A X (38)
dng 1 0A aBM
= - |- = Ya, =
it~ (tAn)™ ( “ong "™ ong )" v (39)
where
d 0 0 i) a i}
e _9 w9 R 3.1
&t~ 0t X Bz, B3 "Bz, "dap s
the function u satisfies the compatibility condition
du Ou
—_ (@) _ i = 0. 1
tA— +£(B® - x,4) 52 HC =0 3 ;)

Note. In the second term in (3.11), the differential operator 9; on u; is given by
Bosegd
0zo ~ 70z, .
where repeated suffix : implies sum from 1 to n and a implies from 1 to m. It can be

easily verified that n,s? = 0 so that 3; is a derivative in a direction tangential to the
wavefront. In (3.9) there appear other m derivatives

0
ong

53’ = f,‘ (B,(_;’) - x.—,A"j) (312)

Lo =ng (3.13)



which are components of the vector operator

L=V-n<nV>. (3.14)

Since < n, L >= 0, these are also tangential derivatives to the wavefront and hence only
m—1 of L, are linearly independent. We can always express ; as a linear combination
of any m — 1 components of the operator L.

As |n| = 1, only m — 1 of the m equations in (3.9) are independent. Hence, relations-
(3.8), (3.9) and (3.11) along a ray represent 2m equations in 2m + n — 1 components
of z, n, u. Hence, not much information from these can be obtained unless n = 1,
a case which can be easily studied. Choquet-Bruhat [6] developed a weakly nonlinear
ray theory by using high frequency approximation and a formal expansion of the per-
turbation v = u — ug on a basic solution ug(z,t) in terms of a small quantity ¢ which
is inversely proportional to the frequency (see also [7] - [8]). A great disadvantage of
this procedure is that we end up with an approximation valid in the neighbourhood
of the linearized characteristic surface. Since the eikonal equation decouples from the
amplitude equation, an attempt to improve the solution does not improve the position
of the characteristic surfaces but only produces a stretching of the rays in the direction
of the linearized rays. This is certainly not correct since the rays rotate not only by the
inhomogeneity ahead but also by the nonuniform distribution of the amplitude of the
perturbation along the wavefront. This rotation is important not only in the caustic
region but also quite often at large distances. One may attempt to improve the solution
by Lighthill’s method [9] of stretching the coordinates not only in a direction along the
rays but also along certain curves on the moving wavefront. Obermeier [10] used this
method to get a valuable solution but even here only the coordinate in the direction of
the rays has been stretched.

An entirely new approach to this problem is in approximating uniformly all the three
equations (3.8), (3.9) and (3.11) for the perturbation in the neighbourhood of an ezact
nonlinear characteristic surface. In the short wave or high frequency approximation, it
is possible to express the n components of the perturbation v = u — ug in terms of the
unit normal of the ezact nonlinear wavefront and an amplitude variable w [11]. Using
this in (3.11), we can get a transport equation for w along the exact rays, which deviate
significantly from the linear rays calculated in the base state up. Such a transport
equation was first derived for gasdynamic equations by Gubkin [12] as early as in 1958
and for a general hyperbolic system'by Prasad [5] in 1975. However, both Gubkin and
Prasad missed the real strength of their transport equation since they did not use (3.8)
and (3.9) to calculate the deviation of the exact nonlinear rays from the linear one (see
equations (4.6) to (4.9) and in [14]). It was only a few years later that Prasad and his
collaborators realized this [15] - [17].

We briefly explain a derivation equivalent to that of Prasad [13] in the next paragraph.
Before we do this, let us comment that this approximation is valid not only for short
waves [13] but also for high frequency periodic waves. A periodic wave may have a
mean field vy, 7). But we emphasize that the mean field part v, of the perturbation
can also not be calculated by solving a linear equation as done in the theory presented
in [7]. The reason is the same i.e. there may be a significant variation of v,, along the

6



wavefront leading to a large rotation of the rays due to this mean field. Therefore, we
assume here that v,, = 0 whenever our perturbation is periodic.
The perturbation v = u — u, satisfies

Avy+ B@y, + F =0 (3.15)

where

F = (A . Ao)‘t&og + (B(a) - Bé“))uoh + C = Co, (3.16)

and a subscript 0 on any quantity represents its value in the base state i.e. Ag =
A(z,t,uo). All terms in (3.16) are of the same order e.

We now express high frequency approximation by assuming that v depends on z, t and
a fast variable = £. Substituting v = v(z,t,6) in (3.15) we get

-1- (Apc+ B, ) vo + [Ave + B, + F]=o. (3.17)

Unlike the theory of Choquet-Bruhat, we do not expand (3.17) in powers of ¢ but use
it only to calculate the approximate form of the solution, which we shall use to get the
approximate transport equation along the ezact rays. This approach is not more formal
than that of Choquet-Bruhat and her followers. We believe that instead of proving the
convergence of an expansion to the exact solution (which also has not been achieved
for m > 1 so far), it is better to derive an equation for the error and study it. Equating
the most dominant term on the left hand side of (3.17) to zero, we get

(Agog + B(“}tpxa) vp=0 (3.18)

which gives vy = W(z,t,0)r(z,t,u,n) = 0(¢), where r depends on 6 through u = uo +v
but it varies slowly with @ since v = 0(¢). Therefore, while integrating with respect to
0, if we treat r constant, we commit an error of order €2, which is consistent with the
derivation of (3.18). Thus,

v=w(z,t,0)r, w= ]D * 5(z,t,0)db. (3.19)
Now we go back to the original equation (3.15) and write it in the form
(Ape+ By, ) v, + B(“);T”, +F=0 (3.20)
where ;
Do B el (3.21)

Oz, 0zq ¢ ot
represents a derivative in a direction tangential to the wavefront. Multiplying (3.20) by
¢, using (3.5) and substituting (3.19), we get



mr‘%’ + (33‘“’ o ) +E4F =0 (3.22)

where we have used

The equation (3.22) is correct up to order e It contains derivative % % along the ezact
unperturbed ray and tangential derivatives 3 a r along the ezact characteristic surface. r
also contains n, the unit normal of the ezact wavefront. We approximate the quantities
in (3.22) keepmg the operators d‘, 82, and n intact. This gives the transport equation
along the ezact ray for the amplitude w correct up to order €

dt oz’

where £, and ro depend on the unit normal n of the ezact wavefront. The full set
of equations of our NLRT is obtained by substituting (3.19) (or (3.25) below) on the
right hand side of (3.8) and (3.9) and retaining terms up to first degree in w and its
derivatives Low i.e. terms of order €. This means that the operator & in (3.10) is
approximated by

(toro) 2 + (eo B‘gﬂ%) w + {£o(VuF)oro} w =0 (3.23)

d _0 @ (@) 9
7= 5 O H{(Vax®) g rof ] 5= (3.24)
An expression equivalent to (3.19) up to terms of order € is

v = wro. (3.25)

This result can be used to give a quick derivation of the equations of the NLRT from
the equations (3.8), (3.9) and (3.11). First we must express the operator d; defined
by (3.12) in terms of the operators L, defined by (3.13). Then we substltute (3 25) in
these equations and retain terms up to order € leaving the opertors dt and L, intact.
We shall use this simple method for gasdynamic equations below.

In the rest of this paper, we take the propagation of waves in a polytropic gas without a
dissipative mechanism. The governing equations are hyperbolic and the equation (3.3),
for a forward facing wave, is the characteristic partial differential equation

Q=det <q, V> +a|V4| =0 (3.26)

where g is the particle velocity and the sound speed a is given in terms of the pressure
p and density p as a = (yp/p)"/2. Here 7 is a constant appearing in the polytropic
relation p/p” = a function of the specific entropy.

The bicharacteristic equations or the ray equations are

dz

pria + na _ (3.27)



dn 3

i —La - ﬁ;l ngLqg. (3.28)

For a high frequency nonlinear wave of small amplitude running into a medium at rest
(g=0, p=po, p= po) we get from (3.25) |

g=nw, p=—po=poaow, p—po=/(po/ao)w. (3.29)

From the equations of motion of a polytropic gas, we can derive a compatibility condi-
tion on the characteristic surface satisfying (3.26) in the form

dp dq
— — = : 3.30
adt+p<n,dt>+pa<L,q> 0 (3.30)
where
d 0
— == 3.31
i at+<q+an,V> (3.31)

is the time rate of change along a bicharacteristic curve given by (3.27) and (3.28).
Substituting (3.29) in (3.27), (3.28), (3.30) and (3.31) and retaining terms only up to
order €, we get the equations of the NLRT:

dz ¥y+1 )
= L 3.32
dt (a" ) (3:32)
dn v+1
= __1r- 3.33
dt 2 ( )
and
d 1 dA
?t: = Qaow = —ﬂz‘;w, from (2.1), (3.34)
where
d 0 7+1 )
- == 4 3.35
y7 8t+(a°+ 5 <n,V> (3.35)
and
1 1 8111 an
—-—— = | =4 =} 3.36
Q=-7<V,n> 2(6q§+6n§) (3.36)

We note that  is the mean curvature of the wavefront F;.
Consider a plane wavefront perpendicular to the z;-axis. Then n = (1,0,0), 2 =0 and
the system (3.32)-(3.34) is equivalent to the single equation

ow 7+1 \ ow
T w)— =0. 3.37
3t+(“°+ 2 "’)az ¢ (3:37)



With a proper scaling of dependent variables, this equation can be reduced to the
famous Burgers’ equation u; + uu¢ = 0 in a moving frame { = z — agt. Thus the system
of equations (3.32)-(3.34) is an extension of the Burgers’ equation to multi-dimensions
for the propagation of a weakly nonlinear wave.

Since |n| = 1, only two of the three equations (3.33) are independent. Therefore, the
equations (3.32)-(3.34) form a system of 6 coupled equations for the determination of
successive positions z of a nonlinear wavefront, the unit normal n and the wavefront
intensity w. In the linear theory, w drops out of the (3.32) and (3.33) so that the
ray equations decouple from the amplitude equation (3.34). In this case the rays and
the successive positions of the wavefront can be constructed without any reference to
the amplitude of the wave. This corresponds to the statement of Huygens’ wavefront
construction. In our weakly nonlinear theory, the amplitude is related to the curvature
of the wavefront (or the ray tube area) by the same equation (compare equations (2.4)
and (3.34)) but the nonlinear rays stretch due to the presence of w in (3.32) and the
wavefront rotates due to a non-uniform distribution of the amplitude on the wavefront
(represented by Lw in (3.33)). Thus the amplitude of the wave modifies the rays and
the wavefront geometry which in turn affects the growth and decay of the amplitude.
Further, we note that only the tangential derivatives, on a wavefront F; at a time ¢, of
w and n, appear on the right hand side of the equations of NLRT. Therefore, given
the initial position Fy of the wavefront and the distribution of the amplitude on it, all
quantities on the right hand side of the equations (3.32) to (3.34) can be completely
determined at ¢ = 0 as in the case of a non-characteristic Cauchy problem. Hence,
the evolution of the wavefront and the distribution of the amplitude on it at later
times can be determined from these equations. This implies that, in the short wave
approximation, the nonlinear wavefront is self-progapating. The result is true not only
for a compressible medium but for any continuum medium governed by the hyperbolic
system (3.4). Huygens’ method of wavefront construction has now been very elegantly
extended to the construction of a nonlinear wavefront in the short wave limit - in this
extension the amplitude also affects the position of the wavefront. Finally we mention
that this theory can be easily extended to waves of arbitrary amplitude in short wave

limit [11]. However, in this case the equations cannot be put in the elegant form of
(3.32)-(3.34).

4 Nonlinear ray equations in two dimensions

In two space dimensions, the cofnponents ny, ng of the unit normal can be expressed
in terms of 6, the angle which the normal to the wavefront makes with the z;-axis:
ny = cos 0, n; = sin 6. The equations (3.32) to (3.34) reduce to

dz, v+1

— — 4.1

5 (ao + 5 w) cosf (4.1)
dz; _ 7+1 ) .

e (a0+ ¥ sin @ (4.2)



dé v+ 10w

i~ 2 ox (*3)
and
dw 1 00 :
Fa e CR )
where
0 1 0 ) 0
m = _S_i—I;a‘Ll = 60806—32 b smBa—zl. (4-5)

Setting s = aot and noting that the rate of change %;‘% along a ray is actually a partial
derivative in the characteristic surface ¢ =constant, we rewrite (4.3) and (4.4) in the
form

0 ~y+10w Jow 1_06
BT 2" 3 ta%h =" (4.6)

where w = w/ao is the nondimensional amplitude. (4.6) is a pair of equations for (8, w)
on a characteristic surface F'. s is a well defined variable but A is not, al,\ is only a symbol
for an operator defined by (4.5). ) can be defined only locally. However, following
Prasad, Ravindran, Sangeeta and Morton [18], it is possible to define a variable ¢ such
that gdé is an element of length along the wavefront and & = iﬁaz (see also [19]).
The metric g is given in terms of the Mach number M = 1 + 3'2*—11.0 of the wave by
g = (M —1)"2e~%M-1)_ Gince g never tends to zero, even in the caustic region or across
a discontinuity of M and @ on the wavefront, it follows that the ray tube area A has
a minimum positive value > 0 except in isolated cases of geometrically symmetric foci.
Hence from (3.34) it follows that w always remains finite in this theory, which is only
the first nonlinear approximation in the high frequency limit. This result is of great
importance since the first linear approximation in high frequency limit gives infinite
amplitude at a caustic.

When the nonlinear wave is a compression wave, w > 0. In this case the pair of
equations (4.6) form a hyperbolic system with real characteristic roots

c,C = :!:” 1""-4"}:"1!5. (4.7)

Thus, changes in # and w propagate on the nonlinear wavefront with finite velocities ¢,
¢;. This is analogous to the nonlinear waves in one-dimensional motion of the original
gas. When the nonlinear wave is an expansion wave w < 0, the system (4.6) is elliptic.
Therefore, there is no possibility of the appearance of a discontinuity in § and @ or a
kink on the wavefront. The functions w and @ along the wavefront will be connected
infinitely smoothly. Thus, nonlinear compression and expansion wavefronts behave in
entirely different ways to small disturbances introduced on it at any time. The fact that
the system (4.6) is elliptic for @ < 0 no way contradicts the initial assumption that
we are considering the propagation of a wavefront. The propagation of the wavefront
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is represented by the operator ﬁ defined by (3.35). In addition, we get genuinely
nonlinear waves moving on the wavefront when @ > 0. For an expansion wave (@ < 0),
the original wavefront still gets modified by the distribution of the amplitude on it but
it always remains smooth.

For a compression wave, (@ > 0), the system (4.6) has two Riemann invariants

R=0+2[(y+Dw]'?,  S=0-2[(y+1)u)"/2 (4.8)

For a simple wave, in which one Riemann invariant, say S, remains constant on the non-

linear wavefront, the amplitude w (and also 0) satisfy the partial differential equation
(for details see [19])

22 4 {(1+2326) vt - (3320) im0} 82
(4.9)

+ {(1 + 7;‘—1@) sinf + (Jj—tﬁ)uzcos 3} ‘g—g" =

[ =]

where non-dimensional variables t/,Z, § are suitably defined. We call a characteristic
curve of this simple wave in (Z, 3, t) space, a "characteristic curve on the wavefront” or
briefly a CCWF. w and 0 remain constant on a CCWF, say equal to wo and 6, at a
point on the initial wavefront. The simple wave solution of an initial value problem

initial wave front Z = Zo(), ¥ = Fo(n)
with w(¢' = 0) = wo(n), 0(t' = 0) = bo(n) (4.10)
satisfying tﬁo = IﬁlTl}(Bo o 30)2
where Sy is independent of 7, is given by
@(Z,§) = o (Zo(n), Jo(n)), 0(Z,¥) = 0 (Zo(n),Yo(n)) (4.11)
along CCWF
1/2
i‘:fo-l- {(1-}-7-2}-1'&.’0) COSGQ"' (11-111-10) Sinﬂo} tr, (4.12)
1 1/2
Yy=yo+ {(1 + 1—21- tﬁo) sin 0y + (1 1- 1130) cOs 80} . (413)

At any time ¢/, equations (4.12) and (4.13) give a point (Z, §) on the wavefront in terms
of the parameter 5. The values of w and 8 at this point is given by (4.11). This gives the
complete history of a nonlinear wavefront. Given a curved pulse satisfying short wave
approximation, we can cover it by a one-parameter family of wavefronts. The history
of each of these wavefronts can be studied by the procedure discussed here. Thus, we
can study the nonlinear evolution of the pulse as long as a shock does not appear in it.
Equations (4.11)-(4.13) give a rare solution for such a complex nonlinear problem: an
exact solution of the approximate equations of NLRT. Similarly, simple wave solution
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can be obtained when the Riemann invariant R is constant. We can also construct a
composite simple wave solution in which the values 1o, 0, on the initial wavefront is
so prescribed that it gives rise to straight line CCWF with S=constant from one part
of the initial position of the wavefront and R =constant from another part. One such
solution is shown in the figure below.

SIMPLE WAVE

_ A nonhinear
- ray

" CONSTANT STATE
- . —t=04 —t=08

C— -06 ! =) . X
h ) G-Ol _1 :r.2 03 0

— 1 YTaten ( 9 )

~
SIMPLE WAVE
OF SECOND FAMILY

Fig. 6.1 Composite simple wave solution of the nonlinear ray equations witk
s aa _ 1 " - A . .
initial data wy = =455(5 = | o |)? prescribed on a circular arc. Simple wave
characteristics are shown as — —- —.,

Starting from a smooth initial geometry of the wavefront and a smooth distribution of w

on it, it can be shown that initial values with %‘f < 0 lead to a break down of the solution
at a finite time ¢, since g—‘f tends to infinity as t — t.—0. This conclusion was originally
derived by using quite complex analysis [15] but can be given a very simple derivation
using ray coordinate system [19]. It also appears that only singularities, which appear
in the solution of the equations of NLRT, are shock type of discontinuities in w and 6
representing a kink on the wavefront, which we call wavefront shock. The functions w
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and 6 and their derivatives suffer only jump discontinuities across such a discontinuity
(18].

Ramanathan [15] has worked out numerically many interesting solutions (not necessarily
simple wave solutions) of the equations of NLRT. One such solution shows the initially
converging nonlinear rays to start diverging before the arete of a caustic and then
converging again after the arete (see figure 6.3 in [19]).

5 Conclusion

Hunter, Keller, Majda and Rosales have made a very significant contribution to the
development of various aspects of a weakly nonlinear geometrical optics in a series of
papers starting from 1983 (see Rosales [7]). Their work, an extension of a simple and
formal version of a theory of Choquet-Bruhat [6], is based on approximating a sys-
tem of hyperbolic conservation laws in the neighbourhood of the characteristic surface
(in space-time) of the linearized equations. This means that the eikonal equation is
independent of the wave amplitude. The transport equation for the amplitude then
decouples from the eikonal equation and the only nonlinear effect on the rays is seen
as an elongation of the linear rays in the direction of the rays. They miss the equally
important effect of rotation of the rays due to nonlinearity. They justify their theory
mainly by comparing solutions of some problems having spherical and cylindrical sym-
metry with well known solutions. However, the rotation of the rays is absent in these
problems and ’naturally’ they find good agreement. Our NLRT is based on approxi-
mating a hyperbolic system in a neighbourhood of the ezact nonlinear characteristic
surface in space-time and then retaining only the first order nonlinear terms in the
bicharacteristic equations (3.8) and (3.9). In this way we are able to incorporate the
wave amplitude correction in the eikonal equation itself (see [7) remark (iii), page 297).
This allows our weakly nonlinear ray theory to take into account of an additional non-
linear effect namely the deviation of the rays (from linear rays) arising out of rotation
due to nonlinearity. It is interesting that the two nonlinear effects, elongation of the
rays (produced by the wave amplitude) and the deviation of the rays (produced by the
gradient of the wave amplitude along the wavefront) can be of same order of magni-
tude. In fact, it is both these effects which are responsible for the resolution of the
caustic in the figure. The figure also shows that a pair of singularities in the wavefront
geometry appear at a finite time. To study these singularities (in the form of kinks in
the wavefront across which @ and @ become discontinuous) we need conservation form
of the equations (4.6). Two such sets of physically realistic conservation forms have
recently been derived by Prasad, Ravindran, Sangeeta and Morton [18], see also [19].
Numerical results obtained so far, show beautiful pictures of kinks propagating on the
nonlinear wavefront. An important conclusion drawn from our nonlinear ray theory is
that the amplitude of the wave even in first nonlinear approximation becomes finite in
contrast to the result of the linear theory. :

A nonlinear wavefront in an expansion wave behaves in an entirely different way. It
always remains smooth, at least in the case fo two space dimensions.
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Apart from the derivation of the equations (3.32) to (3.34), there are two more convinc-
ing arguments to show that their solutions represent the true physical phenomenon. A
theorem proved in [20] states that if we take two nonlinear wavefronts one in a state
just ahead of a shock front and another in a state just behind such that both instan-
taneously concide with the shock front and have same amplitude distribution, then for
a weak shock the shock ray velocity and shock ray rotation are mean of those for the
two nonlinear wavefronts. This theorem is true only for nonlinear wavefronts evolving
according to (3.32) and (3.33). When the state ahead is the uniform state at rest, the
shock ray velocity and rotation according to this theorem are given by

1
x.:.=(a:o+1';L w)n (5.1)

and

v+1
¢'sh - _""'r
These are exactly the results for a weak shock when we retain terms up to first power
in the shock strength [11], [21]. Moreover, it is simple to deduce the transport equation
for the shock strength along the shock ray from (3.34) using (5.1) and (5.2). On the
other hand there exists an infinite system of compatibility conditions along shock rays.
These are exact results without any approximation and are valid for a shock of arbitrary
strength. When we take the weak shock limit of the first compatibility condition (see
equation (5.76) in [20]), we get exactly the same as the transport equation for the shock
strength obtained from (3.34), (5.1) and (5.2). The second convincing argument is the
validity of the physical principle of Fermat, which states that the time taken by a wave
moving along a ray is stationary. Taking the ray velocity to be (ao + lﬂw) n, the
Fermat’s principle implies that the normal to the wavefront n must vary accordmg to
(3.33). Thus, ours is the only NLRT for which the Fermat’s principle is valid and from
which the transport equation for shock strength can be correctly determined.
It is also simple to see that our NLRT incorporates all features of Whitham’s geometrical
shock dynamics [3] derived by intuitive arguments. However, it has been shown (22],
[23] that the geometrical shock dynamic is not correct for the propagation of a shock
front. Instead, Whitham'’s theory for a weak shock is actually the NLRT provided we
replace the shock ray velocity by the nonlinear ray velocity and the rate of rotation of
the shock ray by that of the nonlinear ray [23]. For a weak shock, Whitham’s equations
have 2! instead of 2! in equations (3.32) to (3.34). Srinivasan’s work [11] on the
propagation of a nonlmea.r wavefront (in short wave limit) with an arbitrary amplitude
of the wave shows that Whitham’s theory, though correct in principle for a nonlinear
wavefront, would require careful modification.
So far we have discussed a theory of propagation of only a single wavefront. Given a
multidimensional pulse satisfying the short wave or high frequency assumption, we can
define a one parameter family of wavefronts and use the nonlinear ray theory to each of
these wavefronts to find the history of the pulse. The actual computational procedure
is really simple as a parameter (identifying different wavefronts) would appear in the

Lw. (5.2)

15



equations (3.32) to (3.34). As in the case of the Burgers’ equation, a curved shock wave
may appear in the pulse. The successive positions of this shock can be obtained by the
new theory of shock dynamics [24], [25].

Huygens’ method has found many applications in physics. We do not know whether
the nonlinear ray theory will also have success in explaining a few important nonlinear
phenomena in physics.
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Appendix: On the Lemma on Bicharacteristics

Phoolan Prasad*
Department of Mathematics
Universitat Kaiserslautern
D-67663, Kaiserslautern, Germany

Abstract

The well known lemma on bicharacteristics of Courant is extended by finding
an explicit form of an equation for the unit normal of the characteristic surface. A
simple form of the compatibility condition along bicharacteristics is also presented.

1 Introduction

There is an important result in Methods of Mathematical Physics, Vol. II by Courant
and Hilbert, in the form of a lemma. The result, known as lemma on bicharacteristics,
giving an explicit form of the direction of rays, has been found very useful in the theory of
nonlinear waves (Prasad, 1993). The result is not complete in the sense that the direction
of the rays is coupled with the equation for the unit normal n = Vx¢/|V.¢| of the
wavefronts associated with the one parameter family of characteristic surfaces ¢(x,t) =
constant. In this note we present an explicit form of the equations for n. We also derive
a simpler form of the compatibility condition on the characteristic surface. Earlier form
of the compatibility condition (derived by Prasad and Ravindron 1984, see also Prasad,
1993) is too complicated.

2 Lemmas on bicharacteristics

Consider a first order system of partial differential equations

Aug+ B%u,, +C =0 (A.2.1)

where u € R", x = (2,,%3,...,2,) € R™, A € R*™", B € R**" and C € R". We may
take (1) to be a quasilinear system, in which case A = A(u(x,t),z,t) etc. The system (A
2.1) need not hyperbolic but we assume that c is a simple real characteristic root of the

1 Permanent adress: Department of Mathematics, Indian Institute of Science, Bangalore-560012
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characteristic equation. Let ¢(x,t) = constant be the corresponding one parameter family
of characteristic surfaces and let £ and r be the generalised left and right eigenvectors.
Then

¢M =0, Mr =0, with M = Afo + B¢, b0 = é¢,€ = Vo (A.2.2)

where a reapeated index a, 8 or 7 in a term would imply sum over 1,2,...,m. We also
have :

c= _b and let n= £ (A.2.3)

4 ¢l
Let Q denote the expression ((Ar)¢, + £B(*)réx,, then ¢ satisfies

Q = (LAr)éo + ((B®r)é, =0 (A.2.4)
Note that c,£ and r are functions of x,t,u(x,t),  and §.

Bicharacteristics of (A.2.1) are the characteristic curves of the first order partial differ-
ential equation (pde) @ = det M = 0 for ¢. However, for the simple characteristic field
under consideration, they are also the characteristic curves of the first order pde (A.2.4)
i.e. @ =0 where we note that the partial derivatives o, £ appear also in the expressions -
for £ and r. The statement of the lemma in Courant and Hilbert is

Lemma 1

% = fﬁ;:r =2z4,88y a=1,2,...,m (A.2.5)

The original proof of the lemma uses Hamilton canonical equations for the function Q
and some simple results in matrix theory. The results (A.2.5) can also be proved using
the canonical equations for the function Q. The proof is similar (but much simpler) to

the proof of the Lemma 2:

Lemma 2
dn, 1 0A dB™
= ——(tAr)n‘Ge(-chg +n, ong )r (A.2.6)
where '
0 07 7
= - A.2.
ang ~ 0z, 0z, (%21)

are tangential derivatives not only with respect to the characteristic surface in space-time
but also with respect to the projections on x-space of the sections of the characteristic
surface by t = constant planes (i.e. with respect ot wavefronts W;).

Note: In (A.2.6), only m linear combinations L, of the operators d/dng3
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d

L, =g (A2.8)

ong
operate on A and B and hence on all dependent variables uy,us,...,u,. However,
since ng Lo = 0 only m — 1 of these tangential derivatives Lo(a = 1,2,...,m) are linearly

independent.

Proof of lemma 2. From Hamilton canonical equations for (A.2.4), we get

do,, 7,
f;t = —Q:./Qe = —;jg [a—%{t(%w‘”’eﬁ)r}] _

— ‘El;_r [fn (Mr) + (EM)r, + LAz bo + Ba(cflﬁﬂ)"]

The first two terms in the square bracket on the right hand side vanish due to (A.2.2).
Hence,

Ao o (At + B (A29)
Since

dn,

T {|§|2 €a(~fﬂd€ﬂ)}
we get after rearrangement of terms

d ] o dE

e {gﬁ(g #a _ df)} (A.2.10)

Substituting (A.2.9) in (A.2.10) and using n, = £,/|¢| we finally get the result (A.2.6)
stated in the lemma.

In the theory of hyperbolic equations and in general theory of hyperbolic waves, it is
quite common to choose £ and r such that £Ar = 1. However, it is better to express the
result in the form (A.2.5) and (A.2.6) so that simple forms of £ and r can be chosen. It
is particularly important to choose the right eigenvector r in a very simple form since
derivatives of r frequently appear in applications (see chapter 6, Prasad, 1993 or chapter
4, Anile et all, 1993).

The result (A.2.6) can also be proved using the method of Courant and Hilbert.

3 Compatibility condition on the characteristic sur-
face

Lemma 1 gives the direction of the bicharacteristics in space-time. The operator
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d 9 9
&t = 3t T X5, (1)

in (A.2.5) and (A.2.6) represents the time rate of change when one moves along a bichar-
acteristic with the bicharacteristic velocity

X = (X1,X2-++»Xm), Xa = ((B@r)/(¢LAr) (A.3.2)
A linear combination of the scalar equations in (A.2.1), containing only tangential
derivatives in ¢ = constant of the components u;(i = 1,2,...,n) of u, is obtained by
pre-multiplying by ¢
422 L ep@ 2% Lo 2o (A.3.3)
ot T _

Using (A.3.1), we can write (A.3.3) in the form
mii-‘—‘ + 4B - XC,A)(;?—“ +0C =0 (A.3.4)
The derivative 9; = s% 32 = ; (B(“) XaAij) aa on u; in the second term is a special

tangential derlva.tlve with respect to the cha.racterlstlc surface, it is a tangential derivative
also with respect ot the wavefronts W;. This follows from

nas;” = I;A,'j (C - naXa) =0 (A35)
since ¢ = Ny Xq-
The form (A.3.4) of the compatibility conditioin has very spetial feature. The derxvat.lve

4 in the bicharacteristic direction is the only derivative in (A.3.4) which contains Z. The

other n tangential derivatives 9;(j = 1,2,...,n) contain only spatial derivatives and
can be expressed in terms of any m — 1 of the m tangential derivatives L,. As we
have seen, it requires only a trivial steps to get (A.3.4) from the original form (A.2.1).
However, (A.3.4) is important in formulating numerical methods using bicharacteristic
curves (Reddy, Tikekar and Prasad, 1982). (A.3.4) can also be used to give a simple
derivation of a transport equations (see eqn. (6.27) in Prasad, 1993) for the amplitude
along the exact nonlinear bicharacteristic curve.

We state all the results in this paper in a form of a

Theorem The bicharacteristic curves in a simple characteristic field of (A.2.1) are given
by (A.2.5) and (A.2.6) along which the compatibility condition (A.3.4) holds.
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