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1 Introduction

Inner functions play an important role in both mathematics and its applications, particu-
larly in the area of control and filtering theory.

A classical result, proved by Beurling [1949] links inner functions with the theory of
invariant subspaces. This provides another link with the theory of functional models for
general, non selfadjoint operators.

Our object in this paper is to describe a factorization theory for stable, matrix valued
inner functions in state space terms. Characterizations of inner functions in the right half
plane or in (outside) the unit circle have been known for a long time, e.g. Genin et al.

[1983].

Factorizations of inner functions are related bijectively to the set of invariant subspaces
of a model operator, that is a restricted shift operator. This was in fact one of the reasons
that made the study of inner functions so attractive.

From the application point of view, emphasizing numerical computability, it became of
interest to relate the factorization of inner functions to their state space realizations. Such
a factorization theory was initiated by Finesso and Picci [1982] and continued in Picci and
Pinzoni [1994]. In this connection see also Fuhrmann [1994] where this study has been
completed. The papers just quoted all focused on the continuous time case, namely the case
that the function was inner in the right half plane. The central result established a bijective
correspondence between factorizations of an inner function U, invariant subspaces of the
generator in any minimal realization of U and the set of nonnegative definite solutions of
a homogeneous Riccati equation. Qur aim in this paper is to describe an analogous result
in the discrete time case. Specifically, we focus on contractive, matrix valued analytic
functions in the exterior of the unit circle (including the point at infinity), which have
unitary (isometric) radial limits on the unit circle. Since we are interested in matrix
formulas, we have to assume of course that the inner functions under study are all rational.

It is a pleasure to thank two anonymous reviewers who went out of the way in their
effort to make this paper better, both in form and content.

2 Characterization of inner functions

We will discuss stable inner functions. Thus a rational p X m matrix valued function U
is called inner, if it is analytic in {z | |z| > 1}, including at oo, and satisfies U*U = I.
Here U* is defined by U*(z) = U(z7')*. Similarly, a rational matrix valued function is
called coinner if it is stable and satisfies UU* = I. Assume U has a minimal realization

of the form U = ?, g . Necessarily A is discrete time stable, i.e. its spectrum is
included in the open unit disk. We have the following slightly strengthened form of a

characterization obtained in Genin et al. [1983].
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~(445)

be the transfer function of an asymptotically stable discrete time system. Then

Proposition 2.1 Let

1. If there exists a solution X of the matriz equation

A C* X 0 A BY (X 0 9
B* D* 0 I c D) 0 I (2)
or equivalently, of the system

X = A*XA+C*C
D*C+B*XA=0 (3)
D*D+ B*XB =1

then U 1is inner.

2. If U is inner and the realization (1) is reachable, then there exists a nonnegative
definite solution of the system (3).

3. X = X* > 0 satisfying (3) is the observability gramian of the realization. Thus
KerX is the unobservable subspace and X > 0 if and only if (A,C') is an observable
pair. If the realization (1) is reachable we have for the McMillan degree 6(U) =
n — dim Ker X, where n is the dimension of the state space.

Proof:

1. Let U be a rational, p X m matrix valued analytic function with all poles inside the
unit disk. Then it has an expansion at oo of the form

00 Uy
U(z)=) o > A A)ee (<),
v=0

which implies

[oe)

US(z) =Y Ur2" |2l < [IMA)lmas] ™ (> 1),

v=0

Hence with  defined by

Qz) = U"(2)U(2) = Z 2", IMA)maz < |2] < [[A(A)|maa]

k=—c0

we have
YicoUpyiUin k20
Q

Yo UiU ki, k<0
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As U has the realization (1), we have

s D i=0
Tl CcAT'B 0> 0

and thus we compute

2 B (ANMHITIC*CATIB + BX(A)IC*D k>0
Q= D*D + Y22 B*(A*)"1C*CA*'B k=0 (4)

Y2 B (A)TIC*CATHIB 4 D CATF 1B k<0
Now assume there exists an X for which the equations (3) hold. If A is stable, there
exists a unique X’ = (X’)* satisfying the equation X' = A*X’A 4+ C*C and it is
given by X' =377 (A*)'C*CA*. Now, with X = X' we compute

Qo = DD+ Y2, B (A)—1C*CA!B
= DD+ B* (X2 (A)7IC*CA~ Y B=D"D+ B*XB =1.

For k& > 0 we compute

Qk — B*(A*)k—lc*D + E?il B*(A*)k-l—i—lc*CAi—lB
B*(A*)k—lc*D + B*(A*)k E?il(A*)i—lchAi—lB
= B*(A*)F1C*D + B*(A*)*X B = B*(A*)*1(C*D + A*XB) = 0.

A similar computation holds for £ < 0. Thus we can conclude U*U = I, i.e. U is
inner.

2. Assume now that U is inner and the pair (A, B) is reachable. Let X = X* be the
unique solution of the equation

X=A"XA+C*C.

This solution is given by X = Y2 (A*)!C*C A’. Therefore X > 0 is the observabi-
lity gramian of the realization and X > 0 if and only if the realization is observable.
Now, by (4), we have for k=0

I D*D 4 3772, B*(A*)"1C*CA™'B
D*D + B* (E?il(A*)Z_IC*CAZ_l) B

D*D + B*XB.

For k£ > 0 we get

0 = B*(A*)k_lC*D + E?il B*(A*)kfi_lC*CA'i_lB
B*(A*)k—l {C*D + A* E?il(A*)Z_IC*CAZ_lB}
B*(A*)*=1{C*D + A*XB} =0

which, by the assumption of reachability, implies C*D 4+ A*X B = 0. For k < 0 an
analogous computation leads to the same result. X
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By duality considerations we get the following

~(45)

be the transfer function of an asymptotically stable, discrete time system. Then:

Proposition 2.2 Let

1. If there exists a solution Y of the matriz equation

A B Y 0 A C*\y _ (Y O (6)
¢ D 0 1 B* D* ) \0 I
or equivalently, of the system
Y = AYA* + BB~
BD*4+ AY(C* =10 (7)
DD*+CYC*=1

then U s coinner.

2. If U is coinner and the realization (5) is observable, then there exists a nonnegative
definite solution of the system (7).

3. Y = Y™ satisfying (7) is the reachability gramian of the realization. Thus'Y > 0 if
and only if (A, B) is a reachable pair. If the realization (5) is observable, we have
for the McMillan degree 6(U) = dim ImY = rankY .

We note that the previous results extend easily to the case of J-inner functions.

Proposition 2.3 Let

~(45)

be the square transfer function of an asymptotically stable, discrete time system. Then, if
Y > 0 is a solution of

()G DG )0 7) o
(5 o) (0 7)(en)=(07) 10

is solvable. Moreover X = Y~1 > 0.

then the system
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Proof: By a simple computation, using the invertibility of ( é ]l; ) x

We introduce now a notion of balancing that is appropriate for the class of inner
functions. For an exhaustive study of balancing, see Ober [1991] and the references therein.
We say that a minimal realization of an asymptotically stable, discrete-time inner function
is balanced if the reachability and observability gramians are both equal to the identity
matrix.

As an immediate corollary to Proposition 2.3, we obtain

Corollary 2.1 Let U be an asymptotically stable, discrete-time, square inner function.
Then a balanced realization exists, and this realization is unique up to unitary equivalence.

Proof: By Proposition 2.2, using the minimality of the realization, there exists a positive
definite solution Y of equation (9). Applying Proposition 2.3, we have (10) solvable with
1 1 1
_ . Ay B1> X2AX"2 X2B . .. .
X =Y L. Definin = , this matrix is clearly unitar
& ( Ci Dy CX~3 D Y Y

and hence provides a balanced realization of U.

. A|B Y. . . .
For uniqueness assume U = clp ) isa balanced, necessarily minimal, realization

-1 -1
of U. Any other minimal realization has the form U = ( RC:;R } RDB ) The reacha-
bility and observability gramians for this realization are R~'R™* and R*R respectively.
Thus the realization is balanced if and only if R*R = I, i.e. R is unitary. ]

Next we proceed to study the way an inner function is determined via its left pole
structure. Of course a similar result will hold for a specified right pole structure. By
specifying a left pole structure for a (stable) inner function in the exterior of the unit
disk we mean specifying a nonsingular, stable polynomial matrix D(z) such that, for some
N(z), we have U := D7!N is inner and the factorization is left coprime. Using the shift
realization, introduced in Fuhrmann [1976], the pair (A, C') in any minimal realization of
U is completely determined, up to similarity, by the polynomial matrix D(z). Thus we can
state our problem alternatively in the following way. Suppose we are given an observable

pair (A,C), with A stable. We look for matrices B, D so that ( é g

realization of an inner function U. Naturally we will apply the characterization of inner

) is a minimal
functions in terms of their state space representation.

Theorem 2.1 Given an observable pair (A,C') with A asymptotically stable, there exists
a square inner function U in the exterior of the unil disk, uniquely determined up to a
constant right unitary factor, such that for some B and D

and this realization is minimal.
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Proof: Let X be the observability gramian of the pair (A4, C), i.e. the unique solution of
the equation A*X A —J— C*Cl = X1' By ?bservabﬂlity we havei X > 0. We can rewrite the
last equation as (X 72 A*X2)(X2AX72) 4+ (X 2C%)(CX72) = I. Setting

A, = X3AX"2
C, = CX2

. A . . .
we have A7A; 4+ C7Cy = 1. Thus the matrix ( Cl ) is isometric, hence its columns form
1

By

. . Aq
D, ) be an arbitrary completion of ( ) ) to a

an orthonormal set of vectors. Let (

A B
C1 Dy

unitary matrix ( ) Since the orthogonal complement of a subspace of an inner

product space is uniquely determined, the matrix ( Dl ) is uniquely determined up to
1

Ay | B
a right unitary factor. By Proposition 2.1.(1), the transfer function U = (71’71) is

inner. Using the similarity X%, we get U = ( g g ), where

B X8
D = Dy

3 Factorization of inner functions

Before attempting the factorization problem, we analyze the product of two square inner
functions and the solution of the related systems.

. A; | B; . . y
Proposition 3.1 Let U; = (TZ’TZ) ;¢ = 1,2, be minimal realizations of two square
&3 k3

inner functions. Let
Al\Bl) (AQ\BQ>
LT T — X
1 (Cl\Dl Cy | Dy

Ag 0
BlCQ Al

BiDy | = (ﬂ?)
DCy Oy ‘D1D2

LT
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Let, for 1 = 1,2, X; be the solution of the system

X; = A;‘XZAZ + C:Cz
D;kCZ + B;k)(ZA2 =0
DD, + B X;B;, =1
X2

Then X = 0 s the solution of the system
0 X

X=A"XA+C"C
DC+B*XA=0
DD+ B*XB=1

In particular, the realization in (12) is minimal.

Proof: We check

1.
(5 FO0 2 (et ) (G ) imen )
_ ( A3X3 Ay + C3B: X 1By Cy + C3D1D1Cy C3BiX Ay + C3D;Cy )
A3 X B1Cy + C7D1C A3 X Ay + C1Cy
_ ( A;X3 A5 + C3[BIX1By + DiD1]Cy Ci[BrX1A, + DiCy] )
[AZ X1 By + C:D1]Cs ATX1 A + C1Cy
:(AX2A2+C*C2 0 )I(X2 0)
ATX Ay + C1Cy 0 X
2.
pivi( e e (o o) (3 5 ) (ny a )
= D3[DiD1 + Bf X 1B1]Cy + D3[DiC1 + BT X1 A1) + B3 XA,
= D3Cy + B3 X345 = 0.
3.

* )k * * Ik X2 0 B2
D2D1D1D2+ ( B2 D:)Bl ) ( 0 X ) ( By D, )
D3[D:Dy + B; X1By]Dy + By X, B,

D3Dy+ B;X3By = 1.



3 FACTORIZATION OF INNER FUNCTIONS 9

The realization in (12) is minimal as X = diag{X, X1} > 0 is the observability
gramian and, by the dual result of Proposition 2.3, Y = X! is the reachability gramian.
Of course this follows also from the fact that, for two square inner functions Uy, Uy, we
have §(U1U3) = 6(Uy) 4 6(Uz), as there cannot be any pole-zero cancellations. 1

To see how the left factor U; can be recovered, it is natural to assume that the left
. . . . . . . 0 0
factor in U = UyU; is associated with the nonnegative definite matrix ¥ = ( 0 Y ),
1

where Y7 > 0 is the positive definite solution of

A B Yi 0N[4 C;\ _ (v 0 (15)
Cy Dy o 1)\ B pr) "\ o0 I

We consider now the equation

(&) o) (s o) -( 1) a5

which we expand into

Ay 0 B! 0 0 0 AL CiBr CiD: 0 0 0
DiCy Cy Dy 0 0 I (B! (BLY* Dy 0 0 I

From this we obtain the equality

By (Bg)* By (By)* By D; 0 0 0
BN (B! AY{ AT+ BL(BLY AYCI+BD; | = 0 vp 0
Do(BlI)* C1Y1A% 4+ Do(Bh)* C1Y41Ci + DoD;; 00 I

This leads to B{ = 0, and

Ay B Yy 0 At (Yoo
Cy Dy 0o 1)\ (B ;) o I

We compare this equality with (15) to obtain
B/ * * B1 * *
(ﬁ;)((Bé) DO):(D1>(B1 Dl)

!
This clearly implies the existence of a unitary matrix V' such that ( go ) = ( gl ) Vv,
0 1

since the matrix ( ) is full column rank.

1
Dy
Now consider the realization

Ag 0
B.Cy Ay

0
BV | = ( é‘} gl )V = Uy(2)V.
DiCy Cyi | D1V L
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The unitary matrix V is clearly not significant as in any factorization U = U;U; the left
inner factor is only determined up to a right constant unitary factor. x

Observe that

Al By \ [ A B ) ,
((7\1% )“( Ci D)<V

S . . . A|B
this indicates that left square inner factors of a square inner function U = (T’Dfﬂ)
’ I

may be related to solutions of the system (16). This theme is picked up by the next

theorem.
Al|B
r_ 1
U= ( C\|D, ) (18)

be a minimal realization of a square inner function with §(U) = n. Then there exists a
bijective correspondence between

Theorem 3.1 Let

1. Left square inner factors of U.
2. Invariant subspaces of A.

3. Solulions Y, for suilable B and square D, of the matriz equation

A B Y 0 A ¢\ _ (Y O (19)
¢ D 0 7 B* D) \\0 I)’
or equivalently, of the system

Y = AY A* + BB~
BD* + AYC* =0 (20)
DD*+CYC* = I.

Proof: (1) = (2). Let U; be a left factor of U, i.e. U = UyU; for some U,. Assuming
the notation of Proposition 3.1, then the minimal realization (12) exhibits an invariant
subspace of A of dimension equal to the McMillan degree of U;.

(2) = (1). Given a minimal realization of U as in (18) and an invariant subspace
of A, then by similarity there exists an invariant subspace of the generator in the shift
realization of U. This immediately implies the existence of a corresponding factorization.

(1) = (3). Starting from a left factor Uy, a solution of equation (19) can be constructed

by letting Y = ( 8 }(/)1

A B Y, 0 A Cr\ (Y0 (1)
C, Dy 0o 1 J\ B D; )"\ 0 1)’

), where Yy > 0 is the positive definite solution of
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and

Then it is easily checked that

Ay, 0 0 0 0 0 AL CiBr CiD: 0
BlCQ Al B1 0 Y; 0 0 AT CT - 0
DiCy Cy Dy 0 0 I 0 Bf D; 0

=

(3) = (2), (1). Assume Y, B, D solve the system (20), i.e.

(e o) (0 D) (s 5)=(0 1) 2

. A| B . . S g
with Uy = (T’T) a coinner function which is square and hence necessarily inner.
/ 1

Clearly, Y = AY A*+ BB* implies Y = 3252, A'BB*(A*)" > 0. Let us assume, without

loss of generality, that we work in a basis where the solution has the form ( 8 }9 ),
1

with Y7 > 0. Putting the other matrices in compatible block form, we write

A A ) ( Bé ) ’
A= ,B = C=(c, Cy).
( Agy Ay B (¢ c)

The equation (24) can now be expanded into

0 0 _( An A 0 O Ay A3 B, . .
(0 Yl)_(A21 A22)(0 Yl)(/% a )t g ) (B BT

_ ( ApYi A7, AY1A%, ) n ( By(By)" BB} )
ApY1 AT, ApYi AL, By(B))* BB}

()2 (an ) (0w ) (‘@)= (0)

0 0 ch)*
D1DT‘|‘(C£ C1)(0 Y1)((C2f) ):I.

From the first of these equations we obtain

(25)

( 0 0 ) _ ( ApY1 AL, + BY(BY)* ApY1 AL, + BY B )
0 Y, AgY1 A%y + Bi(BY)* AgpYiAby + BB}

Now Aq2Y1 A5, + B)(B5)* = 0 implies A;3 = 0 and B} = 0. We condense notation by
putting Ay = Agy, Ay = Ayy. In particular Yy = A;Y; A7 + By B} implies the reachability
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of the pair (A;, By). The observability of the pair (A;,Cy) follows from that of (A, C).

For, suppose £ € ﬂizolx"e'rClAi; then, ( 0

¢ ) € ﬂizoKeTC'Ai which implies £ = 0. Since

A 0 . . . . .
A= ( 2 ), we have shown the existence of an A-invariant subspace of dimension

A Ay
equal to the size of Aj.

Now we can use the information obtained so far in the realization, to get

Ay, 0] 0
Up=| An Ay | By :(f} gl )
Cy Ci| Dy R
Moreover, note that we already know that Y7 = A;Y; AT + B, B} holds. From the second

equation in (25) we get By D7 + A1Y1CT = 0, whereas the last equation in (25) implies
DD} 4+ C1Y1CT = 1.

To conclude the proof, we will show that Uy is a left inner factor of U. We write now

B, = ( g? ) in block form, compatible with that of A. Thus
1

A, 0 By
U= ( g‘ g“ ) | 4y A | B (26)
g Cy Ci| D,

Since U is square and inner, and (26) is a minimal realization, there exist positive definite

solutions X and Y’ to the matrix equations
A B, Y’ 0 A C*\ _ (Y0 (27)
¢ D, 0 I B, Dy ) 0 I
A C* X 0 A B,y (X 0 (28)
B, D} 0 I ¢ D,) \0 I)’

-1

and

moreover X = (Y)

From the reachability of the pair (( 4 0 ) , ( Bf )) follows immediately the
A21 Al Bl

reachability of the pair (Agz, Bz). Thus, there exist, by the dual form of Theorem 2.1,
matrices C'y, Do for which Uy = ( gz gz
The matrices Cy, Dy are uniquely determined up to a common left unitary factor. Let
Y, > 0 be the reachability gramian of the realization of Uj, i.e. the solution of A;Y;A3 +
B, B; =Y,. We note that from

A, B, Y, 0 A\ (Y2 0 (20)
Cy D, o 1)\ B; D; )"\ 0 I

) is square inner and the realization is minimal.
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Since U is square p x p with 6(U;) = ny and ( AYs By ) e Cm2X(n2+p) has full row

rank and ( CQ*
D;
basis matrix for Ker ( AsY, Bs )

) € C(r2+2)xn2 hag full column rank, it follows that the last matrix is a

Next we expand equation (27) into

A2 0 B2 Y11 Y12 0 A; A;l (Cé)* Y11 Y12 0
Ay Ay B Yy Yo 0 0 AT Cr |=|Yy Y O
c, ¢ D, 0 0 I B; (B)* D 0 0 I

Computing the (1,1) entry, we get A;Y11 A3 + B2 B} = Y11, which implies Y11 = Ys.
Now a similarity 7" in the state space transforms the triple (A, B, C') and a solution of
Y = AY A* + BB* into the triple (TAT=1,TB,CT~!) and TYT*. For our purpose, we

1 0
“YRYy I

( I 0)(}3 le)(I—Y;lYm):(er 0 )
A Yy, Yo 0 I 0 Yoo — YV, 'Yy
1 0 Ay 0 I 0\ [ A 0
—YRY, o Ay Ay YRY,h 1) T\ Ay A
I 0 By \ By
—YRY, o By ) T\ B, -YRY, By

1 0 _
(Cé Cl)(Yl*QYQ_l I):(Cé—l_ClYlBYQl Cl)‘

choose the similarity ( ) Then simple computations lead to

Moreover, defining Y/ = Y35 — YI’E,YQ_IYU, we must have, by Sylvester’s law of inertia, that
Y] > 0. Thus, redefining Ay, B} and C), we may assume without loss of generality that

A2 0 B2 Y- 0
Ay Ay B is already in the new basis and Y’ = ( 02 v )
Cé Cl D,U« 1
Since

(7 )00 o ) 23 )t =08 o)
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it follows that A3(Y{) ' A;+C;Cy = (Y{)™!. As Uy is square inner, we have also A;Y{A; +
BBy =Y/. Therefore Y/ = Y;.

Going back to equation (27), it can be expanded now into

Ay 0 By Y, 0 0 A5 Az (CH” Y, 0 0
A21 Al B{ 0 Y1 0 0 AT Cik - 0 Y1 0
cy, C; D, 0 0 I By (B))* D 0 0 I

Computing the (1,3) term, we get

A2Yo(Cy)* + Be Dy = ( AYz By ) ( (DZ*) ) =0.
n

Since ( 10)2* ) is a basis matrix for Ker ( AYy By ), we conclude that there exists a ma-
2
, : (C3)" C3 N px : /
trix P for which D = D; P*. Equivalently ( ¢, D, ) = ( PCy PD, )
m
On the other hand, computing the (1,2) term, we get A;Y5A%, + By(B])* = 0. By the

same reasoning as before, there exists a matrix ¢) such that ( Ay Bj ) =q ( Cy Dy )

Therefore
Ag 0

B,
A Ay | B
U= | QCy A |QD, :(Cl g>x(—’7€2 Dz)
PCy C1 | PDs ! 2172
Now Uy = ( é; gz ) is square inner and hence, necessarily, also ( éi ?D ) is square

inner. By the uniqueness part of Theorem 2.1, there exists a unitary matrix V' such that
MAQN_(ABYVY_(ABiY
Ci| P C ‘ DV C ‘ D4 '

U= Al ‘ Bl % AQ ‘ B2
"\ G| Dy VCy | VD,

and both factors are square inner.

Thus

Finally we want to compare the result obtained here with the continuous time case. In
Fuhrmann [1994], a bijective correspondence between factorizations of an inner function
U, invariant subspaces of the generator in any minimal realization of U and the set of
nonnegative definite solutions of a homogeneous Riccati equation was established. As
shown in Theorem 3.1, in discrete time the Riccati equation is replaced by the set of
equations (20). However, there is a close relation between these two objects.
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First, we note that if the asymptotically stable square inner function is given in terms

A|B
1D ) , then the invertibility of A implies the invertibility of D.

To see this we start from the equations

of a realization U = (

Y = AY A* + BB*
BD* + AYC* =0
DD* +CYC* = I,

solved by Y > 0. Assuming A is invertible, we get —Y C* = A=1 BD* and hence DD*—1 =
~CYC* = CA™'BD*, that is (D — CA™'B)D* = I. This shows that D*, and hence also

D, are invertible.

If we assume that the realization U = ( é g ) is minimal, then the invertibility

of D implies that 1of A. To see this, we can assume, Withlout loss of generality, that
D = (I -CYC*)2 and hence B = —AYC*(I — CYC*)™2, which implies that ¥ =
AYA* + AYC*(I - CYC*)TICY A* = A[Y + YC*(I — CYC*)~1CY]A*. This shows that

A is invertible.

This leads, in this case, to an explicit parametrization of all left square inner factors
of an asymptotically stable square inner function.

. . . ) A|B
Proposition 3.2 Let the asymptotically stable square inner function U = (T’Tu)
/ I

be given in terms of a mintmal realization. If A is invertible, then

D=

Uy - ( Al —Aver( - CYCr)” ) (30)
cl  u-cver

with Y any nonnegative definite solution of the Riccali equation
Y = AYA* + AYC*(I - CYC™)"'CY A* (31)

such that I — CYC* > 0, gives a parametrization of all left square inner factors of U.

Proof: We saw that the invertibility of A implies the invertibility of D. Thus, from

Y = AY A* + BB~
BD*+ AYC* =0 , (32)
DD*+CYC* =1

we conclude, without loss of generality, that / — CYC* > 0 and D = (I — CYC*)%.
Plugging this into the second equation yields

B=—AYC*I-CYC*) 3,

and finally the first equation yields the Riccati equation (31).
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Conversely, suppose Y solves (31) and [ — CYC* > 0. Then an easy calculation shows
that Y, B, D with

o=

Bi= —AYC*(I - CYC*)3,
D:=(-CYC*)2

solve (32). n

Observe that D invertible corresponds to the case that U~! is proper. Thus the
solution of the Riccati equation (31) only gives those square inner factors which are proper
invertible. However, if we start with A invertible, i.e. with an inner function with proper
inverse, the solution of the Riccati equation gives all square inner factors. This shows
that the Riccati equation only gives a complete solution to the factorization problem in
the case when the inner function has no poles at the origin.
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