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Kurzfassung

Unter einem Bruch versteht man, wie in Gross and Seelig (2011) beschrieben,
die vollständige oder teilweise Trennung eines ursprünglich unbeschädigten Kör-
pers. Das Forschungsgebiet der Bruchmechanik widmet sich der Studie solcher
Bruch- oder Rissprozesse und beinhaltet eine große Anzahl von Untergebieten.
Die vorliegende Arbeit nähert sich der Thematik aus kontinuumsmechanischer
Sicht, wobei die Wurzeln des betrachteten Modells für Rissausbreitung in der Ar-
beit von Griffith (1921) zu finden sind. A. A. Griffith hat mit seiner Arbeit die
energetische Sichtweise auf die Rissausbreitung begründet. Er postulierte, dass die
Energie, die zur Schaffung neuer Rissoberflächen notwendig ist, vom betrachteten
Körper als mechanische Energie bereitgestellt werden muss. Diese Idee wurde in
der Variationsformulierung des Sprödbruchs nach Francfort and Marigo (1998)
verallgemeinert und erlaubt prinzipiell die Vorhersage von nahezu beliebig kom-
plizierter Rissausbreitung. Im Allgemeinen sind dazu jedoch numerische Methoden
notwendig. Motiviert durch die Tatsache, dass die direkte numerische Implemen-
tierung der Variationsformulierung für Sprödbruch mit einigen Schwierigkeiten ver-
bunden ist, hat Bourdin (1998) eine regularisierte Version vorgestellt. In dieser
Variante wird der Riss durch ein zusätzliches skalares Feld, den Ordnungspara-
meter, dargestellt. Der Wert dieses Parameters variiert kontinuierlich von einem
Wert, der gebrochenes Material repräsentiert, zu einem anderen Wert, der intak-
tes Material anzeigt. Die regularisierte Variationsformulierung für Sprödbruch hat
viele strukturelle Gemeinsamkeiten mit sogenannten Phasenfeldmodellen. Die er-
sten Phasenfeldmodelle wurden tatsächlich dazu genutzt um Phasenumwandlung-
en, wie sie beispielsweise in Erstarrungsprozessen auftreten, zu beschreiben. Hier
repräsentiert der Ordnungsparameter verschiedene Phasen des betrachteten Mate-
rials. Mit dieser Sichtweise kann auch der Sprödbruch als eine Phasenumwandlung
von unbeschädigtem zu gebrochenem Material verstanden werden. Konsequenter-
weise wird dann der Ordnungsparameter als Phasenfeld bezeichnet.

Die vorliegende Arbeit widmet sich einem Phasenfeldmodell für dynamischen
Sprödbruch. Das heißt die Massenträgheit des Materials wird im Gegensatz zum
ursprünglichen quasi-statischen Modell berücksichtigt. Weiterhin werden aus-
schließlich spröde Materialien wie Keramiken und gehärteter Stahl betrachtet.
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Dazu werden nach einer Zusammenfassung der benötigten kontinuumsmechanisch-
en Grundlagen einige wichtige Ergebnisse der dynamischen linearen Bruchmechanik
vorgestellt. Dies dient im Wesentlichen zwei Zwecken. Zum Ersten werden not-
wendige Grundlagen für das diskutierte Phasenfeldmodell erläutert und zweitens
werden einige charakteristische Eigenschaften des dynamischen Sprödbruchs er-
klärt, die zur Bewertung der Ergebnisse der nachfolgenden numerischen Simu-
lationen genutzt werden. Im Anschluss folgt die Diskussion der regularisierten
Modellierung von Rissen sowie die Einführung der sogenannten Phasenfeldfor-
mulierung des dynamischen Sprödbruchproblems im Rahmen des Hamiltonschen
Variationsprinzips. Die beschreibenden, gekoppelten Feldgleichungen bestehen aus
der klassischen Bewegungsgleichung und der Evolutionsgleichung für das Phasen-
feld. Diese Gleichungen folgen als notwendige Bedingungen aus dem oben genan-
nten Variationsprinzip. Um auch thermomechanische Probleme betrachten zu kön-
nen, werden diese Beziehungen durch eine zusätzliche Feldgleichung, die lokale
Energiebilanz, ergänzt. Das resultierende System aus gekoppelten, partiellen Dif-
ferentialgleichungen beschreibt den thermoelastischen Bruchprozess nahezu voll-
ständig. Dennoch sind einige Modifikationen notwendig, um das Verhalten von
Rissen physikalisch korrekt wiederzugeben. Zum Beispiel wird die Irreversibilität
der Rissausbreitung durch das Aufbringen von entsprechenden homogenen Dirich-
let Randbedingungen für das Phasenfeld am Riss implementiert. Weiterhin werden
zwei etablierte Methoden zur Modellierung der Zug-Druck-Asymmetrie von Ris-
sen und Rissausbreitung diskutiert und analysiert. Es wird gezeigt, dass die spek-
trale Zerlegung der Verzerrungsenergiedichte nach Miehe et al. (2010b) ebenso wie
die volumetrisch-deviatorische Zerlegung nach Amor et al. (2009) eine wesentliche
Verbesserung des Modells unter Drucklast darstellen. Zusätzlich werden deutliche
Unterschiede zwischen den beiden Ansätzen, besonders unter Scherbelastung, her-
vorgehoben. Im Anschluss wird die Auswirkung der Wahl der Degradationsfunk-
tion auf das modellierte konstitutive Materialverhalten untersucht. Die Degra-
dationsfunktion modelliert im gebrochenen Material den Steifigkeitsverlust und
beeinflusst damit wesentlich das konstitutive Materialverhalten bis zur Rissbil-
dung. Eine allgemeine kubische Degradationsfunktion, wie sie in Borden (2012)
vorgestellt ist, wird in einem vereinfachten eindimensionalen Problem betrachtet.
Es zeigt sich, dass die kubische Degradationsfunktion so eingestellt werden kann,
dass das Materialverhalten bis zum Bruch ein sprödes Materialverhalten besser
wiedergibt als dies bei der häufig verwendeten quadratischen Degradationsfunktion
der Fall ist. Ein weiterer wichtiger Schwerpunkt dieser Arbeit ist die Untersuchung
von Konfigurationskräften, welche auf regularisierte Rissspitzen wirken. Die Ana-
lyse verdeutlicht die enge Verbindung des Phasenfeldmodells zu Griffiths Theorie
und illustriert die Möglichkeiten, die sich bei der Auswertung von Phasenfeldsi-
mulationen von dynamischen Sprödbruch durch das Berechnen der entsprechenden
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Konfigurationskräfte bieten.
Danach werden einige numerische Strategien zum Lösen des gekoppelten ther-

moelastischen Phasenfeldproblems eingeführt. Alle vorgestellten Methoden nutzen
die räumliche Diskretisierung mit standardmäßigen finiten Elementen mit linearen
Ansatzfunktionen. Der übergeordnete Algorithmus kann entweder gestaffelt oder
monolithisch sein. Während im gestaffelten Algorithmus das gekoppelte Problem
in drei entkoppelte Teilprobleme zerlegt wird, die sukzessive gelöst werden, wird
im monolithischen Algorithmus das vollständige Problem in einem Schritt gelöst.
Die Simulation von zwei Testproblemen zeigt, dass eine gestaffelte Lösungsstrate-
gie mit expliziter Zeitintegration der Bewegungsgleichung und eine monolithische
Strategie mit Zeitintegration durch ein modifiziertes Newmark-Verfahren am ef-
fizientesten arbeiten.

Darauf aufbauend werden anschließend mehrere numerische Experimente durch-
geführt, um die Fähigkeiten des diskutierten Phasenfeldmodells zur Beschreibung
von dynamischen Bruchphänomenen zu demonstrieren. Die Analyse von sta-
tionären Rissen zeigt die Fähigkeit der Zug-Druck-Modifikationen zur akkuraten
Beschreibung der Randbedingungen am Riss. Gleichzeitig werden aber auch
Schwachpunkte dieser Ansätze herausgearbeitet. Zusätzlich wird die Rissbildung
durch dynamische Effekte, wie etwa der Reflektion von elastischen Wellen an den
Rändern der betrachteten Struktur, in zuvor unbeschädigtem Material untersucht.
Anhand der Rissbildung im Kerbgrund einer Kompaktzugprobe wird ein Vergleich
zwischen den Ergebnissen des dynamischen Modells und eines quasi-statischen
Modells durchgeführt und wesentliche Unterschiede im berechneten Rissverhal-
ten werden diskutiert. Im weiteren Verlauf der Arbeit wird der Fokus auf die
Analyse der maximal erreichbaren Rissgeschwindigkeiten im dynamischen Phasen-
feldmodell gelegt. Die Simulationen ergeben, dass die maximal erreichbare Riss-
geschwindigkeit vom Modus der Rissspitzenöffnung abhängig ist. Die erreichten
Geschwindigkeiten sind in guter Übereinstimmung mit analytischen Ergebnissen
und Experimenten. Die Analyse dynamischer Rissverzweigung zeigt, dass die
Konfigurationskräfte, welche auf ein Rissspitzenkontrollvolumen wirken, die riss-
treibenden energetischen Mechanismen nur dann repräsentieren, wenn eine einzige
Rissspitze im betrachteten Kontrollvolumen enthalten ist. Ist dies der Fall, zeigt
die Auswertung der Konfigurationskräfte die enge Verbindung des Phasenfeldmo-
dells mit der Griffith-Bedingung für Risswachstum.

Abschließend werden zwei Anwendungsbeispiele des betrachteten Phasenfeldmo-
dells zur Beschreibung von thermoelastischen Bruchproblemen präsentiert. Zuerst
wird das Laserschneiden von Keramiken untersucht, während sich das zweite Bei-
spiel der Modellierung von Versagen in Strukturen in Hochleistungsteilchenbe-
schleunigeranlagen widmet, die Schwerionenbestrahlung ausgesetzt sind. In beiden
Anwendungsbeispielen wird die Temperatur als zusätzliches Feld berücksichtigt.





Abstract

Fracture is understood as the complete or partial separation of an originally un-
damaged body, see Gross and Seelig (2011). The field of fracture mechanics is
devoted to the study of such processes and includes a variety of sub-branches.
This work approaches the subject from a continuum mechanics point of view,
meaning that the analyzed body is assumed to be a continuous set of contiguous
material particles. The origins of the considered model for fracture lie in the work
of Griffith (1921). A. A. Griffith was the first to formulate an energetic criterion
that allowed to predict the onset of crack propagation. The idea of Griffith has
been generalized by the variational formulation of brittle fracture by Francfort and
Marigo (1998) which – in principle – enables the prediction of crack propagation
of almost arbitrary complexity. Nonetheless, a numerical solution is required in
order to determine the crack evolution. Motivated by the fact that the numerical
solution of the original variational formulation of brittle fracture faces severe dif-
ficulties, Bourdin (1998) presented a regularized version. In this case, the crack
is represented by an additional scalar field variable – the order parameter – that
continuously varies from a value indicating broken material to another value that
represents undamaged material. The structure of the regularized version of the
variational formulation of brittle fracture closely resembles so-called phase field
models. Originally, phase field models were used to model phase transforma-
tions such as they occur for example during solidification processes or during the
austenite-martensite transformation in steels. In such scenarios, the order pa-
rameter indicates the different phases of the regarded continuum. Analogously,
fracturing may also be considered as a phase transformation from undamaged to
broken material and consequently the order parameter may be referred to as a
phase field.

The present work addresses a phase field model for dynamic brittle fracture,
i.e. inertial effects are accounted for and only brittle materials such as ceramics
and hardened steel are considered. After the required background information
on continuum mechanics is stated, the reader is introduced to some fundamental
results of dynamic linear elastic fracture mechanics. This serves two purposes.
Firstly, the foundations of the model such as the Griffith condition are introduced.
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Secondly, features of dynamic fracturing such as theoretical crack speed limits are
discussed which serve as benchmarks for the evaluation of the performance of the
phase field model in subsequent numerical simulations.

Afterwards, the regularized representation of cracks is presented and the dy-
namic phase field fracture problem is stated in the framework of Hamilton’s vari-
ational principle. The governing field equations which are the equation of mo-
tion and a phase field evolution equation follow as necessary conditions from the
variational principle. They are complemented by the local energy balance which
provides a third field equation. The resulting set of coupled partial differential
equations implicitly governs the evolution of all three primary fields, i.e. the dis-
placements, the phase field and the temperature. Thus, the whole thermoelastic
fracture process is treated in a unified framework. Nonetheless, certain additions
and modifications are necessary to capture physically sound crack behaviour. The
irreversibility of fracturing is implemented by prescribing adequate homogeneous
Dirichlet boundary conditions for the phase field at the crack. Secondly, two es-
tablished approaches to model the tension-compression asymmetry of fracturing
are discussed and analyzed. It is shown that the spectral decomposition of the
strain energy density by Miehe et al. (2010b) as well as the volumetric-deviatoric
formulation of Amor et al. (2009) provide a substantial improvement in compres-
sive load states. Furthermore, fundamental differences between both approaches
are highlighted in particular in shear load states. In this situation, the spectral
decomposition predicts a higher resistance to crack nucleation in undamaged ma-
terial and furthermore retains a residual stiffness to a sliding motion of crack faces.
This makes the spectral approach less suited to model crack propagation under
in-plane shear loading of the crack tip. Next, the effect of the choice of the degra-
dation function on the modelled constitutive material behaviour is studied. The
degradation function implements the loss of stiffness of the material in broken
material and significantly impacts the local constitutive behaviour of the material
up to fracture. A general cubic degradation function of the type originally pro-
posed in Borden (2012) is considered in a simplified analytic scenario. It is found
that the general cubic degradation function can be set up such that the material
behaviour up to fracture matches brittle material behaviour better than the com-
mon quadratic degradation function. Another contribution of this work, is the
consideration of configurational forces as a means to highlight the connection of
the phase field model to the Griffith condition and to enhance the post-processing
of dynamic phase field fracture simulations. It is demonstrated that a generalized
configurational force balance which is evaluated for a control volume containing a
single crack tip is closely related to the Griffith condition for crack propagation.

In the following, several numerical solution strategies for the solution of the
coupled thermoelastic phase field problem are introduced. All presented methods
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rely on a spatial discretization of the partial differential equations by means of
standard finite elements with linear shape functions. The overall algorithm can be
either a staggered or a monolithic solution strategy. In the staggered algorithm,
the coupled problem is decomposed into three decoupled subproblems that are
solved successively, whereas in the monolithic case the solution of the full problem
is obtained in a single step. Benchmark problems reveal that a staggered strategy
with explicit time integration of the equation of motion and a monolithic solution
strategy with implicit time integration by a modified Newmark scheme perform
best.

Subsequently, a number of numerical experiments is conducted that demon-
strate the model’s capability to accurately capture features of dynamic fracture.
The analysis of stationary cracks displays the ability of the tension-compression
asymmetry implementations to accurately model the crack boundary conditions
but also reveals certain shortcomings of these modifications. Crack nucleation in
previously undamaged bodies due to dynamic effects such as wave reflection at the
body’s boundaries is also investigated and it is shown that the phase field model at
hand is able to govern such fracture scenarios. A comparison to the performance
of a quasi-static phase field model for brittle fracture is conducted as well, tak-
ing as an example the crack nucleation in the notch ground of a compact tension
specimen. In this case, critical differences between the dynamic and quasi-static
formulations are discussed. Furthermore, the crack tip trajectory obtained from a
phase field simulation is compared to an analytical solution for a relatively simple
crack nucleation scenario. The simulation is found to be in agreement with the
analytical prediction. In the following part the focus is shifted towards analyzing
the maximum obtainable crack speeds in the phase field model. Depending on the
mode of crack tip loading, the phase field model predicts different crack speed lim-
its that are in agreement with analytical results and experimental investigations.
For symmetric tensile crack tip loading, so-called Mode I, the maximum crack
speed in the simulations is the Rayleigh wave speed if the directional instability of
such a crack is removed by introducing a weak strip of reduced fracture resistance
into the material. For Mode II it is necessary to prescribe the crack path as well
and crack speeds above the characteristic wave speed of equivoluminal waves can
be obtained. The analysis of a dynamic crack branching scenario reveals that the
configurational forces evaluated on a crack tip control volume can only accurately
represent the energetic driving forces on the crack tip if only a single crack tip is
contained in the control volume. If this is the case, the analysis of the configura-
tional forces verifies the close connection of the present phase field model to the
Griffith condition of crack growth.

Lastly, two applications of the phase field model at hand to thermoelastic
fracture problems are presented. Firstly, the laser-cutting of ceramic substrates is



studied and secondly the failure of structures that are subject to intense heavy-ion
beams in high-power particle accelerator facilities is considered. Only in these two
case studies, the temperature is included as an additional field.
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1 Introduction

1.1 Motivation and Background

Fracture is referred to as the complete or partial separation of a previously con-
nected solid body by applying stress loads that are large enough to overcome the
cohesive strength of the material. Since fracturing is a central concern in many
industrial applications as well as it is a major aspect of natural phenomenons
such as earthquakes, engineers and scientists have devoted a considerable effort
to the study of cracks and crack propagation. A major objective in the design
of technical devices and facilities, for example, is to prevent structural failure of
critical components due to fracture. Oftentimes, fracturing of key components
can lead to immediate and catastrophic consequences. In other cases, fracturing
may be a desired part of a technological process. An illustrative example for such
an application is the hydraulic fracturing technology, where rock is fractured by
a pressurized fluid in order to increase the stimulation rate of natural gas and
oil. Furthermore, a number of very efficient manufacturing techniques deliberately
induce fracture to separate a workpiece. A natural phenomenon that involves frac-
turing is the separation of the earth crust during an earthquake. In this research
field, a better understanding of the fracture process might enable the development
and improvement of early warning systems.

The primary motivation for the original studies of fracturing was indeed the
failure of technical structures due to fracture which could not be explained by
the available mechanical theories at the time. In particular, the theoretical works
of Griffith (1921) and Irwin (1957) established the field that is today known as
fracture mechanics. These early contributions enabled the engineer to estimate
whether an existing crack in brittle material such as hardened steel and ceramics
was likely to propagate or not. Furthermore, Griffith (1921) founded the basis of
the theoretical understanding of fracturing as an energy driven process. He stated
that the energy needed to separate the material – and thus to form the new surfaces
– needs to be supplied by the body as mechanical energy. Griffith and Irwin
considered only quasi-static situations meaning that they neglected the inertia of
the material. Such an approach is suitable as long as the load is applied slowly
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compared to a time scale given by the ratio of a characteristic length of the problem
and a characteristic wave speed. In addition, crack propagation needs to be slowly
compared to a characteristic wave speed of the material as well. Oftentimes such
conditions are not prevalent and dynamic effects have to be taken into account. For
example, if a load is applied rapidly, the material resists the applied load not only
by means of its stiffness but also by its mass inertia. Consequently, the loading is
radiated into the body as an elastic wave and thus it affects different locations of the
body at different times, cf. Freund (1990). Furthermore, inertial loads may cause
a dynamic overshoot of the fields at a crack tip until they eventually decay to their
limiting equilibrium value. Another dynamic effect arises at the crack tip of a fast
moving crack. Here, the inertia of the material on either side of the crack resists an
opening of the crack and thus counteracts fast crack propagation. The extension of
the classical theories of brittle fracture to the dynamic situation has been driven
by a number of scientists and excellent overviews on the topic can be found in
the literature, e.g. in Freund (1990), Broberg (1999) and Gross and Seelig (2011).
Experimental work on the topic of dynamic fracture is available e.g. in Kalthoff
and Winkler (1987), Kalthoff (2000), Ravi-Chandar and Knauss (1984a,b,c,d),
Sharon et al. (1995), Sharon and Fineberg (1996, 1999) and Rosakis et al. (2000).

In science and engineering, experimental methods are still the most trusted
approach to verify theories and designs. Nonetheless, experiments are often time
consuming and expensive resulting in a search for alternative approaches to ana-
lyze physical processes like fracture. The applicability of the analytic results for
dynamic fracture to real world engineering problems is limited since such solutions
do not exist for general loading and geometric configurations. The high effort
of experimental methods as well as the limited applicability of analytic solutions
motivate the development of numerical approaches that make use of the increas-
ing capacities of modern computers in order to solve more complex problems. In
structural mechanics the finite element method (FEM) has become the predomi-
nant numerical tool for the evaluation of loaded continuous bodies. However, the
implementation of material separation and particular fracture into a finite element
scheme is still an ongoing topic of research. General material separation can for
example be handled by the particle finite element method, e.g. in Sabel et al.
(2014), whereas common approaches to model brittle fracture may be divided into
two general classes: discrete and diffusive models of fracture. The extended finite
element method, e.g. in Moës et al. (1999), the virtual crack closure technique by
Krueger (2004), the inter element crack method by Xu and Needleman (1994) as
well as element deletion methods all fall into the first category and model the crack
as a discontinuity in the mechanical fields or by a modification of the finite element
mesh. A comparative study of these strategies can be found in Song et al. (2008).
Such discrete strategies generally require the tracking of the crack path in order
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to apply the correct boundary conditions at the crack faces. Thus, especially in
3D situations and when phenomena such as crack branching are to be considered
the algorithmic treatment is complex.

In contrast to the discrete models, diffusive approaches to fracture introduce
an additional field, the order parameter, into the model that controls the stiffness
of the material. This order parameter varies smoothly from a value indicating un-
damaged material to another value indicating broken material and thus represents
the crack in a continuous manner. Hence, in a diffusive fracture model the repre-
sentation of the crack is not mesh-based but field-based. The idea of a diffusive or
regularized approach to solve brittle fracture problems numerically originated with
Bourdin (1998), who made the generalization of the Griffith theory by Francfort
and Marigo (1998) accessible to a numerical solution. Since then the approach has
caught the interest of a large number of researchers like Miehe et al. (2010a), Miehe
et al. (2010b), Kuhn and Müller (2010a) and Borden et al. (2012). The term ‘phase
field models of fracture’ is often used in the literature to characterize these diffusive
fracture models because of their formal similarity to the original diffusive interface
models for phase transformation processes like solidification, e.g. in Boettinger
et al. (2002), austenit-martensit transformation in steels, e.g. in Schmitt et al.
(2014), or general microstructure evolution, e.g. in Moelans et al. (2008). In this
classic context, the order parameter, which is referred to as the phase field, indeed
indicates different phases of a material. Analogously to real phase transformation
processes, crack growth may be considered as a phase transition from the undam-
aged to the broken state in phase field models of fracture. A major advantage of
the phase field models of fracture is that the evolution of the phase field follows
implicitly from the solution of a set of partial differential equations, and thus the
whole fracture process is described in a uniform framework. Furthermore, since
the order parameter and all other fields vary smoothly in the vicinity of the crack,
no jump discontinuities need to be treated. Consequently, the algorithmic treat-
ment is straightforward and can be handled by standard multi-field finite element
methods. An extension to the 3D situation and the prediction of complex crack
patterns such as crack branching and the merging of cracks also does not require
any specific algorithmic treatment which is considered to be another advantage of
the approach.

Recently the original quasi-static model has also been extended to the dynamic
case, where inertial effects are accounted for, e.g. in Bourdin et al. (2011), Borden
(2012), Borden et al. (2012), Hofacker and Miehe (2012, 2013), Schlüter et al.
(2014b,a), Steinke et al. (2016) or Li et al. (2016). These works show that also in
the dynamic case, the phase field approach is a versatile tool to model complex
features of brittle fracture.

.
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1.2 Objectives and Overview

As mentioned in the previous section, the phase field approach is a powerful tool
that can handle even complicated fracture phenomena within an apparently sim-
ple framework. Nonetheless, a profound understanding of the model is required
in order to be able to interpret the obtained results correctly. Furthermore, in
the dynamic case the phase field model needs to be verified in comparison to ex-
perimental data and analytical results in order to increase the trust in this new
approach. Once the capabilities of the model are verified, the proper analysis of
the results of phase field simulations of dynamic brittle fracture have the potential
to provide insights into fracture phenomena that are only partly understood up
until now such as dynamic crack branching or intersonic fracture. Additionally,
the application of the approach to engineering problems is another topic that has
rarely been addressed in the literature so far. The treatment of complex engineer-
ing problems also requires the development of efficient numerical solution strategies
for the dynamic phase field fracture problem.

The goal of this thesis is to thoroughly investigate the phase field approach
to dynamic brittle fracture with respect to these aspects. At first, the required
fundamentals of continuum mechanics are introduced in Chapter 2. In particular
the small deformation theory, which serves as a framework for the formulation
of the phase field model is presented. Subsequently, Chapter 3 summarizes some
aspects of the theory of dynamic fracture mechanics which are required to assess
the numerical simulations in consecutive chapters. At the end of this part, the
variational formulation of brittle fracture is presented, which is the foundation of
the present phase field formulation.

Chapter 4 contains the first important contributions of this work. Here, Hamil-
ton’s variational principle is applied to state the dynamic phase field fracture prob-
lem in a way that is consistent with the variational formulation of brittle fracture.
This derivation is performed for a general thermoelastic setting, such that thermal
effects can also be considered. The reader is made familiar with the regularized
representation of cracks and certain aspects of the phase field model such as the
modelling of the irreversibility of fracturing. A particular focus lies on the mod-
elling of the tension-compression asymmetry with regard to the crack boundary
conditions as well as with regard to the different material strength in tension and
compression. Two formulations that are common in the literature are discussed
and compared to each other. Furthermore, analytic results are obtained for an
1D-bar under quasi-static conditions which illustrate the significance of the choice
of the degradation function for the modelled constitutive material behaviour and
the effective material strength. The consideration of configurational forces in the
present phase field model also highlights its connection to the Griffith criterion
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and to the variational formulation of brittle fracture.
A main strength of the phase field approach to dynamic brittle fracture is

its straightforward numerical implementation. Nonetheless, the computational
effort can become relatively high which is why it is of interest to develop efficient
numerical solution strategies. A contribution of this work that is related to this
topic is the presentation and analysis of different finite element implementations of
the considered phase field model in Chapter 5. Different staggered and monolithic
solution strategies are presented and discussed. A thorough assessment of the
different strategies in two benchmark problems follows.

A major part of this work follows in Chapter 6, where the capabilities of the
phase field approach to capture dynamic brittle fracture are demonstrated by sev-
eral numerical simulations. The analysis of stationary cracks sheds light on the
effect of the tension-compression asymmetry implementations and also displays
how the model governs wave interaction with cracks. Crack nucleation in un-
damaged material is a special feature of phase field models for fracture which is
discussed for situations in which elastic wave propagation has substantial impact
on the expected results. The analysis of crack nucleation in the notch ground of
a compact tension specimen highlights the differences between quasi-static and
dynamic phase field formulations of brittle fracture. To conclude this passage, a
comparison of a crack tip trajectory obtained from a phase field simulation to an
analytic solution is made. In the subsequent part, the ability of the phase field
model to predict crack speed limits in accordance with theory and experiments is
investigated. A particular focus lies on the effect of the mode of crack opening
on the maximum obtainable crack speed. Lastly, dynamic crack branching of a
crack that is subjected to a symmetric tensile load is analyzed. In this example,
configurational forces are employed as a post-processing tool.

The last chapter presents two examples of applications of the present phase
field model to engineering problems. At the beginning, simulations of laser cutting
of ceramics by employing a thermoelastic formulation of the present phase field
model are presented. The subsequent section considers structural failure triggered
by heavy-ion beams that hit the investigated solid.





2 Continuum Mechanics

In this work, dynamic fracturing is studied in the framework of continuum me-
chanics. Therefore, feasible length and time scales are assumed to be much larger
than the characteristic length of the atomic spacing and the characteristic times
of atomic bond vibrations. Typically, these limiting scales are of the order of a
few angstroms (1Å = 10−10 m) and a few femtoseconds (1 femtosecond = 10−15 s).
The continuous body of interest B is idealized as a composition of particles P ∈ B.
The particles themselves represent a large number of molecules but are small
enough compared to the size of the solid B to be assumed to be points in physical
space.

In addition to the theoretical basics that are outlined in this chapter, the inter-
ested reader is referred to the many excellent textbooks on continuum mechanics
such as e.g. Holzapfel (2000), Gurtin (1981), Sadd (2009) and Becker and Gross
(2002). Information on the notation that is utilized in this work and a number of
required mathematical preliminaries can be found in Appendix A.

2.1 Kinematics

Consider the body B to be embedded in the three-dimensional Euclidean space E3

at a specific point in time t. Due to the motion, B occupies a sequence of regions
Ω0, ...,Ω. Typically, the region Ω0 ⊂ E3 that is occupied at a reference time t0 is
called the reference configuration of B, whereas the region that is occupied at the
current time t is denoted as the current configuration Ω of B, see Fig. 2.1.

By introducing a reference frame of right-handed, rectangular coordinate axes
with orthonormal basis vectors ei at a fixed origin O, the particle P may be
identified by its position in the reference configuration X = Xiei. Its coordinates
in the current configuration are referred to as x = xiei. Differential operators
that contain derivatives with respect to the material coordinates X are typically
denoted as ‘Div’ and ‘Grad’ in contrast to the ‘div’ and ‘grad’ that is used for
operators with derivatives with respect to the spatial coordinates x. The motion
χ maps the position of particles in the reference configuration to their position in
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X (P)

χ (X, t)

x (X, t)

U (X, t) = u (x, t)

O e2
e1

Ω0 Ω

Figure 2.1: Motion of a continuum.

the current configuration, i.e.
x = χ (X, t) (2.1)

and is assumed to be locally uniquely invertible, i.e.

X = χ−1 (x, t) . (2.2)

The motion and the inverse motion can be used to define the displacement of P as
a function of its coordinates in the reference configuration U(X, t) or equivalently
as a function of its coordinates in the current configuration u(x, t), i.e.

U(X, t) = χ (X, t)−X = x− χ−1 (x, t) = u (x, t) . (2.3)

The material gradient of the motion χ (X, t) is denoted as the deformation gradi-
ent

F =
∂χ (X, t)

∂X
=

∂x

∂X
(2.4)

and linearly maps infinitesimally small line elements dX of the reference configu-
ration onto the corresponding line elements dx in the current configuration, i.e.

dx = FdX. (2.5)

The inverse linear map is defined as

F−1 =
∂χ−1 (x, t)

∂x
=
∂X

∂x
. (2.6)
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The deformation gradient can be uniquely decomposed into a proper orthogonal
rotation tensor R and a symmetric positive definite right stretch tensor A or left
stretch tensor B, so that

F = RA = BR. (2.7)

In addition to the introduced quantities, strain measures are required that
quantify the deformation at a certain point in order to define constitutive relations
later on. The definition of strain is, unlike e.g. the definition of the displacement,
based on a strain concept. Consequently, a number of strain measures are available
in the literature. A common measure defined in the reference configuration is the
Green-Lagrange strain tensor

E =
1

2

(
F TF − 1

)
=

1

2

(
GradU + (GradU)T + (GradU)T GradU

)
, (2.8)

in which 1 is the second order identity tensor, which operates on line elements in
the reference configuration to express the change of the squared length of these
line elements, i.e.

dx · dx− dX · dX = dX · 2EdX. (2.9)

Similarly the Euler-Almansi strain tensor

γ =
1

2

(
1− F−TF−1

)
=

1

2

(
gradu+ (gradu)T − (gradu)T gradu

)
(2.10)

is a strain measure operating on line elements in the current configuration that
expresses the change of squared lengths of these line elements, i.e.

dx · dx− dX · dX = dx · 2edx. (2.11)

2.1.1 Small Deformation Theory

In this work, brittle materials such as hardened steel, glass and ceramics are con-
sidered. These materials undergo only small stretches in the elastic range, i.e.
A ≈ 1 and B ≈ 1. If the magnitude of the rotations is negligible as well, R ≈ 1,
the displacement gradient is also small, i.e. | ∂Ui

∂Xj
| � 1. In addition to a small dis-

placement gradient, the displacements themselves are assumed to fulfill |u| � 1.
This justifies that – except for the definition of the displacement field u(x, t) – in
the small deformation theory no distinction between the current and the reference
configurations is made, i.e.

Ω ≈ Ω0, x ≈X,
∂(∗)
∂X

≈ ∂(∗)
∂x

(2.12)
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for any field (∗). The above assumptions imply that the quadratic terms in (2.8)
and (2.10) can be neglected. Under these circumstances the Green-Lagrange strain
tensor is identical to the Euler-Almansi strain tensor, i.e.

E ≈ γ ≈ 1

2

(
gradu+ (gradu)T

)
. (2.13)

The quantity

ε =
1

2

(
gradu+ (gradu)T

)
(2.14)

is referred to as the linearized strain tensor. From this point on the small defor-
mation theory is employed. The trace of the linearized strain tensor is equal to
the volume change of an infinitesimal volume element dV in the small deformation
theory

tr (ε) = εkk = εV = lim
dV→0

dv − dV

dV
, (2.15)

which is also referred to as the volume dilatation. Based on this, the linearized
strain tensor in an n-dimensional setting can be decomposed into a volumetric or
spherical part and a deviatoric part as

ε =
tr (ε)

n
1 + e. (2.16)

Alternatively, an eigenvalue decomposition of the strain tensor, such that

ε =
n∑
i=1

εini ⊗ ni, (2.17)

where εi is the i-th eigenvalue of ε and ni is the associated normalized eigenvector,
may be employed. The decompositions (2.16) and (2.17) enable the formulation of
constitutive laws with specific characteristics which will be utilized in Section 4.4.
The velocity of a specific particle

u̇ =
du

dt
=
∂u

∂t
(2.18)

represents the rate at which a particle moves through physical space, where the
last identity is only true within a small deformation framework. Similarly, the
acceleration is

ü =
d2u

dt2
=
∂2u

∂t2
. (2.19)

Hence, although it is assumed that the particles do not change their position in
physical space in the small deformation theory, each particle is still associated with
a velocity and acceleration. From a purely mathematical point of view, however,
the displacement field can be understood as a time dependent vector field on a fixed
domain. Thus, unlike in the case of a finite deformation theory, the interpretation
of u as a displacement in physical space is separated from the mathematical model.
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2.2 Stress

The notion of stress is a fundamental concept of continuum mechanics. Consider
the configuration Ω of a body B that is subjected to external tractions t∗ on the
part ∂Ωt of the boundary. Neither distributed volume forces nor resultant couples
are considered in this work. The body may also be subjected to Dirichlet type
boundary conditions u∗ on ∂Ωu. Presume the body is cut into two pieces where

u∗

t(−n)

n

Ωt

dA

t(n)
Ωu

t∗

Figure 2.2: The traction vector.

n(x) is the normal vector at the interface, see Fig. 2.2. Let df denote the force
acting on an infinitesimally small surface element of size dA of the interface, i.e.
the force that is transmitted to the other part of the body. The traction vector
t (x, t,n) relates df and dA through

df = tdA. (2.20)

By means of Cauchy’s theorem

t (x, t,n) = σT (x, t)n (2.21)

the unique second-order tensor σ - the Cauchy stress tensor- is defined which
linearly maps any normal n(x) onto the corresponding current stress vector at
that particular location. The superscript (∗)T indicates the transpose of a second-
order tensor. The stress vector can be decomposed in a part that is parallel to the
normal vector

t‖ = (n · t)n (2.22)

and a part
t⊥ = t− (n · t)n (2.23)

that is perpendicular to n and thus tangent to the surface element dA. The
so-called normal stress is the magnitude of t‖, i.e.

σ =
√
t‖ · t‖, (2.24)
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whereas the total shear stress acting on ds is

τs =
√
t⊥ · t⊥. (2.25)

The components of the stress tensor in a cartesian reference frame can be de-
termined by evaluating the normal and shear stress at a point x for three cuts
with linearly independent associated normal vectors. A practical choice is to align
these cuts perpendicularly to the basis vectors in the orthonormal coordinate sys-
tem {e1, e2, e3}. The respective traction vectors may be represented by their

x1

σ11
x2

σ22

σ23

σ32

σ33

σ12

σ13

σ31

x3

σ21

Figure 2.3: Stress components at an infinitesimally small volume element.

components in this coordinate system as

ti =


σi1

σi2

σi3

 , i ∈ {1, 2, 3} , (2.26)

see Fig. 2.2, which allows to express the stress tensor as

σ = [t1, t2, t3]T =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , (2.27)

where the first index i of each component σij indicates the direction ei ‖ n of
the cutting plane with the associated traction vector ti and the second index j
represents the direction ej in which the respective stress component acts.
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2.3 Balance Laws

In continuum mechanics, the physical behaviour of the regarded body is often
postulated by so-called balance laws.

As an exception to the notation that is introduced in Appendix A concerning
boldface and normal letters, let A(t) =

∫
R
a(x, t) dR be a tensor-valued function

that characterizes the state of the particles in a region R ⊆ Ω. The smooth
field a(x, t) may represent a tensor quantity, i.e. a scalar, vector or higher order
tensor. The operators used below have to be interpreted accordingly. A balance
law postulates a change of A(t) to obey

Ȧ =
d

dt

∫
R

a(x, t) dV =

∫
∂R

qa · n dA+

∫
R

ra + sa dV, (2.28)

where qa is the Cauchy flux of a(x, t) across the boundary ∂R, ra is the internal
production of a(x, t) and sa is the supply of the quantity a(x, t) provided by exter-
nal sources. Equation (2.28) is referred to as a master balance law. Similarly, one
can postulate a master inequality law by replacing the equality with an inequality

Ȧ =
d

dt

∫
R

a(x, t) dV ≥
∫
∂R

qa · n dA+

∫
R

ra + sa dV. (2.29)

2.3.1 Conservation of Mass

Consider a closed system R ⊆ Ω, i.e. no mass can cross ∂R, and let the mass
per unit volume inside R be described by the density ρ (x, t). Mass cannot be
destroyed or produced in classical mechanics, which yields rρ = 0 and sρ = 0. Since
the small deformation theory is applied, the region R is also independent on t, and
thus integration over R and differentiation w.r.t. time commute. Consequently, it
is

ṁ =
d

dt

∫
R

ρ (x, t) dV =

∫
R

∂ρ (x, t)

∂t
dV = 0 (2.30)

for the mass m in R. This relation needs to hold for all admissible closed (sub-)
systems R which yields the local form of the mass continuity equation for small
deformations

ρ̇ =
∂ρ (x, t)

∂t
= 0. (2.31)

2.3.2 Balance of Linear Momentum

The linear momentum of R is defined as

L(t) =

∫
R

p dV =

∫
R

ρu̇ dV. (2.32)
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Following Newton’s principles of motion, the balance of linear momentum

L̇ =
d

dt

∫
R

ρu̇ dV = F ext (2.33)

is postulated, where

F ext =

∫
∂R

t dA (2.34)

is the resultant external force acting on R if external volume forces are neglected.
With (2.34) and Cauchy’s theorem (2.21), the global balance of linear momentum
(2.33) reads

d

dt

∫
R

ρu̇ dV =

∫
∂R

σTn dA. (2.35)

An equivalent local form can be derived using the local mass balance (2.31) as

ρü = divσT . (2.36)

The local form of the balance of linear momentum (2.36) is also referred to as the
equation of motion.

2.3.3 Balance of Angular Momentum

The angular momentum of R is

J(t) =

∫
R

r(x)× (ρu̇) dV, r(x) = x− x0, (2.37)

where x0 is a reference position and ‘×’ denotes the cross product of two vec-
tors. Neglecting distributed resulting couples, a balance of angular momentum is
postulated as

J̇ =
d

dt

∫
R

r × (ρu̇) dV =

∫
∂R

r × t dA. (2.38)

By means of the balance of linear momentum (2.36), the conservation of mass
(2.31), Cauchy’s theorem (2.21) and the divergence theorem (A.11) it follows the
symmetry of the Cauchy stress tensor

σ = σT . (2.39)
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2.3.4 Balance of Energy and Caloric Equation of State

The kinetic energy inside R is

K =

∫
R

k dV with k =
1

2
ρu̇ · u̇. (2.40)

Furthermore, the power of external forces is defined as

Pext =

∫
∂R

t · u̇ dA (2.41)

and can be reformulated by means of the balance of the conservation of mass
(2.31), linear momentum (2.36), the divergence theorem (A.11), the symmetry of
the stress tensor (2.39) and Cauchy’s theorem (2.21) to

Pext =

∫
R

(σ : ε̇+ ρü · u̇) dV = P int +
dK
dt
, with P int =

∫
R

σ : ε̇ dV. (2.42)

Thus, the balance of mechanical energy

dK
dt

+ P int = Pext (2.43)

is a direct consequence of these relations. The quantity

σ : ε̇ =
d

dt

∫ t

t0

σ :
∂ε

∂t
dt =

d

dt

∫ ε(x,t)

ε(x,t0)

σ : dε =
dwint

dt
(2.44)

is referred to as the stress power density, where

wint =

∫ ε(x,t)

ε(x,t0)

σ : dε (2.45)

is denoted as the stress work density. If the stress work density is only dependent
on the current deformation ε and not on the deformation history or other fields,
the work increment dwint = σ : dε is the total differential of the potential

ψe (ε) = wint, (2.46)

which is denoted as the strain energy density, i.e.

dψe = σ : dε. (2.47)

The internal energy

E(t) =

∫
R

e dV (2.48)
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represents the sum of all microscopic forms of energy in R. Its rate is equal to the
stress power plus the thermal power

Q = −
∫
∂R

qθ · n dA+

∫
R

sθ dV (2.49)

currently applied to R, i.e.
dE
dt

= P int +Q. (2.50)

By substituting (2.43) into (2.50), the balance of energy

dK
dt

+
dE
dt

= Pext +Q (2.51)

is obtained, which is also referred to as the first law of thermodynamics. The
local form of the balance of thermal energy (2.50) can be derived by means of the
divergence theorem (A.11) as

ė = σ : ε̇− divqθ + sθ. (2.52)

In addition to the energy balance (2.52), it is necessary to establish a constitutive
law that relates the internal energy e to measurable fields. For solids that sustain
only small deformations, the internal energy is typically regarded as a function of
the temperature only, i.e. e = e(θ), see e.g. Sadd (2009). Under these assumptions,
the caloric equation of state is

de =
∂e

∂θ
dθ. (2.53)

The material property

c∗θ =
∂e

∂θ
(2.54)

is denoted as the specific heat capacity at constant volume. It is the energy required
to produce a unit increase in temperature of a unit volume of the body keeping
the volume fixed. From (2.53) follows

de = c∗θ dθ. (2.55)

In the literature, the specific heat capacity is often given as the energy required
to produce a unit increase of the temperature of a unit mass of the body keeping
the volume fixed cθ. Hence, it is also

de = ρcθ dθ. (2.56)
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2.3.5 Conservative Systems

Suppose the power of external forces for a purely mechanical system can be ex-
pressed as

Pext = −dΠext(t)

dt
(2.57)

and the stress power as
dP int

dt
=

dΠint(t)

dt
, (2.58)

where the external potential energy Πext and the internal potential energy

Πint =

∫
R

ψe dV (2.59)

are scalar-valued functions. By (2.51) and Q = 0 it is found that

Π̇ + K̇ = Π̇int + Π̇ext + K̇ = 0, (2.60)

i.e. the sum of potential and the kinetic energy is conserved for a conservative
dynamical process.

2.3.6 Second Law of Thermodynamics and Helmholtz Free
Energy

The balance of energy (2.51) and (2.52) governs the energy transfer in a physical
process but does not account for the direction of energy transfer. Nonetheless,
in real processes a certain direction of energy transfer is often observed, e.g. heat
always flows from the warmer region to the colder region of a body. This directional
aspect is described by a thermodynamic state variable, the entropy η(x, t). The
second law of thermodynamics postulates that the production of entropy is always
positive, i.e. ∫

R

rη dR =
d

dt

∫
R

η dV +

∫
∂R

qη · n dA−
∫
R

sη dV ≥ 0, (2.61)

where qη is the flux of entropy across the boundary ∂R and sη is the entropy
supply per unit volume from external sources. Furthermore, the relations

qη =
qθ

θ
, sη =

sθ

θ
(2.62)

are postulated, where θ(x, t) > 0 is the absolute temperature. With relation (2.62),
the second law of thermodynamics in the global form reads

d

dt

∫
R

η dV +

∫
∂R

qθ

θ
· n dA−

∫
R

sθ

θ
dV ≥ 0 (2.63)
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and by means of the divergence theorem (A.11), the local form of the second law

θη̇ + divqθ − 1

θ
qθ · gradθ − sθ ≥ 0 (2.64)

is derived. The external heat supply sθ can be eliminated by (2.52) to obtain

σ : ε̇− ė+ θη̇ − 1

θ
qθ · gradθ ≥ 0. (2.65)

Considering heat conduction only, i.e. the last term in the above equation, and
keeping in mind that the entropy production of such a pure heat conduction process
should be non-negative results in

− 1

θ
qθ · gradθ ≥ 0, (2.66)

which is the heat conduction inequality. A constitutive assumption for the heat
flow under isotropic conditions that agrees with (2.66) is the well known Fourier’s
law of heat conduction

qθ = −κgradθ, (2.67)

where κ > 0 is the thermal conductivity. The requirement (2.66) in conjunction
with (2.65) leads to a stricter form of the second law of thermodynamics

σ : ε̇− ė+ θη̇ ≥ 0. (2.68)

Introducing the Helmholtz free energy per unit reference volume as

ψh = e− θη (2.69)

and making use of (2.68) results in the form

σ : ε̇− ψ̇h − ηθ̇ ≥ 0 (2.70)

of the so-called Clausius-Planck inequality. Suppose the Helmholtz free energy is
a function of the strain ε and the temperature θ i.e.

ψh = ψh(ε, θ). (2.71)

Then

σ : ε̇− ∂ψh

∂ε
: ε̇− ∂ψh

∂θ
θ̇ − ηθ̇ ≥ 0 (2.72)

which gives two constitutive laws

σ =
∂ψh

∂ε
(2.73)
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and

and η = −∂ψ
h

∂θ
. (2.74)

By defining the free energy ψh (ε, θ), the constitutive relations for the stress and the
entropy are determined. Under small strain assumptions, the strain of a thermo-
elastic solid may be additionally decomposed as

ε = εe + εθ. (2.75)

The first term on the right-hand side, εe, denotes the elastic strain due to internal
forces σ, whereas εθ is the strain that is caused by a temperature change relative
to a reference temperature θ0. The strain due to thermal loads is assumed to be
purely volumetric and isotropic, i.e.

εθ = αT (θ − θ0) 1, (2.76)

where αT is the coefficient of thermal expansion of the material. Eventually, the
free energy of the thermoelastic body is stated as

ψh = ψe(ε, θ) + ψθ(θ) =
1

2
εe: (C : εe) + ψθ(θ), (2.77)

where strain energy density ψe is the potential of the stress for fixed θ and

C = [λδijδkl + µ (δikδjl + δilδjk)] ei ⊗ ej ⊗ ek ⊗ el (2.78)

is the fourth-order elasticity tensor for isotropic linear elastic material. The pa-
rameters λ and µ are the Lamé parameters. Equations (2.73) yield

σ = C : εe (2.79)

and

η = αT tr (σ)− ∂ψθ

∂θ
. (2.80)

Equivalent representations of the strain energy density are

ψe =
1

2
σ : εe, (2.81)

ψe =
1

2
λtr (εe)2 + µ (εe : εe) (2.82)

and
ψe =

1

2
Ktr (εe)2 + µ (ee : ee) , (2.83)
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where
Kn = λ+

2

n
µ (2.84)

is the n-dimensional bulk modulus. For plane strain problems, the expressions of
the free energy density and the constitutive law (2.80) can be used as well, except
that n = 2. Often, the Young’s modulus

E =
µ (3λ+ 2µ)

λ+ µ
(2.85)

and the Poisson’s ratio
ν =

λ

2 (λ+ µ)
(2.86)

are used as an alternative to the elasticity parameters λ, µ and Kn.

2.4 Wave Propagation

By substituting the kinematic relation (2.14) and the constitutive law (2.79) into
(2.36) the relation

(λ+ µ)∇ (∇ · u) + µ∆u+ αTn Kn∇θ = ρü (2.87)

is obtained, where

∆(∗) =
∂2(∗)
∂xi∂xi

= ∇ · ∇ (∗). (2.88)

is the Laplace operator. Assuming isothermal conditions (θ = const.) and making
use of the identity ∇× (∇× u) = ∇(∇ · u)−∆u yields Navier’s equation

c2
d∇ (∇ · u)− c2

s∇× (∇× u) = ü, (2.89)

where

cd =

√
λ+ 2µ

ρ
and cs =

√
µ

ρ
. (2.90)

Taking the divergence of each term in (2.89) results in

c2
d∆ (∇ · u) =

∂2(∇ · u)

∂t2
. (2.91)

Thus, the dilatation ∇ · u obeys the wave equation, with the characteristic wave
speed cd. By operating on each term of (2.89) with the curl operator ∇× (∗) the
relation

c2
s∆ (∇× u) =

∂2(∇× u)

∂t2
(2.92)
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is obtained which shows that the rotation vector ∇× u obeys the wave equation
with wave speed cs. Apart from dilatational and shear waves, surface waves also
play an important role for dynamic fracture problems. Surface waves are prop-
agated over the bounding surface of a solid body and their amplitude decreases
rapidly inside of the body. It can be shown that the motion of such a wave is
two-dimensional and that their wave speed cr the so called Rayleigh wave speed is
a root of the Rayleigh function

R(cr) = 4

√
1−

(
cr
cd

)2
√

1−
(
cr
cs

)2

−

[
2−

(
cr
cs

)2
]2

= 0, (2.93)

see Gross and Seelig (2011) and Love (1944). According to Rahman and Miche-
litsch (2006) the Rayleigh wave speed can be approximated by

cr ≈
0.87 + 1.12ν

1 + ν
cs, (2.94)

which is used to compute cr in this work. Poisson’s ratio ν is related to the Lamé
parameters through

ν =
λ

2 (λ+ µ)
. (2.95)

2.5 Hamilton’s Principle

Hamilton’s principle allows to state the behaviour of a physical system in a way
that is equivalent to the balance laws from Section 2.3. However, the principle also
allows useful generalizations of these laws as for the dynamic phase field fracture
model considered in this work. Motivated by his previous work in optics, W. R.
Hamilton stated the variational principle today known as Hamilton’s principle for
dynamic systems of particles in Hamilton (1835). Since then, the principle has also
widely been used in continuum mechanics. An introduction to the application of
Hamilton’s principle to continuum mechanics can be found in Reddy (1989).

In order to be able to formulate Hamilton’s principle, the concepts of admis-
sible and comparison fields are introduced in the following. A field φ, subject to
Dirichlet boundary conditions on ∂Ωφ ⊆ ∂Ω as well as Neumann boundary condi-
tions on ∂Ω∇φ ⊆ ∂Ω, that represents some physical quantity is called admissible
if it is C2 on Ω× [t1, t2], where t1 and t2 > t1 are fixed times at which the value of
the field φ is prescribed. A comparison field is an admissible field of the form

φ∗ (x, t, ε) = φ (x, t) + εηφ (x, t) , (2.96)

where ηφ is an arbitrary scalar field that obeys ηφ(x, t1) = 0, ηφ(x, t2) = 0, is
C2 on Ω × [t1, t2] and vanishes on ∂Ωφ. The quantity ε is a scalar parameter.
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The kinetic and potential energies of the body may be considered as functions of
multiple comparison fields φ∗k and their derivatives, i.e.

K∗(ε) = K(φ∗1, φ
∗
2, ...,∇φ∗1,∇φ∗2, ..., φ̇∗1, φ̇∗2, ...), (2.97)

Π∗(ε)) = Π∗i (ε) + Π∗i (ε) = Π(φ∗1, φ
∗
2, ...,∇φ∗1,∇φ∗2, ..., φ̇∗1, φ̇∗2, ...). (2.98)

Furthermore, the notation

δ (∗) =
∂(∗)∗

∂ε

∣∣∣∣
ε=0

(2.99)

of the variation of (∗) is introduced. Non-conservative generalized forces Q that
are work-conjugate to φ may be included in Hamilton’s principle by expressing
their virtual work as

δW = Qδφ, (2.100)

which is a slight violation of the notation (2.99) that nonetheless is common in the
literature. Eventually Hamilton’s principle can be stated as follows:

Among admissible fields, the actual fields of a system fulfill[∫ t2

t1

δ (K − Π) + δW

]
dt = 0. (2.101)

This statement is a postulate on the behaviour of the considered system much as
the balance laws that were considered in Section 2.3. The quantity

L =

∫
Ω

L dV = K − Π (2.102)

is referred to as the Lagrangian, whereas

L = L (φ1, φ2, ...) (2.103)

is the Lagrangian density. The equations that govern the evolution of the local
fields φk follow from (2.101) as necessary conditions. The prerequisite for their
derivation are the fundamental Lemmas of variational calculus, which are pre-
sented in Reddy (1989) as:

Lemma 1: LetW be an inner product space and consider a C0 field
g : Ω× [t1, t2]→W . If the equation∫ t2

t1

∫
Ω

g ·w dV dt = 0 (2.104)
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holds for every C∞ field w : Ω× [t1, t2] that vanishes at time t1 and
at time t2 then g = 0 on Ω× [t1, t2].

Lemma 2: Suppose that ∂Ω consists of complementary regular sub-
surfaces ∂Ωφ and ∂Ω∇φ. Let W be an inner product space, and
consider a function g : ∂Ω∇φ× [t1, t2]→W that is piecewise regular
and continuous in time. If the equation∫ t2

t1

∫
∂Ω

g ·w dA dt = 0 (2.105)

holds for every C∞ field w : Ω × [t1, t2] that vanishes at time t1, at
time t2, and on the part of the boundary ∂Ωφ ⊆ ∂Ω, then g = 0
on ∂Ω∇φ × [t1, t2].





3 Dynamic Linear Elastic Fracture
Mechanics

This chapter gives an introduction to the analysis of dynamic fracture of brittle
materials within the framework of continuum mechanics and discusses some ex-
perimental findings on the topic. Further details can be found in textbooks on
fracture mechanics such as Gross and Seelig (2011) and Freund (1990), as well as
in the cited literature.

crack faces

eζ
eξ

a) b)

eη

eξ

r
ϕ

crack fronteη

Figure 3.1: Illustration of a) a crack in three dimensions and b) crack tip vicinity in a
two dimensional setting. Here, r and φ represent the radial and angular coordinates.

3.1 Basic Assumptions

From a continuum mechanics point of view, cracks can be interpreted as cuts inside
a continuous body. The boundaries on opposite sides of the crack are referred to
as the crack faces, which together form the crack surface, see Fig. 3.1 a). The
crack ends at the crack front or crack tip in 2D. In the reference configuration,
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the crack faces occupy the same surface – or line in a two-dimensional setting –
in the physical space. Imagine a crack whose crack front is a smooth curve with
no corners or cusps. Furthermore, a local coordinate system, where the ζ-axis is
locally parallel to the crack front and the ξ-axis is tangent to the crack surface as
depicted in Fig. 3.1 a) and b), is introduced. The mechanical fields are essentially
two-dimensional for points that are close to the crack front compared to the radius
of curvature of the crack front, the distance to the boundaries and the distance
to possible wavefronts since the dependence on the radial coordinate r dominates
the fields in this case, see Fig. 3.1 b). This results in the fields being insensitive to
a variation of the ζ-coordinate, see Irwin (1960). Consequently, the displacement
field near the crack tip utip can be resolved into three distinct two-dimensional
fields as

utip = uI(r, ϕ) + uII(r, ϕ) + uIII(r, ϕ)eζ , (3.1)

where the components uI , uII and uIII are classified based on the different modes
of crack opening as shown in Fig. 3.1. Mode I, i.e. the component uI , refers to

Mode IIIMode I Mode II

a) b) c)

Figure 3.2: Crack opening modes.

symmetric crack opening orthogonal to the local crack surface. In contrast, the
in-plane shearing Mode II described by uII is a sliding motion of the crack faces
perpendicular to the crack front. Finally, the antiplane shearing Mode III given
by uIII describes a sliding motion of the crack faces parallel to the crack front.

In this work, cracks are considered to be of the same size as a typical length-
scale of the regarded body. Thus, material features that are small compared to the
considered macroscopic scale, e.g. micro cracks, inclusions, pores or dislocations
in the crystal lattice of the material are not modelled explicitly. Furthermore, a
number of processes that accompany fracturing, such as the breaking of material
bonds, cannot be described in a straightforward manner by a continuum model.
For a continuum model to still be a justified idealization, these processes need
to be restricted to a negligibly small region around the crack front (crack tip in
2D) which is called the process zone. This assumption holds true for most brittle
materials and metals. In addition to the presumption of a small process zone, it
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is also required that the whole body can be assumed to be composed of linear
elastic material that only undergoes small deformations and displacements. This
requires the zone in which inelastic, e.g. plastic, material behaviour is present to
be of negligible size as well.

For the scope of this work, the breaking of the material bonds during frac-
turing is assumed to be irreversible, i.e. a restoration of the material cohesion is
not possible after the material has separated. A further feature of cracks that is
fundamental to modelling fracture is the impenetrability of the crack faces, which
is discussed in detail in Section 4.4.

3.2 Asymptotic Fields

By means of asymptotic analysis, the fields near a moving crack tip corresponding
to bounded total mechanical energy can be derived, as described in Freund (1990).
The asymptotic expressions for the fields are only valid for points that are close to
the crack tip compared to any other length-scale of the regarded body. Still, since
non-linear effects are assumed to be restricted to a small region around the crack
tip, the asymptotic linear elastic fields provide a reasonably accurate description
of the mechanical state at the crack tip. Therefore, they allow to predict the
behaviour of real brittle materials if the assumptions mentioned above apply.

Often, only the dominant (as r → 0) components of the asymptotic fields are
considered. For a Mode I deformation of a straight crack the singular term of
the asymptotic expansion of the stress field is given in the subsonic speed regime,
meaning for crack velocities v smaller than the shear wave speed cs, in the ξ-η-ζ
reference frame by

σIij ≈
KI(t)√

2πr
ΣI
ij (ϕ, v) , with ΣI

ij =
V I
ij(ϕ, v)

R(v)
, i, j ∈ {ξ, η}, (3.2)

where V I
ij(ϕ, v) is a universal function of the crack speed v and ϕ see e.g. Freund

(1990) for details. The asymptotic particle velocities corresponding to the stress
field (3.2) have a similar structure, i.e.

u̇Iξ =
KI(t)U

I
ξ (ϕ, v)

µR(v)
√

2πr
, u̇Iη =

KI(t)U
I
η (ϕ, v)

µR(v)
√

2πr
. (3.3)

Analogously, for the Mode II case the structure is

σIIij ≈
KII(t)√

2πr
ΣII
ij (ϕ, v) , with ΣII

ij =
V II
ij (ϕ, v)

R(v)
, i, j ∈ {ξ, η}, (3.4)
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and

u̇IIξ =
KII(t)U

II
ξ (ϕ, v)

µR(v)
√

2πr
, u̇IIη =

KII(t)U
II
η (ϕ, v)

µR(v)
√

2πr
. (3.5)

Lastly, the asymptotic analysis of a Mode III loaded crack yields the corresponding
near-tip stress field as

σIIIiζ ≈
KIII(t)√

2πr
Σiζ (ϕ, v) , i, j ∈ {ξ, η} (3.6)

and the associated particle velocity as

u̇ζ ≈
KIII(t)√

2πr
U III
ζ (ϕ, v). (3.7)

Thus, apart form the scalar multipliers KI(t), KII(t) and KIII(t) the crack tip
fields are determined for a given crack speed v by the universal functions V I

ij , V II
ij ,

Σiζ , U I
i , U II

i , U III
ζ . The multipliers quantify the intensity of the crack tip field

which motivates the term stress intensity factors (SIFs). The region in which the
stress of the body is dominated by the singular expressions (3.2), (3.4) and (3.6)
is referred to as the K-dominant zone in which the stress for general crack tip
opening, i.e. a combination of all modes, is determined by

σij ≈
KI(t)√

2πr
ΣI
ij (ϕ, v) +

KII(t)√
2πr

ΣII
ij (ϕ, v) +

KIII(t)√
2πr

ΣIII
ij (ϕ, v) . (3.8)

The stress distribution is singular at the crack tip for all three modes of crack
opening which is a consequence of assuming that the body is made of linear elastic
material. This idealization is justified by the assumption of small scale yielding,
i.e. excess stresses are relieved by plastic deformation in a region of negligible size
compared to the K-dominant region. Based on the concept that the asymptotic
fields determine the material separation in the process zone, a condition for crack
propagation may be formulated as

F (KI , KII , KIII) = 0. (3.9)

An important result for the fields φ(x, t) near a moving crack tip with current po-
sition z can be obtained if the ξ-coordinate system is considered to move with the
crack tip, i.e. the transformation φ(x, t) = φ(ξ, t), where ξ = x− z is introduced.
The material time derivative of φ is

∂φ

∂t

∣∣∣∣
x

=
∂φ

∂t

∣∣∣∣
ξ

−∇φ · v, (3.10)
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with the crack speed

v =
dz

dt
. (3.11)

For fields φ that show high gradients in the vicinity of cracks, the time derivative
in the moving reference frame is negligible compared to the convective second term
on the right-hand side of (3.10) and thus

∂φ

∂t

∣∣∣∣
x

≈ −∇φ · v, (3.12)

which is referred to as the ‘transport condition of the singularity’, see Ehrlacher
(1981). In particular,

− u̇ ≈ (gradu)v and − ü ≈ (gradu̇)v (3.13)

which also implies the relation

k̇ = ρü · u̇ ≈ −∇k · v (3.14)

for the kinetic energy density k = 1
2
ρu̇ · u̇.

3.3 Energy Concepts

The importance of energy concepts in fracture mechanics has first been recognized
by Griffith (1921). He reasoned that crack propagation requires the creation of new
surfaces with their associated surface energies and concluded that this energy has
to be provided by the body as mechanical energy in order for a crack to grow. When
inertial effects are neglected, the negative rate of change of the potential energy
of a body with respect to a crack advance is called the energy release rate which
can be interpreted as a generalized force that is work-conjugated to the amount of
crack advance. Atkinson and Eshelby (1968) proposed that in the dynamic case
the energy release rate should be the same as for quasi-static growth with the
potential energy replaced by the total mechanical energy. An integral expression
for the dynamic energy release rate was derived by Kostrov and Nikitin (1970)
for general material behaviour and by Freund (1972) for linear elastodynamics.
Following Griffith’s idea, the energy that is required to separate the material and
thus to create the fracture surfaces Γ is included in the energy balance (2.51), i.e.

K̇ + Ė + Γ̇ = Pext +Q. (3.15)

As mentioned before, fracturing is assumed to be irreversible in this work. Hence,
the rate of the fracture energy is required to be non-negative, i.e. Γ̇ ≥ 0. Since
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Figure 3.3: Illustration of the near-tip region.

the fracture process itself, including the breaking of material bonds and other
phenomena that are not described by the continuum model, takes place in the
process zone, it is reasonable to split the energy balance into separate parts for
the process zone and the remainder of the body as described in Gross and Seelig
(2011), i.e.

process zone: Γ̇ = −P ′,
remainder of the body: Ė + K̇ = Pext +Q+ P ′,

(3.16)

where -P ′ describes the energy transport into the process zone. The transformation
of energy into fracture energy occurs only in the process zone and cannot be
described directly by means of continuum mechanics. Consequently, the focus is
on the energy balance for the remainder of the body (3.16)2 except for the definition
of the fracture resistance or specific fracture energy that describes the amount of
energy that is required to create a crack surface increment dA, i.e.

Gc =
dΓ

dA
. (3.17)

In order to compute the energy flux into the process zone P ′, the setup in Fig. 3.3 is
considered. The control volume Rtip ⊆ Ω is bounded by the curves (2D) or surfaces
(3D) C, C+(t), C−(t) and CP (t). The boundary C is stationary, the crack faces
C+(t) and C−(t) are traction-free and the boundary of the process zone CP moves
with the crack speed v. The energy balance (3.16)2 for Rtip yields by means of the
transport theorem (A.13)∫

Rtip

(
ė+ k̇

)
dV +

∫
CP

(e+ k)ntip · v dAaa

=

∫
C

σntip · u̇ dA−
∫
C

qθ · ntip dA+

∫
Rtip

sθ dV + P ′,
(3.18)
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which with the local energy balance (2.52), the equation of motion (2.36), the
identity σ : ε̇ = div (σu̇)− divσ · u̇, and the divergence theorem (A.11) results in∫

CP

(
σu̇− qθ

)
· ntip dA+

∫
CP

(e+ k)ntip · v dA = P ′. (3.19)

Hence, the energy flow into the process zone is

− P ′ =
∫
CP

(
σu̇− qθ

)
· nRP dA+

∫
CP

(e+ k)nRP · v dA. (3.20)

Considering a purely mechanical system, this simplifies to

− P ′ = F (CP ) =

∫
CP

[σu̇+ (ψe + k)v] · nRP dA. (3.21)

In general, the value of F is not independent from the chosen contour. In order to
illustrate this fact, consider two contours C1 and C2 of the same type as CP with
C2 enclosing C1 and CP . These new contours also define control volumes R1 and
R2 with their boundaries consisting of the traction-free crack faces, the contour
C1 or C2 respectively and CP . By denoting the outward normal vectors as n1 and
n2 respectively, the difference between F (C2) and F (C1) becomes

F (C2)− F (C1) =

∫
C2

[σu̇+ (ψe + k)v] · n2 dA−
∫
C1

[σu̇+ (ψe + k)v] · n1 dA

=

∫
C12

[σu̇+ (ψe + k)v] · n12 dA

(3.22)

with C12 being the boundary of the control volume R12 that is composed of C1, C2

and the crack face segments in between and has the outward normal vector n12.
By means of the divergence theorem it is

F (C2)− F (C1) =

∫
R12

div (σu̇+ (ψe + k)v) dV (3.23)

=

∫
R12

[
ψ̇e + k̇ +∇ψe · v +∇k · v

]
dV, (3.24)

which is in general non-zero. In the vicinity of the crack tip, however, (3.12)
applies for k and ψe and consequently the integral is indeed path independent.
The dynamic energy release rate is defined as the rate of mechanical energy flow
out of the body and into the process zone per unit crack advance, see Freund
(1990). Thus, it is

G = lim
C1→0

[
1

v

∫
C1

((ψe + k)n1 · v + (σu̇) · n1) dA

]
, (3.25)
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where the limit C1 → 0 should be understood as any contour C1 that is at least
small enough to be completely embedded in the K-dominant zone in a way that
(3.12) applies. A domain-independent expression of the energy release rate can be
obtained by substituting (3.25) into (3.22) and using the notation C = C2 which
yields

G =
1

v

[∫
C

[σu̇+ (ψe + k)v] · nR dA−
∫
Rtip

div [(ψe + k)v + σu̇] dV

]
. (3.26)

The integrand of the second integral appears to be singular but indeed has a finite
value as described in Nakamura et al. (1985). Thus, in contrast to equilibrium
fracture mechanics, the crack tip integral is not path-independent but is comple-
mented by a domain integral, i.e. it is a domain independent quantity. It can be
shown that the dynamic energy release rate is related to the stress intensity factors
by

G =
1− ν2

E

[
AI(v)K2

I + AII(v)K2
II

]
+

1

2µ
AIII(v)K2

III , (3.27)

where AI , AII and AIII are universal functions of the crack velocity v, see e.g
Freund (1990) for details.

The expressions for the energy release rate (3.25) and (3.26) as well as the
asymptotic crack tip fields from Section 3.6, follow from the a priori assumption of
a crack motion with speed v. In principle, it is possible to solve the governing field
equations for this specified motion in order to compute G and the SIFs. In order
to be able to actually predict the motion of a crack, however, the field equations
must be complemented by a crack growth criterion which is an additional physical
postulate on the material behaviour. Typically, such a criterion states that the
crack grows if a parameter defining the mechanical state of the crack front (or
crack tip) like the energy release rate or the SIF is equal to some material param-
eter defining the resistance of the material. In linear elastic fracture mechanics,
the most common formulations are Irwin’s critical stress intensity factor criterion
(3.9) and Griffith’s critical energy release rate criterion which may be stated as:

A crack grows in such a way that the dynamic energy release rate G
is always equal to the specific fracture energy Gc, i.e.

G = Gc during crack growth. (3.28)

The specific fracture energy Gc has to be determined in experiments and may
depend on the crack length, the crack velocity, the temperature or other physical
quantities. In this work, however, it is assumed to be constant.
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As mentioned in Freund (1990), in the simplest situation of two dimensional
deformation, the energy release rate may be considered as a function of the current
crack tip position z(t), the crack velocity ż = v, the time t, the loading history,
the geometrical configuration of the regarded body, and the material parameters.
Thus, (3.28) can be written as

G (z, ż, t, loading, configuration,material parameters) = Gc. (3.29)

Equation (3.29) is a first order ordinary differential equation for the crack tip
position z(t) which is called the equation of motion of the crack tip in analogy to
the ordinary differential equations that describe the motion of particles.

Consider a body with a straight crack that grows under plane strain Mode I
deformation in x1-direction in an infinite elastic medium. The equation of motion
of the crack tip by means of (3.27) and (3.28) is

1− ν2

E
AI(ż1)K2

I (t, z1, ż1) = Gc. (3.30)

Equation (3.30) allows to describe the motion of a crack tip if the dependence of
the stress intensity factor on its arguments is known. As shown in Burridge (1976),
the stress intensity factor for the considered situation and for general crack face
loading has the form

KI(t, z1, ż1) = k(ż1)KI (t, z1, 0) , (3.31)

where the universal function k(v) of the crack speed can be approximated by

k(v) ≈
1− v

cr

αd
, with αd =

√
1− v2

c2
d

. (3.32)

The quantity KI(t, z1, 0) is the SIF for a stationary crack of the same size and
subject to the same crack face loading. For time independent loading with general
spatial distribution along the crack faces the relation (3.31) simplifies to

KI(z1, ż1) = k(ż1)KI(z1, 0), (3.33)

where KI(z1, 0) is the equilibrium stress intensity factor for the specified time
independent loading and instant crack tip position z1 as described in Freund (1990).
With the approximation

AI(ż1)k(ż1)2 ≈ 1− ż1

cr
, (3.34)

which is accurate over the whole range of velocities 0 < ż1 < cr, the equation of
motion of the crack tip (3.30) becomes

EGc
(1− ν2)KI(t, z1, 0)2

= 1− ż1

cr
. (3.35)
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Figure 3.4: Energy release rates in the subsonic crack speed regime. The Rayleigh wave
speed is indicated by the vertical black line.

From (3.35) it can be concluded that the upper limit for the crack speed under
pure Mode I deformation is the Rayleigh wave speed since ż1 → cr as KI → ∞.
Furthermore, the separation of a cohesionless interface, i.e. crack growth with no
energy absorption Gc = 0, occurs at the Rayleigh wave speed.

3.4 Crack Speed Limits

Unlike to equilibrium fracture mechanics, inertial effects limit admissible crack
tip velocities in a dynamic setting. Material particles have to be separated from
each other at the crack tip of a fast running crack. The inertia of these material
particles results in a resistance to crack propagation. An overview of theoretically
admissible crack speed regimes is given in Broberg (1989), where the criterion that
defines admissible velocity fields is a non-negative energy release rate G, i.e. energy
is required to flow into the process zone in order for crack growth to be possible.
Crack velocities v < cs are referred to as subsonic, whereas velocities v > cd are
called supersonic velocities. Crack growth at the intermediate speed, cs < v < cd,
is denoted as transsonic or intersonic crack speed. The energy release rates for
the subsonic case for Mode I and Mode II can be computed by (3.27) for a given
KI . In Fig. 3.4, it can be observed that the energy release rate for Mode I and
Mode II is only non-negative for sub Rayleigh wave speeds. Therefore, a Mode I
or Mode II crack cannot propagate in the subsonic super Rayleigh speed regime,
cr < v < cs.

The intersonic speed regime is more cumbersome to analyze and only an excerpt
of the results is given here. It is mentioned in Broberg (1989) that a Barenblatt-
type process zone, see Barenblatt (1962), needs to be considered in this case. By
means of this approach, it turns out that for a Mode II deformation, G is indeed
positive in the intersonic speed regime. Thus, Mode II crack propagation is, in
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principle, possible for cs ≤ v ≤ cd. The stress singularity for intersonic Mode II
fracture, which is of the order r−γ, γ < 0.5, is weaker than the singularity for the
subsonic case r−

1
2 . An exception to this is the case of crack propagation at a speed

of v =
√

2cs for which the singularity is also of order r−
1
2 . Hence, G is maximal

for this particular crack speed and one can argue that this should be a preferred
crack speed in the intersonic speed regime. An interesting feature of intersonic
Mode II crack growth is the appearance of a wave front that lags behind the crack
tip and propagates at the speed of equivoluminal waves. The angle of the wave
front relative to the crack plane is given by

sin θs =
cs
v
,

π

2
< θs < π. (3.36)

For the intersonic Mode I situation it turns out, that the formally computed energy
release rate G is negative independently of the exact value of the crack speed,
see Broberg (1989). Consequently, Mode I propagation in the intersonic speed
regime is not possible. Although not treated in this work, for completeness the
truly supersonic case, v > cd is mentioned. In this case, the material in which
the crack advances has no prior information on the crack. That is, the material
might be completely stress-free. For such crack growth to occur, a moving traction
load must be invoked on the crack tip which supplies enough energy for material
separation. This has for example been achieved by means of a laser in Curran
et al. (1970).

v

cr

cs cd

Mode I

Mode II

Figure 3.5: Admissible crack speeds (grey shaded regions) for Mode I and Mode II.

The theoretically admissible crack tip velocities for Mode I and Mode II are
summarized in Fig. 3.5. Nevertheless, experiments show that in reality Mode I
crack velocities rarely exceed 0.6cr even for the most brittle materials, see e.g. Ravi-
Chandar and Knauss (1984c). This can be explained by a dynamic instability that
occurs above a critical crack velocity of vc ≈ 0.4cr. The instability manifests in the
occurrence of a number of micro-branches which is accompanied by a change in
the structure of the crack surface, acoustic emission and oscillations of the crack
speed, see e.g. Fineberg et al. (1992), Gross et al. (1993), Sharon et al. (1995)
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Figure 3.6: Angular distribution of the asymptotic hoop stress σϕ for a Mode I crack at
different crack speeds.

and Sharon and Fineberg (1999). Multiple micro-branches increase the energy
consumption of the crack per unit of ‘macroscopic’ crack advance and thereby
limit the crack speed to less than 0.6cr. According to this explanation the crack tip
should grow at a speed close to cr if only one micro-branch is propagating or if the
directional instability is removed. This hypothesis has actually been confirmed in
the high-resolution measurements presented in Sharon and Fineberg (1999). They
detected that the crack speed indeed exceeded 0.9cr for short time intervals. In the
experiments done by Washabaugh and Knauss (1994) the directional instability
has been suppressed by directing the crack along manufactured weak planes in
the specimens. The measured crack velocities asymptotically approached cr for
vanishing bond strength of the weak plane. The directional instability of Mode I
cracks at high crack speeds may also be illustrated by considering the velocity
dependence of the asymptotic fields (3.2). The angular distribution of the hoop
stress

σϕ =
σ11 + σ22

2
− σ11 − σ22

2
cos(2ϕ)− σ12 sin (2ϕ) (3.37)

is critically dependent on v, see Fig. 3.6. For crack speeds v > 0.6cs the maximum
hoop stress shifts from ϕ = 0◦ to ϕ ≈ 60◦, thus promoting micro crack formation
at an angle to the macroscopic crack tip.

Directional instability is also an issue for Mode II cracks which have the
tendency to immediately kink so that further crack propagation happens under
Mode I conditions at the crack tip. Thus, when studying intersonic crack growth
of Mode II cracks, it is necessary to restrict the crack path to stay in Mode II.
Such a constraint is not purely academical since there are real world problems that
impose a preferred direction of crack propagation. A natural event that can be as-
sociated with this situation is fracturing along a fault in the earth crust during an
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earthquake. Indeed, by analyzing the seismic data recorded during crustal earth-
quakes Archuleta and Day (1980) came to the conclusion that a shear fracture
can propagate at v > cs along a weak plane, i.e. a preexisting fault in this case.
Similar observations were made for the 2002 Denali earthquake, where intersonic
rupture speeds were recorded. This event has been reproduced on a laboratory
scale by Mello et al. (2014).

In experiments or simulations, it is necessary to artificially introduce a weak
plane in an otherwise homogeneous material in order to prevent the kinking of the
crack. This weak plane has to have the same elastic properties as the bulk material
but a significantly lower resistance to fracture. By doing so, the theories of dynamic
linear-elastic fracture mechanics predicting the above mentioned crack speed limits
still apply. The first experimental evidence for intersonic crack growth along a
weak plane was provided by Rosakis et al. (2000). Rosakis and his coworkers
studied Mode II fracture in a photoelastic brittle polyester and reported crack
speeds above cs. The directional instability of Mode I cracks and intersonic crack
propagation of Mode II cracks will be further discussed by means of numerical
simulations in Section 6.3.

3.5 Dynamic Crack Branching

Another dynamic crack growth phenomenon that has been extensively studied is
branching of a fast moving Mode I crack in brittle materials. A comparative study
of several branching criteria that were correlated to experimental data can be found
e.g. in Ramulu and Kobayashi (1985). Dynamic crack branching is still not com-
pletely understood and, while the previously mentioned instability can explain
this phenomenon to some extent, some features, like branching at crack speeds
smaller than the instability threshold vc, cannot be explained. Thus, no gener-
ally accepted explanation for dynamic crack branching and no reliable branching
criterion exist, see Gross and Seelig (2011). Nonetheless, the reasoning that sup-
ports the dynamic instability theory is: if the energy flow into the process zone
is large enough to support more than one macroscopic crack tip, the directional
instability of a fast running Mode I crack may eventually cause macroscopic crack
branching, see e.g. Sharon and Fineberg (1999). Experimental results reported in
Kobayashi et al. (1972) show that the SIF indeed exceeded the fracture toughness
right before branching occurs. By means of (3.27) this statement can be extended
to the energy release rate, which assumes a critical value prior to crack branching.
Thus, a sufficient energy release rate may be considered as a necessary condition
for macroscopic branching. In the literature it is often assumed that branching
occurs if the energy release rate exceeds the specific fracture energy to a certain
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degree, i.e. a crack is able to branch if

G
Gc
≥ m, (3.38)

wherem is a constant multiplier that is in general larger than two, see e.g. Kobayashi
et al. (1972) and Ramulu and Kobayashi (1985).

Apart from experimental work on the dynamic instability and branching of
Mode I cracks, efforts have been made to describe crack branching by analytical
methods as well. Early attempts to analytically predict the critical velocity for
branching considered the asymptotic stress fields at the crack tip of a single fast
moving crack as derived in Yoffe (1951) and Freund (1990). The argument was
that a single stress quantity that is decisive for the direction of crack propaga-
tion, such as the hoop or principal stress, attains a maximum at an angle to the
original crack path. However, none of these approaches considered whether the
resulting branched state was energetically possible as pointed out in Adda-Bedia
(2005). Motivated by the work of Eshelby (1999), Adda-Bedia and his coworkers
addressed this fact by considering a growth criterion for the branched state, i.e.
bifurcation is not predicted directly but the necessary energetic prerequisites for
the propagation of two macroscopic crack branches are determined. In Adda-Bedia
(2004) bifurcation of a Mode III crack is studied by applying a branching criterion
based on the balance between the energy flow into each propagating tip and the
increase of surface energy due to this propagation of the branched configuration.
It is shown that the minimum velocity at which a Mode III crack might branch is
vIIIc = 0.39cs. By analogy to the exact solutions for the Mode III case, a critical
branching velocity, which is only weakly dependent on the Poisson ratio and can
be assumed to be vIc = 0.52cs, has been derived in Adda-Bedia (2005) for the
Mode I case. This critical velocity agrees reasonably well with numerical phase
field simulations of brittle fracture under in-plane loading as reported in Henry and
Levine (2004). The work of Katzav et al. (2007) follows the approach of Adda-
Bedia (2005) to analyze the branching instability for a fast Mode I crack. Apart
from the prediction of a critical branching velocity of vIc ≈ 0.46cs, the focus of
the study of Katzav et al. (2007) is on calculating the post-branching crack paths.
An interesting feature of this analytical solution is the determination of an initial
branching angle of ∼ 27◦ followed by a curved extension described by a single cur-
vature parameter that is consistent with the experimental results from Sharon and
Fineberg (1996, 1999). Dynamic crack branching is studied by means of numerical
simulations in Section 6.4 of this work.
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3.6 Configurational Forces in Dynamic
Linear Elastic Fracture Mechanics

The development of the concept of configurational forces, sometimes also referred
to as material forces in the literature, started with Eshelby (1951) and has since
been extended and applied to various fields, see e.g. the textbooks of Gurtin
(2000), Kienzler and Herrmann (2000) and Maugin (1993, 2010). Configurational
forces represent the change of the total energy of a body with respect to certain
quantities that characterize the material configuration, i.e. the size and shape of
cracks or the position of an inclusion. In this section, the concept of configurational
forces is introduced in the context of dynamic linear elastic fracture mechanics.
Consider the Lagrangian density, c.f. (2.103), of a homogeneous linear elastic solid
under isothermal conditions to be of the form

L (u, u̇, ε) = k(u̇)− ψe(ε). (3.39)

A configurational force balance related to a material translation, i.e. a translation
in the reference configuration, of the considered defect can be derived by computing
the gradient of the Lagrangian density as discussed in Kienzler and Herrmann
(2000). The negative of the gradient of L is

−∇L (u̇, ε) =

(
∂ψe

∂εij
εij,k −

∂k

∂u̇i
u̇i,k

)
ek, (3.40)

which by means of the identity

∂ψe

∂εij
εij,k = (uj,kσji),i − ui,kσij,j, (3.41)

the equation of motion (2.36), and the definition of the linear momentum per unit
volume

p = ρu̇ =
∂k

∂u̇k
ek (3.42)

can be recast into the form

−∇L =
(

(uj,kσji),i − ui,kṗi − piu̇i,k
)
ek. (3.43)

Eventually, by means of
−∇L = −(Lδki),i ek, (3.44)

it is
divΣL − ṗ

L = 0. (3.45)
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Here, the dynamic Eshelby stress tensor

ΣL = ((ψe − k)δij − uk,iσkj) ei ⊗ ej, (3.46)

has been introduced. The expression

pL = −ui,kpi ek = − (gradu)T p (3.47)

denotes the so-called pseudo-momentum, see e.g. Maugin and Trimarco (1992). By
means of the divergence theorem (A.11)3 an integral form of (3.45) can be derived.
Assume that R is a regular bounded subset of Ω with outward normal vector nR.
Integration of (3.45) over the domain R results in

GLR + PLR = 0, (3.48)

with
GLR =

∫
∂R

ΣLnR dA, and PLR = −
∫
R

ṗ
L dV. (3.49)

By means of the identity 2∇k = 2ρ (gradu̇)T u̇, the local balance law (3.45) can
be written in a form that already resembles the energy release rate (3.26), i.e.

div
(
(ψe + k)1− (gradu)Tσ

)
− (gradu̇)T ρu̇+ ρ(gradu)T ü = 0, (3.50)

which may be reformulated as

divΣH − (gradu̇)T ρu̇+ ρ(gradu)T ü = 0, (3.51)

where
ΣH = ((ψe + k)δij − uk,iσkj) ei ⊗ ej. (3.52)

Integration of (3.51) over an arbitrary regular bounded region R that does not
contain a crack tip or any other defect yields

GHR + PHR = 0, (3.53)

where

GHR =

∫
∂R

ΣHnR dA, PHR =

∫
R

(
− (gradu̇)T ρu̇+ ρ(gradu)T ü

)
dV. (3.54)

By integration of (3.51) over a subdomain Rtip as depicted in Fig. 3.3, it is, for
traction free crack faces and by means of the divergence theorem∫
C

(
(ψe + k)1− (gradu)Tσ

)
· ntip dA+

∫
CP

(
(ψe + k)1− (gradu)Tσ

)
· ntip dA

+

∫
Rtip

(
− (gradu̇)T ρu̇+ ρ(gradu)T ü

)
dV = 0.

(3.55)
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Taking the dot product of each term with the crack tip velocity, recalling (3.12)
and making use of ntip = −nRP on CP results in∫
C

(
(ψe + k)1− (gradu)Tσ

)
ntip dA · v −

∫
CP

(
(ψe + k)1− (gradu)Tσ

)
nRP dA · v︸ ︷︷ ︸

Gv

+

∫
Rtip

(
− (gradu̇)T ρu̇+ ρ(gradu)T ü

)
dV · v = 0.

(3.56)

The relation of the resulting configurational forces to the energy release rate is

G =
(
GHtip + PHtip

)
· ev (3.57)

with

GHtip =

∫
C

ΣHntip dA, PHtip =

∫
Rtip

(
− (gradu̇)T ρu̇+ ρ(gradu)T ü

)
dV (3.58)

and ev the normalized current direction of v. As in (3.26), it appears that the
energy release rate in the dynamic case is not a path-independent quantity but
may be expressed as the sum of a path (surface) integral and a domain integral,
similar to (3.26).

3.7 The Variational Formulation of Brittle Frac-
ture

The original Griffith criterion encounters difficulties when complex crack evolu-
tions are considered. One reason for this is that the computation of the energy
release rate of a (virtual) crack advance a priori assumes a certain direction of
crack propagation which is not known in general. In an attempt to overcome this
limitation, a number of criteria have been proposed that aim to determine the
direction of crack propagation. The principle of local symmetry states that cracks
grow in a way that in-plane shear stresses vanish in the vicinity of the crack tip and
has originally been proposed in Goldstein and Salganik (1974). Alternative ap-
proaches are the maximum hoop stress criterion of Erdogan and Sih (1963) and the
maximum energy release rate criterion of Wu (1978). A crack growth criterion in
conjunction with a criterion that determines the direction of crack growth might
be a cumbersome but suitable postulate that describes crack initiation and the
subsequent crack growth for a preexisting crack. However, if the nucleation of new
cracks in pristine material and features such as crack branching are to be included
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as well, even more criteria are required. Instead of pursuing this line of thought, a
different approach – a generalized formulation of the Griffith criterion – originated
with the work of Ambrosio and Braides (1995) for the stationary crack case and
Francfort and Marigo (1998) for crack evolution under quasi-static conditions. The
work of Francfort and Marigo (1998) also introduced the term variational formu-
lation of brittle fracture. Francfort and Marigo regarded an n-dimensional elastic
body Ω under isothermal conditions with a smooth boundary ∂Ω. An important
feature of the variational formulation of brittle fracture is that the crack sets S are
allowed to grow discontinuously, i.e. cracks can also nucleate in previously undam-
aged material. In principle all closed subdomains of Ω̄ = Ω∪∂Ω whose dimensions
are not greater than n− 1 are considered as possible crack sets, whereby only the
n−1 case is treated in this work. Furthermore, an admissible crack set S(t) needs
to fulfill the irreversibility constraint

S(s) ⊂ S(t) for all s < t. (3.59)

Following Griffith’s idea, the fracture energy that is associated with a crack set is
expressed as

Γ (S) = GcH(S), (3.60)

where H(S) denotes the surface measure of S. The strain energy which is stored
in Ω is

Ẽe(S,u) =

∫
Ω\S

1

2
ε(u) : (C : ε(u)) dV. (3.61)

Only Dirichlet boundary conditions

u (x, t) = u∗ (x, t) on ∂Ωu \ S(t), (3.62)

i.e. on the part of the boundary that has not yet debonded, are considered, whereas
traction boundary conditions and volume forces are not treated by the original for-
mulation. The fracture criterion defined by the variational formulation of brittle
fracture is:

The true displacement u and the true crack set S(t) are global min-
imizers of

Ẽ(S,u) = Ẽe(S,u) + Γ (S) . (3.63)

The functional (3.63) closely resembles the Mumford-Shah potential, see Mum-
ford and Shah (1989), which is encountered in image segmentation. This analogy
provides a mathematical justification for a reformulation of the variational formu-
lation of brittle fracture that was originally proposed by Bourdin (1998), see also
Section 4. Furthermore, the postulate (3.63) has the form of a free discontinuity
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problem that is connected to the idea of the Griffith criterion (3.28). To illustrate
this connection, consider a body with an initial crack S under quasi-static and
isothermal conditions that is subject to conservative external loads. The energy
release for a (virtual) crack advance δS is −GδS = δSΠ and the change of surface
energy is GcδS = δSΓ, see Gross and Seelig (2011). Thus, the Griffith criterion
(3.28) may be restated as

GδS = GcδS ⇔ δS (Π + Γ) = 0. (3.64)

Except for the exclusion of conservative external forces, the postulate of the vari-
ational formulation (3.63) is more general than (3.64), since it also considers non-
incremental, general crack growth along arbitrary pathes. In fact, the Griffith
postulate in the form of (3.64) may be considered a necessary condition for local
minimality of Ẽ, see Francfort and Marigo (2005). As elaborated in Kuhn (2013),
a main advantage of the variational formulation is that all possible features of
crack growth such as branching, kinking and the nucleation of new cracks is solely
triggered by a single postulate on crack growth.

The existence of global minimzers (S,u) of Ẽ is investigated for linearly in-
creasing displacement loads in Maso and Toader (2002) and Francfort and Larsen
(2003) for the antiplane shear case and for the case of planar elasticity in Cham-
bolle (2003). As pointed out in Francfort and Marigo (1998), Francfort and Marigo
(2005), Francfort (2006) and Bourdin et al. (2008), global minimizers of Ẽ cannot
exist in the presence of traction loads and volume forces. As a remedy, it has
been argued that it may be sufficient to soften up the postulate and to search for
local minimizers of Ẽ as the correct crack sets and displacement fields instead.
Nonetheless, this approach is faced with difficulties in crack nucleation scenarios,
since the purely elastic solution without cracks is always a local minimizer of Ẽ.
The difficulty can be overcome by replacing the Griffith surface energy with a co-
hesive surface energy as introduced by Barenblatt (1962). In this case, the purely
elastic solution stops to be a local minimum at a certain load level. A combination
of a Barenblatt type cohesive fracture energy and a local minimum of Ẽ has been
proposed as an extension of the variational formulation of brittle fracture that
allows for traction loads and volume forces in Francfort and Marigo (2005) and
Francfort (2006).

For a dynamic setting, Bourdin et al. (2011) proposed a model based on two
principles:

• The displacements should follow from the solution of the elastodynamic prob-
lem, i.e. as a solution of Navier’s equation (2.89).

• The crack set should be a local minimizer of Ẽ consistent with the irre-
versibility constraint (3.59) for the instantaneous displacement field.
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Thus, as long as the elastic fields near the crack are such that the crack would
grow under quasi-static conditions it should also grow if the near tip field is due to
elastodynamics. As mentioned in Bourdin et al. (2011), making the dynamic crite-
rion mathematically precise is more difficult than in the quasi-static case where the
crack growth criterion is basically a comparison between the instantaneous strain
energy release and the increase in fracture energy due to a crack set increment
∆S. Extending the criterion to the dynamic case is not straightforward since in
this situation crack growth does not necessarily lead to an instantaneous release of
strain energy. Furthermore, the immediate effect on the kinetic energy is unclear.
In Larsen et al. (2010), the two principles for the extension of the variational for-
mulation of brittle fracture to the dynamic case mentioned in Bourdin et al. (2011)
are complemented by a third requirement, i.e. an energy balance similar to (3.15)
should be adhered to it. For the antiplane-shear case, i.e. Mode III, Larsen et al.
(2010) were able to show that solutions of a regularized formulation of the dynamic
variational formulation of brittle fracture exist and that these solutions indeed ful-
fill the required energy balance. In the conclusion of their work, Larsen and his
coworkers raised the interesting question whether the behaviour of the dynamic
regularized formulation in the quasi-static limit is really the same as for regularized
quasi-static formulation of the variational formulation of brittle fracture proposed
by Francfort and Marigo (1998) or whether there are situations in which they dif-
fer. This question is further investigated in Li et al. (2016) by means of numerical
simulations.



4 A Phase Field Model of Dynamic
Brittle Fracture

This chapter introduces a phase field description of dynamic fracture in brittle
materials. The model is based on the variational formulation of dynamic brittle
fracture that has been presented in the previous Section 3.7.
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Figure 4.1: a) Body with internal discontinuities (sharp cracks) S and b) approximation
of internal discontinuities by an order parameter field s(x, t).

4.1 Regularized Representation of Cracks
and Fracture Energy

Though the variational formulation of brittle fracture is a powerful postulate that
allows to describe all fracture phenomena in a unified framework, a numerical
implementation is necessary to handle more complex scenarios. The main difficulty
in numerically solving the variational fracture problem is that the energetic change
due to an infinite number of arbitrary crack set evolutions needs to be taken
into account. This means that all possible crack set configurations including the
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associated crack face boundary conditions and the associated surface energy need
to be represented. This difficulty can be faced by exploiting the similarity of the
energy functional (3.63) to the Mumford-Shah functional from the field of image
segmentation, see Mumford and Shah (1989). A regularized representation of the
Mumford-Shah functional has been presented in Ambrosio and Tortorelli (1990),
which motivates to formulate a regularized version of Ẽ in an analogous manner,
as has been proposed in Bourdin (1998) and Bourdin and Chambolle (2000). The
idea is that an additional scalar field s(x, t) is introduced to indicate cracks. This
field varies continuously from s(x, t) = 0 when x is part of the crack set S to
s(x, t) = 1.0 if x is sufficiently far away from the crack set, see Fig. 4.1. By means
of the smooth representation of cracks through s, a regularized approximation of
the energy functional (3.63)

El(ε
e(∇u, θ), s,∇s) =

∫
Ω

(ψe(∇u, s, θ) + ψs(∇s, s)) dV (4.1)

is defined. The strain energy density is decomposed into positive, i.e. crack driving,
and negative, i.e. not crack driving, components ψe+ and ψe−, respectively, as

ψe = g(s)ψe+ + ψe−, Ee =

∫
Ω

ψe dV , (4.2)

whereas the fracture energy density and total fracture energy are given by

ψs = Gcγs, γs =
1

2cw

(
w(s)

4l
+ l|∇s|2

)
, Es =

∫
Ω

ψs dV. (4.3)

The degradation function g(s) : [0, 1]→ [0,∞) models the loss of stiffness in bro-
ken material. It is required to be a monotonously increasing function that satisfies

g(0) = 0, g(1) = 1, g′(0) = 0, g′(1) > 0, (4.4)

see Borden (2012). The first two constraints define the limits in the broken s = 0
state with no remaining material stiffness and the undamaged state s = 1 which
is associated with the full stiffness of the material. The third property guarantees
that s → 0 as ψe+ → ∞ and eliminates the crack driving force for s = 0, whereas
the fourth requirement makes certain that the phase field will evolve from a ho-
mogeneously undamaged state where s = 1 everywhere, see Borden (2012). The
normalization constant cw of the surface energy density γs must be chosen in a
way that the integral

∫
γs dV converges to the correct surface measure as l → 0,

cf. (3.60). Several approaches of the order parameter potential w(s) exist in the
literature, such as double well potentials of the type

w(s) = 16s2(1− s2) (4.5)



4.1 Regularized Representation of Cracks
and Fracture Energy 63

0 0.5 1

0

0.2

0.4

0.6

0.8

1

s [ - ]

w
(s

)
[-

]
βs = −1.0

βs = −0.5

βs = 0.0

βs = 0.5

βs = 1.0

double well

Figure 4.2: Different choices of the order parameter potential.

and monotonous functions

w(s) = (1 + βss)(1− s), βs ∈ [−1, 1] , (4.6)

see Fig. 4.2. A double well function like it is employed in Aranson et al. (2000),
Karma et al. (2001) and Eastgate et al. (2002), naturally models the irreversibility
of fracturing since an energy barrier, i.e. a local maximum of w(s), exists between
the undamaged state s = 1 and the completely fractured state s = 0, see Fig. 4.2.
However, in the unloaded case ψe+ = 0, the fractured state assumes the same total
energy as the undamaged state, which leads to an unphysical widening of cracks
for large time scales.

Concerning monotonous functions of the type (4.6), βs = −1 is the most com-
mon choice. Nonetheless, also a linear function with βs = 0 is used in the literature,
see e.g. Bourdin et al. (2014) and Hossain et al. (2014). The monotonous poten-
tials do not model the irreversibility of fracturing and need to be complemented
by an irreversibility constraint, which is discussed in Section 4.3. Nonetheless, the
monotonous function with βs = −1 is chosen in this work because there exists
an energetic difference between the fractured and the undamaged solution in the
unloaded state. Thus, unphysical crack widening is prohibited by the monotonous
formulation. The normalization constant is required to be cw = 0.5 in this case
and the fracture energy density is

ψs = Gc
(

(1− s)2

4l
+ l|∇s|2

)
. (4.7)

The first term in (4.7) vanishes in undamaged material s = 1 and is maximal in
fully broken material s = 0. According to the considerations made in Section 3.7
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the fracture energy is to be minimized for a given load state in order to find the
correct crack set. Consequently, the first term prevents large regions where s = 0,
i.e. excessively wide cracks. The second term in (4.7) includes the gradient of
s and describes the fracture energy stored in the transition zone between broken
s = 0 and unbroken material s = 1. This term impedes the formation of many
narrow cracks, since this would mean a large number of energetically unfavourable
transition zones. The internal length l weights the two terms and thereby controls
the typical width of the regularized crack, see Fig. 4.1 b).

The original expression of the strain energy density

ψe+ =
1

2
εe:(C : εe), ψe− = 0, (4.8)

combined with a degradation function satisfying the conditions stated in (4.4) has
been shown to converge to the variational formulation of brittle fracture from Sec-
tion 3.7 by Bourdin (1998) for the Mode III case, in the sense that minimizers
(u, s) of the regularized energy functional (4.1) converge to minimizers (u, S)
of (3.63) as l → 0. In this context, convergence of s to the crack set S should
be understood such that the zero set of s converges to S. The proof provided
by Bourdin (1998), is a direct application of the results of Ambrosio and Tortorelli
(1990) who have shown convergence of a regularized functional to the previously
mentioned Mumford-Shah functional. A similar proof for the case of general de-
formation can be found in Chambolle (2004).

4.2 Derivation of the Field Equations
from Hamilton’s Principle

As described in Section 2.5, the governing field equations of a dynamic system can
be derived from Hamilton’s principle if the Lagrangian of the system is known.
This section illustrates how Hamilton’s principle can be applied to formulate the
dynamic regularized fracture problem in a way that is consistent with the require-
ments on a dynamic version of the variational formulation of brittle fracture, see
the last paragraph of Section 3.7.

Consider the configuration Ω a thermoelastic body subject to small deforma-
tions and small displacements as described in Section 2. Cracks are represented in
a regularized way by means of an additional order parameter as described in Sec-
tion 4.1. The parts of the boundary ∂Ω where Dirichlet boundary conditions are
to be fulfilled for the primary fields are referred to as ∂Ωu, ∂Ωθ and ∂Ωs, whereas
the parts of the boundary where Neumann boundary conditions are specified are
denoted as ∂Ωt, ∂Ωqθ and ∂Ω∇s. It is ∂Ω = ∂Ωu∪∂Ωt = ∂Ωθ∪∂Ωqθ = ∂Ωs∪∂Ω∇s.
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The Dirichlet boundary conditions on ∂Ω are

u(x, t) = u∗(x, t) on ∂Ωu,

θ(x, t) = θ∗(x, t) on ∂Ωθ,

s(x, t) = s∗(x, t) on ∂Ωs

(4.9)

and the Neumann boundary conditions are defined as

σ(x, t)n(x, t) = t∗(x, t) on ∂Ωt,

qθ(x, t) · n(x, t) = q∗θ(x, t) · n(x, t) on ∂Ωqθ ,

∇s(x, t) · n(x, t) = 0 on ∂Ω∇s .

(4.10)

The applied traction t∗ may be of non-conservative nature. Furthermore, it is
necessary to provide initial conditions

u (x, t0) = u0 (x) , u̇ (x, t0) = v0 (x) ,

θ(x, t0) = θ0(x),

s(x, t0) = s0(x)

(4.11)

at time t0 in Ω. The initial conditions for the order parameter s0(x) can be used
to describe an initial crack set. Since the immediate effect of crack propagation on
the kinetic energy is unclear, K is assumed not to be directly affected by s. Con-
sequently, K is given by (2.40). As pointed out in Section 3.7, the displacements
should follow from elastodynamics while the crack evolution should be determined
by the minimization of El in a regularized formulation of the variational approach
to dynamic brittle fracture. A formulation that is consistent with these require-
ments can be obtained from Hamilton’s principle, cf. Section 2.5. The respective
postulate on the mechanical behaviour and on the crack evolution is:

Among admissible displacements and order parameter fields, the ac-
tual displacement field u and the order parameter field s at the cur-
rent temperature θ, fulfill∫ t2

t1

[
δ (K − El) +

∫
∂Ωt

(t∗ · δu) dA

]
dt = 0, (4.12)

where the variation δ(∗) is performed for the fields u and s only and
the times t2 > t1 specify the regarded time interval t ∈ [t1, t2].

As mentioned in Section 2.5, such a postulate may be used to derive the strong
form of the governing field equations which is shown in the following paragraphs.
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The statement (4.12) is reformulated by means of the interchangeability of the
domain integrals and the variation operation as∫ t2

t1

[∫
Ω

δL dV +

∫
∂Ωt

(t∗ · δu) dA

]
dt = 0, (4.13)

with the Lagrangian density of the problem

L (u̇,∇u, s,∇s, θ) = k(u̇)− ψe(u,∇u, s, θ)− ψs(s,∇s). (4.14)

By performing the variation δ(∗) only for the fields u and s it is

δL =
∂L
∂u̇
· δu̇+

∂L
∂∇u

: ∇δu+
∂L
∂s
δs+

∂L
∂∇s

· ∇δs. (4.15)

Employing the product rule, (4.15) yields

δL =
d

dt

(
∂L
∂u̇
· δu

)
− d

dt

∂L
∂u̇
· δu− div

(
∂L
∂∇u

)
· δu+ div

((
∂L
∂∇u

)T
δu

)

+
∂L
∂s
δs− div

(
∂L
∂∇s

)
δs+ div

(
∂L
∂∇s

δs

)
.

(4.16)

Subsequent integration over the time interval [t1, t2] and the domain Ω as well as
application of the divergence theorem (A.11) results in∫ t2

t1

∫
Ω

δL dV dt =

∫ t2

t1

∫
Ω

([
− d

dt

∂L
∂u̇
− div

(
∂L
∂∇u

)]
· δu

+

[
∂L
∂s
− div

(
∂L
∂∇s

)]
δs

)
dV dt

+

∫ t2

t1

∫
∂Ω

[
∂L
∂∇s

· n
]
δs dA dt+

∫ t2

t1

∫
∂Ω

[(
∂L
∂∇u

)T
n

]
· δu dA dt

+

∫
Ω

[
∂L
∂u̇
· δu

]
dV

∣∣∣∣t2
t1

.

(4.17)

Since the domain Ω is not time-dependent in a small deformation setting, it is
possible to exchange the order of the integration with respect to time and the
integration over Ω. Thus, the last term in (4.17)∫

Ω

[
∂L
∂u̇
· δu

]∣∣∣∣t2
t1

dV = 0, (4.18)
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vanishes if
δu (x, t1) = δu (x, t2) = 0 (4.19)

is recalled, cf. Section 2.5. According to the fundamental Lemmas of variational
calculus (2.104) and (2.105), the bracket terms representing volume contributions
and surface contributions respectively must vanish independently for each field.
This yields the Euler-Lagrange equations of the variational principle (4.12)

d

dt

∂L
∂u̇

+ div
(
∂L
∂∇u

)
= 0, (4.20)

∂L
∂s
− div

(
∂L
∂∇s

)
= 0, (4.21)

∂L
∂∇s

· n = 0 on ∂Ω∇s, (4.22)

and (
∂L
∂∇u

)T
n+ t∗ = 0 on ∂Ωt. (4.23)

Evaluation of (4.20) gives the equation of motion

ρü = divσ, (4.24)

with the constitutive law
σ =

∂ψe(ε, s, θ)

∂ε
, (4.25)

whereas (4.21) provides the evolution equation for the crack field

g′(s)ψe+ − Gc
[
2l∆s+

1− s
2l

]
= 0. (4.26)

It appears that crack growth is only controlled by the ‘positive’ part of the strain
energy density ψe+ which allows to model certain physical features of fracturing.
This topic is elaborated in Section 4.4. The last two Euler-Lagrange equations
(4.22) and (4.23) are the Neumann boundary conditions for the order parameter

∇s · n = 0 on ∂Ω∇s (4.27)

and the stress

σn = t∗ on ∂Ωt. (4.28)

The temperature field is governed by the balance of energy (2.52) and does affect
the stress and strain states by means of (2.75) and (2.79)1. Additionally, an evolu-
tion of the crack field influences the stress work term in (2.52) and thereby affects
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the temperature distribution. Further coupling effects occur, if the heat flux qθ is
assumed to be influenced by cracks. In Kuhn and Müller (2009) the formulation

qθ(s, θ) = −(βθ(g(s)− 1) + 1)κ∇θ, βθ ∈ [0, 1], (4.29)

with a quadratic degradation function g(s) has been used successfully to model
isolating (βθ = 1) and perfectly conducting (βθ = 0) cracks. Eventually, the
balance of energy (2.52), the caloric equation of state (2.56) and the constitutive
law (4.29) yield a field equation for the temperature as

ρcθθ̇ = σ : ε̇− divqθ + sθ, (4.30)

that is coupled to the displacement field u as well as to the order parameter s. In
this work, cracks are assumed to be conducting whenever thermoelastic material
is considered, i.e. βθ = 0.

The present set of equations (4.24), (4.26) and (4.30) can be interpreted in
two ways, see e.g. Li et al. (2016). First, the approach may be considered as a
regularized approximation of the variational approach discussed in Section 3.7.
Alternatively, the regularized representation may be regarded as a genuine model
of fracture on its own. In the latter case, the field s(x, t) is referred to as a phase
field and the model is called a phase field model for dynamic brittle fracture.

4.3 Irreversibility

For the scope of this work, fracturing is assumed to be an irreversible process
meaning that the material cohesion between particles cannot be reestablished once
the particles have been separated. However, this constraint is not incorporated in
the variational principle (4.12) and has to be stated separately. As mentioned in
Section 4.2, the zero set of the order parameter Ωs=0(t) ⊂ Ω may be interpreted
as the crack set S of the variational formulation of brittle fracture. Accordingly,
the irreversibility constraint (3.59) is modelled by imposing the Dirichlet type
constraint

s = s∗ = 0 in Ωs=0 for all t ≥ t0. (4.31)

A second approach to define the irreversibility constraint that goes hand in hand
with a damage like interpretation of s, is

ṡ ≤ 0, (4.32)

as proposed for example in Miehe et al. (2010b). Both formulations yield an
overall thermodynamically consistent formulation of the phase field fracture model
that complies with the second law of thermodynamics, cf. Section 2.3.6, as is
mentioned in Kuhn (2013). In this work (4.31) is used to enforce the irreversibility
of fracturing.
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4.4 Tension-Compression Asymmetry of Fractur-
ing
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∆η
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Figure 4.3: Section of a crack.

The decomposition of the strain energy density into positive and negative parts
by (4.2) has two objectives. The first motive is to model the crack boundary con-
ditions and in particular the contact between crack faces during crack closure, i.e.
the impenetrability of the crack faces. Secondly, since crack growth requires the
stretching of material bonds until the material cohesion is eventually gone, it is
reasonable to increase the material resistance to fracturing or to prohibit fracturing
completely in purely compressive load states. The different behaviour of cracks in
tensile and compressive situations is referred to as the tension-compression asym-
metry of fracturing, cf. Strobl et al. (2016). The purpose of this section is to
present and discuss ways in which this phenomenon can be implemented into a
phase field model for brittle fracture.

At first, crack closure is considered for the classical description of cracks, see
Fig. 4.1 a), within the framework of standard linear elasticity. Consider a section
of the crack as depicted in Fig. 4.3, where the crack’s orientation is described by
the tangential direction eξ and the outward normal of the lower crack face eη.
For illustrative purposes, a slit remains between the two crack faces although they
occupy the same location in the reference configuration. For a given traction t−

at the lower crack face it is t− = σeη by means of the Cauchy relation (2.21).
Similarly, at the upper crack face it is t+ = −σeη for a given traction load.

It is essential to decide whether a crack is closed in order to specify the correct
boundary traction on the crack faces. Thus, as a preliminary step, a crack clo-
sure criterion needs to be established. In a small deformation setting, significant
changes of the topology at the crack do not occur. Under these circumstances, the
contact constraint can be described similar to the node-to-node contact constraints
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proposed in Wriggers (2006) as(
u+(xP )− u−(xP )

)
· eη ≥ 0. (4.33)

Crack closure at a certain point xP implies that the contact constraint (4.33) is
fulfilled identically, i.e.

u+
η (xP ) = u−η (xP ) (4.34)

if the crack is closed. Consequently, uη is also continuous across the crack. Consider
two points xP+ and xP− on opposite sides of the crack that are very close to the
crack face but are separated by ∆η in the reference configuration, see Fig. 4.3.
For a closed crack it can be assumed that the difference between the thermally
induced displacements and the total displacements in η-direction is non-positive,
meaning that the material is compressed or strain-free in η-direction

u+
η (x−P )− u−η (x+

P )−
∫ ∆η

0

αT (θ − θ0)dη̃ ≤ 0 (4.35)

and in the limit

εeηη = lim
∆η→0

u+
η (x−P )− u−η (x+

P )−
∫ ∆η

0
αT (θ − θ0)dη̃

∆η
≤ 0, (4.36)

if the crack is closed. A crack closure criterion based on (4.34) cannot directly be
utilized in a phase field model for fracture since the displacement field at xP is
single valued in a phase field representation of the crack. The form (4.36), however,
is suitable for a phase field formulation, because a strain εeηη can be defined at xP .

For an open crack, the crack faces are assumed to be traction free t± = 0,
i.e. there is no external load at the crack faces. Thus, the Cauchy theorem yields
σηη = 0 and σηξ = 0 on either crack face, while σξξ should be unaffected by the
presence of the crack. On the other hand, if the crack is closed it is t− = −t+.
In this case, the normal stress in η-direction on either crack face is the same,
i.e. σηη < 0. The in-plane shear stress (σξη) transmission capability of the crack,
however, requires a constitutive assumption. In this work, it is assumed that there
is no friction and no adhesion between the crack faces which requires σηξ = 0. The
treatment of the crack boundary conditions with no external crack face loading
may therefore be summarized as

εeηη(xP , t) ≥ 0, ⇒ open crack at xP ⇒ σηη = σηξ = 0

εeηη(xP , t) < 0, ⇒ closed crack at xP ⇒ σηη < 0, σηξ = 0. (4.37)
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The implementation of the crack boundary conditions (4.37) into a phase field
model can be achieved by degrading only the zero-stress components mentioned
above, i.e.

σηη(s, ε) = g(s)σ̃ηη(ε), σξη(s, ε) = g(s)σ̃ξη(ε) for an open crack,

σηη(s, ε) = σ̃ηη(ε), σξη(s, ε) = g(s)σ̃ξη(ε) for a closed crack,

(4.38)

where σ̃ij = Cijklε
e
kl is the trial stress response of a completely undamaged material

at a given εekl. An implementation of the crack boundary conditions according
to (4.38) has been originally proposed in Strobl and Seelig (2015) and Strobl and
Seelig (2016). The approach has been shown to be superior to other formulations
in handling the boundary conditions at cracks realistically but requires a more
sophisticated formulation than other methods. First of all, the crack orientation
at a certain point must be determined. Potentially, this can be handled by setting

eη = − ∇s
|∇s|

, (4.39)

so that the crack orientation does not necessarily have to be known a priori. Nev-
ertheless, as mentioned in Strobl and Seelig (2015), such an approach can only
be utilized at a distance away from the crack tip where the direction of ∇s is
well behaved. Furthermore, it is not possible to stick to the variational formula-
tion described in Section 4.2. In a strictly variational approach the decomposition
(4.2) governs the asymmetric boundary conditions at the crack via the modifica-
tion of the constitutive law (4.25) as well as the asymmetric resistance to crack
propagation, see ψe+ in (4.26). Thus, it would be necessary to perform the de-
composition (4.2) also at the crack tip in order to determine the crack driving ψe+
in (4.25) which involves difficulties as mentioned above. Furthermore, no decom-
position of the strain energy density is available in undamaged material, because
the computation of eη relies on the existence of a gradient ∇s. Thus, the tension-
compression asymmetry cannot be modelled for crack nucleation scenarios by such
an approach. Due to these difficulties, the treatment of crack boundary conditions
according to (4.38) is complemented in Strobl and Seelig (2016) by a separate
crack driving force Ds that substitutes ψe+ in the evolution equation (4.26). This
breaks the variational character of the phase field problem which in turn increases
the computational cost for the numerical solution of the problem.

The most common ways to handle the tension-compression asymmetry of frac-
turing in phase field models are the volumetric-deviatoric decomposition of the
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strain energy density (VDD) by Amor et al. (2009) and the spectral decomposi-
tion (SD) introduced by Miehe et al. (2010b). Both formulations are variationally
consistent and impose a decomposition of the strain energy density and the stress
that is independent of the crack orientation. This comes at the cost of not pre-
dicting the crack boundary conditions as accurate as the advanced formulations
presented in Strobl and Seelig (2016).

4.4.1 Volumetric-Deviatoric Decomposition
of the Strain Energy Density

The fundamental assumption of the model of Amor et al. (2009) is that the elastic
part of the volume dilatation

εeV = tr(εe) (4.40)

is negative at the crack if the crack is closed. Assuming that there is a crack at
xP , the respective crack closure criterion is

tr(εe(xP , t)) ≥ 0, ⇒ open crack at xP ,
tr(εe(xP , t)) < 0, ⇒ closed crack at xP ,

(4.41)

which is also illustrated in Fig. 4.4. As tr(εe) is invariant to a change of the
coordinate system, knowledge of the crack orientation is not required. However,
a positive dilatation does not automatically imply that εeηη > 0. If a sufficiently
large εeξξ >

∣∣εeηη∣∣ exists, the crack might be closed (εeηη < 0) even though tr(εe)
would still be positive. The constitutive relation at the crack is given by (4.25)

∆V ∗

ξ
η

a) b)

ξ
η

∆V

Figure 4.4: a) Open crack and b) closed crack with negative dilatation εv.

and is consequently determined by the formulation of the strain energy (4.2).
From a physical standpoint, crack opening and sliding of the crack faces should
not cause any surface traction nor a stress response at the crack, see (4.38), while
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compression of a closed crack should. Associating opening, sliding and compression
of the crack faces with positive volumetric, deviatoric and negative volumetric
strain states respectively motivates the formulation of the strain energy density in
the form (4.2) as

ψe+ =
K

2
〈tr (εe)〉2+ + µ (ee : ee) ,

ψe− =
K

2
〈tr (εe)〉2−,

(4.42)

where

〈x〉− =

 x if x < 0

0 else
(4.43)

and

〈x〉+ =

 x if x ≥ 0

0 else .
(4.44)

The associated constitutive law follows from (4.25) as

σ =
∂ψe

∂ε
= K〈tr(εe)〉−1 + g(s) [K〈tr(εe)〉+1 + 2µee] . (4.45)

For uniaxial compression perpendicular to the crack faces, i.e. σηη < 0 it can be
verified from (4.45) that it is indeed tr(εe)<0. Thus, crack closure is predicted
correctly under these circumstances.

Just as a positive volumetric deformation does not necessarily imply that the
crack actually opens, i.e. that εeηη > 0, an isochoric deviatoric deformation e
does not necessarily represent a simple shear sliding motion of the crack faces.
However, a simple shear sliding motion of the crack faces is accompanied by a
purely deviatoric deformation which justifies the VDD formulation as an adequate
model to describe Mode II fracture.

The crack driving part of the strain energy density ψe+ is also referred to as
the ‘positive’ part of the strain energy density. It enters the phase field evolution
equation (4.26) as a driving source term, and thus decides which load states cause
crack propagation and crack nucleation.

4.4.2 Spectral Decomposition
of the Strain Energy Density

The second popular approach to improve the phase field model’s behaviour in
compressive load states and for crack closure is the spectral decomposition (SD)
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Figure 4.5: Detection of crack closure.

originally proposed by Miehe et al. (2010a). Miehe and his coworkers propose a
mixed criterion for the detection of crack closure which also does not require any
information on the crack orientation. The previously discussed dilatation criterion
is used in conjunction with an approach that relies on the spectral decomposition
of the elastic part of the linearized strain tensor

εe =
n∑
i=1

εeini ⊗ ni, (4.46)

where εei is the i-th eigenvalue of εe and ni is the associated normalized eigenvector.
In this approach, negative eigenvalues are assumed to also indicate crack closure.

The strain energy density for the SD formulation is given by (4.2), with

ψe+ =
λ

2
〈tr (εe)〉2+ + µ

(
εe+ : εe+

)
,

ψe− =
λ

2
〈tr (εe)〉2− + µ

(
εe− : εe−

)
,

(4.47)

where

εe− =
n∑
i=1

〈εei 〉−ni ⊗ ni, (4.48)

and

εe+ =
n∑
i=1

〈εei 〉+ni ⊗ ni. (4.49)

The first term in ψe− and ψe+ reveals that the dilatation criterion is still utilized for
the component λ

2
tr (εe)2. For the remainder of the strain energy density, however,

the sign of the eigenvalues is employed as an indicator for crack closure, see (4.47).
The constitutive law derived from (4.25) is given by

σ =
∂ψe

∂ε
= g(s)

[
λ〈tr(εe)〉+1 + 2µεe+

]
+
[
λ〈tr(εe)〉−1 + 2µεe−

]
. (4.50)
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Since the model partly shares the crack closure criterion of the VDD formulation, it
also keeps the previously mentioned weaknesses. Nonetheless, some of the negative
effects are diminished, which can be illustrated as follows. Consider a configuration
in which one principal strain εe1 is positive and the associated eigenvector n1 is
aligned with the crack direction. The other principal strain, which is identical
to εeηη, is negative and therefore the crack would be closed, see Fig. 4.5. The VDD
formulation fully degrades all stress components in a situation like this if |εe1| > |εe2|,
i.e. if tr(εe) > 0. In case of the SD formulation, not all stress components are
degraded to the full extent, since the contribution of the negative principal strain
εe2 in the second bracket of (4.50) is not affected by g(s).

In contrast to the VDD model, the SD formulation has a weak point in treating
Mode II fracture. Consider a plane strain simple shear sliding motion of the crack
faces of a crack segment as depicted in Fig. 4.5 under isothermal conditions. The
displacement field is given as u = 2c0ηeξ and c0 6= 0 is a constant. The strain in
this case is purely deviatoric, i.e.

εe = ee = c0eξ ⊗ eη + c0 eη ⊗ eξ (4.51)

and tr(εe) = 0. The eigenvalues of the strain tensor are

εe1 = +c0, εe2 = −c0. (4.52)

Assuming that no friction and no adhesion is present between the crack faces, the
sliding motion should not cause a stress response, i.e. σ = 0 for s = 0. This is
true for VDD, see (4.45), but not for the SD formulation. In the latter case, the
stress resulting from such a deformation is

σ = 2µc0 (g(s)n1 ⊗ n1 − n2 ⊗ n2) 6= 0. (4.53)

Consequently, the SD approach will result in unphysically stiff structural behaviour
for sliding motions of the crack faces.

4.4.3 Discussion of the Asymmetry Formulations

From a physical point of view, the two tension-compression asymmetry formula-
tions presented in the previous sections provide a substantial improvement over
the original formulation (4.2). Although some aspects have been discussed above,
the resulting sharp interface fracture model remains unclear, see Li et al. (2016).
This means that no proof of the convergence of the energy functional (4.1) to a
discrete energy functional similar to (3.63) as l→ 0 is available and thus it is not
known which physical process is modelled exactly by such modifications. The per-
formance of the VDD and SD approaches in numerical finite element simulations
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of fracture has been discussed in Ambati et al. (2015). Ambati and his coworkers
pointed out that the discontinuous decomposition of the strain fields is nonlinearly
dependent on the strain state in both formulations, which results in a significant
computational effort. In Ambati et al. (2015) it is argued that the computational
effort of the SD formulation is higher (∼ 12% in one benchmark) than that of the
VDD formulation because of the larger number of required computational oper-
ations. The authors of Ambati et al. (2015) also advocated a hybrid formulation
that significantly outperformed the VDD as well as the SD formulation.
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Figure 4.6: Isolines of ψe+ = ψc = 1.0Gc/L for the different formulations of the strain
energy density and different biaxial strain load.

In order to enhance the understanding of the effects that the choice of the
asymmetry formulations has on the model’s behaviour, the positive part of the
strain energy density ψe+ is studied in more detail. As ψe+ is the crack driving
force in the phase field evolution equation (4.26), an analysis of this term allows
to gain insight in the effective material strength modelled by the two considered
formulations (4.42) and (4.47) under a biaxial strain load. A biaxial elastic plane
strain state is determined by the two principal elastic strains, cf. (2.17). The
formulations of the positive part of the strain energy are given by (4.42) and
(4.47), whereas the unmodified, original formulation is determined by (4.8). It is
assumed that the undamaged material will fail at a critical load corresponding to
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a driving force of ψc. Consequently, the relation

ψe+(εe1, ε
e
2) = ψc (4.54)

implicitly describes a curve in the εe1-εe2-plane that determines the strength of
the material for a given strain state. These graphs are plotted in Fig. 4.6 for
the two tension-compression formulations as well as for the original formulation.
One can observe that in biaxial expansion εe1 > 0, εe2 > 0, all models predict
the same effective strength meaning that the material will fail at the same load
level (εe1 > 0, εe2 > 0). Under pure shear strain εe1/εe2 = −1, the VDD formulation
still agrees with the unmodified formulation with respect to the bearable load level,
while the SD approach predicts failure at considerably higher absolute strain levels.
Thus, the material resistance to shear loading will be enhanced for SD. As soon
as a negative volumetric strain is present, i.e. εe1 + εe2<0, VDD also results in a
higher material resistance than the original formulation. However, a large enough
deviatoric strain still allows for failure even if εe1 < 0 and εe2 < 0. For tr(εe)<0
(4.54) reduces to

µ

2
(εe1 − εe2)2 = ψc, (4.55)

in the VDD case which can be rearranged to get the equation of the bounding
curves as

εe2 = εe1 ±

√
2ψc

µ
for tr(εe)<0. (4.56)

The SD approach yields even larger bearable strains in the compressive region. As
soon as the volumetric strain is negative, failure can only be obtained if one of the
principle strains is large enough, i.e. if

εe1 ≥

√
ψc

µ
or εe2 ≥

√
ψc

µ
. (4.57)

Consequently, the bounding curve is given by the vertical and the horizontal line
segments respectively for tr(εe)<0, see the green line in Fig. 4.6.

4.5 Dimensional Analysis

In order to decrease the number of free parameters in the subsequent analysis and
the simulations that follow in later chapters, the governing equations that were
derived in Section 4.2 are expressed in a non-dimensional format by means of

• the characteristic length-scale L of the problem,
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• the density ρ,

• the Lamé parameter 2µ,

• the specific fracture energy Gc and

• the specific heat capacity cθ.

The normalization procedure is motivated by the one-dimensional coupled problem

2µ

ρ

∂

∂x

[
g(s)

〈
∂u

∂x
− αT (θ − θ0)

〉
+

+

〈
∂u

∂x
− αT (θ − θ0)

〉
−

]
=
∂2u

∂t2
,

g′(s)
1

2
2µ

〈
∂u

∂x
− αT (θ − θ0)

〉2

+

− Gc
[
2l
∂2s

∂x2
− 1− s

2l

]
= 0,

ρcθθ̇ = 2µ

[
g(s)

〈
∂u

∂x
− αT (θ − θ0)

〉
+

+

〈
∂u

∂x
− αT (θ − θ0)

〉
−

]
∂2u

∂x∂t
+ κ

∂2θ

∂x2
+ sθ.

(4.58)

The introduction of the dimensionless fields ū and θ̄,

u = ū uref , where uref =

√
GcL
2µ

,

θ = θ̄ θref, where θref =
Gc
ρcθL

,

(4.59)

as well as scaling spatial dimensions by L

x̄ =
x

L
, l̄ =

l

L
, (4.60)

and the time by the time scale T
t̄ =

t

T
(4.61)

yield the non-dimensional set of equations

2µT 2

L2ρ

∂

∂x̄

[
g(s)

〈
∂ū

∂x̄
− ᾱT

(
θ̄ − θ̄0

)〉
+

+

〈
∂ū

∂x̄
− ᾱT

(
θ̄ − θ̄0

)〉
−

]
=
∂2ū

∂t̄2
,

g′(s)
1

2

〈
∂ū

∂x̄
− ᾱT

(
θ̄ − θ̄0

)〉2

+

−
[
2l̄
∂s2

∂x̄2
− 1− s

2l̄

]
= 0,

∂θ̄

∂t̄
= 2µ

[
g(s)

〈
∂ū

∂x̄
− ᾱT

(
θ̄ − θ̄0

)〉
+

+

〈
∂ū

∂x̄
− ᾱT

(
θ̄ − θ̄0

)〉
−

]
∂2ū

∂x̄∂t̄
+ κ̄

∂θ̄

∂x̄2
+ s̄θ,

(4.62)
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where the non-dimensional coefficient of thermal expansion and the non-dimensional
heat conductivity are given by

ᾱT =
αT
αT,ref

, αT,ref =

√
ρ2c2

θL

Gc2µ
,

κ̄ =
κ

κref
, κref =

ρcθL
2

T

(4.63)

and the normalized heat source is

s̄θ =
sθ

sθref
, sθref =

Gc
LT

. (4.64)

Equation (4.62)1 suggests to introduce the time scale as

T =
L

c
, (4.65)

where

c =

√
2µ

ρ
(4.66)

is the characteristic wave speed of the 1D-problem. The differential operations
with respect to the non-dimensional coordinates x̄ and time t̄ follow from the
scaling (4.60) and (4.61) as

∂(∗)
∂x

=
1

L

∂(∗)
∂x̄

,
∂(∗)
∂t

=
1

T

∂(∗)
∂t̄

=
1

T

◦
(∗). (4.67)

An analog definition of the non-dimensional differential operators

grad(∗) =
1

L
¯grad(∗), div(∗) =

1

L
d̄iv(∗), ∆(∗) =

1

L2
∆̄(∗), (4.68)

allows to reformulate the equations governing fracture in a non-dimensional fashion
as ◦◦

ū = d̄ivσ̄, (4.69)

g′(s)ψ̄e+ −
[
2l∆̄s− 1− s

2l

]
= 0, (4.70)

◦
θ̄ = σ̄ :

◦
ε̄+ κ̄ ¯gradθ̄ + r̄θ. (4.71)

The normalized representation of derived quantities follows from the scaling of the
primary fields (4.59) as well as the definition of the non-dimensional differential
operators. The respective relations for the infinitesimal strain tensor, the stress
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tensor, the positive part of the strain energy density, and the heat flux are given
as

ε = ε̄εref εe = ε̄eεref, where εref =

√
Gc

2µL
, (4.72)

σ = σ̄σref, where σref =

√
2µGc
L

, (4.73)

ψe+ = ψ̄e+ψ
e
+,ref, where ψe+,ref =

Gc
L
, (4.74)

and
qθ = q̄θqθref, where qθref =

Gc
T

(4.75)

respectively. By scaling the elastic parameters with 2µ, i.e.

µ̄ =
µ

2µ
=

1

2
, λ̄ =

λ

2µ
, (4.76)

one can also derive the non-dimensional expressions for the wave speeds

cs =

√
µ

ρ
=

√
1

2
c = c̄sc = c̄s

L

T
(4.77)

and

cd =

√
λ+ 2µ

ρ
=
√
λ̄+ 1c = c̄dc = c̄d

L

T
. (4.78)

Note, that material velocities, meaning changes of a position x with respect to
time, such as the wave speed, are scaled differently, i.e. as ẋ ∼ L/T , than rates
of the displacement u̇ ∼ uref/T . This results from the fact that while the physical
interpretations of cs and u̇ are the same, i.e. both represent the rate of change of
a position with respect to time, the displacement u is decoupled from the actual
position of the associated particle x in the mathematical model and is treated as
an independent field within the small deformation theory. In dynamics one often
tries to judge whether a loading speed u̇ is high or low compared to the wave speed.
Nonetheless, such a comparison relies on the interpretation of the displacements
as a translation in physical space. Nevertheless, this connection is not a feature
of the mathematical formulation of the problem such as it would be in a finite
deformation theory. If one wants to specify a velocity ratio as

r =
|u̇|
c

(4.79)

the associated non-dimensional rate is, by means of (4.67) and (4.65),∣∣∣ ◦ū∣∣∣ = r
L

uref
. (4.80)
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Figure 4.7: One dimensional bar subject to a displacement load u0.

4.6 Analytic Results

In this Section, analytic results are presented that shed light on several features
of the present phase field model for dynamic brittle fracture and improve the
understanding of the numerical simulations that are discussed in the subsequent
chapters.

4.6.1 1D Bar

Interesting results concerning the constitutive behaviour of the material in the
phase field model and crack nucleation can be obtained by considering a 1D bar
that is subjected to tensile loading under quasi-static and isothermal conditions,
as depicted in Fig. 4.7. The discussion of this quasi-static case are also relevant
for the dynamic model as the numerical simulations in Chapter 6 reveal.

The analysis of this problem follows the approach discussed in Kuhn (2013)
and Kuhn et al. (2015) as well as some aspects presented in Borden (2012). For
the given scenario, the governing set of equations reduce to

dσ

dx
= 0, where σ = g(s)2µ

du

dx
(4.81)

g′(s)µ

(
du

dx

)2

− Gc
[

1− s
2l

+ 2l
d2s

dx2

]
= 0 (4.82)

Furthermore, the phase field is assumed to take on a spatially constant value at
the boundaries, meaning that s′(±L) = 0.

Homogeneous Solution

To begin with, a homogeneous solution of the coupled problem is searched for.
This signifies that all spatial derivatives of the phase field s are set to zero and it
is

du

dx
=
u0

L
= ε0. (4.83)
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Such a situation can be expected away from cracks in pristine material. Rela-
tion (4.82) results in

g′(s)µ
(u0

L

)2

− Gc
[

1− s
2l

]
= 0. (4.84)

It becomes apparent, that the homogeneous solution sh of (4.84) and consequently
also the stress σh are critically dependent on the choice of the degradation func-
tion g(s). In this work, the degradation function is chosen to be of the form

g(s) = a(s3 − s2) + 3s2 − 2s3 + ηs, (4.85)

where a > 1 is the slope of the degradation function at s = 1 , as proposed
in Borden (2012). A choice of a > 0 guarantees the fourth constraint in (4.4).
Figure 4.8 displays such degradation functions for values of a = 0, a = 0.5 and
a = 2. In the latter case, g(s) reduces to the quadratic form

g(s) = s2 + ηs, (4.86)

which is a common formulation in the literature. The parameter ηs � 1 provides
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Figure 4.8: Different choices of the degradation function. The dashed green line indicates
the slope g′(1) = 0.5.

a small residual stiffness in the completely broken state. The introduction of this
residual stiffness stems from the original quasi-static phase field fracture models.
In the quasi-static case, it is necessary to ensure positive definiteness of the tangent
matrix in numerical simulations by a small auxiliary stiffness. In a dynamic setting,
this has been found to be unnecessary and thus, in this work, the parameter is
set to zero unless otherwise mentioned. For a general degradation function of the
type (4.85), equation (4.84) has the solutions

sh,a =
Gc + (6− 2a)lε2

02µ

2lε2
02µ(6− 3a)

±

√
(Gc + (6− 2a)lε2

02µ)
2

+ 4Gc(3a− 6)lε2
02µ

2lε2
02µ(6− 3a)

, (4.87)
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Figure 4.9: Homogeneous solution of the 1D bar problem for different choices of the
degradation function. a) Homogeneous solution of the phase field εh vs. sh, b) El vs.
εh, c) stress vs. strain graph and d) phase field sh vs. applied stress σh. The second
solution for the cubic cases is indicated by the dashed-dotted lines in a) and b), whereas
the dashed-dotted line in d) indicates supercritical loading. The vertical dashed black
line in b) shows ε̃. The length-scale parameter is set to l = 0.01L

which are displayed in Fig. 4.9 a) for a = 0, a = 0.5 and a = 2. In the special case
of a = 2, there is a unique and admissible solution, meaning that sh ≤ 1,

sh,a=2 =
Gc

4lµε2
0 + Gc

, (4.88)

which monotonously approaches zero as the load ε0 is increased. Furthermore, for
this choice of a, significant changes of the phase field can be observed at relatively
small loads.

For a = 0 the solution (4.87) has two branches. The first branch sh,a=0 = 1 is
admissible in the whole regime of loads ε0. The other branch is described by

sh,a=0 =
Gc

6lε2
02µ

. (4.89)
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Since sh ≤ 1 has to hold for any admissible solution, this branch is constrained to

ε0 ≥ ε̃ =

√
Gc

12lµ
. (4.90)

Thus, for ε0 > ε̃ there are two admissible solutions: the purely elastic solution
sh,a=0 = 1 and a homogeneous solution with degraded stiffness (4.89). The question
arises which of the two possible branches is the correct energy minimizing solution
for ε0 > ε̃. To answer this, it is illustrative to consider the sum of elastic and
fracture energy (4.1) as depicted in Fig. 4.9 b). Initially, the branch sh,a=0 = 1 is
the energetically favourable solution, i.e. the branch with the lower total energy.
However, just as the second branch of the solution becomes admissible at ε0 = ε̃,
the associated energies of the two branches as well as their slopes ∂El

∂ε0
are exactly

the same. For ε0 > ε̃ the second branch of the solution given by (4.89) is indeed
the energy minimizing solution. Consequently, the correct solution for the whole
load regime might be summarized as

sh,a=0 =

1, for ε0 ≤ ε̃,
Gc

6lε2
02µ

, for ε0 > ε̃.
(4.91)

The fact that the value and the slope of the energies are identical at a load level,
where the correct solution switches from one branch of (4.87) to another can lead
to difficulties in numerical algorithms. In order to overcome this difficulty, the al-
gorithm has to trigger the switch of the solution branches, as for example reported
in Kuhn et al. (2015).

In the general case 0 < a < 2, again two branches of the solution (4.87) exist
of which only the branch with the minus sign in (4.87) is admissible for all ε0, see
the green lines in Fig. 4.9 a). This solution is displayed as the solid green line in
Fig. 4.9 a). It is very close to s = 1 at low load levels and approaches the second
branch of sh,a=0 for ε0 > ε̃.

The homogeneous stress-strain response can be found by substituting the cor-
rect solutions sh into the constitutive law (4.82)2. The associated graphs are dis-
played in Fig. 4.9 c), for the quadratic case a = 2, for the combined solution (4.91)
in case of a = 0 and the minus branch of (4.87) for the general case a = 0.5.
All curves show an initial increase of the stress up to a maximum level at which
the homogeneous stress response decreases again. However, nonlinear constitutive
behaviour can be observed for the quadratic case even for low applied strains. Re-
calling that it is the intention of this work to model brittle materials, which show
almost linear constitutive behaviour up to fracture, this is certainly a weak point
of the quadratic formulation. The cubic formulations, in particular a = 0, cure
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this weakness. Here, the material response is linear up to a point very close to
the maximum stress response. Furthermore, it can be observed that the maximum
stress increases for a → 0. The critical strain level at which the maximum stress
response appears, can be obtained from the necessary condition

∂σ

∂ε0

= 0. (4.92)

For a = 2 the maximum stress, the associated strain and phase field values are

ε∗c =

√
Gc

2µ6l
, σ∗c =

9

16

√
Gc2µ

6l
, s∗c =

3

4
, (4.93)

whereas for a = 0 it is

εc =
5

3

√
Gc

2µ15l
, σc =

81

50

√
Gc2µ
15l

, sc =
9

10
, (4.94)

cf. Kuhn et al. (2015).

Spatially Inhomogeneous Solution and Bifurcation

The spatially homogeneous solution of the 1D bar is stable for subcritical load
levels ε0 ≤ εc, as mentioned in Kuhn et al. (2015) and shown for the quadratic
case in Kuhn (2013). Nevertheless, stability cannot be guaranteed if the strain
exceeds this level, see Kuhn (2013). In fact, the fracture field starts to localize for
ε0 > εc and eventually a crack forms. For a quadratic degradation function, it is
shown in Benallal and Marigo (2007), Amor et al. (2008) and Pham et al. (2011)
that the stability point for a broader class of gradient damage models similar to the
present phase field model lies only slightly above the critical load σ∗c if l� L. Thus,
the maximum stress response of the homogeneous solution may be interpreted as
the strength of the modelled material. This opens an entirely different view on the
length-scale l which initially may be considered as a purely numerical parameter
that controls the width of phase field cracks. Nevertheless, l critically affects σc
and σ∗c , see (4.94) and (4.93), and thus can be interpreted as a material parameter
that is related to measurable quantities such as the fracture toughness and the
tensile strength of the material, see also Kuhn et al. (2015). In order to study the
localization process in more detail, the procedure described in Hakim and Karma
(2009), Kuhn (2013), and Kuhn et al. (2015) is followed to derive a spatially
inhomogeneous solution of the 1D bar problem. The equations (4.82) can be
combined to

g′(s)lσ2

Gc2µg2(s)
+ s− 4l2s,xx − 1 = 0, (4.95)
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Figure 4.10: Spatially inhomogeneous solution of the 1-bar problem.

which is considered for l � L for a given stress level σ ≤ σc. The solution that
is searched for is differentiable, symmetric s(−x) = s(x), obeys s′(0) = 0 and is
approximately spatially constant at the ends of the bar. The bounding value is
the subcritical homogeneous solution at the specified stress level, i.e. s′(±L) = 0
and s(±L) = sh(σ). Such a function is depicted in Fig. 4.10, where sm = s(0)
denotes the minimal value of the order parameter at the localization site x = 0.
Equation (4.95) is integrated in a first step∫ s(x)

sm

(
g′(s)lσ2

Gc2µg2(s)
+ s− 4l2s,xx − 1

)
ds = 0. (4.96)

By means of the identities

d

ds

(
1

g(s)

)
= − g

′(s)

g2(s)
, (4.97)

d

ds

[(
ds

dx

)2
]

= 2
d

ds

(
ds

dx

)(
ds

dx

)
= 2

d

dx

(
ds

dx

)
= 2

(
d2s

dx2

)
, (4.98)

relation (4.96) yields

2l2(s,x)
2︸ ︷︷ ︸

Vkin(s,x)

+
lσ2

Gc2µg(s)
− s2

2
+ s︸ ︷︷ ︸

Veff(s)

=
lσ2

Gc2µg(sm)
− s2

m

2
+ sm︸ ︷︷ ︸

Veff(sm)

, (4.99)

which can be interpreted as a conservation law where Vkin is the kinetic energy of s
and Veff is the effective potential, see Kuhn (2013). If (4.99) is evaluated at x = L
then Vkin(L) = 0 and s(L) = sh. The homogeneous solution of the phase field
variable is known for the subcritical case for a given stress level, cf. the solid lines
in Fig. 4.9 d). Consequently, sm is the only unknown in (4.99) in this situation
and can be determined as the root of the function

Vσ(s) = Veff(s)− Veff(sh). (4.100)
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The localization process is described and analyzed in detail in Kuhn (2013) for
the quadratic case (a = 2) and in Kuhn et al. (2015) for a = 0.0. The analysis
presented here will be done for a = 0.1. As becomes apparent in Fig. 4.11 a)
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Figure 4.11: a) function Vσ for relatively low stress levels and b) magnified view of Vσ
for high stress levels. The smaller root of Vσ for the respective stress levels is indicated
by the diamond markers, whereas the larger root is displayed as the triangle markers.
The length-scale parameter is set to l = 0.01L.

and b), Vσ generally has two roots. The first root corresponds to the homogeneous
solution sm1 = sh(σ), marked by triangles in Fig. 4.11, which is admissible for
the constraints introduced above. This solution sm1 is close to s = 1, see also
the magnified section that is displayed Fig. 4.11 b). The value of sm1 decreases as
σ → σc and it is a local maximum of Vσ, as can also be observed in Fig. 4.11 b). The
second root sm2, marked by the diamonds, corresponds to the truly inhomogeneous
solution with s(0) = sm2 < sh(σ). The value of sm2 increases as σ → σc. At the
critical load state, the two solutions collapse and mark a saddle point of Vσ, see the
purple line in Fig. 4.11 b). The unloaded state σ = 0 has to be treated separately
as discussed in Kuhn (2013) and Kuhn et al. (2015). For σ = 0, sm1 = 1 is the
only root of Vσ. Since sm2 → 0 as σ → 0, it is still reasonable to set sm2 = 0 in
this case.
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Figure 4.12: a) Homogeneous solution sh and spatially inhomogeneous solution with
minimal value of sm2. b) Homogeneous solution σh vs. sh and inhomogeneous solution
σ vs. sm. The length-scale parameter is set to l = 0.01L.

Now that the minimal value sm2 is known, the conservation law in the form (4.99)
can be integrated to obtain the complete spatial distribution of the phase field as
the inverse function of

x(s) = sgn(x)

∫ s

sm2

√
2l2

Veff(sm2)− Veff(s̃)
ds̃. (4.101)

Figure 4.12 a) displays the computed inhomogeneous fracture fields for x > 0
as well as the associated spatially homogeneous solution. The roots of Vσ corre-
sponding to the homogeneous solution sm1 (triangles) and the minimum value of
the inhomogeneous solution sm2 (diamonds) are also marked in the figure. The
fully broken solution can be found by substituting σ = 0 into (4.82) and solving
the resulting problem

2ls,xx +
1− s

2l
= 0 (4.102)

subject to the constraints s(0) = sm(σ = 0) = 0 and s′(±L) = 0. For l � L, the
solution is

s(x) = 1− exp

(
−|x|

2l

)
. (4.103)
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Suppose, that an undamaged bar s = 1 is subjected to an increasing displacement
load u0. The corresponding solutions of the phase field are displayed in Fig. 4.12 a)
for the respective stress level. Initially, the stress is subcritical and since the bar
is undamaged the correct solution is the homogeneous solution. With increasing
load, the constant level sh will drop slightly as can be observed in Fig. 4.12 a).
At a strain just above the maximum strain load εc, the homogeneous solution is
unstable and the spatially inhomogeneous solution at the corresponding stress level
becomes the correct solution. Thus, the phase field is now inhomogeneous with
a minimum at x = 0, where the crack is assumed to appear. Simultaneously, the
fracture field away from the localization point recovers and in the fully fractured
state it is s(±L) = 1. The transition from the homogeneous solution is also
displayed in Fig. 4.12 b). The solid black line represents the subcritical σ-s-
relation which is given by the homogeneous solution. The triangles representing
sm1 perfectly match the graph in this part. In the vicinity of the critical stress
load, the homogeneous solution is unstable and transitions to the inhomogeneous
solution displayed in Fig. 4.10. The dashed black line indicates the unattainable
supercritical homogeneous solution. The diamonds mark the minimal value sm2

at the given load. As the displacement load increases, the stress level and sm2

decrease more and more until eventually the fully broken solution is obtained. As
mentioned in Kuhn et al. (2015), this analysis shows that the nucleation of fracture
in originally undamaged material corresponds to a localization of the fracture
field, which initiates close to the maximum stress response σc of the spatially
homogeneous solution. This observation justifies the interpretation of σc as the
fracture stress of the phase field model.

Finite Element Simulation of Fracturing of a 1D bar

In order to study how the semi-analytical considerations presented in this section
relate to the behaviour of the model in numerical simulations, finite element sim-
ulations of the 1D bar problem are performed. The finite element scheme for the
dynamic problem is described in Appendix B. For the present example, however,
a quasi-static formulation is applied, where the phase field evolution equation is
complemented by a viscous term as advocated in Kuhn (2013), see (B.74). As also
proposed in Kuhn (2013), an implicit Euler scheme is used for time integration and
linear finite elements are used for spatial discretization. Furthermore, the original
formulation of the strain energy density (4.8) is employed since compressive me-
chanical states do not occur. The setup, is the same as depicted in Fig. 4.7, where
the regular mesh consists of 200 elements. The load is applied through a linearly
increasing displacement load u∗(t) = u0 · t. The mobility parameter for the viscous
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Figure 4.13: Stress strain relation of the 1D bar example for different choices of the
degradation function. Homogeneous solution (solid lines) and finite element simulations
(dashed-dotted lines). The length-scale parameter is set to l = 0.01L.

regularization is set to

M = 2 · 105u0

√
2µL

G3
c

. (4.104)

Crack growth is triggered to happen at x = 0 by reducing the fracture toughness
of the center element by 0.01%.

Figure 4.13 shows the stress-strain graphs for the quadratic case a = 2 as well
as for a = 0.1 and a = 0. In all simulations the stress increases to a critical value
at which the homogeneous solution becomes unstable, the phase field localizes,
and a crack forms abruptly which eventually causes the stress to drop to zero. In
the quadratic case this happens just above the critical strain rate εc as expected.
Up to εc, the simulation perfectly matches the analytic prediction, i.e. the homo-
geneous solution. However, an unwanted strongly nonlinear stress-strain relation
can be observed for a = 2. The constitutive behaviour matches brittle material
behaviour a lot better for a = 0. Nonetheless, the solution deviates from the ana-
lytical predictions and significantly overshoots the predicted maximum value. The
reason for this is that the two solution branches of sh,a=0 are hard to distinguish
energetically at a load of ε0 = ε̃0 as mentioned before, see also Fig. 4.9. Further-
more, the solution needs to switch from the sh = 1 branch to the branch given by
(4.89) at ε̃, cf. (4.91). Thus, for a numerical scheme, it is very difficult to figure out
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the correct solution. Consequently, the switch to the energy minimizing second
branch at ε̃ is not predicted correctly by the finite element simulations but it is
delayed. In Kuhn et al. (2015) a numerical perturbation of the fields in the first
Newton iteration of each time step has been implemented to trigger a switch from
the branch sh = 1 to the branch sh < 1 at ε0 = ε̃. However, a small deviation
from the correct solution could not be prevented. Hence, the effective material
strength can hardly be estimated by σc, since the critical stress level also depends
on the implementation and the numerical algorithm. The degradation function
with a = 0.1 realizes the strong points of both previous formulations, and con-
sequently justifies the fourth constraint in (4.4). Here, the material response is
indeed practically linear up to a point very close to the maximum stress response
and the numerical solution matches the analytical predictions perfectly. This is
due to the fact that only one of the two possible branches of the solution is admis-
sible for all applied displacements, i.e. a switch to another branch of the solution
is unnecessary. Furthermore, the value of the phase field as well as the slope of
the total energy differ for both branches at ε̃. Thus, the fracture behaviour that is
obtained in simulations can be predicted by the analytic results and a strict upper
limit of the bearable stress is given by σc as a → 0. An argument justifying the
quadratic formulation is that regions, where the phase field is distinctly different
from one, usually only appear in limited parts of the considered body, e.g. close
to crack or at stress concentrations, and do not significantly affect the overall re-
sponse of the structure. A numerical example, where the effect of the degradation
function on the global behaviour of a more complicated structure can be found in
Section 6.16.

4.6.2 Configurational Forces

The energetic point of view of material changes, see Sections 3.6 and 4.2, links the
concept of configurational forces to phase field models for fracture. Indeed, this
connection has been investigated in Kuhn and Müller (2010b), Kuhn (2013) and
Hakim and Karma (2009) for the quasi-static case. For the quasi-static situation,
it has been shown that the configurational force components acting on a crack
tip are related to well-known quantities of fracture mechanics such as the path-
independent J -integral, see Rice (1968), and the fracture resistance Gc. In contrast
to numerical strategies that rely on configurational forces in order to model crack
propagation such as in Miehe and Gürses (2007) and Özenç et al. (2016), the
evaluation of the configurational forces is not a necessity in phase field fracture
models but configurational forces should rather be understood as a post-processing
tool that enhances the understanding of the simulations. In this Section, the
idea to consider configurational forces for a phase field fracture model from Kuhn
and Müller (2010b) is extended to the dynamic case by following the approach
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presented in Schlüter et al. (2017). A slightly different way to derive a meaningful
configurational force balance for a dynamic phase field model for brittle fracture
is outlined in Schlüter et al. (2016a).

Crack growth corresponds to a translation of the crack tip with respect to
its coordinates z in the reference configuration. As explained in Kienzler and
Herrmann (2000), a configurational force balance law that captures the energy
change due to a translation of the considered defect, in our case the crack tip,
can be found by taking the gradient of the Lagrangian density. In the phase
field model, the evolution of the phase field is governed by the variation of the
Lagrangian density with respect to u and s keeping θ fixed, see (4.13). Crack
growth is determined by the formulation of the Lagrangian density but also by
the irreversibility constraint (4.31). Accordingly, it follows that a configurational
force balance law derived by taking the gradient of the Lagrangian density without
incorporating the irreversibility constraint does only describe the fracture process
as long as the load is high enough to sustain the cracks. In this situation the
irreversibility constraint does not play a role. Nonetheless, the ‘gradient of the
Lagrangian approach’ is still followed to derive a configurational force balance in
this work, but the neglected irreversibility condition is discussed as part of the
interpretation of the computational results in Section 6.4. In order to determine
the energetic driving force on a particular crack tip, the Lagrangian density L is
considered to additionally be a function of the position of that crack tip z and the
gradient

−∇L (u̇, ε, s,∇s, z) =

(
∂ψ

∂s
s,k +

∂ψ

∂s,i
s,ik +

∂ψ

∂εij
εij,k −

∂k

∂u̇i
u̇i,k −

∂L
∂zi

zi,k

)
ek

(4.105)

is computed, neglecting the temperature field. Making use of the identities

∂ψ

∂s,i
s,ik =

(
s,k

∂ψ

∂s,i

)
,i

−
(
∂ψ

∂s,i

)
,i

s,k (4.106)

and
∂ψ

∂εij
εij,k = (uj,kσji),i − ui,kσij,j (4.107)

the components of equation (4.105) can be rewritten as

−L,k =
∂ψ

∂s
s,k +

(
s,k

∂ψ

∂s,i

)
,i

−
(
∂ψ

∂s,i

)
,i

s,k

+ (uj,kσji),i − ui,kσij,j −
∂k

∂u̇i
u̇i,k −

∂L
∂zi

zi,k.

(4.108)
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By means of the equation of motion (4.24), the evolution equation (4.26) and the
linear momentum

p =
∂k

∂u̇k
ek = ρu̇ (4.109)

the relation

−∇L =

((
s,k

∂ψ

∂s,i
+ uj,kσji

)
,i

− ui,kṗi − piu̇i,k −
∂L
∂zi

zi,k

)
ek (4.110)

is obtained, which with

−∇L = −(Lδki),i ek, δij =

{
1 if i = j

0 else
(4.111)

can be recast in the form
g = divΣ− ṗ. (4.112)

Here, the configurational stress tensor

Σ = Σe + Σs (4.113)

consisting of the dynamic Eshelby stress tensor or elastic part of the configurational
stress tensor

Σe = ((ψe − k)δij − uk,iσkj) ei ⊗ ej, (4.114)

and the cohesive configurational stress tensor

Σs =

(
ψsδij − s,i

∂ψ

∂s,j

)
ei ⊗ ej (4.115)

has been introduced. The pseudo-momentum

p = −ui,kpi ek = − (gradu)T p (4.116)

has already been introduced in (3.47), whereas the quantity

g = −zi,k
∂L
∂zi
ek (4.117)

is the contribution of the state [u̇(x, t), ε(x, t), s(x, t),∇s(x, t)] to the energetic
driving force that acts on the crack tip z. Alternatively, g might be interpreted
as a measure of the change of L at x due to an infinitesimally small translation
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of the crack tip z. By integration over a subdomain R of Ω, a global form of the
configurational force balance∫

R

g dV︸ ︷︷ ︸
GR

=

∫
R

divΣe dV︸ ︷︷ ︸
GeR

+

∫
R

divΣs dV︸ ︷︷ ︸
GsR

−
∫
R

ṗ dV︸ ︷︷ ︸
−PR

,

GR = Ge
R +Gs

R + PR

(4.118)

is obtained. In contrast to g, the quantity GR represents the configurational force
on z resulting from the states [u̇(x, t), ε(x, t), s(x, t),∇s(x, t)] of all particles x
inside R.

In the following the role of the derived configurational force balance as a means
to highlight the connection between phase models for dynamic brittle fracture and
Griffith’s description of brittle fracture in the framework of dynamic linear elastic
fracture mechanics (LEFM) is explained. To this end, a LEFM model of the crack
tip and the region surrounding it, see Fig. 4.14 a), as well as the corresponding
phase field representation, see Fig. 4.14 b), are considered. In order to evaluate the
relevant energetic driving forces on a particular crack tip, suitable control volumes
should at least contain all particles that constitute the near tip region but no
additional crack tip or defect. A disc with radius δ that is centered around the
crack tip z

Dδ(t) = {x(t) ∈ Ω : ‖x(t)− z(t)‖ ≤ δ} (4.119)

is chosen as a control volume for the phase field problem and a ξ-η-coordinate
system is introduced, where eξ is tangential to the crack path at z. The control
volume for the respective LEFM problem, is bounded by the contour ∂D′δ and the
crack faces as displayed in Fig. 4.14 a). Presume that

z′

δ′

∂D′δ

n′

S0

eη δ

eξ

nδ

z

Rs

B

A

∂Dδ

a) b)
Figure 4.14: a) Crack tip region of a problem formulated in the framework of linear
elastic fracture mechanics (LEFM) and b) the associated phase field representation of
the crack tip region.
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A: the boundary conditions at the crack faces are adequately modeled by the
constitutive law (4.25).

In that case,

B: the displacements u in Dδ but outside the subset Rs ⊂ Dδ where the phase
field is significantly different from s = 1 are assumed to be a good approxi-
mation of the displacements u′ that are obtained for the otherwise identical
problem formulated in the framework of dynamic linear elastic fracture me-
chanics, see Fig. 4.14 a). The size of Rs depends on the length-scale param-
eter l which is assumed to be small compared to δ. Consequently, it is also
∂Dδ,A→B ≈ ∂Dδ.

Assumption B is motivated by the proofs of Γ-convergence for the quasi-static
phase field model which establish a link between the global energies and their
minimizers obtained in a free-disconuity model on the one hand and a phase field
model on the other hand, cf. Section 4.1. Addtionally,

C: it is assumed that the fields in Dδ are smooth enough to allow the gradient
and divergence operations.

With 2∇k = 2ρ (gradu̇)T u̇ the identity

Ge
Dδ

+ PDδ
=

∫
Dδ

div
(
(ψe + k))1− (gradu)Tσ

)
dV

+

∫
Dδ

(
−ρ(gradu̇)T u̇+ ρ(gradu)T ü

)
dV

(4.120)

is obtained which with the divergence theorem (A.11) yields

Ge
Dδ

+ PDδ
=

∫
∂Dδ

(
(ψe + k))1− (gradu)Tσ

)
n dA

+

∫
Dδ

(
−ρ(gradu̇)T u̇+ ρ(gradu)T ü

)
dV.

(4.121)

Thus, by means of the assumptions A-C it is

Ge
Dδ

+ PDδ
≈ GHRtip

+ PHRtip
, (4.122)

cf. (3.54), and eventually with the help of (3.57) a link between the configurational
forces introduced above and the dynamic energy release rate as(

Ge
Dδ

+ PDδ

)
· ev ≈ G (4.123)
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is obtained. In order to derive an interpretation of the cohesive configurational
stress the procedure described in Kuhn (2013) is followed. Firstly, the divergence
theorem is applied to the second term on the right-hand side of (4.118), i.e.

Gs
Dδ

=

∫
Dδ

divΣs dV =

∫
∂Dδ

Σsnδ dA =

∫
∂Dδ,A→B

Σsnδ dA+

∫
∂Dδ,B→A

Σsnδ dA.

(4.124)
On the first segment Σs|∂Dδ,A→B = 0 since s ≡ 1. If the second segment is
sufficiently far away from the crack tip, i.e. assumption B is fulfilled and the crack
is straight inside Dδ, it is reasonable to assume that the phase field has the same
shape in η-direction as the 1D solution (4.103),

s(x1, x2)|∂Dδ,B→A = 1− exp

(
−|η|

2l

)
. (4.125)

Thus, it is

Σs|∂Dδ,B→A =

ψs 0

0 0

 (4.126)

with
ψs =

Gc
2l

exp

(
−|η|
l

)
. (4.127)

Eventually these considerations yield

Gs
Dδ

=

∫
∂Dδ,B→A

Σsn dA =

∫
∂Dδ,B→A

−ψs
0

 dη =

−Gc
0

 = −Gceξ. (4.128)

Hence, with (4.123), (4.128), (4.118) and eξ ≈ ev it is found that the configura-
tional force balance applied to an appropriately small crack tip disc Dδ, in which
the crack is approximately straight, in the form

GDδ · eξ =
(
Ge
Dδ

+ PDδ +Gs
Dδ

)
· eξ = 0 (4.129)

is closely related to the Griffith condition for crack growth (4.130)

G = Gc. (4.130)

The Griffith condition is fulfilled if GDδ · ev = 0, i.e. the crack driving forces
Ge
Dδ

+ PDδ balance the cohesive configurational force Gs
Dδ

in the direction of
crack growth.

In order to judge whether the size of the control volume Dδ is chosen large
enough to comply with assumption B, a second tip disc control volume R with
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radius δR > δ and a third control volume Rδ = R \Dδ that does not include the
crack tip, any other crack tip nor the regions dominated by the stress concentra-
tions surrounding them are considered. It is∫

R

(divΣe − ṗ) dV =

∫
Rδ

(divΣe − ṗ) dV +

∫
Dδ

(divΣe − ṗ) dV. (4.131)

The integral
∫
Rδ

(divΣe − ṗ) dV represents the crack-extending energetic driving
force on z that results from the states [u̇(x, t), ε(x, t), s(x, t)] of all x inside Rδ,
see (4.118). Since no stress concentration is located in Rδ, it is∣∣∣∣∫

Rδ

(divΣe − ṗ) dV

∣∣∣∣� ∣∣∣∣∫
Dδ

(divΣe − ṗ) dV

∣∣∣∣ . (4.132)

From (4.131) it follows
Ge
R + PR ≈ Ge

Dδ
+ PDδ

(4.133)

Equation (4.133) implies that the value of the above integral is insensitive to a
further increase of the size of the control volume if the crack tip field is sufficiently
contained in Dδ. Hence, δ is chosen large enough, if (4.133) is fulfilled for δR > δ.





5 Performance of Numerical Solution
Strategies

As mentioned before, an analytical solution of the dynamic phase field fracture
problem from Section 4.2 is only available for simplified situations such as the
1D-bar problem discussed in Section 4.6.1. This section presents and discusses a
numerical strategy that allows to obtain a solution for more complicated scenarios.
The phase field fracture problem is given by a set of coupled partial differential
equations, consisting of the equation of motion (4.24), the phase field evolution
equation (4.26) and the energy balance (4.30), the constitutive laws (4.25) and
(4.29) as well as the boundary conditions (4.9), (4.10) and initial conditions (4.11)
which fully governs the fracture process, i.e. the evolution of the phase field, the
displacements and the temperature over time. This renders tracking of the crack
pathes, as required by other methods, as unnecessary. Consequently, the numerical
discretization of this set of equations is straightforward and can be handled with
standard finite element methods, see textbooks on the topic like Zienkiewicz and
Taylor (2000), Wriggers (2009) and Hughes (2000). Nonetheless, the advantages of
the phase field also come with costs. Since the size of the transition zone l in which
the phase field varies from broken to unbroken material has to be small relative
to the dimensions of the considered body L, a very fine spatial discretization is
required, at least locally, to resolve the associated high gradients properly. Fur-
thermore, in dynamic simulations wave propagation needs to be treated adequately
and hence reasonable time step sizes are small. This means that the computational
effort for dynamic fracture phase field simulations can become relatively high. It
is therefore of interest to find solution strategies that allow an efficient numerical
treatment of the spatially discretized dynamic phase field fracture problem. In the
literature, there are mainly two approaches. The first possibility is to solve the
coupled equations simultaneously for the primary fields, i.e. the displacements,
the phase field and the temperature. This so-called monolithic strategy promises
to find the, up to a predefined tolerance, exact solution at each discrete time step.
Here, implicit schemes have to be used and the computational effort per time step
is comparatively large, because of the nonlinearity of the coupled system.
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Figure 5.1: Overview of numerical solution strategies for the coupled phase field fracture
problem.

Alternatively, staggered solution strategies can be used, as described in e.g. Ho-
facker and Miehe (2013) and Ambati et al. (2015) for the isothermal case. In these
strategies, the problem is decoupled and solved in two steps. First, the equation
of motion is solved keeping the phase field fixed and subsequently the evolution
equation is solved for the phase field variable fixing the displacements. This way,
nonlinearities that come from the coupling of the two fields are removed and con-
sequently the subproblems can be treated more efficiently. However, the substeps
of the staggered algorithm may have to be repeated several times in order to ob-
tain convergence, i.e. a solution that is insensitive to further so-called ‘staggered
iterations’. A criterion to judge convergence of the staggered algorithm in this
sense is proposed in Ambati et al. (2015). Nevertheless, it is rather common to
perform only one staggered iteration. For such a one-step staggered approach it
is necessary to keep the time step comparatively small which might be required
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anyway in dynamic simulations. Furthermore, the decoupling allows for efficient
explicit time integration of the equation of motion which is not possible in the
monolithic case. An overview of the mentioned numerical strategies is displayed
in Fig. 5.1, whereas detailed information of the numerical implementation is sum-
marized in appendix B. The presented algorithms are implemented into the finite
element code FEAP, c.f. Taylor (2014).

In this chapter, the performance of three different monolithic and three dif-
ferent staggered strategies is analyzed by means of two benchmark problems as
originally published in Schlüter et al. (2017). The six numerical solution strategies
are investigated for isothermal conditions, i.e. the temperature is considered to be
θ = θ0 ∀x ∈ Ω at all times. Furthermore, the SD formulation of the strain energy
density (4.47) is employed. The considered strategies are

S1: a monolithic strategy with a standard Newmark scheme (β = 0.25, γ = 0.5)
for time integration and automatic time step control,

S2: a monolithic strategy with a modified Newmark scheme (β = 0.5, γ = 0.5)
and automatic time step control,

S3: a monolithic strategy with the Euler scheme for time integration and auto-
matic time step control,

S4: a staggered strategy with implicit time integration of the equation of motion
by the standard Newmark scheme (β = 0.25, γ = 0.5),

S5: a staggered strategy with implicit time integration of the equation of motion
by a modified Newmark scheme (β = 0.5, γ = 0.5),

S6: a staggered strategy with explicit time integration of the equation of motion
by the central difference scheme.

S0

L

t∗(t)

x1

Figure 5.2: 1D-bar with an initial, center crack S0. Fixed at the left boundary and
subjected to pressure pulse on the right end.

The first benchmark problem considers a fractured 1D-bar with an initial crack
as depicted in Fig. 5.2. The bar is constrained at its left end and subjected to a
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pressure pulse at the right end. The governing set of field equation for the 1D-case
is given by (4.58). Note that the isothermal case θ = θ0 = const. is considered and
thus a solution of the heat equation is not necessary. The specimen is subjected
to a sinusoidal pressure pulse t∗(t) = σ0Y (t)ex at its right end. The amplitude of

the pulse is σ0 = −1.0
√

2µGc
L

and

Y (t) =


sin2

(
2π

t

te

)
if 0 ≤ t ≤ te

2

0.0 if t ≥ te
2

, (5.1)

where te = 0.25L
c
. The degradation function (4.85) with a = 0.1 is chosen for

the numerical benchmarks presented in this section and the absolute value of the
stress pulse is distinctly smaller than the critical stress

σc =
81

50

√
Gc2µ
15l

≈ 4.18

√
2µGc
L

, (5.2)

see (4.85), such that no further fracturing is expected even after reflection of the
elastic wave at the boundaries. Before reflection of the original pulse at the left
end of the bar, the analytic solution is

σ11 (x1, t) =

 σ0 sin2

(
2π

ξ

tec

)
if 0 ≤ ξ ≤ tec

2

0.0 else
(5.3)

for 0 ≤ t ≤ L

c
with ξ = x1 − L

2
+ ct. The bar is discretized by 200 homoge-

neously distributed elements with linear shape functions, i.e. the element size is
h = 0.005L. The length-scale parameter is l = 0.01L. The initial crack is mod-
elled by defining respective initial conditions s(x1 = L

2
, 0) = 0 for both nodes of

the center element. In this example, no automatic time step control is used for the
monolithic schemes (S1, S2, S3) and only one iteration of the staggered schemes
(S4, S5, S6) is performed. Time steps are chosen to be the CFL time step 1∆tcfl,
cf. (B.93), for all schemes except for S6, the staggered strategy with explicit time
integration, for which the time step is set to 0.5∆tcfl in order to ensure stability.
This numerical experiment is suited to judge the numerical dissipation involved
in the solution strategies as well as their capability to accurately model the wave
speed, because an analytic solution is available for comparison. Furthermore, be-
cause of the subcritical load, the focus is on analyzing the efficiency of the various
schemes in handling the equation of motion (4.58)1. Since the time step is rela-
tively small and the phase field is not expected to change very much, the restriction
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Figure 5.3: Stress σ11 at different times. Additionally, the crack field s is displayed as
the dash-dotted line.

to only one staggered iteration (S4, S5) and the lack of the automatic time step
control (S1, S2, S3) are regarded as acceptable. Of course, larger time steps can
in principle be used for all solution strategies with implicit time integration of
the equation of motion (S1-S5), which will be considered in a second numerical
benchmark.

Fig. 5.3 shows snap shots of σ11 at different times. Initially, the numerical
solutions all agree reasonably well with the analytic solution except for S3 for
which the large amount of numerical dissipation of the Euler scheme becomes
obvious, see Fig. 5.3 a). Furthermore, the staggered solution strategies S4, S5 yield
virtually identical stress distributions compared to their monolithic counterparts
at all times. The reason for this can be found in the fact that the phase field
does not evolve at all no matter which solution strategy is chosen. This is to be
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Figure 5.4: Runtimes for the 1D bar problem

expected because of the subcritical loading and it is the reason why S1/S4 and
S2/S5, respectively, are not distinguished, i.e. only one graph of the phase field
s(x1, t) is shown in the plots. One can also observe a slight amount of dissipation in
the Newmark-strategies that manifests in a smeared out shape of the stress pulse
compared to the analytic solution. This effect is larger in S2/S5 than in S1/S4.
Furthermore, first oscillations appear for S2/S5 and S1/S4 where again the effect
is more pronounced for S2/S5. The stress distribution computed by S6 matches
the analytic solution almost perfectly.

Just before the reflection of the initial pulse at the left boundary, further differ-
ences become apparent, see Fig. 5.3 b). While the effects of numerical dissipation
increase for S3, the strategies S2/S5 also deviate significantly from the analytic
solution. The amplitude of the stress pulse decreases notably, but also the peak
position does not match the analytic solution anymore. Thus, the wave speed
is also not computed correctly. This is not the case for the standard Newmark
scheme S1/S4.

Caused by the initial oscillations which result in a partly positive stress, the
stress waves are not completely transmitted by the crack but the tensile parts
are reflected. Again, S6 almost yields the exact analytical stress distribution.
Subsequently, the pulse is reflected at the fixed left end and returns in positive
x1-direction as a compressive wave. Consequently, there is again only minor inter-
action between the pulse and the crack in this stage of the simulation.
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S0

t∗(t)

2L

L

x2

x1

a) b)

Figure 5.5: a) Setup for the crack branching benchmark: specimen with an initial crack,
subjected to a tensile stress and b) plot of the phase field at t = 6.0∆tcfl computed by
S6.

After the reflection of the pulse at the right end of the bar takes place, see
Fig. 5.3 c), the differences between the various scheme become more obvious, but
have the same trends. Now, the main pulse is positive, i.e. a tensile stress is
prevalent. Thus, the wave will be reflected at the crack. Up to this point, only
S2/S5 display significant oscillations. The strategies S6 and S1/S4 show no or
minor oscillations respectively, as well as no notable decrease of the amplitude.

Nonetheless, significant oscillations can be observed for all strategies except S3
after reflection of the tensile pulse at the crack, see Fig. 5.3 d). Furthermore, the
shape of the original pulse is not retained.

Fig. 5.4 shows the runtimes for a simulation of the fractured bar in the time in-
terval 0 ≤ t ≤ 4.0L

c
that were obtained on a laptop computer with a 2.3 GHz Intel

Core i7 processor. The monolithic schemes S1/S2 perform distinctly better than
their staggered counterparts S4/S5. Thus, the algorithmic decoupling of the equa-
tion of motion and the phase field evolution equation does not hold any advantages
for the implicit schemes in this example. This may be explained by the fact that,
due to the subcritical load, the solution of the phase field equation is stationary
and hence a strong coupling of the phase field equation to the displacements does
not exist.

Nonetheless, the staggered algorithm performs significantly better if explicit
time integration of the equation of motion is employed (S6). Although twice the
number of time steps is required for S6, it outperforms all other strategies except
the monolithic Euler strategy S3. In light of the shortcomings of S3 mentioned
above and the close match between S6 and the analytic solution in the first stages of
the simulation, the performance of S6, which has to be attributed to the efficiency
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Y (t)

t[L/c]

1.0

1.0 4.0

Figure 5.6: Temporal distribution of the applied load Y (t).

of the central difference scheme in solving the equation of motion, is even more
impressive.

The second benchmark problem considers a tension loaded specimen with an
initial crack as displayed in Fig. 5.5 a). Unlike in the first problem, the load
is large enough to cause crack growth. The final crack pattern computed by
S6 with ∆t = 0.95∆tcfl is displayed in Fig. 5.5 b). This benchmark allows to
evaluate the performance of the different solution strategies in a more complex
scenario. Plane strain conditions are assumed, i.e. the displacements have the
form u = u1(x1, x2)e1 + u2(x1, x2)e2. The Lamé parameters have identical values,
i.e. λ = µ. An initial crack is defined, by specifying appropriate initial condi-
tions s0(xcrack, 0) = 0. The body is again loaded by a traction boundary condition
t∗ = σ0Y (t)e2, with σ0 = 2.0

√
2µGc/L at the upper boundary and σ0 = −2.0

√
2µGc/L

at the lower boundary and

Y (t) =



v0 · t if 0 ≤ t ≤ 1.0L
c
,

1.0 if 1.0L
c
≤ t ≤ 4.0L

c
,

1.0− v0 · t if 4.0L
c
≤ t ≤ 5.0L

c
,

0.0 if 5.0L
c
≤ t,

(5.4)

where v0 = 1.0 c
L
and c =

√
2µ
ρ
, see also Fig. 5.6. The domain is spatially discretized

by a regular mesh of 200×100 quadrilateral finite elements with bilinear shape
functions, i.e. the element edge length is h = 0.01L. The length-scale parameter is
chosen to be l = 0.02L. In this numerical benchmark, use is made of the automatic
time step control mentioned above (S1, S2, S3) and the staggered convergence
criterion (B.78) is employed for S4 and S5. The maximum number of staggered
iterations is set to kmax = 200. The initial and maximum time step sizes for the
monolithic solution strategies (S1, S2, S3) are varied from 1∆tcfl to 40∆tcfl but
the time step can of course be decreased by the automatic time step control. For
the implicit staggered strategies (S4, S5) the fixed time step is varied from 1∆tcfl
to 40∆tcfl, whereas for S6 time steps in the range 0.2∆tcfl to 1.0∆tcfl are chosen.
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Convergence with respect to the time step size is obtained when the solution is
insensitive to a further decrease of the time step.
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Figure 5.7: Time step convergence study for the different schemes: plots of the global
elastic energy in dependence of the specified time step limit a): S1, b): S2, and c): S3)
and fixed time step d): S4, e): S5, and f): S6).

Fig. 5.7 shows the elastic energy Ee =
∫

Ω
ψe dV , computed by the different solu-

tion strategies. The scheme S1 fails to converge for times larger than t ≈ 2.7...3.5L
c

except for the smallest time step limit 1∆tcfl, see Fig. 5.7 a). The elastic energy
increases significantly for the computations that do not converge. Thus, only a
maximum time step of 1∆tcfl produces a meaningful result if S1 is used. The mono-
lithic solution strategy with a modified Newmark scheme (S2) is less sensitive to
the choice of the upper bound of the time step, see Fig. 5.7 b). All time step limits
yield useful results. Nevertheless, there are minor differences, such that for our
purposes simulations with a time step limit of 5∆tcfl or smaller are considered as
converged. The remaining monolithic solution strategy S3 only yields a converged
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solution for the smallest time step limit due to the severe numerical dissipation
of the Euler scheme. In contrast to S1, however, the simulations are in reason-
able agreement with the converged solution, quantitatively and qualitatively, see
Fig. 5.7 c).

The staggered strategies with implicit time integration S4 and S5 show simi-
lar behaviour as their monolithic counterparts, see Fig. 5.7 d) and e). S4 yields
reasonable results only for the smallest time step and again the strategy with the
modified Newmark scheme for time integration S5 allows to use larger time steps.
If S5 is chosen, useful results are obtained for time steps ∆t ≤ 5∆tcfl. The stag-
gered scheme with explicit time integration of the equation of motion S6 yields
converged results for all chosen time step sizes except for 1.0∆tcfl, see Fig. 5.7 f).
Thus, in this example, the maximum admissible time step for S6 is 0.95∆tcfl.
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Figure 5.8: Actual time step sizes chosen by the automatic time step control for the
strategies a) S1, b) S2, and c) S3.

Fig. 5.8 displays the actual time step chosen by the automatic time step control
of the three monolithic solution strategies S1-S3. Initially, the time step is constant
and has the value of the prescribed maximum admissible time step size. Just as the
crack starts to grow the time step size is reduced step-wise and and by a significant
amount in all schemes. Exceptions to this are the two smallest time step limits
1∆tcfl and 2∆tcfl for which the time step is kept constant by the control algorithm
throughout the whole course of the simulation. Eventually, none of the strategies
allows for an actual time step larger than 5∆tcfl in the later stages of the numerical
experiment. Recall, that we considered the simulation with a time step limit of
10∆tcfl to be converged for S2. Interestingly, a final time step size of ≈ 3∆tcfl
seems to be sufficient for S2, see the yellow line in Fig. 5.8 b). Nevertheless, if S1 is
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employed, an even smaller time step 2∆tcfl fails to produce a converged solution,
see the red lines in Fig. 5.8 a) and Fig. 5.7 a).
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Figure 5.9: Number of iterations of the staggered algorithm for the strategies a) S4
and b) S5.

Fig. 5.9 displays the number of iterations needed for the different strategies
to converge for S4 and S5. Since the maximum number of staggered iterations
is set to kmax = 200, the staggered algorithm is assumed to have not converged
for all computations reaching this limit. For S4, this is the case for the largest
two time steps 20∆tcfl and 40∆tcfl, see Fig. 5.9 a). Intriguingly, the computation
with the largest time step does not fail to converge for S5, see Fig. 5.9 b), but
the simulations with 10∆tcfl and 20∆tcfl do. However, for the time step sizes
1∆tcfl (S4) and 5∆tcfl (S5) which are considered to be converged in the sense
of an insensitivity of the solution to a further decrease of the time step size, the
staggered algorithm also converges. The average, maximum and total number
of iterations of the staggered algorithm for these two cases are summarized in
Table 5.1. S5 needs a larger number of iterations in order to converge but allows
for a larger time step as well. Thus, the total number of iterations is significantly
smaller for S5.

Table 5.1: Quantitative analysis of the staggered strategies S4 and S5.

strategy, ∆t av. stag. it. max. stag. it. sum stag. it

S4, 1∆tcfl 3.77 6 2769

S5, 5∆tcfl 6.1 21 890
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Figure 5.10: Runtimes of the different schemes for the second benchmark versus the
prescribed time step limit (S1, S2, S3) and fixed time step (S4, S5, S6), respectively.

Fig. 5.10 displays the obtained runtime of the different strategies versus the
prescribed time step (S4, S5, S6), or time step limit (S1, S2, S3), respectively. The
runtime of the largest time step that yields a converged solution, in the sense that
the solution is insensitive to a further decrease of the time step, is marked by a
black circle. As in the previous benchmark, the performance of S6 is remarkable.
Although the time step is much smaller than for the other strategies, the total
runtime is around half the value of the next best performing scheme, i.e. S2.

Further insight can be gained by the quantitative analysis presented in Ta-
ble 5.2 which shows the average and maximum number of residual and tangent
computations per time step as well as their total number. These operations to-
gether with the solution of the linear systems of equations that appear in every
Newton iteration - their number is the same as the number of tangent computations
- determine the computational effort and thus the runtime. Nevertheless, it has to
be kept in mind, that the residual computations, tangent computations and solv-
ing operations for the staggered algorithms are performed for the relatively small
decoupled subproblems, whereas the same operations in the monolithic scheme are
performed for the full coupled problem and consequently are more computationally
expensive. Thus, the number of operations is naturally larger for the staggered
algorithm, but this does not necessarily imply that the computational effort is also
higher.

Considering only the monolithic schemes S1-S3, it is found that S2 performs
best, because of the larger time step that can be chosen. S2 is only outperformed by



111

the staggered strategy with explicit time integration S6. Interestingly, S6 requires
more tangent and residual computations as well as solves of a system of linear
equations than S2. However, as mentioned above, these operations are performed
for the decoupled evolution equation (B.94), which reduces the computational
effort significantly compared to the respective operations for the fully coupled
problem (B.84).

Table 5.2: Analysis of the average number per time step, the maximum number per time
step, and the sum of residual and tangent computations of the different strategies.

strategy, ∆t av. rs. mx. rs. sum rs. av. tg. mx. tg. sum tg. runtime

S1, 1∆tcfl 4.58 5 2808 4.58 5 2808 1.19·104 s

S2, 5∆tcfl 6.48 9 979 6.48 9 979 3.92·103 s

S3, 1∆tcfl 4.38 6 2685 4.38 6 2685 1.02·104 s

S4, 1∆tcfl 24.86 37 15242 21.13 31 12954 1.47·104 s

S5, 5∆tcfl 48.88 176 6012 42.11 155 5303 6.04 · 103 s

S6, 0.9∆tcfl 4.90 7 3162 3.90 6 2517 1.88·103 s





6 Simulations of Dynamic Brittle Frac-
ture

A number of numerical experiments is discussed in this chapter in order to improve
the understanding of the present phase field model and to illustrate its capabilities
to reproduce complex features of dynamic fracturing. The finite element implemen-
tation described in Appendix B is used to solve the initial boundary value problem
from Section 4.2 numerically. Furthermore, the monolithic solution strategy with
implicit time integration by a modified Newmark scheme, i.e. the strategy S2 from
Section 5, is chosen. All subsequent 2D examples assume plane strain conditions.
Unless otherwise specified, the maximal allowable time step is set to ∆t = 2∆tcfl.

x2

S0

x1

t∗

L

L

Figure 6.1: Quadratic specimen with an initial crack of length L/2 subjected to uniaxial
traction load.
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6.1 Stationary Cracks and the Effect of the Tension-
Compression Asymmetry Formulations

At first, only stationary cracks are studied. This means that the phase field evo-
lution in the simulations is negligible in a way that already existing cracks do not
propagate and no new cracks nucleate inside undamaged material. The analy-
sis of such a scenario reveals and confirms interesting features of the asymmetry
formulations from Section 4.4.

6.1.1 Quasi-Static Load
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Figure 6.2: Stress σ22(x2 = 0) and phase field s(x2 = 0) for a) tensile load σ0 > 0 and
b) compressive load σ0 < 0. The crack is modelled by specifying initial conditions s = 0
at two vertically successive rows of nodes. The parameter of the degradation function is
set to a = 0.1.

Consider a quadratic specimen as depicted in Fig. 6.1. The body is subjected to
an uniaxial load t∗ = ±σ0e2, σ0 = 1

10

√
2µGc/L. In this example, inertial effects are

neglected meaning ρ = 0 and the Lamé parameters have an identical value, λ = µ.
The load is chosen small enough so that the phase field is stationary with respect to
time. The body is spatially discretized by a regular mesh of 200×200 quadrilateral
finite elements with bilinear shape functions resulting in an element edge length of
h = 0.005L. The length-scale parameter is l = 0.01L. The initial crack is modelled
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a) b)

Figure 6.3: Contour plot of the volume dilatation ε1 + ε2 = εV

[√
Gc/2µL

]
a) for the

volumetric-deviatoric formulation of the strain energy density and b) the spectrally de-
composed formulation of the strain energy density. The crack is modelled by specifying
initial conditions s = 0 of two vertically successive rows of nodes. The parameter of the
degradation function is set to a = 0.1.

by prescribing Dirichlet boundary conditions s(x1 ≤ 0, x2 = 0) = 0 for either one
row of nodes or two vertically successive rows of nodes. The latter definition of
an initial crack causes the phase field to be zero also in the interior of the finite
elements – in particular at the integration points – whereas for the former variant
this is not the case.

Figure 6.2 displays σ22(x2 = 0) in blue for the original formulation of the
strain energy density (4.8), in red for the volumetric-deviatorically decomposed
formulation VDD (4.42) and in green for the spectral decomposition SD (4.47).
Additionally, the phase field s(x2 = 0) is depicted in orange.

A ‘two row’ approximation of the crack is chosen and the parameter of the
degradation function is set to a = 0.1.

It appears in Fig. 6.2 a) that for tension with σ0 > 0 all formulations yield
virtually identical stress distributions which is in agreement with the considerations
made in Section 4.4. A physically sound stress concentration at the crack tip at
x1 = 0 can be observed. In a compressive load state σ0 < 0, however, the modified
formulations constitute a significant improvement over the unphysical behaviour
of the original formulation. From a physical point of view, the crack should close
causing a uniform stress distribution σ22 = σ0 < 0. This is predicted reasonably
well by both modified formulations. The original formulation on the contrary
results in an unrealistic stress distribution where no stress is transmitted across
the crack and a stress concentration forms at the crack similar to the tensile case.



116 Simulations of Dynamic Brittle Fracture

−0.5 0 0.5
−5

0

5

10

15

20
σ

2
2

[σ
0
]

−0.5 0 0.5
−0.3

0

0.3

0.6

0.9

1.2

s
[-]

x1 [L]

phase field s
cubic, a = 0.1

quadratic, a = 0.2

geometric crack

−0.5 0 0.5
−1

0

1

2

3

4

σ
2
2

[σ
0
]

−0.5 0 0.5
−0.3

0

0.3

0.6

0.9

1.2

s
[-]

x1 [L]

phase field s
original
volumetric-deviatoric (VDD)
spectral (SD)

a) b)

Figure 6.4: a) Stress σ22(x2 = 0) and phase field s(x2 = 0) for different choices of the
degradation function and a geometric representation of the crack. The crack is modelled
by specifying initial conditions s(x1 ≤ 0, x2 = 0) = 0 of two vertically successive rows
of nodes. b) Stress σ22(x2 = 0) and phase field s(x2 = 0) for different choices of the
degradation function and for a phase field crack that is modelled by specifying initial
conditions s(x1 ≤ 0, x2 = 0) = 0 at one row of nodes. The parameter of the degradation
function is set to a = 0.1.

Interestingly, it can be observed that even for the modified formulations the
stress is not perfectly homogeneous in x1-direction. At the far left boundary (x1 =
−0.5L) crack opening is detected and thus the stress is degraded. This degradation
is slightly stronger for the VDD formulation than for SD, cf. the value of σ22 at
the left boundary x1 = −0.5L in Fig. 6.2 b). It appears that in both cases the
dilatation is indeed positive at x1 = −0.5L and x2 = 0, see Figs. 6.3 a) and b).
This can be explained due to the facts that the deformation in x1-direction is not
constrained by surrounding material at the boundary and the stiffness is degraded
at the crack. Thus, a large positive strain ε11 eventually causes the dilatation to
be positive and crack closure to be detected incorrectly. As a consequence, the
stress is fully degraded in the VDD formulation, see (4.42). The effect is reduced
in the SD formulation since the crack closure detection and the degradation of the
stress do not completely rely on the sign of the dilatation but also on the sign of
the principal strains that can be negative at the far left boundary.

Figure 6.4 a) compares the stress distributions obtained from simulations using
a phase field approximation of the crack to the stress distribution computed for
a geometric representation of the crack under tensile loading conditions. The
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Figure 6.5: Quadratic specimen with an initial crack of length L subjected to simple
shear.

geometric representation of the crack is mesh-based, i.e. for each node along the
crack there is a second node at the opposite crack face with identical position that
is not connected to the first node. One can expect that in the limit l→ 0, the phase
field results converge to the results obtained for the geometric crack, cf. Section 4.1.
Additionally, two variants a = 2 and a = 0.1 of the degradation function are used in
Fig. 6.4 a) for the phase field simulations. Both phase field formulations are in fairly
good agreement with the geometric results for the chosen length-scale l = 0.01L.
Nonetheless, the solution for the cubic (a = 0.1) degradation function, yields a
steeper gradient and higher maximum stress value at the crack tip with a lower
stress level away from the crack and thus matches the solution for the geometric
crack slightly better.

Figure 6.4 b) displays the stress distribution for a tensile loaded ‘one row’ crack
with the degradation function characterized by a = 0.1. Just as in Fig. 6.2 a),
the stress distribution is identical for all formulations of the strain energy den-
sity. Dissimilary to the two row crack situation, however, for a one row crack the
stress is not fully reduced at the crack, i.e. σ22(x1 < 0, x2 = 0) 6= 0. This can
be explained by recalling that in the finite element scheme the constitutive law is
evaluated at the integration points of each element, which do not have identical
positions as the element nodes, cf. Section B.2. Thus, the phase field is unequal
to zero at the integration points, if a ‘one row’ crack is considered. Hence, the
stress at the integration points and also the projected nodal stress obtained by
means of (B.67) are also not fully degraded, i.e. they are in general different from
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Figure 6.6: Sum of nodal forces F1 at the top edge for the shear test.

zero. Some improvement can be achieved by using a finer mesh h � l. However,
the crack needs to be at least one element wide for a physically correct modelling
of the crack boundary conditions. Nonetheless, this conflicts with the objective to
predict the fracture surface energy correctly. As pointed out in Strobl and Seelig
(2016), the surface energy will be overestimated more severely by the two row
crack formulation.

Next, the performance of the different tension-compression formulations is stud-
ied for a shear loading of the crack as discussed in Strobl and Seelig (2016). Strobl
and Seelig (2016) considered a fully broken specimen see Fig. 6.5, where a dis-
placement load is applied at the top and bottom boundary edge. This load is
incrementally increased from zero to its final value u∗(x2 = ±L

2
) = ±u0e1 with

u0 = 0.1
√
GcL/2µ. The vertical displacement at the left and right boundary is set

to zero meaning u∗2(x1 = ±L
2
) = 0. The mesh, the material and the phase field

parameters remain unchanged compared to the previous example. A ‘two row’
representation of the crack is chosen, the parameter of the degradation function is
set to a = 0.1, and again quasi-static conditions are assumed. If there is no fric-
tion or adhesion between the crack faces, such a load would not cause any stress
response and a Mode II sliding motion of the crack faces can be expected.

Fig. 6.6 displays the sum of the x1-components of all nodal forces at the top
edge. It appears that the original formulation and the volumetric-deviatoric de-
composition yield a reaction force of approximately zero, in other words there is
no stiffness to the sliding motion of the crack faces. As pointed out in Strobl and
Seelig (2016) and mentioned in Section 4.4, the SD formulation causes a significant
residual stiffness of the crack, i.e. the reaction force is linearly dependent on the
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a) b)

Figure 6.7: Contour plots of the shear stress σ12

[√
2µGc/L

]
a) for the volumetric-

deviatoric and b) spectral decomposition of the strain energy density. Regions where
s < 0.1 are rendered invisible in order to illustrate the crack. The deformation is scaled
by a factor of

√
2µL/Gc.

applied displacement load. In fact, the slope of the force-displacement curve – and
consequently the material stiffness – is only slightly smaller than for an undamaged
body.

Figure 6.7 displays the deformed geometry and the resulting shear stress distri-
bution for VDD, see Fig. 6.7 a), and SD, see Fig. 6.7 b). The former formulation
allows the Mode II sliding motion of the crack faces without a deformation of the
bulk material. Consequently, also the shear stress vanishes. The spectral decom-
position on the contrary causes an unrealistic residual stiffness of the crack. Thus,
the shear stress is non-zero and the sliding motion of a frictionless crack without
adhesion is not predicted correctly.

Concerning the two quasi-static examples discussed above one can draw the
conclusion that the volumetric-deviatoric formulation should be preferred if it is
the goal to model Mode II fracture without friction or adhesion between the crack
faces. Furthermore, the normal contact and the impenetrability of crack faces
is predicted rather accurately by the volumetric-deviatoric as well as the spec-
tral decomposition of the strain energy density. Consequently, both formulations
constitute a significant improvement over the original one. In addition, a cubic
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Figure 6.8: Stress σ11 and phase field s for different formulations of the strain energy
density at different times.

degradation function with a = 0.1 yields a slightly better agreement with the
stress distribution obtained for a geometric representation of the crack than the
quadratic degradation function with a = 2.

6.1.2 Wave Interaction with a Phase Field Crack

The previous section discussed how well the phase field model captures the be-
haviour of stationary cracks under quasi-static situations when inertial effects are
neglected. In the dynamic case, however, it is of particular interest to understand
how stress waves interact with a crack which is approximated by a phase field
formulation.

To this end, the 1D problem depicted in Fig. 5.2 is considered again. All pa-
rameters are kept the same as in Chapter 5 but, similar to the previous section, the
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formulation of the strain energy is varied. Hence, the performances of the original
formulation (4.8), the volumetric-deviatoric decomposition (4.42), and the spectral
decomposition (4.47) are compared to each other. As a numerical solution strat-
egy, the monolithic scheme with implicit time integration by a modified Newmark
scheme S2 is used, whereupon a fixed time step of 0.2∆tcfl is chosen.

Initially, the generated stress wave propagates towards the crack at x1 = 0 and
all formulations are in good agreement with the analytical solution, see Fig. 6.8 a).
This changes after the stress pulse passes the crack. Both modified formulations
predict a physically sound transmission of the stress wave across the crack, whereas
the original formulation (4.8) falsely claims that the pulse is reflected at the crack
in the form of a tensile wave, see Fig. 6.8 b). Later on, the wave approaches the
crack once more as a tensile (σ11 > 0) pulse for the modified formulations, see
Fig. 6.8 c). In this situation, reflection at the crack as a compressive pulse is the
correct response which is governed by both modified formulations, see Fig. 6.8 d).
Thus, the modified formulations can also be considered as a significant improve-
ment over the original formulation with respect to the correct prediction of wave
interaction with the crack in the dynamic case. Moreover, in the dynamic case a
guess whether the loading of the crack will be purely tensile or not is often not
as straightforward to make as in the quasi-static case. While in the quasi-static
case one can forecast reasonably well if the original formulation is sufficient, i.e.
the situation at the crack is crack opening, this might not be feasible in the dy-
namic case where elastic waves are reflected at the boundary and interact with
the crack. Similar numerical experiments have been discussed in Schlüter et al.
(2014b) and Steinke et al. (2016), which confirmed that the volumetric-deviatoric
as well as the spectral decomposition govern the reflection of elastic waves and
clearly represent an improvement over the original formulation.

6.2 Crack Nucleation

Classical theories of fracture based on Irwin’s stress intensity factor criterion or
Griffith’s energetic criterion require an initial singularity of order 1/√r, with r the
radial distance from the crack tip, to predict the initiation of crack propagation see
Fig. 3.1. Since such a singularity typically exists only at crack tips, crack nucleation
in undamaged material cannot be predicted by these original theories for weaker
singularities or for stress concentrations without a singular behaviour. On the
contrary, phase field models for brittle fracture combine an energetic criterion that
is closely related to Griffith’s theoretical approach with a critical stress criterion
for crack nucleation, as discussed in Kuhn (2013) and also outlined for the quasi-
static 1D case in Section 4.6.1. The ability of phase field models to simulate crack
nucleation in undamaged material has been thoroughly discussed for the quasi-
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static case in Kuhn (2013). Kuhn described that in 1D as well as 2D situations
certain stress measures which depend only on the stiffness of the material λ, µ,
the specific fracture energy Gc and the length-scale parameter l, cf. (4.93) and
(4.94), can be interpreted as critical stress levels at which cracks nucleate if they
are reached in sufficiently large regions (estimated at ∼ 10l).

Crack nucleation in the dynamic case has been discussed, among others, in a
replication of the Kalthoff-Winkler experiment in Hofacker and Miehe (2012), in
Schlüter et al. (2014b) for several 1D, 2D and 3D situations and in Dally and
Weinberg (2017) as a replication of the split Hopkinson bar experiment. It has
been discovered that also in the dynamic case the phase field model is suitable to
describe crack nucleation. The following numerical simulations further illustrate
the capability of the phase field approach to reproduce crack nucleation in undam-
aged material for scenarios in which the propagation of elastic waves has major
impact on the results.

6.2.1 1D-Hopkinson Wire

The first example treats an experiment that was performed by Hopkinson (1872).
In his experiments J. Hopkinson loaded steel wires by a falling weight. The ma-
jority of specimens broke near the fixed end of the wire. Hopkinson argued that a
tensile stress pulse travels along the wire and is reflected at the fixed end. The in-
coming stress pulse is then superimposed by the reflected stress pulse which leads
to a local increase of the stress amplitude and finally to failure of the wire. The

P σ0

σ∗

1
50 t [ L/c ]

x

σ∗

L

Figure 6.9: Dynamic crack nucleation set-up.

setup in Fig. 6.9 is intended to reproduce this experiment. The problem is re-
duced to the one-dimensional set of equations (4.58) under isothermal conditions.
The body is fixed at the top edge meaning that the boundary condition u = 0 is
specified at point P. The length-scale parameter is chosen to be l = 0.01L. The
computational domain is meshed by 200 homogeneously distributed elements of
size h = 0.5l. The falling weight is modelled by a load σ∗(t) that grows rapidly
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from σ∗(0) = 0 to σ∗(τ) = σ0 in a time interval of τ = 1/50
L
c
, and afterwards

the load is kept constant. According to the considerations made in Section 4.6.1,
material failure is expected at loads larger than σc or σ∗c depending on the cho-
sen degradation function. At first, the degradation function given by (4.94) with
a = 0.1 is considered. Since the goal of this numerical example is to investigate
fracture due to a stress amplitude doubling after reflection at the fixed boundary,
the load is only set to σ0 = 0.6σc in the first simulation and σ0 = 0.4σc in the sec-
ond simulation. In both cases, the applied traction is too small to break the wire
if inertia effects are neglected. From the analytical solution of the wave equation
it is known that the stress wave should be reflected at the fixed boundary at time
t = 1.0 L

c
. In the first case, σ0 = 0.6σc, it is expected that the computed stress

exceeds the material strength while for the second case, σ0 = 0.4σc, the expected
maximum stress is smaller than the material strength.
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Figure 6.10: Stress σ(t) and phase field s(t) at point P for a) σ0 = 0.6σc and b) σ0 = 0.4σc.
The parameter of the degradation function is a = 0.1.

Figure 6.10 a) shows the stress and phase field values at the fixed boundary
for a load of σ0 = 0.6σc. Both variants of the tension-compression asymmetry
formulations are considered but yield virtually identical results as expected in this
1D situation. The pulse indeed reaches the point P at time t = L

c
and hence

the stress rapidly increases to σc, a value that is distinctly above the applied load
σ0. Precisely when the peak stress is reached, the phase field value drops to zero
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and a crack nucleates at P which causes the stress to rapidly go to zero as well.
Subsequently, the irreversibility constraint (4.31) prevents a recovery of the phase
field. For a smaller load σ0 = 0.4σc, see Fig. 6.10 b), the stress does not reach the
material strength and the mean final value is σ = 0.8σc. In this second simulation,
the phase field at the fixed boundary is only reduced to s ≈ 0.94, which means
that the material is still undamaged.
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Figure 6.11: Stress σ(t) and phase field s(t) at point P a) for σ0 = 0.6σc and b) σ0 = 0.4σc.
The parameter of the degradation function is a = 2 and only the volumetric-deviatoric
decomposition of the strain energy density is considered.

Figure 6.11 shows the numerical results for the same problem but using the
quadratic degradation function (a = 2) which have already been reported in
Schlüter et al. (2014b) and Schlüter (2013). The stress loads are rescaled to fit
the reduced material strength σ∗c , i.e. σ0 = 0.4σ∗c for the smaller load level and
σ0 = 0.6σ∗c for the higher load case. While the subcritical case yields qualitatively
similar results, compare Fig. 6.10 b) to Fig. 6.11 b), the results for the critical case
strongly depend on the chosen degradation function. The crack nucleation process
for the quadratic degradation function is not at all a brief event compared to the
fracture behaviour displayed in Fig. 6.10 a). It lasts from the point of time when
the maximum stress σ∗c is attained at a time slightly larger than t = 1.0L

c
to the

final reduction of the phase field to zero at time t ≈ 1.85L
c
. Two phases can be

identified for the quadratic degradation function. The initial decrease of the phase
field parameter to s ≈ 0.75 happens in a rather short time interval. At this point,
the stiffness of the material is severely degraded and the critical load is reached.
Nonetheless, final fracture is delayed and the decrease of s in the second phase is
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less rapidly. From a physical standpoint fracture should happen immediately as
soon as the critical stress is reached and thus, the formulation with a = 0.1 should
be preferred. The example highlights that the phase field model is indeed capable
to reproduce dynamic crack nucleation as observed in Hopkinson’s experiments.

6.2.2 2D-Crack Nucleation Hopkinson Plate

A problem that is similar to the previous wire example can be investigated in 2D.
An experiment performed by B. Hopkinson as described in Hopkinson (1921) serves
as an example. B. Hopkinson subjected steel plates to a compressive pulse P ∗ by
applying an explosive, see Fig. 6.12. He observed that for thin specimens such a
load simply punched a hole into the plate and thus ductile failure was caused due
to the induced shear stress. Thicker specimens, however, showed a different crack
pattern. In that case, a spherical crack formed at the opposite plate side, like it is
indicated in Fig. 6.12. B. Hopkinson argued that the applied pressure pulse caused
a stress wave that was reflected as a tensile pulse at the free boundary. Since the
material is much stronger in compression than it is in tension, a crack was only
nucleated after reflection of the compressive pulse at the free boundary.

fracture surface

P ∗

Figure 6.12: Dynamically loaded plate. The shaded region illustrates the experimentally
observed crack-pattern from Hopkinson (1921). The dashed-and-dotted line shows the
propagation and reflection of the emitted elastic wave.

The experiment is reproduced by the finite element setting illustrated in Fig. 6.13
(left). The quadratic formulation of the degradation function is used and the am-
plitude of the stress pulse t∗ = −σ∗e2 is set to σ0 = 3.0483σ∗c . This value is fully
applied at time t1 = 0.002236L

c
and starts to decrease at time t2 = 0.044721L

c
,

see Fig. 6.13 (right). The rate of the load application and the subsequent decrease
of the load are identical. The elastic parameters are chosen to be equal, i.e. λ = µ.
The geometry is discretized by 500×140 homogeneously distributed rectangular
elements, where the length-scale parameter is l = 0.01L. This results in an ele-
ment edge length of h1 = l in x1-direction and an element edge length of h2 = 0.5l
in x2-direction. Furthermore, the boundary conditions at the left and at the right
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Figure 6.13: Finite element setup of a dynamically loaded plate. The dotted square
indicates the section of the body that is also displayed in Fig. 6.14

side of the specimen are

u1 (x1 ∈ {0, 5L} , x2, t) = 0 (6.1)

and
u2 (x1 ∈ {0, 5L} ,−0.35L, t) = 0. (6.2)

Both modified formulations of the strain energy are considered and the quadratic
degradation function with a = 2 is used. The results for the VDD formulation have
already been reported in Schlüter (2013) and Schlüter et al. (2014b). Fig. 6.14
shows the hydrostatic stress

σH (x, t) =
σ11 + σ22

2
(6.3)

and the associated phase field s (x, t) for both formulations of the strain energy
density as snapshots at certain points in time. At time t2, a considerable decrease
in the phase field can be observed next to the application point of the pressure
load for the volumetric-deviatoric formulation of the strain energy density. This
phenomenon can only be found in regions where the material is mainly subjected
to shear stress. For the spectral decomposition formulation such a significant
degradation of the phase field cannot be noticed. This is consistent with the con-
siderations made in Section 4.4, which predicted the shear resistance to be higher
for SD than for the VDD formulation. Subsequently, the wave front spreads out
in the specimen. However, the main pulse propagates almost parallel to the upper
surface and does not extend radially, since the applied load has been modelled
as a distributed traction load instead of a discrete force. This behaviour can be
detected for both formulations, see the plots at time t = 7.5t2 in Fig. 6.14 a) and
Fig. 6.14 b).
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Figure 6.14: Contour plots of the phase field s and of the hydrostatic stress for the
volumetric-deviatoric a) and spectral b) decompositions of the strain energy density for
the dynamically loaded plate. Elements where s < 0.1 are not depicted in the stress
plots in order to illustrate the crack. Only a section of the body is displayed, see also
Fig. 6.13.
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The compressive pulse approximately reaches the stress free lower boundary
at time t ≈ 12.78t2, where it is reflected as a tensile pulse. The snapshots
recorded at time t = 16t2 for the VDD formulation of the strain energy density
and t = 17t2 for the SD formulation show that the positive volumetric stress σH
leads to a significant decrease of the phase field parameter some distance away from
the lower boundary. Furthermore, it can be noticed that for the VDD formulation
the phase field has recovered at the upper boundary. Eventually the reflected
tensile pulse triggers fracturing for VDD as well as SD which is observable in the
snapshots recorded at time t = 22.5t2. The final fracture pattern is similar for both
formulations, i.e. there is a nearly horizontally oriented crack some distance away
from the bottom edge. The offset from the bottom edge is slightly smaller for the
SD formulation of the strain energy density and fracture also occurs a bit earlier.
The observed crack pattern resembles the experimental observations by Hopkinson
but the crack is more parallel to the free surface compared to the observations in
the experiments. This can be explained as a consequence of defining the load as a
distributed load instead of a more concentrated force. However, the present phase
field model seems to be capable to qualitatively reproduce the results of the plate
experiments of Hopkinson.

Figure 6.15 shows the phase field s (2.5L, x2, t) and the normal stress in x2-
direction σ22 (2.5L, x2, t) for both formulations of the strain energy density in the
middle of the plate at x1 = 2.5L. At time t = t2, a compressive pulse of a
magnitude of σ22 ≈ σ0 travels towards the free boundary, see Fig. 6.15 a). While
the stress is virtually identical for both variants of the strain energy density, a
significant drop of the phase field can be detected for the VDD formulation that
does not occur for the SD formulation. The amplitude of the VDD stress wave
decreases as it spreads out in the body, see Fig. 6.15 b). At this point in time,
differences are notable in the stress distribution where the SD predicted stress has
a slightly larger amplitude. Again, a considerable drop of the phase field variable
is only detected for the VDD formulation. Nevertheless, the phase field does not
localize until the pulse is reflected as a tensile pulse at the free boundary. In
Fig. 6.15 c), the stress for VDD can be observed to exceed the theoretical stress
limit at time t = 18t2 in an extended region. Simultaneously, the phase field drops
to values of s ≈ 0.75. Localization of the crack field is even more progressed for
the SD formulation at this point in time. The plot shows the situation directly
after the stress has exceeded the theoretical stress limit σ∗c . At the last point in
time, t = 22.5t2, a crack has already been formed with s = 0 at some distance
away from the bottom boundary, see Fig. 6.15 d). Although the stress σ22 exceeds
the theoretical limit at x2 ≈ 0 at this point in time, in particular for VDD, the
fracture field does not localize. This agrees with the observations made in Kuhn
(2013), where it was found that the average stress needs to exceed the stress limit
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Figure 6.15: Stress σ22 (x1 = 2.5L) and phase field s (x1 = 2.5L). The horizontal dashed
black line represents the theoretical stress limit σ∗c .

in an extended region in order for crack nucleation to occur. Nonetheless, the
exceedance of the critical stress limit is restricted to narrow regions at this stage
of the simulation and thus, fracturing of the material does not occur except for
the already existing horizontal crack.

This example demonstrates that the present phase field model is a suitable
tool to model dynamic crack nucleation also in a more complex 2D setting. Fur-
thermore, it displays the usefulness of the decompositions of the strain energy
density to prohibit unphysical fracture in compressive load states. In addition,
some qualitative differences between the two formulations have been detected that
are in agreement with the theoretical considerations made in Section 4.4. These
differences can mainly be noticed in shear-dominated load cases. Here, the VDD
formulation does yield a significant decrease of the phase field parameter whereas
the SD formulation does not. However, the decrease of the phase field parameter
is larger for VDD also in mainly compressive load states, cf. Fig. 6.14 a) and b) at
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time t = t2. This is mainly attributed to the fact that the deviatoric part of the
strain energy density is fully factored into the crack driving energy source term
ψ+
e in this variant. The maximum positive stress is significantly lower than the

absolute value of the applied pressure load but nonetheless leads to final failure
with s = 0 at time t = 22.5t2, see Fig. 6.15 d). Figure 6.15 c) shows that the
maximum magnitude of the tensile pulse just before localization agrees well with
the theoretical stress limit, see (4.93).

6.2.3 Crack Nucleation in a CT Specimen

In this section, crack nucleation at the notch ground of a compact tension (CT)
specimen, see Fig. 6.16, is investigated. The setup is the same as for the analysis
of the quasi-static case in Kuhn (2013) and Kuhn et al. (2015). At first, the global

x2

u∗

u∗

0.25L

x1

0.25L0.1L

1.25L

0.5L

1.2L

0.05L

Figure 6.16: Computational domain for the CT-specimen examples.

effect of the choice of the degradation function on the constitutive behaviour of
the specimen is considered. To this end, quasi-static conditions are assumed. In
other words

divσ = 0 (6.4)

is solved instead of (4.24). Furthermore, different choices of the degradation func-
tion are investigated. The Lamé parameters are set so that they have equal value,
meaning that λ = µ. The length-scale parameter is l = 0.01L with the element
size along the expected crack path chosen accordingly, i.e. h = 0.005L. For the
quasi-static simulations, the viscous approximation of the phase field evolution
equation (B.74) is used instead of (4.26). The body is subjected to a linearly
increasing displacement load u∗ = u0t. In the quasi-static model, the character-
istic time scale of the problem, cf. (4.65), is determined by the applied loading
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rate u0. Consequently, the characteristic time scale is given by T =
(√

GcL/2µ
)
/u0.

The mobility parameter is set to

M = 2 · 105u0

√
2µL

G3
c

. (6.5)

A monolithic strategy with a backward Euler scheme for time integration is used
for the quasi-static computations. In all phase field fracture simulations, a crack
nucleates at a certain load level and subsequently propagates along the x1-axis.
The time step chosen by the automatic time step size control during the period of
crack nucleation is ∆tstat = 2.96 · 10−6

√
GcL/2µ/u0. Thus, the load increment per

time step at this important stage of the simulation is

∆u∗stat = ∆tstatu0 = 2.96 · 10−6

√
GcL
2µ

. (6.6)

Figure 6.17 displays the simulated load displacement curves for the purely linear
elastic case without any fracturing as well as results of phase field fracture simula-
tions with different degradation functions. The linear elastic case shows a perfectly
linear constitutive response of the structure as expected. The phase field simu-
lations that allow for fracture display qualitatively very similar behaviour when
compared to each other. Here, the reaction force increases up to a maximum level
at which a crack nucleates. The consequence is a rapid reduction of the reaction
force. Subsequently, a phase of stable crack growth can be observed. The peak
reaction force is higher for the a = 0.1 degradation function. This behaviour is
expected since the maximum 1D stress response is also higher than for a = 2,
see (4.93) and (4.94). The graph for the quadratic degradation function initially
agrees with the purely elastic simulation but a significant deviation from the elastic
curve can be noticed well before the peak stress response is reached. Nonetheless,
this nonlinear material response is less pronounced than for the 1D simulations,
cf. Fig. 4.13, because the degraded region is confined to the notch ground. The
degradation function with a = 0.1 constitutes a significant improvement over the
quadratic degradation function. In this case, the curve matches the purely elastic
response perfectly almost up to the peak load, where the reaction force drops again
due to crack nucleation. Thus, it can be concluded that the a = 0.1 degradation
function also results in a better approximation of linear elastic material behaviour
– and thus brittle fracture – for general 2D situations.

In a next step, the load is still applied in a quasi-static manner. In other
words the displacement rate is low compared to the wave speeds of the material.
However, in the following, the material’s inertia is accounted for, i.e. (4.24) is
solved instead of (6.4) and (4.26) is solved instead of (B.74). Since an initial crack
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Figure 6.17: Reaction forces for the CT-specimen under quasi-static conditions for dif-
ferent choices of the degradation function and linear elastic response without fracture.

forms rapidly even if the load is applied in a quasi-static manner, dynamic effects
certainly play a role in a crack nucleation scenario. In the following, the question
how the dynamic solution compares to the quasi-static case is studied. While
the backward Euler scheme is still employed for the quasi-static simulations, a
staggered scheme with the central difference method (strategy S6 from Section 5)
is used to solve the dynamic problem. The time step in the dynamic simulations is
set to ∆tdyn = 0.4∆tcfl and the cubic degradation function with a = 0.1 is utilized.
The applied normalized loading rate, cf. (4.79), is

r =
u0

c
= 0.005

√
Gc

2µL
, (6.7)

i.e. the load increment per time step in the dynamic case follows as

∆u∗dyn = u0∆tdyn = 0.002hmin

√
Gc

2µL
≈ 9.3750 · 10−6

√
GcL
2µ

. (6.8)

Figure 6.18 displays the computed strain energy Ee, kinetic energy K (only for
the dynamic case) and fracture energy Es for the quasi-static as well as for the
dynamic simulations. As one can observe in Fig. 6.18 a), the loading speed is
small enough so that the evolution of the elastic energy in the dynamic simula-
tions before crack nucleation is virtually identical to the evolution of the elastic
energy of the quasi-static simulations. At this subcritical load level, the material
is practically undamaged and consequently the body behaves in a linear elastic
manner. This involves that the strain energy rises quadratically with the applied
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Figure 6.18: a) Plot of the kinetic energy and the elastic energy and b) the fracture
energy.

displacement load. At the onset of crack nucleation, a large amount of elastic
energy is released in a discontinuous manner and therefore the strain energy drops
considerably. This happens at an almost identical point of time for the quasi-static
and the dynamic simulations. Interestingly, the drop of the strain energy is larger
for the dynamic case, signifying that more energy is released initially if inertial
effects are considered. In the quasi-static simulations, a phase of stable crack
growth directly follows crack nucleation, meaning that the crack further propa-
gates only when the load is increased. In this phase, the strain energy decreases
monotonously. In contrast, the strain energy rises for increased displacements in
the dynamic simulation after crack nucleation and the associated initial release
of strain energy. This suggests that the crack does not propagate in this phase.
In addition, oscillations of the various energy components can be observed which
are results of elastic waves originating from the crack nucleation event. As the
simulation progresses, the mean value of the elastic energy for the dynamic simu-
lation approaches the curve obtained from the quasi-static simulations. Due to the
low loading velocity, the kinetic energy is initially negligible but substantially rises
upon crack nucleation, see the green line in Fig. 6.18 a). This displays, that due to
brutal crack nucleation large amounts of material are accelerated away from the
passing crack. Apart from oscillations, the kinetic energy remains constant shortly
after crack nucleation during the period of crack arrest. In the subsequent phase
of stable crack propagation more and more material is accelerated and thus the ki-
netic energy rises steadily. The plot of the fracture energy supports these findings,
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see Fig. 6.18 b). Indeed, the fracture energy is higher for the dynamic simulation
shortly after crack nucleation, showing that a longer initial crack nucleates than
in the quasi-static case. Furthermore, a period of approximately constant fracture
energy can be observed that directly follows crack nucleation. This also illustrates
that the crack arrests after crack nucleation and only later on resumes stable crack
growth.
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Figure 6.19: Configurational force components in ξ-direction for the quasi-static and
dynamic simulations for the period of crack nucleation.

Further insight can be gained by considering the configurational force balances
that were introduced in Section 4.6.2. In the quasi-static model, the crack-driving
elastic configurational force is given by

Ge,stat
Dδ

=

∫
Dδ

div
(
ψe1− (gradu)T σ

)
dV , (6.9)

whereas the cohesive configurational force is identical to that of the dynamic for-
mulation (4.124). Analogously to the dynamic situation, a total configurational
force can be defined for the quasi-static model as

Gstat
Dδ

= Ge,stat
Dδ

+Gs
Dδ
, (6.10)

where the additional dissipative contribution mentioned in Kuhn (2013)

Gd =

∫
Dδ

ṡ

M
∇s dV (6.11)
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is negligible small because M is chosen large enough such that Gd is of negligible
size compared to all other configurational forces, cf. Fig. 6.19. Figure 6.19 shows
the various configurational force components in ξ-direction – which coincides with
the x1-direction in this example – that were evaluated for a tip disc control volume
of the type (4.119) with a radius of δ = 10l. The figure shows a section of the
narrow loading range in which crack nucleation takes place. To be precise, the
depicted loading range is 1.52

√
GcL/2µ ≤ u∗ ≤ 1.54

√
GcL/2µ, cf. Fig. 6.18. Prior

to crack nucleation, the numerically evaluated ξ-component of the quasi-static
elastic configurational force is larger than 2Gc but drops discontinuously to Gc
as the crack nucleates. The positive sign indicates that Ge,stat is indeed a crack
driving force. The drop of the cohesive configurational force to Gs

ξ ≈ -Gc is delayed,
since Gs

Dδ
is zero as long as the whole phase field crack is contained in Dδ, cf. the

considerations that lead to (4.128). As soon as the part of the crack is outside Dδ,
the resulting configurational force assumes a value slightly smaller than -Gc, which
is in agreement with (4.128). The slight overestimation of the absolute value of the
fracture energy and consequently also of the cohesive configurational force is typical
for finite element discretizations of the phase field equations, see also Kuhn (2013)
and Borden (2012). As discussed in Section 4.6.2, the cohesive configurational force
provides a resistant force to crack propagation which manifests in its negative sign.
In situations in which the cohesive configurational force actually represents the
resistance to crack propagation at the crack tip, implying that a part of the crack
is outside Dδ, the total configurational force is zero. This reflects the connection of
the quasi-static phase field model to the Griffith condition for crack propagation,
which is fulfilled if Gstat

Dδ
= 0, see Kuhn (2013).

The configurational forces evaluated in the dynamic model show the same pat-
terns. Here, the sum Ge

Dδ
+ P

Dδ
can be identified as the crack driving force that

is related to the energy release rate, cf. Section 4.6.2. The value of Ge
ξ +P

ξ
agrees

very well with Ge,stat
ξ prior to fracture, which shows that the loading rate is indeed

chosen small enough so that inertial effects represented by P
ξ
are not significant

at this stage. It can be detected that in the dynamic simulation, the drop of the
crack driving force appears at a slightly higher applied displacement load. This
might be an effect of the chosen time step size. Indeed, the load increment applied
in a time step of the staggered scheme (6.8) is significantly larger than the respec-
tive load increment in the quasi-static simulation, (6.6) during the regarded time
interval. The cohesive configurational force behaves just as in the quasi-static case
and assumes its eventual value of Gs

ξ ≈-Gc in a delayed fashion. The dynamic con-
figurational force or pseudo-momentum P

ξ
is approximately zero until the crack

nucleates. Upon crack nucleation, however, a relatively large inertial resistance is
displayed as a peak dynamic configurational force of sizef Pξ ∼ −0.5Gc. Subse-
quently, the sign of P

ξ
fluctuates between positive (crack driving) and negative
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(crack decelerating) values. The total configurational force given by (4.118) is ap-
proximately zero during crack propagation as in the quasi-static case, demonstrat-
ing that - also in the dynamic situation - the fracture behaviour in the simulations
is related to the Griffith condition. Nevertheless, as long as the crack is completely
contained in Dδ the cohesive configurational force on Dδ does not represent the
material resistance to crack propagation at the crack tip. As a consequence of
(4.118) the total configurational force does not represent the complete energetic
force which acts on crack tip in this situation. The result is that although the
phase field is suspected to evolve according to a balance of fracture and elastic
energy that is closely related to the Griffith criterion, the non-zero total configu-
rational force does not reflect this as long as the complete crack is contained in
Dδ. The respective period for the dynamic simulation is indicated by the grey
shaded region in Fig. 6.19. In contrast to the quasi-static simulation the total
configurational force indeed assumes a subcritical value Gξ < 0 after the initial
phase of crack nucleation. Thus - while crack nucleation is directly followed by
stable crack nucleation if inertial effects are neglected - the dynamic simulations
predict crack arrest at u∗ ≈ 1.5375

√
GcL
2µ

.

This numerical example demonstrates that even in quasi-static loading situ-
ations inertial effects play a role during brutal crack nucleation and cannot be
neglected in general. Thus, even if the dynamic results converge to those of the
quasi-static model in some situations, e.g. stable crack growth, there are significant
differences in these critical situations.

6.2.4 Crack Initiation in an Infinite Elastic Body

In this section, a numerical simulation employing the present phase field model
is compared to an analytic solution for an abstract crack nucleation scenario. At
first, the analytic solution from Freund (1990) is presented which considers a half
plane crack in an unbounded elastic body on the plane x2 = 0, x1 ≤ z0 under
plane strain conditions, see Fig. 6.20. Concentrated forces p∗ = ±p∗e2 act on
the crack faces at x1 = 0 as shown in the figure. The crack tip is assumed to
be blunted, meaning that the crack only nucleates at an excessive energy release
rate of Gn0 = n0Gc, where n0 > 1. The load p∗ is gradually increased until Gn0 is
reached and afterwards kept constant. At the critical load level Gn0 , the crack is
assumed to grow according to the Griffith condition (3.28). The equilibrium stress
intensity factor for this situation is

KI = p∗
√

2

πz1

, (6.12)
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Figure 6.20: a) Unbounded elastic body subjected to concentrated forces and b) the
respective finite element setup.

where z1 is the current tip position, which - provided that the load is applied in a
quasi-static manner - yields at crack nucleation

G =
1− ν2

E
K2
I =

1− ν2

E
K2
I

2p∗2

πz1

= n0Gc. (6.13)

Consequently, the load required for crack nucleation and the phase of subsequent
crack propagation is

p∗ =

√
n0GcEπz0

2 (1− ν2)
. (6.14)

By substituting (6.14) into (6.12) and recalling (3.33), the crack tip equation of
motion (3.35) is obtained as

z1

n0z0

≈ 1− ż1

cr
, where z1(0) = z0, (6.15)

which directly yields the initial speed of the crack tip as ż1(0) = cr(n0−1)/n0. By
integration, the crack tip trajectory is given as

z1(t) = z0

[
n0 − (n0 − 1) exp

(
−crt
n0z0

)]
. (6.16)

In other words, the crack decelerates and arrests at its final length of l = n0l0,
which is also the equilibrium length of a sharp crack subjected to the same load.
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Figure 6.21: a) Configurational force components in ξ-direction and b) analytic solution
for the crack tip trajectory as well as the computed crack tip trajectory for different
values of slim.

The numerical simulation considers the domain depicted in Fig. 6.20 b). The
initial crack is modelled as a geometric notch of width 0.02L, where the element size
at the crack path is h = 2l with l = 0.005L. The distance from the point of load
application to the initial crack tip is z0 = 0.14L. Furthermore, the displacements
that are normal to the boundary are set to zero. The load is linearly increased at
a rate of

p0 = 0.005
√
µGcL3

c

L
(6.17)

to the final value of p∗ = 0.875
√
µGcL3 which is reached at t = 175L

c
, i.e. at the

point of crack nucleation. The time step size is ∆t = 2∆tcfl and the parameter of
the degradation function is chosen as a = 0.1.

Figure 6.21 a) shows the configurational force components in ξ/x1-direction,
which display the same characteristics as already discussed for crack nucleation
for the CT-specimen, see Section 6.16. The evaluation allows to estimate the
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parameter n0 that characterizes the excess energy release rate prior to fracture as

n0 ≈
max

∣∣∣Ge
10l,ξ + P

10l,ξ

∣∣∣
max

∣∣Gs
10l,ξ

∣∣ = 1.7451 (6.18)

if the interpretation of the configurational forces (4.123) and (4.128) are recalled.
Figure 6.21 b) shows the resulting analytic solution for the crack tip trajectory
as well as the computed crack tip positions for different values of the crack tip
defining limit value slim, see (B.103). For slim = 0.001, the crack tip position
is monotonously increasing, i.e. the crack tip position reflects that crack growth
is strictly irreversible. One can notice that for this choice of slim, the analytic
solution initially agrees well with the simulation. However, the final crack length is
not predicted correctly. If slim = 0.01 is chosen as the value that defines the crack
tip position, a better agreement between the simulation and the analytic solution
is found for t > 176L

c
. This limit does not strictly comply with the irreversibility

feature of cracks, and in Fig. 6.21 b) it can be detected that the crack tip position
oscillates in the later stages of the simulation for slim = 0.01.

6.3 Crack Speed Limits and Intersonic Fracture

As discussed in Section 3.4, the maximum crack velocities in brittle materials are
theoretically limited by inertial effects. These analytically derived limits are in
agreement with experimental findings to a certain extent, cf. Section 3.4. This
section is concerned with the question whether numerical simulations relying on
the present phase field model yield crack speed limits that are consistent with
theory and experiment. The discussion presented in this section is published in
Schlüter et al. (2016b).

For all simulations of this section, the quadratic formulation of the degradation
function is employed. Since a particular focus is on the modelling of Mode II
fracture, the volumetric-deviatoric formulation of the strain energy density (4.42) is
chosen. The first numerical experiment of this section is motivated by a molecular
dynamic simulation described in Gao et al. (2001). Its purpose is to study the
effect of the mode of crack tip loading on the observed maximum crack speed.
The elastic Lamé parameters are set up so that the Poisson ratio is ν = 1

3
. The

considered domain includes an initial crack and a weak plane with reduced fracture
resistance that is intended to prescribe the crack path and prevent the crack from
branching or kinking. Such a modification keeps the material homogeneous with
respect to its dynamic properties and thus, the theoretically derived crack speed
limits, which are independent of Gc, still apply. The initial crack is modelled by
setting s(x, t0) = 0 at the respective nodes and the weak plane is implemented
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Figure 6.22: Finite element setup. A rectangular domain containing an initial crack
(dashed line) and a weak plane is subjected to Mode I (red arrows), Mode II (blue
arrows) and Mixed Mode (green arrows) loading.

by replacing the fracture resistance Gc,bulk in a small strip, see Fig. 6.22, with a
reduced value Gc,wp = 0.01 . . . 0.3 Gc,bulk. The strip is 4l wide. In order to properly
resolve the phase field in the proximity of the crack, the regular mesh is set up
in such a way that the element edge length is h = 0.5l in the weak strip, where
l = 10−4L. In contrast to previous simulations, the residual stiffness is non-zero,
i.e. ηs = 10−9. The specimen is loaded by prescribing a constant displacement
rate at the upper and at the lower edge. Mode I loading is achieved by setting the
displacement rate in x2-direction to u̇2 = 2.284

√
Gc/ρL3, whereas Mode II loading is

applied by enforcing a displacement rate of u̇1 = 11.419
√
Gc/ρL3 in x1-direction. For

the Mixed Mode simulations both displacement rates are applied simultaneously.
The Mode I results for varying fracture resistance Gc,wp of the weak plane are

shown as the red lines in Fig. 6.23. The analysis reveals that decreasing fracture
resistance in the weak plane shifts the initiation of crack growth to smaller times,
i.e. also to lower crack tip loading. Furthermore, it can be observed that the
maximum crack speed indeed approaches - but never exceeds - the Rayleigh wave
speed cr for small fracture resistances Gc,wp which is in good agreement with the
theoretically predicted crack speed limits and experimental findings summarized
in Section 3.4. As Section 6.4 will demonstrate, a traction loaded crack under
Mode I conditions has the tendency to branch symmetrically if the weak plane is
lacking. Furthermore, the crack speed without the weak plane does not exceed
0.6cr, see Fig. 6.28 b). Thus, the results from Section 6.4 in conjunction with
the present results support the theory that dynamic instability phenomena like
branching limit the maximum observable crack tip velocity if a preferred crack
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Figure 6.23: Crack speed for varying fracture toughness Gc,wp of the weak plane and
varying mode of crack tip loading. The graphs show the crack speed records for different
modes of crack tip loading and different values of the weak plane fracture resistance Gc,wp
ranging from 1% to 30% of the bulk value Gc,bulk. The horizontal dashed line indicates
the Rayleigh wave speed.

growth direction, e.g. a weak plane, is missing.
Next, the mode of crack tip loading is changed from pure Mode I to pure

Mode II. The resulting crack speed record is shown as a blue line in Fig. 6.23. It
can be detected that the crack starts to grow a little bit later than the Mode I crack
with the same fracture resistance of the weak plane. In contrast to the Mode I
case, the Mode II crack exceeds cs and accelerates rapidly to an intersonic crack
speed of ∼ 1.8cs. Eventually, the crack velocity decays to ∼ 1.5cs at the point of
complete fragmentation of the body.

For Mixed Mode loading, the crack speed record is again different. Here, crack
initiation is triggered much earlier, i.e. at t ≈ 0.7348L

c
, see the green line in

Fig. 6.23. Furthermore, there are also considerable qualitative differences com-
pared to the two loading modes discussed above. At first, the crack starts to
propagate subsonically and approaches a crack speed that is close to cr. There is
no rapid acceleration to this speed limit. In fact, the crack speed seems to converge
to cr just like in the Mode I case. The σ12-stress field depicted in Fig. 6.24 a) shows
no shock waves at this time. At t = 1.5·0.6L

cs
= 1.2728L

c
, reflected shear waves arrive

at the crack tip and the crack accelerates to the intersonic crack speed regime. This
transition occurs rapidly, as the crack speed crosses the ‘forbidden’ speed range
cr < v < cs, cf. Section 3.4. This rather discontinuous increase of the crack speed
is very similar to the abrupt crack acceleration found in the Mode II simulation.
The maximum crack speed of ∼ 1.8cs is also similar to the one that is observed for
pure Mode II loading. Nonetheless, the predicted crack speed is significantly lower
than the maximum crack speeds close to cd reported in Gao et al. (2001). During
the period of intersonic crack growth, a shock wave can be observed that emanates
from the crack tip, see Fig. 6.24 c) and d) and a bulge can be identified that trails
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Figure 6.24: Post-processed contour plots of σ12

[√
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]
. Regions where s = 0 are

rendered invisible in order to show the crack. The deformation is exaggerated.

behind the crack tip at the Rayleigh wave speed. However, the mother-daughter
crack mechanism, reported in Gao et al. (2001), who argue that an intersonically
growing daughter crack nucleates some distance ahead of the original subsonic
(mother) crack, could not be verified in the simulations. This may be due to the
smearing effects inherent in the regularized crack representation which prevent the
detection of crack features at scales smaller than the parameter l.

Since the present phase field model stems from the energy based Griffith cri-
terion of fracture mechanics, it is worthwhile to analyze the different energy con-
tributions that are present in the body. Figure 6.25 plots the elastic Ee, fracture
Es and kinetic energy K for all three loading types. In all cases, the elastic energy
rises in the first part of the simulations and continues to do so even when the crack
starts to grow. As soon as the point of crack initiation is reached, the fracture
energy also increases, see Fig. 6.25. Fracture is furthermore accompanied by a
sharp rise of the kinetic energy, which can be explained by the fact that material
is accelerated away from the ligament once the crack has passed. The elastic and
kinetic energy peak values for Mixed Mode and especially for pure Mode II are
almost ten times higher than for Mode I loading. On the one hand this is a conse-
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Figure 6.25: Energy plots of the elastic energy Ee, the fracture energy Es and the kinetic
energy K for a) Mode I, b) Mode II and c) Mixed Mode loading. The fracture resistance
of the weak plane is Gc,wp = 0.05Gc,bulk.

quence of the prescribed Mode II opening rate u̇2 is five times the Mode I opening
rate u̇1, on the other hand the characteristics of the fracture process possibly also
play a role. The peak energies are highest for pure Mode II loading. In this case,
the crack grows intersonically from the start and initiates much later than in the
Mixed Mode case. Therefore, a lot of elastic energy can build up in the body,
that is rapidly released in fracture energy and kinetic energy during the phase of
fast intersonic fracture. After full fragmentation of the specimen, the total energy
Et = Ee + Es +K is approximately constant. At this stage, it is possible to ob-
serve the conversion of elastic energy into kinetic energy and vice versa as phase
shifted oscillations in the energy records, see Fig. 6.25 b) for t > 2.2045L

c
and

Fig. 6.25 c) for t > 1.8371L
c
. This is typical for oscillating elastic bodies. The frac-

ture energy is small compared to the elastic and kinetic energies and is therefore
hard to detect in Fig. 6.25. Hence, a rescaled record of the fracture energies for all
three loading modes is displayed in Fig. 6.26. The irreversible part of Es can be
interpreted as the fracture energy. This energy component is proportional to the
crack surface, i.e. to the crack length in 2D. Thus, the slope of Es is approximately
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Figure 6.26: Fracture energy Es for Mode I, Mode II and Mixed Mode loading. The
fracture resistance of the weak plane is Gc,wp = 0.05Gc,bulk.

proportional to the crack speed v if only one crack tip propagates which is the case
in the present simulations. All three Es-records show parts with a nearly constant
slope, i.e. an approximately constant crack speed. The mixed mode crack initiates
earlier than both the Mode I and Mode II crack and consequently the Mixed Mode
fracture energy is also the first to increase. In the first phase 1©, see Fig. 6.26, the
slope of Es is nearly constant and the curve is close to parallel to the curve for pure
Mode I loading 4©. At this stage, the crack grows subsonically at a velocity just
below cr. Then a kink can be observed and Es increases at a steeper slope 2© that
is similar to the slope for pure Mode II loading 3©. The fracture energy reaches
its maximum value when the crack has separated the specimen completely. Sub-
sequently, Es oscillates around a mean final value. Here, it becomes clear that Es

does not exclusively represent the irreversible part of the fracture energy. The
final values of Es are about the same for Mode II and Mixed Mode loading but
the Mode I crack reaches a significantly higher final fracture energy Es. Conse-
quently, the Mode I crack has to be wider than the other two cracks since the final
crack length is the specimen length L in all three cases. This may be explained by
the tendency of Mode I cracks to branch at high crack speeds, cf. the numerical
branching experiment reported in Schlüter et al. (2014b) and Section 6.4. In the
present simulations, crack branching is prevented by the introduction of a weak
plane and thus, the directional instability is only allowed to manifest as bulging
and widening of the phase field crack inside the weak strip. The width of the strip
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b) Mode II, t = 2.12Lc

c) Mixed Mode, t = 1.87Lc

a) Mode I, t = 2.32Lc

Figure 6.27: Section of a contour plot of s for a) Mode I , b) Mode II and c) Mixed Mode
.

is 4l. Thus, crack widening is possible to a certain extent, see Fig. 6.27 a). Crack
bulging or widening does not occur for Mode II and Mixed Mode loading, see also
Fig. 6.27 b) and c).

The numerical results presented in this section suggest that the derived model
is able to predict the maximum crack speed in agreement with experimental data
and theory. For symmetric crack opening, i.e. Mode I, it is shown that the
Rayleigh wave speed is an upper limit for the crack speed which only can be
reached if dynamic branching instabilities are avoided by prescribing the crack
path. Mode II cracks are found to be able to propagate at a speed above the shear
wave speed but below the dilatational wave speed. In this case, it is also necessary
to trigger the crack to grow along a prescribed path by introducing a weak strip
of reduced specific fracture energy to avoid kinking of the crack. For combined
Mode I and Mode II loading, the crack starts to propagate subsonically and then
jumps to the intersonic speed regime when reflected waves arrive at the crack tip.
The results are in agreement with molecular dynamic simulations reported in Gao
et al. (2001). Nonetheless, the mother-daughter crack mechanism as observed in
Gao et al. (2001) could not be verified in the simulations.
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Figure 6.28: a) Setup for the branching problem and b) crack speed v and applied traction
load t∗. The period of crack branching B is indicated by the grey region. The Rayleigh
wave speed is indicated by the magenta dashed line.

6.4 Dynamic Crack Branching

The theoretical aspects and experimental findings concerning the phenomenon of
dynamic crack branching of rapidly propagating Mode I cracks were briefly dis-
cussed in Section 3.5. Among the possible causes for dynamic branching are an
excessive energy supply at the crack tip as well as a directional instability at high
crack speeds. The argument states that this instability limits the experimentally
observed crack speeds to velocities that are smaller than the theoretical limit value
cr. In the previous section, the directional instability mechanism has been removed
by the introduction of a weak strip. Indeed, the associated phase field simulations
have revealed that the maximum obtainable Mode I crack speed in phase field
simulations converges to cr as the fracture resistance of the weak strip goes to
zero. Furthermore, previous studies reported promising results of phase field sim-
ulations of dynamic crack branching under symmetric Mode I loading conditions,
see e.g. Borden (2012), Hofacker and Miehe (2013) and Schlüter et al. (2014b).
In Hofacker and Miehe (2013) it is observed that the rate of Es, cf. (4.1), as-
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sumes a critical value prior to branching. On the other hand, Borden (2012) and
Schlüter et al. (2014b) examine the relation between branching and the crack tip
velocity and show a good agreement with the analytical results of Katzav et al.
(2007), see Section 3.5.

This section is also concerned with numerical simulations of dynamic crack
branching by means of the discussed phase field model. In order to get a deeper
understanding of the energetic driving mechanisms involved in crack branching, a
special focus is on the analysis of the configurational forces which act on a crack
tip control volume of the type (4.119). A body with an initial crack as depicted
in Fig. 6.28 a) is considered. The Lamé parameters of the material have identical
values λ = µ and a regular mesh with an element size of h = 2l is used. The
length-scale parameter is set to l = 0.005L and the parameter of the degradation
function is specified as a = 0.1. The applied traction load t∗ = ±t∗e2 is increased
linearly to its maximum value of tmax = 1.0

√
2µGc/L and afterwards held constant,

cf. Fig. 6.28 b). Initially, the crack propagates in x1-direction and eventually
branches, see Fig. 6.29. The crack speed – recorded for the lower branch – reaches
its maximum value of v ≈ 0.56cr right after branching occurs.

Figure 6.29 displays the hydrostatic stress as a contour plot. Furthermore, two
crack tip control volumes of different size D10l and D20l as well as the respective
crack driving configurational forces Ge

Dδ
+ P

Dδ
and the cohesive configurational

forcesGs
Dδ

are depicted. Before crack initiation, the cohesive configurational forces
are the only ones of significant size and they have virtually the same value for both
control volumes, see Fig. 6.29 a). Upon crack initiation, the crack does not branch
immediately but initially the single crack tip propagates in x1-direction. During
this period, the configurational forces acting on the two control volumes are ap-
proximately identical and the crack driving configurational forces are almost of the
same size as the cohesive configurational forces, see Fig. 6.29 b). This involves that
the Griffith criterion is fulfilled in the sense of (4.129). As the crack branches, the
size of the control volume has significant impact on the computed configurational
forces. To illustrate this fact, Fig. 6.29 c) depicts a situation in which only the
lower crack tip is included in the smaller control volume, but the larger control
volume still contains both crack tips. While for the smaller control volume the
crack driving and cohesive configurational forces are of comparable size and op-
posed to each other, this is not the case for the larger control volume. Instead, the
crack driving configurational force is considerably larger than the cohesive con-
figurational force. In this situation, the evaluated configurational forces for the
larger control volume D20l do not represent the energetic state at the crack tip
and the violation of the Griffith condition by a positive ξ-component of the total
configurational force, cf. (4.129), should be considered as an effect of the finite
size of the control volume. The state in which two crack tips are included in a
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Figure 6.29: Contour plots of the hydrostatic stress σH = σ11+σ22/2 at different times.
Tip disc control volumes D10l (white circles) and D20l (black circles). Cohesive config-
urational forces Gs

D10l
(blue arrows) and Gs

D20l
(purple arrows). Crack driving configu-

rational force Ge
D10l

+ Ps
D10l

(red arrows) and Ge
D20l

+ Ps
D20l

(orange arrows). Regions
where s < 0.2 are rendered invisible in order to represent the crack. The length of the
arrows representing the configurational forces is proportional to their absolute values.
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crack tip control volume is unavoidable because a certain size of Dδ compared to
the length-scale l is necessary, see assumption B in Section 4.6.2. However, the
occurrence of a positive ξ-component of the total configurational force – which is
caused by the presence of a second crack tip in Dδ – can be taken as an early
indication for crack branching. Eventually, only the lower crack tip is contained
in the crack tip control volume, see Fig. 6.29 d) and a better agreement of the
computed configurational forces between both control volumes can be detected.
Furthermore, at this point the cohesive configurational forces and the crack driv-
ing configurational forces tangential to the crack approximately balance each other
so that the connection to the Griffith condition is established again.
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Figure 6.30: ξ-components of the configurational forces for a tip disc control volume with
a radius of δ = 15l (thin lines) and corresponding moving average filtered data (thick
lines). The stages of branching A, B, C are indicated by regions of different shades of
grey.

It is not possible to unambiguously determine the moment of branching since
the diffuse phase field representation of the crack surface does not allow to identify
distinct crack tips in the very early stages of the branching process. Instead,
branching is announced by a period A of crack widening during which bulges form
along the crack as well, see Fig. 6.30. This indicates the directional instability of
the crack. Subsequently, pronounced bulging of the crack tip initiates the actual
crack branching and eventually two distinct crack tips can be identified. This
branching period is denoted as B and lasts from t = 1.63L

c
until t = 1.76L

c
. A
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region.

a) b)

c) d)

third characteristic period may be defined as the period C, where branching already
took place but both crack tips are still contained in the considered crack tip control
volume Dδ. The configurational force components acting on a control volume of
size δ = 15l are displayed in Fig. 6.30. In addition to the computed data (thin
lines) the corresponding moving average filtered data sets (thick lines) are plotted.
The filtered data corresponds to the unweighted mean of the data of the last 30
time steps. Furthermore, the resulting lag is corrected. These post-processing
steps are necessary to make the strongly oscillating configurational forces more
accessible to interpretation. Initially, only the cohesive configurational force –
which represents the material resistance to crack propagation – is non-zero and its
ξ-component agrees well with -Gc as can be presumed from (4.128). Over the course
of the simulation this does not change significantly, except for a slight increase of
|Gs

ξ| well before crack initiation and a distinct peak just at the end of period C

that lasts from t = 1.76
√

L2ρ/2µ to t ≤ 1.94
√

L2ρ/2µ. The elastic component of
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the configurational force Ge
ξ > 0 is the crack driving force, whereas and P

ξ
< 0

represents the inertial resistance to crack propagation.
For small times, the total configurational force is Gξ ≈ −Gc, since the crack tip

is unloaded, and thus Ge
ξ = 0 and P

ξ
= 0 but the material’s resistance Gs

ξ = −Gc
is non-zero. A negative ξ-component of the total configurational force implies
that the resulting energetic driving force on the crack tip favors a recession of
the crack, i.e. crack healing. Hence, an according evolution of the order param-
eter should take place in this subcritical load state. However, such an evolution
of s is prevented by the irreversibility constraint (4.31). The irreversibility con-
straint counteracts the crack closing energetic driving force Gs

ξ in subcritical load
states but – since the antagonistic irreversibility force is not accounted for in the
configurational force balances (4.112) and (4.118) – a net configurational force
Gξ ≈ −Gc 6= 0 follows.

As in previous examples, see e.g. Fig. 6.19, the ξ-component of the total con-
figurational force also assumes distinctly positive values. Gξ is slightly larger than
zero in the phase of notable crack widening A, and shows peak averaged values of
around Gξ ≈ 1.0 Gc during crack branching, i.e. phase B. This suggests that a
second crack tip has already formed inside D15l which is also reflected in a steep
increase of the crack driving force Ge. The limited change of

∣∣Gs
ξ

∣∣ during periods
A and B is consistent with the considerations of Section 4.6.2, since the net value
of Gs

ξ is given by (4.128) and thus, only the cohesive configurational stress on the
boundary segment traversing the crack ∂Dδ,B→A is decisive. Consequently, no in-
formation about the cohesive effects in the interior of D15l is available through Gs

ξ

during crack branching. Note, that the cohesive configurational force Gs
ξ peaks sig-

nificantly later than Gξ, i.e. at the end of C, which drives the total configurational
force Gξ back to approximately zero.

The various components of the tip configurational force are displayed in Fig. 6.31
for different sizes of the crack tip control volume that range from δ = 10l to δ = 20l.
As expected, the elastic configurational force Ge

ξ and the pseudo-momentum P
ξ

taken in isolation are clearly dependent on the size of the control volume. Their
graphs (quantitatively) vary significantly for different size δ, see Fig. 6.31 a). The
sum Ge

ξ +P
ξ
on the contrary is less sensitive to the size of the control volume, see

Fig. 6.31 b), which is in good agreement with the considerations that led to (4.132).
A significant difference in the graphs of Ge

ξ + P
ξ
can, however, be noted directly

after crack branching. This is a result of the fact that the second crack tip may
still be contained in a larger control volume while it is not located in a smaller
control volume anymore. The presence of a second crack tip in Dδ violates the as-
sumptions that lead to (4.132) and thus, domain independence of the crack driving
configurational force is not given in the branched case.

The cohesive configurational forces show pronounced peak values, see Fig. 6.31 c).
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a) b)

Figure 6.32: Cohesive configurational force Gs
Dδ

(arrows) a) at the end of period C and
b) shortly after period C. The size of the arrows is proportional to the absolute value of
Gs
Dδ

. The circle indicates the considered control volume Dδ.

The magnitude of the peaks as well as the time of their occurrence is also clearly
dependent on δ. The peaks appear right before the second crack leaves the re-
spective control volume completely. In this situation, the boundary ∂Dδ touches
a significant segment of the secondary branch, see Fig. 6.32 a), which leads to
an increase of Gs

ξ, cf. also (4.128). Since the period C in which both crack tips
are contained in the control volume lasts longer for a larger control volume, the
characteristic maximum of Gs

ξ is delayed for larger control volumes as well. Fur-
thermore, sizeable control volumes also contain a substantial part of the second
crack at the end of period C. Hence, the respective peak value of Gs

ξ for increasing
δ is larger as well. Briefly after period C the cohesive configurational force again
assumes a value that is slightly smaller than Gc, see also Fig. 6.32 b).

The total configurational force Gξ shows a low sensitivity on δ. All graphs
in Fig. 6.31 d) have a significant peak during crack branching in common. Its
magnitude ranges from Gξ ≈ 0.7Gc for δ = 10l to Gξ ≈ 1.0Gc for δ = 20l.

It is concluded that the interpretation of the configurational forces during crack
branching needs to be done carefully. In particular the cohesive configurational
force does not represent the material resistance to crack propagation if two crack
tips are contained in the considered control volume. As a result of this, it is
observed that an excessive crack driving configurational force Ge

ξ + P
ξ
– which

manifests in a positive ξ-component of the total configurational force Gξ > 0
– goes along with dynamic crack branching. Although the observation of a dis-
tinctly positive Gξ > 0 may be considered as counterintuitive of the configurational
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force approach for post-processing purposes, it enables the identification of crack
branching even before two distinct crack tips can be observed in contour plots of
the phase field variable. In addition, the simulation shows that the energy release
rate G ≈ Ge

ξ + P
ξ
, the cohesive configurational force Gs

ξ and the total configura-
tional force Gξ are less sensitive to the size of the crack tip control volume than Ge

ξ

and P
ξ
, which is in good agreement with the considerations made in Section 4.6.2.





7 Application to Thermoelastic
Fracture Problems

This chapter presents two examples of how the phase field approach to dynamic
brittle fracture can be applied to thermoelastic fracture problems. In contrast to
the previous numerical examples, the temperature is considered as an additional
field in order to model fracturing induced by a laser beam in Section 7.1 and heavy-
ion irradiation in Section 7.2. The numerical strategy S2 , c.f. Section 5, as well
as the quadratic formulation of the degradation function with a = 2, see (4.85),
are chosen for the simulations presented in this chapter. Furthermore, the VDD
formulation of the strain energy density is employed except for the simulations
presented in Section 7.1 which were performed utilizing the SD formulation.

7.1 Laser-Cutting of Ceramic Substrates

Lasers have been widely used to cut ceramics and glasses, either by scribing the
work piece in order to control and facilitate subsequent fracturing due to mechan-
ical loads, see Garibotti (1963), or by sole use of a laser, see eg. Lumley (1969)
and Lambert et al. (1976). In some cases an additional coolant is used to induce
thermal stresses, see e.g. Kondratenko (1997). All mentioned techniques aim at
directing a cutting path by means of a laser, whereas full material separation is
eventually due to brittle fracture caused by mechanical loads or thermoelastic ef-
fects. Process effectiveness, i.e. power consumption and quality of the cutting
surface, can be enhanced by a modification of the technique by Lambert et al.
(1976), as it is claimed in Tsai and Chen (2003). The work of Tsai and Chen
(2003) analyzes the process in detail and even provides a finite element analysis
of the thermoelastic problem that enhances the understanding of the mechanics
behind the fracture process. However, actual fracturing was not described in these
simulations. A more recent discussion of the laser-aided controlled fracture tech-
nique for glass, which comprises experiments as well as finite element simulations,
can be found in Nisar et al. (2009). Nonetheless, the simulations presented in this
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Figure 7.1: Computational model and illustration of the Beer-Lambert law. The inital
crack is indicated by a dash-dotted line.

work also do not model the separation of the material.
This section discusses a phase field fracture model as a means to simulate the

laser-aided manufacturing process presented in Tsai and Chen (2003) and follows
the results published in Schlüter et al. (2017). As a first step, the details of the
model of the laser-substrate interaction are introduced. Afterwards, the analysis
of a simplified laser-cutting scenario is presented. This part also discusses the
influence of two basic process parameters, i.e. the applied laser power and the size
of an initial groove in the material on the quality of the manufacturing process.

7.1.1 Modelling of the Laser Beam

In order to describe the effect of a laser beam on the solid, the Beer-Lambert law
is employed. It has been extensively used to describe laser-solid interaction e.g.
in Zohdi (2014). In order to illustrate the Beer-Lambert law, a setup as depicted
in Fig. 7.1 is considered. The power per unit area of the beam cross section that
enters the solid and is not reflected at the surface is denoted as the surface intensity
I (xb, yb = 0, t) = I0 (xb, t), where xb is the lateral distance from the center of the
beam and yb measures the penetration depth of the beam. The Beer-Lambert law
states that the loss of intensity of the beam, i.e. the energy that is absorbed by a
slice of thickness dyb of the solid material, is proportional to dyb and I(xb, yb, t),
i.e.

dI = −αI(xb, yb, t)dyb (7.1)

where α is the attenuation coefficient. Integration results in

I(xb, yb, t) = I0exp (−αyb) (7.2)



7.1 Laser-Cutting of Ceramic Substrates 157

which can be substituted in (7.1) to yield the absorbed energy

− dI
dyb

= αI0exp (−αyb) = sθ. (7.3)

The heat source determined by (7.3) enters the energy balance (4.30).

7.1.2 Simulation of Laser-Cutting of Ceramic Substrates
by a Controlled Fracture Technique

The simulations that are discussed in this section are motivated by the experiments
described in Tsai and Chen (2003). Tsai and Chen presented a cutting process for
relatively thick, up to 10 mm, ceramic substrates that is driven by two lasers -
a focused Nd:YAG laser and a defocused CO2 laser. The main purpose of the
Nd:YAG laser is to melt and evaporate an approximately 0.5 mm deep groove
on the surface of the substrate. Simultaneously, the second laser induces the
additional thermal stress that extends this initial crack and eventually breaks the
substrate. The evaporation and melting due to the Nd:YAG laser is not explicitly
included in the phase field simulations, since the model presented in Chapter 4
does not account for possible phase changes of the material. Instead, the effect
of the Nd:YAG laser is modelled by defining an initial crack, see Fig. 7.1. The
analysis is limited to straight laser paths in order to be able to reduce the model to
2D. The computational model, which is depicted in Fig. 7.1, assumes plane strain
conditions, i.e. the out of plane displacement is zero, u3 = 0, and the in-plane
displacements depend only on x1 and x2, i.e. u1 = û1(x1, x2) and u2 = û2(x1, x2),
which also implies that the absorbed laser intensity of the second laser is assumed
to be independent of the x3-coordinate, i.e. I0 = Î0(x1, x2, t). This is certainly a
simplifying assumption because it differs from the real situation, where the effect
of the laser resembles a point heat source moving on the surface of the substrate.
However, the assumption is deemed necessary to reduce the computational effort
of the simulations. The boundary of the computational domain is assumed to be
stress free. Furthermore, there is no heat flux across the boundaries except for
the absorbed laser energy. Following the above mentioned assumptions the local
intensity of the non-reflected part of the beam on the surface can be expressed as

I0(x1, t) = I0,maxX(x1)T (t), (7.4)

where I0,max is the intensity in the center of the beam spot, X(x1) is the lateral dis-
tribution of the intensity and T (t) describes a possible dependence of the intensity
on the time. It is

X(x1) = exp

(
−
(
x1

x0

)2
)
. (7.5)
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Figure 7.2: Contour plots of the order parameter s(x, t) for all investigated parameter
sets (lcrack, I0,max).
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Table 7.1: Material and model parameters. Except for the specific fracture energy Gc
and the length-scale parameter l the values of the material parameters are the same as
in Tsai and Chen (2003).

mechanical phase field thermal

λ = 138.51 · 109 N
m2 l = 0.25 · 10−4 m αT = 8.2 · 106 1

K

µ = 162.6 · 109 N
m2 Gc = 0.379 N

m κ = 33.5 W
m K

ρ = 3960 kg
m3 cθ = 780 J

kg K

and

T (t) =

 0.0 if t < 0.0

1.0 if t ≥ 0.0
. (7.6)

In conjunction with (7.3), the equations (7.4) - (7.6) allow to model the laser.
The beam parameters are x0 = 0.373 · 10-3 m, I0,max = 0.538E8 J/m2s and α =
522260.0 1/m. As in Tsai and Chen (2003) the considered substrate material is a
Al2O3 ceramic. The mechanical and thermal properties used in the simulations
are shown in Table 7.1.

In the following, the problem is investigated for varying initial crack lengths and
varying intensities of the laser beam. The reference values, i.e. 100%, are a groove
crack depth of lcrack = 0.2 mm and a beam intensity of I0,max = 0.538 · 108 J/m2s

respectively. The input parameters are varied to be 10%, 50%, 100%, 150% and
200% of the reference values. A total number of 25 simulations has been performed
to cover the permutations of input pairs (lcrack, I0,max). All simulations were aimed
to last 0.25E-4 s. Due to early abortion of the computations, this could not be
achieved for all pairs (lcrack, I0,max).

The computed crack patterns are illustrated in Fig. 7.2 as contour plots of the
order parameter s(x, t). It can be observed that lower intensities, i.e. 10% and
50% of the reference value, do not lead to crack extension at all, and apart from the
initial crack no further fracturing occurs. This changes for higher intensities that
are equal to or larger than the reference intensity. In this case, crack growth takes
place for all initial crack lengths. Nonetheless, large differences in the topology of
the cracks can be observed. For 10% lcrack, crack branching seems to be likely, see
Fig. 7.2 c)-e). This tendency can also be observed for simulations with larger initial
crack lengths, see e.g. Fig. 7.2 h), r), and s). No branching occurs for 100% and
200% lcrack. In the case of higher intensities, the material near the upper surface,
i.e. material that is directly hit by the laser, fails and a large region of cracked
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material can be found, see e.g. 7.2 e), j), and y). Full separation occurs only for
the combination (150% lcrack, 200%I0,max), see e.g. Fig. 7.2 t). Since the problem
is completely symmetric, the asymmetric crack patterns displayed in Fig. 7.2 e),
h), and t) have to be attributed to small numerical fluctuations that eventually
trigger the simulation to converge to a non-symmetric solution.
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Figure 7.3: a) Successive crack tip positions and b) x2-coordinate of the crack tip. In
this plot the initial crack length is kept constant at 100% lcrack and only the intensity
I0,max is varied.

In the following, the combinations (100% lcrack, 10% - 200% I0,max), i.e. Fig. 7.2
k) - o), are examined in more detail. Figure 7.3 a) shows the successive crack tip
positions for all combinations (100% lcrack, 10% - 200% I0,max). The crack tip
mainly grows in negative x2-direction. Thus, the x2-coordinate of the crack tip
position z is plotted versus the simulation time in Fig. 7.3 b). Not surprisingly, the
higher the intensity of the laser beam, the earlier a critical level of strain energy is
reached at which the crack extends. Furthermore, the crack speed indicated by the
slope of the curves in Fig. 7.3 is largest for the highest intensities. Eventually, the
final crack length, i.e. the extent to which the specimen is separated, also reaches
a maximum for the largest intensity. Due to the energy-based character in the
present model, it is worthwhile to take a closer look at the energies that control
fracturing. Plots of the total elastic energy Ee and the total fracture energy Es are
depicted in Fig. 7.4 a) and b), respectively. Due to the laser beam the temperature
rises and thermo-mechanical coupling leads to a global rise of the stored elastic
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Figure 7.4: a) Elastic energy Ee and b) fracture Energy Es per unit thickness. In this
plot the initial crack length is kept constant at 100% lcrack and only the intensity I0,max
is varied.

energy. In case of the two highest intensities, a part of the elastic energy is released
due to fracturing. Interestingly, the maximum value of the global elastic energy
appears to be the same for these two simulations. The rate of the fracture energy
also increases for larger intensities as can be observed in Fig. 7.4 b). Additionally,
more damage is inflicted by the higher intensities, c.f. Fig. 7.2, which manifests in
a larger final value of the fracture energy.

The goal of the regarded manufacturing process is to cut the substrate without
unnecessarily damaging the material. Ideally, the laser should extend the initial
crack through the whole body whereas secondary cracks that diminish the surface
quality are to be avoided. Consequently, a possible figure of merit of process
parameters could be the final crack length divided by the total fracture energy i.e.

l̄crack =
lcrack,final − lcrack

Es
, (7.7)

where lcrack,final = 1 mm− z2(tmax) is the final crack length computed from the x2-
coordinate of the crack tip position z2(tmax), c.f. Fig. 7.1. From (7.7) it can be con-
cluded that an effective parameter set results in a large effective crack length l̄crack.
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Figure 7.5: Effective crack length l̄crack as a function of the beam intensity I0,max and
the initial crack length lcrack.

A plot of l̄crack is displayed in Fig. 7.5. Of course l̄crack for the lowest intensities
is zero, since lcrack,final = lcrack, see also Fig. 7.1. The maximum of l̄crack, i.e. the
optimal process parameters out of the given set of simulations, results from the
input parameters (50% lcrack, 150% I0,max).

This section demonstrates that the present phase field model is indeed a viable
tool to simulate the laser cutting process of ceramics, as described in Tsai and
Chen (2003). However, the present 2D simulations cannot capture all effects that
govern the laser cutting process described in Tsai and Chen (2003). Hence 3D
simulations are certainly necessary in the future to precisely predict the outcome
of the process and therefore to be able to accurately optimize process parameters.
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7.2 Phase Field Modelling of Thermal Fracture
in the Context of Irradiation Damage

This section is about modelling thermoelastic fracturing due to relativistic particle
beams, e.g. heavy ion beams. Such beams are able to almost instantaneously
deposit a huge amount of energy (> 1 GeV) into the considered solid. Induced
energy densities as high as 12 kJ/g result in a rapid temperature rise in a spatially
limited region. Thermoelastic effects finally lead to a highly dynamic expansion
of the material. This induces elastic waves into the body that may cause failure
due to brittle fracture.

For new high-power accelerator facilities such as the future facility for an-
tiprotons and ion research (FAIR) in Darmstadt and other existing or planned
neutrino factories, it is of utmost interest to develop reliable models that can
predict dynamic fracture under the mentioned loading conditions. In particular,
computer-aided calculations are required to identify critical operating conditions
for the components and for optimized engineering of devices to be exposed to in-
tense particle beams. A hydrodynamic model has been proposed to simulate the
propagation of shock waves in Tahir et al. (2007) and finite element simulations of
the mechanical response of a solid target triggered by heavy-ion beams have been
reported in Plate (2008) and Nguyen (2013). Nevertheless, none of these studies
actually modelled material separation. A phase field model has been considered
for the simulation of dynamic brittle fracture due to heavy-ion beams in Schlüter
et al. (2017) for the first time. This section presents the findings from Schlüter
et al. (2017).

The phase field model presented in this work is designed to predict brittle
fracture in solids. Hence, it is not capable of modelling other causes of failure like
phase changes or plastic deformation. It should therefore be considered as a tool
to predict fracture in basically two situations:

• The particle beam is of relatively low intensity and the final temperature is
significantly lower than the melting or sublimation temperature of the target
material. Thus, the whole body can be assumed to be linearly elastic with
constant material parameters.

• The particle beam is of high intensity but causes inelastic behaviour (plastic
deformation, phase changes, etc.) only in a confined region of the target.
Hence, elastic waves triggered by the beam, propagate in regions of the
body that can be assumed to consist of linear elastic material with constant
material parameters.

In the latter case the results in the vicinity of the beam-spot are not reliable but
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the model can be used to predict brittle fracture in the remaining parts of the
target.

If a solid is exposed to an intense beam of energetic heavy ions, a large amount
of energy is absorbed by the material within a short time span. The temperature
increases rapidly and strains and stresses are induced in the body due to thermoe-
lastic expansion which is constrained by the surrounding material. Under these
loading conditions, dynamic effects caused by elastic waves in the material are ex-
pected to be decisive for failure processes. Compared to the speed of elastic waves,
thermoelastic effects due to heat conduction are much slower for the considered
materials and consequently heat conduction is negligible regarding the short time
intervals that will be considered. Thus, the heat equation (4.30) is not solved
but the temperature is prescribed as an external stationary field of defined spatial
distribution.

An axisymmetric finite element formulation of the phase field model from Chap-
ter 4 is employed in the simulations. This means all fields u, s and θ are assumed
to be independent of the angular coordinate ϕ in a cylindrical r, ϕ, z-coordinate
system, see Fig. 7.6. For this reason, not only the geometry but also the loading
and boundary conditions are not allowed to break the axial symmetry. These
assumptions reduce the computational effort significantly. However, the formation
of cracks in radial direction cannot be captured by the reduced model and needs
to be addressed in future 3D simulations.

7.2.1 Fracturing of a Cylinder

A cylindrical body that is subjected to a particle beam is considered, see Fig. 7.6.
Since the problem is axisymmetric, it is sufficient to reduce the model to the
shaded rectangular area that is also shown in Fig. 7.6. The temperature load θ∗
is assumed to be independent of the z- and ϕ-coordinate and can be expressed as

θ∗ (r, t) = θmaxR(r)T0(t), (7.8)

where R(r) is a function of the radial coordinate and T (t) is a function of the
time. A temperature field θ∗ that is nearly independent of the penetration depth
of the particles is a reasonable assumption if the target-beam configuration is set
up in such a way that the peak energy deposition, the so-called Bragg peak, lies
outside the target geometry, see e.g. Tahir et al. (1999). The highest increase
of temperature is expected in the center of the beam, i.e. at r = 0mm, whereas
the outer parts of the cylinder will not be hit directly. Hence an exponential
distribution

R(r) = exp

(
−
(
r

r0

)2
)

(7.9)
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Figure 7.7: Finite element mesh
and contour plot of the temperature
field θ [Gc/ρcθL] for g(t) = 1.0 and
θmax = 1.57 [Gc/ρcθL].

is chosen. The length parameter is r0 = 0.086L. The temperature increases rapidly
when the beam hits the body. This is described by the function

T0(t) =


0.0 if t < t1

sin2

(
π

2

t− t1
te

)
if t1 ≤ t ≤ t1 + te

1.0 if t ≥ t1 + te

(7.10)

which is illustrated in Fig. 7.8. The loading time scale is te = 0.2199L
c
and it is

t1 = 0. The mesh consists of 165×300 square finite elements with an edge length
of h = 1/300L. Since the element size is the same for the whole mesh, the computed
crack pattern will not be influenced by any mesh-inhomogeneities. The boundaries
of the body are all stress free and the phase field is set to s0 = 1 at all nodes, so
the material is originally undamaged. The coefficient of thermal expansion is

αT = 6.4293

√
ρ2c2

θL

Gc2µ
. (7.11)

The Poisson ratio is set to ν = 0.3 and the characteristic length is specified as
l = 0.005L.
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Figure 7.8: Function T0(t) for te = 0.2199L/c .

Figure 7.9 shows the results of the simulation. The contour plots display the
hoop stress σϕ, see (3.37). Regions in which the phase field is lower than a threshold
of s < 0.1 are rendered invisible in order to illustrate the crack. Furthermore, the
stress field is plotted on the deformed body, while the deformation is exaggerated
by a factor of 30.

The temperature load has reached its final value, i.e. T (t) = 1.0, at time
te = 0.2199L

c
. During the heating process, the material starts to expand and a

bulge forms at the top and the bottom edge of the specimen. In the interior body,
however, inertia forces resist the expansion. Consequently, a compressive stress
results in the center of the specimen, see Fig. 7.9 a). This maximum compressive
stress decreases over time as the material further expands. Simultaneously, elastic
waves are emitted towards the circumferential surface of the cylinder and the
first cracks can be observed, see Fig. 7.9 c). These cracks nucleate at the upper
and lower boundary of the cylinder in regions that experience high shear stress
σrz. This is consistent with the formulation of the elastic energy density (4.42),
that allows for crack propagation under deviatoric or shear load states. At time
t = 1.7611L

c
further cracks form, see Fig. 7.9 d). In contrast to the primary shear

cracks, the material now breaks within the interior of the body. These cracks
grow and branch several times, see Fig. 7.9 e). The reflection of elastic waves
at the boundaries and at the cracks leads to a rather complicated stress field.
The final crack pattern is restricted to the region around the axis of the cylinder,
which is shattered to pieces, see Fig. 7.9 f). Note that the absolute value of the
peak compressive, i.e. negative stress, is much larger than the material strength
estimate σ∗c but the positive tensile stress does not exceed this limit significantly.
This is also a feature of the formulation (4.42), which models a resistance against
crack growth in compression.

Failure of heavy-ion irradiated copper cylinders has been reported in Richter
et al. (2011). The cylinders were irradiated by a uranium beam along their axis
similar to the situation that is shown in Fig. 7.6. In the experiments, damage
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Figure 7.9: Hoop stress σϕ
[√
Gc2µ/L

]
. Although the finite element model only covers

one half of the model, the whole body is restored in a post processing step to enhance
the visualization of the results.
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was also confined to the region around the cylinder’s axis and the beam cut a
3.8 mm deep hole in the target. However, failure was probably not solely due to
fracture. Additional experiments, using thin disc targets subjected to a heavy-ion
beam have been conducted at the GSI Helmholtz Centre for Heavy Ion Research
in fall 2014. Although most specimens failed due to melting or did not fail at all
because of the low beam intensity, a copper-diamond specimen showed different
signs of damage, see Fig. 7.10. Here, the beam cut a hole into the specimen and
brittle fracture possibly may have played a role in the failure process.

7.2.2 Fracturing of a Disc

The second numerical example of this section studies a circular disk. The disc is
subjected to an annular particle beam as it is shown in Fig. 7.11.

The setup can also be interpreted as a fast rotating disc, in which the angular
velocity ω advects thermal energy much faster than heat conduction takes place.
Nevertheless, inertia effects due to fast rotation are neglected in the simulations.
The loading and the geometry are again axisymmetric, so the model can be reduced
to the shaded area. The temperature load is expressed in the form

θ∗ (r, t) = θmaxR(r)T0(t). (7.12)
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Figure 7.10: Beam induced damage in a thin disc made of a copper-diamond composite
caused by a short pulse, 125 MeV/u 238U beam with an intensity of 1010 ions/pulse.
The disc had a thickness of 200 µm and a diameter of 20 mm. The picture is taken
from Schlüter et al. (2017).
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In this example, the radial distribution R(r) is set to

R(r) = exp

(
−
(
r − 0.75L

r0

)2
)
, (7.13)

where r0 = 0.06L. The temperature profile is also shown in Fig. 7.12 and the
function T (t) is the same as in Section 7.2.1. The regular mesh consists of 81000
quadratic elements. Again, all boundaries are stress free and the material param-
eters remain unchanged to the previous example.

The results are shown in Fig. 7.13 as contour plots of the phase field variable s.
At first, the phase field drops considerably in regions where the temperature load
is applied, see Fig. 7.13 a). Subsequently, several cracks form in the interior of
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the body and cracks nucleate at the surfaces of the disc as well. Note the crack
nucleation at a number of corners which suggests some kind of a notch effect
of these geometric features, see Fig. 7.13 b). The maximum temperature load is
reached at te = 0.2199L

c
. Dilatational waves start to reach the center of the disc

at time tc ≈ 0.75L
cd

+ te ≈ 0.4507L
c
. Shortly after that one can once again observe a

significant drop of the phase field in a large region, see Fig. 7.13 c). In contrast to
the initial cracks, however, final damage, i.e. s = 0, is not restricted to thin cracks.
Instead, a large region is completely broken material and several thin cracks emerge
from this region, see Fig. 7.13 d) and Fig. 7.13 e). Here, it can be assumed that the
internal length l is too large to resolve a number of very close thin cracks. Hence,
the result is not a set of small cracks but one large region of completely damaged
material. The final crack pattern is shown in Fig. 7.13 f). The two simulations

c)
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c

t = 0.6618L
c

t = 1.1015L
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d) t = 0.8816L
c

f)

a) b) t = 0.4419L
c

t = 1.3214L
ce)

Figure 7.13: Contour plots of the phase field s. Although the finite element model only
covers one half of the model, the whole body is restored in a post processing step to
enhance the visualization of the results.

presented in this section illustrate the application of the phase field approach to
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the coupled phenomenon of dynamic thermal fracture. Nonetheless, the relevance
of the model for predicting structural failure caused by heavy-ion beams could
not yet be validated by comparison to experimental results, which is considered
to be an important next step. Since the current facility in Darmstadt cannot
deliver beams of sufficient intensity to actually cause fracture in most situations,
high-power lasers have to be used until FAIR is in service. Furthermore, the
temperature-dependence of critical material parameters like the Young’s modulus
should be taken into account in the future in order to capture the possibly large
changes that occur in material which is hit directly by the beam.



8 Conclusion and Outlook

In this work, a phase field model of dynamic brittle fracture has been investi-
gated. The model originates from the variational formulation of brittle fracture of
Francfort and Marigo (1998) which may be interpreted as a generalization of the
classical Griffith condition for crack growth of linear elastic fracture mechanics.
An additional scalar field, the so-called phase field, provides a smooth regular-
ized representation of the cracks which also allows to express the fracture energy
and the strain energy as functionals of the displacement field and the phase field.
Since brittle materials are considered, this work assumes linear elastic material
behaviour. Following the idea of the variational formulation of brittle fracture,
the crack evolution is determined from local minimization of the combined frac-
ture and strain energy with respect to the displacement and phase fields. This
postulate on crack growth is stated in the framework of Hamilton’s variational
principle and it yields a set of coupled partial differential equations as necessary
conditions. These equations describe the local evolution of the primary fields.
The first field equation is the equation of motion which is coupled to the phase
field via a degradation function that describes the loss of stiffness in broken ma-
terial. A second field equation governs the evolution of the phase field, i.e. crack
growth. This relation is referred to as the phase field evolution equation and it
contains a specific part of the strain energy density which acts as a source term
that drives the local evolution of the phase field. Apart from the displacement and
the phase field, the temperature is considered as a third primary field. However,
a corresponding field equation is not obtained from a variational principle but it
is stated as a separate postulate of the balance of energy, i.e. the first law of
thermodynamics. This implements the capability to reproduce thermal loading
situations into the model. Although, the derived set of governing field equations
is able to describe the spatial and temporal evolution of the three primary fields,
modifications are necessary to govern certain physical features of fracture. Special
attention has to be given to the irreversibility of fracturing, which is modelled
by prescribing adequate homogeneous Dirichlet boundary conditions on the phase
field as proposed in Kuhn (2013). Additionally, in reality, cracks behave differently
in tensile situations than they do in compressive mechanical states. This tension-
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compression asymmetry concerns the resistance to crack nucleation in undamaged
material, as well as the correct modelling of the boundary conditions at already
existing cracks. In particular, the impenetrability of the material and the contact
of the crack faces during crack closure need to be implemented. The approach to
include the tension-compression asymmetry into the model relies on a decomposi-
tion of the strain energy density in positive, i.e. crack driving, and negative, i.e.
not crack driving, components. Two common ways to implement this decompo-
sition are the volumetric-deviatoric decomposition by Amor et al. (2009) and the
spectral decomposition first introduced by Miehe et al. (2010b). It is found that
both methods significantly improve the unphysical behaviour of the unmodified
formulation. Nonetheless, considerable differences exist between the two modifica-
tions in particular under shear loads. In this situation, the spectral decomposition
predicts a higher resistance to crack nucleation in originally undamaged material.
Furthermore, a residual stiffness remains for a sliding motion of the crack faces of
a phase field crack. Consequently, the spectral approach is not recommended to
model Mode II crack propagation.

The constitutive behaviour of the material up to fracture is strongly influenced
by the choice of the degradation function. In this work, a general cubic degra-
dation function that has originally been proposed by Borden (2012) is employed.
The effect of the choice of the degradation function is investigated analytically for
a simplified 1D situation that follows the approach explained in Kuhn et al. (2015)
as well as in numerical simulations. It is shown that the general cubic degrada-
tion function better models brittle material behaviour than the rather common
quadratic degradation function. In this context, the well-known effect of the reg-
ularization length-scale on the effective material strength is also demonstrated.

The concept of configurational forces can be used to describe the energetic
change due to modifications of a solid body’s material configuration, e.g. a trans-
lation of a crack tip. Thus, the concept is very close to the energetically driven
phase field model for dynamic brittle fracture. It is demonstrated that the con-
figurational forces acting on the crack tip of a phase field crack are related to the
classical Griffith condition for crack growth. Furthermore, the potential of the con-
figurational forces as a post-processing tool is highlighted in numerical simulations
of complex fracture scenarios such as crack branching.

Apart from the implementation of the irreversibility constraint, the numerical
treatment of the phase field model by a finite element scheme is straightforward.
Nonetheless, efficiency of the chosen solution strategy is an issue with phase field
simulations of dynamic brittle fracture since the computational effort can become
large. Thus, different staggered and monolithic solution strategies are presented
and compared to each other in two benchmark problems. A staggered scheme with
explicit time integration by the central difference method is found to be partic-
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ularly accurate and efficient. Alternatively, a monolithic solution strategy with
time integration by a modified Newmark method also performs well in the bench-
marks. The discussed solution strategies allow to conduct a number of numerical
experiments that demonstrate features and capabilities of the phase field model
to describe cracks and fracturing in different situations. An analysis of stationary
cracks for instance displays the effect of the tension-compression asymmetry for-
mulations in static and dynamic situations. In addition, the simulation of dynamic
crack nucleation scenarios shows the model’s capability to handle this complicated
situation. Numerical experiments motivated by the works of Hopkinson (1872)
and Hopkinson (1921) display that the dynamic model clearly can predict fracture
in situations in which wave reflection at the body’s boundaries has major impact
on the results, whereas the study of crack nucleation in the notch ground of a
CT specimen highlights the difference between quasi-static and dynamic phase
field formulations of brittle fracture in a crack nucleation scenario. The dynamic
model predicts a considerably longer initial crack than the quasi-static model. In
contrast to the quasi-static model, crack arrest appears after the initial phase of
rapid crack extension in the dynamic case. The analysis of the configurational
forces acting on the crack tip reveals that the configurational forces do not rep-
resent the state at the crack tip as long as the whole crack is contained in the
considered control volume. Nevertheless, if the crack tip lies within the control
volume and the crack intersects the boundary of the control volume the connection
of the phase field model to the Griffith condition is confirmed by the computed
configurational forces. Subsequently, an analytical solution for crack nucleation is
compared to the results obtained from a phase field simulation and a reasonable
agreement is found. The next part of this work deals with the effect of the mode
of crack tip loading on the maximum obtainable crack speed in phase field simula-
tions. Indeed, the phase field model is able to predict crack speeds that agree with
theoretical results, experiments and molecular dynamic simulations. For Mode I
loading the limit speed is for instance the Rayleigh wave speed of the material
which can only be achieved if the directional instability of such a crack is removed
by prescribing the crack path. This is accomplished by introducing a thin strip
of weakened material with reduced specific fracture energy into the bulk material.
Such a modification is necessary for Mode II as well in order to prevent the kinking
of the crack. In the Mode II case, crack speeds in the intersonic speed regime, i.e.
crack velocities that are larger than the speed of equivoluminal waves but smaller
than the characteristic velocity of irrotational waves, can be observed.

Dynamic crack branching is treated as well. Here, the focus lies on the evalu-
ation of the configurational forces acting on a crack tip control volume for post-
processing purposes. It is shown that during crack branching the size of the chosen
control volume has a significant effect on the computed configurational forces. As
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long as both crack tips are contained in the control volume, the configurational
forces do not comply with the Griffith condition for crack propagation, which can
in fact be used to identify a branching event even before it can be noticed in the
spatial distribution of the phase field.

The application of the present phase field model to thermoelastic fracture prob-
lems is demonstrated by means of two examples. In this part of the work, the
temperature is considered as an additional field in the simulations meaning that
the thermoelastic formulation is employed. First, a manufacturing process for the
cutting of ceramic substrates is studied. The work of Tsai and Chen (2003) de-
scribes such a process which makes use of two lasers. Initially, a focused laser melts
a groove in the substrate which is extended by the thermal stress induced by the
second defocused laser. In this work, only the second laser is explicitly accounted
for by prescribing an adequate heat source. The groove melted by the first laser is
modelled by defining an initial crack. The results are analyzed and an approach
is proposed to use the computational model to find optimal process parameters.
As a second application scenario, dynamic brittle fracture in a structure that is
subject to heavy-ion beams is investigated. Such a situation appears in new high-
power accelerator facilities like for instance the future facility for antiprotons and
ion research (FAIR) at Darmstadt. The ion beam instantaneously deploys a huge
amount of energy in the interior of the regarded solid and thus, the temperature
increases rapidly. Since the resulting thermoelastic expansion of the irradiated ma-
terial and the subsequent propagation of elastic waves are much faster than effects
of heat conduction, the temperature is not considered as a free field variable but
is prescribed in the simulations. It is demonstrated that the present phase field
model is, in principle, a viable tool to predict this kind of structural failure.

In summary, it can be concluded that the phase field model at hand is indeed
capable of reproducing critical features of dynamic fracturing. Its sound physical
basis which lies in the classic Griffith condition can also be verified in the simula-
tions by evaluating the configurational forces acting on a crack tip as well as by
the comparison of numerical simulations with analytical results and experimental
data. Furthermore, the approach is suitable for solving engineering problems that
involve desired or unwanted material separation due to brittle fracture.

The application of the present model to engineering problems certainly has
great potential, and thus should be a future topic of research. Regarding man-
ufacturing processes, the approach can be utilized as a design tool to safeguard
against unwanted structural failure or, as demonstrated in laser cutting example
in this work, as a means to simulate desired material separation that is part of the
manufacturing process.

In order to make the phase field approach to brittle fracture amenable to
more complicated geometric situations, which consequently require computation-



175

ally more expensive simulations, further effort must be expended in improving the
efficiency of numerical solution strategies.

Often, fracture in technical devices is not triggered by a unique impact load
but by a cyclically recurrent load pattern. This situation eventually results in the
formation of a fatigue crack. Apart from the implementation of more complex
material models, the description of such types of fracturing is also a promising
research direction that has rarely been addressed so far.

Lastly, the common tension-compression asymmetry formulations, that were
discussed in this work, face several problems. Improvement of this aspect of phase
field models for fracture is key to a more realistic description of crack behaviour
under compressive loads. Furthermore, a mathematical proof of convergence of
these formulations to a discrete crack model is still missing.





A Notation and Mathematical Pre-
liminaries

The position of points is described in a right-handed rectangular coordinate frame
with unit base vectors e1, e2, e3 in a three dimensional Euclidean space E3 as

x = x1e1 + x2e2 + x3e3 = xiei. (A.1)

In (A.1) Einsteins summation convention has been introduced for the last term
which means that repeated indices in a term indicate a summation over this index.
The quantities x1, x2, x3 are the rectangular coordinates of x. As a convention,
bold-face letters are used for vector and tensor quantities, whereas normal font
letters denote scalars. Components of vectors and tensors are represented by
normal letters with subscripts, i.e.

ai = a · ei, Aij = ei ·Aej (A.2)

for vectors a and second-order tensors A, respectively. The dot operator "·"
denotes the inner product operator of two vectors. The identity tensor of second
order is abbreviated by 1 = δijei ⊗ ej, where

δij =

{
1 if i = j

0 else
(A.3)

is the Kronecker delta. Several matrix notations of identity tensors are introduced
to illustrate the numerical implementation in Appendix B. The identity tensor of
second order in Voigt notation in the two-dimensional case for example is given by

12×1 =


1

1

0

 , (A.4)
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whereas the full matrix notation

1k×k = [δij] , i, j = 1, 2, ..., k (A.5)

is also required. In many cases, the differential operator

∇(∗) =
∂(∗)
∂xi

ei = (∗),iei (A.6)

is used, which when viewed as a vector, motivates generalizations of the gradient
and divergence operations. The gradient of a vector field a(x, t) for example is

grada =
∂a

∂x
= a⊗∇ =

∂ai
∂xj

ei ⊗ ej = ai,jei ⊗ ej, (A.7)

where the operator ‘⊗’ indicates the dyadic product of two vectors. Similarly, the
gradient of a second-order tensor field A(x, t) is

gradA =
∂A

∂x
= A⊗∇ =

∂Aij
∂xk

ei ⊗ ej ⊗ ek. (A.8)

In an analogous way, the divergence of vectors and tensors are

diva = a ·∇ =
∂ai
∂xi

(A.9)

and
divA = A ·∇ =

∂Aij
∂xj

ei (A.10)

respectively.
Gauss’s divergence theorem is also an essential ingredient for many derivations

that are presented in this work. Assume that R ⊂ E3 is a regular bounded region,
i.e. R is a closed region with piecewise smooth boundary ∂R of finite size. The
quantities a(x, t), a(x, t) and A(x, t) are sufficiently smooth scalar, vector and
second order tensor fields defined on R × (t1, t2). The divergence theorem relates
the flux of a vector field or a tensor field through ∂R to its behaviour inside R, i.e.∫

∂R

an dA =

∫
R

grada dV,∫
∂R

a · n dA =

∫
R

diva dV,∫
∂R

An dA =

∫
R

divA dV,

(A.11)
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with the outward normal vector n of the boundary ∂R. Another important integral
theorem is the transport theorem. In this case, the boundary ∂R is explicitly
considered to move with velocity v∂R. The amounts of the previously defined
scalar and vector valued fields inside the control volume R(t) are

A(t) =

∫
R(t)

a (x, t) dV and A(t) =

∫
R(t)

a (x, t) dV. (A.12)

The rate of change of these quantities is

dA
dt

=

∫
R(t)

∂a

∂t
dV +

∫
∂R(t)

an · v∂R dA,

dA
dt

=

∫
R(t)

∂a

∂t
dV +

∫
∂R(t)

a(v∂R · n) dA.

(A.13)

In the special case when ∂R is a material surface, i.e. v∂R is equal to the velocity of
the particles u̇ on ∂R, the theorem (A.13) is called Reynolds transport theorem. In
the more general case, when v∂R is arbitrary, (A.13) is referred to as the generalized
transport theorem.





B Finite Element Implementation

B.1 Spatial Discretization and Linearization

At first, the weak forms of the equation of motion (4.24), the phase field evolution
equation (4.26) and the energy balance (4.30) are derived. By means of partial
integration, the boundary conditions (4.9), (4.10), the fact that the otherwise
arbitrary test functions ηu, ηs and ηθ vanish on the respective Dirichlet boundary,
and the divergence theorem (A.11) the respective weak forms can be expressed as∫

Ω

(−ρü · ηu − σ : ∇ηu) dV +

∫
∂Ωt

t∗ · ηu dA = 0, (B.1)

∫
Ω

([
g′(s)ψe+ − Gc

1− s
2l

]
ηs + 2lGc∇s · ∇ηs

)
dV = 0, (B.2)

and

−
∫

Ω

([
ρcθθ̇ − σ:ε̇− sθ

]
ηθ − qθ · ∇ηθ

)
dV −

∫
∂Ω
qθ

qθ · n ηθ dA = 0. (B.3)

Standard isoparametric, four node finite elements are utilized to represent the
continuum Ω as the union of all finite elements Ωd ≈ Ω in a discretized form. The
primary fields u, s, θ and the test functions ηu, ηs, ηθ are interpolated between
the element nodes by means of the nodal values uI , sI , θI ,ηuI , η

s
I , ηI and the scalar

bilinear shape functions NI

uh =
N∑
I=1

NIuI , sh =
N∑
I=1

NIsI , θh =
N∑
I=1

NIθI , (B.4)

and

ηu
h

=
N∑
I=1

NIη
u

I
, ηsh =

N∑
I=1

NIη
s
I , ηθh =

N∑
I=1

NIη
θ
I , (B.5)
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where N is the total number of nodes. In a two dimensional setting, the spatial
derivatives in (B.1) and (B.2) can be expressed by means of the matrices

Bu
I =


NI,1 0

0 NI,2

NI,2 NI,1

 and Bs
I = Bθ =

 NI,1

NI,2

 . (B.6)

In these matrices NI,1 and NI,2 denote the differentiation of the shape functions
with respect to the coordinates x1 and x2. This way, it is possible to express the
required derivatives of the primary fields and the test functions as

εh = sym (∇uh) =


ε11h

ε22h

2ε12h

 =
N∑
I=1

Bu
I uI , ∇sh =

N∑
I=1

Bs
IsI , ∇θh =

N∑
I=1

Bθ
IθI ,

(B.7)
and

∇ηu
h

=
N∑
I=1

Bu
I η

u

I
, ∇ηs

h
=

N∑
I=1

Bs
Iη
s
I , ∇ηθ

h
=

N∑
I=1

Bθ
Iη
θ
I (B.8)

in matrix notation. By means of these relations, the governing equations can be
reformulated in their spatially discretized forms as

N∑
i=1

[
ηu
I

]T
Ru
I = 0, (B.9)

N∑
i=1

ηsIR
s
I = 0, (B.10)

and
N∑
i=1

ηθIR
θ
I = 0, (B.11)

where

Ru
I = −

∫
Ωd

(
[Bu

I ]Tσh + ρNIüh

)
dV +

∫
∂Ωtd

NIt
∗
hdA, (B.12)

Rs
I = −

∫
Ωd

(
[Bs

I ]
T2lGc∇sh +NI

(
g′(sh)ψ

e
h+ −

Gc
2l

(1− sh)
))

dV, (B.13)
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and

Rθ
I = −

∫
Ωd

(
NIcθρθ̇h −NIσ

T
h ε̇h −

[
Bθ
I

]T
qθ
h

)
dV+

∫
Ωd

NIs
θ
h dV−

∫
∂Ωqd

qθ∗
h

T
nNI dA.

(B.14)
The derived quantities σh, qθh and ψeh+ must be determined from the constitutive
laws (4.25), (4.29) and (4.42), (4.47) or (4.8), respectively. The derivatives with
respect to time are calculated as

üh =
N∑
I=1

NIüI , θ̇h =
N∑
I=1

NI θ̇I and ε̇h =
Ne∑
I=1

Bu
I u̇I . (B.15)

Usually, the residuals are computed element-wise and assembled later on in order
to obtain the global representations (B.12), (B.13) and (B.14). The contribution
of the element e to the residuals of node I are

Ru
I,e = −


Ne∑
J=1

Muu
IJ,e üJ +

∫
Ωe

([Bu
I ]Tσh)dV︸ ︷︷ ︸

=PuI,e


︸ ︷︷ ︸

=IuI,e

+

∫
∂Ωte∩∂Ωt

NIt
∗
hdA︸ ︷︷ ︸

=FuI,e

, (B.16)

Rs
I,e = −IsI,e = −P s

I,e = −
∫

Ωe

(
[Bs

I ]
T2lGc∇sh +NI

(
g′(sh)ψ

e
h+ −

Gc
2l

(1− sh)
))

dV

(B.17)
and

Rθ
I,e =−


Ne∑
J=1

Dθθ
IJ,e θ̇J +

Ne∑
J=1

Dθu
IJ,e u̇J −

∫
Ωe

(
Bθ
I

T
qθh

)
dV︸ ︷︷ ︸

=P θI,e


︸ ︷︷ ︸

=IθI,e

+

∫
Ωe

NIs
θ
h dV −

∫
∂Ωqe∩∂Ωqd

q∗
h

TnNI dA︸ ︷︷ ︸
=F θI,e

,

(B.18)

where

Muu
IJ,e =

∫
Ωe

NIρNJ dV 12x2, Dθθ
IJ,e =

∫
Ωe

NIρcθNJ dV (B.19)
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and
Dθu

IJ,e = −
∫

Ωe

NIσ
T
hB

u
J dV. (B.20)

The components and constituents of the nodal residual may also be rearranged in
the forms

RI,e =
[(
Ru
I,e

)T
Rs
I,e R

θ
I,e

]T
, (B.21)

II,e =
[(
IuI,e
)T

IsI,e I
θ
I,e

]T
, P I,e =

[(
P u
I,e

)T
P s
I,e P

θ
I,e

]T
, (B.22)

and
F I,e =

[(
F uI,e

)T
0 F θ

I,e

]T
. (B.23)

The arrays of all unknowns at node I and the nodal values of the test functions
are denoted as

dI =
[
uTI , sI , θI

]T
, η

I
=

[(
ηu
I

)T
, ηsI , η

θ
I

]T
, (B.24)

which allows to express the contribution of the element e to the residual of node
I also as

RI,e = −
Ne∑
J=1

M IJ,e d̈J −
Ne∑
J=1

DIJ,e(dh) ḋJ − P I,e (dh) + F I,e, dh =
Ne∑
I=1

NIdI ,

(B.25)
with the nodal contributions to the mass and damping matrix of the element e
given by

M IJ,e =


Muu

IJ,e 02×1 02×1

01×2 0 0

01×2 0 0

 and DIJ,e =


02×2 02×1 02×1

01×2 0 0

Dθu
IJ,e 0 Dθθ

IJ,e

 ,
(B.26)

where
0k×l =

[
0(ij)

]
, i = 1, ..., k, j = 1, 2, ..., l (B.27)

represents the k × l-zero matrix. The element mass and damping matrices are
composed of all nodal contributions of the respective element e, i.e

M e =


M 11,e M 12,e . . . M 1Ne,e

M 21,e M 22,e

...
... . . . ...

MNe1,e . . . . . . MNeNe,e

 , De =


D11,e D12,e . . . D1Ne,e

D21,e D22,e

...
... . . . ...

DNe1,e . . . . . . DNeNe,e

 .
(B.28)
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The sums of the contributions of all adjacent elements EI to the considered node
I yield

RI =
∑
e∈EI

RI,e, II =
∑
e∈EI

II,e, F I =
∑
e∈EI

F I,e. (B.29)

With this notation, (B.9)-(B.11) can be written in a more compact form as

ηTR = 0, where R = [R1, ... , RN ]T and η =
[
η

1
, ... , η

N

]T
. (B.30)

Since the nodal values of the test functions can take on arbitrary values, it follows

R = F − I = 0, (B.31)

where
F = [F 1, ... , FN ] and I = [I1, ... , IN ] . (B.32)

By means of

M =
ne⋃
e=1

M e, D =
ne⋃
e=1

De, (B.33)

with the total number of elements ne, the set of equations (B.9)-(B.10) can be
reformulated as

R = F −M d̈−D(d) ḋ− P (d) = 0, where d = [d1, ... , dN ]T , (B.34)

or in a notation that is more suitable to introduce a staggered algorithm as
Ru

Rs

Rθ

 =


Muu 0 0

0 0 0

0 0 0



ü

s̈

θ̈

+


0 0 0

0 0 0

Dθu(d) 0 Dθθ



u̇

ṡ

θ̇



...........................+


P u(d)

P s(d)

P θ(θ, s)

−

F u

0

F θ

 = 0, itriedsohardandgotsofarintheenditdoesntevenmatter

(B.35)
where

Ru = [Ru
1 , ... , R

u
N ]T , Rs = [Rs

1, ... , R
s
N ]T , Rθ =

[
Rθ

1, ... , R
θ
N

]T
,

(B.36)
P u = [P u

1 , ... , P
u
N ]T , P s = [P s

1 , ... , P
s
N ]T , P θ =

[
P θ

1 , ... , P
θ
N

]T (B.37)
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and
F u = [F u1 , ... , F

u
N ]T , Rθ =

[
Rθ

1, ... , R
θ
N

]T
. (B.38)

The problem (B.34) or in alternative form (B.35) is a set of nonlinear ordinary
differential equations. Thus, its numerical solution requires a linearization with
respect to the nodal unknowns meaning that

R(d+ ∆d) = R(d) +
dR

dd
∆d = 0, (B.39)

needs to be evaluated. Here, it has been assumed that the first and second order
derivatives of the nodal unknowns w.r.t time can be approximated by functions of
the nodal unknowns themselves as

ḋ = ḋ (d) , d̈ = d̈ (d) . (B.40)

The global tangent matrix is defined as

S = −dR

dd
=

dI

dd
. (B.41)

With (B.34) the tangent matrix takes on the form

S = M
∂d̈

∂d
+D

∂ḋ

∂d
+K, (B.42)

where M and D are the global mass and damping matrices introduced in (B.33)
and

K =
∂I

∂d
(B.43)

is the global stiffness matrix. The derivatives

∂d̈

∂d
, and

∂ḋ

∂d
(B.44)

are determined by the chosen time integration scheme, see Section B.5. The com-
putation of the stiffness matrix is usually also performed on the element level as
well. The global stiffness matrix

K =
ne⋃
e=1

Ke, (B.45)
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is assembled subsequently, where

Ke =


K11,e K12,e . . . K1Ne,e

K21,e K22,e

...
... . . . ...

KNe1,e . . . . . . KNeNe,e

 (B.46)

and

KIJ,e =


Kuu

IJ,e Kus
IJ,e Kuθ

IJ,s

Ksu
IJ,e Kss

IJ,e Ksθ
IJ,e

Kθu
IJ,e Kθs

IJ,e Kθθ
IJ,e

 . (B.47)

The individual components of the element stiffness matrices are given by

Kuu
IJ,e =

∂IuI,e
∂uJ

=

∫
Ωe

[Bu
I ]T

∂σh
∂εeh

[
∂εeh
∂uJ

]
dV

=

∫
Ωe

[Bu
I ]T C [Bu

J ] dV ,

(B.48)

Kus
IJ,e =

∂IuI,e
∂sJ

=

∫
Ωe

[Bu
I ]T

∂σh
∂sh

∂sh
∂sJ

dV

=

∫
Ωe

[Bu
I ]T g′(sh)

[
∂ψeh+

∂εeh

]T
NJdV ,

(B.49)

Kuθ
IJ,e =

∂IuI,e
∂θJ

=

∫
Ωe

[Bu
I ]T

∂σh
∂θh

∂θh
∂θJ

dV

=

∫
Ωe

[Bu
I ]T C

(
−αT1n×1

)
NJdV ,

(B.50)

Ksu
IJ,e =

∂IsI,e
∂uJ

=

∫
Ωe

NIg
′(sh)

[
∂ψeh+

∂εeh

]T [
∂εeh
∂uJ

]
dV

=

∫
Ωe

NIg
′(sh)

[
∂ψeh+

∂εeh

]T
[Bu

J ] dV ,

(B.51)
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Kss
IJ,e =

∂IsI,e
∂sJ

=

∫
Ωe

(
[Bs

I ]
T [2Gcl]

∂∇sh
∂sJ

+NI

(
g′′(sh)ψ

e
h+ +

Gc
2l

)
∂sh
∂sJ

)
dV

=

∫
Ωe

(
[Bs

I ]
T [2Gcl]Bs

J +NI

(
g′′(sh)ψ

e
h+ +

Gc
2l

)
NJ

)
dV ,

(B.52)

Ksθ
IJ,e =

∂IsI,e
∂θJ

=

∫
Ωe

NIg
′(sh)

∂ψeh+

∂εeh

∂εeh
∂θJ

dV

=

∫
Ωe

NIg
′(sh)

[
∂ψeh+

∂εeh

]T (
−αT1n×1

)
NJ dV ,

(B.53)

Kθu
IJ =

∂IθI,e
∂uJ

=

∫
Ωe

NI ε̇h
T ∂σh

∂εeh

∂εeh
uJ

dV

=

∫
Ωe

NI ε̇h
TC Bu

J dV,

(B.54)

Kθs
IJ =

∂IθI,e
∂sJ

=

∫
Ωe

NI ε̇h
T ∂σh

∂sh

∂sh
∂sJ

dV

=

∫
Ωe

NIg
′(s)ε̇h

T

[
∂ψeh+

∂εeh

]T
NJ dV,

(B.55)

Kθθ
IJ =

∂IθI,e
∂θJ

= −
∫

Ωe

[
Bθ
I

]T qθ
h

∂θJ
dV −

∫
Ωe

NI ε̇
T ∂σh
∂θh

∂θh
∂θJ

dV

=

∫
Ωe

κ
[
Bθ
I

]T
Bθ
J dV +

∫
Ωe

NI ε̇
TC 1n×1αTNJ dV.

(B.56)

The material tangent

C(λ, µ, sh, εh, θh) =
∂σh
∂εeh

(B.57)

is in general dependent on the elastic parameters, the fields uh, sh, θh and on
the chosen decomposition of the strain energy density, see Section 4.4. If the
volumetric-deviatoric decomposition (4.42) is applied, C = CV DD is given by

CV DD =


C11 C12 0

C12 C11 0

C12 C12 0

0 0
1

2
(C11 − C12)

 , (B.58)
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where

C11 =
∂〈tr(εeh)〉−
∂tr(εeh)

Kn + g(sh)

(
∂〈tr(εeh)〉+
∂tr(εeh)

Kn + µ

)
,

C12 =
∂〈tr(εeh)〉−
∂tr(εeh)

Kn + g(sh)

(
∂〈tr(εeh)〉+
∂tr(εeh)

Kn − µ
)
.

(B.59)

The derivative of the positive part of the strain energy with respect to the strain
is given by

∂ψeh+

∂εh

V DD

= Kn〈tr(εeh)〉+
∂〈tr(εeh)〉+

∂εh
+ µ

∂
(
ẽeh

Teeh
)

∂εh
= Kn〈tr(εeh)〉+1n×1 + 2µeeh,

(B.60)

where

eeh =


ee11h

ee22h

2ee12h

 and ẽeh =


ee11h

ee22h

ee12h

 (B.61)

are representations of the deviatoric part of the elastic strain.
The numerical treatment of the spectral decomposition is much more complex.

It is helpful to first define the mappings of the elastic strain onto their positive
and negative elastic parts, cf. (4.48) and (4.49), as

P+ =
∂εeh+

∂εeh
and P− =

∂εeh−
∂εeh

. (B.62)

These mappings can be computed according to the algorithms described in Miehe
(1998) and Miehe and Lambrecht (2001). The material tangent defined by (B.57)
follows from (4.47) and (B.62) as

CSD =
∂〈tr(εeh)〉−
∂tr(εeh)

λ13×3 + 2µP− + g(sh)

(
∂〈tr(εeh)〉+
∂tr(εeh)

λ13×3 + 2µP+

)
(B.63)

and the derivative of the positive part of the strain energy with respect to the
strain as

∂ψeh+

∂εeh

SD

= λ〈tr(εeh)〉+12×1 + 2µεeh+. (B.64)
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B.2 Isoparametric Concept and Numerical Quadra-
ture

There is a number of ways to implement the interpolation of the fields (B.4) and the
approximation of the geometry Ωd ≈ Ω. In this work, the so-called isoparametric
concept is utilized, which approximates the geometry and the primary fields in the
same manner. The 2D four node elements that are used for most of the simulations

ξ

η

ξ3ξ4

ξ1 ξ2

Figure B.1: Natural configuration Ωref of a four node quadrilateral element. The crosses
illustrate the location of the integration points.

in this work use bilinear shape functions of the type

NI (ξ, η) =
1

2
(1 + ξIξ)

1

2
(1 + ηIη) . (B.65)

The parameters ξI = (ξI , ηI) denote the nodal coordinates in the natural coordi-
nate system of the element, see Fig. B.1. For the four node element, the natural
configuration is given by the nodal coordinates

ξ1 = (−1,−1) ξ2 = (1,−1) ξ3 = (1, 1) ξ4 = (1,−1). (B.66)

Following the isoparametric concept, the spatial coordinates xe inside the element
are computed in the same manner as the fields, i.e.

xe =
Ne∑
I=1

NIxI . (B.67)

The shape functions (B.65) are defined as functions of the natural coordinates ξ.
However, the derivatives with respect to xe are required in Bu

I , B
s
I and B

θ
I . These

derivatives can be found by means of the chain rule as[
∂NI

∂ξ

]T
=

[
∂xe
∂ξ

]T [
∂NI

∂xe

]T
, (B.68)
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where

J e =

[
∂xe
∂ξ

]T
(B.69)

is the Jacobian matrix of the element e. An illustration of the transformation
(B.68) of the configuration of the finite element in the physical space to its natural
configuration is depicted in Fig. B.2. By means of (B.67) the Jacobian matrix may

Ωref

ξ

η

x1

x2

J−1
e

Ωe

Figure B.2: Transformation of the finite element e in its natural configuration Ωref to its
configuration in physical space Ωe.

also be expressed as

J e =
Ne∑
I

[
xI
∂NI

∂ξ

]T
. (B.70)

The coordinate transformation (B.67) allows to map the integrals that appear in
the residuals and the tangent matrix to the natural configuration Ωref, i.e∫

Ωe

f (xh) dV =

∫
Ωref

f̂ (ξ)det (J e) dVref. (B.71)

The integration is performed by a Gaussian quadrature rule∫
Ωref

f̂ (ξ)det (J e) dVref ≈
np∑
p=1

f (ξp, ηp) det
(
J e
(
ξip
))
ωp. (B.72)

The number np is the total number of integration points per element, ξip denotes
the coordinates of the integration points in the natural coordinate system and wp
is their weight factor. For the four node element with bilinear shape functions
(B.65) all weights are chosen to be wp = 1 and the coordinates of the integration
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points are given by

ξi1 =

(
− 1√

3
,− 1√

3

)
, ξi2 =

(
− 1√

3
,− 1√

3

)
,

ξi3 =

(
− 1√

3
,− 1√

3

)
, ξi4 =

(
− 1√

3
,− 1√

3

)
.

(B.73)

B.3 Staggered Solution Strategy

For the solution of the coupled phase field fracture problem (B.34), or in alternative
notation (B.35), two basic strategies exist. The first option is a staggered approach,
where the solution is decomposed into three stages (the staggers) that are solved
consecutively, see Fig. B.3.

• Set initial values (u0, s0, θ0)

• Start loop k = 0, 1 ... kmax

1: Solve Muuük+1 + P u
(
uk+1, sk,θk

)
− F u = 0 for uk+1

2: Solve P s(uk+1, sk+1,θk) = 0 for sk+1

3: Solve Dθθθ̇
k+1

+Dθuu̇k+1 + P θ
(
sk+1,θk+1

)
− F θ = 0 for θk+1

4: Check for convergence

• Exit loop if convergence or k = kmax

• (u∗, s∗,θ∗) = (uk+1, sk+1,θk+1) is the solution of (B.35)

Figure B.3: Staggered solution of the spatially discretized phase field fracture problem.

One advantage of this staggered algorithm is that it results in three possibly
linear subproblems. The equation of motion is nonlinear with respect to the dis-
placements due to the split of the strain energy (4.2) meaning that the stress is
nonlinearly dependent on the strain state. Hence, the equation of motion is linear,
whenever ψe− = 0 or ψe+ = 0. The phase field equation on the other hand is linear
w.r.t. s if g′(s) is linear, meaning that g(s) is a polynomial of order two at most.
The heat equation is linear in θ anyway. Even if some of the above nonlinear
features occur, the solution of the decoupled subproblems is more robust than the
solution of the fully coupled problem since additional nonlinear features, see for
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example (4.2), are removed by freezing one of the fields. Furthermore, efficient
explicit time integration schemes can be used to solve the second order spatially
discretized equation of motion. This is not possible for the coupled equations be-
cause of the lack of a time derivative in the discretized evolution equation (B.10).
In principle, a viscous approximation

ṡ

M
+ g′(s)ψ+

e − Gc
[
2ε∆s+

1− s
2l

]
= 0, (B.74)

with the mobility parameterM > 0 could be utilized. This formulation is typically
found in quasi-static phase field models for brittle fracture, e.g. in Kuhn (2013)
and could be used instead of the stationary phase field equation (4.26). Such a
modification would introduce a time derivative of s into the phase field evolution
equation and thus enable an explicit solution. However, explicit time integration
of the coupled system would still be impractical because of the strict stability
requirements. For a first order equation such as (B.74), it is required that the
time step obeys ∆t ≤ ∆tmax ∼ h2, where h is a characteristic length of the
smallest element, see textbooks like Zienkiewicz and Taylor (2000). Compared
to the larger time step size ∆tmax = ∆tcfl ∼ h which is allowed to integrate the
second order equation of motion, cf. (B.93), this would increase the computational
effort unnecessarily.

The accuracy of one iteration of the staggered algorithm depends on how well
sk and θk approximate sk+1 and θk+1, respectively. If the assumed fields sk,θk

are close to the final fields sk+1 and θk+1, the displacements uk+1 will also be a
good approximation of the correct solution. Thus, one staggered iteration might
be enough to find an accurate solution whenever the time step is small. In general,
however, several iterations of the staggered algorithm need to be performed until
the algorithm converges. In Ambati et al. (2015) it is proposed that the staggered
algorithm can be assumed to be converged for the quasi-static and isothermal case
if the solution is insensitive to further iterations. Ambati et al. (2015) propose
the total energy Ee + Es as a quantitative measure to judge the change of the
solution per staggered iteration. This work pursues the idea presented in Ambati
et al. (2015) but suggests the contribution of inertial and internal forces to the
global residual I, see (B.32), as a global convergence measure. For the isothermal
case, the algorithm can be stated as follows. First, the change of I in the current
staggered iteration is normalized by the total change of I in all previous staggered
iterations at the current time, i.e.

∆Iknorm =
‖I(uk+1, sk+1)− I(uk, sk)‖
‖I(uk+1, sk+1)− I(u0, s0)‖

. (B.75)

The number of iterations is normalized as well

lk =
k

k + 1
. (B.76)
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Eventually, the quantity

γk+1 = arctan
(

∆Iknorm
lk+1 − lk

)
180◦

π
(B.77)

can be computed to judge convergence in the form of the criterion

γk+1 ≤ γtol, (B.78)

where γtol is chosen to be 1◦. The proposed criterion requires at least three stag-
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Figure B.4: a) Normalized change of the contribution of internal and inertial forces
to the residual ∆Iknorm versus the normalized number of staggered iterations lk and b)
convergence measure γk versus lk.

gered iterations per time step, because information of the previous iteration is
needed, i.e. there is no convergence check in the first iteration, and convergence
cannot be achieved in the second iteration, where ∆I2

norm = 1.0. Typical graphs
of ∆Iknorm and γk are shown in Fig. B.4.

B.4 Monolithic Solution Strategy

Alternatively to the staggered strategy, the complete nonlinear system (B.34) may
be solved in a single step for d. In this case, the fully coupled problem has to be
handled and implicit time integration is most practical. Consequently, the compu-
tational effort per time step of this strategy is larger than for each of the subprob-
lems in the staggered scheme. Utilizing an adequate time integration scheme, the
monolithic algorithm can be set up so that it is unconditionally stable meaning
that formally there are no stability bounds for the chosen time step size. However,
a larger time step has still to be justified physically. The time discretization needs
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to be fine enough to properly resolve wave propagation and possibly fast crack
growth. The monolithic algorithm is also not as robust as the staggered algorithm
because the Newton algorithm (B.5) will not necessarily find a solution if the time
step and therewith the changes in the computed quantities are too substantial.
Hence, it is reasonable to introduce an adaptive time step size control to enhance
the robustness of the scheme in situations where a small time step is necessary,
e.g. during fast crack propagation, and to exploit the numerical efficiency of larger
time steps whenever possible.

B.5 Time Integration

For both the monolithic as well as the staggered strategy time discrete approaches
are considered. Thus, discrete time steps are introduced recursively as

tn+1 = tn + ∆t, (B.79)

where tn, tn+1 and ∆t are the previous discrete time, the current discrete time and
the current time step size, respectively. Evaluating (B.35) or (B.34) at time tn+1

yields
Ru

Rs

Rθ

 =


Muu 0 0

0 0 0

0 0 0



ün+1

s̈n+1

θ̈n+1

+


0 0 0

0 0 0

Dθu(dn+1) 0 Dθθ



u̇n+1

ṡn+1

θ̇n+1



.....................+


P u(dn+1)

P s(dn+1)

P θ(θn+1, sn+1)

−

F u

0

F θ

 = 0itriedsohardandgotsofarintheenditdoesntevenmatter

(B.80)
or

M d̈n+1 +D(dn+1) ḋn+1 + P (dn+1)− F = 0 (B.81)

respectively. The introduction of time integration schemes further reduces the
number of unknowns by establishing relations between the nodal unknowns and
their first and second order derivatives w.r.t. time. In this work, one-step time in-
tegration schemes are considered for the implicit time integration schemes that are
used in the monolithic solution strategies. These schemes only require information
on quantities from the previous time step and not of even earlier time steps.
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As mentioned before, implicit time integration schemes are the adequate choice,
if the monolithic solution strategy is used, but can be used in a staggered solution
strategy as well. Two different implicit time integration schemes are examined.
The Newmark method introduces the approximations

dn+1 = dn + ∆tḋn +
(∆t2)

2

[
(1− 2β)d̈n + 2βd̈n+1

]
,

ḋn+1 = ḋn + ∆t
[
(1− γ)d̈n + γd̈n+1

]
,

(B.82)

with parameters 0 < 2β ≤ 1, 0 ≤ γ ≤ 1 for time integration. In Wood (1990) the
amplitude error and stability of the Newmark scheme have been investigated for
linear problems. The amplitude error of linear problems is zero if γ = 0.5. In the
presence of damping effects the amplitude error is of order O(∆t2). Stability is
ensured for 2β ≥ γ ≥ 0.5 for linear problems.

The first order accurate fully implicit Euler scheme uses the approximations

dn+1 = dn + ∆tḋn+1

ḋn+1 = ḋn + ∆td̈n+1

(B.83)

and is unconditionally stable. Nonetheless, this time integration scheme involves
severe numerical dissipation for larger time steps.

The equations gained from time integration (B.82) or (B.83) can be substi-
tuted in (B.81) to yield a nonlinear system of algebraic equations for the current
unknowns

R
(
dn+1

)
= 0. (B.84)

This system is solved with the Newton-Raphson algorithm summarized in Fig. B.5.
The computational effort of the Newton algorithm per iteration is dictated by the
computation of the residual, the computation of the tangent matrix, i.e. step 1,
and the solution of a set of linear equations, i.e. step 2. Furthermore, the number
of necessary Newton iterations is determined by the nonlinear features of the phase
field fracture problem. In addition, an automatic time step control is implemented
that adjusts the time step according to the number of iterations that is needed
for the Newton algorithm to converge. If the number of Newton iterations of the
previous time step exceeds eight, a bisection of the time step is performed. On the
contrary, if the number of Newton iterations falls below four, the time step size is
doubled for the next time step.

Due to the reasons explained above, explicit time integration schemes may only
be used in a staggered solution strategy as a means to solve the equation of motion.
The most popular explicit time integration method in structural mechanics is the
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• Set initial values d0
n+1 = dn

• Start loop i = 0, 1 ... imax

1: Compute R(i)
(
d

(i)
n+1

)
and S

(
d

(i)
n+1

)
= −

dR(i)
(
d

(i)
n+1

)
ddin+1

2: Solve the linear set of algebraic equations
R(i)

(
din+1

)
− S(i)(din+1)∆din+1 = 0

for the increments ∆d
(i)
n+1

3: Update the unkowns d(i+1)
n+1 = d

(i)
n+1 + ∆d

(i)
n+1

4: Check for convergence, i.e. check
‖R(i+1)

(
d

(i+1)
n+1

)
‖rel ≤ tol

• Exit loop if convergence or i = imax

• If convergence: d(i+1)
n+1 is the solution of (B.81)

Figure B.5: Newton-Rapshon algorithm. The residual norm ‖ ∗ ‖rel is a relative quantity
that allows the tolerance tol to be chosen independently of the problem size. For the
solution of linear systems of algebraic equations (step 2) several established methods
exist and hardware acceleration of this operation is feasible as shown in Schlüter et al.
(2013).

central difference scheme which uses the approximations

u̇n =
un+1 − un−1

2∆t
, (B.85)

ün =
un+1 − 2un + un−1

∆t2
. (B.86)

Evaluating (B.80)1 at time tn and substituting (B.86), results in the explicit rela-
tion

Muuun+1 = (∆t)2 [F un − P u (un)] +Muu
(
2un − un−1

)
(B.87)

for the current unknowns un+1. In the first time step, the quantity u−1 has to be
initialized as

u−1 = u0 −∆tu̇0 +
(∆t)2

2
ü0, (B.88)

where
ü0 = (Muu)−1 [−P u (u0) + F u0 ] . (B.89)
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Solving (B.87) is trivial if Muu has a diagonal structure, which can be achieved
by so called lumping strategies. A diagonalized, lumped approximation of the
consistent element mass matrix (B.28) that retains the element mass

Me =

∫
Ωe

ρ dΩe (B.90)

is achieved by the approach

M lump
II,e =

MII,e∑Ne
J=1MJJ,e

Me1
2×2, where MII,e =

∫
Ωe

N2
I ρ dΩe. (B.91)

The resulting element mass matrix is

Muu
e =


M lump

11,e 0 0 0

0 M lump
22,e 0 0

0 0 M lump
33,e 0

0 0 0 M lump
44,e

 , (B.92)

as described in Wriggers (2009) and Hinton et al.. In this work, such a lumped mass
matrix is used whenever the central difference method is employed. The central
difference scheme is not unconditionally stable. As mentioned in Zienkiewicz and
Taylor (2000) and Wriggers (2009), the critical time step for the second order
problem (B.80)1 is governed by

∆t ≤ δ
h

cd
= δ∆tcfl, (B.93)

where cd is the dilatational wave speed and h is the characteristic length of the
smallest element. The factor δ further reduces the allowable time step and accounts
for nonlinear effects. The quantity ∆tcfl = h

cd
which is determined by the physics

of the problem and the spatial discretization may be referred to as the Courant
Friedrichs Lewy (CFL) time step in analogy to the stability condition described
in Lewy et al. (1928). The amplitude error of the central difference scheme is also
of second order, see Wriggers (2009).

From (B.93) it follows that the central difference scheme requires small time
steps for stability reasons. On the other hand, the staggered approach depends
upon small time steps as well in order to achieve sufficient accuracy. These obser-
vations motivate a combination of both methods.

In a staggered approach, the decoupled phase field equation reduces to a non-
linear set of algebraic equations i.e. time integration is not necessary and the
Newton-Raphson algorithm, see Fig. B.5, is used to solve

P s(uk+1
n+1, s

k+1
n+1,θ

k
n+1) = 0 (B.94)
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for sk+1
n+1, i.e. to perform step 2 of the staggered algorithm displayed in Fig. B.3.

The solution of the energy balance even reduces to a linear set of equations

Dθθθ̇
k+1

+Dθuu̇k+1 + P θ
(
sk+1,θk+1

)
− F θ = 0 (B.95)

that requires only a single Newton iteration in order to obtain a solution.

B.6 Implementation of the Irreversibility Constraint

As proposed in Kuhn (2013), the irreversibility of crack growth is modelled by
defining homogeneous Dirichlet boundary conditions for the phase field s(x, t)
once a value of s ≤ stol with stol = 10−8 is reached at the considered location for
the first time meaning that

sI,n+1 = 0 if sI,n ≤ stol. (B.96)

This is accomplished by a reformulation of the residual and the tangent matrix
on the element level rather than changing global boundary conditions in order to
achieve

∆s
(i)
I,n+1 = −s(i)

I,n+1 (B.97)
in every Newton iteration. Such an increment causes the phase field to remain
zero in all subsequent iterations and time steps, i.e.

s
(i+1)
I,n+1 = s

(i)
I,n+1 + ∆s

(i)
I,n+1 = s

(i)
I,n+1 − s

(i)
I,n+1 = 0, (B.98)

see also step 3 in Fig. B.5. The result (B.97) is enforced by a modification of

R
(i)
e,n+1 = S

(i)
e,n+1∆d

(i)
e,n+1 (B.99)

on the element level.

• In a first step, the column S(i)
e,n+1

[ : , sI ]
of the element tangent matrix is mul-

tiplied by s(i)
I,n+1 and added to the residual

R
(i)
e,n+1 ← R

(i)
e,n+1 + s

(i)
I,n+1S

(i)
e,n+1

[ : , sI ]
. (B.100)

• Then the corresponding residual entry to sI is replaced by −s(k)
I,n+1, i.e.

R
(k)
e,n+1

[sI ]
= − s

(i)
I,n+1. (B.101)

• Finally, the row S(i)
e,n+1

[ sI , : ]
and the column S(i)

e,n+1

[ : , sI ]
are set to zero and

the entry S(i)
e,n+1

[ sI , sI ]
is set to

S
(i)
e,n+1

[sI ,sI ]
= 1. (B.102)
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B.7 Computation of the Crack Tip Position and of
the Crack Velocity

0.6 0.8 1
-0.2

-0.1
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0.1

0.2

eξ

eη

Figure B.6: Representation of a (branched) 2D crack pattern by successive crack tip
positions z̃ (black lines), tangential vectors eξ for the lower (blue arrows) and upper (red
arrows) branch, illustration of the ξ-η-coordinate system (magnified view).

The crack tip position z(t) is identified with the position xJ of the node J
that is the most progressed on the computed crack path – which is available for
post-processing purposes – and fulfills

sJ < slim, with slim � 1 (B.103)

at time t. A regression analysis of the successive discrete crack tip positions yields
a continuous representation of the crack tip position

z̃(t) ≈ z(t), (B.104)

cf. Fig. B.6, that allows to define a crack tip velocity

v(t) =
dz̃(t)

dt
(B.105)

and the tangential vector at the crack tip as

eξ =
v

|v|
. (B.106)
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B.8 Finite Element Discretization of the
Configurational Force Balance

The configurational forces can be evaluated numerically from the primary fields
that are available from the necessary preceding finite element simulation. Starting
from the weak form of the configurational force balance∫

Ω

(−g + divΣ− ṗ) · ηg dV = 0, (B.107)

where ηg is a test function that vanishes on ∂Ω, it is by means of the identity

divΣ · ηg = div
(
ΣTηg

)
−Σ : gradηg (B.108)

and the divergence theorem (A.11)∫
Ω

(−g · ηg −Σ : gradηg − ṗ · ηg) dV = 0. (B.109)

The geometry is discretized as explained in Section B.1 and the test functions
employ the same ansatz as the primary fields (B.4)

ηg
h

=
N∑
I=1

NIη
g

I
. (B.110)

The gradients of the test function are approximated by

∇ηg
h

=
N∑
I=1

ηg
I

[Bη
I ]
T , (B.111)

where

Bη
I =

[
∂NI

∂xe

]T
. (B.112)

The configurational stress is expressed as

Σe
h = (ψeh − kh) 1n×n −

[
∇ufull

h

]T
σfull
h (B.113)

and
Σs
h = ψsh1

n×n − 2Gcl∇sh∇sTh , (B.114)

where
σfull
h = [σijh ] and ∇ufull

h =

[
∂uih
∂xj

]
, (B.115)
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imply the full matrix notation of the stress tensor and the gradient of the displace-
ment. The momentum is given by

p
h

=
N∑
I=1

NIu̇I . (B.116)

Consequently, the rate of the pseudo-momentum is

ṗ
h

= −
[
∇ufull

h

]T
ṗ
h
−
[
∇u̇full

h

]T
p
h
. (B.117)

These relations are used to express the weak form of the configurational force

G∗
I

G∗
Dδ

δ

Dδ

Figure B.7: Illustration of the numerical evaluation of the configurational force acting
on a crack tip control volume Dδ.

balance as
N∑
I=1

[
ηg
I

]T [∫
Ωd

(
−g

h
NI −Σe

hB
η
I −Σs

hB
η
I − ṗ

h
NI

)
dV

]
= 0. (B.118)

Since the test functions are – apart from the restriction ηg
h

= 0 on ∂Ωd – arbitrary,
it is ∫

Ωd

(
−g

h
−Σe

hB
η
I −Σs

hB
η
I − ṗ

h
NI

)
dV = 0. (B.119)

The nodal configurational forces are defined as

Ge
I = −

∫
Ωd

Σe
hB

η
I dV, (B.120)
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Gs
I = −

∫
Ωd

Σs
hB

η
I dV, (B.121)

P
I

= −
∫

Ωd

ṗ
h
NI dV (B.122)

and
GI =

∫
Ωd

g
h
NI dV, (B.123)

which allows to write the discrete configurational force balance for a particular
node I as

GI = Ge
I +Gs

I + P
I
. (B.124)

The configurational force components G∗Dδ ,PDδ
acting on a crack tip control vol-

ume Dδ are determined by adding the nodal configurational forces inside that
respective control volume

G∗Dδ ≈
∑
I∈E

G∗I , P
Dδ
≈
∑
I∈E

P
I
, E = {I : xI ∈ Dδ} , (B.125)

as illustrated in Fig. B.7.
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