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Abstract

Using valuation theory we associate to a one-dimensional equidimensional semilocal Cohen—
Macaulay ring R its semigroup of values, and to a fractional ideal of R we associate its
value semigroup ideal. For a class of curve singularities (here called admissible rings)
including algebroid curves the semigroups of values, respectively the value semigroup ideals,
satisfy combinatorial properties defining good semigroups, respectively good semigroup
ideals. Notably, the class of good semigroups strictly contains the class of value semigroups
of admissible rings. On good semigroups we establish combinatorial versions of algebraic
concepts on admissible rings which are compatible with their prototypes under taking
values.

We give a definition for canonical semigroup ideals of good semigroups which characterizes
canonical fractional ideals of an admissible ring in terms of their value semigroup ideals.
Moreover, a canonical semigroup ideal induces a duality on the set of good semigroup
ideals of a good semigroup. This duality is compatible with the Cohen-Macaulay duality
on fractional ideals under taking values.

The properties of the semigroup of values of a quasihomogeneous curve singularity
lead to a notion of quasihomogeneity on good semigroups which is compatible with its
algebraic prototype. We give a combinatorial criterion which allows to construct from
a quasihomogeneous semigroup S a quasihomogeneous curve singularity having S as
semigroup of values.

Using the semigroup of values we compute endomorphism rings of maximal ideals
of algebroid curves. This yields an explicit description of the intermediate steps in an
algorithmic normalization of plane arrangements of smooth curves based on a criterion by
Grauert and Remmert. Applying this result to hyperplane arrangements we determine the
number of steps needed to compute the normalization of a the arrangement in terms of its
Mébius function.
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Overview

Chapter 2 In this chapter we introduce basic concepts for this thesis: fractional ideals,
discrete valuation( ring)s, and fibre products.

Chapter 3 We use valuation theory on one-dimensional Cohen—Macaulay rings to associate
to a class of so-called admissible rings including algebroid curves the semigroup of
values. We prove the compatibility of the semigroup of values with localization as
well as its invariance under completion.

Chapter 4 Based on the properties of the semigroup of values we introduce good semigroups
as a combinatorial counterpart of admissible rings. We study the properties of good
semigroups in particular in relation with the corresponding algebraic concepts.

Chapter 5 On good semigroups we establish a combinatorial counterpart of the Cohen—
Macaulay duality on fractional ideals. We relate the dualities by taking values. In
particular, we characterize canonical fractional ideals in terms of their value semigroup
ideals.

Chapter 6 Extending a result by Kunz and Ruppert we want to describe quasihomogeneous
curves in terms of their semigroups of values. An irreducible quasihomogeneous curve
is determined by the semigroup ring of its semigroup of values. A quasihomogeneous
curve with two branches can be reconstructed from its branches as a fibre product of
their branches over their intersection. In general, however, this construction yields
only an inclusion.

Chapter 7 Considering the properties of the semigroup of values of a quasihomogeneous
curve derived in the previous section we establish a notion of quasihomogeneity on
good semigroups which is compatible with its algebraic prototype. We introduce a
closedness property on quasihomogeneous semigroups which characterizes those quasi-
homogeneous curves that can be reconstructed as a fibre product. Moreover, any good
semigroup satisfying this property is the semigroup of values of a quasihomogeneous
curve.

Chapter 8 Using the semigroup of values we compute explicitly the intermediate steps in a
normalization algorithm based on a criterion by Grauert and Remmert for two kinds
of arrangements: plane arrangements of smooth curves and hyperplane arrangements.






Notations

In this thesis, all rings under consideration will be commutative and unitary. We use the

following notations.

Cr(M)

Slpec (R)
Min (R)
Max (R)

the length of a module M over a ring R

the ith unit generator of a free module

the set of prime ideals of a ring R

the set of minimal prime ideals of a ring R

the set of maximal ideals of a ring R

the i-adic completion of a ring R at an ideal i of R, where i is the
Jacobson radical of R if not specified otherwise

the set of units of a ring R

the set of regular elements (non-zerodivisors) of a ring R

the total ring of fractions of a ring R (see Section A.2)

integral closure of R in Qp (see Definition B.1)

J°8 = JN Q" for an R-submodule J of the total ring of fractions
Qr of aring R

the set of regular fractional ideals of a ring R (see Definition 2.5)
the conductor of a fractional ideal J of a ring R (see Definition B.22)
the set of valuation rings of Qg containing R (see Definition D.1.(3))
the regular maximal ideal of a valuation ring V' (see Remark D.5)
the infinite prime ideal of a valuation ring V' (see Remark D.5)

see Proposition 3.13.(1)

the valuation of a valuation ring (see Definition D.10)

the ring of a valuation v (see Definition D.23)

see Definition 3.6

the semigroup of values of a one-dimensional equidimensional Cohen—
Macaulay ring (see Definition 3.14)

the value semigroup ideal of a regular fractional ideal J € Ry of a
one-dimensional equidimensional Cohen—Macaulay ring (see Defini-
tion 3.14)

see Definition 3.19

the set of good semigroup ideals of a good semigroup S

the maximal ideal of a local good semigroup S

see Definition 4.60

see Definition 2.29

see Theorem 6.2.(4) and Lemma 6.13

see Definition 7.10

vii






1. Introduction

The parametrization of a curve singularity allows for the definition of the semigroup of
values associated to the singularity by taking the (multi)orders of regular elements.

oYoJoXoX JoX JeX X X X X )
oYoJoXoX JoX JeX X X X X )
oYoJoXoX XoX FeX X X X X )

T oYoJoXoX JoX JeX X X X X )
rJcoyoXoloX JoX FeX X X X X )
000000 ee00000
0O0000@0000000
O00@00000000O0
O@0000000000O0

(25— y2)y =0 z s (83,t2), y+— (,0)

For a curve singularity C' the normalization splits into a finite product of discrete
valuation rings, i.e.
- s S
Oc = Oc = [ Oc/pi = [] ClItill,
i=1 i=1
where p1,...,ps are the minimal prime ideals of (7)5 Then on the total ring of fractions
Q@ of O¢ we have the order

ordy: QOAC =~ I = (Zu{c})’,
i=1

and the multiplicative group Qg§ of non-zerodivisors of 5~ maps onto the additive group
zs. ¢ ‘

The semigroup of values of the curve is then a submonoid of N°. More generally, a
semigroup of values as a submonoid of N® for some s can be associated to a one-dimensional
equidimensional semilocal Cohen-Macaulay ring R considering the (finitely many) discrete
valuations of its total ring of fractions containing R.

In the last decades semigroups of values have been studied most intensively in the cases
of irreducible or plane complex algebroid curves. For an irreducible plane curve singularity
the semigroup of values is a numerical semigroup which is equivalent to other classical
invariants like the characteristic exponents, the multiplicity sequence, or the resolution
graph [1, 2]. Moreover, the semigroup of values can be interpreted as the set of intersection
multiplicities of the curve singularity with all other plane curve singularities. Waldi showed
that any plane algebroid curve is determined by its value semigroup up to equivalence
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in the sense of Zariski [3, 4]. More recently, the semigroup of values played a central
role in the analytic classification of plane curve singularities with two branches by Hefez,
Hernandes, and Hernandes [5].

Kunz characterized irreducible Gorenstein curve singularities by having a symmetric
semigroup of values [6]. Later Delgado extended the notion of symmetry to non-numerical
semigroups of values. This allowed for a generalization of Kunz’ result to arbitrary curve
singularities [7]. Using Delgado’s symmetry condition D’Anna was able to characterize
(suitably normalized) canonical ideals of a curve singularity by having a certain set of
values [8].

The semigroup of values yields particularly strong constraints for quasihomogeneous
curve singularities. Kunz and Ruppert showed that an irreducible quasihomogeneous
complex curve singularity is determined completely by its semigroup of values. Moreover,
they reconstructed a quasihomogeneous complex curve singularity with two branches from
the semigroups of values of its branches and a certain coefficient map [9].

Semigroup of Values and Good Semigroups

The semigroup of values associated to a complex algebroid curve is a submonoid S of N*,
where s is the number of branches of the curve. Delgado [7] described further combinatorial
properties of the semigroup of values S of a complex algebroid curve:

(E0) There is an a € S such that o +N* C S.
(E1) For any «, 8 € S, also inf {o, 8} = (min{aq, f1}, ..., min{as, Bs}) € S.
(E2) If a, B € S with o = f3; for some i € {1,...,s}, then there is a 6 € S with

0 > oy = 3,
d; > min{a;, B} forall j=1,...,s,
0k = min {oy, B} for every k € {1,...,s} with ay # B.

Consider the curve singularity defined by (z° — y?)y = 0. Embedding the ring

Oc = Clla,oll/{ (+° = o))

into its normalization

Oc = C[[t]] x C[[t2]]

6= <[[ (). (4.0)])

Then properties (EO0), (E1), and (E2) can be understood in the following way:

it can be described by

(E0) Since the normalization (/92 is finite over (/OE, there is an x € 5; such that x@E C (/9;,
for example

(8. 8) (Clliea)) x Clliea])) € €[ (8, 22) (8.0) ]]-



Taking orders this yields
(9,5) +N° C S.

(E1) Property (E1) is the result of generic linear combinations of power series, where
generic means that in no component a term of least order is cancelled. For example,
the power series (£} + t1°,t?) and (5, 3) correspond to the semigroup elements (5,7
1T 050 1102
and (8,4), and the sum

(+e17,68) + (5.18) = (B + 5+ e 15+ 4)
corresponds to the semigroup element

(5,4) = inf {(5,7),(8,4)}.

(E2) Considering special linear combinations of power series which cause cancellations of
terms of least order leads to an “inverse” of property (E1) which we denote by (E2).
For example, taking now the power series (7 +t1°,¢7) and (] + ¢§ + t1°,¢3 + ¢])
which have the values (5,7) and (5,4), the difference

(+8+eP 8 +40) — (1 +47.6) = (65.43)

has value
(8,4).

The first aim of Chapter 3 is to find general algebraic hypotheses leading to value
semigroups and value semigroup ideals having these properties. We start with one-
dimensional equidimensional semilocal Cohen—Macaulay rings. For such a ring R there are
only finitely many valuations of the total ring of fractions containing R, and all of them
are discrete. This allows for the definition of a semigroup of values. If Ris reduced, the
normalization R is finite, and hence R satisfies (E0). As illustrated above, for property (E1)
we need “sufficiently large” residue fields. Finally, for the cancellation of terms of least order
in (E2) we need the ring to be residually rational. This leads to the notion of admissible
Tings.

As an abstract version of value semigroups D’Anna introduced the class of good semi-
groups [8]. A good semigroup is a submonoid of N*® for some s satisfying (E0), (E1), and
(E2). Then by definition the semigroup of values of an admissible ring is a good semigroup.
However, Barucci, D’Anna, and Froberg showed that these properties do not characterize
semigroups of values; in fact, they gave an explicit example of a good semigroup which is
not the semigroup of values of a ring [10]. Nevertheless, good semigroups can be regarded
as combinatorial counterparts of admissible rings in many respects. It is a main motivation
for this thesis to establish combinatorial versions of algebraic concepts on admissible rings
which are compatible with their prototypes under taking values. In particular, we deal
with localization, conductors, the length of a module, duality, and quasihomogeneity.
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Ideals

A fractional ideal of an admissible ring R is an R-submodule J of the total ring of fractions
Qg of R such that xJ C R for some non-zerodivisor x € R. Analogously we define a
semigroup ideal of a good semigroup S C Z° to be a non-empty subset E of Z® such that
E+ S C E and a+ E C R for some o € S. Moreover, we call E good if it satisfies (E1)
and (E2). Then the value semigroup ideal of a fractional ideal of R (defined by taking the
values of the elements of J which are non-zerodivisors in Qr) is a good semigroup ideal of
T'g.

A drawback of this construction is that taking values does in general not relate compatibly
the product and quotient of fractional ideals with their combinatorial counterparts, the
sum and difference of good semigroup ideals. In fact, the set of good semigroup ideals of a
good semigroup is in general not even closed under these operations. However, for example
in the case of conductors or canonical ideals, taking the difference is a operation on the set
of good semigroup ideals, and it is also compatible with the ideal quotient under taking
values.

Dualities
A canonical module wg of a Cohen—Macaulay ring R induces a duality
M s Ext@m Bdim M yr,0),

If, for example, R is generically Gorenstein, the canonical module can be chosen to be a
fractional ideal K, and on the fractional ideals of R the duality can be expressed in terms
of the ideal quotient as

J—R:7J.

This leads to the definition of a canonical ideal of a one-dimensional Cohen—-Macaulay ring
R as a fractional ideal of R satisfying J = K : (R : J) for all fractional ideals J of R. Then
a canonical ideal of R is a canonical module of R.

So a one-dimensional Cohen-Macaulay ring R is Gorenstein if it is a canonical ideal of
itself. Kunz showed that an analytically irreducible and residually rational one-dimensional
local ring R is Gorenstein if and only if its (numerical) semigroup of values I' is symmetric
[6]. Jager used this symmetry condition to define a semigroup ideal K such that (suitably
normalized) canonical ideals 8 of R are characterized by having value semigroup ideal
I'g =K [11].

Waldi was the first to describe a symmetry property of the semigroup of values of
a plane algebroid curve with two branches [3]. In analogy to Kunz’ result, Delgado
then characterized general Gorenstein algebroid curves in terms of a symmetry of their
semigroups of values [12, 7]. Later Campillo, Delgado, and Kiyek extended Delgado’s result
to include analytically reduced and residually rational local rings with infinite residue
field [13].

In the spirit of Jager’s approach, D’Anna turned Delgado’s symmetry condition into
an explicit formula for a canonical semigroup ideal K°. He showed that any (suitably



normalized) fractional ideal R of an analytically reduced and residually rational one-
dimensional local ring with infinite residue field is canonical if and only if I'g = K [8].
More recently Pol computed explicitly the value semigroup ideal I'g.; of the dual R : J of
any fractional ideal J of a Gorenstein algebroid curve R as ',y = I'g — I'5 [14].

In Chapter 5 we unify and extend D’Anna’s and Pol’s results. In particular, we work
in the more general class of admissible rings. First, however, we introduce a purely
combinatorial version of duality.

Statement (See Theorem 5.14). Any good semigroup S admits a canonical semigroup
ideal, that is a good semigroup ideal K of S inducing a duality E— K — E on the good
semigroup ideals of S. In particular, the set of good semigroup ideals is closed under taking
duals, and

K- (K—-E)=EFE

for every good semigroup ideal E of S.

It turns out that our canonical semigroup ideals are exactly the translations of D’Anna’s
K9, Moreover, using combinatorial properties we can relate the duality on fractional ideals
to the duality on good semigroup ideals in the following way.

Statement (See Theorems 5.31 and 5.34). Let R be an analytically reduced one-dimensional
equidimensional semilocal Cohen—Macaulay ring with sufficiently large residue fields and
trivial residue field extensions. A fractional ideal R of R is canonical if and only if its value
semigroup ideal is a canonical semigroup ideal of the semigroup of values of R. Moreover,
if R is a canonical ideal of R, then there is a commutative diagram

reqular fractional IR reqular fractional
ideals of R ideals of R

j’—)Fj‘ Q hj»—)Fg

{good semigroup} {good semigroup}

ideals of I'p EsT4—FE ideals of T'p

where I'y denotes the value semigroup ideal of a fractional ideal J.

Algorithmic Normalization

Endomorphism rings occur in the construction of blow ups [15] or non-commutative
resolutions [16, 17]. A non-commutative crepant resolution of a curve can be computed [18]
considering the intermediate steps of a normalization algorithm [19] which is based on
a characterization of normality in terms of the endomorphism ring of a so-called test
ideal [20]: a reduced Noetherian ring R is normal if and only if R = Endp (i) for a test
ideal i of R. If R is a reduced one-dimensional Noetherian local ring, then the maximal
ideal m is the unique test ideal for R.
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The above criterion by Grauert and Remmert can be turned into an algorithm for
normalization computing successively endomorphism rings of test ideals. Following an
idea by Bohm, Decker, and Schulze [21] we use the semigroup of values to determine
the intermediate steps explicitly. In general, not much is known about the properties
of sequences obtained by the Grauert—Remmert algorithm. As a step towards a more
fundamental understanding, we prove in Chapter 5 the following result on Gorenstein
algebroid curves.

Statement (See Theorems 5.42 and 5.56). Let R be a Gorenstein complex algebroid curve
with mazimal ideal m. Then Endg (m) is Gorenstein if and only if R is of type A, for
somen € N (see [22]).

In Chapter 8 we apply the Grauert—-Remmert algorithm to two kinds of arrangements.
First we study plane arrangements of smooth curves.

Statement (See Theorems 8.1 and 8.2). Let C be a reduced plane curve. Suppose that
C has only finitely many singular points, and assume that the analytic branches at the
singular points of C' are smooth and intersect transversally. Then the number of steps
in the Grauert—Remmert algorithm which is needed to compute the normalization of C' is
determined by the mazimal number of analytic branches intersecting in a singular point of

C.

Using Serre’s criterion which allows for checking normality in codimension one, we apply
this result to hyperplane arrangements. Geometrically, after localization in codimension
one we look at “transversal slices” of the arrangement. This reduces the problem to plane
line arrangements whose cardinalities are the numbers of hyperplanes intersecting the
respective slices.

Statement (See Theorem 8.14). Let (A, V') be an arrangement of hyperplanes. Then the
Grauert—Remmert algorithm computes the normalization of the arrangement after

max {pa(V,X) | X € L(A) with codim X = 2}

steps, where L(A) is the set of intersections of hyperplanes of A, and 4 is the Mobius
function of the arrangement.

Quasihomogeneous Semigroups

Kunz and Ruppert gave a description of quasihomogeneous curve singularities with at most
two branches in terms of the semigroups of values of their branches [9]. An irreducible
quasihomogeneous curve singularity is determined completely by its semigroup of values,
and a quasihomogeneous curve singularity with two branches can be reconstructed as a
fibre product of its branches over their intersection from combinatorial and analytic data:
the semigroups of values of the branches as well as certain value semigroup ideals and a
coefficient map. We show that the combinatorial informations can be deduced from the
semigroup of values of the curve singularity.



In Chapter 6 we give a generalization of this result to quasihomogeneous curve singularities
with arbitrarily many branches. Here we use an extended notion of fibre products which is
introduced in Chapter 2. This fibre product is determined by the semigroup of values of the
curve singularity and a certain coefficient map. In general, however, the curve singularity
is not completely described by the fibre product.

In Chapter 7 we transfer the concept of quasihomogeneity to good semigroups. First we
define gradings on a good semigroup, then we consider properties of values of homogeneous
elements of quasihomogeneous curve singularities. In fact, both approaches yield the same
concept of quasihomogeneity on good semigroups, and this is compatible with the algebraic
definition.

Statement (See Proposition 7.6). The semigroup of values of a quasihomogeneous curve
singularity is quasthomogeneous.

On quasihomogeneous semigroups we introduce a closedness property related to the
weights of the grading. This allows to characterize those quasihomogeneous curve singular-
ities which can be reconstructed as a fibre product.

Statement (See Theorem 7.23). A quasihomogeneous curve singularity is isomorphic to a
fibre product if and only if its semigroup of values is closed.

Moreover, this closedness allows to construct curve singularities from good semigroups.

Statement (See Theorem 7.24). A quasihomogeneous semigroup S is closed if and only if
it is the semigroup of values of a quasihomogeneous curve singularity. If S is closed, then
a quasthomogeneous curve singularity R with I'r =S can be constructed as a fibre product
solely from S.

We show that a quasihomogeneous semigroup with two branches is always closed. This
yields the result by Kunz and Ruppert. Finally, the results above imply that a closed
quasihomogeneous semigroup can be reconstructed from information on its branches. In
fact, we obtain a stronger statement.

Statement (See Theorem 7.27). Any quasihomogeneous semigroup S can be reconstructed
from its branches and certain ideals of its branches (which are determined by S ).






2. Preliminaries

The purpose of this chapter is to provide the fundamental material for this thesis. In
Section 2.1 we introduce the monoid of regular fractional ideals of a ring. This concept is
important for the study of valuation rings (see Chapter D).

In Section 2.2 we deal with discrete valuation rings and discrete valuations. Later we
use valuation theory on one-dimensional Cohen—Macaulay rings to relate algebra and
combinatorics.

Finally, in Section 2.3 we introduce a generalization of the usual fibre product. This will
be applied in the context of quasihomogeneous curves in Chapters 6 and 7.

2.1. Regular and Fractional ldeals

In this section we study the set of R-submodules of the total ring of fractions Qg of a ring
R. This set is a monoid with respect to the product, and it is closed under quotients (see
Proposition 2.7). In particular, we are interested in fractional ideals of R, that is “ideals
with a common denominator” (see Definition 2.5). The set of all regular fractional ideals is
a submonoid of the monoid of regular R-submodules of i, and it is also closed under
quotients (see Proposition 2.7).

Definition 2.1. Let R be a ring, and let J and J be R-submodules of Qg.
(1) The product of J and J is

33:{ > @y

(z,y)EA

ACTxJ ﬁnite}.

(2) The quotient of J and J in Qg is
j:QR3:{$€QR|$ﬁCj}€RR.
We also write J : J instead of J :q, J.

Lemma 2.2. Let R be a ring, and let J and J be R-submodules of Qr. Then JJ and J : J
are R-submodule of Qrg.

Proof. By definition we have JJ C Qr and J : J C Qr. Moreover, the set JJ is by
definition an R-module. So let z,y € J: 3, and let r, s € R. Then

(re+sy)I=red+syd=234+yJCIJ+I=3J

since J and J are R-modules. Thus, J : J is an R-submodule of Qg. O
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Lemma 2.3. Let R be a ring, let x € QR°, and let 3, T, J, ¥, and $ be R-submodules
of Qr. Then

(4) 3:3=(3:A):Jif Aisaring with RC ACQgr and J is an A-module.
Proof. (1) By the definition of the ideal quotient (see Definition 2.1) we have
(3:3):9={zr€Qa|lzycT:Jforally € H}
={rxeQalayzCTforalyeHandzecJ}

={reQa|xzzCT:Hforall z € J}
=(J:9):3J.

N I N
~— N N

(2.
(2.
(2.
(2.

Let z € (J:3) : 9, and let v,y € $ and 2,2’ € J. Then Equation (2.2) yields
xyz,xy' 2" € J, and hence x (yz + y'2') € T since J € R4. This implies 23§ C J, and
Equation (2.2) yields

(3:3):9={r€Qa|xyzCTforallye$H and z € J}
={reQa]|zIH CT}
=7: (J9).

(2) Since QR* = Q% we have
(:Uj):3:{y€QR|y3C:n3}:{yEQR’yx_lﬁcﬁ}.

(3) This follows immediately from Definition 2.1.
(4) Since A is an R-submodule of Qg, and since J is an A-module, (1) yields
J:3=7:34)=(7:4):3. O
Definition 2.4. Let R be a ring.

(1) An R-submodule J of Qg is called regular if 3'°® = I N Q" # 0, or, equivalently,
QrRI = Qr.

(2) If every regular ideal i of R is generated by i*®8, then R is called a Marot ring.
Definition 2.5. Let R be a ring.

(1) A fractional ideal of R is an R-submodule J of Q4 such that 2J C R for some
xr € R,

10



2.1. Regular and Fractional Ideals

(2) The set of regular fractional ideals of R is denoted by Rrg.
Remark 2.6. Let R be a ring.

(1) If R is Noetherian, then an R-submodule J of Qp is a fractional ideal of R if and
only if it is finitely generated.

~reg

(2) If R is a Marot ring, then any regular fractional ideal J € Ry is generated by J
Proposition 2.7. Let R be a ring.

(1) The set of reqular R-submodules of Qr and the set R are a commutative monoids
with respect to product of ideals (the neutral element is R).

(2) The set of reqular R-submodules of Qg and the set R are closed under ideal quotient,
i.e. (3:3)"® # 0 for all reqular R submodules 3 and J of Qr, and with 3,3 € Rgr
alsoJ:J € Ri.

Proof. Let J and J be regular R-submodules of Qr. Then J'° 38 + (). Moreover, JJ
and J : J are R-submodules of Qr by Lemma 2.2. If J,J € Ry, then there are x,y € R"8
such that zJ,yJ C R.

reg

(1) For any = € 3% and y € J**® we have zy € (JJ)"®. Hence, JJ is a regular R-
submodule of Q. Moreover, we obviously have HR = $) for any $) € R since §) is
an R-module, and since 1 € R.

If 3,3 € Rp, then yx2JJ C yRJI C yJ C R, and hence JJ € Rpy.
(2) Obviously, J : J is an R-submodule of Q. Let a € 7"8. Then ay € Q%® and
ayy C aR C J. Thus, J:J is regular.

Suppose now that J,J € Rpr, and let b € J*°8. Then byx € R™® and yxb(J : J)
yxJ C yR C R. Hence, J:J € Rp.

an

Definition 2.8. Let R be a ring. An R-submodule J of Qg is called invertible if I3 = R
for some R-submodule J of Qg which then is uniquely determined as J = R : J, see [23,
Ch. II, Prop. 2.2.(1)]. For an invertible R-submodule J of Qr we write J~! = R : J.

Remark 2.9. Let R be a ring.
(1) Let z € Qx® and J € Rp. Then 27 € Rp.

(2) Every invertible R-submodule J of Qg is regular and finitely generated, see [23,
Ch. II, Rem. 2.1.(3) and Prop. 2.2.(1),(2)]. In particular, if an R-submodule J of Qg
is invertible, then J € Rp

(3) The set R}, of invertible (regular fractional) ideals of R is the largest submonoid of
Rr which is also a group.

(4) If R is (quasi)semilocal, R} consists of the regular principal fractional ideals of R,
see [23, Ch. II, Prop. 2.2.(3)].

11



2. Preliminaries

Lemma 2.10. Let R be a (quasi)semilocal Marot ring, let 3,3 € Rg, and let $H € RF,.
Then (33):$H=7:(3:9). In particular, T: H =TH"1.

Proof. Since $) € R}, there is by Remark 2.9.(4) an 2 € Q's® such that $ = 2R. Then
Lemma 2.3.(2) yields

In particular, this implies

:H=0OR):H=T(R:$H) =361 O

(S

Lemma 2.11. Let R and A be rings such that Qr = Q4 and A € Rr. ThenJ : A €
RrNR4 for any T € Rpy.

Proof. Let 3 € Rr. Then J : A € Rr by Proposition 2.7.(2). Therefore, J : A is a
regular A-submodule of Qr = Q4. Moreover, since A € R, we also have A : R € R4 by
Proposition 2.7.(2). Hence, there is an x € (A : R)"®. As J: A € Rp, there is a y € R™®
such that y(J: A) C A. This yields zy € A™8 and

zy(J:A) C xR C A.
Thus, J: A€ Ra. O
Lemma 2.12. Let R and A be rings such that RC A C Qr and A € Rr. Then R4 C Ry

Proof. If R C A C Qg, then Qr = Q4 by Lemma A.34. Let J € R4. Then 7% # (), and
R3J € AT C J. Moreover, there is an x € A™® such that £J C A. Since A € Rpg, there is a
y € R*® such that yA C R. Then xy € R™®, and

xyJ C xA C R.
Thus, J € Rpg. O

Lemma 2.13. Let R be a ring, and let J and J be regular R-submodules of Qr. Then
there is a natural R-module isomorphism

¢3: Homp (3,3) — J: 7,
¢ (v

6 T2,

which is independent of the choice of a regular element x € J*°8. In particular, any
¢ € Homp (3,3) is multiplication by an element of J : 3, and it can be extended uniquely
to an endomorphism of Qr.

12



2.1. Regular and Fractional Ideals

Proof. See [24, Lemma 2.1] and [19, Lemma 3.1]. O

Remark 2.14. Let R be a ring. With Lemma 2.13 we may define the dual of a regular
fractional ideal J € Rp as
3V =Hompg (J,R) = R: 7.

Note that if J € R%, then 371 = 3V,
Proposition 2.15. Let R be a ring, and let 3,35 € Rr. Then
JCc3:(3:3).
Proof. Let x € J. Then we have for all y € 7:J
xy CyJg CJ.
This implies x € J: (3 : J). O

Lemma 2.16 (See [25], Lemma 2.1.3). Let R and A be rings such that there is a flat ring
homomorphism «: R — A. Then there is a ring homomorphism

¢: Qr — Qa,
z | ofz)
y o aly)

Moreover, the following hold:
(1) Suppose « is injective. Then ¢ is injective, and
P(NA=TRRr A
for any R-submodule J of QR.
(2) For any fractional ideal 3 of R we have
Jor A= ¢(J)A.
Moreover, if 3 € Ry, then J@r A= ¢(J)A € R4.
(3) For any fractional ideals 3 and § of R we have
O3 3)A= (A A,

(4) If « is faithfully flat, then
P(INANQr =7

and

P(INI)A=d(I)ANJ)A
for any R-submodules J and J of Qr.

13
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Proof. Since a: R — A is flat, we have a(R™®) C A™® by Lemma A.7. Thus, Lemma A.29
yields a ring homomorphism

¢: QR — QA7
z o)
y aly)

(1) The ring homomorphism ¢ is injective by Lemma 7.54.
For the bilinear map
Ix A— ¢(J)A,
(z,y) = o(x)y
the universal property of the tensor product yields the R-module homomorphism
B:TRrA— ¢(J)A,
@y d(x)y.
Obviously, § is also an A-module homomorphism, and it is surjective.

Since J C Qr, and since A is flat, we obtain T ®r A C Qr ®r A. Moreover, setting
J = Qg yields a surjective A-module homomorphism

v:T@r A — ¢(J)A,

;®al—>¢<;)a: a(x)a'

In particular, we obtain a commutative diagram

JerAd —C s p(3)A

j j (2.5)

Qr®r A —— ¢(Qr)A.

Since Qr = (R™&) 'R, Theorem A.22 and Proposition A.38 yield an R-module
isomorphism

5: Qn — (a(R'5)) A,

a(z)a

X
- Ra— .
y a(y)

Since (a(R™2)) ' A C Q4 by Lemma A.30 (recall that o(R™8) C A™E by Lemma A.7),
we obtain with Diagram (2.5) a commutative diagram

JorA —" s p()A

J

QrOr A —— $(QRr)A

Eo

(a(R*8)) A ——— Qa.

—

14
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This implies that § is injective, and hence J ®r A = ¢(J)A
Let J be a fractional ideal of R. Then for the bilinear map
IxA— o)A
(2, y) = d(x)y
the universal property of the tensor product yields the surjective homomorphism
e:T®rA— ¢(J)A
TRy d(2)y.
Suppose that J C R. Since A is a flat R-module, we obtain a commutative diagram
TOr A — ¢(J)A
I I
R®rA —— A
This implies that € is also injective, and hence

JopA=¢(d)A (2.6)

Let now J be a general fractional 1deal of R. Then there is an z € QR® such
that J C R. Moreover, ¢(z) € Q® since QR® = QF and Q®* = @Q%. Then
Equation (2.6) yields (considering A-modules)

P(I)A = (¢($))*1¢(1’)¢(3)A
= (¢()) ' ¢(27)A
= (¢(2)) " (@T @R A)
= (¢(«))" (I @R d(x)A)
= (¢(2)) "' ¢(2)(T®R A)
=J QR A.

Finally, ¢(J)A is an A-submodule of @Q 4, and ¢(x)p(T)A

If 3 € Ry, there is a y € 3"8. Then ¢(y) €
Therefore, ¢(J)A € R 4.

$(x3)A C G(R)A = A.
o(J )ﬂQA = o(3) N QY® = (4(3))"*.

For any fractional ideals J and J of R part (2) as well as Propositions A.40 and
2.7.(2) and Lemma 2.13 yield the following commutative diagram of isomorphisms

Homp (3,3) ®@p A —— (3:0)@p A ——=— (3 : J)A

(a3

|

Homy (J®p A,J®r A) ——

1

Homy (¢(3)A, 0(3)).

~

F®rA):(I®rA) —— ¢(J)A

1%
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(4) See [26, Chapitre I, § 3, no. 5, Proposition 10]. O

Lemma 2.17. Let R be a Noetherian ring, and let I3 € Rr. Then T : T is an integral
extension of R. In particular,
RCcJ:JCR

Proof. Since J is a fractional ideal of R, we have JR C J, and hence R C J : J. In
particular, 1 € J: 7. Let z,y € J:J. Then

xzyJ C xJ C 7.

Since J : J is an R-module by Lemma 2.2, this implies that it is a ring. Moreover, since
R is Noetherian, J : J is by Proposition 2.7.(2) and Remark 2.6.(1) finite over R. Thus,
J : 7 is by Theorem B.11 an integral extension of R. The particular claim follows with
Proposition B.5. Also see [27, Lemma 3.6.1] and Lemma 2.13. O

2.2. Discrete Valuation( Ring)s

In order to relate algebra and combinatorics we apply valuation theory. A waluation of a
ring A is a surjective map v from A onto a totally ordered abelian monoid G¥%_ such that

v(zy) = v(z) + v(y), (2.7)
v(z+y) > min{v(z),v(y)}

for every z,y € A, where GV is a totally ordered additive abelian group (the value group
of v) which we include into the totally ordered abelian monoid G%, = G U {oo} with
T+ 00 =00, 00+ 00 =00 and co > x for all z € G¥. To a valuation v: A — G%, we
associate its valuation ring

V,={zx € A|v(z) >0}

For more on valuations see Section D.2.

Definition 2.18. Let A be a ring. A valuation v of A is said to be a discrete valuation if
there is an order preserving group isomorphism ¢: G¥ — Z.

We may also start with rings of valuations. Let @) be a ring having a large Jacobson
radical with Q™ = Q*. A waluation ring of Q is a subring V of @) with V # @ such
that @ \ V' is multiplicatively closed. If V' is a valuation ring of @, then the group Ry
is totally ordered by reverse inclusion. We include Ry, into the totally ordered monoid

Voo = Ry U {Iv}, where Iy =V : Q is the infinite prime ideal of V. Then the valuation
of V is the map

pv: Q — ,R’T/,oov

x— py(x) = ﬂ J.
JERS,
x€J

16



2.2. Discrete Valuation( Ring)s

This map is surjective, and it satisfies
pv (@y) = po(@)pv (y),
pv (@ +y) = min {py (), pv (y)}
for any z,y € Q). Then
V={zeQ|pv(z) 2V},
and V has a unique regular maximal ideal

my ={z € Q| py(x) >V}

The infinite prime ideal of V is

Iy ={z Q| pv(z)=1Iv}
For more on valuation rings see Section D.1. Note that by Corollary D.32 there is a
bijection
V= py,

V, v

between the valuation rings and the valuations (up to equivalence, see Definition D.28) of

Q.

Definition 2.19. Let ) be a ring having a large Jacobson radical with Q™ = Q*. A
valuation ring V' of @ with regular maximal ideal my is called a discrete valuation ring of
Q if my € Ry

Remark 2.20. Let @ be a ring having a large Jacobson radical with Q'8 = Q*. A valuation
ring V of @ is by Remark D.4.(1) and (2) discrete if and only if its regular maximal ideal
my is finitely generated.

Proposition 2.21. Let Q be a ring having a large Jacobson radical with Q™% = Q*, and
let V' be a discrete valuation ring of Q.

(1) For the regular mazximal ideal my of V' we have
my =min{J € Ry, |V <J} € Ry.
(2) There is an order preserving group isomorphism
¢v: Ry — Z,
3+—>¢V(3):max{kEZ’m€/§3},
my i k.

Proof. (1) Let 3 € Ry, with 3 > V. Then 3" C my by Remark D.5, and hence J C my
since V' is a Marot ring. The claim follows since my € Ry, by the definition of V.

17
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(2) Let J € Rj,. Since Ry is totally ordered by Remark D.4.(3), we have either 3 <V

or J > V. Suppose J >V, ie. JCV. Since my € Ry, also m{“, € Ry, for any k € N.
Hence, for any k € N Remark D.4.(3) yields either m{ < J or m{, < 3. Assume
m¥, <Jforall k€ N. Then 3 C N2, m{ C V'\ V™8 by Corollary A.5, contradicting

J € R*. We obtain (;2; m¥, C 3 C V, and hence there is max {k ez ‘ m}, < 3}.

Suppose now that J < V. Then J~! > V. Arguing as above we find
min {I € Z | mf > 37"} = max {k € 2| mf, <3},
These considerations show that for any J € R, there is a k£ € Z such that mV <7
and mk'H £ 3. Then we have
V=m{ m{ <JT:mf (2.9)

by Lemma 2.3.(3).

Assume 7 : mV > my . Since my is invertible, this 1mphes J> mk'Jr1 by Lemma 2.10

contradicting the assumption on k. Therefore, J mv < my since J : mV € Ry, and
since Ry, is totally ordered by Remark D.4.(3). Thus, (1) and Equation (2.9) yield
V =7:m{,ie. J=mf{ by Lemma 2.10. O

Let V be a discrete valuation ring of (). Embedding Z into the totally ordered monoid

Zoo = Z. U {0} we may extend ¢y to an order preserving isomorphism of monoids

qbv: R*V,oo — Zo

by setting ¢y (Iy) = co. Then Proposition 2.21.(2) yields a commutative diagram

uvl \ (2.10)

R0 =5 Lo

where vy is a discrete valuation of (). In particular, uy and vy are equivalent, and hence
V =V, is by Proposition D.29 the ring of a discrete valuation.

Proposition 2.22. Let Q be a ring having a large Jacobson radical with Q™% = Q*, and
let V' be a valuation ring of Q. Then the following are equivalent:

(a) The ring V is a discrete valuation ring.

(b) V is the ring of a discrete valuation v: Q — Zso

(c) Every regular ideal of V is finitely generated.

(d) The regular maximal ideal my is finitely generated, and my is the only reqular prime

18
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Proof. See Propositions D.13.(1) and 2.21.(2) and [23, Chapter I, Proposition 2.15]. O

Proposition 2.23. Let Q be a ring having a large Jacobson radical with Q™% = Q*, and
let V' be a discrete valuation ring of Q.

(1) Any J € Ry contains a regular element of minimal value, i.e. there is an x € T8
such that vy () < vy (y) for ally € 7.

(2) EachJ € Ry is generated by any element x € Q¢ with vy (x) = min{vy (y) | y € J}.
In particular, my is generated by any t € Q™% with vy (t) = 1. Such a t is said to be
a uniformizing parameter for V.

(3) Let 3 € Ry. Any finite generating set for J contains an element v € Q with
vy (z) = min{vy (y) | y € T}

(4) If 3 € Ry, then
IJ={zeQ|v(z) Zmin{ry (y) |y €T}}.

(5) Let J € Ry,. Then
¢y (3) = min{vy (z) | x € T},

and for any k € Z we have

oyt (k) = 2V for all x € Q™ with vy (v) = k
={ye@®|viy =k
={yeQlwy =k}

(see Proposition 2.21.(2)).

Proof. (1) Since J € Ry, thereis an a € V'8 such that aJ C V. This implies vy (ax) > 0,
and hence vy (z) > —vy (a) for all z € J. Thus, there is y € J such that v (y) < v (x)
for all x € J.

Assume now that y € T\ 738, Since @ has a large Jacobson radical and V C @, V is
a Marot ring, see [23, Chapter I, Proposition 1.12]. Then J is generated by 7", and
hence we find z1,...,z, € 3" and ay,...,a, € V such that y = >"I' | a;z;. By the
definition of valuations we obtain

vy (y) = vy (Z aixi> > ._mins {vy (a;x;)} .

i=1 o

Thus, there is € 3" and a € V such that
vy (y) > vy (ax) = vy (a) + vy ().

Since a € V yields vy (a) > 0, this implies vy (y) > vy (z). Hence, vy (y) = vy (2)
as y is of minimal value in J.
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(2) By (1) there is an element x € 3¢ of minimal value in J. Let now y € 3¢, Then
vy (y) > vy (x), and hence by Lemma D.22.(2)

vy (i) =vy (y)+v (afl) =v(y)—v(z) >0. (2.11)
This implies £ € V, and therefore y = 2% € zV. Thus,
2V = (3°8) =3

since V' is a Marot ring (see above).

Let now z € Q™8 such that vy (z) = vy (z). Then we obtain as above with
Lemma D.22.(2)

x _1 z
— — = —_ f— 0 e —
Vv<z> vy () + VV(Z ) v () —vv(z) VV(g:)’
and hence 7,2 € V. This implies 2V =2V = 7.

T

(3) Let {z1,...,2,} C J be a generating set for J. Since V = {z € Q | vy(z) >V},
Equations (2.7) and (2.8) imply

min {vy(z) | z € 3} = min {vy(x1),...,vv(z,)}.

(4) By (2), 3 =2V for any z € Q™ with vy (z) = min{vy (y) | y € 3"8}. If y € Q with
vy (y) > vy (x), then Lemma D.22.(2) yield as in Equation (2.11)

vy (y> =vy (y)+v (:U_l) =v(y) —v(z) >0,
x
and hence ¥ € V. This implies y = 2% € 2V = 7.

(5) By (2) 3 = 2V for any =z € Q' with vy (z) = min{vy (y) | y € 378}. Then
Remark D.14.(2) yields uy (z) = 2V, and we obtain by Proposition 2.21.(2)

¢v (3) = ov (zV)
= ¢v opy (x)
=y (z)
=min {vy (y) | y € T}.
Let now k € Z. By (2) the map

V7 — Ry,
k — xV for some x € Q"™ with vy (z) =k

is well-defined, and by the considerations above we have 1) = ¢~!. Then the equalities
oyt (k)= (ye Qv (y) =k ={y€Q|w (y) = k}
follow from (2) and (4). O
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In the remainder of this section we list some more properties of discrete valuation rings.

Proposition 2.24. Let Q) be a ring having a large Jacobson radical with Q™% = Q*, and
let V' be a discrete valuation ring of Q.

(1) Every regular fractional ideal of V' is principal, i.e. Ry = Ry, .
(2) Let now t € Q such that my =tV (see Proposition 2.23.(2)). Thent € Q"%.
(1) We have Q =V [t71].

(2) Every element x € Q™8 has a unique representation x = at®, where a € V* and

keZ.
(3) Any regular Q-submodule of V is of the form t*V for some k € Z.

(3) We have Iy = ey My
(4) There is no ring strictly between V and Q.
Proof. See Proposition 2.22 and [23, Chapter I, Proposition 2.15]. O

Corollary 2.25. Let Q be a ring having a large Jacobson radical with Q™% = Q*, let V be
a discrete valuation ring of @, and let t € Q such that my =tV (see Proposition 2.23.(2)).

(1) t is a uniformizing parameter for V.
(2) For any © € Q™8 there is a unique a € V* such that x = at*v(®).

Proof. (1) By Proposition 2.24.(2) we have t € Q**8. Then Diagram (2.10) and Proposi-
tion 2.21.(1) yield

vy (t) = ¢v opv(t) = dv(tV) = ¢y (my) = 1.
Hence, t is a uniformizing parameter for V.

(2) Let x € Q™. By Proposition 2.24.(2).(2) there is a unique a € V* and a unique
k € Z such that = = at*. Then

vy(x) =vy(a)+ kvy(t) =k

since vy (a) = 0 by Proposition D.13.(2) and Corollary D.32, and since vy () = 1 by
(1). O

Theorem 2.26 (Approximation Theorem for Discrete Valuations). Let @ be a ring having
a large Jacobson radical with Q™% = Q*, and let V be a finite set of discrete valuation rings
of Q. We set R= ey V.

1) FEvery mazimal ideal of R is reqular, and there is a bijection
(1) Y g j
Max (R) -V,
m e ((R\m)*®) 'R,
my, "R+ V;

such that (my N R)V =my for every V € V.
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(2) For any (zv)y ey € QY and any a € ZY there is an x € Q such that
vy(z —ry) > ay
for every Ve V.
(3) For any o € ZY there is an x € Q such that
vy (z) = ay
for every V e V.
Proof. See [23, Chapter I, Theorem 2.20]. O

Corollary 2.27. Let Q be a ring having a large Jacobson radical with Q™% = Q*, let V be
a finite set of discrete valuation rings of Q, and suppose that {Iy | V € V} is the set of
prime ideals of Q.

(1) Let x € Q. Then x € Q™8 if and only if vy () < 0o for every V € V.
(2) For any o € ZV there is an x € Q™® such that
vy(z) = ay
for every Ve V.
3) Every reqular ideal of the ring V' is principal.
Vey
Proof. See [23, Corollary 2.21]. O

2.3. Fibre Products

Let R be a reduced ring with two branches (see Definition A.69), say Min (R) = {p,q}.
Then R can be written as a fibre product

R=R/p xjpeq R/a (2.12)
= {z € R/p x R/q | my (x) = m4 (2)},

where m,: R — R/p and mq: R — R/q are the canonical surjections.

More generally, let C be a category, let A, B,C € ObC(, and let f € Mor¢ (A,C) and
g € More¢ (B, C). The fibre product of A and B over C is an object A x¢ B € ObC with
morphisms [’ € More (A x¢ B, A) and ¢’ € More (A X¢ B, B) such that the diagram

AXCB
A B
\ /
C
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commutes, and it satisfies the following universal property: for any object D € ObC with
morphisms f” € More (D, A) and ¢” € More (D, B) such that the diagram

D
D
A B
S

C

commutes there is a unique morphism h € Mor¢ (D, A X¢ B) such that the diagram

A ch B
\ /
commutes.

This definition can easily be extended to more than two factors. However, to obtain a
description as in Equation (2.12) for reduced rings with arbitrarily many branches we need
more than one basis of the fibre product. In Definition 2.29 we introduce a more general
notion of a fibre product as a limit of a certain functor. In fact, such a fibre product
can equivalently be described by taking diagrams as (2.13) pairwise for all factors (see
Lemma 2.31). Note, however, that in general the equality in Equation (2.12) will be merely
an inclusion since we only consider pairwise relations of the branches of the ring R.

Definition 2.28. Let D: Z — C be a diagram of type Z for any category C and an
index category Z. A cone to D is an object C € C together with a family of morphisms
¢4 € More (C, D (A)) indexed by ObZ such that for any two objects A, B € ObZ and any
morphism f € Morz (A, B) the diagram

/\

—>D)

commutes.

A cone C to D is called universal if any cone to D factors through C. That is, a universal
cone to D satisfies the following universal property: for any cone C’ to D with morphisms
¢’y € More (C',D (A)) for A € ObZ there is a unique morphism u € Mor¢ (C’, C') such
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that the diagram

Cl
2 e O
C
SN
D(A) ——5—— D(B)

commutes for any two objects A, B € ObZ and any morphism f € Morz (A, B).
A universal cone to D is also called a limit of D.

Note. Being defined by a universal property, a limit (if it exists) is unique up to unique
isomorphism.

Definition 2.29. Let 7 be a small category, let C be a category, and let D: Z — C be a
diagram of type Z. We define the category J by

ObJ =0bZI xObZ

and

{idn it (4,B) = (4B,
{(4,B) = (B,A)} if (4,B) = (B, A,
{(A4,4) = (A,B)} ifA=B=A,

0 else.

Let F': J — C be a diagram of type J such that F'((4,A)) = D (A).

A fibre product in C over F' is a limit of F, i.e. a fibre product is an object C € C
together with morphisms ¢4 gy € Morc (C, F' (A, B)) for all (4, B) € Ob J such that for
any two objects (A, B),(A’, B") € ObJ and any morphism f € Mory ((4, B), (4, B))

the diagram
¢(V \A} =) (2.14)

F((A, —Fp F((A,B"))

F(f)

commutes, and it satisfies the following universal property: if C’ is a cone to F with
morphisms ¢4 gy € Morc (C, F (A, B)) for all (A, B) € ObJ, then there is a unique
morphism u € More (C’, C) such that the diagram

Mory ((4,B), (A", B")) =

(2.15)
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2.3. Fibre Products

commutes for any two objects (4, B), (A’, B') € ObJ and any morphism
f € Moty (A,B), (4, BY).
Since a fibre product over F' is unique up to unique isomorphism, we denote it by Fib (F').
Remark 2.30. For any (A, B) € Ob J we have
((A.B) = (B, A)) o ((B.A) - (A, B)) € Mory (B, 4) (B, 4)) = {id(s.4}
and
((B,A) = (4, B)) o (A, B) — (B, 4)) € Mory (A, B) (A, B) = {id )} .

Therefore, ((B,A) — (A, B)), and hence also F ((B,A) — (A, B)) are isomorphisms for
all (4,B) € ObJ.

Lemma 2.31. Let C be a category, and let F': J — C be a diagram of type J as in

Definition 2.29. Let C € ObC together with morphisms 14 € More (C, F ((A, A))) for all
A € ObZ such that for any two objects A, B € ObZ the diagram

F((4,4)) F((B,B)) (2.16)
F((A,A)—)(A,B))l lF((B,B)—)(B,A))
F((A,B)) F((B, A)).

F((A,B)—(B,A))

commutes. Then C' is a fibre product over F if and only if it satisfies the following universal
property: if C' € ObC satisfies Diagram (2.16) with morphisms ¢’y € More (C', F ((4, A)))
for all A € ObZ, then there is a unique morphism u € More (C', C) such that the diagram

C/
Wy u ¥
%
y m (2.17)
F((4,4)) F((B,B))
F((A7A)—>(A,B))i lF((B,B)—)(B,A))
F((A,B)) F((B, A)).

F((A,B)—(B,A))

commutes for any two objects A,B € ObZ.
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Proof. Let C be a fibre product over F. Then putting together three diagrams of type (2.14)
we obtain a commutative diagram

¢V

F((A,A))
F((A,AH(A,B»l

F((A, B))

C

\@/‘B,B)

F((B,B))
|FtBB-> @)
F((B,4))

?(A,B) (B, A)

F((A,B)—(B,A))

for any two objects A, B € ObZ. Thus, setting a4 = ¢(4,4), C satisfies Diagram (2.16).
Now assume that C’ satisfies Diagram (2.16), as well. Then for any two objects A, B € ObZ
we have a commutative diagram

Cl

F((A,4)) F((B,B))
F((A,A)—>(A,B))l lF((B,B)—>(B,A))
F((A,B)) F((B,A))
Setting
P K ifA =B,
aB) = {F((A,A) — (A, B)) ol 4 else

for any (A, B) € ObJ, we obtain a commutative diagram of type (2.15) for any two
objects (A4, B), (A, B') € ObJ and any morphism f € Mory ((4, B),(A’, B’)). Hence,
the universal property of the fibre product yields a unique morphism u € Mor¢ (C’, C') such
that Diagram (2.17) commutes, i.e. C' satisfies the universal property of the statement.

Let now C' € ObC satisfy the universal property of Diagram (2.17), and let C’ € Ob(C
be a cone to F. Then we have a commutative diagram

C/

(a,4) ¢(5,8)

$(a,A) #(B,B)

F((A, 4))

C F((B,B))

F((A,A)—(A,B)) F((B,B)—(B,A))

F((A, B)) F((B, A)).

F((A,B)—(B,A))
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Setting ¢y = qb’( A,4) for any A € ObZ, we obtain a commutative diagram of type (2.17).
Hence, the universal property of C' yields a unique morphism u € Mor¢ (C’, C') such that
Diagram (2.17) commutes. Moreover, setting

& _ Jta if A= DB,
AB T A F (4, 4) = (A, B))opa else

for all (A, B) € Ob J, u is the unique morphism in Mor¢ (C’, C') such that Diagram (2.15)
commutes. Thus, C' is a fibre product over F'. O

Theorem 2.32. Let C be a category, and let F': J — C be a diagram of type J as in
Definition 2.29.

(1) Suppose that
Il F((A,B)) €o0bc,
(A,B)€EOb T

and let C be the subset of I[a pycob s F((A, B)) consisting of all elements a €
IT(a,B)cob s F((A, B)) satisfying
F(f)oprap) (a) = pr p(a)
for any (A, B),(A’, B") € Ob J and every morphism f € More (F(A, B), F(A', B)),
where
Pr(a,B): II F(A.B)) - F((AB)),
(A",B")€Ob T
(@a,B) (4 Breobg = A(AB)
is the projection for any (A, B) € Ob J.
If C € ObC, then C logether with the morphisms ¢4 py = pr(A7B)‘C for all (A, B) €
Ob J is a fibre product over F.
(2) Suppose that

II F((A 4)) €obe,
AeObZ

and let D be the subset of the product []scon1 F((A, A)) consisting of all elements
a € [laconz F((A, A)) satisfying
F((A,B) = (B, A)) o F((A,A) = (A, B)) o pry (a) = F((B, B) =+ (B, A)) o prg (a)
for all A, B € ObZ, where
pry: H F((A4,A") = F((A, A)),
A’eObT
(aa)(aryeonz > 04

is the projection for any A € ObZ.

If D € ObC, then D together with the morphisms 4 = pr4|p for all A€ ObZ is a
fibre product over F.
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2. Preliminaries

In particular, if C,D € ObC, then C = D.

Proof. (1) Assume that C' € ObC. We have to show that C' satisfies the universal property
of Diagram (2.15). Solet C" € ObC together with morphisms gb’(A,B) :C"— F((A,B))
for all (A, B) € Ob J such that the diagram

C/

%V \W‘A"B') (2.18)
F((A, B) ———— F((A,B)

commutes for any two objects (A, B),(A’,B’) € ObJ and all morphisms f €
More (F(A, B), F(A', B")).

Then the universal property of the product yields a unique morphism

u: C' — H F((A,B))
(A,B)EOb T

such that the diagram
C/

% UW

F((AB)) i II F(A”.B") —srmy F(ALB)
(A”,B")eObJ

commutes for any two objects (A, B), (A’, B') € Ob J. Together with Diagram (2.18)
we obtain

F(f)oprap ou=F(f)odap = b,y = Pr(ar,p) U
for any two objects (A, B), (A", B') € Ob J and all morphisms
f € Mor¢ (F(A,B),F(A', B)).
By the definition of C' this implies u(C") C C.

Thus, there is a unique morphism
u € Morg (C',C)
such that the diagram

Cl
¥a,5) u (a7.87)
C
¢V \(ﬁ(f"vf’)
F((A,B)) —————— F((4.B)

commutes for any two objects (4, B),(A’,B’) € ObJ and all morphisms f €
More (F(A, B), F(A', B")). Therefore, C' is a fibre product over F.
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2.3. Fibre Products

(2) Assume that D € ObC. Using Lemma 2.31, we have to show that D satisfies the
universal property of Diagram (2.17). So let D’ € ObC together with morphisms
Yy D' — F((A, A)) for all A € ObZ such that the diagram

D/
F((A,4)) F((B,B)) (2.19)
F((A,A)—>(A,B))l lF((B,BH(B,A))
F((A,B)) F((B, A)).

F((A,B)—(B,A))
commutes for for any two objects A,b € ObZ.

Then the universal property of the product yields a unique morphism

D' — [ F((A A)

AeObZ
such that the diagram
F((AA) «— [ F( A A)) (B, B))
AeObZ

commutes for any two objects A,b € ObZ. Together with Diagram (2.19) we obtain

F((A,B) — (B,A)) o F((A, A) = (A,B)) o pry ov
= F((A,B) = (B,A)) o F((A, A) — (A,B)) o ¥y
= F((B,B) = (B, A)) o ¥
= F((B,B) = (B, A)) o prgov
for any two objects A, B € ObZ. By the definition of D, this implies v(D’) C D.

Thus, there is a unique morphism
v € Morc (D', D)
such that the diagram

D
W, u ”
e b ~
F((A,A)) F((B,B))
P((AA)~(A.B)| |FB.B-5)
F((A, B)) F((B,A)).

F((A,B)—(B,A))
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commutes for any two objects A, B € ObZ. Therefore, D is by Lemma 2.31 a fibre

product over F'. O

With (1) and (2) the particular claim follows from the universal property of the fibre
product.

Theorem 2.33 (Mitchell’s Embedding Theorem). Let C be a small abelian category. Then
there exists a ring R and an exact fully faithful covariant functor F: C — R-Mod, where
R-Mod is the category of left R-modules and R-homomorphisms.

Proof. See [28, Theorem 1.12]. O

Corollary 2.34. Let C be a small abelian category, and let F': J — C be a diagram of type
J as in Definition 2.29. Then the fibre product over F' exists, and it is isomorphic to the
subobject C of [](a,pyes F((A, B)) consisting of all elements a € [[(4 pjcon g (A, B))
satisfying

F(f)opriap)(a) =pr p(a) (2.20)

for any (A, B),(A’, B") € Ob J and every morphism f € Mor¢ (F(A, B), F(A’, B')), where
Pr(4,B): Il F(A.B)) - F(A,B)),
(A’,B")eOb J
(@a57) (ar,eob g = UAB)

is the projection for any (A, B) € Ob J. Moreover, it is isomorphic to the subobject D of
[Taconz F((A, A)) consisting of all elements a € [[aconz F'((A, A)) satisfying

F((A,B) — (B,A))oF((A,A) = (A,B))opry (a) = F((B,B) — (B, A))oprg (a) (2.21)
for all A, B € ObZ, where
pra: J] F((4,4)) = F((A 4)),

A’eObZ

(@ar) aryeont 04
is the projection for any A € ObZ.

Proof. By Theorem 2.33 we only have to show the statement in the case that C is the
category of left modules over a ring R. Since products exist in C, we have to show that
C,D € ObC(C. The statement follows then from Theorem 2.32.

As C, respectively D, is a subset of the R-module [[( 4 gcon s F((4, B)), respectively
[Taconz F((A, A)), we only have to show that C' and D are closed under addition and
multiplication with scalars. In fact, since the products are closed under these operations,
we only have to show that they are compatible with Equations (2.20) and (2.21).

So let 1,72 € R, and let ¢1,co € C. This implies

F(f)o¢,plc1) = o pylc),
F(f)o¢a,pyca) = ¢ar p(ca)
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for any two objects (A, B), (A", B’) € Ob J and all morphisms
f € Mor¢ (F(A,B),F(A', B")).
Since F(f), pr(a,p) and preas py are R-module homomorphisms, this yields
F(f)o¢ap)(rict +race) = rE(f) opria gy (c1) + r2F(f) o prap) (c2)

= 71D B (c1) + 12 P (4’57 (c2)

= proa gy (ric1 + race)
for any two objects (A, B), (A’, B’) € Ob J and all morphisms
f € Mor¢ (F(A,B),F(A', B)).

Therefore, we have r1¢1 + roco € C, and hence C' € ObC.
Let now dy,ds € D. Then

F((A,B) = (B,A)) o F((A, A) = (A, B)) opry (d1) = F((B, B) = (B, A)) o pr (d1),
F((A,B) = (B, A)) o F((A, A) = (A, B)) opry (d2) = F((B, B) = (B, 4)) o pry (d2)

for any two objects A, B € ObZ. Since the maps F'((4, B) — (B, A)), F((A,A) — (A, B)),
((B,B) — (B,A)), pry and prg are R-module homomorphisms, this yields

F((A,B) — (B,A))o F((A,A) — (A, B)) opr4 (r1dy + rads)
=rF((A,B) = (B,A)) o F((A,A) — (A,B)) opry (dy)
+12F((A,B) = (B, A)) o F((A, A) = (A, B)) o pry (d2)
=nF((B,B) — (B,A)) oprp (d1)
+roF((B,B) — (B, A)) oprg (ds)
= F((B,B) — (B, A)) oprg (ridy + rods)

for any two objects A,B € ObZ. Therefore, we have rid; + rodes € D, and hence
D € ObC. O
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3. Valuations over One-dimensional
Cohen—Macaulay Rings

In this Chapter we introduce the semigroup of values. This will lead to good semigroups as
a combinatorial counterpart of curve singularities in Chapter 4. In Section 3.1 we start with
the valuation theory on one-dimensional Cohen—Macaulay rings. This is based on a theorem
which was proved by Matlis in the local case (see [29, Chapter VI]), and later generalized
by Kiyek and Vicente (see [23, Chapter II, Theorem 2.11]): if R is a one-dimensional
equidimensional semilocal Cohen—Macaulay ring, then the set Vg of valuation rings of Qg
which contain R is finite, and every V' € Vy is a discrete valuation ring (see Theorem 3.2).
This allows us to introduce a discrete multivaluation

v: Qr — (Z U {oco})VE.

In Section 3.1 we study the properties of the set Vg and the multivaluation v, in particular
its relations to the integral closure R of R in Qg, and we introduce a filtration of Qg,
respectively of any fractional ideal of R, which is based on the valuation v (see Definition 3.6).
Moreover, we show that each valuation ring V' € Vi can be associated to a branch of R,
i.e. a minimal prime ideal qy = Iy N R € Min (R). Then the corresponding valuation is
constant along the other branches (see Proposition 3.13).

In Section 3.2 we associate to R its semigroup of values I' g as the subset of NV containing
the values of all regular elements of R. Similarly, we can define value semigroup ideals for
fractional ideals of R (see Definition 3.14). In fact, the value semigroup ideal of a fractional
ideal is a semigroup ideal of I' (see Proposition 3.22). As a first application we introduce
a concept of locality on the semigroup of values of R which is equivalent to R being local
(see Proposition 3.17). Particular algebraic hypotheses on R lead to properties of the
semigroup of values and the value semigroup ideals of fractional ideals (see Proposition 3.22
and Corollary 3.30) which will characterize the class of good semigroups (see Chapter 4).
We collect these hypotheses on R in the definition of admissible rings (see Definition 3.18).
In Proposition 2.7 we saw that the set Rr is a monoid with respect to the product of
ideals, and that it is closed under taking quotients. However, taking values is in general
not compatible with these operations; for J,J € Rr we may have strict inclusions

I3+ T C Ty

and
Iyy G Ty =15

(see Lemma 3.23 and Remark 3.24). In Chapters 4 and 5 we obtain equalities for two classes
of ideals, that is conductors (see Proposition 4.57) and canonical ideals (see Theorem 5.34).

33
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Moreover, in Section 3.2.1 we show that the value semigroup is compatible with localization,
and in Section 3.2.2 we prove its invariance under completion.

An important example of admissible rings are algebroid curves (see Proposition 3.41).
Algebroid curves occur as the completion of local rings of curve singularities. For an
algebroid curve R there is a bijection between the set Vg of valuation rings of Qg over R
and the set Min (R) of minimal prime ideals of R. Using properties of discrete valuation
rings we show that an algebroid curve admits a parametrization (see Theorem 3.44).

Section 3.4 is dedicated to integral extensions of admissible rings and algebroid curves.
We show that an integral extension of an admissible ring in its total ring of fractions is
an admissible ring, and that an integral extension of an algebroid curve over a field is an
algebroid curve over the same field (see Theorem 3.45).

3.1. One-dimensional Cohen-Macaulay Rings

Remark 3.1. Let R be a one-dimensional semilocal Cohen—Macaulay ring. Then the total
ring of fractions Qi has a large Jacobson radical since dim Qr = 0 by Theorems A.72
and A.74.(1), and hence any prime ideal of Qg is maximal, see Remark A.17.(1) and [30,
Section 7, page 423].

Theorem 3.2. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
7ing.

(1) The set Vi of valuation rings of Qg containing R is finite and non-empty, and each
V € Vg is a discrete valuation ring of Qr.

(2) We have Max (Qr) = {Iy | V € Vg}.

(3) Let m € Max (Qr). There is a bijection

{VeVr|Iv =m} = Vi/mnr)
V= V/Iv,

where QRr/(mnr) = @r/M.
(4) The integral closure of R in Qg is R =yey, V.
(5) Any regular ideal of R is principal, and every reqular prime ideal of R is mazimal.

(6) There is a bijection
Max (E) — Vg
n ((R\n)reg)_lﬁ

mvﬂRHV.

In particular, R/ (mv N R) =V/my for any V € Vg.
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Proof. See [23, Chapter 1I, Theorem 2.11]. O

Corollary 3.3. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring, and set v = (I/V)VGVR: Qr — ZVR. Then for any o € ZVR there is an x € Q?S’g such
that v(z) = a.

Proof. This follows from Remark 3.1 Theorem 3.2.(1) and (2), and Corollary 2.27. O

Let R be a one-dimensional semilocal Cohen—Macaulay ring. Then Corollary 3.3 and
Proposition 2.21.(2) (also cf. Diagram (2.10)) yield a commutative diagram

Qe
NS (3.)

* = %
H RV,OO e ZOOR’
Vevr

where 1= (Lv)yepp: ¥ = ()yey, and ¢ = (¢v)y ¢y, Moreover, ¢ is compatible with
the partial order on []y ¢y, R, by reverse inclusion and the natural partial order on VALS

Lemma 3.4. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay ring.
Then

(1) R={r €Q|v(x)>0},
(2) @ ={req|v(x) ez} md B* =z e Q|v(x) enr},

(3) R"={zecQ|v(z)=0}, and
(4) R"=R NR={zxcR|v(z)=0}.

Proof. (1) If x € R, then by Theorem 3.2.(4) = € V, and hence vy > 0 for all V € Vg.

Let now z € @ such that v (z) > 0, i.e. vy (z) > 0 for all V € Vg. Then x € V for
all V € Vg, and hence € Ny ¢y, V = R, see again Theorem 3.2.(4).

(2) If z € Q'8, then v (x) € ZVR by definition. So let » € Q with v (z) € ZY%, and
assume = ¢ "¢, Then there is m € Max (@) such that x € m. But then there is
by Theorem 3.2.(2) a V' € Vg such that m = Iy, and this implies vy (z) = oo by
Proposition D.8.(2) and Diagram (3.1), contradicting our assumption.

Moreover, we have by (1)

Freg:FﬂQreg:{er ‘ v (z) ENVR}.
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3. Valuations over One-dimensional Cohen—Macaulay Rings

(3) Since R C Qr and V C Qg for all V € Vg, Theorem 3.2.(4), Lemma A.11, and
Proposition D.13.(2) yield

(]

:ﬂv*

VEeVr

= ﬂ {x € Q™ | vy(z) =0}

VeVr
={rc Q™ [v(z) =0}
={reQ|v(x) =0},
where the last equality follows from (2).
(4) This follows from (3) and Corollary B.4. O

We can also relate [[y ¢y, Ri and Diagram (3.1) to Ry.

Proposition 3.5 (See [25], Section 3.1). Let R be a one-dimensional equidimensional
semilocal Cohen—Macaulay ring. Then there is an order preserving group isomorphism

v: Rz — [[ Rv
Vevr
I (W)yey,
M v < Ov)yey,
VEVRr

such that the diagram

reg

/l

Vr
Ry *> H Ry 7> Z
Vevr
commutes, where j1 = (L )y ey, V= (0 )yep, and ¢ = (dv)y ey, -
Proof. By Theorem 3.2.(5) we have Ry = = R%, and for any J € Ry there is an x € Q™
such that 3 = xR. Then Theorem 3.2.( ) ylelds
(V= ()aV=a () V=2R=3
VeVr VeVr VeVr
Hence, 1) is injective, and considering Diagram (3.1) we obtain a commutative diagram

reg

/l

Re —5— IT =v —> VA
Vevr
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The surjectivity of « follows from Theorem 3.2.(5), and the surjectivity of v follows
from Corollary 3.3. This implies the surjectivity of u, and hence of 1. Moreover, the
isomorphisms ¢ and ¢ preserve the partial orders on Ry and [] ¢y, Rj, by reverse inclusion
and the natural partial order on ZVE. ]

Definition 3.6. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring.

(1) We define a decreasing filtration Q° on Qg by setting
Q%= (s € Qn | v(z) > a}
for any a € ZV~.
(2) For any R-submodule J of Qr we define a decreasing filtration J* on J by setting

3*=1nQ*={zeT|v(z)>a}

for any o € ZVE.

Lemma 3.7. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay ring.
For any a € ZVR there is an x € R™® with v(x) > «.

Proof. By Corollary 3.3 and Lemma 3.4.(2) there is a fraction § € Q® with v(z) —v(y) =

1/(%) = a, see Lemma D.22.(2). Since % € QR°, we have z € R™8, and since z,y € R, we

have v(z),v(y) > 0. This implies v(z) > v(z) — v(y) = a. O

Proposition 3.8. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring, and let o« € ZYR. For any J € Rp we have J* € Rp.

Proof. Let x € 3%, and let r € R. Then v(rz) = v(r) + v(z) > v(z) > a. This implies
rr € J% since rz € 7.

Let y € 3% Then v(z+y) > inf{v(z),v(y)} > a. This implies z + y € T since
x4y € J. Thus, J% is an R-submodule of Q. Since J € R, there is an r € R™® such
that rJ% C »J C R. Thus, J¢ is a fractional ideal of R.

Since J € Rp, there is an x € 38, Set f§ = a — v(x). Then Lemma 3.4.(2) yields
B € ZVR. By Lemma 3.7 there is an r € R™8 with v(x) > . Then rz € J'8 with
vire) = v(r) + v(z) > a —v(z) + v(z) = . This implies rz € (J%)"8. Therefore,
J* € RR. O

Lemma 3.9 (See [25], Section 3.3). Let R be a one-dimensional equidimensional semilocal
Cohen—Macaulay ring.

(1) The isomorphism ¢ o1 of Proposition 3.5 is given by
potp: Ry — LVE
J+— (min{vy (z) |z € jv})VeVR

N o
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(2) Let o, 3 € ZVR. Then

Q497 = 9+,
Q%08 =97,
(Qa)fl — Q—a‘

(3) Let 3 be an R-submodule of Qr. For any a € ZVR we have
v(3%) ={Bev(T)|B=za}.

Proof. (1) This follows from Propositions 2.21.(2), 2.23.(5), and 3.5.

(2) This follows immediately from (1).

(3) This follows immediately from Definition 3.6.(2). O
Proposition 3.10. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring. Then

Qa = m (mv)av
VEVRr
for any o € ZVR.
Proof. This follows from Propositions 3.5 and 2.21.(2) and Lemma 3.9.(1). O

Lemma 3.11. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring, and let J € Ry. Then T is generated by any x € Qr having the multivalue

v(z) = (min{vy(z) |z € IV})yeyp,.-
Moreover, any such x s reqular.
Proof. Set a = (min {vy (z) | € IV})yy,. Then
J=9°

by Lemma 3.9.(1). Thus, there is an € J with v(z) = a. Since o € ZVE, this implies
x € 3¢ by Lemma 3.4.(2).
Let now y € 3 = Q. Then v(y) > v(x) = «, and hence by Lemma D.22.(2)

V<Z;> =v(y) + I/(l‘_1> =v(y) —v(xz) > 0.

This implies £ € R by Lemma 3.4.(1), and therefore y € zR. O

Lemma 3.12. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring, and let 3 € Ry. For any x € J there is a y € 3°® such that vy (y) = vy (z) for all
V € Vg withx & Iy .
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3.1. One-dimensional Cohen-Macaulay Rings

Proof. Since €5 € Ry by Corollary C.16, there is by Lemma 3.9.(1) an o € ZYR such that
€5 = 9°. Hence, by Lemma 3.4.(2) there is a z € €5® such that vy (z) > vy(z) for all
V € Vg with € Iyy. Then Lemma D.22.(5) yields for any V € Vi

vy(z) ifxdly,

vy(z+ z) = min{vy(x), vy (2)} = {VV(Z) else.

In particular, we have v(x + z) € ZY, and hence y = = + 2z € J°8 by Lemma 3.4.(2). [

Proposition 3.13. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
Ting.

(1) For any V € Vg we have
Iy =0 x 11 QR/ps

peMin (R)\{qv }
where
qv = Iy N R € Min (R).
(2) For any q € Min (R) there is a bijection
{VeVrlav =a} = Vg,
V= V/Iv,

V X H QR/p < V
peMin (R)\{q}

In particular, any valuation ring V € Vg is of the form

V= V/IV X H QR/p7
peMin (R)\{qv }

where V/Iy € Vg/q, , and we have
Vy = ToVyr,,
where m: Qr — Qr/Iv is the canonical surjection.
(8) For any subset J C Min (R) there is a bijection
{VeVr|qved} — VR/ﬂpgﬂ’
V= V/ () pQr,

peJ

Vix JI  @Qru< V.
q€Min (R)\J

Moreover,
vy = 7TOI/V/ ﬂperQR

for any V € Vi with Iy € J, where n: Qr — Qr/ ﬂpeijR is the canonical
surjection.
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3. Valuations over One-dimensional Cohen—Macaulay Rings

Proof. (1) By Theorem 3.2.(2) we have Iy € Max (Qr), and hence the claim follows

(2)

40

from Corollary A.75.

By (1) and Theorem 3.2.(2) and (3) there is a bijection

¢: {Ve€Vr|av =a} = Vg,
VHV/Iv.

If g € Min (R) and V € Vg/q, then
V=Vx 11 QRr/p
peMin (R)\{q}

is by Theorems A.74.(2) and 3.2.(1) a discrete valuation ring of Qp/q. Moreover,
since by (1)
Iy =0 x 11 QR/p>

peMin (R)\{qv}
we have qy = q and V/Iy = V. Hence, the map
VY: Vgriq =V €Vr|av =q},

V — V X H QR/p
pEMin (R)\{q}

is the inverse of ¢. Also see [23, Chapter II, 2.12].

The remaining part of the statement follows from Proposition D.16.

Let V € Vg such that Iy N R € J. Then by (2)

V= V/IV X H QR/p7
peMin (R)\{qv }

where V/Iy € Vg/q, . Moreover, Corollary A.75 yields

mpcszm(w H)\{}QR/C.)=H0>< 0 Qe

peJ peJ q€Min (R peJ g€Min (R)\J

Since qy € J, this implies

V/IOrQr=V/Iyv x ] Qg (3.2)

peJ aeJ\{av}

Now note that the canonical surjection 7: R — R' = R/ (pes P induces by Proposi-
tion A.10 an equality

Min(R')—{ﬂ(q)—Hﬂp/ﬂp‘qu}, (3.3)

peJ peJ
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and, moreover,

R/q=R/7(q). (3-4)
Then Equations (3.2), (3.3), and (3.4) yield
VI eQr=V/Iyv x [] @Qr/rq) (3.5)
ped aeJ\{av}
:V/IV X H QR’/ﬂ'(q)' (36)

qeMin (R)\{r (qv)}
Since qy € J, we obtain with Equation (3.4)
R /m(qv) = R/qv CV/Iy C Qrjqy = Qr'/r (qv)>
where V/Iy € Vg/q, by (1), and hence
V/Iv € Vri)rqy- (3.7)
Thus, by (1) and Equations (3.6) and (3.7) there is a map

¢:{V€Vr|av € J} = Vg,
Vi V/ () pQr.

ped

Let now V' € Vgi. Then by (1) and Equations (3.3) and (3.4) we have

V' =V'/Ly x 1T Qr/q (3.8)
q€Min (R")\{ay}

= V,/IV/ X H QR’/w(q) (39)
g€ \{7= (ay1)}

=V'/Iy: x 11 Qry/q- (3.10)

qe\{m = (ay+)}
By (1) we have gy € Min (R’), and hence 7! (qy) € J by Equation (3.3). Since
V'/Tyr € Vi y(1,,nr) by (1), Equation (3.4) yields
R/ 7 (qv) = R fay: C V' /Iy C Qrrjqy = Qryn1 (g0

and hence
V//Ivl S VR/W*1 (Qyr) (3.11)

Moreover, Equation (3.10) implies

V, X H QR/q’ = V//IV/ X H QR/q X H QR/q’

9’ €Min (R)\J qeI\{m 1 (ay1)} 9/ €Min (R)\J

:V//IV/ X H QR/q'

q€Min (R)\{7~1 (qy/)}
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3. Valuations over One-dimensional Cohen—Macaulay Rings

Thus, (1) and Equations (3.4) and (3.11) imply

V' x H QR/q’ € Vr
q'€Min (R)\J
with
Ay = (av) € J
V5 Ty entin (s Qrrar '

Hence, there is a map

¢:VR/—>{V€VR|quJ},

ViesVix [ Qrsp
geMin (R)\J

By construction, we obviously have ¢ o ¢ = idy,, and ¢ o ¢ = id{yvey,|r,nres}-
Therefore, ¢ and v are bijective and mutually inverse maps.

With what we just showed, the remaining part of the statement follows from Propo-
sition D.16. (]

3.2. Semigroup of Values

Let R be a one-dimensional equidimensional semilocal Cohen—-Macaulay ring. Theo-
rem 3.2.(1) provides the basis for the definition of the semigroup of values of R. We
consider the values in the finitely many discrete valuations of @ simultaneously. Similarly,
we associate to a regular fractional ideal of R its value semigroup ideal. Studying the
properties of these objects in relation to certain algebraic hypotheses (see Proposition 3.22
and Corollary 3.30) leads to the definition of admissible rings (see Definition 3.18) We
decompose the semigroup of values and value semigroup ideals into local components (see
Theorem 3.28), and we show their invariance under completion (see Theorem 3.34).

Definition 3.14. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring, and let Vg be the set of (discrete) valuation rings of Qg over R (see Theorem 3.2.(1)
and Definition D.1) with corresponding valuations

vrR = (W)yey,: Qr — ALS
We will also write v instead of vp.
(1) To a fractional ideal J € R we associate its value semigroup ideal
Ty =v (J°8) C Z"
(see Lemma 3.4.(2)).

(2) If 3 = R, then the monoid 'z C NV is called the value semigroup or semigroup of
values of R.
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3.2. Semigroup of Values

(3) The value semigroup I'g is said to be local if O is the only element of I'g with a zero
component in ZVE.

Remark 3.15 (See [25], Remark 3.1.10). Let R be a one-dimensional equidimensional
semilocal Cohen-Macaulay ring, and let &, § € Rg. If € C §, then I'¢ C I';.

Lemma 3.16. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring, let 3 € Rp, and let © € 3. Then x € T if and only if v(zx) € ['5.

Proof. If x € 3¢, then v(z) € I'y by Definition 3.14.
If 2 € 3\ 7', then v(z) € (ZU{oc})"® \ ZY% by Lemma 3.4.(2). Hence, v(z) €
(ZU{oc})""\ Tp. O

The following result was stated without prove in [7, (1.1.1)] and [10, Section 2].

Proposition 3.17 (See [25], Proposition 3.1.4). A one-dimensional equidimensional semilo-
cal Cohen—Macaulay ring R is local if and only if its value semigroup I'r is local. If R is
local, then the maximal ideal is

mp = {z € R|v(z) > 0} = RL.

Proof. Suppose first that R is local with maximal ideal mp. Then Theorem 3.2.(6) and
Propositions B.3, B.15, and D.13.(3) imply

mp C ﬂ n= ﬂmvz n{$€QR|Vv($)>0}:{$€VR|V($)>O}.
neMax (E) VeVr VeVr

The statement follows from Lemma 3.4.(4).

Suppose now that I'g is local. We want to show that
m={zeR|v(z)>0}

is the unique maximal ideal of R.
We show that v (x) has no zero component for any = € m. Then

m = R!,

and hence it is an ideal of R by Proposition 3.8.

So assume that there is z € m such that vy, () = 0 for some Vi € Vg. Then z €
R\ R™ C @\ Q™8 by the assumption on I'g and Lemma 3.16. Hence, by Theorem 3.2.(2)
there is Vo € Vg such that x € Iy,, and Proposition D.8.(2) and Diagram (3.1) imply
Vi # Va.

Since R is a one-dimensional Cohen—Macaulay ring, there is a y € R™8 \ R*. Then
v(z) € T, and Lemma 3.4.(2) and (4) yield v (z) > 0 for every V' € Vi. After replacing y
by a suitable power, we may assume that vy () # vy (y) for all V€ Vi, Then

v(z+y)=inf{v(z),v(y)} eZ’r
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3. Valuations over One-dimensional Cohen—Macaulay Rings

by Lemma D.22.(5) and since v (y) € ZYE. Thus, z+y € R™® = RNQ"® by Lemma 3.4.(2),
and hence v (x +y) € T'p.
Since vy, (y) > 0, we have

4% (z+y) = min{yvl(x),uvl(y)} =n (z) = 0.

By assumption on I'g, this implies v (z + y) = 0. Since vy, (z) = 0o, we obtain

OZVVz(x+y):VV2(y)'

But this contradicts the choice of .
Since R* = R° N R = {z € R| v (z) = 0} by Lemma 3.4.(4), any proper ideal of R is
contained in m. Therefore, m is the unique maximal ideal of R. O

Definition 3.18. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring.

(1) We call R analytically reduced if R is reduced or, equivalently, R is reduced for all
m € Max (R) (see Lemma A.68).

(2) The ring R is called residually rational if R/m = R/n for any m € Max (R) and
n € Max (ﬁ) with nN R = m. Equivalently, R/m = V/my for any m € Max (R) and
V € Vi with my N R = m (see Theorem 3.2.(6)).

(3) We say that R has large residue fields if |R/m| > |Vg,, | for all m € Max (R).

(4) We call R admissible if it is analytically reduced and residually rational with large
residue fields.

Definition 3.19. Let S be a partially ordered monoid, isomorphic to N/ with its natural
partial order, where I is a finite set. We consider the following properties of a subset E of
the group of differences Dg = Z! of S (see [7, Section 1] and [8, Section 2]).

(E0) There exists an a € Dg such that a4+ S C E.
(E1) If o, 8 € E, then inf {o, 8} = (min {oy, Bi});c; € E.

(E2) For any o, € E and j € I such that oj = 3; there exists an ¢ € E such that
€j > a; = f; and ¢ > min {a;, 5;} for all ¢ € I, where equality is obtained whenever

o 7 fi.
We call E good if it satisfies (E0), (E1), and (E2).
The difference of two subsets E/ and F of Dz is

E-F={aeDg|la+FCE}

Lemma 3.20 (See [25], Lemma 3.1.7). Any group isomorphism of Z* preserving the partial
order is defined by a permutation of the standard basis.
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3.2. Semigroup of Values

Proof. Let ¢ be an automorphism of Z* preserving the partial order. Then (¢ (e;)),c (1,5}
is a basis of Z*, and hence for j € {1,...,s} there are \; € Z, i = 1,...,s such that 0 <
e; =>; Nip(e;) = ¢ (> i1 \ie;). Since ¢ preserves the order, this implies Y ;_; A\je; > 0,
and hence \; > 0 for all i = 1,...,s. For the k-th component (k € {1,...,s}) we have

Z/\i(@ (ei))k = (Z Aip (ei)> _ (ej)k _ {1 if k=7,
= =1 k 0 else.

As ¢ is order preserving, we have ¢(e;) > 0 for every i = 1,...,s. Therefore, e; = ¢ (e;)
for some i € {1,...,s}. O

Lemma 3.21 (See [25], Lemma 3.1.8). Let R be a one-dimensional equidimensional
analytically reduced semilocal Cohen—Macaulay ring, and let 3 € Rr. Then R € Ry, and
hence Rz C Rr. In particular, €5 € Rr N Ry, and & = xR for some x € (’deg with
I/(QS‘) + NVR C Fj.

Proof. Since R is analytically reduced, R is by Corollary C.15 a finite R-module. This
implies R € Rg (see Remark 2.6.(1)), and hence €5 = J: R € RgN Ry by Proposi-
tion 2.7.(2).

Moreover, €5 € Ry implies by Lemma 3.11 that there is an x € Q™® such that &; = zR.
Since 1 € R, this yields z € €3 N QR® = €. Finally, we obtain by Lemma 3.4.(2),
Proposition 2.7.(1), and Remark 3.15

v(z)NVR = zCTy
since v is a group homomorphism, and since zR C J. ]

If R is a one-dimensional equidimensional semilocal Cohen—Macaulay ring, and if J € R g,
then the value semigroup ideal I'y of J is a semigroup ideal of I'r. Moreover, due to D’Anna
(see [8]) certain algebraic hypotheses on R imply the properties (E0), (E1), and (E2) on I';.

Proposition 3.22 (See [25], Proposition 3.1.9). Let R be a one-dimensional equidimen-
stonal semilocal Cohen—Macaulay ring, and let J € Rpg.

(1) We have I'y +T'r C I'5.
(2) If R is analytically reduced, then T'y satisfies (E0) with I = Vg and S = I'y = NVE.
(8) If R is local and analytically reduced with large residue field, then I'y satisfies (E1).
(4) If R is local and residually rational, then 'y satisfies (E2).

In particular, if R is local admissible, then I'y satisfies (E0), (E1), and (E2).

Proof. (1) This follows from v being a homomorphism of groups.

2) By Lemma 3.21 there is an z € €~% such that
( y J

v(z) +NR =y (mreg) = v((€5)™8) C v (38) =Ty

since v is a group homomorphism and v (Rreg) = NY& by Lemma 3.4.(2).
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3. Valuations over One-dimensional Cohen—Macaulay Rings

(3) See [25, Proposition 3.1.9.(c)].
(4) See [25, Proposition 3.1.9.(d)]. O

While taking the value semigroup preserves inclusions (see Remark 3.15), it is in general
not compatible with the expected counterparts of products and quotients of ideals.

Lemma 3.23 (See [25], Lemma 5.3.1). Let R be a one-dimensional equidimensional
semilocal Cohen—Macaulay ring, and let J,J € RR.

(1) If 3,3 € Ry, then
I'y4+Ty CI'y;

and
Fj;g Ccl'y— Fg.
(2) If 3,3 € Ry, then
F33 =I5+ F‘j
and
F33 = Fj — F‘j

Proof. (1) Let o € I'y + I'y. Then there is an = € 7% and a y € J™8 such that
v(z) + v(y) = a. The claim follows since zy € (3J)"®, and since v is a group
homomorphism.

Let a € I'5.;3. Then there is z € (J: J)"™® such that v (z) = a. Since zJ C J, this
yields by Proposition D.11 and Diagram (2.10)

a+Ty=v(z)+v (™) =v(x3™) Cv(d*) =T
Hence, a € I'y — I';.
(2) This follows immediately from Definition 3.6.(1) and Lemma 3.9.(1) and (2). O

Remark 3.24 (See [25], Remark 3.1.10). Let R be a one-dimensional equidimensional
semilocal Cohen—Macaulay ring, and let J,J € Rp.

(1) The inclusion I'y + I'y C I's5 (see Lemma 3.23.(1)) is in general not an equality, see
Example 3.25 below.

(2) Similarly, the inclusion I';.; C I'y — I'y (see Lemma 3.23.(1)) is in general not an
equality, see Example 3.26 below.

Example 3.25 (See [25], Example 4.1.3). Consider the admissible ring (see Proposi-
tion 3.41)

R=C|[(~t}.t2) . (~.0).(0.t2) (#}.0)]] c )] x C[it2)] = R,
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Figure 3.1.: The value semigroup (ideals) in Example 3.25.

and the R-submodules of Qg

[

- <(ti”,t2) : (t%70)>R’
3= <(t§’,t2) : (tilv 0) : (t?’0)>3'

Then 7,3 € R (see Remark 2.6.(1)). Moreover, Figure 3.1 shows that R is local (see
Proposition 3.17), and that (E2) fails for I'y+I'y. Thus, I'y+I'y C I'sy by Proposition 3.22.

Example 3.26. Barucci, D’Anna and Froberg showed in [10, Example 3.3] that for the
local admissible ring (see Figure 3.2 and Propositions 3.17 and 3.41)

R =C[[x1,...,z11]]

with z; = (tz’tg)’ T2 = (t?vtg)v T3 = (t?vtél)v Ty = (t%()?téo)’ L5 = (t%lvtg)’ T6 = (t%lvt%())?
vr = (1% 67°), w8 = (t1°,—2°), @0 = ((°,85°), w10 = (11°,42"), 211 = (#1%,13") with
maximal ideal mp property (E2) fails for the difference I',;, — I'g, see Figure 3.2. Thus,
I'wp, —I'r € I'ng:r by Proposition 3.22.

3.2.1. Compatibility with Localization

We show the compatibility of the semigroup of values of a one-dimensional equidimensional
reduced semilocal Cohen—Macaulay ring R with localization. Similarly, also the value
semigroup ideals of fractional ideals of R decompose into local components (see Theo-
rem 3.28). This enables us to extend the results of Proposition 3.22 to semilocal rings (see
Corollary 3.30).
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FR PmR - FR
OO0 000000 O0CeO0Ce e e oo OO O0OO0OOCee®0e o000 0 0 00
OO0 O0OO0O0DO0O0O0O0CeO0Ce o0 00 OO O0OO0OOCe e 0 0000 0 0 00
OO0 O0OO0O0DO0OO0O0O0Ce0Ce o0 00 OO O0OO0OOCe o0 0000 0 0 00
OO0 O0OO0O0DO0OO0O0OO0Ce0Ce o0 00 OO O0OO0OOCee©0e o000 0 0 00
OO0 O0OO0O0DO0O0O0OO0OCeO0Ce e e 0o OO O0OO0OOCee®0e o000 0 0 00
OO0 O0OO0OO0OO0OO0OO0C e@®O0OO0OO0OOoOO0oO OO0 OO O0OO0OO0Ce o0 0600 0 0 0 00
O O O0OO0OO0OO0OO0OCO0O e ee O OO0 Oo0Oo OO O0OO0OO0Ce o0 0600 0 0 0 00
OO O0OO0O0ODO0OO0OO0Ce o000 0 0 00 OO O0OO0OOCe o0 0000 0 0 00
OO0 O0OO0OO0OO0OO0OO0OO0OOoOO0OOoOOoOOoOOoOOo OO O0O0OO0C e e 0 0 00 0 0 0 0 0
O OO OO @O0 OO0 O0OO0OOoOOoOOoOOoOOo OO OO0 e e o 0 06 0 06 0 0 00
O O0OO0OO0OO0Ce@e®OO0OO0OO0OO0OOoOO0oOOoOOo OO O0OCO0OO0Ce o0 0600 0 0 0 0 0
OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOo OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0oOOoOOoOoOo
OO0 O0OO0OO0OO0OO0OO0OO0OOoOO0OOoOOoOOoOOoOOo O O ®@® OO0 OO O0OO0OO0OO0OO0oOO0o0OOoOOoOOo
0O O O0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOoOOoOOooOo OO ® ®e ® OO OOOOO0OO0OOoOOoOOo
OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOo OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOoOoOo
OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOo OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0oOOoOOoOoOo

Figure 3.2.: The value semigroup (ideals) in Example 3.26, see [10, Example 3.3].

Proposition 3.27. Let R be a one-dimensional equidimensional semilocal Cohen—Macaulay
ring. Then Ry is a one-dimensional reduced local Cohen—Macaulay ring for every m €
Max (R).

Proof. Let m € Max (R). Then height m = 1 by Proposition B.27 since R is equidimensional.
Hence, dim Ry, = 1 by Proposition A.20.(2). Moreover, Ry, is reduced by Lemma A.27 as R
is reduced. Moreover, Ry, is Noetherian by Corollary A.21. Thus, Ry, is a one-dimensional
reduced local Cohen—Macaulay by Proposition C.13. O

The first part of the following Theorem was stated by Barucci, D’Anna and Froberg
in [10, Section 1.1].

Theorem 3.28 (See [25], Theorem 3.2.2). Let R be a one-dimensional equidimensional
reduced semilocal Cohen—Macaulay ring. Then there is a decomposition

I'r= ]| Tga
meMax (R)

of T'r into local value semigroups. Moreover, for any & € Rp there is a decomposition

I [ S

meMax (R)
For the proof of Theorem 3.28 we need the following lemma.

Lemma 3.29 (See [25], Lemma 3.2.1). Let R be a one-dimensional equidimensional
reduced semilocal Cohen—Macaulay ring. For any m € Max (R) the localization map
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7: Qr = (QR)y = @R, (see Proposition A.77 for the equality) induces a bijection
PV EVR|myNR=m} = Vg,
V= Va,
7 Y W)« W.
In particular, (my), =m, ) for every V € Vg.

Proof. Let m € Max (R), and let V' € Vg with my N R = m. Since localization is exact by
Proposition A.24, we have

Ry CVa C (QR)m = QRu>
where the last equality follows from Proposition A.77. Since R\ m C V \ my by assumption,
and hence vy (x) = 0 for all x € R\ m by Proposition D.13.(1) and (3), Lemma D.19
implies Vi, € Vg,, with 771(V;,) = V. Thus, py is an injective map.

Let now W € Vg, , and set V = 7= 1(W). Then V;, = W C Qg,, by Lemma A.35.(2),
and hence R C V C Qr.

Let z,y € Qr \ V, and suppose that zy € V. Then 7(x),n(y) € Qr, \ Va yields
m(x)m(y) = w(zy) € 7(V) C W which is a contradiction to Qg,, \ W being multiplicatively
closed as W is a valuation ring of Qg,,. Thus, also Qg \ V' is multiplicatively closed, and
hence V € Vg.

Consider the commutative diagram of ring homomorphisms

R-m, R

]

Then 7! (myy) is a prime ideal of V' by Proposition A.20.(1), and Theorem 3.2.(6) and
Propositions B.3 and B.15 yield

mHmp)NR=7"Ymy)N7 ' (Ru) NR
7 Hmwy N Ry) N R

(7)™ (mw N Run)
(m

)~ (mBu)
m.

In particular, with m also p is regular, and hence p = my by Theorem 3.2.(1) and
Proposition 2.22.(d). O

Let R be a one-dimensional equidimensional reduced semilocal Cohen—Macaulay ring. By
Theorem 3.2.(1) and Proposition 2.22.(d) the sets {V € Vg | my N R = m}, m € Max (R),
form a partition of V. By Lemma 3.29 there is a bijection

p:Ve— || Vi,
meMax (R)

V — vaﬂR(V) - vaﬁR
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inducing an order preserving group homomorphism (see Lemma 2.16.(2) and Proposi-
tions A.38 and A.39)

Ao I Rv— 11 11 Riv,

VeVr meMax (R) WeVR,
J > J,- :
( V)VGVR <<( P 1(W)>p—1(W)ﬁR> Weva>mEMaX (R)

Let (Jv)yey, € [lvey, Ri;- Then Proposition 2.21.(2) yields Jy = mf,‘/ with ky =
max {k‘ Sy m’f, < 3} for every V € Vg. So Lemma 3.29 implies

1~ =/ W
o ((JV)VGVR) =p <(mv )vevR)
k 1
— - ()
= ((mpl(W))m ﬁR)
p71 (W) WEVRm meMax (R)

kp=10w)

= m, — )

( p I(W) m _q QR

rmm WeVn

k 1
_ pTH(W)
_ ((mw ) ) .

WEVRn meMax (R)

Since p also induces an isomorphism

meMax (R)

EACESSE | BACGS
meMax (R)

we obtain with Diagram (3.1) a commutative diagram

RS
N
<
=yl

I =¥

VEVR
| !
II I R - [I z"%.

meMax (R)WEVR,, Menta (r) @B meMax (R)

and hence

-1
p’:( 11 ¢>Rm) op’odr

meMax (R)
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3.2. Semigroup of Values

is an isomorphism. With Proposition 3.5 it fits into a commutative diagram

reg reg
R H QRIU

meMax (R)

R |

I[I Ra

meMax (R)

Il

()
= HmEMax (R) T’ZJR""

VR
H Ry — . ’ H H R [nentes () Vim
VEVg B meMax (R)W VR,
$r|= HmEl\/Iax(R) ¢Rm =
11
v P v
s ] 2%,
meMax (R)
where

&Rep— Il R = Il Reo
meMax (R) meMax (R)

J= (jm)meMax(R)’
see Lemma 2.16.(2), Proposition A.39, and Corollary B.8. This implies

T

vr(@) = (VR'“ (1>>m€MaX (R) (3.12)

for all z € Q1. To ease notation we identify ZY? and H ZVEm via p.
meMax (R)

Proof of Theorem 3.28. By Proposition A.20.(2) and Lemma A.27 Ry, is a one-dimensional
reduced local Cohen-Macaulay ring, and hence I'g_ is local by Proposition 3.17 for all
m € Max (R). To prove the Theorem we have to show the second decomposition of the
statement.

So let € € Rp. Then for any m € Max (R) Proposition A.39 and Lemma 2.16.(2) yield
€n € RR,, and by Equation (3.12) there is an inclusion

FeC [ Ten
meMax (R)

Let now

o= (am)mGMax (R) € H F@m.
meMax (R)
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3. Valuations over One-dimensional Cohen—Macaulay Rings

Then for any m € Max (R) there is 7™ € €y such that

)
VRo| — | = aum.
Ym

Since ym € R\ m, and hence ¥* € (Ry)" for every m € Max (R), Lemma 3.4.(4) implies
VR, (Ym) = 0. So after clearing denominators we may assume that y, = 1 for all m €
Max (R).

The Chinese Remainder Theorem yields for any m € Max (R) a

Zm € ( ﬂ n) \ m.
neMax (R)\{m}

Then Theorem 3.2.(6), Propositions B.3, B.15, and D.13.(1) and (3) imply for any m €
Max (R)

z
VR (]‘_“) = 07

vy (?) >0 for all V€ Vg, for all V € Vg, for every n € Max (R) \ {m}.

For every m € Max (R) pick a

T

kpm > max{z/v(ln) — vy (ﬁ‘“) ‘ V € Vg, n€ Max(R) \ {m}}

Then
z= Z Tmzim € €
meMax (R)
with
z
for all m € Max (R). Thus,
v(z) =«
by Equation (3.12), and the claim follows. O

With Theorem 3.28 we are able to generalize Proposition 3.22.(3) and (4) to the semilocal
case.

Corollary 3.30 (See [25], Corollary 3.2.3). Let R be a one-dimensional equidimensional
reduced semilocal Cohen—Macaulay ring with large residue fields, and let J € Rp.

(1) If R is analytically reduced, then T'y satisfies (E1).
(2) If R is residually rational, then T'y satisfies (E2).

In particular, if R is admissible, then I'y is good.
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3.2. Semigroup of Values

Proof. (1) This follows immediately from Theorem 3.28 and Proposition 3.22.(3).

(2) Let a, 8 € T’y such that ay = Py for some V € Vg, and set m = my N R €
Max (R) (see Theorem 3.2.(6) and Propositions B.3 and B.15). Then am,fm €
I'5,, by Theorem 3.28, and Lemma 3.29 implies (am)pm(v) = (Bm)pm(V)' Hence,
Proposition 3.22.(4) yields an ey € I'5,, such that

(em)yu(v) > (@m)yv) = Bm) vy
(em)ys > inf {(am)ys , (Bu)y} for all VI € Ve, \ {xm (V)},
(€m)y» = inf {(am)yn, (Bm)ynt for all V"€ Ve, \ {xm (V)}
with (am)ys 7 (Bm)ys -

Let now n € Max (R) \ {m}. Since R has large residue fields, there is by Proposi-
tion 3.22 an

en = inf {ay, Bu} € (T7),-

Hence, if we set € = (€m) nenax (r)> then € € 'y by Theorem 3.28, and

ev > ay = fy,
€y > inf {qu,ﬁvr} for all V' € Vr \ {V},
€y = inf {avu,,@vﬂ} for all V” S VR \ {V} with Qs 75 5‘///.

Thus, I'; satisfies (E2).
The particular claim follows with Proposition 3.22. O

Remark 3.31. In the proof of Corollary 3.30.(2) we need to apply property (E1) in (I';),
only for those n € Max (R) with (an)y # (Ba)y for all V€ Vg, . Otherwise property (E2)
is sufficient to construct an € € I'y of the desired form.

The following corollary relates value semigroup ideals to jumps in the filtration induced
by Q°, see Definition 3.6 and [13, Remark 4.3].

Corollary 3.32 (See [25], Lemma 3.3.4). Let R be a one-dimensional equidimensional
analytically reduced semilocal Cohen—Macaulay ring with large residue fields, and let J be
an R-submodule of Qr. For any a € ZVR we have o € T'5 if and only if 3 /3FeV £ 0 for
all V e Vg.

Proof. We have J%/3%Tev £ ( for all V € Vg if and only if for every V € Vg there is
an (V) € J with y(x(v)) > « and vy (:L’(V)> = ay. In particular, we have z(V) € 3%,
Since R is a Marot ring by Corollary A.46, Theorem A.74.(1), and Remark A.17, and
since therefore J* is by Proposition 3.8 and Remark 2.6.(2) generated by (J%)™®, we may
assume that z(V) € (3%)*8. Thus, there is for any V € Vx an z(V) € J with V(a:(v)) >«

and vy (x(v)) — ay if and only if for any V € Vp there is a (V) € I'y with 8 > a and
By = ay. Since I'; satisfies (E1) by Corollary 3.30.(1), this is equivalent to « € I'y. [
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3. Valuations over One-dimensional Cohen—Macaulay Rings

Lemma 3.33. A Noetherian semilocal ring R is admissible if and only if Ry is admissible
for every m € Max (R).

Proof. This follows from Propositions 3.27 and A.24, Corollary B.8, Lemma A.68, and
Definition C.2. O

3.2.2. Invariance under Completion

We show the invariance of the semigroup of values under completion. In the local case the
following statement is due to D’Anna [8, Section 1].

Theorem 3.34 (See [25], Theorem 3.3.4). Let R be a one-dimensional equidimensional
semilocal Cohen—Macaulay ring with large residue fields. If R is local or analytically reduced,
then

Iy =15

for any J € Rpy.
For the proof of Theorem 3.34 we need the following Lemmas.

Lemma 3.35 (See [25], Lemma 3.3.1). With R also R is a one-dimensional (semi)local
Cohen—Macaulay ring.

Proof. This follows from Theorem A.59.(2) and Corollaries A.64 and C.7. O

Lemma 3.36 (See [25], Lemma 2.1.5). Let R be a one-dimensional local Cohen—Macaulay
ring. Then QrR = Qﬁ, and there is an inclusion preserving group isomorphism
Rr — RE’
J—7,
IJNQR «J.
Proof. By [23, Chapter II, (2.4)] we have
~[1 ~
=R|=-| = R 3.13
Qr=R|;] = Qn (313)
for any r € m"™®, where m is the maximal ideal of R. Then Lemma 2.16.(2) and (4) and
Theorems A.55 and A.60 yield an injective map
'RR — Rﬁ,
J—JR=7
such that 3 =73 N Qg for all J € Rpy.

Let now J € Ry. Then there is an # € R™8 such that 23 C ]%, and by Equation (3.13)
we may assume that x € R™8. Now Theorem A.56 yields zJ N R € Ry with

(z3NR)R = zJ.
Thus, we obtain = (zJ N R) € Rr with
m_l(:vﬁﬂR)}Afz r 2y =3. O
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3.2. Semigroup of Values

Theorem 3.37 (See [25], Theorem 3.3.2). Let R be a one-dimensional local Cohen—
Macaulay ring. Then there is a bijection

o: Vg — Vﬁ
Ve VR
WNQRgr <« W.
In particular, my R = m,(y) for every V € Vg.
Proof. See [23, Chapter II, Theorem 3.19.(2)] for the bijection o: Vg — V5.

Let mp be the maximal ideal of R. By Theorem A.59.(3) we have R/mpR = R/mpg,
and hence R R
R=R+mgR. (3.14)

Let V' € Vg. Since mp C my by Theorem 3.2. (6) and Proposition B.15, we have mp C my .
This implies mRVR C mVVR va Therefore, we obtain with Equation (3.14)

VR = V(R—i—mR}?i) =V —i—mRVﬁf =V —i—mvﬁ,
where we use my R C VR for the last equality. This yields
VR/myR=V/(myROV).

Since my RNV =my N QrNV =my NV =my by Lemma 2.16.(4) and Theorem A.60,
this implies that R ~
VR/va = V/mv

is a field. Therefore, my R is a maximal ideal of V R.
Moreover, since

0 # (mp)™ = (my NR)™ C ((my NR)R) = (myRNR)"

by Lemmas 2.16.(4) and A.7, Theorems 3.2.(6) and A.60, and Proposition B.15, my R is a
regular maximal ideal of VR. Thus, my R = m,, = by Remark D.5 since VR € V. O

Corollary 3.38 (See | [25] Corollary 3.3.2). Let R be a one-dimensional local Cohen—
Macaulay ring. Then R=TRR. In particular, if R is finite over R, then R= R

Proof. Since R is by Lemma 3.35 a one-dimensional local Cohen—Macaulay ring, Theo-
rem 3.2.(4) yields with Lemma 2.16.(4) and Theorems 3.37 and A.60 (see [23, Chapter II,
Theorem 3.19.(3)])

Vevg Vevr

R= N W= vﬁ:(ﬂ V)E:RR
WGV&\

Remark 2.6.(1), Lemma 2.16.(2) and Theorems A.52 and A.55 yield the particular claim. [J
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3. Valuations over One-dimensional Cohen—Macaulay Rings

Let R be a one-dimensional local Cohen—-Macaulay ring. The bijection o: Vp — Vi of
Theorem 3.37 induces an order preserving group isomorphism (see Lemma 2.16.(2) and
Theorem A.54)

/ * *
o . H RV — H Rw,
Vevr WEVE

(jV)VGVR — <jU_1(W)R> WEVE

Let (3v)yeyp, € [lvey, Ri. Then Proposition 2.21.(2) yields Jy = ml‘g}’ with ky =
max {k: €Z|mk < 3} for every V € V. So Theorem 3.37 implies

Since ¢ also induces an isomorphism
o VR - 7VE,
we obtain with Diagram (3.1) a commutative diagram

11 =+ % ZVR

Vevr
IJ/ >~ o_//
g

H R*W ¢:A ng’

N R
WEVR

and hence
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3.2. Semigroup of Values

is an isomorphism. With Proposition 3.5 it fits into a commutative diagram

Qgg gg

Ry : R

| ¥R (3.15)

VR H Ry %) H Ry HmEI\/Iax(R) VRm

VeVr WGV;%\

PR |= S
Zn —— s L%,

where

J+— IR,

see Lemma 2.16.(2), Corollary 3.38, and Theorem A.54. This implies

for all z € Q7% To ease notation we identify ZY? and 7Y% via o

Proof of Theorem 3.34. Let J € Rp, and let m € Max (R). Then Proposition A.38 yields

Since J ®r Rm € RR, by Lemma 2.16.(2) and Proposition A.39, Theorem A.55 implies
’3;:ng\Rm=3®RRm®Rm§;:j®R§;=j®R§§,

where the last equality follows from Theorems A.55 and A.59.(2). So with Proposition A.38
and Theorem A.55 we obtain

’3:1:3(83}?3:3@3?{@@?{&:3@/\@

Therefore, using Theorem 3.28 we may assume that R is local.
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3. Valuations over One-dimensional Cohen—Macaulay Rings

So let R be a one-dimensional local Cohen-Macaulay ring, and let o € ZYE. Then
Lemmas 3.9.(1) and 3.35 and Diagram (3.15) yield

QYR = n(Q%)
~1
= (¢§ ° 7/)13:) 00" o (¢proYr)(Q)
-1 "
= (¢§o wg) oo (a)
= Qs
So for any J € Ri we obtain with Lemma 2.16.(2) and (4), Proposition 3.8 and Theo-
rems A.55 and A.60
3 =7"R=(0NQ")R=IRNQ“R=TNQ% =7 (3.16)

Now we have by Corollary 3.32 « € T’y if and only if €*/E>teV £ for all V € Vg. The
claim follows since by Equation (3.16) and Theorem A.60 the latter condition commutes
with completion. O

Remark 3.39. Let R be an analytically reduced one-dimensional local Cohen—Macaulay
ring. Then R is a reduced one-dimensional local Cohen-Macaulay ring by Lemma 3.35.

Since R=R by Corollary 3.38 and Theorem C.14, Corollary A.62 yields

neMax (ﬁ) meMax (E)

=3
E

(3.17)

Since R is equidimensional, also Ris equidimensional by Proposition B.3 and Lemma 5.30.
This implies height m = dim R = dimi]TZ = 1 by Proposition B.27 and Theorem B.14 for
every m € Max (R) Thus, Ra = Ry is by Proposition B.5 and Corollary B.8 a one-

dimensional integrally closed local ring. Moreover, }?im is reduced as a subring of the
reduced ring Qp (see Lemma A.27). Thus, Ru is a one-dimensional integrally closed
local Cohen—Macaulay ring, and hence a domain by [23, Chapter I, Proposition 3.29 and
Chapter II, Proposition 2.5]. Therefore, there is by Equation (3.17) and Lemma A.6.(2) a
bijection

Max (R) — Min (E) (3.18)
mapping m € Max (E) to the unique p € Min (E) contained in m.
Hence, Theorem 3.37, Theorem 3.2.(6), Equation (3.18), and Theorem A.72 yield a

sequence of bijections

=~ =

Vr — Vﬁ — Max (R) — Min (R) — Min (]/%) (3.19)

mapping
V= qs
v
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3.3. Algebroid Curves

(see Propositions 3.13 and D.13).
Suppose that R = R. Then

V/Iy = R/qv

by Equation (3.19), Theorem 3.2.(4), and Proposition 3.13.(2). Moreover, Corollary D.32
and Proposition D.16 yield
W =VRiq °TV>

where Ty : Qr — Qpr/q, = Qgr/Iv is the canonical surjection (see Theorem 3.2.(2),
Proposition 3.13.(1), and Theorem A.74.(1)). Therefore, the product

( R/UIV)VGVR 1 Qr = VI;I)R QR/QV — YR

yields by Equation 3.19 and Theorem A.74.(2) the same notion of a semigroup of values as
defined in Definition 3.14. This alternative approach is often used in the literature, see for
example [31, 12, 7, 8].

3.3. Algebroid Curves

Definition 3.40. Let k be a field. An algebroid curve over k is a complete equidimensional
reduced Noetherian semilocal k-algebra R of dimension one such that |k| > |Min (R)|, and
all residue fields of R are isomorphic to k& (under the canonical surjections R — R/m for
m € Max (R)).

Proposition 3.41. An algebroid curve is an admissible ring.

Proof. Let R be an algebroid curve. Then by definition and Proposition C.13 R is a
one-dimensional equidimensional semilocal analytically reduced Cohen—Macaulay ring.
Moreover, since there is a bijection between Min (R) and Vi (see Remark 3.39, Equa-
tion (3.19)), R also has large residue fields. Finally, R is residually rational by Lemma B.21
since its residue fields are isomorphic to k£ by assumption, and hence algebraically closed. [

Proposition 3.42. Let k be a field, and let R be an algebroid curve over k. For any
m € Max (R) there is an ny € N and an ideal iy okamgm), e ,m%?” such that

I e,

méemax(R)

12

R

Proof. Since R is a reduced complete semilocal ring, Theorem A.61 yields

R~ [ R
meMax (R)

and Ry, is a reduced complete local ring for any m € Max (R). For any maximal ideal m €
Max (R), let (azgm), e ,:cglm)) be a family of generators of m. Since Ryn/mRy = R/m =k

m
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3. Valuations over One-dimensional Cohen—Macaulay Rings

and k C Ry, for any m € Max (R), Theorem A.67 yields ideals iy, C kagm), e ,%&?H
such that

Ry = k:ngm), . .,x%‘?”/im
for any m € Max (R). O

Lemma 3.43. Let Q be a ring with Q¢ = Q* having a large Jacobson radical, let V be a
discrete valuation ring of Q, and assume that V is a complete domain.

(1) The discrete valuation ring V is local with mazimal ideal my .

(2) If t € Q is a uniformizing parameter of V', then there is an isomorphism

¢: V — k[[T]],
t— T,

where k =V /my .

(8) The valuation of V is
vy = ordy og.

In particular, there is a commutative diagram

K[[T)) ———— K[TN[T]

Proof. (1) See Remark D.6.

(2) By Proposition 2.23.(2) the maximal ideal my is generated by a uniformizing pa-
rameter t. Since V is complete by assumption and local by (1), Theorem A.67
yields

V = E[[T]]/i

for some ideal i € k[[T]], where k = V/my. As dimV =1 and V is a domain, we

obtain i = (0), and hence
V = k[[T]).

(3) By Proposition 2.24.(1) we have
Q=v[r~t| = kT[T,
see (2). So let f € k[[T]][T~']. Then

f
Tordr f?

f — TordT f
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3.3. Algebroid Curves

and —f— € (k[[T]])" since

OI’dT W =0.
Hence,
vy = ordr o¢
by Corollary 2.25.(2) since ¢(t) = T. O

Theorem 3.44. Let k be a field, and let R be an algebroid curve over k. The normalization
R of R is a finite product of discrete valuation rings

R= ]| R/p.

peMin (R)

For any p € Min (R) there is an isomorphism

¢p: R/p — K[[T]],
tp = T,

where ty is a uniformizing parameter for R/p. The valuation of R/y is
VRlp = ordr, ogy.

In particular, there is a commutative diagram

NJ(¢p)ngln(R) o~ (Zoo)Min (R)
m\;Gkﬁn(R)
HpGMin (R) k[[TPH — HpEMin (R) k[[TpH [Tp_l]

Proof. By Theorem B.42 we have

R= ] R/p.

pEMin (R)

So let p € Min (R). By Remark 3.39, R/p is a discrete valuation ring. Moreover, R/p is
a domain by Corollary A.73. Since R/p is a one-dimensional Cohen—Macaulay ring by
Proposition C.13, m is complete by Theorems A.52, A.55, and C.14. Then Lemma 3.43
yields the statement since R is residually rational, and hence by Theorem B.42 and
Lemma A.6.(2)

k=R/mp=R/mp= (Ri/p)/mRi/P

is a residue field for R/p. O
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3. Valuations over One-dimensional Cohen—Macaulay Rings

Let k be a field, and let R be an algebroid curve over k. By Proposition 3.42 we may
assume that R = k[[X1,...,X,]]/i for some ideal i of k[[X1,...,X,]]. By Theorem 3.44
there is an isomorphism

o:R— [ kit

peMin (R)

where k[[t,]] is a discrete valuation ring with uniformizing parameter ¢, for any p € Min (R).
This yields a parametrization

Xi = zi(t) = ¢(X5),

see [32, Chapter I, Section 3.1]. If n = 2, the map ¢ can be computed using using the
Newton-Puiseux algorithm, see [32, Chapter I, Algorithm 3.6]. In the following, we may
identify R with its image

o(R)c I kIt

peMin (R)

where

¢(R) = k[[X1(2), ..., Xn(D)].
The total ring of fractions of R is by Theorem A.74.(2) and Proposition 2.24.(1)

Qr=TI Hs)[5"]

peMin (R)

If 3 € Ry, then by Propositions 4.16.(2) and 4.56

=" [ Kt
peMin (R)

where we use the multi-index notation, i.e. if x € [ cnin () F[[tp]] and o € ZMn(R) then

= (‘rgp)peMin (R)"

Also recall that by Corollary 2.25.(2) for any = € Q™8 there is a unique element a =
(@p) pentin (r) Such that

r = at’®,

The multivaluation of R (see Section 3.1) is by Theorem 3.44

V= (Vp)peMin(R) = <0rdtp)p€Min (R)

So for any J € Rp, its value semigroup ideal is

Iy = {(ordtp :cp(tp))peMin(R) T = (Tp)yerin(ry €T ° C H E[[tp]] [tpl]}
peMin (R)

C ZMin (R) ]
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3.4. Integral Extensions of Admissible Rings

Theorem 3.45. Let R be a reduced ring, and let A be an integral extension of R in Qg.
(1) If R is admissible, then A is admissible. Moreover, Vr = V4.
(2) If R is an algebroid curve over a field k, then A is an algebroid curve over k.
For the proof of Theorem 3.45 we need the following Lemmas.

Lemma 3.46. Let R be an admissible ring, respectively an algebroid curve, and let A be
an integral extension of R in Qr. Then A is finite over R.

Proof. Since A is an integral extension of R in Qr, we have A C R. Since R is by definition,
respectively by Proposition 3.41, a one-dimensional analytically reduced semilocal Cohen—
Macaulay ring, there is by Lemma 3.21 and Remark B.23.(1) an x € R such that

2AC xR =¢Cr CR.
Since R is A Noetherian, and since x € R"™®, this implies that A is a finite R-module. [

Lemma 3.47. Let R be an admissible ring, respectively an algebroid curve, and let A be
an integral extension of R in Qr. Then A is Noetherian.

Proof. This follows from Lemma 3.46 and Theorem A.1. O

Lemma 3.48. Let R be an admissible ring, and let A be an integral extension of R in QR.
Then A is a Cohen—Macaulay ring.

Proof. Since A is an integral extension of R, Theorem B.14 yields dim A = dim R = 1.
Moreover, since R is reduced by definition, also Qg is reduced by Lemma A.27. Therefore,
A is reduced since A C Qg. Since A is Noetherian by Lemma 3.47, it is a Cohen—Macaulay
ring by Proposition C.13. O

Lemma 3.49. Let R be an admissible ring, respectively an algebroid curve, and let A be
an integral extension of R in Qr. Then A is a semilocal ring.

Proof. The inclusions R C A C R imply Q4 = Qr by Lemma A.34, and A = R by
Proposition B.5. By Theorem 3.2.(1) and (6), respectively by Theorem 3.2.(1) and (6) and

Proposition 3.41, the set Max (E) = Max (Z) is finite. Since

Max (A) = {mﬂA ‘ m € Max (Z)}
by Propositions B.3 and B.15 and Theorem B.12, A is semilocal. ]

Proof of Theorem 3.45. (1) By Lemmas 3.48 and 3.49 and Theorem B.14 A is a one-
dimensional semilocal Cohen—Macaulay ring. Since A is an integral extension of R in
Qr, we have inclusions R C A C R. This implies Q4 = Qr by Lemma A.34, and
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3. Valuations over One-dimensional Cohen—Macaulay Rings
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A = R by Proposition B.5. Since A=RCV forall V € Vg and R=A C W for all
W € V4 by Theorem 3.2.(4), and since Qr = Q 4, we obtain Vg = V4.

Since R is an analytically reduced one-dimensional semilocal Cohen—Macaulay ring,
R is by Theorem C.14 a finitely generated R-module. Then the inclusions R C
A C R = A imply that A is a finite A-module. Thus, A is analytically reduced by
Theorem C.14.

Let m € Max (A), and let n € Max (Z) with nN A =m. Then m N R € Max (R) by
Propositions B.3 and B.15, and Proposition B.6.(1) yields field extensions

R/(mNR)C A/m C A/n.
Since A = R, and since R is residually rational, this implies
R/(mNR)=A/m=A/n. (3.20)
Hence, A is residually rational. Moreover, Equation (3.20) implies
|Ajm| = |R/(m O R)| > [Vr| = [Val.

Therefore, A has large residue fields. Since A is equidimensional by Lemma B.31, it
is admissible.

Since A is an integral extension of R, Theorem B.14 yields dim A = dim R = 1.
Moreover, since R is reduced by definition, also Qg is reduced by Lemma A.27.
Therefore, A is reduced since A C Qg. Since R C A, and since R is a k-algebra, also
A is a k-algebra. Moreover, A is Noetherian by Lemma 3.47.

Since R is by definition a complete semilocal ring, and since A is a finite R-module
by Lemma 3.46, A is complete as R-module by Theorem A.55. As A is also semilocal
by Lemma 3.49, the topology of A as R-module coincides by Theorem A.52 with the
topology of A as a semilocal ring. Thus, A is a complete ring.

Let m € Max (A). Then m N R € Max (R) by Proposition B.15, and Lemma B.21
yields
A/m=R/(mNR) = k.

since R is an algebroid curve over k. Moreover, we have |k| > |Min (R)| = |Min (A4)]
by Theorem A.72.

Thus, A is a complete reduced Noetherian k-algebra of dimension one such that |k| >
|Min (A)|, and all residue fields of A are isomorphic to k. Since A is equidimensional
by Lemma B.31, it is an algebroid curve over k. O



4. Good Semigroups

Motivated by the properties of the semigroup of values of an admissible ring we introduce
a combinatorial counterpart of curve singularities: good semigroups. Examples of good
semigroups include the semigroups of values of admissible rings and numerical semigroups.
In analogy to Definition 3.14 and Corollary 3.30 we define a good semigroup S as a
submonoid of N’ (for a finite set I) satisfying properties (E0) (with S = N7), (E1), and
(E2) (see Definition 4.5). This Chapter is dedicated to the fundamental properties of good
semigroups.

Barucci, D’Anna, and Froberg showed that not any good semigroup is the semigroup of
values of an admissible ring (see [10, Example 3.3] and Example 3.26). On good semigroups
we want to introduce combinatorial counterparts of algebraic concepts on admissible rings.
In Section 4.1 we define (good) semigroup ideals of good semigroups in analogy to fractional
ideals of rings. Moreover, there is as in Theorem 3.28 a combinatorial version of localization
for good semigroups and semigroup ideals (see Theorem 4.9) which is compatible under
taking values (see Remark 4.10).

The “semigroup operation” corresponding to the quotient of fractional ideals is the
difference of semigroup ideals (see Section 4.3). For a semigroup ideal F satisfying
property (E1) of a good semigroup S € N the difference E — N/ defines the conductor
ideal of E (see Definition 4.26). We study properties of the conductor ideal in Section 4.4.
In particular, if J is a regular fractional ideal of an admissible ring R, then the value
semigroup ideal of the conductor of J is equal to the conductor of the value semigroup
ideal I'; of J (see Proposition 4.56).

An important tool to relate good semigroups and good semigroup ideals to admissible
rings and fractional ideals is the distance (see Definition 4.46). The properties of this
function are examined in Section 4.5. Most importantly, it allows for computing the length
of a quotient of two fractional ideals from their value semigroup ideals (see Proposition 4.51).
In particular, we may check equality of fractional ideals using their value semigroup ideals
(see Corollary 4.52).

Projections of the semigroup onto its components correspond to passing to the branches
of an admissible ring (see Proposition 4.67). Moreover, from the semigroup of values of an
admissible ring R we can directly deduce the value semigroup ideal of a minimal prime
ideal p of R on branches of R not corresponding to p (see Proposition 4.69). For general
good semigroups this construction allows for computing the conductor of the semigroup
from information on its components (see Proposition 4.64). The results on branches of
Section 4.6 will be important in the study of quasihomogeneous curves and semigroups in
Chapters 6 and 7.

Important examples of good semigroups are numerical semigroups, i.e. submonoids of
N with a finite complement (see Section 4.7). Among good semigroups the numerical
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semigroups have some particular properties. For example all semigroup ideals of numerical
semigroup are good (see Remark 4.6.(2)), and a good semigroup is finitely generated if
and only if it is a numerical semigroup (see [3, Bemerkung 1.2.14.(3)]). Given a numerical
semigroup S and a semigroup ideal E of S we introduce a quotient semigroup S/E (see
Definition 4.74). Then for any ring R the quotient of the semigroup ring R[[S]] by the
ideal R[[E]] is given as the semigroup ring of the S/E modulo a certain relation (see
Proposition 4.79). Finally, in Section 4.8 we study properties of semigroup rings over C.
Before studying good semigroups we first discuss some general facts about monoids. Let
S be a cancellative commutative monoid. Then S embeds into its (free abelian) group of
differences Dg. If S is partially ordered, then Dg carries a natural induced partial order.
Let I be a finite set. On the group Z! we consider the natural partial order given by
a < pfora,B € Z' if and only if a; < 3; for all i € I. We write o < B if « < 3 and o # .

Lemma 4.1. A finite cancellative monoid S is a group.

Proof. Let 0 # o € S. Since S is finite, there are m,n € N with m < n such that
ma = na.

As S is cancellative, this implies
0=(n—m)a.

Hence,
a+(n—m-1)a=0,

and therefore
—a=Mn—-m-—1)a. O

Lemma 4.2. Let S be a partially ordered monoid. If « € S is a unit, then o > 0 implies
—a < 0.

Proof. Let a € S* such that a > 0. Since S is a partially ordered monoid, we have
O=a—a>0—-—a=—a. O

Lemma 4.3. Let S be a partially ordered group. If any o € S is comparable to 0, then 0
is the only element of finite order in S.

Proof. Assume there is 0 # o € S of finite order. Then there is n € N with n > 0 such
that na = 0. In particular, « is a unit. So by Lemma 4.2 we may assume without loss of
generality that a > 0. Since S is a partially ordered group, this yields the contradiction

O=na=Mnm-1)a+a>n—-1Da>n—-2)a>...>a>0. O

Lemma 4.4. Let S be a partially ordered cancellative commutative monoid, and suppose
that Dg is generated by a finite set I such that there is an isomorphism

o: Dg — 7!

I>1— e
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Assume that o preserves the natural partial orders. Then I contains only positive elements.
Moreover, if J is a finite set generating Dg such that there is an isomorphism

7: Dg — z’
Joj— €;
preserving the natural partial orders, then I = J.

Proof. If o preserves the natural partial orders, then e; > 0 implies i = ! (e;) > 0 for all
1el.

Let J be a finite set generating Dg such that the isomorphism 7: Dg — Z” preserves
the natural partial orders. Then there is a commutative diagram

Dg
; % & (4.1)

7.

| IR

Since ¢ is an isomorphism, we have |I| = |J|. Moreover, since o and 7 preserve the natural
partial orders, also ¢ = 7 o 0! preserves the natural partial orders. Then there is by
Lemma 3.20 a bijection ¢: I — J such that

¢ (e;) = €5

for all ¢ € I. Therefore, the commutativity of Diagram (4.1) yields

i=0""(e) = (1) og(e) = (1) (eg,) = (i)
forall ¢ € I. Thus, I = J. O

4.1. Good Semigroups and Their ldeals

Having Definition 3.14, Proposition 3.22, and Corollary 3.30 in mind we consider submonoids
of N? (for a finite set I) satisfying properties (E0), (E1), and (E2). These objects are
called good semigroups by Barucci, D’Anna, and Froberg [10]. We introduce local good
semigroups (corresponding to Proposition 3.17), and we decompose good semigroups and
their ideals into local components.

Definition 4.5. Let S be a partially ordered cancellative commutative monoid such that
«a >0 for all @ € S. Assume that Dg is generated by a finite set I such that there is an
isomorphism Dg = Z! which preserves the natural partial orders. Note that I is then
unique and contains only positive elements by Lemma 4.4. We set

S:={a€Dg|a>0} =N,

(1) We call S a good semigroup if it satisfies properties (EO0), (E1), and (E2) (see
Definition 3.19).
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(2) A good semigroup S is said to be a numerical semigroup if |I| = 1.

(3) If 0 is the only element of S with a zero component in Dg, then S is called local (cf.
Definition 3.14). The mazimal (semigroup) ideal of a local good semigroup is

Mg = S\ {0}.

(4) A semigroup ideal of a good semigroup S is a subset ) # F C Dg such that E+S C E
and a + FE € S for some a € S.

(5) A good semigroup ideal of a good semigroup S is a semigroup ideal E of S satisfying
properties (E1) and (E2).

(6) For a good semigroup S we denote by Gg the set of all good semigroup ideals of S.
Remark 4.6 (See [25], Remark 4.1.2).

(1) If S is a good semigroup, any semigroup ideal F of S satisfies property (E0) since S
doesand £+ S C E.

(2) Any numerical semigroup S is a local good semigroup. Moreover, E € Gg for any
semigroup ideal E of S.

(3) If S and S’ are good semigroups with S C S’ C S, then Dgs = Dg, and hence S’ = S.
It follows that Gg» C Gg, and, in particular, S" € Gg.

(4) Let R be an admissible ring. Then by Definition 4.5 we have
v((@r)"™®) = Dry.

(5) Let R be an admissible ring. Then by Lemma 3.21 there is an a € I'g such that
a+NY® C Tg. It follows that Dr, = ZYE. Moreover, I'p is a good semigroup
with Tg = I'z; = NY (see Lemma 3.4.(2)), and I'y € Gr,, for every J € Rg by
Proposition 3.22.(1) and Corollary 3.30.

Lemma 4.7. Let S be a local good semigroup. Then Mg € Gg.

Proof. Since Mg C S, we have S + Mg C S. Moreover, S > 0 and Mg > 0 imply
Mg+ S > 0. Hence, Mg is a semigroup ideal of S.

Let a, € Mg C S. Then inf {a, 3} € S since S satisfies property (E1). Assume
inf {a, B} = 0. Then there is an ¢ € I such that without loss of generality «; = 0. Since S
is local, this implies « = 0, and hence « ¢ Mg. Therefore, Mg satisfies property (E2).

Assume there is i € I such that a; = f3;. Since S satisfies property (E2), there is an
€ € S such that

€ > a; = B,
€j > inf {a;, B;} for all j € I,
er = inf {ay, B} for all k € I with oy # Sy

In particular, e > inf {«, 8} > 0, where the second inequality follows since Mg satisfies
property (E1). This implies € € Mg, and hence Mg satisfies property (E2). O
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Remark 4.8. Let R be a local admissible ring with maximal ideal mg. Then I'g is local,
and
FmR = MFR)

see Proposition 3.17 and Remark 4.6.(5).

Theorem 4.9 (See [25], Theorem 4.1.6). Any good semigroup S decomposes uniquely and
compatible with the partial orders as a finite direct product

S= 1] Sm

meM

of good local semigroups Sy,. Any semigroup ideal E of S satisfying (E1) decomposes as
E= ][] En

If E € Gg, then E,, € Gs,, for allm € M.
Proof. See [10, Theorem 2.5, Remark 2.6, and Proposition 2.12]. O

Remark 4.10 (See [25], Remark 4.1.7). The decompositions in Theorem 3.28 are special
cases of those in Theorem 4.9 (see Corollary 3.30).

In the following, let S C Dg be a good semigroup. By Definition 4.5 we may identify
Dg = 7! for some finite set I, and this identification is by Lemma 3.20 unique. So consider
S now as a submonoid of Z!.

Notation. For any J C I we write
pry: Z' — 77 = z!’!
a=(a)ep oy = (O‘j)jeJ'
For a relative ideal E of S we denote
Ej=pr;(E).
If J = {j} for some j € I, we write pr; = PIyj}-

Lemma 4.11 (See [25], Remark 4.1.5). Let M be a finite set, and let (Sy,),,car be a family
of good semigroups, and for any m € M let E,, be a semigroup ideal of Sy,.

(1) Then
S = H Sm
meM
s a good semigroup with
Ds= ][] Ds.
meM
and
5= [ 5
meM
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(2) The set
E= ][] En

is a semigroup ideal of S.

(3) If Ey, satisfies property (E1) for every m € M, then so does E.
(4) If En, € Gg,, for every m € M, then E € Gg.

Proof. (1) For any m € M let ay,: Sy, — Dg,, be the canonical injection, and similarly
let acolonS — Dg be the canonical injection. Then the universal property of the
group of differences Dg yields a unique group homomorphism

ﬁ: DS—> H ng
meM

S 0o
”l \1@1

Dg g 11 Ds..
meM

such that the diagram

commutes. So for any n € M there is a commutative diagram

SnLS

({ QGM am

DsL HDSm

meM

Ds,,,

where
on: Spn—S= ][] Su
meM
is the natural injection. Therefore, the universal property of the group of differences
Dg, yields a unique group homomorphism
€: Dsn — DS
such that the diagram

SnLS

o e

B

DS e H Dsm
on * meM
€
Dg,
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commutes. Since the projection
Cn: H Dsm — Dgn
meM
fits into the commutative diagram

SnLS

\H":e M om
«

DS L H Dsm
meM

€ /
Cn

Ds

Qn

n

for all n € M, the universal property of the product [],,c)s Ds,, yields a unique
group homomorphism
n: H Dsm — Dg
meM
such that the diagram

commutes. Therefore, Dg = [],,csr Ds,,, and this is compatible with the partial
order induced by that on S. Hence, it follows that S = [],,cas Sm, and we have
a>0forallae§S.

Moreover, if I, is for any m € M a finite set of generators of Dg, such that
Dg, = Z'm then I = {0,,(i) | i € I,,, m € M} is a finite set of generators of Dg
such that Dg = Z!.

Since S, satisfies (E0) for every m € M, there is an o, € Sy, such that a,, +S;, C Sp.
Thus,

(@dmers +5 = @ners + ] S =TI (a+5a) € II Su=>5.
meM meM meM
and hence S satisfies (EO0).
Let o, 8 € S. Then ap,, By, € Sy, for all m € M. Since S,, satisfies (E1) for any
m € M, we have inf (q,, Bm) € Sy, for every m € M. This implies

inf {c, B} = (inf {m, Bm})menr € H Sm =S,

meM
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72

and hence S satisfies (E1).

Suppose now there is an m € M and an i € I, such that as, ;) = B5,(;). Since Sp,
satisfies (E2), there is an €, € S,, with

(6m)i > (am)l = (Bm)p
(€m); = min {(am)j, (Bm)j} for all j € I,
(€m), = min{(am ), (Bm),} for all k € I, with (aum); # (Bm) -

Setting €, = inf oy, B, € Sy, for every n € M and € = (ey,),,c); We obtain € € S with
€5,(4) > Min s, () = B5, ()

€; > min {oy, f;} for all j € I,
€r > min {ag, B} for all k € I with oy # Sg.

Thus, S is a good semigroup.

Since E,, is a semigroup ideal of S, for every m € M, we have

(0 2n) +5= (1 50) (11 )
:(H Em+5m>C<H Em>

meM meM
=F.

Moreover, for any m € M there is an o, € S, such that «,, + F,, C Sy, and hence

(am)mGM +E= (am)mEM + H By = H (am + Em) C H Sm =S.
meM meM meM

Thus, F is a semigroup ideal of S.

Let a, B € E. Then oy, B € By, for all m € M. Since E,, satisfies (E1) for any
m € M, we have inf (o, Bm) € Ey, for every m € M. This implies

inf {a, 8} = (inf {am, B mers € [ Em =S,

meM

and hence F satisfies (E1).

Suppose that E,, € Gg,, for every m € M. The E satisfies (E1) by (3). Let o, 8 € E,
and assume that there is an m € M and an i € I;;, such that ay, ;) = B, (;)- Since
E,, satisfies (E2), there is an €, € E,, with

(ém); > (om); = (Bm);;
(€m); = min {(am)j, (ﬁm)]} for all j € Iy,
(€m) = min {(am)s, (Bm), } for all k € Iy, with (oum)y, # (Bm) -
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Since E,, satisfies (E1), we have €, = inf a,, 8, € E,, for every n € M. So setting
€ = (€n)pepr We obtain € € E with

€5, (1) > Min s, iy = Bs, (i)
€; > min{«;, B;} for all j € I,
€x > min {ag, fi} for all k € I with ay, # B.

Hence, F € Gg. O

4.2. Minimal Elements

The group of differences Dg of a good semigroup is partially ordered. Hence, semigroup
ideals of S are partially ordered. We show that any semigroup ideal E of S satisfying
property (E1) has a unique minimal element, i.e. an element p which is comparable to,
and smaller than all other elements of F.

Lemma 4.12. Let E be a semigroup ideal of S. If E satisfies property (E1), then there
is a unique element pu € E which is minimal with respect to the partial order on Dg, i.e.
p<a foralaekFE.

Proof. By Definition 4.5.(4) there is an a € Dg such that o + E C S. Hence, the sets
E; C Z are bounded from below for all ¢ € I. This implies that there are

B@ =min{E;} € Z

for all i € I. Thus, there are 6¢) € E with 52@ = B for all i € I. Since E satisfies
property (E1), this yields
i = inf {(5@

z’eI}eE,

and by the construction we have p < « for all a € E.
Now let p/ € E such that ¢/ < a for all « € E. Then pu < p/ and y/ < p implies

p=p. O

Definition 4.13. Let F be a semigroup ideal of S satisfying property (E1). The minimal
element of E is by Lemma 4.12 the unique element pup € E satisfying up < o for all « € E.

Lemma 4.14. Let E be a semigroup ideal of S satisfying (E1). Then pg = 0 if and only
ifSCECS.

Proof. Suppose that gz = 0. Then a > pug = 0 for all o € E, and hence E C S. Moreover,
since E is a semigroup ideal and pugp € E, we have

S=0+S=ug+SCE.
Conversely, if S C E C S, then 0 = pug > up > pg = 0, and hence pup = 0. O

Lemma 4.15. Let R be an analytically reduced one-dimensional semilocal Cohen—Macaulay
ring with large residue fields, and let 7 € Rr. Then J C Q.

73



4. Good Semigroups

Proof. By Proposition 3.22.(1) and (2) and Corollary 3.30.(1), I'r is a good semigroup,
and I'; is a semigroup ideal of 'y satisfying property (E1). Hence, by Lemma 4.12 there
exists a minimal element ppr, of I';.

Let « € 3. Then v (x) € I'y, and hence v (z) > pr,. This implies J*°& C Q3.

Now assume there is y € J such that v (y) ? pr,. Then y € J\ €"8 and there is
W € Vg such that vy (y) < (pr,)y,- By Remark 4.6.(1) we can choose an a € I'y such
that ay # vy (y) for all V' € Vg, Then there is z € 38 such that v (z) = a. Moreover, by
Lemma D.22.(5) we have

v(y+z)=inf{v(y),v(z)},
and hence vy (y + z) < oo for all V' € Vp. Lemma 3.4.(2) yields

y+zeINQRE=7"8,
and thus v (y + z) € I';. But since v (z) € I'y, and hence v (z) > ur,, we have
vw (Y +2) = vw (y) < (urs)y

contradicting the minimality of pr, in I'y, see Lemma 4.12. O
Proposition 4.16. Let R be a one-dimensional semilocal normal Cohen—Macaulay ring.

(1) Tr =T = NVE is a good semigroup.

(2) T'5 is a good semigroup ideal of T'r for any 3 € Rr. In particular, we have

J ="

and
'y =pry; + g

Proof. (1) Since R = R, we have by Lemma 3.4.(2)
I'r = v(R™8) = NV&,
Hence, I'r = 'y, and 'y satisfies properties (E0), (E1), and (E2).

(2) Let J € Rg. Since R = R, there is by Lemma 3.9.(1) and a € ZVE such that J = Q°.
This implies by Lemma 3.4.(2)

Ty =v(38) =a+NE CZVE = Dr,. (4.2)
Then by Proposition 4.16
I3+ Tp=a+N"% 4 N =q+NVR =Ty,

and
—a+T3=—-a+a+N"%=NR =Tp.

Thus, I'; is a semigroup ideal of T'gr. Moreover, I';y obviously satisfies properties (E1)
and (E2), and hence I'y € Gr,,. Therefore, I'y has by Lemma 4.12 a unique minimal
element ur,, and Equation (4.2) yields ur, = o. O
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4.3. Differences

The difference of semigroup ideals corresponds to the quotient of fractional ideals (see
Definition 2.1.(2)).

Definition 4.17. Let F and F be semigroup ideals of .S. We write
E—-F={a€eDg|a+FCE}.

The set Ry of regular fractional ideals of a ring R is by Proposition 2.7.(2) closed
under the quotient. Example 3.26 shows that for a good semigroup S the set Gg of good
semigroup ideals (which correspond to fractional ideals by Corollary 3.30) is in general
not closed under the difference. However, the property of being a semigroup ideal and
property (E1) are always preserved under the difference.

Lemma 4.18 (See [25], Lemma 4.1.4). For any two semigroup ideals E and F of S also
E — F is a semigroup ideal of S. If E satisfies (E1), so does E—F, and E — S € Gg N Gs-

Proof. Since F is a semigroup ideal of .S, we have
(FE-F)+S+F=(E-F)+FCE,
and hence
(E-F)+SCcFE-F

Since E is a semigroup ideal of S, there is o € Z* such that oo+ E C S. Then we have for
any g € F,
a+B+(E-F)Ca+ECS.

Thus, EF — F is a semigroup ideal of S.
Assume now that E satisfies property (E1). Then for any «,f € E — F and § € F we
have

inf{a,B} +d =inf{a+9,8+d} € E

since o + 6,5+ 6 € E. Hence, inf {«, 5} € F — F, and E — F satisfies property (E1).
We have
(E-8)+85+5=(E-5)+ScE,

and hence
(E-5)+ScE-3.

Therefore, E — S is a semigroup ideal of S.
As just shown E — S satisfies (E1), and hence

inf{a,8}+SCE-S

for any o, 3 € E — S. Since S = N/, it follows that E — S satisfies (E2). O
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Lemma 4.19. Let S be a good semigroup, and let S = [],,cpr Sm be the decomposition of
S into local good semigroups (see Theorem 4.9). Then for any two semigroup ideals E and
F of S we have

E—F =[] (Bn—Fn).
meM

Proof. For any a € Dg we have o € E — F if and only if

H (am+Fm):(am)m€M+ H Fn=a+FCE= H L.
meM meM meM

This is equivalent to a,, + I, C Ep, for all m € M, and hence to a = (am),,cpr €
HmEM (Em - Fm) O

Lemma 4.20. Let E be a semigroup ideal with £ C S. Then
ScS-FE.
Proof. If E C S, the claim follows from Definition 4.17 since by Definition 4.5.(4)
E+ScECS O

For good semigroups we have analogously to Lemma 2.3 the following.
Remark 4.21 (See [25], Remark 4.1.3). Let « € Dg.

(1) The map

gS_>g57
E—a+ FE

is a bijection.
(2) For any two semigroup ideals E and F' of S, we have

(a+B)—F=a+(E—-F)=E— (—a+F).

(3) Let E, ', F, and F’ be semigroup ideals of S. If £ C E’ and F C F’, then
E-FcE-FCEFE -F.
(4) For any E € Gg, we have E — § = S.
Lemma 4.22. Let E, F and G be semigroup ideals of S. Then
(FE-F)-G=(E-G)—F=E—-(F+G).
Proof. By Definition 4.17 we have

(E-F)-G={a€eDs|a+GCFE-F}
={a€Dsg|la+F+GCE}=FE—(F+QG)
={ae€Ds|a+FCE-G}=(E-G)-F. O
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Remark 4.23. In general, E — F does not satisfy property (E2) for E, F' € Gg, see [10,
Example 2.10] and Example 3.26.
Lemma 4.24. Let E and F be semigroup ideals of S satisfying property (E1).

(1) If up—p =0, then F C E.

(2) If E=F, then pg_p = 0.

(8) If F C E, then up—p < 0.

(4) If EC F, then pg—p > 0.

Proof. Since E and F satisfy property (El), also E — F satisfies property (E1) by
Lemma 4.18. Hence, F, F, and F — F' have unique minimal elements, see Lemma 4.12.

(1) If 0 = pg_p € E— F, then
F=pup r+FCE
by Definition 4.17.

(2) Let E=F. Then 0+ F = F = E, and hence 0 € E — F. This implies ug_r < 0.
So assume pup_p < 0. This yields

pE = pp > pp + pep-r € B,
contradicting the minimality of ug in F.

(3) If F C E, then
0+F=FCE,

and hence 0 € E — F' by Definition 4.17. This implies ug_r < 0.

(4) Let E C F, and assume pup_p < 0. Then up_p < 0 as otherwise F' C E by (1).
Since pg_r € E — F, we have up + pgp_r € E by Definition 4.17. This yields

HE 2 UF > UF + UE-F 2 PUE,
and we obtain a contradiction. Therefore, ugp_g > 0. ]

Proposition 4.25. Let E be a semigroup ideal of S. Then £ — E is a partially ordered
cancellative commutative monoid with Dp_p = Dg and SCE-ECE—-E=S. IfE
satisfies property (E1), so does E — E.

Proof. Obviously, we have 0 € E — E. Moreover, S C F — E since E is a semigroup ideal
of S, and hence E+ S C E.
Let a,8 € E— E. Then

a+FECE,
B+ ECE.
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Hence,
a+pf+FECa+FECE.

This implies o+ € F— E. Thus, F— FE is a monoid. Since £ — E C Dg by Definition 4.17,
it is partially ordered, cancellative and commutative. Moreover, as F — F is a semigroup
ideal of S, it satisfies property (E0), see Remark 4.6.(1). Hence, there is « € E — E such
that a« + 5 C E — E, and therefore Dg_g = Ds.

Assume now that there is an o € E — E with a 2 0, i.e. a;; < 0 for some i € . Since
E — F is a semigroup ideal of S by Lemma 4.18, there is § € S such that §+ (E — E) C S.
In particular, this implies « + 8 > 0. Let n = max(m € N |ma; + 5 > 0) (n exists
since o; < 0). But then (n+1)a € E — E since £ — E is a monoid, and (a + ), < 0,
contradicting 8+ (E — E) C S. Hence, E—ECE—-E=25.

Finally, if E satisfies property (E1), then also E— F satisfies property (E1) by Lemma 4.18.

U

4.4. Conductor

An important case of the difference of semigroup ideals is the conductor. In analogy to
Definition B.22 we define the following.

Definition 4.26. Let S be a good semigroup, and let E be a semigroup ideal of S satisfying
property (E1). The conductor ideal of E is

CE:E—§:{Q€D5‘05+§CE},
and
YE = Uep :inf{aGDS ‘ a+§CE}
(see Lemma 4.18) is called the conductor of E. We abbreviate 7p = yp — 1.

Remark 4.27. Let S be a good semigroup, and let E be a semigroup ideal of S satisfying
property (E1).

(1) Since Cg € Gg by Lemma 4.18, we have

Cp=pcy,+S=v5+S5.

(2) Since 0 € S, we have
Cgp CFE.

Lemma 4.28. Let S be a good semigroup, and let S = [],,,cas Sm be the decomposition of
S into local good semigroups (see Theorem 4.9). Then for any semigroup ideal E € Gg we
have

CE: H CEm7

meM
and hence
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4.4. Conductor

Proof. Since E,, € Gs,, by Theorem 4.9, and since S,, = S, by Lemma 4.11.(1) for all
m € M, Lemma 4.19 yields

Cp=E-S=I] (Bn-5n)= 11 (En-5n)= 1] Cr.. O

meM meM meM
Lemma 4.29. Let S be a good semigroup. Then for any E € Gg we have
YE — HE < 7s-

Proof. By Definition 4.5.(4) we have £ + S C E. Since Cs = yg + S C S by Remark 4.27
and pup € E by Definition 4.13, this yields

pg+vs+S=pug+Cs CE+SCE.
Therefore, Definition 4.26 and Remark 4.27.(1) yield
pup+v5€E-S=Cg=vg+3S.

Hence
HE +7S = VE

since pg = 0. O

Proposition 4.30. Let S be a good semigroup, and let E € Gs and F' € Gg. Then ' = CF,
and
E—-—F=Cg_p.

Proof. Since F € Qg, we have
Cr=F—-S=F,

and Lemma 4.22 yields
E-F=E-(F-5)=(E-F)-S=Cpr. O

The following objects were introduced by Delgado [12, 7] for investigating the Gorenstein
property on value semigroups.

Definition 4.31. Let S be a good semigroup, and let o € Dg.
(1) For J C I we set
Aj(a)={B€Z°|aj=pjforall je€Jand o; < f; foralli e I\ J},

and we write

Aj(a) = Agy (@)
for any j € I.

(2) Let J C I, and let E be a semigroup ideal of S. Then

Af (@) =Aj(a)NE.
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w

®--0--0--0--0--0--0-

e

Figure 4.1.: The sets Ay 3(a) (red) and A(a) = U,;eqy 2,5y Aila) (grey).

(3) We write
A(a) = UAi(a).

il

(4) If E is a semigroup ideal of S, then

See Figure 4.1.

Lemma 4.32 (See [25], Lemma 4.1.9). Let S be a good semigroup, let E € Gg, and assume
that there is an oo € E and J C I such that oj > (’)’E)j forall j € J. Then for any j € J
we have a +e; € E.

Proof. Let j € J, and choose § € Dg with

Bj = ay,
Bi > «; for all i € J,
Br > max {(vg);, o} forall ke I\ J.

Then 8 > g, and hence 5 € E. Applying property (E2) to a and 8 we obtain a § € E
with

5_7' > o = Bj,
0; =min{a;, B} = «; for all i € J\ {j}.
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4.4. Conductor

Now let € € Dg with

€ :Oéj—l-l,
€; > «; for all i € J,
e, > max {(vg),, o} foral ke I\ J

Then € > g, and hence € € E. Applying property (E1) to 0 and e yields
a+e; =inf{f,e} € E. O

Lemma 4.33 (See [25], Lemma 4.1.9). Let S be a good semigroup, let E € Gg, and assume
that there is o € E and J C I such that oy > (vg);. If § € Dg with 5 > (vg); and

5[\] = Oé]\J, i.e.

8> (ve); for all j €
Ok =ag forallk e I\ J,

then 6 € E.

Proof. Repeatedly applying Lemma 4.32 we obtain (nj)je ;€ N’ such that

5§a+2njej € FE.
jedJ

Hence, we may assume that o > 6.
Pick € € Dg with

€j = 0; for all j € J,
er > max {(yg), 0k} forall ke I\ J.

In particular, € > g, and hence e € E. Thus, 6 = min{¢,a} € E since F satisfies
(E1). O

Lemma 4.34 (See [25], Lemma 4.1.10). Let S be a good semigroup, and let E € Gg. Then
AF (1p) = 0.
Proof. Assume that AE (75) # 0. Then there is i € I with a 8 € AP (1g), i.e.

Bi=(ve); — 1,
8 > (’YE)j for all j € I'\ {i}.

Thus, Lemma 4.33 implies 3+ S C E, and hence vg > 3 € Cg contradicting the minimality
of YE in C E- ]

We show the the analogues to Propositions 2.15, B.24 and B.25 for good semigroup
ideals.
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4. Good Semigroups

Lemma 4.35 (See [25], Lemma 4.1.11). Let S be a good semigroup, and let E and F' be
semigroup ideals of S satisfying property (E1). Then

VYE-F = VE — HF-

Proof. Note that vg_p is defined since E — F satisfies property (E1) by Lemma 4.18.
Since F — pup C S and vg + S C E, we have by definition

ve—prp+S+FCyp+SCE.

This implies vz — ur +S C E — F, and hence g — ur > YE—F-
Conversely,

Ye-F+pur+S=v-r+pr—pr+F+S=vg-r+F+SCE

implies yg_p + pr > Vg. O

Corollary 4.36. Let S be a good semigroup, and let F' be a semigroup ideal of S satisfying
property (E1), and let E € Gg. Then

AE;F (TE—F) = 0.

Proof. Note that 75— is defined since £ — F' satisfies property (E1) by Lemma 4.18.
Now assume AF=F (75_r) # (), and let B € AP~F (15_p). Then Lemma 4.35 yields

B+ up € A(Tp_F) + pur
= A(Tp—r + pF)
=A(1g).

Moreover, 3 € E— F implies f+ur € E, and hence 8 € AP (1) contradicting A¥ (15) = 0
by Lemma 4.34. O

Lemma 4.37. Let S be a good semigroup, and let E and F be semigroup ideals of S
satisfying property (E1). Then
HE-F 2 YE — VF-

Proof. Note that 7p_ is defined since E' — F' satisfies property (E1) by Lemma 4.18.
By definition we have y¢ + S C F, and therefore

pE—-r+yr+S Cup_rp+F CE.

This implies
HE-F +7YF = VE- ]

Proposition 4.38. Let S is a local good semigroup. Then

S — Mg = Mg — Ms.
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Proof. Lemmas 4.7 and 4.37 yield
Hs-Ms = VS — VMg =5 — Vs =0
(see Definition 4.5.(3)). This implies
(S—Mg)+MsC{aeS|a>uus} =Ms,

and hence
S — Mg C Mg — Mg.

Since also
Mg — Mg CS— Mg

by Remark 4.21.(3), this yields
S — Mg = Mg — Mg. O
Lemma 4.39. Let S be a good semigroup.

(1) We have
S—Cs=3S.

(2) If E is a semigroup ideal of S with Cs C E C S, then

ScS—EcCS.

Proof. (1) Since Cg = S — S € Gs by Lemma 4.18, Proposition 4.30 yields S — Cg =
Cs_cg4. As S — Cg satisfies property (E1) by Lemma 4.18, we obtain by Lemma 4.35

HS—Cs = MCs_cy = VCs_cg = V5—Cs = Vs = pcs = Vs — s = 0.
Then Remark 4.27.(1) and Proposition 4.30 yield
S —Cs=Cs—cg = picg ¢y + S=ps—csg+S5=5.
(2) By (1) and Remarks 4.21.(3), (4) and 4.27.(2) we have
S=S-ScS-EcS—-0Cs=25. O

Lemma 4.40. Let S be a good semigroup, and let E and F be semigroup ideals of S. Then

(1) FCE—(E—F).

(2) If E and F satisfy property (F1), E C F, and vg = v, then

FCE—(E-F).

Proof. (1) Leta € F,andlet $ € E—F ={0 € Dg|d+ F C E}. Thisimplies a4 € E,
and hence
ac{deDs|6+(F—F)CE}=FE—-(E-F).
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4. Good Semigroups

(2) Since E and F satisfy property (E1), also E—F and E—(E — F) satisfies property (E1)
by Lemma 4.18. Hence, FE, F, E—F, and E — (E — F) have unique minimal elements
and conductors, see Lemma 4.12.

If F C E, then ugp_r > 0 by Lemma 4.24.(4). Hence, Lemma 4.35 yields

YE—(E-F) =YE — ME-F <7YE = VF-

Then the claim follows since ' C E — (E — F') by (2). O

4.5. Distance and Length

The combinatorial counterpart of the relative length of two fractional ideal is the distance
between two good semigroup ideals (see Definition 4.46). It serves as a main tool to relate
algebra and combinatorics (see Proposition 4.51).

First we introduce the notion of chains in partially ordered sets.

Definition 4.41. Let E be a partially ordered set.

(1) A chain in F is a finite subset C' C F which is totally ordered with respect to the
order induced by the partial order on Dg. The length of a chain F is |E| — 1.

(2) Let a, 8 € E with o < 8. A chain in E between o and f is a chain C' in E with
min C' = a and max C' = .

(3) A chain C in E is called saturated if for any chain C' in E with C € ¢/, minC =
min C’; and max C' = max C’ we have C' = C'.

(4) Two elements «, 5 € F with o < 3 are called consecutive in E if there isno § € E
with a < § < .

Remark 4.42. Let E be a partially ordered set. A chain C in F is saturated if and only if
for any a € C'\ {max C} there is a 8 € C such that o and § are consecutive in E.

Definition 4.43. Let S be a good semigroup, and let £ C Dg. Additionally to the
properties in Definition 3.19 we consider the following property.

(E4) For any fixed «, 8 € E every two saturated chains in E between « and /3 have the
same length.

Definition 4.44. Let S be a good semigroup, let £ C Dg, let o, f € F with a < 3, and
suppose that F satisfies property (E4). The distance dg (o, ) of o and § in E is the
length of any saturated chain between o and § in F.

Proposition 4.45. Let S be a good semigroup. Then any E € Gg satisfies property (E/).

Proof. See [8, Proposition 2.3]. d
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4.5. Distance and Length

Definition 4.46. Let S be a good semigroup, and let £ and F' be be two semigroup ideals
of S satisfying property (E4) with E C F. Then we call

d(F\E)=dr (ur,ve) —de (LE, VE)
the distance between E and F'.

Remark 4.47. Let S be a good semigroup. By Definitions 4.44 and 4.46 the distance has
the following properties.

(1) Let E C Dg satisfy property (E4). Then for any «, f € F with a@ < 8 we have

d(a, 8) € N.

(2) Let E C F be semigroup ideals of S satisfying property (E4). Then
d(F\ E)eN.
Remark 4.48 (See [25], Remark 4.2.3). Let S be a good semigroup, and let E and F be
semigroup ideals of S satisfying properties (E1) and (E4) with E C F.

(1) dg is additive with respect to composition of chains. That is, for any «, 5,7 € E
with @ < 8 < § we have

d(,8) = d (v, ) +d(B,5).

(2) dp(o, B) < dp(a,p) for all a, p € E.
(3) d(E\F)=d(a+ F\a+E) for all « € Dg.

(4) With the notation of Theorem 4.9 we have

d(F\E)= Y d(Fn\ En)

meM
see [10, Proposition 2.12].
(5) If € > g, then (1) implies
d(F\ E) = dp(pr,ve) — de(pe, vE)

=dp(pr,ve) + dr(Ve.€) —de(pe,ve) — de(VE, €)
=dp(pr,€) —dp(pe,€)

since dp(Vg,€) = dg(vE, €).

Lemma 4.49. Let E C F C G be semigroup ideals of S satisfying property (E4). Then

d(G\E)=d(G\F)+d(F\E).
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4. Good Semigroups

Proof. See [8, Proposition 2.7]. O
The following result was first stated in [8, Proposition 2.8].

Proposition 4.50. Let E, F € Gg with E C F. Then E = F if and only if d(F \ E) = 0.

Proof. See [25, Proposition 4.2.6]. O

The following result relates the length of quotients of fractional ideals with the distance
of their value semigroups.

Proposition 4.51. Let R be an admissible ring. If 3,3 € Rr with J C J, then
lr(J/3) =d(T3\Ty).
Proof. See [25, Proposition 4.2.7]. O

Corollary 4.52 (See [25], Corollary 4.2.8). Let R be an admissible ring, and let 3,3 € Rr
with 3 C J. Then J =7 if and only if 'y = I'y.

Proof. By Remark 4.6.(5) I'p is a good semigroup, and I';,I'y € Gr,,. Hence, Proposi-
tion 4.51 yields J = J if and only if 0 = {5 (J/J) = d (I'; \ I'5), and by Proposition 4.50
this is equivalent to I'y = I'5. Also see [8, Proposition 2.5]. O

Lemma 4.53. Let R be an admissible ring, and let 3, € Rg. If there is an $ € Rr such
that

HICI
and
I'g =15 —Ty,
then
H=T:3

Proof. It §3 C J, then $ C J : J. This implies I'y C I'5.;3. Moreover, we have I';.5 C
I'y —T'y =I'y by Lemma 3.23.(1) and the assumption. Thus, Iy = I'5.5, and Corollary 4.52
yields H =7 : 7. ]

Lemma 4.54. Let R and R’ be a admissible rings such that €g C R C R C Qg.
(1) R’ € Rpg.
(2) If TR =T, then R=R'.

Proof. (1) Let z € €5 C R™. Then 2R’ C €z C R. Since ) # R™ C (R')"®, this
yields R’ € Rpg.

(2) Since R’ € Ry by (1), and since R € Rp, Corollary 4.52 yields R = R’. O
Lemma 4.55. Let R be an admissible ring, and let I € Rr. Then:
(1) €5 C Q3.
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(2) €5 =Q"3 if and only if I'¢, = Cr,.
Proof.

Then Lemmas 3.4.(2), 3.9.(3), and 3.23.(1) yield

4.5. Distance and Length

(1) Since €5 € Ry, there is by Lemma 3.9.(1) an « € ZYE such that €5 = Q

a+ N2 =T =T,5CIy—TI'z=T5—N"=Cp, =9, + NV

Hence, & > 7r,, and €3 = Q% C Q7.

(2) Assume that €3 = Q"75. Then Lemma 3.9.(3) yields

I'e, =Tgr, =91, + N2 = Cr,.
Now suppose that I'e, = Cr,. In particular, this implies

MF¢3 = ,LLCFJ =y

Since €5 € Ry, Lemma 3.9.(1) yields then

&y = QMF% =0y,

Proposition 4.56. Let R be an admissible ring, and let T € Rp

¢y =90,
and hence

I'e, =Cr,
(see Lemma 4.55.(2)).

Proof. By Lemma 4.55.(1) we have

CyCc{reQr|v(z)> 'Yl“g} = Q3.
Moreover, Lemma 3.9.(3) yields

Cr, =qr, + NYF =T, =T, .
Since 375 C Q73, we obtain by Corollary 4.52

Qs =3 C 7.
As Q"5 € Ry, this implies

QT = Qerj C ¢y,
and hence

¢y C Q" C .

. Then
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4. Good Semigroups

By Proposition 4.56 taking value semigroup ideals commutes with conductors in the
sense that for an admissible ring R there is a commutative diagram

J—C
RR *— Ry

JHFgJ l@._me (4.3)

—_— .
Ory g Or-

We can generalize Proposition 4.56 as follows.

Proposition 4.57. Let R be an admissible ring, and let 7 € Rgr and J € Rg. Then
J=¢;, I'y=Cr,, and

Iyy=T5-T7%.
Proof. Since J € Ry, we have
¢ =J:R=3, (4.4)
and Lemma 2.3.(1) yields
3:3=7:(3:R)=(3:3): R=s (4.5)

Then we have by Equation (4.5), Proposition B.24, Lemma 3.23.(2) and Equation (4.4),
Proposition 4.56, Definition 4.26, Lemma 4.22, and Proposition 4.30

T35 = Peyy = Deyg = Tey — Ty = Cr, =Ty = (T3 = Tg) — T
=y -T3) ~Tp=Cryr;=05-T3. O
Lemma 4.58. Let R be an admissible ring, and let 3,3 € Rr. Then
sy = Wy-T3 = Iy — HUIy-
Proof. By Lemma 3.23.(1) we have I';.; C I'y — I'y. Thus,
Cry, =T33 —-TrC (T3 —T3) —Tr = Cr,-r,

by Remark 4.21.(3), and hence
Yoy = V5—Ty-

Moreover, Remark 4.6.(5), Lemma 4.35, and Proposition 4.56 imply
5:271571“33 C QMO = Q’Yrjfrj-l-ura = O3 = ¢
Thus, we have Q7775 C €5 : J = €5.5 by Proposition B.24. Hence, Proposition 4.56 yields

Tr5-Ty 2 Moy D
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4.6. Branches

The following result was proved in [10, Proposition 2.2] for good semigroups. Here we
generalize it to semigroup ideals of a good semigroup S.

Proposition 4.59. Let S be a good semigroup, let J C I, and let E be a semigroup ideal
of S.

(1) The projection of S onto J,
SJ:prJ(S):{aJGZJ ‘ there is B € S such that B; = o for alljeJ},

is a good semigroup in 7.7 .

(2) The projection of E onto J,
Ej=pr;(F)= {aJ ez’ ‘ there is B € E such that B; = «; for all j € J},

is a semigroup ideal of Sy = pr; (S).
(3) If E satisfies property (E1) in Z!, then Ej satisfies property (E1) in Z7.
(4) If E satisfies property (E2) in 7!, then E; satisfies property (E2) in Z.”.
Proof. (1) See [10, Proposition 2.2].

(2) By (1) Sy is a good semigroup in Z’. Since E is a semigroup ideal of S, we have
E + S C E, and hence

pry (E) +pr;(S) =pr; (E+5) Cpr;y(E).
Moreover, there is an o € Z°® such that o + E C S. This implies

pry (@) +pry (E) =pr;(a+ E) Cpr;(S).
Thus, Ej is a semigroup ideal of S;.

(3) Let a, 8 € Ej. Then there are o/, 8’ € F such that pr; (/) = «a and pr; (') = 3.
Since F satisfies property (E1), we also have inf {o/, 3’} € E, and hence

inf {a, B} = inf {pr; (') ,pr; (8')} = pr; (inf {/, 3'}) € E.

(4) Let «, 8 € E; with a; = f8; for some j € J. Then there are o, 5’ € E such that
pry(a') = a, pr; (B') = B and o), = ;. Since E satisfies property (E2), there is an
€ € F such that

€ > Ck;- = ,3;
€ > min{a}, B} forallie [l
e, = min {a}, B;} for all k € I with oy, # 3,
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This implies €5 € E; with

(GJ)J‘ > O‘;‘ = ﬁ;
(€7); > min{a;, 8} forallieT
(€7), = min {aj, i} for all k € I with o, # 3.

Hence, F; satisfies property (E2). O

Definition 4.60. Let S be a good semigroup, let E be a semigroup ideal of S satisfying
property (E1). For J, J' C I we define

Efl = {p € Dg, | there is an a € E such that ay = S and ay > (vg)} C EJ.

If J = {i} for some i € I, we write B/ = Eé/}, if J/ = {j} for some j € I, we write

Ef] = Eﬁj}, and we write EZ] = Eg}} for any 4,75 € I with i # j.

Remark 4.61. Let S be a good semigroup, let J,J' C I, let E € Gg, and let o € E;. Then
we have by Lemma 4.33 o € Ej/ if and only if 8 € E for any § € Dg with

By =ay,
By > (VE) y-
Lemma 4.62. Let S be a good semigroup, let J,J' C I, and let E be a semigroup ideal of

S satisfying property (E1). Then E:]]/ is a semigroup ideal of Sy satisfying property (E1).
Moreover, if E € Gg, then Ej/ € Gg,.

Proof. Let a € EJ', and let 8 € S;. Then there is a § € E such that

oy = a, (4.6)
850 = (VE) jrs (4.7)

and there is an € € S such that €; = 3. Since S C S, we have ¢ > 0. This implies with
Equations (4.6) and (4.7)

(5+6)J,:5J/+6J/25J/ Z(VE')‘]/)

and hence
a+B=0;+e;=(5+¢),€ET.

Therefore, E{ +S; C Ej/. Since E’j/ C (Dgs); = Ds, by Definition 4.60, Ej]]l is a
semigroup ideal of S;.

Let now «, 8 € Ef,. Then there are d,e € E such that 65 = a, €; = § and dy, ey >
(vE) - This implies

inf {67, €5} = (inf{0,€}) = (V&) 1,
and hence
inf {, B} = inf {07, e5} = (inf {,¢}), € E7 .
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Thus, E:{’ satisfies property (E1).
Finally, let ¥ € Gg, and assume there is an ¢ € J such that a; = §;. Then §; = ¢;, and
since E satisfies property (E2), there is a ¢ € E such that

G > 0; = €,
¢j > min{d;,¢;} forall j € I,
(x = min {5k;€k} for all k € I with i # €.

This implies (j > (V) , and hence (; € Ej/ with

(Cr); =G> di =€ = Bi = i,
(Cr); = ¢ = min{d;,e;} = min {ay, B;} for all j € J,
(C1) = Ck = min {0y, €} = min {ay, By} for all k € J with 5y, # €.
Therefore, Ej/ satisfies property (E2), and hence Ej/ € Gg,. O

Lemma 4.63. Let S be a good semigroup. Then for any i € I we have (Cs); C Sy for
every J C I.

Proof. Let a € (Cs),, i.e. there is § € Cg with ; = a. In particular, we have ay > (vs);
for every J C I. O

Proposition 4.64. Let S be a good semigroup. Then for any E € Gg we have

VE = (’YE_I\{z'}> .
i el
Proof. Set
7= (7 I\{i}) .
E; iel
Since vz + S C E by Definition 4.26, we have for any i € T
(VE)i = Y-

ThllS, YE > v-
Let now o € S, in particular o > 0. Then we have for any i € I

Vi T =Y

and hence ‘
it ag e BN,

Therefore, for any i € I there is a () € E such that
ﬂz(l) =7 +
(4)
By Z E)n gy
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By Lemma 4.33 we may assume that ﬂ;i\){i} > y\{iy T an iy for any @ € I. Since E satisfies
property (E1), this implies
’y+a:in§5(i) ek,
e

and hence v+ S C E. Thus, v > vg. O

Proposition 4.65. Let S be a good semigroup. Then S is local if and only if 0 € S; \ Sl-j
for every i,j € I with i # j.

Proof. Suppose there are ¢,j € I with ¢ # j such that 0 € SZ] Then there is an a € S
with a; = 0 and a; > (7s); (see Definition 4.60). Using Lemma 4.33 we may assume that
a; > 0. This implies that S is not local, see Definition 4.5.(3).

Now suppose that S is not local. Then there is an o € S with o; = 0 and a;; > 0 for some
i,j € 1. Moreover, we can find an n € N such that na; > (’ys)j. Since S is a semigroup,

and hence na € S with (na); = na; = 0 and (na); = na; > (vs);, this yields 0 € SZJ O

Lemma 4.66. Let S be a good semigroup, let E € Gg, and let J C I. Then § € E for all
0 € Dg with
0y € Eﬁ\J,
ong = (Ve p -

Proof. Let o € Ef]\J. Then there is § € E with

Br=aq,
Brg = (vE)p -

Thus, Lemma 4.33 yields the statement. O
Proposition 4.67. Let R be an admissible ring, let J C Min (R), and let
J/:{VGVR’qveJ}.

We denote by
7 Qr — Qr/ (| PQr = Qr/n,

p
neJ eJ

the canonical surjection (see Theorem A.74.(2) for the equality), and
1%
pr': (ZU {oo})VR = (ZU {oo}) ¥ Mhes®

v /
is the composition of the isomorphism (Z U {oco}) ™ Myes? = (Z U {0} induced by the
bijection VR/ﬂ — J' (see Proposition 3.13.(3)) and the projection (Z U {oo})® —

(ZU {oo})”.

peJ P
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(1) There is a commutative diagram

Qr . (Z U {oc})""

VR/r] p
Qny),.,» —5— L Ufse}) “Mher,

v

where T is the multivaluation of QR/ﬂ pe
peJ

(2) For any J € Rr we have
Ir@y = T9),
(see Lemma 4.68.(2)).

For the proof of Proposition 4.67 we need the following Lemma.

Lemma 4.68. With the assumptions as in Proposition 4.67 we have the following:

(1) ff2 e @™ thenn () € (Quy_ ) -

(2) Let 3 € Rr. Then w(J) € Rr/N

pes P

Proof. 1. Assume 7 (z) is not regular. Then there is a y € R such that 7 (y) # 0 and

T (zy) =7 (z) 7 (y) =0.

This implies
zy € () pQr.

peJ

Thus, either 2 € pQpr or y € pQr for any p € J. Since pQr € Max (Qg) for all p € J
by Theorem A.74.(1), and since x € (Qg)"®, this yields y € pQg for all p € J. But
then 7 (y) = 0, contradicting the choice of y.

2. Obviously, 7 (J) is an R/(,¢; p-submodule of QR/ﬂ and it is regular by (1).
pe

p?
J
Since 7 is a fractional ideal of R, there is x € R"™® such that J C R. This implies

m(z)m(3) =7 (23) C 7 (R) =R/,
ped

and we have 7 (z) € (R/ Noes p)reg by (1). Thus, 7 (J) € RR/ﬂ O

peJ P

Proof of Proposition 4.67. (1) This follows from Proposition 3.13.(3).
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(2) Let o € (I'y) ;. Then there is an o € J such that (1) yields

v(m(z)) = (v(2) yr =
Hence, 7 (z) € (7 (J))"® by Lemma 3.4.(2) and Proposition 3.13.(3). This implies
ael, (3)-
Let now a € T';(5). Then there is an x € (7 (3))"* with 7(x) = . This implies that
there is a y € J with 7 (y) = =, and
W)y =v(r(y) =v(z) =a
by (1). Let now z € (€5)"*® with

vy (z) # vy (y) for all V € Vg,

v (2) > vy (y) for all W € J'.
Then

vy (y + 2) = min {vy (y), vy (2)} < oo
for all V' € Vi (see Remark D.14.(1) and Lemma 3.4.(2)), and Lemma 3.4.(2) yields
y + z € J"&. Therefore,
viy+z) el
with
W +y)y =)y =a

Hence, o € (I') ;.. O

Proposition 4.69. Let R be an admissible ring, let p € Min (R), let I C Min (R) \ {p},
and let

J=A{V €Vr|av =p},
JIZ{VGVR‘quI}.
Then
J/
(Cr)y = Fﬂqe,qﬂa/p

(note that Nqer 4 +p/p € Rpyp since (Mqer 9 is an ideal of R not contained in p and R/y is
a domain).

Proof. Let o € (FR)f. Then there is an x € R™® with
(v(2); = a,
(w(2) ;0 = (7rs) yr-

Since Qr = [y enmin (r) @r/P' QR by Theorem A.74.(2), and since I C Min (R) \ {p}, there
is by Proposition 3.13.(3) a y € Qr with

x—y€qyforall VelJ, (4.8)
v (y) > max {vw (), (Y )y } for all W e J, (4.9)
v (y) > ('YFR)W' for all W’ € Vg \ (J U J'). (4.10)
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Then Proposition D.15 implies

w(z) =vv(y) = (rg)y
for all V € J'. Thus,
v(y) > g,

and hence
yeEQr =Cr CR

by Proposition 4.56. This yields x — y € R with

vy (z —y) = min{vy(z), v (y)}

for all V' € J, see Remark D.14.(1). Therefore,

v —y+p)=w-y),=a

by Proposition 4.67.(1), where 7 is the multivaluation of Qg/,. Hence, Equation (4.8)
yields

reg
T—y+pe (ﬂqﬂo/p)

qel
by Lemma 3.4.(2) and Proposition 3.13.(3). Thus,

(6 G qu61q+p/p

Let now a € qug q-+p/p- Then there is an x € (ﬂqel q-+ p/p>reg with 7(z) = a. Thus,

there is a y € ;¢ q such that y +p = z, and Proposition 4.67.(1) yields

(v(y); =v(z) = o
Since y € MNyes g, we have
vy (y) = oo

for all V € J'. So let z € (€)"™® with

vy(z) # vy (y) for all V € Vg,

v (z) > vy (y) for all W e J.
Then

vy (y + 2) = min {vy (y), v (2)} < oo

for all V€ Vg (see Remark D.14.(1) and Lemma 3.4.(2)), and Lemma 3.4.(2) yields
y + z € R'8. Therefore,

viy+z) €Tr
with
Wy +2), =), =a
(@ +9) = (wg)
by Proposition 4.56. Hence, o € (FR)?. O
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4. Good Semigroups

Example 4.70. Let
R=C[X,Y])/((X* - ¥?)Y) = C[lX, Y]}/ ((X° - Y2) n (1))

~c[[(-#). (29)]

The semigroup of values I'r of R is depicted in Figure 4.2. Then
R/(X® - ¥?) = C[[X,Y])/(X° - ¥?) = C[|#,4]]]
with semigroup of values
PR/<X5—Y2) - (FR)l - <2,5>,

and
R/(Y) = C[[X,Y]]/{Y) = C[[t2]]

with semigroup of values
Lryyy=Tr)y; =N

(see Proposition 4.67).
The value semigroup ideals of the ideals

) + <X5 - Y2>/<X5 - Y2> - ti’@“t?,tﬁ”,

respectively
(X7 =YY+ (V) /{Y) = 5C[[ts]],
are
T vy (xo-vay (xooyey = (Tr)] = 5+ (2,5),
respectively

T x5 y2y vy vy = (Cr)y = 5+ N,

see Proposition 4.69.

4.7. Numerical Semigroups

Numerical semigroups (see Definition 4.5.(2)) are particularly important examples of good
semigroups. Here we study some of their special properties. In particular, we consider
semigroup rings (see Definition 4.73), and we introduce quotients on numerical semigroups
(see Definition 4.74). We show that taking quotients “commutes” with the construction of

semigroup rings (see Proposition 4.79).

Proposition 4.71. A submonoid S of N is a numerical semigroup if and only if N\ S is

finite.

Proof. If S is a numerical semigroup, then N\ S is finite since S satisfies property (EO).
Conversely, if N\ S is finite, then there is an o € S such that « +N C S. Hence, Dg = Z,
and S satisfies (E0). Since |I| = 1, S also satisfies properties (E1) and (E2). Thus, S is a

numerical semigroup.
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2
(Tr); D000 0eCeeeee
cNcReNeN JoN JoR X X W W IS
clcRoNoN NN NeR F X K X )
O00000e00eeeee
(1p); ® ¢—— O-0C00-0C00 600000 e
OC00000eeO000O0
(Tr), \ (TR), 0C0O00C®ee®@0000000
O0O0O@00000000O0
C®00000000000

Tr)y \(Tr);  (re)i  (Tr)]

Figure 4.2.: The semigroup of values of the admissible ring R = C[[X,Y]]/((X® — Y?)Y) of Exam-
ple 4.70.

Proposition 4.72. A numerical semigroup is finitely generated.

Proof. Let G = {a € S| 0< a < 2yg}. Then G is finite, and S is generated by G as a
monoid. O

Definition 4.73. Let S be a numerical semigroup, and let R be a ring. We denote by
R[ts } the subset of R[t] consisting of all polynomials } ,cgrat®, where only finitely many
coefficients r,, are different from 0. With the usual addition

STt + Y spt? = (ra + sa)t”

a€eS pes a€esS
and the multiplication
<Z rata> (Z 3515*3) = Z Z ra55t5

a€esS BeS d€ES a,BES,
a+p=0

for ) ,cgrat® € RHtSH and > gcg 85t/3 € RHtSH, the set RHtSH is a ring, the semigroup
ring of S over R.

Definition 4.74. Let S be a numerical semigroup, and let £ € Gg with £ C S. The
quotient semigroup of S by E, denoted by S/FE, is the set (S \ E) U {oo} together with the
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OO0 000000000600 — 6000600600000 e 00—
S E S/E

Figure 4.3.: The semigroup S = (3,5), the semigroup ideal F =6+ S € Gg (red), and the quotient
semigroup S/E of Example 4.76.

operation defined by

‘5 a+p ifa,feS\Eand a+p€E,
a =
00 else

for any «, 5 € S/E. We will also write + for the “addition” in S/E.

Remark 4.75. Let S be a numerical semigroup, and let E € Gg with £ C S. Then S\ E
and hence also S/FE are finite since F satisfies property (E0). Moreover, S/FE is indeed a
commutative monoid.

Example 4.76. Consider the numerical semigroup S = (3,5) and the semigroup ideal
E =6+S € Gg. Then the quotient semigroup S/F is given by the set {0, 3, 5,8, 10, 13, co},
see Figure 4.3. In S/E we have for example 5+ 8 = 13 and 3 + 13 = oo.

Definition 4.77. Let S be a numerical semigroup, let £ € Gg with £ C S, and let R be
a ring.

(1) We denote by RHtE” the set of all formal sums Y, cp rot® with (ra),cp € RE.

(2) If Y peprat® € RHtEH with ro = 0 for all a € F for some subset F' of E, we write
ZaEE\F rat® =Y qep Tat®.
(3) We write R[tS/E} for the set of formal sums 3 cg/p rat® With (ra),es/p € RS/E

modulo the relation t*° = 0. In particular, for any element of R{tS/ E} we find a

representative of the form },cq\ g rat® with (Ta)aES\E € RS\E.

Remark 4.78. Let S be a numerical semigroup, let E, F' € Gg with E, FF C S, and let R be
a ring.

(1) With the usual addition

Sorat®+ Y spt? = Y (ra + sa)t®

a€Ees BeS a€EFEUF

and the multiplication

(tha) (Z%tﬂ) Y Y st
aesS BeS 6€ES a,BES,
a+pB=0
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4.7. Numerical Semigroups

for > cgrat™ € RHtSH and > gcg spth € RHtSH, the set RHtSH is an R-algebra.

Moreover, E¥ € Gg with & C S implies that RHtE” is an ideal of RHtSH.

(2) Similarly, also the set R{ts/ E] is an R-algebra.

Proposition 4.79. Let S be a numerical semigroup, let & € Gg with E C S, and let R be
a ring. There is a surjective R-algebra homomorphism

v 1f[e]) - A7),

Zrat“b—) Z rot®

a€ES aeS\E
inducing an R-algebra isomorphism
o R[] ).
Z rot® —{—RHtE” — Z rote.

aes a€S\E

In particular, there is a commutative diagram
&[]
ni \
R[] /R[[t] —=— R[#"].

where : RHtSH — RHtSH/RHtEH is the canonical surjection.

Proof. Let > ,csmat™ > pes spt? € RHtSH. Then

(0 (Z rat®+ > Sgtﬁ> = w(z (e + sa)to‘>
aeS BeS a€sS
= Z (ro + S )t

a€eS\E

= rot® + sgt?
B

aES\E BES\E

= 1/;(2 rata> + 1 (Z thﬁ)

a€sS pes
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4. Good Semigroups

and

¢(<Z ’“ata> (Z Sﬁtﬁ)) =9 > Y rasst’

a€sS Bes 0€S a,BES
a+pB=9

= Z Z Ta55t5

JES\E a,Bes
a+p=4

= > ) rasstd (4.11)

6eS\E a,feS\E
a+p=9

= ( Z rata>( Z 53t5>
a€S\E BES\E

() ()

where the equality in Equation (4.11) follows since E satisfies property (E0), i.e. E+S C E.
Moreover, since 9 is obviously R-linear, it is an R-algebra homomorphism.

Let now }_ cgrat® € RHtSH with

W:¢<zrata> 5

a€S\E a€gsS

Then ro = 0 for all &« € S\ E (see Definitions 4.74 and 4.77.(3)), and hence ) cg7at™ €
RHtEH Therefore, ker ¥ C RHtEH

Moreover, if > cprat® € RHtEH, then

U (Z mt“> =0.

ack

This yields ker ¥ = RHtEH

Finally, let ZaeS\E rot® € R[tS/E} (note that we can write any element of R[tS/E}
in this form, see Definition 4.77.(3)). Then by setting r, = 0 for all @« € E we obtain
Y aes Tal® € RHtSH and

w(z t> =S e

aesS a€ES\E

Hence, ¥ is also surjective, and the homomorphism theorem yields the statement. O
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4.8. Semigroup Rings over C

4.8. Semigroup Rings over C

Considering quasihomogeneous curves in Chapters 6 and 7 we will deal with semigroup
rings over C. Here we study some basic properties.

Proposition 4.80. Let S be a numerical semigroup. Then (CHtSH is a local admissible
ring with mazrimal ideal

mepes) = {9: € (CHtSH ’ ord; (z) > 0}.
Moreover, we have Ves) = {C[[t]]}, the corresponding valuation is ordy, and
Lepesy = S-
Proposition 4.81. Let S be a numerical semigroup. The set
Meps) = {3: € (C[ts} ’ ord; (z) > 0}
is a maximal ideal of(C[tS} , and CHtSH is the mgsi-adic completion ofC[tS}.

Proof. Obviously, mcps) is an ideal of C|t5], and C[t5] /mgys) 2 C. Thus, meys) is a
maximal ideal of C {tS ] . Then it is also easy to see that C [ {ts H is the mcpsj-adic completion
of C|t5]. O

Lemma 4.82. Let S be a numerical semigroup. Then (C{ts} is Noetherian.

Proof. By Proposition 4.72 S admits a finite set G of generators. Then C[ts } is generated
as a C-algebra by {t* | @ € G}. Thus, (C[ts] is Noetherian by Theorem A.1. O

Corollary 4.83. Let S be a numerical semigroup. Then CHtSH is Noetherian.
Proof. This follows from Proposition 4.80, Lemma 4.82 and Theorem A.53. O

Lemma 4.84. Let S be a numerical semigroup. Then C[[t°]] = C[[t]]. In particular,
dimC[[¢5)] = 1.

Proof. Since S is a good semigroup (see Remark 4.6.(2)), we have

i) ¢ C[[¢F]]. (4.12)
This implies Qs = C[[¢]][t']. Moreover, Equation (4.12) and Lemma 4.82 imply that
C[[t]] is finite over (CHtS H Thus C[[t]] is generated by integral elements over CHtS H by

Theorem B.11, and hence C[[t]] is integral over CHtS” by Theorem B.10. Since C[[t]] is

integrally closed in C[[t]][t~1], this implies C[[t5]] = C[[t]]. Moreover, Theorem B.14 yields
dim C[[¢5)| = dim C[1] = 1. O
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4. Good Semigroups

Lemma 4.85. Let S be a numerical semigroup. Then (CHtS” is local with maximal ideal
m= {:c € (CHtS” | ord; (z) > O}. Moreover, if M is a finite set of generators of S (see
Proposition 4.72) not containing 0, then

m= (] aeM).

Proof. By Lemma 4.84 we have C[[t°]] = C][t]], and C[[t]] is local with maximal ideal
tC[[t]]. Thus, the statement follows from Propositions B.3 and B.15.

By Remark 4.6.(2) S is local, and hence ppy = min{a € S| a > 0}. Since M is a
set of generators of S, this implies pp, € M. Moreover, (t* |« € M) C m, and for any
a € Mg =5\ {0} there are 6§a), ol ﬁfz) € M with ny > 1 such that a = ' Z(O‘).

Let now ) cgaqst® € m. Then ap = 0, and we can write

Z aat™ = Z ant™ + Z aat®

aEMg acS a€eS
a<pivg+ys aZppg+s
na ()
= Z aatZ¢:1 B + thMg Z o t* HMs
aes a€cs
a<pivg+ys aZpng+s
s g@
= Z Gy H P 4 s Z aott H*Ms
aes i=1 a€csS
a<pnpg+s o> v g +Ys
. . (@) .
Since a, € C for all a € S, since t*Ms t% € m for every « € M and for all i = 1,..., ng,
and since > 4eg5  ant® H*Ms C VCJ[t]] C (CHtSH, this yields the claim. O
azpnvg+s

Lemma 4.86. Let S be a numerical semigroup. Then (CHtSH is Cohen—Macaulay.

Proof. Since dim C [ {ts H = 1 by Lemma 4.84, since C { [ts H is Noetherian by Corollary 4.83,
and since C [ {tS ” is reduced by definition, the statement follows from Proposition C.13. [

Proof of Proposition 4.80. By Lemmas 4.84 and 4.86 (CHtSH is a one-dimensional ring.
Moreover, C [ {ts H is by construction reduced and complete, hence it is analytically reduced.

By Lemma 4.85 (CHtSH is local with maximal ideal

m={o e [[¥]] [ord: (&) > 0},

This implies
c|[¢9]] /m = € = C[H]) 1C[l1]).

Therefore, (CHtS H is residually rational as C[[t°]] = C[[t]] by Lemma 4.84, and C[[t]] is
local with maximal ideal tC][¢]]. Since char ((CHtSH/m> = char (C) = 0, CHtSH has a
large residue field. Thus, (CHtS H is admissible.
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4.8. Semigroup Rings over C

Obviously, ord; is a valuation of Qcysy = C[[t]][¢t7!] with ord; (z) > 0 for all z €
=1, see Remark 3.39
(Equation (3.19)). Thus, Veysy = {ord:}, and the valuation ring of the valuation ord; is

(CHtS H Since (CHtS ” is analytically irreducible, we have ‘VC[[tSH
{= € Qeypsy | orde (@) > 0} = C[]].

This implies
F(C[[ts]] = OI‘dt (CHZL/S:H \ {0}) =2G5. ]
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5. Duality and Gorenstein Property

The canonical module wr of a Cohen—Macaulay ring R is characterized by the duality
dim R—dim
M — Ext@™ FdmM (A wp)

on the Cohen-Macaulay modules of R (see Theorem C.22). Equivalently, there is a duality
on the maximal Cohen—Macaulay modules of R given by

M — Homp (M,WR). (5.1)

If R is generically Gorenstein, then wgr can by Proposition C.23 be identified with a (regular)
fractional ideal R of R. If R is one-dimensional, then all regular fractional ideals of R are
maximal Cohen-Macaulay modules. Therefore, Equation (5.1) induces with Lemma 2.13 a
duality

J—R:TJ

on Rgr. This leads to the definition of a canonical ideal of a one-dimensional Cohen—
Macaulay ring as a dualizing object on the fractional ideals, i.e. a regular fractional ideal £
of R such that

J=8:(R:J)

for all 7 € Rp. In fact, a canonical ideal of a one-dimensional Cohen-Macaulay ring R is a
canonical module of R (see Section 5.1).

This Chapter is dedicated to a combinatorial version of this duality on the good semigroup
ideals of a good semigroup and its relation to the duality on fractional ideals. In Section 5.2
we define a canonical semigroup ideal K of a good semigroup S as a dualizing object on
the good semigroup ideals of S, i.e. K — E is a good semigroup ideal, and

E=K— (K — E) (5.2)

for every good semigroup ideal E of S. Moreover, if R is an admissible ring, then canonical
ideals of its semigroup of values I'p characterize the canonical (fractional) ideals of R in
terms of their value semigroup ideals (see Section 5.3). This unifies and extends results by
D’Anna [8] and Pol [14].

A Cohen—Macaulay ring R is by Theorem C.26 a Gorenstein ring if and only if R is a
canonical module of R. Historically, the first step in describing the value semigroup ideals
of canonical ideals was a characterization of the semigroups of values of Gorenstein rings.

Kunz showed that an analytically irreducible and residually rational one-dimensional
local ring R is Gorenstein if and only if its (numerical) semigroup of values is symmetric
6], i.e. if and only if

FR:{QEDFR |7'FR—OZQFR}. (5.3)
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Jager used this symmetry condition to define a canonical semigroup ideal
KZ{O&EDFR |7—FR*04¢FR}

such that a fractional ideal & of R with R C & C R is a canonical ideal of R if and only if
g = K [11].

Waldi was the first to describe a symmetry property of the semigroup of values of a
plane algebroid curve with two branches [3]. Note that plane algebroid curves are always
Gorenstein (see [1, Corollary 5.2.9]). Delgado extended this symmetry to plane algebroid
curves with arbitrarily many branches [12]. Later he generalized the symmetry of numerical
semigroups to good semigroups (see Definition 5.36), and in analogy to Kunz’ result he
characterized Gorenstein algebroid curves by the symmetry of their semigroups of values [7].
In his setup the symmetry of the semigroup of values of an algebroid curve can be written
as

I'r= {Oz € DFR ‘ AFR(TFR — Oé) = @} (54)

(see Definition 4.31). Note that in the irreducible case Equation (5.4) reduces to Equa-
tion (5.3). Later Campillo, Delgado, and Kiyek extended Delgado’s result to include
analytically reduced and residually rational local rings with infinite residue field [13].

Starting from this result D’Anna followed Jager’s approach by turning Delgado’s sym-
metry condition into an explicit formula for a canonical semigroup ideal

Kg:{(JéEDS’AS(Ts—a):@}

of a good semigroup S (see Definition 5.8). In analogy to Jager’s result he showed that a
fractional ideal & of an analytically reduced and residually rational one-dimensional local
ring R (having arbitrarily many branches) with R C & C R is a canonical ideal of R if and
only if I'g = KIQR [8]. In Section 5.2 we give an intrinsic definition of a canonical ideal of a
good semigroup (see Definition 5.10). For a good semigroup ideal of a good semigroup this
definition is equivalent to satisfying the duality of Equation (5.2) and to being a shift of
D’Anna’s K° (see Theorem 5.14).

In Section 5.3 we relate the duality on good semigroups to the duality on fractional ideals.
We show that D’Anna’s characterization of canonical ideals by their value semigroup ideal
applies also for admissible rings. Moreover, with our definition of a canonical semigroup
ideal allowing for shifts we can prove that any fractional ideal K of an admissible ring R is
a canonical ideal of R if and only if its value semigroup ideal I'g is a canonical ideal of the
semigroup of values I'r of R (see Theorem 5.31).

While giving a further characterization of local Gorenstein algebroid curves, Pol computed
explicitly the value semigroup ideal of the dual R : J of a fractional ideal J of a Gorenstein
algebroid curve R [33, 14]. Using Delgado’s characterization of Gorenstein algebroid curves
in terms of their semigroups of values Pol’s formula can be written as

Fry=Tr—-T5. (5.5)

Since R is Gorenstein, it is a canonical ideal of itself. Therefore, I'g is a canonical
semigroup ideal of itself. Using properties of canonical semigroup ideals one can prove that
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Equation (5.5) is valid in any admissible ring if R is replaced by a canonical ideal K of R
(see Theorem 5.34). This shows that the duality on good semigroup ideals is compatible
with the duality on fractional ideals under taking values in the following sense: a regular
fractional ideal K of an admissible ring is a canonical ideal of R if and only if its value
semigroup ideal I'g is a canonical ideal of I'g, and we obtain a commutative diagram

Rr J—=RJ Rr

j?—)FjL [ﬁ»—)f‘j

Irr E—Ta—F Orp-

As a consequence of this result we extend in Section 5.4 Delgado’s and Pol’s characterizations
of Gorensteinness from local algebroid curves to admissible rings (see Corollaries 5.37 and
5.41).

With a view towards the Grauert—Remmert algorithm for normalization presented in
Section B.5.2 (also see Chapter 8) we study in Section 5.6 the endomorphism ring mp : mp
for a local Gorenstein algebroid curve R with maximal ideal mp. We show that mp : mp is
Gorenstein if and only if R is of type A, (see [22]) for some n € N (see Theorem 5.56). In
the proof we use the corresponding statement for good semigroups: a good local semigroup
S and Mg — Mg are symmetric if and only if S is the semigroup of values of an algebroid
curve of type A, (see Theorem 5.42).

5.1. Cohen—Macaulay Duality on One-dimensional Rings

Let R be a one-dimensional equidimensional Cohen—Macaulay ring. Then Equation (5.1)
and Lemma 2.13 lead to the following definition of a dualizing object on Rp.

Definition 5.1. Let R be a one-dimensional equidimensional Cohen—Macaulay ring. A
regular fractional ideal R € Rp is called a canonical (fractional) ideal of R if

J=R:(R:7)
for all J € Rpg.
Being a canonical ideal is a local property in the following sense.

Lemma 5.2 (See [25], Lemma 5.1.3). Let R be a one-dimensional equidimensional Cohen—
Macaulay ring, and let R € Rr. Then R is a canonical ideal of R if and only if RKn =
ARy € Rp,, is a canonical ideal of Ry for every m € Max (R).

Proof. This follows from Lemma 2.16.(2) and (3) and Proposition A.39 since equality is a
local property (see [24, Lemma 2.6]). O

In fact, if a one-dimensional Cohen—Macaulay ring R has a canonical ideal &, then R is
a canonical module of R.
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Remark 5.3. Let R be a one-dimensional equidimensional Cohen—Macaulay ring. Then a
canonical ideal of R is a canonical module of R, see [25, Remark 5.1.4].

Canonical ideals are unique “up to multiplication by units”.

Proposition 5.4. Let R be a one-dimensional equidimensional Cohen—Macaulay ring, and
let & be a canonical ideal of R. Then & € Rpr is a canonical ideal of R if and only if
R = TR for some invertible fractional ideal J of R. If R is semilocal, then &' is a canonical
ideal of R if and only if & = xR for some x € QR°.

Proof. See [25, Proposition 5.1.5]. O

The existence of canonical ideals for one-dimensional Cohen—Macaulay rings can be
characterized as follows.

Theorem 5.5. A one-dimensional local Cohen—Macaulay ring R has a canonical ideal if
and only if R is generically Gorenstein. In particular, any one-dimensional analytically
reduced local ring has a canonical ideal.

Proof. See [24, Korollar 2.12 and Satz 6.21]. O

Note that the particular claim of Theorem 5.5 includes local admissible rings (see
Definition 3.18). Moreover, for a local admissible ring we can choose a “normalized”
canonical ideal.

Corollary 5.6. Any one-dimensional analytically reduced local Cohen—Macaulay ring R
with large residue field has a canonical ideal R such that R C 8 C R. It is unique up to
multiplication by R* with unique value semigroup ideal.

Proof. See [25, Corollary 5.1.7]. O

Finally, as in Theorem C.21 canonical ideals propagate along finite ring extensions.

Lemma 5.7. Let R and R’ be one-dimensional local Cohen—Macaulay rings, and let
¢: R — R' be a local homomorphism such that R’ is a finite R-module and Qr = Qprr. If
R is a canonical ideal of R, then & : R is a canonical ideal of R’.

Proof. See [25, Lemma 5.1.8]. O

5.2. Duality on Good Semigroups

Motivated by a result by Jager in the irreducible case (see [11, Hilfssatz 5]) D’Anna
introduced the following semigroup ideal (see [8, Section 3]) based on a symmetry condition
on the semigroup of values of Gorenstein algebroid curves by Delgado (see [7, Theorem 2.8])
to characterize canonical ideals in terms of their value semigroup ideals (see [8, Theorem 4.1]
and Theorem 5.30).
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Figure 5.1.: A good semigroup S with canonical ideal K.

Definition 5.8. Let S be a good semigroup. The set

Kg«:{OAGDS’AS(Ts—Oé):@}

is called the (normalized) canonical (semigroup) ideal of S (see Figure 5.1).

Lemma 5.9 (see [25], Lemma 5.2.2). Let S be a good semigroup.

(1) The set K2 is a semigroup ideal of S satisfying property (E1)

(2) The minimal element of K2 is pgo = ps = 0. In particular, S C KYycS.

(3) The conductor of K2 is VK = s

Proof. (1) See [8, Proposition 3.2].

(2)

Since K2 is a semigroup ideal of S satisfying property (E1) by (1), it has by
Lemma 4.12 a minimal element. By Lemma 4.34 we have

A® (15— 0) = A% (15) = 0,

and hence 0 € K2 by Definition 5.8.

Now assume there is a € Kg with o % 0. Then there is ¢ € I such that «; < 0.
Using (1) to apply property (E1) in K3 to a and 0 yields a 8 € K with 8 < 0 and
B; < 0. Therefore, (15 — 3); > 7s, and hence A; (15 — 3) # 0. This implies 3 # K2,
contradicting the assumption a € Kg. The particular claim follows from (1) and
Lemma 4.14.

By (1) and Lemmas 4.12 and 4.18, K¢ also has a conductor. Since K9 + S C K¢
by (1) and 0 € K9 by (2), we have Ky < s

Now let o € Dg with a > 74g. Then 75 — & < 0, and hence A® (15 — ) = () since
s = 0. This implies VK > vs. O
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5. Duality and Gorenstein Property

The following definition of a canonical semigroup ideal relies on the inclusion relations
of good semigroup ideals and avoids a fixed conductor.

Definition 5.10. Let S be a good semigroup. A good semigroup ideal K € Gg is called a
canonical (semigroup) ideal of S if K C F implies K = E for all E € G with vx = vp.

Remark 5.11 (See [25], Remark 5.2.6). If K is a canonical ideal of S, then also a + K is a
canonical ideal of S for any a € Dg. This follows immediately from Definition 5.10 and
Remark 4.21.(1).

Proposition 5.12. Let S be a good semigroup. Then for any a € Dg there is a canonical
ideal K of S having conductor vx = a.

Proof. First we show that there is a canonical ideal K of S with conductor vyx = vs. By
Remark 4.6.(3) we have S € Gg . So there is a good semigroup ideal of S with conductor
vs. Now assume that S does not have a canonical ideal with conductor vg. Then for any
E € Gg with yg = g there is an E' € Gg with ygr = vs and E C E’. Then starting with
some E() e Gg with Vg0 = vs we find a sequence

(E(i))ieN € (Gs)",
where v = vs and E® C EG+D for all i € N. This yields
d(E(i“) \E<i>) >0 (5.6)
for all i € N by Remark 4.47.(2) and Proposition 4.50. Moreover, Lemma 4.29 implies

pp@ 2 Ypo — s =0
for all i € N, and hence E® C §.

Therefore, we obtain with Equation (5.6), Lemma 4.49 and Remark 4.47.(2) for any
e d(S\ BV) <d(S\ED) —d(BHD\ BD) = d(S\ ECD) e N, (5.7)
Then by induction there is a j € N such that

d(?\ EU)) <0,

contradicting Equation (5.7). Thus, there is a canonical ideal K of S with conductor
YK =78

Set 8 =« —vs. Then g+ K is by Remark 5.11 a canonical ideal of S with conductor
Yo+k =B+ 7k =a+ys— s =a. O

The following result was stated by Barucci, D’Anna, and Froberg in for the normalized
canonical semigroup ideal (see [10, Proposition 2.15]).

Proposition 5.13 (See [25], Proposition 5.2.5). Let S be a good semigroup, and let
S = [Lnen Sm be the decomposition of S into local good semigroups (see Theorem 4.9).
Then a good semigroup ideal K € Gg is a canonical ideal of S if and only if K,, is a
canonical ideal of Sy, for every m € M.
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5.2. Duality on Good Semigroups

Proof. First note that K, € Gg,, for any m € M by Theorem 4.9. Suppose that K is a
canonical ideal of S. Let m € M, and assume that K, is not a canonical ideal of S,,.
Then there is an E,, € Gg,, with vg,, = 7k,, and K,, C E,,. Now Lemmas 4.11.(4) and
4.28 yield

E=Enx [[ K.€Gs
neM\{m}

with vg = vk and K C FE, contradicting E being a canonical ideal.

Suppose now that K, is a canonical ideal of S, for all m € M. Let F € Gg with vg = vk
and E C K. Then for every m € M Theorem 4.9 and Lemma 4.28 yield E,, € Gg,, with
YE,, = VK,, and K, C E,,. Since K, is a canonical ideal of S,,, this implies K, = E,,
for every m € M, and hence F = K. Thus, K is a canonical ideal of S. O

Our aim in this section is to establish the following result on canonical semigroup ideals
in analogy with the properties of canonical ideals of admissible rings (see Theorems C.20,
C.21, and C.22).

Theorem 5.14 (See [25], Theorem 5.2.6). Any good semigroup S has a canonical ideal.
Moreover, for any K € Gg the following are equivalent:

(a) K is a canonical ideal of S.
(b) There is an o € Dg such that o + K = KJ.
(c) For all E € Gg we have K — (K — E) = E.
If K is a canonical ideal of S, then the following hold:
(1) Sc K C S if and only ifK:Kg.
(2) If E € Gg, then K — E € Gg.
(3) K—K=85.

(4) If S" is a good semigroup with S C 8" C S, then K' = K — S’ is a canonical ideal of
S’.

Proof. For the existence of a canonical ideal see Proposition 5.19.
(a) = (b) See Proposition 5.19.
(b) = (c¢) See Corollary 5.28.

(c) = (a) See Proposition 5.24.

(1) See Corollary 5.20.
(2) See Corollary 5.21.

(3) See Corollary 5.29.
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5. Duality and Gorenstein Property

(4) See Corollary 5.23. O

In particular, the equivalent statements of Theorem 5.14 show that for a good semigroup
S the normalized canonical ideal Kg is a canonical ideal of S in the sense of Definition 5.10,
and hence a good semigroup ideal of S. This was stated in [10, Proposition 2.14].

Remark 5.15 (See [25], Remark 5.2.7). As the example given in Figure 5.2 shows, the
assumption E € Gg in Theorem 5.14.(c) and (2) is necessary.

The rest of this section is concerned with the proof of Theorem 5.14. To keep the
notations shorter, we will write 7 for 7¢ and v for g if S is a good semigroup.

First we deal with the statement of Theorem 5.14.(2) in the case K = K2. For this we
collect some properties of Kg.

Lemma 5.16 (See [25], Lemma 5.2.8). Let S be a good semigroup. Then the semigroup
ideal K¢ of S (see Lemma 5.9.(1)) has the following properties:

(1) If E is a semigroup ideal of S, then

K3~ E={a€Ds| A" (r—a)=0}.

(2) AKS (1) = 0.
(8) If S is local (see Definition 4.5.(3)) and |I| > 2, then
T+ U ZNGJ‘ C ng
JCI  jeJ
|T|<[1]—2
(4) If S is local and |I| > 3, then

7+ | JNe; C K.
el

Proof. (1) See [8, Computation 3.3].
(2) Let o € AKS (7). Then there is i € I such that

o = Ty,

aj; > 7; forall j € I\ {j}.
This implies

Ti—OéiZO,

7j—a; <0forall jel\{j}

and hence
0eAi(r—a).

Since also 0 € 9, this yields A% (7 — a) # (). Therefore, o ¢ K2 by Definition 5.8.
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Figure 5.2.: A good semigroup S and semigroup ideal E of S satisfying property (E1) but not (E2),
where K} — E ¢ Gg and E C K% — (K2 — E).
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5. Duality and Gorenstein Property

(3) Let S be a local good semigroup, and let

o€ U T+ZNej.
JjeJ

JcI
lJI<[1]—-2

This means there is J C I with |J| < |I| — 2, and for all j € J there are n; € N such
that

a=T1-+ anej.
JjeJ

This implies

T—a:—aneng
JjeJ

Now assume there is

BGAS(T_Q)7£®7
i.e. there is ¢ € I such that

Bi =1 — o,

Bj > 1j —aj forall j €I\ {i}.

In particular, §; < 0. Thus, 8 € S implies 8; = 0 as us; = 0. Then 8 = 0 since S is

local, and hence «; = 7;.

However, since |I| > 2 and |J| < |I| — 2, there is k € I \ {i} such that
B > T — o = 0,

and hence
0¢ A% (1 —a).

This yields

and thus o € K3 by Definition 5.8.
(4) Let S be local, and let
aEeET+ U Ne;.
i€l
Then there is ¢ € I and n € N such that o = 7 + ne;. This implies
T —a = —ne;.
Therefore,
AP (t—a) =AY (—ne;)) ={B€Ds | Bi=-—nand B; >0forall j €I\ {i}} =0

since ug = 0, and
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5.2. Duality on Good Semigroups

for all j € I'\ {i} since S is local, and hence 0 is the only element of S with a zero
component but

Og_iAf(—ne,;):{ﬁeDS|Bj:O,6i> —n and B >0 forall k € I\ {i,j}}.
Hence, a € Kg by Definition 5.8. O

The proof of Theorem 5.14.(2) is obtained by the following Proposition. In particular, it
shows that Kg is a good semigroup ideal of S. D’Anna established a weaker statement,
where (E2) is replaced by a certain property (E3) (see [8, Theorem 3.6]). This property (E3)
follows from (E2) (see [8, Proposition 2.3]).

Proposition 5.17 (See [25], Proposition 5.2.9). Let S be a good semigroup. Then Kg—E €
Ggs for any E € Gg. In particular, Kg € Gg.

Proof. The idea of the following proof is illustrated in Figure 5.3.

Let E € Gg, and suppose that Kg — F ¢ Gg. Since Kg — F is a semigroup ideal of S
satisfying property (E1) by Lemmas 4.18 and 5.9.(1), it then has to violate property (E2).
This means that there are a, 5 € Kg — FE with

@#J:{jel\aj;éﬁj}cl

such that
¢ =inf{o,8} € K§— E

and there is an [y € I\ J such that
(¢Ks—E
for any ¢ € Dg with
o > Cl(00)7
¢G> foralliel,
¢G> ¢ forall j e .

In particular, any choice of a sequence (I,-),cy in I'\ J yields a sequence (C (’”)) . in Dg
T
with

(O ekKd-E, (5.8)
¢ =¢rV e  ¢KY-E. (5.9)

By Lemma 5.16.(1) this means that
AF (7¢O =0, (5.10)

and that for any r» > 1 there is an ¢ € I such that

AP (1=¢) #0. (5.11)
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We construct a sequence as above by induction on r with the additional property that
for » > 1 we have

AF(r—¢) =0 (5.12)

for all j € J, where in each step we pick an I, € I\ J and a
00 e AP (7 —¢). (5.13)

Assume we have a sequence (l¢),_; ., in I'\ J satisfying Equations (5.8), (5.9), (5.10),
(5.11), (5.12), and (5.13), and suppose there is a j € J such that

AF(r=¢) #0.

r—1)

In particular, we then have j # [,_;. By Equation (5.11), and since ¢(") = ¢( +e,
(see Equation (5.9)), this implies that there is a

e A (r—¢) (5.14)

= AP (r=crNuaf, | (r-¢ ) (5.15)

SN (T _ C(r—l)) , (5.16)

where the union in Equation (5.15) is disjoint, and the equality in Equation (5.16) follows
from the induction hypothesis AJE (7‘ - C(T_l)) = () for all j € J (see Equation (5.12)). We

deduce contradictions with different arguments for » = 1 and r > 2, respectively.
First consider the case r = 1. As j € J, we may assume that

Bj > a5 = CJ(O)> (5.17)

and we have .
B = Gy (5.18)
by the choice of lp € '\ J. Since 3 € K — E and 6 € E, we get

§+pe K. (5.19)
Then Equations (5.14), (5.15), and (5.16) yield
§+¢9 € Ay (1),
and this implies with Equations (5.17), (5.18), and (5.19)
5+ BeASS(r),

contradicting Lemma 5.16.(2).
Assume now that r > 2. By Equations (5.13) and (5.16), and since j # l,_1, we obtain

Oy = Tlpy — Cz(:l) = 51(:1)
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5.2. Duality on Good Semigroups

and
(5]' = Tj — Cj(lril) < (5](7' — ].)

Since E € Gg, property (E2) applied to 6= (") ¢ E yields an € € E with

e, >0 =0

r—17

€; > min {d(T 1),51} forall ¢ € I,

7

e = min {3V 6 } for all k € I with 6" 6.

In particular, we have

C(‘T_l)-

€ =0; =Tj — J

Then Equation (5.16) yields
€€ A (T - C(r_1)>,

contradicting the induction hypothesis (see Equation (5.12)).
Now pick
1
r> ‘Tk_clg)_(ﬂE)k"

kelI\J

Then Equation (5.13) yields
o =m -G < (up), -

Since §(") € E by Equation (5.11), this contradicts the minimality of px in E. Thus, it
follows that Kg — F e gs.
In particular, since K2 is a semigroup ideal of S by Lemma 5.9.(1), 0 € S, and S € Gg
by Remark 4.6.(3), this yields
Ky=K}—-Segs. O

We can now relate our definition of canonical semigroup ideals (see Definition 5.10) to
D’Anna’s definition of normalized canonical semigroup ideals (see Definition 5.8).

Lemma 5.18 (See [25], Proposition 5.2.10). Let S be a good semigroup. Then E C K3
for any B € Gg with vg = 7.

Proof. Let E € Gg with conductor vg = +, and assume there is a 8 € E\ KY. Then
Definition 5.8 implies that there is a 6 € A® (7 — ). Hence, B+ 6 € AF (E). However,
this contradicts Lemma 4.34, and therefore E C Kg. ]

Proposition 5.19 (See Theorem 5.14.(a) = (b) and [25], Proposition 5.2.10). Let S be
a good semigroup, and let K € Gg. Then K is a canonical ideal of S if and only if there
is an o € Dg such that K = a + Kg. In particular, for any 6 € Dg, there is a unique
canonical ideal K of S with yx = 9.
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l'r—l

Figure 5.3.: Induction step in the proof of Proposition 5.17 in case I \ J = {l,_1}.
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5.2. Duality on Good Semigroups

Proof. Using Remark 5.11, it suffices to show that K g is the unique canonical ideal of S
with conductor VY =Y (see Lemma 5.9.(3)). For any E € Gg with vg = ~, Lemma 5.18

yields £ C Kg. Since Kg € Gg by Proposition 5.17, this implies that Kg is a canonical
ideal of S.

If K € Gg is a canonical ideal of S with yx = ~, then Lemma 5.18 yields K C K2,
and hence K = K g by Definition 5.10. Thus, Kg is the unique canonical ideal of S with
conductor Ky = - O

As a consequence we deduce the combinatorial counterpart of Lemma 5.7 on good
semigroups.

Corollary 5.20 (See Theorem 5.14.(1)). Let S be a good semigroup. If K is a canonical
ideal of S with S C K C S, then K = Kg.

Proof. By Proposition 5.19 there is an o € Dg such that K = a+ K3. Then Lemma 5.9.(2)
yields pg = « + gy = . Since S C K C S, we have

0=ps>px+az>pug=0.

Thus, K = Kg. O

The relation of Proposition 5.19 between general canonical ideals of S and the normalized
canonical ideal of S allows for deducing the statements of Theorem 5.14 from results on
KO,

Corollary 5.21 (See Theorem 5.14.(2)). Let S be a good semigroup, and let K be a
canonical ideal of S. Then K — E € Gg for all E € Gg.

Proof. By Proposition 5.19 there is an @ € Dg such that K = a + Kg. Then
K-E=(a+K})-E=a+ (K- E)

by Remark 4.21.(2). Since K¢ — E € Gg by Proposition 5.17, Remark 4.21.(1) yields
K —F €gs. O

Corollary 5.22. Let S be a good semigroup, and let K be a canonical ideal of S. Then
E CK forall F € Gs with vg = V.

Proof. This follows from Remark 4.21.(1), Lemma 5.18 and Proposition 5.19. O

Corollary 5.23 (See Theorem 5.14.(4) and [25], Corollary 5.2.11). Let S and S’ be good
semigroups such that S C S' C S. If K is a canonical ideal of S, then K' = K — 8" is a
canonical ideal of S’.
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5. Duality and Gorenstein Property

Proof. By Remark 4.6.(3) we have S’ € Gg, and Proposition 5.19 implies K = o + K3 for
some o € Dg. Then Lemma 5.16.(1) and Remark 4.21.(2) yield

K' = (a—I—K%) -9
=a+ (Kg - S’)
—a+{BeDs| A% (r-p) =0}
:a+T—Tsl+{5€DS ‘ AS/(Tsl—é)ZQ}
=a+7—Ty + K.
Thus, K’ is a canonical ideal of S’ by Proposition 5.19. O

In the following two Propositions 5.24 and 5.26 we establish an equivalent definition of
canonical semigroup ideals (see Theorem 5.14.(c)) which corresponds to the definition of
canonical fractional ideals (see Definition 5.1).

Proposition 5.24 (See Theorem 5.14.(c) = (a) and [25], Proposition 5.2.13). Let S be
a good semigroup. If K € Gg with K — (K — E) = E for all E € Gg, then K is a canonical
ideal of S.

Proof. Assume that K is not a canonical ideal of S. Then there is an F € Gg with vg = vi
and K C E (see Definition 5.10). Then Lemma 4.40.(2) yields the contradiction

ECK—-(K—-FE)=E.
Hence, K is a canonical ideal of S. O

Lemma 5.25 (See [25], Lemma 5.2.14). Let S be a good semigroup, let E be a semigroup
ideal of S, and let o € K% — (K3 — E). If ¢ € Dg satisfies AF (1 —¢) =0, then

AS(r—C—a)=0.
Equivalently, if 3 € Dg satisfies AS (1 — 8) # 0, then
AP (r—B+a)#0.
Proof. Using Lemma 5.16.(1) we have
K$— (K&~ B) = {aeDs|a+ (K§- B) c K§}
:{QGDS’a+{CEDS‘AE(T—C):@} ch}
={aeDs|A%(r—(—a)=0forall ¢ € Dg with A (7 - () = 0}.
Thus, if ¢ € Dg satisfies A® (7 — ¢) = (), then

A (T —C—a)=10
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for all « € K2 — (K3 — E). By setting ( = 8 — a for a € K3 — (K2 — E), we obtain
equivalently

AE(r—B4+a)#D
if 8 € Dg satisfies A® (1 — ) # (. O

Proposition 5.26 (See [25], Proposition 5.2.15). Let S be a good semigroup. Then
K$— (K§-E)=E
for any E € Gs. In particular, K3 — K2 = S.

Proof. Note that the inclusion E C K2 — (K2 — E) holds trivially by Lemma 4.40.(1). So
assume that
E¢ K- (K§-E).

By Lemmas 4.18 and 5.9.(1), K — (K2 — E) is a semigroup ideal of S satisfying prop-
erty (E1), and hence it also satisfies property (EO) by Remark 4.6.(1). Thus, there is
an

ac(Ky-(KE-E))\E

which is minimal with respect to the partial order on Dg.
Since E satisfies property (E1), and since a ¢ E, there is a k € I such that no e € F
satisfies

€ = O, (5.20)

€ > «; for all i € T\ {k}. (5.21)
We set =~ — ey, i.e.

Bk = Tk, (5.22)

Bi =~ foralli e I\ {k}. (5.23)

Then 0 € AY (7 — B) # 0, and Lemma 5.25 yields a
CeAE(r—B+a)#0.
This means there is a j € I such that ( € F with

G =1 = Bj +ay,
G>1—PBita;forallieI\{j}.

Now j = k contradicts the choice of k as then, using Equations (5.22) and (5.23),

Ck = Qg
(> a; forallie I\{k‘},
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see Equations (5.20) and (5.21) with € = (. Thus, we have j # k and

G=o5—1, (5.24)
G > o, (5.25)
CGi>a;foralliel\{j,k}. (5.26)

Since ( € E C K — (KJ — E) by Lemma 4.40.(1), a € K — (K3 — E) by assumption,
and since K2 — (K9 — E) satisfies property (E1) by Lemmas 4.18 and 5.9.(1), we obtain,
using Equations (5.24), (5.25), and (5.26),

oz>o<—ej:inf{a,(}6Kg—(Kg—E).

Now set o = inf {«, (}, and assume that o/ € E. Then applying property (E2) to o’
and ( in F yields an € € E with

e >d =C=a-1,
€ = min {ay, G} = g,
e > min{a}, (i} = a; for alli € I'\ {4, k}.

However, this is a contradiction to the choice of k, see Equations (5.20) and (5.21). Thus,
a>d € (Kg— (Kg—E)) \ E,
contradicting the minimality of «. Therefore, we obtain
K$ - (K§ - EB) = E.

Then setting E = S the particular claim follows from Remark 4.21.(3) and (4) and
Lemma 5.9.(1). O

Remark 5.27. In case |I| = 1, there is an easier proof of Proposition 5.26: Let o €
(K — (K% —E))\ E, and set 8 = 7. Since

AS(r—B)=A0)NS={0}nS ={0} #0,
Lemma 5.25 yields

0#£AP(r—B+a)=A(a)NE={a}NE,
and hence a € E. Thus, E = K3 — (KJ — E).

Corollary 5.28 (See Theorem 5.14.(b) = (c)). Let a € Dg, and let K = o+ K3 € Gg
(see Remark 4.21.(1) and Proposition 5.17). Then

K- (K-E)=FE

for any E € Gg.

122



5.3. Relation of Dualities

Proof. By Remark 4.21.(2) and Proposition 5.26 we have

K- (K- E) = (a+K§) - ((a+ KS) - B)
ia—aJr(Kg—(Kg—E))

Corollary 5.29 (See Theorem 5.14.(3)). Let S be a good semigroup, and let K be a
canonical ideal of S. Then K — K = S.

Proof. By Proposition 5.19 there is o € Dg such that K = a + K2. Since S € Gg by
Definition 4.5, Remark 4.21.(4) and Corollary 5.28 yield

K-K=K-(K-8)=§. O

5.3. Relation of Dualities

In this section we relate the duality on good semigroup ideals (see Section 5.2) to the
Cohen—-Macaulay duality on fractional ideals (see Section 5.1). D’Anna characterized
normalized canonical ideals of a local admissible ring in the following way.

Theorem 5.30. Let R be a local admissible ring. Then a reqular fractional ideal & of R
s canonical if and only if Tg = KIQR (see Definition 5.8).

Proof. See [8, Theorem 4.1]. O

Note that KIQR is a canonical semigroup ideal of I'r by Theorem 5.14. We extend
Theorem 5.30 to admissible rings dropping the normalization of canonical ideals.

Theorem 5.31 (See [25], Theorem 5.3.2). Let R be an admissible ring. Then R € Ry is
a canonical ideal of R if and only if U'g is a canonical ideal of I'r (see Definition 5.10).

Proof. First suppose that R is local. By Proposition 5.4 and Corollary 5.6 £ is a canonical
ideal of R if and only if there is an x € QrReg such that xR is a canonical ideal of R with
R C 28 C R. By Theorem 5.30 this is equivalent to

Kp, =Tus =v(z) + T

By Theorem 5.14.(a) <=> (b) this is the case if and only if I' is a canonical ideal of I'p.

Let now R be semilocal. By Lemma 5.2 £ is a canonical ideal of R if and only if &, is a
canonical ideal of Ry, for every m € Max (R). By Lemma 3.33 and the local case this is
equivalent to (I'g),, = I'g,, being a canonical ideal of (I'r),, = I'r,, (see Theorem 4.9 and
Remark 4.10). By Remark 4.10 and Proposition 5.13 this is the case if and only if I'g is a
canonical ideal of I'g. O
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5. Duality and Gorenstein Property

Example 5.32. Barucci, D’Anna, and Froberg gave in [10, Example 2.16] the following

example of a good semigroup which is not the value semigroup of an admissible ring:

Consider the good semigroup S depicted in Figure 5.4, and suppose that there is an

admissible ring R with I'r = S. Then R is local by Proposition 3.17. Thus, there is by

Corollary 5.6 a canonical ideal & of R with R C & C R. Theorem 5.30 yields I'g = K.
Consider the maximal chains

{ns =(0,0),(6,7),(9,7), (12, 7),
(12,14), (15, 14), (16, 14), (18, 14), (19, 14), (20, 14),
(21,14), (22, 14), (23,14), (24, 14), (25, 14), (26, 14), (27, 14),
(27,15), (27,18), (27,19), (27, 21), (27, 22), (27,23), (27,25) = 75}

in S and
{1y = (0,0),(6,7),(9,7),(12,7), (12,11),

(12,14), (13, 14), (15, 14), (16, 14), (18, 14), (19, 14), (20, 14),
(21,14), (22, 14), (23, 14), (24, 14), (25, 14), (26, 14), (27, 14),

(27,15), (27, 18), (27, 19), (27, 21), (27, 22), (27, 23), (27, 25) = ng}
in Kg. Then Proposition 4.51 yields
(r(8/R) = d(Kg\ S) = 2.
Thus, there is an J € Rp with R C J C K. Remark 3.15 and Corollary 4.52 imply
S=TrCT5CIg=K2. (5.27)

However, it is easy to see that for any £ € Gg with S C E which contains a point of
K2\ S we have K2 C E. This is a contradiction to Equation (5.27) since I'y € Gg by
Proposition 3.22.(4).

Let R be a local plane algebroid curve, and let J € Rg. Pol gave an explicit formula for
the value semigroup ideal I'g.5 of the dual R : J of 7.

Theorem 5.33. Let R be a local plane algebroid curve. Then
Try={a € Dr, | AT (mr, —a) = 0}. (5.28)

Proof. See [33, Theorem 2.4]. O

Replacing J by R in Equation (5.28), Theorem 5.33 implies that for a local plane
algebroid curve R we have

Ir={a€Dr, | A" (m, —a) =0} = K¢, (5.29)

124



QOO O0OO0OO0OO0O0O0O0D0O0O0OO0O0OO0OObOOObOOOOOOOOOoOOo
Q@ OO OO0OO0OO0OO0OO0ODO0OO0OODODOOLOOOOOOOOOOOOoOOo

5.3. Relation of Dualities

0000000000000
®® 0 0O0OO0O0O0ODO0OOO0OO0OO0OO0
00O 000006000000
00O 00000000000
00O 000006000000
00O 00000000000
®® OO0 O0OO0OO0OO0O0OO0O0OO0OO0OO0
0O OC 000006000 000
0O OC 000006000 000
®e OO0 @@ O OOO0OO0OO0OO0OO0
[ JNcaNolN BN NNORN BN BN BN BN BN BN BN J
[ JNcaONN BN NNORN BN BN BN BN BN BN BN ]
®e 0O O0C0eeOeee®e O OO0O0

0
KS

® OO0OO0OO0OO0OO0OO0OO0OO0OO0OOO0OO0OO0OO0OO0OO0OO0O0

OO0 O0OO0O00O0OD0O0OO0O0OO0OO0OO0OOOOOOOOOO0OOoOOo

@ O O0O00QOOOOLOOOOLOODOOOOOOOOOOOOOo
@O O0OO0O00QOOOLOOOLOOOOOOOOOOOOOOOO
@O O0OO0O000O0O0O0OO0ODO0OO0OO0O0OO0OOb0OOObOOOOOOOOOoOOo
@O O0OO0O000O0O0O0O0OD0O0OO0O0OO0O0Ob0OOObOOOOOOOOOoOOo
OO0OO0C®®O0OO0O0O0O0OO0O0O0O0OO0O0O0O0OO0oOO0oOO0

@O O0OO0O000O0O0O0OO0ODO0OO0OO0O0OO0OOb0OOObOOOOOOOOOoOOo
@O O0OO0O000O0O0O0OO0ODO0OO0OO0O0OO0OOb0OOObOOOOOOOOOoOOo

@O O0OO0O00O0O0O0O00ODO0OO0OO0OO0ODOO0OOOO0OOOO0OOOO0OO0OO0OO0o

@ OO0 O0OO0O0O0Ce®OO0OO0OeOoOo

@ OO0OO0OO0O0OO0C®OO0OO0OeOoOo
@ OO0OO0O00O0O®®O0OO00®O00O0O00O0O0O0O0O0O0O0O0OO0OO0OO0

QP OO0OO0O000O®O0O0D0e00eee 00O o000 o000
QP OO0OO0O000O@®O0O0D0e00eee 00O o000 o000
QP OO0OO0O000O@®O0O0D0000Ceee 000 OCe 00000000

@ OO0 O0O00O0Ce@OO0OO0OeOoOo
@ OO0 O0OO0O0O0C®OO0OO0OeOoOo
@ OO0 O0OO0OO0O0C®OO0OO0OeOoOo
@ OO0OO0O0O0O0C®OO0OO0OeOoOo
@ OO0OO0OO0O0O0C®OO0OO0OeOoOo
@ OO0OO0O0O0O0C®OO0OO0OeOoOo
@ OO0 O0OO0O0O0C®OO0OO0OeOoOo
@ OO0 O0OO0OO0OO0C®OO0OO0OeOoOo
@ OO0 O0O0O0O0C®OO0OO0OeOoOo
@ OO0OO0O0OO0O0C®OO0OO0OeOoOo
@ OO0OO0OO0O0O0C®OO0OO0OeOoOo

: A good semigroup S which is not the semigroup of values of an admissible ring (see

Example 5.32). The canonical ideal K of S consists of S together with the red points.
The distance d(Kg \ S) = 2 can be computed along the blue path. Moreover, using
properties (E1) and (E2) we see that any good semigroup ideal E of S which contains
a point of K3\ S has to contain K2. See [10, Example 2.16].
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5. Duality and Gorenstein Property

(see Definition 5.8) for the second equality). In fact, due to Delgado Equation (5.29) charac-
terizes Gorensteinness of local algebroid curves (see [7, Theorem 2.8]). Then Lemma 5.16.(1),
Theorem 5.33, and Equation (5.29) imply

Try=Kp, —T3=Tp—T4. (5.30)

Note that R is a canonical ideal by Theorem 5.31. We extend Equation (5.30) to admissible
rings replacing R by a canonical ideal & of R.

Theorem 5.34. Let R be an admissible ring with canonical ideal K. Then
Igg=Ta—1I5
for any J € Ry, and
dTg —T'3\I'g —Ty) =d(I5\Ts)
for any 3,3 € Rr with J C J.

Proof. See [25, Theorem 5.3.5]. O

5.4. Gorenstein Property and Symmetry of Good Semigroups

In this Section we give a characterization of Gorenstein (see Definition C.24) admissible
rings in terms of their semigroup of values. A Cohen—Macaulay is by Theorem C.26
Gorenstein if and only if it is a canonical module of itself.

Let R be a one-dimensional Cohen—-Macaulay ring. If R is a canonical module of R,
then it is a canonical ideal of R. Since, moreover, any canonical ideal of R is a canonical
module of R by Remark 5.3, this yields the following characterization of one-dimensional
Gorenstein rings in terms of canonical ideals.

Theorem 5.35. A one-dimensional Cohen—Macaulay ring R is Gorenstein if and only if
R is a canonical ideal.

Proof. See [24, Korollar 3.4]. O
Theorem 5.31 leads to the following definition for good semigroups.
Definition 5.36. A good semigroup S is called symmetric if S is a canonical ideal of itself,
ie.if
S =K} ={aeDs|A5(rs —a) =0}
(see Theorem 5.14.(1)).

This symmetry condition was introduced by Kunz in the irreducible case (see [6]), and
by Delgado for algebroid curves with arbitrarily many branches (see [7, Theorem 2.8]), to
characterize Gorenstein curves. Here we extend this result to admissible rings.

Corollary 5.37 (See [25], Proposition 5.3.6). Let R be an admissible ring. Then R is
Gorenstein if and only if I'r is symmetric.
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5.4. Gorenstein Property and Symmetry of Good Semigroups

Figure 5.5.: The symmetric semigroup S = (4, 7).

Proof. Gorensteinness of R is by Theorem 5.35 equivalent to R being a canonical ideal of
R, and hence to I'g being a canonical semigroup ideal of I'p by Theorem 5.31. ]

Remark 5.38. Let S be a good semigroup. If |I| = 1, then

S:{aEDS‘TS—ag;S}.
So the symmetry condition above indeed means a symmetry of gaps and non-gaps in the
semigroup, see Example 5.39 below.

Example 5.39. Let S = (4,7). Then for any o € Dg we have o € S if and only if
Ts —a & S. So S is symmetric according to Definition 5.36, and there is a symmetry of
gaps and non-gaps of .S, see Figure 5.5.

Example 5.40. Consider the admissible ring R = C[[x, y]]/(z’y —v?®) = C[[(t2, t2), (13, 0)]].
Then I'g is symmetric (see Figure 5.6), and hence R is Gorenstein by Corollary 5.37. This
follows also from R being a plane algebroid curve (see [1, Corollary 5.2.9]).

Pol generalized Theorem 5.33 showing that local Gorenstein algebroid curves are
characterized by satisfying Equation (5.28) for every regular fractional ideal (see [14,
Théoreme 5.2.1]). We extend Pol’s result to admissible rings.

Corollary 5.41 (See [25], Proposition 5.3.7). Let R be an admissible ring. Then R is
Gorenstein if and only if

Pra=Tr—Ts={ae Dr, | A" (m, - ) =0} (5.31)

for any J € Rp.

Proof. Suppose that R is Gorenstein. Then I'g is a canonical ideal by Corollary 5.37.
Thus, Lemma 5.16.(1) and Theorems 5.14.(1) and 5.34 yield

Tro=Tr—Ty=Kp, —T;= {0‘ € Dry ’ AR (r, —a) = V)}

for every J € Rj.
Conversely, suppose that Equation (5.31) is satisfied for every J € Ri. Since R € Ry
with R : R = R (see Section 2.1), this implies

I'r = {Oé € DFR ’ AFR(TFR — Oé) = @} = KgR.

Thus, R is Gorenstein by Corollary 5.37. O
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Figure 5.6.: The admissible ring C|[z,y]]/(x°y — y3) = C[[(#3, t2), (t3,0)]] of Example 5.40 is Goren-
stein with symmetric semigroup of values I'g (see Corollary 5.37). For instance, we
have a € T'g and A" (7, —a) =0, 8 € T'g and A'®(1r, — 8) # 0, § € T'g and
ATR(7p, —8) =0, and € € Tg and AU'R(p,, —€) # 0.
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5.5. Symmetric Semigroups

5.5. Symmetric Semigroups

In this section we study local symmetric semigroups. A local semigroup S has by Lemma 4.7
a maximal ideal Mg € Gg (see Definition 4.5.(3)). We show that for a local symmetric
semigroup S the semigroup ideal Mg — Mg is a good semigroup with S C Mg — Mg C
Mg — Mg = S (see Proposition 5.43).

As the main result of this section we give a characterization of the case when Mg — Mg
is also a symmetric semigroup.

Theorem 5.42. Let S be a local good semigroup. Then the following are equivalent:
(a) S and Mg — Mg are symmetric semigroups.
(b) We have |I| < 2. If |I| =1, then there is an n € 2N such that
S=(2,n+1),

and if |I| = 2, then there is an n € 1+ 2N such that

S = <(1)iel> U ((n; 1>ieI+NI)
= u(("5 ") ).

2 72
Proposition 5.43. Let S be a local symmetric semigroup. Then Mg — Mg € Gg, and
Mg — Mg is a good semigroup with Dyjg_ng = Ds and S C Mg — Mg C Mg — Mg = S.

Proof. Since S is a local symmetric semigroup, Proposition 4.38 and Theorem 5.14.(2)
yield
Mg — Mg =5 — Mg € Gg.

Then Mg — Mg satisfies property (EO) by Remark 4.6.(1) and properties (E1) and (E2) by
definition. Moreover, Mg — Mg is by Lemma 4.7 and Proposition 4.25 a partially ordered

cancellative commutative monoid with Dysq_ng = Ds and S C Mg — Mg C Mg — Mg =
S. O

In the remainder of the section we prove Theorem 5.42. First we show the implication
(b) = (a) in Proposition 5.45, then we show the implication (a) = (b) for the case
|I| =1 in Proposition 5.47 and for the case |I| = 2 in Proposition 5.52.

Lemma 5.44. Let S be a local symmetric semigroup. Then
MS—MSZSUA(Ts).

Proof. By Proposition 4.25 we have S C Mg — Mg. Since S is local, we have piprg > 1 (see
Lemma 4.7 and Definition 4.13). Then Lemma 4.35 yields

YMg—Mg = YMs — PMg < Vs —1 =Tg,
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5. Duality and Gorenstein Property

and hence A(1g) C Mg — Ms.
Assume now that there is an

a € (Mg — Ms) \ (SUA(7s)).
Since S is symmetric, this implies that there is a
B e A%(rg — a).

Therefore, we have a + 5 € A(7g).
As SUA(7g) = SU (7‘5 + F) by Lemma 5.16.(3) and (4), we have o < 75 — 1. Therefore,
B € Mg. This yields the contradiction

a+ B e Ars)N Mg C AS(rg) =0,

where the last equality follows from Lemma 5.16.(2) since S is symmetric. Also see [8,
Lemma 3.5]. O

Next we show the implication (b) = (a) of Theorem 5.42.

Proposition 5.45. Let S be a good semigroup.

(1) If
S={2,n+1)

for some n € 2N, then
Mg — Mg =(2,n—1).

In particular, S and Mg — Mg are symmetric semigroups.

(2) If

s:<(1,1)>u<<”;1,”;1>+N2)

for some n € 1+ 2N, then

MS—MSZ((1,1)>u<("51,”;1>+N2>.

In particular, S and Mg — Mg are symmetric semigroups.

Proof. (1) Obviously, s = n, and hence 7 = n — 1. Then Lemma 5.44 yields

2,n—1) ifn>0
o< sue) - {$70Y 60

Clearly, S and Mg — Mg are symmetric.
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(2) Obviously,

B (n—l—l n+1>
75_ 2 ’ 2 ’

n+1 n+1 n—1n-1
TS:’YS_]-:< 92 ) ) >_(171):< 9 )

and hence

Then Lemma 5.44 yields

Mg — Ms = SUA (r5) = ((1,1)) U ((”;”;1) +N2>.

Clearly, S and Mg — Mg are symmetric semigroups. O

The following statement is well-known, see for example [6] or [1, Theorem 5.2.4].

Lemma 5.46. Let S be a local symmetric semigroup with |I| = 1. Then
vs = 2d (?\ S) .
Proof. First note that |I| = 1 implies
d(S\8)= ‘?\S’.
Now for any o € Dg we have by Remark 5.38 and Definitions 4.31 and 5.8 a € S if and
only if 7¢ — a € S since S is symmetric. As Cs =g +S C S and v = 7 + 1, this yields
S\ 8| =18\ Cs].

Therefore, v = 2d (?\ S). O

We can already prove the converse of Proposition 5.45.(1).

Proposition 5.47. Let S be a local symmetric semigroup with |I| = 1. If Mg — Mg is a
symmetric semigroup, then there is an n € 2N such that

S=(2,n+1).
Proof. By Lemma 5.44 we have Mg — Mg = S U {7g}. This implies
d(S\ (Mg~ Ms)) =d (S\S) - 1.
So if Mg — Mg is a symmetric semigroup, Lemma 5.46 yields
TMs—Mg = 2d (?\ (Mg — Ms)) =2 (d (?\5) - 1) =75 — 2.
Thus, we obtain by Lemmas 4.7 and 4.35
2 =795 —YMmg—Mg = prg € Mg C S.

This implies
S=(2,7s+1),

and yg = 2d (?\ S) is even by Lemma 5.46. O
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Lemma 5.48. Let S be a local symmetric semigroup. If Mg— Mg is a symmetric semigroup,
then

Warg + (MS - Ms) = Mg.

Proof. Note that Mg satisfies property (E1) by Lemma 4.7 since S is local. Hence, pasq is
defined by Lemma 4.12.

Let 5 € Dg. First assume that 3 € ppg + (Mg — Mg), i.e. B — pnrg € Mg — Mg. Since
Mg — Mg is symmetric, Remark 5.38, Definitions 4.31 and 5.8, and Lemma 4.7 yield

AMS_MS (TMs—MS + HMg — 6) = @
By Lemma 4.35 we have
TMg—Ms T Mg = YMs—Mg + pmg —1 =75 — 1 =7g,

and hence we obtain
AMs=Ms (74— B) = (.

Since S C Mg — Mg by Lemmas 4.7 and 4.20, this yields
A% (t5 = B) =10.

As S is symmetric, we obtain 5 € S by Remark 5.38 and Definitions 4.31 and 5.8. Moreover,
Mg — Mg C S by Lemma 4.39.(2) since S is local, and hence Cs C Mg C S. This yields
B > png, i.e. B € Mg by Definition 4.5.(3).

Suppose now that 8 & g + Mg — Mg, ie. B — ppg € Mg — Mg. Since Mg — Mg is
symmetric, this implies

AMs=Ms (TMS_MS - (/6 - I'LMS_MS)) # 0. (5’32)
Since S C Mg — Mg by Lemmas 4.7 and 4.20, and since
png =5 — (Vs — pmg) = s — (VMg — M) = VS — VMg—Mg = TS — TMg—Ms

by Lemma 4.35, Equation (5.32) yields

0 # AMs=Ms (7 ppg — (B — pnvsg—ns))
= AS(TMsst —(B—(rs — TMS*MS)))
= AS(TS - p).

Since S is symmetric, this implies 5 € S, and hence 5 € Mg. Thus,
MMS+(MS_MS):MS- O

Lemma 5.49. Let S be a local symmetric semigroup, and let o € Mg\ Cg. If Mg — Mg
is a symmetric semigroup, then
a— pypg € 8.
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Proof. By Lemmas 5.44 and 5.48 we have
o € Mg = png + (Ms — M)
= kMg t+ (SUA(7s))
= (umg +S)UA(Ts + pnrg) -

Assume o € A (75 + pmg). Then o > ~g since ppg > 1 as S is local. But this is a
contradiction to the choice of o ¢ Cs. Hence, o — pprg € S. O

Lemma 5.50. Let S be a local symmetric semigroup, and let « € Mg\ Cg. If Mg — Mg
is a symmetric semigroup, then there is an n € N such that

o= npng-
In particular,

S = (ung) U Cs.

Proof. Since S is local, and since Cs = v + S by Remark 4.27.(1), repeatedly applying
Lemma 5.49 yields
a—mupng €8 (5.33)

for all m € N satisfying
(m—1) parg < o (5.34)

Since « is finite, there is
n=max{m e N|(m—1)un, <a}.
Then

npng £ o (5.35)

by definition, and
a—nuyg €5 (5.36)

by Equations (5.33) and (5.34). Since pug = 0, Equation (5.36) implies a — nuprg > 0.
However, o — npiprg > 0 contradicts the choice of n (see Equation (5.35)), and hence we
obtain oo — nppg = 0. O

Lemma 5.51. Let S be a local symmetric semigroup. If Mg— Mg is a symmetric semigroup,
then |I| < 2.

Proof. Assume that |I| > 3. Then

TS + U Ne; C S
el
by Lemma 5.16.(4). Since
<7'S + U Nei> NCg =0,
el
this is a contradiction to Lemma 5.50. O
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To complete the proof of Theorem 5.42 we show the converse of Proposition 5.45.(2).

Proposition 5.52. Let S be a local symmetric semigroup with |I| = 2. If Mg — Mg is a
symmetric semigroup, then

IU,MS = (1, 1) .
Moreover, there is an n € 2N + 1 such that

5:((1,1)>u<(”;1,”;1)+N2).

Proof. Since |I| = 2, we may assume I = 1,2. Note that Mg satisfies property (E1) by
Lemma 4.7 since S is local. Hence, s is defined by Lemma 4.12. Moreover, we have
pag > 1 by Definition 4.5.(3). Hence, Lemma 4.35 yields

YMs—Mg = VMg — HMg = VS — fiMg < s — 1 = Tg. (5.37)
Suppose that yarg—nrg < 7s. Then

A(Ts—l):(Ts—l)—FUNeiCMS—MS
iel

since |I| = 2. However,

Alrs—1)¢ S

by Lemma 5.50, and
A(ts —1)NA(1s) =0

by Definition 4.31. Using Lemma 5.44 this yields the contradiction
A(ts —1) ¢ SUA(1g) = Mg — Msg.
Hence, we obtain with Equation (5.37)
TS = YMg—Msg-
So Lemma 4.35 yields
Mg = VS — YMg-Ms =S — Ts = 1. (5.38)

Therefore,

S =((1,1)) UCs (5.39)

by Lemma 5.50.
Assume (vs5); # (7s)y- Then without loss of generality

(75)1 < (’YS)Q' (5.40)

By Equation (5.39) we have
(,a) € S (5.41)
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for any
(7s); <aeN. (5.42)

This implies by Lemma 4.33
(o, ) + Ney C S. (5.43)

Let now n € N and
B = (a,a+n) € (a,a) + Nes.

Then we have
(a+n,a+n)es

by Equations (5.41) and (5.42). Now a > (vg); and max {a + n, (75),} > (7s), imply
(o, max {a +n, (7s5),}) € S.
Since S satisfies property (E1), this yields
f=min{(a +n,a+n), (o, max{a+n,(ys),})} €S,

and hence
(o, ) + Neg C S. (5.44)

Thus, Equations (5.43) and (5.44) imply

(o, ) + U Ne; C S,
el

for any (v5); < a € N, and hence

((v8)1 (1)) + N € 5,

contradicting the assumption (vs); < (vs), (see Equation (5.40)).
Therefore, setting
n=(2ys); —1€2N+1

(note that vg > 1 since S is local) we obtain

n+1n+1 9
Cs = N
S ( 2 ' 9 )+ )

and hence

s:<(1,1)>u<(”;1,”;1>+N2)

by Equation (5.39). O

Combining Propositions 5.45, 5.47, and 5.52 yields the proof of Theorem 5.42.
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Proof of Theorem 5.42. (a) = (b) Let S be a local symmetric semigroup. If Mg — Mg
is a symmetric semigroup, then |I| < 2 by Lemma 5.51.

If |I| = 1, then by Proposition 5.47 there is an n € 2N such that
S=(2,n+1).

If |I| = 2, then by Proposition 5.52 there is an n € 2N + 1 such that

S:((1,1)>U<(n;1,n;1)+N2>.

(b) = (a) See Proposition 5.45. O

5.6. Gorenstein Algebroid Curves

In Section 5.5 we characterized the class of good semigroups S satisfying the property
that S and Mg — Mg are symmetric (see Theorem 5.42). This class equals the class of
semigroups of values of curve singularities of type A, (see [34] and Proposition 5.54).
Conversely, we show that having semigroup of values A, determines an algebroid curve to
be of type A, (see Proposition 5.57).

In analogy to Theorem 5.42 we characterize the class of local algebroid curves R (with
maximal ideal mp) satisfying the property that R and mp : mp are Gorenstein as the class
of curve singularities of type A, (see Theorem 5.56).

In dependence on the classification of singularities by Arnold (see [34, 22]) we use the
following notation.

Definition 5.53. Let n € N.

(1) Let k be a field, and let R be an algebroid curve over k. Then R is said to be of type
A, if there is a surjective k-algebra homomorphism

¢: kl[z,y]] = R

with
ker ¢ = <x2 — y”+1>.

(2) A good semigroup S is said to be of type A, if

(2,n+1) if n e 2N and |I| =1,

S = ‘
((Der) U ((WQH)ZGI —i—NI) ifne2N+1and |I| =2.

We relate algebroid curves of type A, to good semigroups of type Ay.

Proposition 5.54. Let k be a field, let R be an algebroid curve over k, and suppose that
R is of type A, for somen € N,
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5.6. Gorenstein Algebroid Curves
(1) If n is even, then
R=k[[2 ]| C K] = R.

(2) If n is odd, then

n+1 n+1

R- kH(tl,tQ), (—t12 3 )” C B[[ta]] x K[[ts] = T.

In particular, a good semigroup S is of type Ay if and only if there is an algebroid curve A
of type Ay with T4 = S.

Proof. Let k be a field, and let R be an algebroid curve over k of type A, for some n € N.
Then we may assume that

R = K[[X,Y])/(X? -y
(see Definition 5.53.(1)). We prove the claim by constructing the normalization of R.

(1) Suppose that n € 2N. We write 7: k[[X, Y]] — R for the canonical surjection, and
we set © = 7 (X) and y = 7 (Y'). Since y € R™8, we have

t= v € Qg
with ) ) .
e
= () ==t =y (5.49)
Yy Yy Yy

This implies

and hence
teR. (5.46)

Moreover, we have

n+1 n+1 n+1
g+l = ( i ) == =2 -z (5.47)
y"/? (yn+1)"/2 (xZ)”/2

Therefore, Equations (5.45), (5.46), and (5.47) yield
R o R[] = k[ [, 62| 1] = k(2]
and hence R = k[[t]] since C[[t]] is integrally closed in

Qr = Qi = KIlt]] {t_l]
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5. Duality and Gorenstein Property

R = K[[X,Y])/(X* = y™+)

(2) Suppose that n € 2N + 1. Then

138

Min (R) = {(X + V™%
Set

and

Ry = R/(X + Y”T“>R = KX, Y))/(X -V

Then Theorem B.42 implies

R:R1XR2
We write
tl—Y+<X+Y”§1>eRl,
n+1
tg_Y—|-<X—YT € Ry
Then
n+1 ntl
X+(X+Y% )=t

This implies

and

Ry = kHt;tQH — K[ts]] = T,

Thus, Equation (5.48) and Proposition B.3 imply
R =KX, Y]}/ (X - Y”+1>

RV (X =Y ) n(X +Y

[( T ) )

] % k[[tz]]

{
[
R,
R

(see Lemma A.34 and Proposition B.5). Then Proposition B.3 implies

o (X7,

Ry = R/(X + Y”T“>R = KX, Y] /(X +Y

2

=)

(5.48)



5.6. Gorenstein Algebroid Curves

The particular claim follows since by Theorem 3.44 the valuation of QQp containing R is
OI‘dt. O

Corollary 5.55. Let k be a field, and let R be an algebroid curve over k. If R is of type
A, for some n € N, then R is Gorenstein.

Proof. This follows from Corollary 5.37, Theorem 5.42, and Proposition 5.54 (also see
Definition 5.53.(2)). O

Theorem 5.56. Let k be an algebraically closed field, and let R be a local algebroid
curve over k with maximal ideal mg. Then R and mp : mp (see Remark B.49 and
Proposition B.57) are Gorenstein if and only if R is of type Ay for some n € N.

To prove Theorem 5.56 we start with showing that over an algebraically closed ground
field also the converse of Proposition 5.54 is valid.

Proposition 5.57. Let k be an algebraically closed field, and let R be an algebroid curve
over k. Then R is of type Ay, for some n if and only if I'r is of type Ay, i.e.

Tp=(2n+1)

with n € 2N, respectively

o= (oo (5250 )

with n € 2N + 1.
For the proof of Proposition 5.57 we need the following Lemmas.

Lemma 5.58 (See [35], Lemma 4.25). Let k be an algebraically closed field, and let R be
an irreducible algebroid curve over k. If 'r is of type An with n € 2N, i.e.

['=(2,n+1),
then R is of type A,.

Proof. First note that the conductor of I'g is v, = n.
Since 2 € T'g, there is an z € R with v(r) = 2. Hence, identifying R
Theorem 3.44), there are a € k\ {0} and b; € k for i € N5 such that

1

k[[t]] (see

o0
z=at’+ Z bit? Tt = ut?,
i=1

where

u=a-+ ibiti c (k[[t])*.
=1
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5. Duality and Gorenstein Property

*

Since k is algebraically closed, there is a w € (k[[t]])* such that w? = u and = = (wt)’.

This yields a k-automorphism
k[[]) — K[[];
t— w 't

sending z to t2. So we may assume that x = t>. Note that this assumption corresponds to
a suitable choice of a uniformizing parameter of R in the construction of the isomorphism
R = K[[t]], see Proposition 2.23.(2), Lemma 3.43 and Theorem 3.44.
Since
Cr=t"rE[[t]] CR

by Propositions 4.16.(2) and 4.56, we have
y=t"Trt e R

and
v((k[[z,y]])"®) =Tr. (5.49)

Moreover, R’ = k[[x,y]] is an algebroid curve over k with Qr = Qg and Vi = Vg. Thus,
Proposition 4.56 and Equation (5.49) yield

Cr C k[[z,y]] C R.
Then we obtain by Lemma 4.54.(2) R = k[[z,y]]. Hence, R is of type A,. O

Lemma 5.59. Let k be an algebraically closed field, and let R be an algebroid curve over
k. If g is of type A, withn € 2N+ 1, i.e.

Tp = (1,1)) U ((”;1”;1> +N2>,

then R is of type Ay .

Proof. We set § = ™1 € N. Then the conductor of ' is yr,, = (4,9).
Since (1,1) € T'g, there is an x € A with v(z) = (1,1). Hence, identifying R =
E[[t1]] x K[[t2]], there are a1, a2 € k\ {0} and by ;,b2; € k for i € N5 such that

o0 (o ¢]
T = <a1t1 +> bttt asta+ Y bQ,itW) = ut,
=1 =1

where

u = <CL1 + ibl,itﬁy as + ibg}ﬁé) S (k[[tl]] X k‘[[tz]])*

=1 i=1

Thus, there is a k-automorphism

kl[ta]] > K[[t2]] = K[[ta]] > K[[t2]],

t s u e,
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5.6. Gorenstein Algebroid Curves

sending x to t = (t1,t2). So we may assume z = t.
Since
Cr =t (k[[t1]] x K[[t2]]) C R

by Propositions 4.16.(2) and 4.56, we have
y=(1,-13) R

and
v((k[[z, y]])"®) = T'r. (5.50)

Moreover, R’ = k[[x,y]] is an algebroid curve over k with Qr = Qg and Vi = Vg. Thus,
Proposition 4.56 and Equation (5.50) yield

Cr C k[[z,y]] C R.

Then we obtain by Lemma 4.54.(2) R = k[[z,y]]. Hence, R is of type A, withn =20—1. O

Proof of Proposition 5.57. This follows from Proposition 5.54 and Lemmas 5.58 and 5.59.
O

Remark 5.60. Let R be Gorenstein. Then I'p is a symmetric semigroup by Corollary 5.37,
and hence Proposition B.60, Theorem 5.34, Remark 4.8, and Proposition 4.38 yield

FmR:mR = FR:mR = FR - FmR = FR - MFR = MFR - MFR'

Proof of Theorem 5.56. First note that mp : mp is by Lemma 2.17 an integral extension
of R, and hence an admissible ring with Vg = Vi,:m,; by Theorem 3.45.(1). Let R and
mp : mp be Gorenstein. Then I'p and I'nym, = Mr, — Mr, (see Remark 5.60) are
symmetric semigroups by Corollary 5.37. Thus, Theorem 5.42 implies that I'g is of type Ay
for some n € N (see Definition 5.53.(2)), and therefore R is of type A,, by Proposition 5.57.

Let now R be of type A, for some n € N. Then I'g is of type A, by Proposition 5.57.
Hence, I'g and My, — Mr, = I'n,:m, (see Remark 5.60) are symmetric semigroups by
Theorem 5.42. Thus Corollary 5.37 implies that R and mpg : mg are Gorenstein. ]
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6. Quasihomogeneous Curves

In this Chapter we describe quasihomogeneous curves in terms of their semigroups of values
and a coefficient map.

Definition 6.1. Let R be a local complex algebroid curve, and let w € N™ for some
n € N with w; > 0 for all i = 1,...,n. Then R is called quasthomogeneous (of type w)
if there is a C-derivation d of R and a generating system (z;);_, for the maximal ideal
mp of R with 9(x;) = w;a; for every i = 1,...,n. Equivalently, there is a surjective
homomorphism ¢: C[[X1,...,X,]] = R such that ker ¢ is homogeneous with respect to
weighted polynomial degree with weight w (see Theorems A.67 and E.13).

Since a quasihomogeneous curves is an algebroid curve by definition, it is an admissible
ring by Proposition 3.41. Kunz and Ruppert proved that an irreducible quasihomogeneous
curve R is isomorphic to the semigroup ring of its semigroup of values, i.e.

R=C|[t"=]], (6.1)

see [9, Satz 3.1]. In Section 6.1 we re-prove this statement (see Theorem 6.9).

Let R be a quasihomogeneous curve with two branches. We write Min (R) = {p, q}.
Then R can be written as the fibre product of its branches over their intersection. The
branches are irreducible quasihomogeneous curve, and hence they can be expressed in
terms of their semigroup of values. Moreover, Kunz and Ruppert show that the intersection
of the branches can be described by the value semigroup ideal of a minimal prime ideal of
R in the branch corresponding to the other minimal prime ideal, i.e.

R/ +a=c[[t,"*]]/c[[t""]] = @Htgﬁ/p/mq/q” 7 6.2)

see [9, Satz 4.2]. The quotient semigroup is defined in Definition 4.74, and its semigroup
ring is defined in Definition 4.77.(3).
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6. Quasihomogeneous Curves

So Equations (6.1) and (6.2) yield a commutative diagram

RN

cl[""]] «—=— R/ Rjqg —=— C[[ty""]]
\ /
i R/p+q i
] ]
(6.3)
Hence,
R el o €] 00

where we take the fibre product with respect to the composition of the canonical surjection
r Tr/q/T
(Cth R/“H — (Cth #/a/ "*q/qH and the isomorphism a1, see [9, Satz 4.2]).

The isomorphism « can be described more explicitly. First Kunz and Ruppert noted that
for a quasihomogeneous curve R’ there is a w € NM (F) with wy > 0 for all p’ € Min (R)
such that for a homogeneous element x of a R’ we have

deg () = wyry(a) (6.5)

for all p € Min (R) with = ¢ p, see [9, Section 3]. So considering the values of homogeneous
elements of R which are neither contained in p nor in ¢ Kunz and Ruppert obtained a
bijection
Toat Lrpp \ Papp = Trya \ Dovasas
Wy
Qs ——.

Wyq
Then « is induced by this bijection 74, see [9, Satz 4.1].

In the following we want to extend these results in two ways: we will drop the restriction
on the number of branches, and we will deduce the combinatorial data determining a
quasihomogeneous curve only from its semigroup of values. Passing to an arbitrary number
of branches we use the generalized notion of a fibre product introduced in Section 2.3.
Then considering the branches pairwise we obtain again diagrams as (6.3). However, in
general R is only contained in the fibre product of its branches but not isomorphic to it
anymore. In Chapter 7 we will give a criterion on the value semigroup of values which
determines this inclusion to be an isomorphism (see Theorem 7.23).

In order to deduce the combinatorial informations from the semigroup of values I'r of a
quasihomogeneous curve R, we first note that for any minimal prime ideals p and q with
p # q we have

FR/p = (FR)p
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by Proposition 4.67 and
Lavpp = (Tr);

by Proposition 4.69.
Theorem 6.2. Let R be a quasihomogeneous curve.

(1) There is a (Wp)yeppin (R) € NMin(B) wyith @, > 0 for every p € Min (R) such that for
any homogeneous element x € R we have

deg (z) = wyrp ()
for all p € Min (R) with x & p.
(2) For any p,q € Min (R) with p # q there is a bijection
Toq: (CR), \ (TR)y = (TR), \ (TR)E,
(see Definition 4.60).

(3) For anyp € Min (R) the isomorphism R — [lyenin (r) Clltp]] of Theorem 3.44 induces
a homogeneous surjective homomorphism (see Definition E.8)

e[

with
Vp|p = ordy oty (6.6)

and for any p,q € Min (R) with p # q there is a map
Cpat (Tr)y/(Tr)y — C
(see Definition 4.74) with
Gpa(a + B) = Gpa(a) Gpq(B) (6.7)
foralla, 8 € (Tr),\(Tr)! with a-+8 € (Tr),\(Tr){, and a homogencous isomorphism

opg: C [t,(,FR)"/(FR)g} —C

(FR)q/(FR)§:|

ty (6.8)

B > Coala) 770
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6. Quasihomogeneous Curves

induced by Tpq and Cpq such that there is a commutative diagram

>N
cntérﬂ cntTﬂ

C [t(FR)p/(FR)S] = C [t(FR)q/(FR)z]
p Opq q )
where Xpq and xqp denote the homogeneous surjective homomorphisms of Proposi-
tion 4.79.
(4) With ¢ = ((Cp’q)qEMin(R)\{p})peMin ®) we denote by Fib (I'r,w, () the C-subalgebra
of Ipemin(r) C {t](,FR)” consisting of the elements
> o] e 1 ]
ay€(I'r), peMin (R) pEMin (R)
with
ad) = Galay) al? (6.9)

for any p € Min (R), for every q € Min (R) \ {p}, and for all oy, € (T'x), \ (Tr)y-
Then the C-algebra isomorphism

Qr— I cClilft]

peMin (R)
of Theorem 8.44 restricts to an injective homogeneous C-algebra homomorphism

U: R — Fib (T, @,0),
z = (Up(2)) pemtin (r)

with 1y, as in (8) for all p € Min (R). Moreover, for any q,q" € Min (R) there is a

commutative diagram
R
¥q Y
v

c[[tém)“” 5 Fib(Dp,W,¢) —5— «:Htg,r’“"')‘*’”
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(5) Let x € R, and write ¥(x) = (ZapG(FR)p a&j}t,?” Then for any d € Z and

for every p € Min (R) we have

)pEMin (R)’

(U(2)),), = (Wp(x)), = {af}’i tp%‘s if there is an a € (FR)p with Wya = d,
P d= »

0 else.
Moreover,
ord; (¥(z))g) = v(z)
foralld € Z.
Proof. See Section 6.2. O

To ease notation in future constructions of fibre products we introduce the following.

Definition 6.3. Let R be a quasihomogeneous curve. Using the notation of Theorem 6.2,

we call w normal weights and { = (((pq)quin (R)\{P})peMin &) connecting maps for R.

Unlike in the case [Min (R)| < 2 which was treated by Kunz and Ruppert, in general the
homomorphism ¥: R — Fib (I'g,w, ¢) of Theorem 6.2.(4) is only an inclusion. We give a
name to the special case when V¥ is an isomorphism.

Definition 6.4. Let R be a quasihomogeneous curve. We say that R is a fibre product if
the homomorphism ¥: R — Fib (I'g,w, ) of Theorem 6.2.(4) is an isomorphism.

Remark 6.5. Let R be a quasihomogeneous curve with normal weights w € NMin(5) and
connecting maps ¢ (see Definition 6.3). Theorem 6.2.(4) and the following Proposition 6.6
show that the fibre product Fib (I'g,w, () is a “closure” of R in the following sense: It
r

is the “largest” quasihomogeneous curve contained in [ enin (r) (CHt,(J ®y ” with normal
weights @ and connecting maps (.

Proposition 6.6. Let R be a quasihomogeneous curve with normal weights w € NMin (£)
and connecting maps ¢ (see Definition 6.3), and set

A = Fib (Tg, @, ).
(1) A is a quasihomogeneous curve.

(2) There is a bijection
n: Min (R) — Min (4),

and A has normal weights

(A _ Min (A
o) = (wn_l(p))peMin(A) € N

and connecting maps

(4) _
¢ _<(C"_1(’°”"_l(q))qum(m\{p})peMin(R)'
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6. Quasihomogeneous Curves

1

(3) For any p € Min (A) we have (considering (I'a),, (I'r),-1()., (Ta)y and (FR)Z;ES
as subsets of N)
(FA)p = (FR)nfl(p)a

and
—1

(T = Cr)

for every q € Min (R) \ {p}. Moreover, A is a fibre product (see Definition 6.4), i.e.

A = Fib (FA,E(A),C(A)).

et U: R— : t e the isomorphism o eorem 3.44. en
4) Let U: R HpGMm(R)C pl] be th h f Th 3.44. Th

T '(A) € Ry,

and 1 induces a bijection

r —>FA,

T(A)

(@) pemin (r) (O‘Ti_l(q)) qE€Min (A)”

Proof. See Section 6.3. ]

Finally, we show some important properties of the connecting maps of a quasihomogeneous
curve.

Lemma 6.7. Let R be a quasihomogeneous curve with connecting maps

((G)acrtin(m0\) ycrtn
and let p,q € Min (R) with p # q.
(1) For any a € (Ta), \ (Ta)] we have Go(c) £ 0.
(2) We have Cpq(0) = 1.

Proof. (1) The rings C[téFR)P/(FR)S] and C

and (tg )

r Tg)P
{té 1ol R)q} are C-vector spaces with bases

respectively. Since

tO!
( p>ae(r3)p\<rR>g BE(TR)\TR)Y

(FR)p/(FR)g] o

p
- { X [tgmq/(rmq

is by Theorem 6.2.(3) a C-vector space isomorphism, this implies (pq(cr) # 0 for all
a€ (I'r), \ (FR)E (see Equation (6.8)).
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6.1. Irreducible Curves

(2) Since R is local, we have 0 € (I'r), \ (FR);' by Theorem 4.9 and Proposition 4.65.
Therefore, Theorem 6.2.(3) yields

Cpq(0) = Cpq(0 4 0) = Cpq(0) Cpq(0)

(see Equation (6.7)). Thus, we have either (,q(0) = 0 or (pq(0) = 1, and (1) yields
the claim. ]

Remark 6.8. Let R be a quasihomogeneous curve with normal weights w € NMin(B) and
connecting maps ¢ = ((Cpq)qum (R)\{p})peMin (&) (see Definition 6.3). Then Lemma 6.7.(2)

implies that if € Fib (I'r, w, (), then all components of = have the same constant term.
Thus, with Theorem 6.2.(4) we have inclusions

U(R) C Fib (T, w,¢) C (pEM];[(R)) CCHt](JFR)pH.

This was also shown by Kunz and Ruppert in [9, Satz 3.4].

6.1. Irreducible Curves

Before we treat the case of general quasihomogeneous curves, we investigate irreducible
curves. More precisely, we prove the following.

Theorem 6.9. Let R be an irreducible quasihomogeneous curve of type w € N™ with respect
to 0 € Derc (R). This means that R is Z-graded.

(1) The normalization R is quasihomogeneous with respect to a derivation 07 € Derc (E)

with D§|R = 0g. In particular, there is a uniformizing parameter t € R and a w € N
such that 95(t) = wt.

(2) For any homogeneous element x € R™® we have
deg (z) = wr(x).
(8) The isomorphism

¢: R — C[[T]],
t—T

of Theorem 3.44 is homogeneous, and it restricts to a homogeneous isomorphism
¢': R—C|[1""]],

and
v = ordr o¢

if we extend ¢ to an isomorphism Qg — C[[T]][T!].
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6. Quasihomogeneous Curves

(4) Let R be also quasihomogeneous of type w' € N™ with respect to ', € Derc (R). Let
/ 5) . /

DE € Derc (R) with OE
that 9%(s) = @'s as in (1). Then with the isomorphism

n = ¥, s € R a uniformizing parameter and W' € N such

¢: R — CI[[S]],
s S

of Theorem 3.44 we obtain commutative diagrams

and

R
iuh%

T'rU {OO}

el c[[s=]]

Moreover, there is a unit u € (C[[S]])* such that

ostsclfrr] - cf[s7)

¢l wl

(a3

Note that the isomorphisms ¢, ¢', 1, and ' are homogeneous but the isomorphisms
C[[T]] — CI[S]] and (CHTFRH — (CHSFR” are in general not homogeneous.

(5) Let i be a homogeneous non-zero ideal of R. Then
=[]
To prove Theorem 6.9 we need the following Lemmas.

Lemma 6.10. Leti C C[[Xy,...,X,]] be an ideal, and let C[[X1,...,X,]]/i be quasihomo-
geneous of type w € N with respect to d € Derc (C[[z1, ..., zy]]/1) such that d(z;) = wiz,
where x; = X; +1, foralli=1,...,n.
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6.1. Irreducible Curves

(1) There is a commutative diagram

(C[[X17"'7Xn]] ZZ:llelT)(z C[[X17"'7Xn]]

7{ ipr

C[[Xlw--vXn]]/i C[[Xlw--,XnH/ia

0

where w: C[[X1,...,X,]] = C[[X1,...,X,]]/i is the canonical surjection. Moreover,
- 0
; wl-Xia—Xi(i) Ci.

(2) An element y € C[[X1,...,Xy]]/i is homogeneous with respect to d if and only if for
any o € N™ with ||, = deg (y) there is an aq € C such that

y= > aX",
aeN"™
|al,,=deg ()
where we write |a,, = Y i wioy.
Proof. (1) By Theorem E.13 there is a C-derivation d" of C[[X7,...,X,]] such that
dom = mwod and 0(i) C i. Moreover, Theorem E.13 yields ?'(X;) = w; X; for all
i =1,...,n. This implies

" 0
D,ZZE:TUPXéggf.
i=1 0X;

(2) By Theorem E.13 an element y € C[[X1,...,X,]]/i is homogeneous if and only
if there is a homogeneous element Y € (C[[X1,..., Xp]])geg () With pr(Y) =y,
where on C[[X71,. .., X,]] we consider the grading corresponding to the C-derivation

A wiXiaiXi (see Theorem E.11.(1)). Write Y = > cns aoX*. Then Y is by
Theorem E.11.(1) homogeneous of degree deg (y) if and only if

> deg (y)aa X = deg (y)Y

a€eNs
n
0
=1
- 0
:Zwixii Z Ya X
i=1 0X;i aeNn
i 0
= Z yazwiXiT&(Xa)
aeNn i=1
n
= > Yoy wioy X®
aeN™ i=1
lal£0
e Z ya|Oé|w XOC‘
aeN"™
lal#0
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6. Quasihomogeneous Curves

Comparing coeflicients we see that this is the case if and only if

Y= > a.X"
aeNs
|af,=deg (v)

Therefore, y is homogeneous if and only if for any o € N°* with |«|,, = deg (y) there
is an a, € C such that

y=m Z an X | = Z aa T O
aeN?® aeN?®
o], =deg (y) o], =deg (y)
Lemma 6.11. Let R be an irreducible quasihomogeneous curve of type w € N™.

(1) The normalization R is quasihomogeneous with respect to a derivation 07 € Derc (R)

with O§|R = 0gr. In particular, there is a uniformizing parameter t € R and a w € N
such that 95(t) = wt. Moreover, the isomorphism

¢: R — C[[T1],
ts T,

of Theorem 6.9.(3) is homogeneous if we consider on C[[T]] the grading corresponding
to the C-derivation wta% (see Theorem E.11.(1)).

(2) Let (Ya)gewz, € laewz Ra- Then Y yewz ya € R. Moreover, R = [[jcwz Ra-
(8) For any d € Z we have

1 . % . _
L (c T ) if d € wN,
else.
(4) Let o € N, and let v € Rygqo. Then v(z) = a.
(5) For any a € I'g there is an x € Rygq with v(z) = a. In particular, x # 0.

(6) For any a € N we have

P {Rm =¢ " HC-T), ifacTg,

0, else.

Proof. (1) By Theorem E.11.(2) the grading of R corresponds to a derivation dp €
Derc (R). Then by [36, Satz 2.12] R is quasihomogeneous with respect to a C-

derivation 0z € Derc (E) with OE‘ r = 0r. Therefore, there are generators z1, ..., z,
of the maximal ideal mz of R and weights w1, ..., w, € Ny such that 05(2i) = wiz;
for every i = 1,...,n. Since R is by Remark 3.39 a discrete valuation ring and a

domain by Corollary A.73, there is by Proposition 2.23.(2) and (3) a uniformizing
parameter ¢ € R such that 95(t) = wt for some w € N.
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(2) Since R is quasihomogeneous, there are generators 1, . .., z, of the maximal ideal m
of R and weights w1, ..., w, € N5 such that z; is homogeneous with deg (z;) = w;
for any i = 1,...,n. By Theorem A.67 there is a surjective C-algebra homomorphism

¢: C[[Xy,...,Xs]] = R,
Xi—x;foralli=1,...,n.

By Theorem E.13 ker ¢ is homogeneous with respect to the grading on C[[X71, ..., X,]]
corresponding to the C-derivation ;- wiXiaiXi (see Theorem E.11.(1)). Moreover,
the grading on A = C[[X1, ..., X,]]/ ker ¢ induced via ¢)~! agrees with the grading
induced by that on C[[X}, ..., X,]], where ¢): A — R is the isomorphism induced by
o.

Let (Ya)geqr € [laeq Ra- Then ¢(y4) is homogeneous in A for any d € G, and hence
by Lemma 6.10.(2) there is

(2a)ae {pernyigl, =d} € cloen"ligl,=d}

such that
M ya) = D zax®.
aceN"

Let now m € Nand v = max {w; | i = 1,...,n}. Then for any a € N” with |a, =m
we have

n n n

m=lal, = Zwiai < Zvai = vZai,

i=1 i=1 i=1

and hence

n
m
Saz™
=1 v

This implies that for any d € G we have

M yq) € ((ﬁla-‘-»xnk[[m ..... xn]]/i) ;
and hence
Ya € (mpg)" (6.10)
for all » € N with vr <d.
For g € N we write

Y9 ="y,

deG
d<g

and we consider the sequence

(y(g))geN e RV,
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Let now e € N. Then for any ¢,¢’ € N with g, ¢’ > ve we have with Equation (6.10)

:Zyd_zyd: Z Ya € (mp)°.

deG deG deG
d<g d<g’ min (g,9")<d<max (g,9")

Hence, (y(g)) . is a Cauchy sequence in R, and since R is complete, this implies
g

Z Yd = hmy € R.
deG

Moreover, since by Proposition E.4 for any x € R there is (24)4c¢ € [lgeq Ra such
that 2 = 3 jcq 24, we obtain R = [[;cq Ra-

Since ¢ is a homogeneous isomorphism by (1), we have
Rq = ¢~ ((C[[T),)

for any d € Z, where the grading on C[[T]] corresponds to the C-derivation @ta% (see
Theorem E.11.(1)). The statement follows from Lemma 6.10.(2).

Since ¢ is homogeneous by (1), there is an a € C such that ¢(x) = aT“. Since
v = ordy o¢ by Theorem 3.44, this implies v(z) = a.

Let o € T'p. Then there is an = € R with v(z) = a. Now let

() gewz € ]] Ra
dETE

such that = 3 gz 2q- Then by Lemma 6.10.(2) and Proposition E.9 there is
(ad)gemz € CP% such that

:¢(Z xd) = > dlaa) = > adls.
dewZ dewZ dewZ

Since v = ordy o¢ by Theorem 3.44, this implies ago # 0. Hence, x5, # 0, and
V(Zga) = ordr op(xg,) = ordyp (GEQT%> = a.

By (1) and Lemma 6.10.(2) we have for any a € N
Rgo C Eﬁa = qsil((c ’ Ta)'

Moreover, if & € N\ I'g, then Ry, = 0 by (4). It remains to show that ¢~1(aT%) €
Rpa for any a € I'g and for any a € C.

So let aw € T'r. Then by (5) there is © € Rgq \ {0}, and Lemma 6.10.(2) yields a
b € C such that ¢(x) = bT*. So for any a € C we have {z € Ry, and

¢(Z$) = 20(x) = 0I° = aT". O
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Proof of Theorem 6.9. (1) See Lemma 6.11.(1).

(2)

Let z € R™8 be homogeneous of degree deg (), and let

¢: R — C[[T7]],
t—T

be the isomorphism of Theorem 3.44. Then ¢ is homogeneous by Lemma 6.11.(1)
if we consider on C[[T]] the grading corresponding to the C-derivation @ta% (see
Theorem E.11.(1)), and hence ¢(z) € (C[[T1]])4eq () So by Lemma 6.10.(2) there is

deg (z)

an a € C such that ¢(x) =T~ w . Thus, Theorem 3.44 yields

v(z) = ordr op(x) = degﬁ(m»

w

The isomorphism ¢ is homogeneous by Lemma 6.11.(1), and Lemma 6.11.(2) and (6)
yield the homogeneous restriction ¢'.

The commutative diagrams follow immediately from (3). Now the isomorphism
o ¢! is determined by
Yo () =f

for some power series f € C[[T]]. Since

1 = ords (8) = ordy (0 ¢71(S)) = ordr (f),
we obtain
=Ty,

where g € C[[T]] with ordr (g) = 0. As ordyr = v o ¢~ !, this implies g € (C[[T]])" by
Lemma 3.4.(3).

Let i be a homogeneous non-zero ideal of R. Since R is Noetherian, i is by Proposi-
tion E.6.(1) generated by finitely many homogeneous elements vy, . .., y,,. For any
i=1,...,m there is by Lemma 6.10.(2) an b; € C such that

deg (y;)
=

é(yi) = b, T

Now let 2 € R. Then there is (24) e € [l4eq Ra such that z =3~ ;. x4. Moreover,
by Lemma 6.10.(2) there is (aq) e € C¢ such that

d
d(zq) = agT®
for all d € G. So for any i = 1,...,m and any d € G we have

deg (yi)+d

o(yiza) = ¢(yi) d(wa) = biagT— =
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and Remark 4.6.(5) and Theorem 3.44 yield

W = ordr 0¢(yiza) = v(yiza) = v(yi) + v(zq4) € L.

Therefore, we obtain with Proposition E.9

o(yiz) = ¢ (yz > xd) =¢ (Z yil'd) =Y o(yizg) € (CHTPiH.

deqG deG deG

This implies
6(i) c C||T7] (6.11)

Since ¢(R) = CHTPR” by (3), since (CHTRH € RC[[TFRH (see Remark 4.78.(1)),
and since I't = Ty = FC[[TF‘” by Theorem 3.44, Equation (6.11) yields with
Corollary 4.52

o(i) = C[[T"]]. O

We conclude this section with a lemma we will use later on.
Lemma 6.12. Let S be a numerical semigroup, and let £ € Gg with E C S.

(1) Let M be a finite set of generators of S not containing 0 (see Proposition 4.72 and
Lemma 4.85). Then (CHTSH is quasihomogeneous of type (a),cp € NM.

(2) The ideal (CHtEH of(CHtSH (see Remark 4.78.(1)) is homogeneous.

(8) An element

3 aat e C[[]]/c[[¢]]

a€sS

is homogeneous in the induced grading on CHtSH/CHtEH (see (1) and (2), Re-
mark 4.78.(1) and Proposition E.6.(3)) if and only if there is a 5 € S\ E such that
ao =0 foralla e (S\ E)\ {B}.

Proof. (1) First note that (CHT S H is a local admissible ring by Proposition 4.80, and it
is complete by Proposition 4.81. Hence, it is a complex local algebroid curve.

Consider the C-derivation
o= a,: <[] - ¢[[¢]]

Indeed we have for any ), cg aat®

a(Z aato‘> =Y aatdit® = Y aaat* € C[[¢°]].

a€esS a€ES a€ES
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In particular, for any a € M we obtain

(%) = tOt™ = at®.
Since

{t* e M) = meqs))

by Lemma 4.85, the ring (CHtSH is quasihomogeneous (see Definition 6.1).

(2) Let 3" cpaat® € CHtE” Then

a(Z aata> = aaqnt”.

acl aclE

Hence, the ideal (CHtEH is homogeneous by Lemma E.15.

(3) An element ) cgant® € (CHtSH/(CHtEH is homogeneous with respect to the
induced grading if and only if

Y aaat® = a(Z aato‘> €Y aat® +C[[tF]].

a€eS a€S a€ES
The statement follows. O

6.2. Proof of Theorem 6.2

Let R be a complex algebroid curve which is quasihomogeneous of type w € N™. Then every
p € Min (R) is homogeneous by Proposition E.17, and hence also p + q is homogeneous for
any p,q € Min (R). This implies that R/p and R/p + q are quasihomogeneous of type w
with the induced grading by Proposition E.6.(3).

Moreover, also q + p/p is a homogeneous ideal of R/p. Hence, (R/p)/(q+p/p) is
quasihomogeneous with respect to w with the induced grading by Proposition E.6.(3), and
this grading corresponds to that on R/p + q.

Since by Theorem E.11 any grading corresponds to a derivation, we obtain for any
p,q € Min (R) a commutative diagram

R : R
Tp Tp
R/p . R/p
Tatp/p Tatp/p (6.12)
(B/p)/(a+p/p) 5—— (R/p)/(a+p/p)
R/p+q S R/p +a,
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where 7y, Tp1q and mqy,/, are the canonical surjections, and 0, 0y, 0q1p/p and 0yiq are
the C-derivations of R, R/p, (R/p)/(q + p/p) and R/p + q corresponding to the respective
gradings.

So by Theorem 6.9.(4) and (5), Remark 3.39 (Equation (3.19)) and Propositions 4.67.(2),
4.69, and 4.79 there is a commutative diagram of homogeneous homomorphisms

C [ [ térmp” C [ térmp/(mﬂ

d

c[[5™]] C {th/p/qup

{\» T

R/p e[ )]st ]]

% \)
Tq+p
R R/p+q
\ %
Tq
R/q [trR/ ’

/
e[t ])reffs]]

~ / ~

(CHtER/qH C[tgl%/q/rpﬂ/q]

1%

1

(6.13)

1%

1%

1

o

C HtgFR)q” C[tgFR)q/(FR)s]‘

This leads to the proof of Theorem 6.2.

Proof of Theorem 6.2. Let R be quasihomogeneous of type w € N". Then every p €
Min (R) is homogeneous by Proposition E.17, and hence R/p is quasihomogeneous of
type w with induced grading by Proposition E.6.(3). Hence, Theorem 6.9.(1) yields a
w o= (@P)peMin( R) € NMin () guch that R/p is quasihomogeneous of type wy for any
p € Min (R), i.e. R/p is Gy-graded with G} = w,Z.

(1) Let x € R homogeneous. Then 7, () is homogeneous in R/p, and if 7 (x) # 0,
Remark 3.39, Proposition E.6.(3) and Theorem 6.9.(2) yield

deg (x) = deg (7 (z)) = Wyrp(x).
(2) Let p,q € Min (R) with p # q, and let o € (I'g), \ (T'r),. Since (T'r), = gy

by Remark 3.39 (Equation (3.19)) and Proposition 4.67.(2) and (FR);‘ = Lqqpsp by
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6.2. Proof of Theorem 6.2

Proposition 4.69, there is by Lemma 6.11.(5) an

z € (R/p)g,a \ ((q +p/p)N (R/p)ma)

with v (x) = « (see Remark 3.39). In particular, = # 0. Then by Lemma E.7 there
is an
X € Ry \ ((p+9) N Ruya)
with m, (X) =2 and 1,(X) = Vizs © Ty (X) = « (see Remark 3.39).
Now Lemma E.7 yields
7o (X) € (B/)g,0\ ((p+ /) N (B/a)g,,)-

In particular, mq (X) # 0. So v4(X) € (I'r) \ (FR)E by Remark 3.39 (Equation (3.19))
and Propositions 4.67.(2) and 4.69. Moreover, by (1) we obtain

Wpax = Wpvp(X) = deg (X) = Wqry(X).

This yields a map

By symmetry, there is also a map 74p: (Ur),/(Tr)y — (FR)q/(FR)g, and for any
a€ (FR)p/(FR)g we have

_ a7 Wp
_ L Wy Wq
Tap © Tpg (@) = Tap | — =
Wy

Hence, 7pq is surjective, and therefore bijective as (FR)p/(FR)g and (FR)q/(FR)E are
finite (see Remark 4.75).

Let p € Min (R). By Theorem 6.9.(3) there is an isomorphism

bp: Rfp - C[[5]]

such that 1, = ord;o¢y by Remark 3.39 (Equation (3.19)). Since I'g), = (I'r),
by Remark 3.39 (Equation (3.19)) and Proposition 4.67.(2), we obtain a natural

isomorphism
mc[[5"]] > c|[5)]

This yields a surjective homomorphism

Yp=mpodpomy: R— (CHtx(arR)p”
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satisfying
Vp - Ordtp O'lpp (614)

Let now q € Min (R) with p # q. Then q +p/p € Ry, since q is an ideal of R not
contained in p (as p,q € Min (R) with p # q), and since R/p is a domain. Moreover,
q + p/p is homogeneous since q € Min (R) is homogeneous by Proposition E.17, and
since the grading on R/p is induced by that on R. Therefore, Theorem 6.9.(5) yields

dpla+p/p) = C[[t,""*]].

Thus, we obtain an isomorphism

dun (B/9)/(@+p/p) = C[[t57]] /[ty ]

such that ¢pq o mq1p/p = Opg © Gy, Where

Tatp/p: B/p — (R/p)/(a+p/p)

N o [[5]] - e[ =] e ]

are the canonical surjections. Now Proposition 4.79 yields a isomorphism
ipa' CHt'ER/pH /@Ht,f”"“’” . C[t};R/"/F“”/p}
and a surjective homomorphism

Upg = Hpg © Opq: CHL{RN” —C [tng/p/FHp/p}

Since g1y, = (T R)g by Proposition 4.69, there is a natural isomorphism
Apg: C {th/p/qu/p] oC [tl(JFR)p/(FR)ﬂ _

So setting

q
Xpq = )\pq o ﬁpq o (np)_li CHthFR)p” N C|:t£FR)p/(FR)p:|
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we obtain a commutative diagram

R/p+q
R=——— R/p ——— (R/p)/(a+p/p)
=\ ¢p = dpg
el e e el
Py Fpq =L
= [y (C|:t£R/P/Fq+P/P:|
2| Apg

(CHtgrR)p” Xpq @[tfﬁ)p/(FR)ﬂ,

where my1q: R — R/p + q denotes the canonical surjection, and kpq: R/p +q —
(R/p)/(q+ p/p) denotes the natural isomorphism, see Diagram (6.12). Moreover,
since all gradings are induced from R, all maps in Diagram (6.15) are homogeneous.

So interchanging p and q we obtain a homogeneous isomorphism

1
Opq = Kap © Pap © fap © Aqp © (Kpq © Ppg © fipg © Apg)

C |:tl(JFR)p/(FR)g:| o C [tgFR)q/(FR)s] '
such that the diagram
R
2N
('r) (T'r)
|+ |+ 616
Xnti ‘LXW
C [térR)p/(FR)g] J% C |:tEIFR)q/(FR)E:| 7

pq

commutes. It remains to prove that this isomorphism is induced by 74, i.e. that
Tpg (ﬁ) = cpqt;pq(a) for some ¢pq € C and for every a € (I'g), \ (FR)S.

p
q
So let a € (T'r), \ (T'r)y, and let 5 € C{t;FR)*’/(FR)”} Then

- (Tr)
S (C[tp n '“D
Wy
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by Lemma 6.11.(6) with xpq (tg‘) = 1g.

Wp

by Lemma E.7 since t € (CHt;I;R”)
Moreover, we have . .

tyeclln™ ] vells])
by Proposition 4.79. Hence,

(o0 69) " (t5) € (R\P)gya \ (a+0/P N (R\ D))

by Proposition 4.69 and Theorem 6.9.(5). Then there is by Lemma E.7 an € Ry,q
with iy (z) = t)f and mq () # 0. Since () = a by Equation (6.14), (1) yields

Wy
vy(z) = EL = Tpe(@).
q

So Equation (6.14) yields with Lemma 6.10.(2) ¢q(x) = aatg"“‘(a) for some a, € C.
Then Diagram (6.16) implies

00 (E5) = obq © Xpa © U () = xap 0 V() = xgp (g ) = aty" .
Moreover, since oyq is a C-algebra isomorphism, we have for any 8 € (I'g),, \ (I R)g

aa+ﬁt?q(a+ﬁ) = Opq (tz?w)

_ B
= Opq (tgtp>
= Opq (@) Tpq (t§>

(@ ol

= aaagtqﬂ’q

= aaaﬂtzl-PQ(a+a) .

Hence, we may define a map

Gpa: (Tr),/(Tr); = C,

a = Qg
with
Cpg(a + B) = Cpql@) Cpq(B)

for all a, B € (T'r), \ (Tr), with @+ B € (T'r), \ (T'r), such that oyq is induced by
Tpq and Cpq.

Let C be the category of C-algebras, let Z be a category with ObZ = Min (R), and
let D: Z — C be a diagram of type Z with D(p) = (CHt(FR)PH for any p € Min (R).



6.2. Proof of Theorem 6.2

Let J and F: J — C be as in Definition 2.29, where for any (p,q) € ObJ with
p # q we have

)

F((p.q)) C[tgmp/(mﬁ}

T T T q

and
F((p,q) = (4,p)) = 0pq-

Then by Corollary 2.34 there is a C-algebra isomorphism
®: Fib(F) — A,

where A is the C-subalgebra of [[,cnin (r) € [ [téFR)p]] consisting of all elements

Z ag’p)t?p c H CHt;(JFR)pH

ap€(TR), pEMin (R) peMin (R)
with
Z ag’p) Cpalp) t?q(ap) = Opq Z agjv)tgp
op€(Pr),\(T'R)p ape(Tr),\(TR)}

o
= opgoXpa| D agfp)tpp
OCPE(FR)':‘

= Xap Z “gqq)tgq
aqe(FR)q

_ Z a&qc[) £

aq€(TR) \(TR)}

for every p,q € Min (R). This is equivalent to the condition

alf) = Cpqlap) o'

@p Tpq ()

for all p € Min (R), for any q € Min (R) \ {p}, and for every oy € (T'r), \ (T'r)p-
Thus,
A =Fib (T'r, @, ()pertin (R)-

where ¢ = ((Gadgentin (7 5)), i ()
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By (3) and the universal property of the fibre product (see Lemma 2.31) there is a
unique C-algebra homomorphism

U: R — Fib (g, @, ¢),
z = (Up(2)) pertin (r)-
By definition W is the restriction of the isomorphism of Theorem 3.44 (cf. (3) and
the proof of (3)). In particular, ¥ is injective.
(5) Let z € R, let ¢y(x) = EapE(FR)p agjp)tap for any p € Min (R), and for every d € Z
define yq € [T emin (R) (CHt(FR)p” by

a

(wa), = Qa/m,t™®  if there is an a € (I'g), with wya = d,

p
0 else,

for each p € Min(R). Since v, is homogeneous by (3), for any p € Min (R),
Lemma 6.10.(2) yields

Up(a) = (W) = (4a)y. -

6.3. Proof of Proposition 6.6

Let R be a quasihomogeneous curve. With the notation of Theorem 6.2, we set

A =Fib (FR,@, C),

. . (Tr)
where ¢ = ((Cpq)quin (R)\{p}>p€Mm R’ Le. A is the subset of [[penmin (r) (CHtp f ”” con-
sisting of all elements

S e e I CHtérR»”

I Mi
ap€( R)p peMin (R) pEMin (R)

with
“r(fp) = Gpalayp) al?

Tpq(ap)

for any p € Min (R), for every q € Min (R) \ {p}, and for all oy, € (T'r), \ (T'r)y, where

Toq: (TR)y \ (TR)y = (Tr)g \ (TR),
o 2%
Wq

Lemma 6.13. In the natural way, A is a C-algebra.
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Proof. Let C be the category of C-algebras, let Z be a category with ObZ = Min (R), and
let D: Z — C be a diagram of type Z with D(p) = CHt;(gFR)"” for any p € Min (R). Let

J and F: J — C be as in Definition 2.29, where for any (p,q) € Ob J with p # q we have

)

F((p.a)) = |ty /]

F((p,p) = (d,9)) = Xpa* CH’%S-FR)"” ~ C{tf’FR)p/(FR)g]
and F((p,a) = (a,p)) = opg-

Then Corollary 2.34 yields
A =Fib (F).

In particular, A4 is a C-subalgebra of [T,enin (r) Clltp]]- O

Lemma 6.14. The following hold for A.

(1) We have A= V(R). In particular, dim A = 1.
(2) There is a bijection

n: Min (R) — Min (A4),
p—pA,
qN R +q.

Proof. (1) By Theorem 6.2.(4) and Lemma 6.13 we have W(R) C A C Qy(g), and hence

Lemma A.34 yields Q4 = Qu(r). Since ¥(R) C A C V(R) by construction (see

Theorem 3.44), Proposition B.5 implies A = ¥(R). In particular,
dimA =dimR =1
by Theorem B.14.
(2) This follows from (1) and Theorem A.72. O
Lemma 6.15. The ring A is local with mazimal ideal
my ={z € A|ord; () > 0}.

Proof. Assume A is not local, and let m,n € Max (A) with m # n. Then by Propositions B.3
and B.15 and Theorem B.12 there are m,n € Max (Z) withmNA=mandnNA=n.

Since

A=¥®=v(R)= [[ Clbl

peMin (R)
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by Theorems 3.44 and 6.2.(4) and Lemma 6.14.(1), there are by Lemma A.6.(2) pm,pn €
Min (R) such that

m =ty C[ty,,]] * II clwl,
peEMiIn (R)\(pm)

= tp, C[[tp.]] X II i)
pEMin (R)\(pn)

Then for any € m\ (nNm) this implies

pry,, (#) € tp, Clltp, 1),
prp, (2) € Clltp,]] \ tp, Cl[tp, 1],

where for every p € Min (R) we denote by pr,: [Iiemin (r) Clltql] = Cl[ty]] the projection.
In particular, we obtain ords, (x) >0 and ord, (z)=0. So writing

xr = Z agjp)tgp
ap€(Tr),
we have
al™ =0, (6.17)
aép") # 0.
Since x € A, since I'g is local by Theorem 4.9, and since therefore 0 € (I'g),, '\ (FR)E:- by

Proposition 4.65, Equation (6.17) and the definition of A yield the contradiction

0= af™ = Goupa (0) 0,7

Tpmpn

0 = Copn (0) 0™ £ 0,

where the last inequality follows as (p,p, (0) # 0 by Lemma 6.7.(2). Thus, A is local, and
the maximal ideal of A is by Theorems 3.44 and B.12, Propositions B.3 and B.15 and
Lemmas A.6.(2) and 6.14

my = ﬂ m|NA
meMax (Z)
= ) tClity]] X I1 (C[[tq]]) nA
peMin (R) g€Min (R)\{p}
=t ]I (C[[tp]]) nA
peMin (R)
={x € A|ord; (z) > 0}. =

Lemma 6.16. The ring A is a local complex algebroid curve.
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Proof. By definition the ring R is a local complex algebroid curve, and hence WU(R) is a
complex algebroid curve. By construction, we have U(R) C A C W(R) (see Theorem 3.44),
and hence A is an integral extension of W(R). Thus, A is a complex algebroid curve by
Theorem 3.45.(2), and it is local by Lemma 6.15. O

Since A is admissible, we may consider its semigroup of values.
Lemma 6.17. Let n: Min (R) — Min (A) be the bijection of Lemma 6.14.(2). We have
Va=Vyr)={¥(V)|V € Vr},

and for any p € Min (A) the corresponding valuation of Q4 is ordtyﬁ1 Moreover,

considered as subsets of N, we obtain

(Ca), = (Cn)sy

and for every q € Min (R) \ {p} we have

©ON

-1
(L) = (CR)I (.

Proof. Since ¥(R) and A are admissible (see Definition 6.1, Lemma 6.16, and Proposi-
tion 3.41), and since A is by Theorems 3.44 and 6.2.(4) an integral extension of W(R) in
Qu(r), Theorem 3.45.(1) yields

Va=Vyr)={¥(V)|V € Vr}.

This implies
I'prCT'a.

Thus, for any p € Min (R) we obtain
(Cr)y © (Ta)ygp)-

Moreover, we have by definition
pr, (A) C C[[téFR)p]] ,
where pry: [gemin () Clltg]] = Cl[tp]] is the projection. Therefore,

(FA)n(p) - (FR)p

since the valuation corresponding to 7(p) is ordy, (see Theorem 6.2.(4)). This yields

Let now q € Min (R) \ {p}. Since I'r C I'4, we have

(Tr)E C (Pa)ID.
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6. Quasihomogeneous Curves

Let o € (FA)?;E;:; Then by Proposition 4.69 there is an x € 1(q) with ords, () = a. So
writing

T = > aofp/, tg,”/
% €(CR)ye p'EMin (R)
we have
al) = 0 for all o € (T'g), with oy < o, (6.19)
a® £ 0, (6.20)
all) = 0 for all ag € (Tg),- (6.21)

By Equation (6.18) we have o € (I'g),. Assume a € (I'g), \ (I'r)y. Then my4(a) €
(Tr)y \ (FR)’; by Theorem 6.2.(2). Hence, Equation (6.21) and the definition of A yield

0= a(r?,z(a) = Gop(Tpq (@) al-

Since al? # 0 (see Equation (6.20)), this implies (qp(7pq(e)) = 0. However, this is a
contradiction to (gp(53) # 0 for all B € (I'r), \ (FR)E (see Lemma 6.7.(1)). Thus, a € (FR)g.
This yields

(Ta)ps) € (TR},

and therefore
(Cr)] = (Ta)1(0. 0

Lemma 6.18. The C-derivation

(@pto0sy ) pentin ()
of Tlpemin (r) Clltp]] restricts to a C-derivation @ of A.

Proof. Let z € A, i.e.

x = Z a,gfp)tg‘” € H C { [t;FR)"”
ap€(Tr), peMin (R) peMin (R)
with
a((ﬂ) = Cpa(ayp) 052(04,,)

for any p € Min (R), for every q € Min (R) \ {p}, and for all a € (T'r), \ (I'r),. Then

o(x) = Z @papagjp)tg"

ap€(Tr),\{0} peMin (R)
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6.3. Proof of Proposition 6.6

Now Theorem 6.2.(2) implies for any p € Min (R), for every q € Min (R) \ {p}, and for all
ap € (Tw), \ (Tr)p U {0})

@papag? = Watqpq(p) ai:i(ap)-

Thus, d(z) € A. O

Lemma 6.19. An element

T = ST Py €A

Ap
r
ap€(Tr)y peMin (R)

is an eigenvector of 0 (see Lemma 6.18) if and only if there is d € 7 such that for any
p € Min (R) we have

o {a((fp) if there is an oy € (I'r), such that Wyoy = d,
p =

0 else.

In particular, 0 has only eigenvalues in N.

Proof. Let

T = Z a(p)tg‘“ cA

Qp
T
ap€(r)y peMin (R)

be an eigenvector of 0, i.e. there is ¢ € C such that

cx =0(z)

_ Z Wy apagfp) tgp
ap€(T'r),\{0} peMin (R)

This implies

. agf'p) if there is an ay € (I'g), such that Wyay = c,
’ 0 else.

for any p € Min (R). In particular, we have ¢ € N since w € NM»(R) and T'p ¢ NMin(B),
Let now d € 7Z, and let

x = Z a(p)tg” cA

Qp
ap€(lr)y peMin (R)
with

. {a((fp) if there is an ap € (I'r), such that Wyay = d,
p =

0 else.
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6. Quasihomogeneous Curves

for any p € Min (R). Then

o(z) = > wopal)ty’
ap€(Ir),\{0} pEMin (R)
=d| Y dPgy
ap€(Tr),\{0} pEMin (R)
=dx.
Note that z = 0 if d < 0 since w € NMn(B) and ', ¢ NMin(8), -
Lemma 6.20. Let
xr = Z a((fp)tgp < A’
Ozpe(FR)p

peMin (R)
and let d € Z. For any p € Min(R), for every q € Min(R) \ {p}, and for all oy, €
(Tr), \ (TR)] we define

B — {ag?p) if Wpay = d,

s 0 else.
Then
S €A
ap€(l'r), peMin (R)

Proof. Let d € Z, let p € Min (R), let q € Min (R) \ {p}, and let ay € (T'r), \ (U'r);. First
suppose Wyay # d. Then also

Wy

WqTpg(Qp) = Wg R # d,
q
and hence
p® — o = p@
@p Tpq(op)

This implies
bE) = Goalewp) b(r‘:?,(ap)'
Assume now that wpay = d. Then also

B _ Wha _
WqTpq(ap) = Wy % "= Wy = d,
q
Hence,
b(o?p) = at()?p) = Cpq(ap) ag'qpi(ap) - Cpq(ap) biﬂi(ap)'
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6.3. Proof of Proposition 6.6

This implies

DR € A. O

ar€(T'r), pEMin (R)

Lemma 6.21. For any x € A there is a sequence (zq)yey € A%, where for every d € Z
either g =0 or 0(xq) = dxq, such that x =347 x4.

Proof. This follows from Lemmas 6.19 and 6.20. O

Lemma 6.22. The maximal ideal my of A (see Lemma 6.15) is generated by eigenvectors
of 0 with positive eigenvalues.

Proof. We want to show that m, is generated by the set
M ={x € A|ords (z) > 0 and ?(z) = dyx for some d, € Z}.

Lemma 6.15 immediately yields M C my.

Let € my. Then ords (z) > 0 by Lemma 6.15, and by Lemma 6.21 there is a sequence
(74q)gez € A% with 24 = 0 or 0(z4) = dxy for every d € Z such that z = >dez®d- In
particular, we have ord; (x4) > 0 (see Lemma 6.20), and hence x4 € m4 for every d € Z by
Lemma 6.15.

Pick an o € Cr,, with Wyoy = Wy for all p,q € Min (R). Then t* € U(€g) CRC A
by Proposition 4.56 and Theorem 6.2.(4). Moreover,

() = (wpoyt,”)
= dnt°,

peMin (R)

where d, = Wyay for all p € Min (R), i.e. t* € M. Then

e [ Clity]] = t°9(€r) C 1R C 194 Cmy (6.22)
peMin (R)

by Theorems 3.44 and 6.2.(4) and Lemma 6.15, and we can write

xr = Z Tq+ Z T,

deZ deZ
ords (za)Fatyr,  orde (wa)=atiry

where

Z xg EtYA
deZ
ordt (z4)>a+7ry

by Equation (6.22).
Let now d € Z such that ord; (z4) #? a+7r,. Then by Lemma 6.19 there is a p € Min (R)
such that d = wy ordy, (zq) < Wp(a +ry),. In particular, we have

d < max {@p(a + k), | P € Min (R)}
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6. Quasihomogeneous Curves

This implies that

>
deZ
ord: (za) 2a+7r

is finite. Thus,

xr = Z Tq + tay S <M>
deZ
ordy (o) 2ty

with some y € A.
Finally, note that by Lemma 6.19 the eigenvalue of every x € M with respect to 0 is
positive. O

Proof of Proposition 6.6. (1) By Lemma 6.16 A is a local complex algebroid curve. By
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Lemma 6.22 (and since A is Noetherian) there is a generating system (z;);_, for the
maximal ideal m4 of A such that d(x;) = w;z; for some w; € N with w; > 0 for every
i=1,...,n. Thus, A is quasihomogeneous.

Lemma 6.14.(2) yields the bijection n: Min (R) — Min (A). Since the grading on A
is induced by the restriction of the C-derivation

(@oto0, ) periin () = (ﬁﬁ*l(q)t””(q)atn*(q))quin (A)

of U(R) = A (see Lemma 6.14.(1)), and since the valuation of Q4 is ord; (see
Theorem 6.2.(3), Equation (6.6)), A has normal weights W (see Definition 6.3).

Lemma 6.17 yields
A =Fib(T'4,w, ().

Since A = ¥(R) by Lemma 6.14.(1), A is a fibre product with connecting maps

¢= <<Cn_1(p)’7_l(q))quin (A)\{P}>peMin » (see Definitions 6.3 and 6.4).
Let z € (€g)"®. Then
xVU 1 (A) c 2R C €r C R,

and hence U~1(A) € Rp since () # R™8 C (W~1(A))™®. The rest of the statement
follows from Lemma 6.17. O



7. Quasihomogeneous Semigroups

In this chapter we consider two approaches to introduce quasihomogeneity on good semi-
groups. First we define gradings on good semigroups in analogy to gradings on rings as in
Definition 6.1 and E.1 (see Section 7.1, in particular Definitions 7.2 and 7.3). Alternatively,
we use properties of the values of homogeneous ring elements to define “homogeneous”
semigroup elements (see Section 7.2, in particular Definition 7.14). Then a good semigroup
is quasihomogeneous if it is generated by taking sums and infima of these elements. It
turns out that both approaches lead to the same concept of quasihomogeneity (see Theo-
rem 7.19). Moreover, the quasihomogeneity on good semigroups is compatible with the
quasihomogeneity on algebroid curves under taking values, i.e. the semigroup of values of a
quasihomogeneous curve is quasihomogeneous (see Proposition 7.6).

An element of a graded ring can be decomposed as a sum of its homogeneous components
(see Proposition E.4). The semigroup operation corresponding to the addition on rings is
the infimum. Thus, in a quasihomogeneous semigroup we want to represent any element
as an infimum of its homogeneous components.

The values of homogeneous elements of a quasihomogeneous curve lie on lines which are
determined by the normal weights of the curve (see Theorem 6.2.(1)), like the blue, red,
and green lines in the following illustration.

Here the color depends on the number of minimal primes a homogeneous element is
contained in.

In a graded ring the element 0 is homogeneous of any degree. The value of zero is co
but oo is not contained in a good semigroup. However, with Lemma 4.33 we can consider
the conductor instead of co. This motivates the following definition.

173



7. Quasihomogeneous Semigroups

Definition 7.1. Let S be a good semigroup. On S we have an equivalence relation ~
defined by o ~ 3 for o, § € S if for any ¢ € I we have §; = «; if a; < (vs); and B; > (7s),
if a; > (vs);- Then S = S/ ~ denotes the quotient set of S by ~.

7.1. Gradings

Using Definition 7.1 the graded parts of a quasihomogeneous semigroup S will be constructed
from equivalence classes in S. In particular, for each class we can choose a representative
which is less than or equal to the conductor g of S. Then those representatives defining
the graded parts of S have to lie on the colored lines in the following illustration.

In analogy to Definition E.1 we first introduce a general notion of a G-grading on a good
semigroup for some additive abelian group G.

Definition 7.2. Let S be a good semigroup, and let G be an additive abelian group.

(1) A (G-)grading of S is a system (¢g) 4c; of maps pg: S — S such that the following
hold:

(1) For any d € G and every o, 8 € Useg ¥d(d) we have

inf {a, 8} € | va(6).

0es
(2) For any d,d’ € G we have

U ©a(8) + U va(e) € | vara ().

0es eesS nes
(3) For any a € S there is

(a(d))dec’ < H val)

deG
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7.1. Gradings
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Figure 7.1.: The good semigroup S is quasihomogeneous of type (3,4), see Example 7.4. Its
homogeneous elements are marked red.

with ol € ¢y (a(d)) for all d € G such that
a=inf{a@|deq}.

If there is a G-grading of S, then S is called (G-)graded.

(2) Let S be G-graded, and let a« € S. For any d € G we call every 5 € 94(a) a
d-th homogeneous component of a. If o € 1g(c) for some d € G, then « is called
homogeneous, and d is the degree of a. We denote the degree of a by deg («).

As discussed above, Theorem 6.2 leads to the following definition of quasihomogeneous
semigroups.

Definition 7.3. Let S be a good semigroup, and let w € N/ with w; > 0 for all i € I.
Then S is called quasihomogeneous (of type w) if there is a Z-grading (1/q) ez of S such
that for any d € Z every o € Ugeg14(3) satisfies

W; 0 = d
for all ¢ € I with a; < (7s);.

Example 7.4. The good semigroup S depicted in Figure 7.1 is quasihomogeneous of type
(3,4).
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7. Quasihomogeneous Semigroups

Proposition E.4 shows that the decomposition of an element of a quasihomogeneous curve
into its homogeneous components is unique. The decomposition on quasihomogeneous
semigroups has weaker properties.

Proposition 7.5. Let S be a quasihomogeneous semigroup of type w € N, and let o € S.
Then for any d € Z and for every o!? € () we have

ot {29 25} 3 in o 2s)
Moreover, for any i € I with o; < (vs); we have B; = a; for all B € Py,a, ().

Proof. Since S is quasihomogeneous, there is a family

(59) e, Tt
such that
a:inf{ﬁ(d) ] deZ}, (7.1)

see Definition 7.2.(3). In particular, we have (Y > a. Let now a(® € 1y(a). Since
al® ~ 3@ (see Definition 7.2.(1)), this implies for any i € T

(') = (39,

if (89) > (qs),, and
(5), = (#),

if (ﬁ(@), < (ys);. Thus,
inf {a(d)ms} > inf {a, v}
By Equation 7.1 there is for any ¢ € I a d; € Z such that (,B(di)) = ;. Suppose that

a; < (vs),;- Then

di = w; (5(di)), = w;q;,
see Definition 7.3. Let now

B € Yua; (O‘) = 7wbdi (O‘)
Then § ~ B(%) see Definition 7.2.(1). Since (ﬁ(di)) = a; < (7s);, this implies

Bi = (ﬁ(d")% = q;. O

Being constructed in analogy to the quasihomogeneity on algebroid curves we expect
the quasihomogeneity on good semigroups to be compatible with its algebraic prototype
under taking values. More precisely, we show the following.

Proposition 7.6. Let R be a quasithomogeneous curve with normal weights W (see Defini-
tion 6.3). Then I'g is quasihomogeneous of type w.
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7.1. Gradings

oNeleN X N W N I I
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Figure 7.2.: The semigroup of values of the quasihomogeneous curve R = C[[X,Y]]/((X® — Y?)Y)
with normal weights (1,2) is quasihomogeneous of type (1,2), see Example 7.7. The
homogeneous elements are marked red.

Proof. See Section 7.7. O

Example 7.7. The algebroid curve

R = C[[X, Y]]/<(X5 - Y2>Y>
X, Y]}/ ((X° = ¥2) n (1))
[[(:22). (5.0) ]

is quasihomogeneous of type (2,5). Since X ~ (t},¢2) and Y ~ (#},0), Theorem 6.2.(1)
implies that the normal weights of R are (1,2) (see Definition 6.3). Then by Proposition 7.6
the semigroup of values I'g of R is quasihomogeneous of type (1,2), see Figure 7.2.

C
C

~

Let R be a quasihomogeneous curve with normal weights w. Then by Theorem 6.2.(2)
there is for any p,q € Min (R) with p # g a bijection

et (Tr), \ (TR)g — (TR) \ (TR},

Therefore, Proposition 7.6 suggests the following.

Proposition 7.8. Let S be a quasihomogeneous semigroup of type w € NL. For any
i,j € I with i # j there is a bijection

TZ]SZ\SZJ%SJ\S;,

wW;
o .
wj
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7. Quasihomogeneous Semigroups

Proof. Let S be a quasihomogeneous semigroup of type w € N’, and let 4,7 € I with i # j.
Let o € S;\ S/. In particular, we have a < (7g);, see Definition 4.60. Pick a § € S with
d; = a. Since S is quasihomogeneous, there is by Proposition 7.5 a 8 € 1, (d) with
Bi =a. Asa € S;\ S/, we have 3; < ('ys)j, see Definition 4.60. Since 5 € U.cg Yw;a(€),
this implies

wj,Bj = wW;x = wlﬂi, (72)

see Definition 7.3. Hence, “{UZJO‘ = Bj € S;. Suppose that 3; € sz Then thereisa ( € S
with ¢; > (vs), and ¢; = B;. So property (E2) applied to f and ( yields an n € S
with n; = min {8;,(;} = i = a and n; > B; = (;. Then by Proposition 7.5 there is a
0 € Yu,a(n) with 0; = n; = a and 0; > n; > ;. Since a € S; \ Sg, we have 6; < (’yg)j, see
Definition 4.60. With Equation (7.2) this yields the contradiction

w;o = ijj > ’UJj,Bj = w;q,
see Definition 7.3. Thus, there is a map

szsl\SZ]%S]\S;,

w;o
o .
wj
Since, moreover,
Wi W;
T~-o7’--(a)—7] Y=«
(2 7 - -
J J i )
it follows that 7;; is bijective. O

Example 7.9.

(1) By Proposition 7.8 there is for the quasihomogeneous semigroup S of type (3,4) of
Example 7.4 and Figure 7.1 a bijection

T12: Sl\S% —)SQ\SQI,
3o

“T e

see Figure 7.3.

(2) Similarly, for the quasihomogeneous semigroup I'p of type (1,2) of Example 7.7 and
Figure 7.2 there is a bijection

12t (Tr), \ (TR)T = (Tr)y \ (TR)3,

la
o —,
2

see Figure 7.4.
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Figure 7.3.: The quasihomogeneous semigroup S of type (3,4) of Example 7.4 and Figure 7.1 with
the bijection T19: S1 \ S7 — Sa \ S5 of Proposition 7.8, see Example 7.9.(1).
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—
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Figure 7.4.: The quasihomogeneous semigroup I'g of type (1,2) of Example 7.7 and Figure 7.2 with
the bijection m2: (T'r); \ (FR)f — (FR)Q\(FR)é of Proposition 7.8, see Example 7.9.(2).

Let R be a quasihomogeneous curve. With the normal weights w and the connecting
maps ¢ we construct the fibre product

Fib (R,w, ()

of the semigroup rings

for p € Min (R) over the semigroup rings
C { |:tgFR)p/(FR)g:| }

for ¢ € Min (R) \ {p} (see Theorem 6.2.(4)).

Now the semigroup of values I'p of R is quasihomogeneous of type w by Proposition 7.6.
So we want to extend the construction of Fib (I'r,w, () to general quasihomogeneous
semigroups S, given “connecting maps” (j;: S; \ Sij — C satisfying the properties of
Lemma 6.7.

Definition 7.10. Let S be a local quasihomogeneous semigroup of type w € N’, and for
any 4,7 € I with ¢ # j let ¢;;: S; \ S} — C be a map satisfying the following

(1) Gj(a+B) = Gja)Gi(B) for all a, B € S; \ S with v+ 8 € S; \ S7,
(2) ¢ij(0) =1, and
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7.1. Gradings

(3) Cij(a) #0 forall a € S; \ S7.
Then with ¢ = ((Cij)jel\{i}) o e denote by
Fib (8, w, ¢)

the subset of [[;<; (CHtsz consisting of all elements

(za@ﬂ TIC[[]]
Q; ES; iel el
satisfying o)

J

a(()fi) = Czj(az) CLTij (Oéi)

for all i € I, for any j € I\ {i}, and for every a; € S; \ Sg (see Proposition 7.8).
If ¢j(a;) = 1 for all i € I, for any j € I\ {i}, and for every oy € S; \ S/, we write
Fib (S, w) instead of Fib (S, w, ().

The object Fib (S, w, () constructed in Definition 7.10 is indeed a fibre product.

Remark 7.11. Let S be a local quasihomogeneous semigroup of type w € N, and for any
i,j € I with i # j let ¢;;: S; \ S} = C be a map satisfying the following

(1) Gij(a+B) = Gj(a) Gj(B) for all a, B € S;\ S with o+ 8 € S; \ 57,
(2) ¢i;(0) =1, and
(3) Gij(a) # 0 for all @ € 5; \ Sf

With 7;5:.5; \ Sg — S5\ S;- as in Proposition 7.8 we define for any i,j € I with i # j a
C-algebra isomorphism

Oij: (C[tsi/sﬂ — C[tsj/sq,
t Cl'j(Oé) t7ii (@)

Let C be the category of C-algebras, let Z be a category with ObZ = I, and let D: T — C
be a diagram of type Z with D(i) = CHtSiH forany i € I. Let J and F': J — C be as in
Definition 2.29, where for any (i,j) € Ob J with i # j we have

F((i,5)) = C[t5/%],

F((i,5) = (1) = xi5: C[[¢%]] = C[¢5/5]
as in Proposition 4.79, and
F((i,7) = (4:1)) = 035
Then Corollary 2.34 yields
Fib (S,w, () = Fib (F),

where ( = <(Cij)jel\{i}>i€1' In particular, Fib (S, w, ¢) is a C-subalgebra of [];c; (CHtf’H
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7. Quasihomogeneous Semigroups

In analogy to Proposition 6.6 we obtain the following.

Proposition 7.12. Let S be a local quasihomogeneous semigroup of type w € N, and for
any i,j € I with i # j let ¢;j: S; \ S — C be a map satisfying the following

(1) Cij(a+B) = Gj(a)Gi(B) for all o, B € S;\ S? with a+ B € S;\ S/,
(2) Gij(0) =1, and
(3) Gij(a) #0 for all a € S; \ Sf

Then Fib (S,w, () (with ( = ((Cij)jef\{i}) ‘el) is a quasihomogeneous curve with normal
weights w (see Definition 6.3). Moreover, Fib (S,w) is a fibre product (see Definition 6.4).

Proof. See Section 7.8. O

7.2. w-Elements

The second approach to quasihomogeneity on good semigroups is based on the properties
of values of homogeneous elements of a quasihomogeneous curve.

Proposition 7.13. Let R be a quasihomogeneous curve with normal weights w € NMin ()
(see Definition 6.3), and let x € R be a homogeneous element. Then for any p,q € Min (R)
with p # q the following hold:

(1) If vp(@) € (Tp), \ (CR)L, then Wovy(z) = Tyrp(a).

(2) Ifvy(x) € (Tr)y, then either vy(z) = 0o (i.e. x € q) or vy(z) € (I‘R)fI with Wqvg(x) =
Wylp(x).

See Figure 7.5.

Proof. Let € R be a homogeneous element, set d = deg (x), and let p,q € Min (R) with
p # q. We may suppose that x & p. Then

d = wWpvp(x) (7.3)

by Theorem 6.2.(1).
Let
U: R — Fib (T, @, ()

be the injective homomorphism of Theorem 6.2.(4), where ¢ = <(<¥Jq)quin (R)\{P}>peM' &)

are the connecting maps for R. We write

p’€Min (R)
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7.2. w-Elements

Then ag/?)ap # 0, and
d

((2)), = all) 1,7

dﬁp

by Theorem 6.2.(5) and Equation (7.3).
Suppose that % = 1p(z) € (Tr), \ (Tr)y- Then

4

= = (1p(@) € T\ (T,

R

by Theorem 6.2.(2). Therefore, Theorem 6.2.(5) implies

4

(W(2))y = ag) g

Since

by Theorem 6.2.(4) (see Equation (6.9)), and hence ag?)ﬁq # 0, this implies by Theo-
rem 6.2.(3)

Now suppose 1(z) € (I'g)y, and assume that vq(z) € (I'r),- Then
Wyvp () = deg () = Wqvg(x)

by Theorem 6.2.(1). If vq(z) € (I'r)y \ (I‘R)’;, then

Wavy(T)
V() = % = Tqp(vq(2)) € (Tr), \ (TR);
by Theorem 6.2.(2). But this contradicts the assumption. O

The properties of Proposition 7.13 lead to the following definition.

Definition 7.14. Let S be a good semigroup, and let w € N/. An element o € [Licr Siis
called a w-element (of S) if for any i, j € I with i # j the following hold (see Figure 7.6):

(1) If a; €5 \ SZ], then w;c; = Wi
(2) f o € Sf \ (Cs);, then either a; € (Cs); or a; € St with wia; = wjay.

(3) If o € (Cs)i, then Q; € S]l

Remark 7.15. Let S be a good semigroup, let w € N’, let o be a w-element of S, and let
1,7 € I with ¢ # j. If eSi\Sf,then Q; ESJ\SJZ
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7. Quasihomogeneous Semigroups

2
AS— %ooeooeooootca —————
| __
I'r
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OleleNeN Nol Nl X N N
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77777777 000006000000
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|
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Figure 7.5.: The wvalues of homogeneous elements of the quasihomogeneous curve R =
CLX, Y]/{((X® = Y?)Y) (red).
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2 S
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Si O0000@0008000ee0e00e000C 000
O0000@000@000e0e00e000C 0000
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O0000@000000000e0ee00000O0
D00000000e000e0e0eeee00eee
—————— 0-0-0-000 0000000000000 60ee
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Figure 7.6.: A good semigroup S with its w-elements (red) for w = (3,4). Note that all w-elements
of S are contained in S (also see Proposition 7.25).

185



7. Quasihomogeneous Semigroups

Let S be a good semigroup, and let w € N/. If S is quasihomogeneous of type w,
the w-elements of S contained in S will be exactly the homogeneous elements of S (see
Theorem 7.19). First we associate to a w-element a “degree”.

Proposition 7.16. Let S be a good semigroup, and let w € NI, If a € [Lic;Si s a
w-element of S, then there is a d € Z such that wio; = d for all i € I with o; < (7s);-
Moreover, d is unique if o € (I];c; Si) \ Cs.

Proof. If a € Cg, the statement is trivial. So suppose a € [[;c; S; \ Cs.

Let i € I with oy < (vg),;, and set d = w;o;. Let j € I\ {i}. If a; € S;\ Sf, then
wija; = wie; = d. If a; € Sz-j, then o; € S} with a; > (’yg)j or wja; = wioy = d. So for
any w-element o € [[;c; S; \ Cs we obtain a unique d € Z such that w;o; = d for all i € I
with o < (7s);. O

Definition 7.17. Let S be a good semigroup, let w € N/, and let a € [I;c;Si be a
w-element of S. If a € [[;c; S \ Cs, we define the w-degree of a as

deg,, (@) = wiey
for some i € I with oy < (7g); (see Proposition 7.16). If a € Cg, then deg,, («) is arbitrary.

Remark 7.18. Let S be a good semigroup, let w € N, let « € [[;c; \Cs be a w-element of
S, and let i € I with oy < (vg);. Then Proposition 7.16 yields 5; > a; for any w-element
B of S with deg,, (5) = deg,, (®).

Let S be a good semigroup, and let w € N! with w; > 0 for all i € I. We want to use the
w-elements of S to determine quasihomogeneity of S. In a homogeneous ring every element
can be decomposed into a sum of its homogeneous components (see Proposition E.4). The
semigroup operation corresponding to addition in rings is the infimum. So we would like
to call a good semigroup quasihomogeneous of type w if for any element o € S there is a
family (a(i))iel of w-elements of S with a(® € S such that (a(i)) = «; and

(2

« = inf (a(i)

iel).
This definition can be illustrated by

3
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7.2. w-Elements

or

Indeed it turns out that the definition of quasihomogeneity on good semigroups using
w-elements yields the same concept as the one introduced in Section 7.1 (see Definition 7.3).

Theorem 7.19. Let S be a good semigroup, and let w € NI. The following are equivalent:
(a) S is quasihomogeneous of type w.

(b) For any o € S there is a family

of w-elements such that

forany i € I and
o = inf (a(i)

icl).
In particular, we have o' > o for all i € 1.

If S is quasihomogeneous of type w, an element o« € S is homogeneous if and only if it is a
w-element, and for homogeneous elements a € S we have deg (o) = deg,, (a).

Proof. See Section 7.4. O
Example 7.20.

(1) The good semigroup S in Figure 7.6 is not quasihomogeneous of type w = (3,4).
Indeed, we have for example (15,11) € S but there is no w-element o € S with
a1 = 15.

(2) Since the good semigroups in Figures 7.1 and 7.2 are quasihomogeneous, their
homogeneous elements are their w-elements which are contained in the respective
semigroup. In fact, these are all the w-elements (also see Proposition 7.25).
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7. Quasihomogeneous Semigroups

7.3. Properties

A quasihomogeneous curve R is a fibre product (see Definition 6.4) if its homogeneous
elements only satisfy certain relations between any pair of branches of R (cf. Theorem 6.2.(5))
depending on the normal weights and the connecting maps (see Definition 6.3). After taking
values these relations correspond to the definition of w-elements of I'g (see Propositions 7.6
and 7.13, Definition 7.14, and Theorem 7.19. So in analogy to being a fibre product we
introduce the following closedness property of a quasihomogeneous semigroup.

Definition 7.21. Let S be a good semigroup and let w € NZ. Then S is called closed with
respect to w or w-closed if a € S for any w-element o € [[;c;S; of S.

Let R be a quasihomogeneous curve with normal weights @ and connecting maps ¢ (see
Definition 6.3). Recall that the fibre product Fib (I'r,w, () is by Remark 6.5 the largest

quasihomogeneous curve in
r
I ells]

peMin (R)
with normal weights @ and connecting maps (. For an analogous construction on quasiho-
mogeneous semigroups we use the property of w-closedness.

Proposition 7.22. Let S be a quasihomogeneous semigroup of type w € N!. There is a
unique quasthomogeneous semigroup S of type w which is w-closed and satisfies

ScsvcS

<S“ (st )jef\{i}> ier <<Sw)"’ ((Sw)g>jef\{i}>i61'

The semigroup Sv is called the w-closure of S, and it is generated by the w-elements of S
in the following sense: for any element o € Dg we have o € S¥ if and only if there is a
family (a(i)) - of w-elements of S such that

1

and

« = inf (a(i)

iel).
Proof. See Section 7.6. O

Indeed, if R is a quasihomogeneous curve with normal weights @ and connecting maps ¢
(see Definition 6.3), the fibre product Fib (I'g,w, ¢) corresponds to the w-closure of I'g in
the following sense.

Theorem 7.23. Let R be a quasihomogeneous curve with normal weights w (see Defini-
tion 6.3). Then R is a fibre product (see Definition 6.4) if and only if T'r is quasihomoge-
neous of type W and W-closed. In particular, if R has normal weights W and connecting
maps ¢ (see Definition 6.3), then

Trib rpme) = Tr)"
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Proof. See Section 7.9. 0

Theorem 7.24. Let S be a local quasihomogeneous semigroup of type w € NI. Then
S = T'pip (s,w)- In particular, S is w-closed if and only if S = I'pip (5,u0)-

Proof. See Section 7.9. O

As the following proposition shows, Theorem 7.23 leads to the description of a quasiho-
mogeneous curve with two branches in terms of the semigroups of values of its branches by
Kunz and Ruppert (see [9, Satz 4.2]).

Proposition 7.25. Let S be a quasihomogeneous semigroup of type w € NI. If [I| < 2,
then S is w-closed. In particular, if R is a quasihomogeneous curve with |Min (R)| < 2,
then R is a fibre product (see Definition 6.4).

Proof. 1f |I| = 1, the claim is trivial. So suppose that I = {1,2}, and let « be a w-element
of S. Assume that oy € S1\ S7. Then az € Sy \ S5 with

w11 = Wwaly (74)

(see Definition 7.14 and Remark 7.15). Moreover, by Theorem 7.19 there is a w-element
of S with 5 € S and 1 = ay. Then Equation (7.4) implies « = 8 € S.

So assume now that a; € S?. Then there is a 8 € S with #; = a1 and B2 > (75)5-
By Lemma 4.33 we may assume that Ss > ao. Since S is quasihomogeneous, there is by
Theorem 7.19 a w-element § of § with 6 € S, 61 = 81 = a1, and 6o > By > as. Since
a1 € S implies g € S5 (see Definition 7.14), there also is a w-element € of S with € € S,
€2 = g, and €; > «;. This implies « = inf {§,e} € S. Thus, S is w-closed.

The particular claim follows then with Proposition 7.6 and Theorem 7.23. O

A quasihomogeneous curve R can be embedded into the fibre product of its branches over
their pairwise intersections. Theorem 7.23 gives a criterion on the semigroup of values of
R which characterizes this embedding to be an isomorphism. If R is a fibre product, it can
be reconstructed from information on its branches. By Theorem 7.24 this implies that any
quasihomogeneous semigroup of type w € N/ which is w-closed can be reconstructed from
data on its branches. In fact, we can extend this statement to arbitrary quasihomogeneous
semigroups. In order to make this statement more precise we define the following “stronger’
version of w-elements.

Y

Definition 7.26. Let S be a good semigroup, and let w € N/. A w-element « of § is
called mazximal if the following hold:

(1) a€S.

(2) If a € S\ Cg, then there is ¢ € I with a; < (vs); such that inf {a, vs} = inf {3, vs}
for all w-elements 5 of S with § € S, 5; = a;, and inf {e,vs} < inf {S3,vs}.

The set of maximal w-elements of S is denoted by M,, (5).
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7. Quasihomogeneous Semigroups

Theorem 7.27. Let S be a quasihomogeneous semigroup of type w € NL. Then the
following data are equivalent:

(a) The semigroup S.
(b) The family

(51'; (Szj) Jcl\{i}> iel

consisting of the branches S; of S together with all ideals Si for every J C I\ {i}.
(¢) The set of mazimal w-elements M., (S) of S.

The maximal w-elements determine the semigroup S in the following way: For an element
o € Dg we have a € S if and only if there is a family

(09), ., € (o (5

with
for every i € I and

for each j € I'\ {i}. In particular,

« = inf (a(i)

ieQ.

Proof. See Section 7.5. [

7.4. Proof of Theorem 7.19

Lemma 7.28. Let S be a quasihomogeneous semigroup of type w € NI, let o € S, let
de€Z, and let B € Yqg(a). Then for any i € I the following hold:

(1) If a; < (7vs); or Bi < (7s);, then B; > ay. In particular, B; < (vs),; implies a; < (Vs);.
(2) If a; < (vs); and wioy = d, then f; = o.
(3) If wie; > d or a; > (7s);, then B > (vs);-

Proof. (1) Since there is (5(9)>

have

oez € [lyez ¥g(a) such that o = inf {5(9) ’ g€ Z}, we

59 >« (7.5)
for every g € Z.

Let oy < (ys); or fi < (7s);, and assume that 8; < ;. Then we have f; < (vs); in
either case. So suppose that ; < (7s);, and assume that ; < ;. Then 5@ ~ 3

implies (5(‘1)), = B < a; since 3,6 € ¢4(a) (see Definition 7.1). But this
contradicts Equation (7.5).
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(2) Suppose that a; < (vs); and w;a; = d. Since there is (5(9))962 € [Iyez ¥g(a) such
that a = inf {5(9) ' g € Z}, there is an e € Z such that (5(6)) = ;. This implies
(5(6)) < (7s);, and hence

e = deg ((5(6)) = w; ((5(6)). = w;o; = d.

Thus, 3,6 € ¢4(a), ie. B~ 6@, and we obtain 5; = ((5(d))4 = .

(3) Suppose a; > (7s);, and assume that f; < (vs);. Then ; < o, contradicting (1).

Suppose now that «; < (7s);, and assume that 3; < (vg);. Then (1) yields d <
wia; < wifs. But as f € g(a) with 8; < (vs);, this is a contradiction to w;3; =
deg (B) = d. O

Lemma 7.29. Let S be a quasihomogeneous semigroup (of type w € N’), and let a € S
be a homogeneous element. If a; € SI for some i,j € I with i # j, then a; € S5

Proof. Let a € S with o; € S/, and assume aj € S; \ Si. Then a; < (vs); (see Def-
inition 4.60), and a; < (vs); by Lemma 4.63. Since o is homogeneous, this implies
wia; = deg (o) = wjay.

As oy € S{, there is a § € S with ; = o; and 3; > (vs); (see Definition 4.60). So
property (E2) yields a § € S with 6; > «o; and §; = min {a;, 55} = «;.

Let now € € 1geg (a)(0). Then €¢; = J; by Lemma 7.28.(2) since §; = «; < (7s); and
w;d; = wja; = deg(a), and ¢ > (vs), by Lemma 7.28.(3) since w;d; > w;oy; = deg ()

see Definition 7.3). This implies a;; = §; = ¢; € S%, contradicting the assumption. O
3 =9 =6 j

Corollary 7.30. Let S be a quasihomogeneous semigroup (of type w € NT). Any homoge-
neous element o € S is a w-element of S with deg,, (o) = deg ().

Proof. Let a € S be homogeneous, and let ¢,j € I with i # j. First assume «; € S; \ Sf
Then Lemma 7.29 yields o € S;\ S%. So, in particular, o < (7s); and a; < (7s);
(see Definition 4.60). Since « is homogeneous, this implies w;o; = deg () = wja; (see
Definition 7.3).

Let now a; € 57 \ (Cs);. Then Lemma 7.29 yields a; € S}. So assume a; € S\ (Cs);-
Since « is homogeneous, this implies again w;o; = deg (o) = wja;.

If a; € (Cg);, then a; € S} since a € S. Thus, « is a w-element of S.

Finally, for any ¢ € I we have o; > (7g), or deg (o) = w;cy; = deg,, («). O

Lemma 7.31. Let S be a good semigroup, let w € N with w; > 0 for every i € I, and
let a, p € S be w-elements with deg,, (o) = deg,, (B). Then inf{«a, 5} € S is a w-element
with deg, (inf {a, 8}) = e, (a) = deg,, (3).

Proof. 1If a, 8 € Cg, then inf {«, 8} € Cs by Lemma 4.18 and Definition 4.26. So assume
that « € S\ Cg or € S\ Cs.
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Set 6 = inf {«, 5}, and let 4,j € I with ¢ # j. First assume that §; € S; \ SZJ Then
without loss of generality a; = 0; € S; \ Sg and f; > o;. Since a; < (7s); by Lemma 4.63,
Proposition 7.16 yields w;a; = wjay; and B; € (Cg); or w;B; = deg,, (8) = deg,, (o) = wia;.
In particular, since a; < (75)]-, we have 3; > «a;. Hence w;d; = wjo; = wjo; = w;0;.

Now suppose that §; € S/ \ (Cs),,
0; = a; < ;. Then o; = 6; € Sf \ (Cg), implies a;; € S;'- with o € (Cs)j Or Wity = W0y =
deg,, () (see Definition 7.14

Assume that §; € S;\ 5. Then, in particular, 8; < (vs); by Lemma 4.63. Therefore, we
have by Proposition 7.16 w;a; = deg,, (o) = deg,, (8) = w;f; but o; = f; is a contradiction
to o € Sf and 3; € S; \ Sf Thus, we have 3; € Sf

This implies §; € S; (see Definition 4.60). In particular, we have f; € (Cs)j or
w;f; = deg, (8) = deg, (a) by Proposition 7.16. Since ¢; = min {c;, 8;}, this yields
d; € S? with 6j € (Cg); or w;d; = deg, (o) = deg, (8). Therefore, inf {a, 8} is a
w-element.

Let ¢ € I with §; < (vg),;. Without loss of generality, we may assume «o; = §; < (ys); by
Proposition 7.16. Hence, w;0; = w;a; = deg,, (o). Thus, deg,, (inf {a, 8}) = deg,, (a) =
deg,, (). O

Lemma 7.32. Let S be a good semigroup, let w € N with w; > 0 for all i € I, and let
«, ,8 c Hie[ S’L

(1) If(oz—l—ﬁ)iGSi\Sg for some i,j € I with i # j, thenai,ﬁiesi\Sf.

and again assume without loss of generality that

(2) Let o and [ be w-elements of S, and suppose that for every i,j € I with i # j there
s a bijection
Tij - SZ\SZJ *)S]\SJZ,

O —

wj
Then o+ 8 is a w-element of S with deg,, (o + ) = deg,, (a) + deg,, (5).

Proof. (1) Let i,j € I with ¢ # j such that (a4 3), € SZ-\Sf, and assume «; € Sf Since
a, B € [lier Si, there are d,e € S with §; = a;, 6; > (’yg)j and ¢; = (3;. This yields
§+e€ Swith (0+€);, = (a+f); and (6 +¢€); > (7s);. In particular, we obtain
(a+p), € S’g, contradicting the assumption.

(2) Since «, B € [;er Si, for every i € I there are o, g0) e § with (a(i))A = o; and

Let i,j € I with ¢ # j, and assume that (o + 3), € S; \ Sf Then a4, B; € S; \ Sf by
(1). This implies w;0; = wjoy; and w;f3; = w;f;, see Definition 7.14. Hence,

wi(a + /8)1 = w;a; +w;f; = wja; +w;if; = wj(oz + 5)3 (7.6)
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Suppose now that (a+f); € S/, and assume that (a+pB); € Sj\ Si Then

wj(a+ B); = wi(a+B); by Equation (7.6) (with ¢ and j interchanged). This

implies

wj(oz + ,B)j
Wi

(a+B); = = 7i((a+8);) € S\ S,

contradicting the assumption (a + f); € Sf Thus, (a+8); € S;

Assume that (a+ f3), € Sg \ (Csg),. Since o, > 0, (a+f); < (vs),; implies
ai, Bi < (7s);, 1e. ag, B € S\ (Cg),. If (o +5)j < (Vs)j, then o, 5; < (’ys)j, and
hence

wi(a + ,3)2 = w;o + wif; = wjog + wjﬁj = wj(oz + ,B)j

If o > (’ys)j or 3; > (VS)]w then (o + [3)] > (’ys)j. Thus, o + § is a w-element of
S. O

Lemma 7.33. Let S be a good semigroup, and let o, 8 € S with a ~ B. If a is a w-element
of S, then B is a w-element of S with deg,, (o) = deg,, ().

Proof. Let o, 8 € S with a ~ 3, and suppose that a is a w-element of S. Let 7,5 € I
with ¢ # j. First assume that 3; € S;\ S{. Then ; < (vg); by Lemma 4.63, and hence
a; = B €5\ SZ as o ~ . Since « is a w-element, this implies a;; € S\ S; with
wjoi; = wjay; (see Definition 7.14 and Remark 7.15). In particular, we have o < (7s); (see
Definition 4.60), and hence

w;fj = wja; = wia; = w;f;

since o ~ f3.

Assume now that 8; € 57\ (Cs),;. Then B; < (vs),, and hence o; = f3; € SI\ (Cs),. Since
a is a w-element, this implies a; € (Cg>j or aj € S]i- with wia; = wja;. If a; € (Cs)j,
then 3; € (Cs),; since a ~ B. If a; € Sji- \ (Cs);, then B; = a; € S; \ (Cs); since a ~ B,
and we obtain

w;f; = wi; = wia; = w;f;

since « is a w-element.
If there is an @ € I with ; < (vg);, then ; = o < (vg), since a ~ 3. This implies
deg,, (o) = deg,, (B). O

Lemma 7.34. Let S be a good semigroup, let w € NI with w; > 0 for alli € I, and suppose
that for any o € S there is a family (a(i)) 1 € ST of w-elements such that (a(i))‘ = q for
(2 (2

any i € I and a = inf (a(i) 1€ I). Then for every i,j € I with i # j there is a bijection

Tij: SZ\SZ —>S]\SJZ,
w;

o .
wj
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Proof. Let i,j € I withi # j, and let o € Si\Sg . Then by assumption there is a w-element
B € S of S with 8; = a. This implies
wia  wif

= 4 :BjESj

wj Wy

(see Definition 7.14). Suppose that 3; € Sf Since f is a w-element, this implies 3; € Sg,
contradicting 8; = a € S; \ S7. Thus, there is a map

Tij: SZ\S‘Z—>SJ\SJZ,

W;
o .
wj
Since, moreover,
Wi
T~o7’~(a)—7] Yo —a
(2 7 - -
J J i )
it follows that 7;; is bijective. O

Proof of Theorem 7.19. (a) = (b) Let S be quasihomogeneous of type w. Then for any
a € S there is a family
d
(Oé( )>d€Z e [1 va(a)
dezZ

such that
o = inf (a(d) ‘ de Z).

In particular, this implies that for any i € I there is an (%) ¢ g, (o) with (a(di)> =
a; and (a(di)> >y forall j €I\ {i}. Thus, we have
j

1

a = inf (a(di)

ic I),
and by Corollary 7.30 %) is a w-element for any i € I.

(b) = (a) Let o € S, and suppose that there is a family (a(i)> o1 € ST of w-elements
such that for any i € I we have (a(i)). = oy and (oz(i)) > . Note that if o > (7g);

i J

for some i € I, then we may assume that a() > (ys),.

For every d € Z we set

B = inf ({75} u{a? | i€ I and deg, (a®) =d}). (7.7)
Then for any d € Z we have
(89) = a (7.8)
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for all i € I with a; < (vg);. Moreover, B&d) is by Lemma 7.31 a w-element with
deg,, ( ((xd)) = d for any d € Z, and we have ,B&d) € S since S satisfies property (E1).

So repeating this construction for all § € S we may define a map
Ya: S — 5, (7.9)
5 B

for every d € Z. If « is a w-element, then Proposition 7.16 and Equation 7.7 yield
for any d € Z

inf{a,vs} =a if deg, (o) =d,
i [T = b0
s else.

In particular, we have
o€ wdegw () (a) (7'10)

We now verify that the map 1 satisfies the properties in Definition 7.2.(1).

(1) Let d € Z, and let o, € Useg®a(0). Then o and B are by Lemma 7.33
and Equation (7.9) w-elements of S with o, € S and deg, (o) = d =
deg,, (8) since B(gd) is a w-element of S with deg,, (Béd)) = d for every § € S.
Therefore, Lemma 7.31 implies that also inf {a, 8} is a w-element of S with

deg,, (inf {a, B}) = d. Moreover, we have inf {«, 5} € S since S satisfies prop-
erty (E1). Thus, Equation (7.10) yields

inf {«, B} € Yy(inf {a, B}) C U (6

oes

(2) Let d,d’ € Z, and let a € Uscg¥a(d) and B € U.cg¥a (€). Then as before a
and [ are w-elements of S with «, 8 € S and deg,, (a) = d and deg,, (5) = d’
by Lemma 7.33. Therefore, Lemmas 7.32.(2) and 7.34 imply that o +  is a
w-element of S with deg,, (o + 3) = d + d'. Moreover, we have a4 8 € S since
S is a monoid. Thus, Equation (7.10) yields

a+ B € Ygralo+ B) C | Yara(d)

oes

(3) Let now « € S be any element let d € 7, and let 69 € 1p4(a). Then 69 ~ B&d)
(see Equation (7.9)), where ﬂa is defined as in Equation (7.7). Let ¢ € I, and
assume that a; < (vs),. Since (a(j))‘ > q; for all j € I, Equation (7.7) implies

('YS)Z‘ > (ﬁc(xd)) > oy, and hence

(6(d))i = (5éd))i 2 Qi (7.11)

(see Definition 7.1).
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If d = w;ay, then deg,, (oz(i)) = d since (a(i)), =a; < (75); As e > o =
(a(i)) for all w-elements e of S with deg,, (¢) = d (see Remark 7.18), this

(2
implies

(567), = min ({6):3 U { (o),

- (),

= Q4.

j €I and deg, (a(j)> = d})

Therefore,

(6) = (8%). = e (7.12)
since (ﬂ&d))i = oy < (7vs); and 6&00 ~ 5D

Let now i € I with o > (7g);. Then (a(j)). > a; > (7g), for all j € I. Hence,
7

(ﬂ&d))i = min ({(’yg)l} U {(a(j)>i ‘ j €I and deg,, (a(j)) = d}) = (vs);-

Since §(@ ~ B((xd), this implies (S(d)) > (vs);. Hence, we may by Lemma 4.33
assume that

(5(d)> =04 (7.13)
(also see Definition 7.14).

Since w;ay € Z for any i € I with oy < (vg);, Equations (7.11), (7.12), and
(7.13) imply
o = inf {(5(d) ‘ de Z}.

Thus, S is Z-graded. In fact, S is quasihomogeneous of type w by Equation (7.9)

since Bgd) is for any § € S a w-element (see Proposition 7.16.

Let S be a quasihomogeneous semigroup of type w. Then a homogeneous element « of
S is by Corollary 7.30 a w-element of S with deg,, (o) = deg («). Conversely, a w-element
B of S is by Equation (7.10) a homogeneous element of S with deg (8) = deg,, (3). O

7.5. Proof of Theorem 7.27

Lemma 7.35. Let S be a quasihomogeneous semigroup of type w € NI. An element
a € [[;er Si s a mazimal w-element of S if and only if « € Cs or there is an i € I such
that

a; < (75)1‘7
oy 2> (’)/S)Jv
wrog = wiay for all k € T\ J,

where J C I\ {i} such that o; € S{ and J' = J for all subsets J' of I\ {i} containing J
with a; € S
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Proof. Let aw € S\ Cg. First suppose that « is a maximal w-element of S. Then there
is by Definition 7.26 an i € I with o; < (vg); such that inf {o, s} = inf {3, vs} for all
w-elements B of S with 5 € S, §; = o; and inf {a, 75} < inf {5, vs}. Set

J = {j el ‘ aj > (’ys)j}.
Then «a; € SY since a € S (see Definition 4.60), and Proposition 7.16 and Definition 7.26
yield
o; < (75)1"
ayg > (’ys)Ja
wray, = deg,, (o) = wiay; for all k € T\ J.
Let now J' C I\ {i} such that J € J" and oy € S/'. Then there is 8 € S with
Bi = Oy,
By = (WS)J'
(see Definition 4.60). Since S is quasihomogeneous, Theorem 7.19 yields a w-element 6 € S
with 0 > g and §; = 8; = «;. In particular, if we set
J'={iel|d> ()}
then J" C J”. Since
w]‘Oéj = W;; = wi& = wjéj

for all j € I'\ J” by Proposition 7.16, we obtain

min {aj, ("ys)j} = (75); = min{dj, (’yg)j} for all j € J,
min {ag, (75),} = ax < (v8), = min {0k, (vs),} for all k € J"\ J,
min {ay, (vs),} = ay = 8 = min {8}, (ys),} forall € T\ J".
This implies
inf {o, s} < inf {6, 75}
Therefore, we have inf {a, v5} = inf {0, vs} since « is maximal. Thus, J = J" = J".

Let now o € [[;c7 Si, and suppose that there is an ¢ € I such that

o < (’)/5')2-, (7.14)
ay = (7s); (7.15)
wrag = wiay for all k € T\ J, (7.16)

where J C I'\ {i} such that a; € S/ and J' = J for all J ¢ J' c I\ {i} with a; € S/".
First we want to show that a is a w-element of S with a € S. Since a; € S/, there is
8 € S with
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(see Definition 4.60). Since S is quasihomogeneous of type w, there is by Theorem 7.19 a
w-element 6 € S with

0i = Bi, (7.17)
d; > Bj for all j € I'\ {i}. (7.18)
In particular, we have
0 = o < (78);s (7.19)
65> (vs) ;- (7.20)

Assume now that there is a k € I\ ({i} U J) such that d; > (vs),. Then J C JU {k} and

o = 0; € Sglu{k}. But this is a contradiction to the definition of J. Therefore, we have
0k < (7vs);, for all k € I'\ ({¢} U J), and Proposition 7.16 yields

wk5k = degw ((5) = wiéi (7.21)

for all k € I\ J. Since a; = 9; by Equation (7.19), combining Equations (7.16) and (7.21)
we obtain a; = d; for all j € I'\ J. Since ag, > (vs),, and & > (vs), for all k € J, this
yields a ~ §. Thus, « is a w-element of S by Lemma 7.33 since ¢ is a w-element.
Let now € be a w-element of S with € € S, ¢, = a; and inf {a, ys} < inf {¢,vs}. Thus, if
we set
J={jet|e¢> )},

then J C J' C I\ {i}. Since, moreover, we have a; = ¢; € S/ (see Definition 4.60), the
definition of .J yields J = J’. Hence, we obtain inf {c,ys} = inf {€,y5}. Therefore, o € S
by Lemma 4.33, and hence « is a maximal w-element of S. O

Lemma 7.36. Let S be a quasihomogeneous semigroup of type w € NI, and let i € I. For
any o € S; and for any J C I\ {i} with o € S/ there is a mazimal w-element 3 of S with
Bi=a and By > (ys) ;-
Proof. Possibly replacing J by a larger subset of I\ {i} containing J we may assume that
a€ Sy and J=J forall JC J CI\{i} withacS/.

Suppose o ¢ (Cg);. Since o € S/ there is a § € S with

0 = «,
o5 > (18) ;-
Since S is quasihomogeneous of type w, there is by Theorem 7.19 a w-element g € S with
ﬁi = 5i7

B; > 4d; for all j € I\ {i}.
In particular, we have

ﬁi =a< (75)@‘7
B1 > (vs)-

Then by Proposition 7.16 and Lemma 7.35 § is a maximal w-element of S. O
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Lemma 7.37. Let S be a quasihomogeneous semigroup of type w € NI, let (a(i)),

1€

e st
I
and set o = inf (a(i)

bijective) such that

1€ I). Then there is a map n: I — I (which is not necessarily

o = inf (a("(i)) ’ i€ I)

and

(@) =,

Proof. Since o = inf (a(i)

1 e I), there is for any j € I an i; € I such that

(a(ij))j = qaj,

(am))k > oy for all k € I\ {j}.
We define the map

n: I — 1,
]'—)Z]

Then we have for any ¢ € T

() = ay,

(™) > a; for all j € I\ {i}.
J
This implies
inf (a(”(i)) ’ i€ I) =aqQ. -

Proof of Theorem 7.27. Obviously, the family (Si, (S J is determined by S.

‘ )JCI\{z‘})ig

Since g can be computed from (Si (SJ by Proposition 4.64, the set M, (.5)

! )JCI\{i}>ieI

of all maximal w-elements of S is determined by (Si, (SZJ ) by Lemma 7.35.

Jcl \{i}>iel
So we want to show that S can be constructed from M, (S) in the following way: for

any element o € Dg we have o € S if and only if there is a family (a(i)) of maximal

el
(a(i))z’ = %

(a(i)> > forall j el {i},
J

w-elements of S with

i.e. a = inf (a(i) 1€ I).
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By Definition 7.26 we have M,, (S) C S. So for any family (a(i)) o € (Mo (8))! we
have inf (a(i)
is a family 3 € (M,, (S)) with

(59), = nt (s [k 1),

(89) = (inf (a® | ke 1)) foralljel\{i},
J

J

rel ) € S since S satisfies property (E1). Moreover, by Lemma 7.37 there

Let now € S, and let i € I. If oy > (7g);, we choose aW e Cg with

(a(i))i = G

(a(i)> > forall jell\{i}.
j

Assume now that «; < (vg),. Since S is quasihomogeneous, there is by Theorem 7.19 a
w-element 5 € S with

Bi = ay, (7.22)
,Bj > for all 5 € I\{Z}

Set J = {j el ‘ B > (fys)j}. Then ; = B; € S/, and by Lemmas 4.33 and 7.36 there is
a maximal w-element o) of S with
() =5, (7.23)
(Ot(i)) ;=B

Let j € I\ J. Then B; < (ys);. So if (a(i)) < (7s);, then Proposition 7.16 yields
J
(o@DY — (0@ = 0.8 — . 8.
W (oz )j wz(oz )z w3 = w; B,
and hence

(a@'))j = B;. (7.24)

Equations (7.23) and (7.24) imply ¥ > § with (a(i))‘ = B;. Thus, for any i € I there is
by Equation (7.22) a w-element o) € Wg with

(a(i)>i -

(a(i))j > ;. O
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7.6. Proof of Proposition 7.22

Lemma 7.38. Let S be a quasihomogeneous semigroup of type w € N, and let
(@) (%) 1
(a )z‘el’ <B )iEI €5
Then there are maps no: I — 1 and ng: I — I such that
inf (a(i)

inf (5

1€ I) = inf (a("“(i)) ‘ 1€ I),

i € 1) =inf (§0a) ‘ iel),

and '
inf (oz(’)

i€ I) + inf (5@

i) =inf (alm® 4 g0 | e ).

Proof. Set a = inf (a(i) ‘ 1€ I) and 8 = inf (5(73)
No: 1 — I and ng: I — I such that for any ¢ € I we have

() = ay,

)

1 e I). By Lemma 7.37 there are maps

(a(na(i)))j > aj for all j € I'\ {i},
and

(80 = g,

(5(nﬁ(i)))j > g for all j € I'\ {i}.
Therefore, we have for any ¢ € T

(a(na(i)) + ﬁ(nﬁ(i))>i — a; + B
(a(”“(i)) + ﬁ("ﬁ(i)))j > aj + p; forall j € I\ {i}.

This implies
o+ (3 =inf (a("‘l(i)) + ﬁ(nﬂ(i)) ‘ 1€ I). O

Lemma 7.39. Let S be a quasihomogeneous semigroup of type w € N, and let a be a

w-element of S. If i,j, k € I pairwise different with o € S; \ S¢ and oj € S; \ SJ’?, then
) . k

a; € S\ Sy.

Proof. Assume a; € SF. Then there is an element 8 € S with 8; = a; and By > (7s) - Since
S is quasihomogeneous, there is by Theorem 7.19 a w-element § € S such that §; = 8; = o
and 0 > B > (75),€, hence d6; € S]’?. Moreover, we have w;d; = w;0; = w;o; = wja; since
§; = a; € S;\ S/, and since « and 4 are w-elements of S (see Definition 7.14). This implies
aj =0; € S]’.c , contradicting the assumption. O
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Lemma 7.40. Let S be a quasihomogeneous semigroup of type w € NL. If S is w-closed,
then

jeI\{i}))

= | maXx j .
s ( <753 iel

Proof. Set

jeI\{i}))

For any i € I we have (vs); € Cg; for every j € I'\{i} (see Definition 4.60 and Lemma 4.62).
This implies '

v = (max (733' .

jeINi})) =

Vs > (max (’ysg s

Let « € ¥+ S. Then

jeI\{i})

for any 7 € I. In particular, we have «; € Sf for every j € I'\ {i}. So if for any i € I we
choose an element o) € [];c; S; with

(a(Z))z =o; € m Szk,
kel\{i}

(09), 2 e {19, € (O for e 11 1)

o > 7y = max (fysj

then o) is a w-element of S (see Definition 7.14). Since S is w-closed, we have o) € §
for all ¢ € I. Thus,

o = inf (a(i)

vel ) es
as S satisfies property (E1). This implies 7 > 7g, and hence we obtain v = vg. O

Proof of Proposition 7.22. We show that the w-elements of S generate a good semigroup
S™ in the following sense: for any element oo € Dg we have o € S™ if and only if there is a

family (a(i)) - of w-elements of S such that a = inf (a(i) 1€ I).

S™ is a good semigroup. By Proposition 7.8 and Lemmas 7.32.(2) and 7.38 S% is a
partially ordered cancellative commutative monoid with Dgw = Dg and a > 0 for all
a € 8% Since S C S¥ and S* = S, S¥ satisfies property (E0). It remains to verify
properties (E1) and (E2) for S*.

(E1) Let o, 8 € S™. Then by definition of S and by Lemma 7.37 there are families
(a(i))iel and (ﬁ(i))iel of w-elements of S with (a(i))i = q; and (B(i))i = S, for any

i€l and (a(i)> > a; and (5(i)> > pj forall j € I\ {i}. For any i € I set
J J

- SO else.
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7.6. Proof of Proposition 7.22

Then (5(i)), = min {«;, #;} and ((5(i)) ~>min{o; ,B;} for all j € I'\ {i}. This shows
i j

that '

inf {a, 3} = inf (50

iel ) e s,
and hence S" satisfies property (E1).
Suppose there is an i € I such that a; = ;. First assume o; > (vg),. Then
(5(j))i > (vg); for all j € I. Thus, for any j € I there is a w-element €9) of S with
(e(j))‘ > o and (e(j)) = (5(j)) for all k € I'\ {i} (see Definition 7.14). Then

7 k k

e:inf(e(j) ’jEI) esv
with
€ > a; = i,

€; > min{o;, f;} for all j € I,
ex = min {ag, g} for all k € I with oy # fy.

Next we treat the case a; < (7s);. Set

J=1{jel|a;# B} (7.25)

We show that for every j € J there is a w-element ) of S with n\) > inf {a, 8},

(n(j))i > a; = B, and (n(j))j = min {a;j, 3;}. For this we consider the family
(5(k))kel of w-elements with 6*) > inf {a,f} and (5(k))k = min {ag, B} for any
k € I as above.

Let j € J. Then without loss of generality we may suppose that a; < 3;. We
distinguish the cases o; € S; \ S and o; € S} \ (Cy);.

First assume that a; € S; \ SZJ If aj € 55\ S]i-, then

wioy = wif = w; (ﬂ(i))i = wj (5(1))], > w;f3;
> wjioj = wj (a(J))j = w; (am)i > w;oy
(see Definition 7.14). This is a contradiction, and hence a; € S; This implies
(5(j))i > q; as otherwise (5(j))i =qa; €5\ Sf, and therefore o = ((5(j)>j €S\ S}
by Remark 7.15 since ) is a w-element of S. So if we set n(¥) = §U) then
nY) > inf {a, 8} with (n(j))i > a; = B; and (n(j))j = min {aj, 5} = «;.

Now assume that «; € Sf \ (Cs);- If i € S5\ S}, then as above ((5(j)). > oy by
Remark 7.15 since ) is a w-element. So if we set nU) = §U), then ¥ > inf {a, B}
with (n(j)), > a; = f; and (n(j)) = a; = min{a;, 5}

7 J
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204

Let now a; € S;-, and consider an element 19 € [Ircr Sk with

(n(j))j - (5(1))j’

(1), = max {(s)e. (60), } for all k € I\ {5} with (69) e s,

(n9), = (89), for all I € I\ {j} with (5(f))j €5\ 5.

We show that () is a w-element of S.
So let m,n € I with m # n and

(n@)j - (5U>)j € SN sy,

Then ' A
() € (Cs),, € SOSh,

and
(1) e (Cs), csinsy

(see Lemma 4.63).
Let m,n € I with m # n and

(n(ﬂ)j = (5<J‘>)j e (;\57)n(S;\ 7).
Then
(n(j))m - (5(j))m €S\ ST
and
(”(j)>n _ (50‘))” €S, \ S5
by Remark 7.15 since 6\ is a w-element of S. This implies
(n(j))m - (5(j))m €S\ S"

and
(n(j))n - (5(j))n €5,\Sm

by Lemma 7.39. Moreover, we have

J
Wy, (”(j))m — w,, (5(j)>m — w, (5(j)> — wy (n)

(see Definition 7.14).



7.6. Proof of Proposition 7.22

Let m,n € I with m # n and

(69), € (S\877) n ;-

("(j))m - (5(a’))m

(1) = (),

Suppose that ) is not a w-element of S. Then
(5(3')) - (W(j)> €S\ S"

(see Definition 7.14). But then Lemma 7.39 yields the contradiction

Then

and

(6V) €5\ 8.

Therefore, 79) is a w-element of S.

Thus, for any j € J (see Equation (7.25)) there is a w-element 79) of S with
nU) > inf {a, B}, (n(j))i > «; = f3;, and (n(j))j = (5(j))j = min {a;, 5;}. So for
every k € I\ J choose an element j; € J with

(1), = min (1), |5 € 7).
and set n(®) = ) Then
n:inf{n(j) ‘j € J} :inf<77(j) ]j eI) € S
with

ni > a; = B,
n; = min {«;, B} for all j € J,
N, > min {ay, B} for all k € 1.

Thus, S" satisfies property (E2), and hence it is a good semigroup.

Sv is quasihomogeneous of type w. First note that S C S* C S by Theorem 7.19, and
hence vg > ygw. So by construction we have

S = (SY), (7.26)

for any ¢ € I and . .
S} (SY)] (7.27)

for every j € I\ {i}.
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Let now 4,7 € I with i # j, and let o € (S™)!. Then there is a 8 € S* with 3; = «
and fBj > (ysw); (see Definition 4.60). Since S is a good semigroup, Lemma 4.33 yields a
§ € S* with 6; = f; = @ and 6; > (75)]-. Then by construction of S% there is a w-element

e of S with ¢, = 0; = a and ¢; > §; > (’ys)j. Hence, o = ¢; € Sf (see Definition 7.14).
Thus, with Equations (7.26) and (7.27) we obtain

S;, (87 ) = ( S ((S)! ) . 7.28
( ( Z)jef\{i} icl (5%); <( )l>jef\{z‘} icl ( )
Since S C S™ by Theorem 7.19, we have yg > ~gw. Thus, a w-element of S is also a w-

W o ) J _ w w\J :
element of S since (S,, (SZ- >j€1\{i}>iel = ((S )is ((S )i)jel\{i}>i€1 by Equation (7.28).

This implies that S is quasihomogeneous of type w by construction and by Theorem 7.19.

SY is w-closed. Let a be a w-element of S, and set
J={ieT|ai< ()}
Then there is a w-element S of S* with
B; = «; for all i € J,

B; > max {aj, (’ys)j} forall j € T\ J

(see Definition 7.14). By Equation (7.28) 3 is also a w-element of S (see again Defini-
tion 7.14). For any i € J we set a(¥) = 3.

Let now i € I'\ J. Then a; > (ysw),;, and hence a; € (S®)] = &7 for all j € I'\ {i}, see
Equation (7.28). Thus, any element o) ¢ [T;er S; with

(a(i))i -

(a@)j > max {aj, (VS)j} for every j € I\ {i}

is a w-element of S (see Definition 7.14). In particular, we obtain

a = inf (oz(i)

i€l ) e s
by construction. Therefore, S™ is w-closed.

S™ is the unique w-closure of S. Assume that S’ is a quasihomogeneous semigroup of
type w which is w-closed and satisfies S € S’ C S and

(Si (55)1’61\{1‘})161 N <(S,)i7 <(S/)g)jef\{i}>ie1'

Then S and S’ have by Equation 7.28 the same w-elements since ygw = g/ by Lemma 7.40,
and these elements have to be contained in S* as well as in S’. Then Theorem 7.19 and
property (E1) yield S¥ = 5. O
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7.7. Proof of Proposition 7.6

Lemma 7.41. Let R be a quasihomogeneous curve, and let w € N™ as in Theorem 6.2.
If © € R is homogeneous and o € Cr, with ap # vy(x) for all p € Min(R), then
inf {v(z),a} € T'r is a w-element of I'g.

Proof. Let a € Cr,, with a > inf {v(z),9r,}. Then there is y € (€g)"® with v(y) =
a. Since vp(x +y) = min {yy(x), 14 (y)} < oo for all p € Min (R) by Lemma D.22.(5),
Lemma 3.4.(2) yields z + y € R™®, and hence inf {v(x),a} € T'g.

Set

B = inf {v(z), a}, (7.29)
and let p € Min (R) such that 8, < (yrg),- Then By = 1p(x), and hence z & p by
Theorems 3.2.(2) and A.74.(2) and Proposition D.13.(4). Therefore, Theorem 6.2.(1) yields

Wy By = Wprp(z) = deg (). (7.30)

Let q € Min (R) \ {p} such that B, € (Tr), \ (Tr)y- Then By < (vs), by Lemma 4.63,
and hence (3, = v,(x) by Equation (7.29). Since z is quasihomogeneous, Theorem 6.2.(5)
yields an a € C such that

((x)), = aty"™

(see Equation (7.30)), where we use the notation of Theorem 6.2. Moreover, a # 0 since
v = ord; oW by Theorem 6.2.(3). Since vy(z) € (I'r), \ (U'r)y, Theorem 6.2.(4) and (5)
imply

(W () = (Gpalvp(a)))Harg" o,
Since (pq(vp(x)) # 0 by Lemma 6.7.(1), Theorem 6.2.(2) and (3) yield where

Wy ()
@) = Tq((@)) = P ¢ (g (0,
q
Since vp(z) < (rg), and vq(z) < (yrz), by Proposition 4.67.(2), Theorem 6.2.(1) yields
Wovg(x) = Wpry ().

Moreover, we have vq(z) < (1), by Lemma 4.63, and hence
(see Equation (7.29)). O

Proof of Proposition 7.6. Let o € I'p. Then there is an = € R™® with v(z) = a. Let now
p € Min (R). Then Theorem 6.2.(5) yields

V(ﬂjwpap) = ord, o‘li(x@pap)

= ordy ((‘P(ZU))mpap)
> v(x)

=«
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with
Vp (Twmpay) = Vp(2) =

(also see Theorem 6.2.(3)).
Let now 8 € Cr, with 3y > a4 for all g € Min (R), and set

a® = inf {v(rwya,), B}
Then a® is a wW-element of I'p by Lemma 7.41 with

(a(p))p = ay,

(a(q)> > aq for all g € Min (R) \ {p}.

q

Therefore, we can find a family (a(P)) . € (Dp)Min (%) of w-elements such that
pEMin (R)

a = inf (a(p) ‘ p € Min (R)),

and hence I'g is quasihomogeneous of type w by Theorem 7.19. O

7.8. Proof of Proposition 7.12

Let S be a quasihomogeneous semigroup of type w € N’, and for any 7,5 € I with i # 7 let
Gij: Si\ S! — C be a map satisfying (;;(a + 8) = Gj(@) ¢;;(B) for all o, B € 5\ S? with
a+pBe€S;\S!. We set

A =Fib (S, w,()

with ¢ = ((Cij)JEI\{j})ieI' Note that A is a C-subalgebra of [[;c; C[[t;]], see Remark 7.11.

The proof of Proposition 7.12 is in parts analogous to that of Proposition 6.6, see
Section 6.3.

Lemma 7.42. We have A = [[;c; C[[t;]]. In particular, dim A = 1.

Proof. First note that we have A C [[;<; C[[t;]], and Proposition 4.64 yields

s T] Clit:]] c A.

el

This implies

Qa =TI Cll[t]:

el
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7.8. Proof of Proposition 7.12

Let now z = (ZaiEN agi)t-a’) o € C|[[ts]]. Then

(2

T = Z agfi)tiai + Z agi)t?i
a; EN a; EN
aiS(’YS)i iel 0‘1’>(’YS)Z‘ iel

€e;\ 1) 400
=> > el X aller|
i€l ;N a; EN
ai<(7s); ai>(vs); iel

where for any ¢ € I we denote by e; the i-th unit vector in Z!. Since

ST aey etsJ[Clt] c A

a; EN el
a;>(7s); iel

this implies that [[;c; C[[t;]] is generated as an A-algebra by {t® |i € I'}.
Moreover, for any 7 € I we have
(tei)(w)i e s HC[[tzH C A
il
Hence, t® is integral over A. Therefore, [];c; C[[t;]] is an integral extension of A in its
total ring of fractions. Proposition B.5 yields

A=l
i€l
since [[;e; C[[ts]] is 1ntegrally closed in Q4. Moreover, Theorem B.14 yields dim A =
dim [T;e; Cl[ti]] = O
Lemma 7.43. The ring A is local with maximal ideal
my = {x € A|ords (z) > 0}.

Proof. See the proof of Lemma 6.15.
Assume A is not local, and let m,n € Max (A) with m # n. Then by Propositions B.3

and B.15 and Theorem B.12 there are m,n € Max (Z) withmNA=mandnnNA =n.

Since B
A=T[c[m)]
el
by Lemma 7.42, there are by Lemma A.6.(2) in, i, € I such that

m=t;, Cllti]] x [] CIlt]]

€1\ (im)

IT cir

1€\ (in)

=]
I

209



7. Quasihomogeneous Semigroups

Then for any « € m '\ (nNm) this implies

pr;, () € i, Cl[ti, ],
pr;, (z) € C[[t, ]\ i, Cl[ti, ],

where for every i € I we denote by pr;: [[;c; C[[t;]] — C[[t;]] the projection. In particular,
we obtain ordy, (z) > 0 and ordy, (x) = 0. So writing

x:( Z agi,)tg”)
a; €(TR);

we have
al™ =0, (7.31)
a(()i“) # 0.

Since z € A, since S is local, and since therefore 0 € S; \ Sf; by Proposition 4.65,
Equation (7.31) and the definition of A yield the contradiction

O - a(()im) = Cimiﬂ (O) a(in) (0) = Cimin (0) a(()in) # 07

Timin
where the last inequality follows as (;,.;,(0) # 0 by assumption. Thus, A is local, and the
maximal ideal of A is by Theorem B.12, Proposition B.15, and Lemmas 6.14 and A.6.(2)

my = ﬂ m|NA
meMax (Z)

= (ﬂ tClltil] x ] C[ﬁjﬂ) nA

iel jeN{d}
:GHQMO“A
el
={x € A|ords (z) > 0}. O

Lemma 7.44. For any p € Min (A) there is an i, € I such that

p={zea|pr, (@)=0}

where prj: A — CHtfj

have

H 1s the projection for any j € I. Conversely, for every i € I we

p; ={x € A|pr;(z) =0} € Min (A).
In particular, there is a bijection
Min (A) — I,
p = i,
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Proof. By Lemma 7.42 we have A = [[;c; C[[t;]]. Then Lemma A.6.(2) yields
Min (4) = {0 < I clitll

1€ I}.
jen{i}

Thus, the statement follows from Theorem A.72. [

Lemma 7.45. For any i € I there is a numerical subsemigroup S, of S; such that

pr, (4) = [ [£"]].
where pr;: [1;er Cl[t;]] — C[[ti]] is the projection.

Proof. Let i € I, and set

SZ(: a € S;

there is ( Z agj)t?j> € A with agi) #05. (7.32)
Jel

;€S

Let a € S/, and let

with agi.) # 0. Set

and for any j € I let

0 if j € J,
b =<al  ifj=i,
O else,
and
00 if j € J,
Bj =« if j =1,

Tij(a) else.

Then we have for any j,k € I\ J with j # k
) G k) k)
b(BJj - aﬁ]j) - Cjk(ﬁj)aijk(ﬂj) = Gir(5)) bijk(ﬁj)'

Let 7 € J. Since a € S{ , and since S is quasihomogeneous of type w, there is a w-element
6 € S with 6; = @ and §; > (vs);. Let now k € I'\ J. Then 0y < (vs);, and hence

0k = Tir(c) by Proposition 7.16. Thus, 7, («) € Si. This implies that

(bjtfj)jel € A, (7.33)
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7. Quasihomogeneous Semigroups

where we use the convention ¢3° = 0 for any j € I. Thus, S/ is a subsemigroup of ;.
Moreover, 0 € S} as C C A. Since obviously (Cg), C S;, S; is a numerical semigroup.
Therefore, Equations (7.32) and (7.33) yield

S!
(CHt/” C pr; (A4). O
Lemma 7.46. The ring A is Noetherian.

Proof. By Lemma 7.44 there is a bijection

I — Min (A),
i—p;={r € A|pr;(x) =0} € Min (A),

where pr;: [[;c; Cl[t;]] = C[[t:]] is the projection for any i € I. This obviously yields

N »={0}

peMin (A)
Moreover, for any ¢ € I we obtain
ker (pr;) = pi.
Thus, the Homomorphism Theorem yields an isomorphism
A/pi = pr; (A).

Since by Lemma 7.45 there is a numerical subsemigroup S of S; such that pr; (A) = C [ {tS’H )

7

A/p; is Noetherian by Corollary 4.83. Therefore, A is Noetherian by Lemma A.3. O

Lemma 7.47. The ring A is reduced.

Proof. This follows from the definition of A as a subring of the reduced ring [];c; C[[t;]]. O

Lemma 7.48. The ring A is a local complex algebroid curve.

Proof. By Remark 7.11 and Lemmas 7.43, 7.46 and 7.47 A is a local complete reduced
Noetherian C-algebra with maximal ideal my = {x € A | ord; (z) > 0}. Since (;;(0) =1,
and since 0 € S; \ Sf for any 7,5 € I with ¢ # j, all components of an element = € A have
the same constant term. This implies A/my = C. Hence, A is a local complex algebroid
curve. O

Lemma 7.49. The C-derivation
(witiOk,)ie s

of I1;er Cl[ti]] restricts to a C-derivation d of A.
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Proof. Let xz € A, i.e.
z=| Y alde e [ clt]]
aiES'L iEI iEI
with ‘
all) = Gij(eu) aiif.(ai)

for any i € I, for every j € I\ {i}, and for all o; € S; \ Sf Then

D(:c):( Z wiaiaggt?i) .
i€l

a; €5;\{0}

Now Proposition 7.8 implies for any ¢ € I, for every j € I\ {i}, and for all a; €
Si\ (87 ufo})

(9)

Tij(c)”

Thus, ?(z) € A. O

wiaia((ji) = wjanj (Oéz) a

Lemma 7.50. An element
T = Z a(oi,)t?i €A
@i €5; iel

is an eigenvector of 0 (see Lemma 7.49) if and only if there is a d € Z such that for any
1 € I we have

a(()i.)tf” if there is an «; € S; such that w;o; = d,
T =
‘ 0 else.
In particular, 0 has only eigenvalues in N.

Proof. Let x = (Zaiesi a(()i.)tf"') - be an eigenvector of 0, i.e. there is ¢ € C such that
(2
cx =0(x)

_( Z wiaiagfi)tf‘i>

OziGSi\{O} iel

This implies

i

a(oi.)tai if there is an «; € S; such that w;o; = ¢,
T; =
‘ 0 else.

for any i € I. In particular, we have ¢ € N since w € N/ and S ¢ N’.
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7. Quasihomogeneous Semigroups

Let now d € Z, and let x = (ZaieSi agi.)t?i) - with
(2

a(()fi)tf” if there is an a; € S; such that w;a; = d,
T; =
’ 0 else.

for any ¢ € I. Then

D(x):< Z wiaiagi)tf‘i>
el

aiESi\{O}

:d< Z agi)t?i)
aiESi\{O} iel

= dzx.
Note that = 0 if d < 0 since w € N/ and S ¢ N/. O

Lemma 7.51. Let

T = ( Z a(aii)t?i) €A,
i€l

a; €S;

and let d € Z. For any i € I, for every j € I\ {i}, and for all a; € S; \ Szj we define

b(-) _ agi) if wioy; = d,
i 0 else.

Then

ST | € Al
@; €5; iel

Proof. Let d € Z, let i € I, 1et j € I'\ {i}, and let a;; € S; \ SZJ First suppose w;«; # d.
Then also

wiTii() = wj et = wie # d,
wj
and hence ‘
b =0=0p9
(73 Tij (O&Z)

This implies ‘
b = Gyl b))

Assume now that w;o; = d. Then also

Wi

ijij(Cki) = wj = W;0; = d,

Wi
Hence,

o) = al) = Gilan) al) ) = Gila) B .

(6% (67 Tij Tij
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7.8. Proof of Proposition 7.12

This implies

( 3 bfj}t?l’) € A. 0
i€l

a; €S;

Lemma 7.52. For any x € A there is a sequence (24);cy € A% where for every d € 7
either xq = 0 or d(zq) = dxg, such that =3 c7 xq.

Proof. This follows from Lemmas 7.50 and 7.51. 0

Lemma 7.53. The maximal ideal my of A (see Lemma 7.43) is generated by eigenvectors
of 0 with positive eigenvalues.

Proof. We want to show that m4 is generated by the set
M ={z € A]ord;(x) > 0 and d(x) = dyz for some d, € Z}.

Lemma 7.43 immediately yields M C my.

Let z € my. Then ord; (z) > 0 by Lemma 6.15, and by Lemma 7.52 there is a sequence
(2d) 4oz, € AL with z4 = 0 or d(z4) = dzq for every d € Z such that © = Yy z4. In
particular, we have ord; (x4) > 0 (see Lemma 7.51), and hence x4 € m4 for every d € Z by
Lemma 7.43.

Pick an o € Cg with w;o; = wja; for all 4,5 € I. Then t* € A by the definition of A
since oy € Sg for any 4,5 € I with i # j, see Lemma 4.63. Moreover,

D(ta) = (wiaitf‘i)iel
= d,t%,
where d, = w;a; for all ¢ € I, i.e. t* € M. Then

s T Cl[ta)]t*A € ma (7.34)
el

by the definition of A since «; € Sg for any 4,j € I with i # j (see Lemma 4.63), and we

can write
v= ) wat ) T
dez dez
ordt (z4) Za+vs ordt (z4)>a+vs
where
Z xg € YA
deZ

ord¢ (zq)>a+7s
by Equation (7.34).

Let now d € Z such that ord; (x4) 7? o +~vs. Then by Lemma 7.50 there is an i € I such
that d = w; ordy; (xq) < wi(a + 7s);. In particular, we have d < max {w;(a+vg), | i € I}.
This implies that

> T

d€eZ
ordt (zq) Zat+vs
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is finite. Thus,

= Y zg+tye (M)
dez
ords (za) Zat+s

with some y € A.
Finally, note that by Lemma 7.50 the eigenvalue of every x € M with respect to 0 is
positive. O

Lemma 7.54. Using the bijection n: Min (Fib (S,w)) — I of Lemma 7.44 to identify
N/ = NMin (Fib (Sw) 4pe have
S C Trib (s.) (7.35)
as well as equalities equalities
(FFib (&w))p = Sn(p)
for any p € Min (Fib (S, w)) and

(P s, = Siie)

for every q € Min (Fib (S, w)) \ {q}.
Proof. Let a € S. Then t“ € Fib (S, w) since S is quasihomogeneous. Using 1 to identify
N/ = NMin (Fib (Sw)) this implies

S C T'Fib (Sw)s
and hence S, ) C (Fpib (S’“’))p for any p € Min (Fib (S,w)). Moreover, by Lemma 7.44
and the definition of A we have for any p € Min (Fib (S, w))

Fib (S,w)/p = pr,y) (Fib (S, w)) < C[[£,72]].

This implies
(FFib (s,w))p = Sy(p)- (7.36)
Let now p € Min (Fib (S,w)), and let q € Min (Fib (S,w)) \ {p}. Since S C gy (5,w)
: n(q) a
(see Equation (7.35)), we have Sots) C (FFib (S’w)>p'

Let o € (Fib (S,w));. Then by Proposition 4.69 there is an x € q with ordy, , (z) = a.
So writing

o (p/) ap/
S
' €5y (w) p’€Min (Fib (S,w))

we have by Lemma 7.44

al) = 0 for all ay € S, With oy < @, (7.37)
a® £ 0, (7.38)
ag‘q) = 0 for all aq € S,(g)- (7.39)

216



7.8. Proof of Proposition 7.12

By Equation (7.36) we have o € (). Assume a € Syp) \ SZ((;)) Then 7,(,),(q) (@) €
St \ Sg((g)) by Proposition 7.8. Hence, Equation (7.39) and the definition of A yield

_ (2 o
B aT:(P)n(q)(a) = Cotayn(r) (Tn(p)n(q)(a)) ak.

Since o} # 0 (see Equation (7.38)), this implies (,(q)n(p) (Tn(q)n(p) (a)) = 0, contradicting

the assumption. Thus, «a € Sg((g)) This yields (I" A)g C 52((3)) , and therefore
g _ (T4) O
n(p) Alp:

Proof of Proposition 7.12. By Lemma 7.48 A is a local complex algebroid curve. By
Lemma 7.53 (and since A is Noetherian) there is a generating system (x;);_, for the
maximal ideal my of A such that ?(x;) = wiz; for some w) € N with w, > 0 for every
i =1,...,n. Thus, A is quasihomogeneous. Since the grading on A is induced by the
C-derivation

(witiati)ief

on A =T[;c; C[[t:] (see Lemma 7.42), and since the valuation of @ 4 is ord;, A has normal
weights w (see Definition 6.3).

Using the bijection n: Min (Fib (S,w)) — I of Lemma 7.44, we have by Lemma 7.54
equalities

(Teib (5.0)) o = )

for any p € Min (Fib (S, w)) and

for every q € Min (Fib (S,w)) \ {q}. This yields commutative diagrams

c[t]] ———c¢ [ [t.srws’w))"”

| |

C l [tS?;)\S;’((S))] ] =N [ [tSFFib(S,w)>p\(FFib (S,w))g‘| ]
n(p ’

and hence
Fib (S, w) = Fib (Teyy (5,0 ).

is a fibre product (see Definition 6.4). O
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7.9. Proof of Theorems 7.23 and 7.24

Lemma 7.55. Let R be a quasihomogeneous curve with normal weights w € NMin (£) (see
Definition 6.3). Then for any w-element o of I'r with o € T'r there is a homogeneous
element © € Ryeg_ (o) With

Qyp ifap < (’VF ) ’
l/p(x) - {oo else o

for any p € Min (R). In particular, for any p € Min (R) with o < (VFR)p there is an
a® € C\ {0} such that

a®tg® if ap < (rg),,
(¥(x)), = {0 A

where we use the notations of Theorem 6.2.

Proof. If a € Cr, then the statement is trivial. So let @ € I'r \ Cr,, and let x € R with
v(x) = a. Since a is a w-element of I'g, Proposition 7.16 yields Wy, = degy (a) for every
p € Min (R) with ap < (1),

In the notation of Theorem 6.2, there is by Theorem 6.2.(5) for any p € Min (R) with
ap < (Yrg), an a®) € C such that

((\Ij(ﬂg))degg(a))p = aptgp :

Then a, # 0 for every p € Min (R) with oy < (7r,), by Theorem 6.2.(3) since v(z) = a.
Let now y € Qg with

((\I’(x))degw(a))p if ap > (’YFR)p7

0 else,

(W (), = {

for any p € Min (R). Then v(y) > vr,, and hence y € € by Proposition 4.56. Moreover,
Y € Ryeg_ () by construction. Thus, z —y € Ryeg_ (o) With

)
aWt,®  if ay < (rp),,
<\P<m—y>>p:{0 L

for every p € Min (R). Then the claim follows from Theorem 6.2.(3). O

Lemma 7.56. Let R be a fibre product with normal weights w € NMin () (see Defini-
tions 6.3 and 6.4), let @ € [lemin (r) (TR)p \ Cry be a W-element of g, let B € ' be a
w-element of I'r with By = ay for some p € Min (R) with oy, < (1), (see Proposition 7.6
and Theorem 7.19), and set

J = {q € Min (R) ‘ aq < min {5q7 (’YFR)q}}
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If J =0, then a € T'g, and if J # 0, then there is a subset J' of J with J' # J and a
w-element & of I'p with § € I'r such that

OMin (R)\J' = OMin (R)\J">
8q > g forallqe J'

Proof. By Lemma 4.33 we may replace a by inf {a,~r,} and S by inf {8,vr,} (see
Definition 7.14). Then
J ={q € Min(R) | ag <S4}, (7.40)

and we set
Ji={peMin(R) | 4 < aq}. (7.41)

Since there is a p € Min (R) with oy < (r,,), and ap = 3, we have
degy () = degg (B) (7.42)

(see Definition 7.17). The construction of the sets J and J; yields with Proposition 7.16
and Equation (7.42)

in (R)\(JUJ1) = BMin (R)\(JUJ1) 5 (7.43)
(7.44)

= (1rr) g, (7.45)

ﬁJ = (17rr) s (7.46)

Bq < (VFR)q for all q € J;. (7.47)

This implies with Definition 7.14

ap € (T'r)y for any p € Min (R) and q € J; with p # g (7.48)

€ (T'r)y for any p € Min (R) and q € J with p # q, (7.49)

€ (T'r)y for any p € Min (R) \ (JU J1) and q € J U Ji, (7.50)
ap,,Bp € (Tr)y for any p € JUJi and g € Min (R) \ (J U J1), (7.51)

where Equation (7.51) follows from Equation (7.50) applying Definition 7.14.
Let

v:Qr—~ I cClivlfs]

peMin (R)

be the C-algebra isomorphism of Theorem 3.44 (also see Theorem 6.2.(4)). Then by
Lemma 7.55 there is a homogeneous element z € (¥(R))4e,_(5) Such that for any p €

Min (R) we have
®P i B, <
xp — {0/ p 1 BP (PyFR)w (752)
0 else,

where a®) € C \ {0} for all p € Min (R) with 8, < (7rg),- Note that, in particular, we
have z, = 0 for all p € J by Equation (7.46).
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Let now
ve 11 el
peMin (R)
with
2, ifp € Min (R)\ Ji,
=47 0F (B)\ (7.53)
0 else,
for any p € Min (R). Then Equations (7.43), (7.46), and (7.52) yield
B a(p)tgp =a®t,” ifp e Min(R)\ (JUJ) and ap < ()
= 0 else (7:54)

Let p,q € Min (R) with p # q, and suppose that v, (¥~ (y)) € (Tr), \ (Tx);. Then

By =1 (v () € Tr), \ (TR); (7.55)

by Lemma 3.16, Theorem 6.2.(3) (see Equation (6.6)), and Equation (7.54). In particular,
this implies
p € Min(R)\ (JUJ1) (7.56)

(see Equation (7.54)). Moreover, since [ is a w-element of I'r, Equation (7.55) yields
By € (Tr)q \ (FR)’; by Remark 7.15. Therefore, ¢ € Min (R) \ (J U J1) by Equation (7.51),

and hence og = 33 < (WFR)q by Lemma 4.63 and Equation (7.43). This implies yq = a(q)t’g“
by Equation (7.54). Since (3 is a w-element of I'r, we have 7pq(fy) = f4, and since

z € R, Theorem 6.2.(4) and Equations (7.52) and (7.53) yield a®) = ¢yq(5p) aiqu,(ﬂp)' Thus,
y € U(R) by Theorem 6.2.(4) since R is a fibre product (see Definition 6.4). Hence,

ye (\P(R))degw(ﬁ) = (W(R))degw(a) (757)

by Theorem 6.2.(5), Proposition 7.16, and Equation (7.42).
Let p € J. Then by Proposition 7.6 and Theorem 7.19 there is a w-element € € I'g with
€p = ap. In particular, this implies

degy () = degy (€) (7.58)
by Proposition 7.16 and Equation (7.44). Set
ng{qEJ|aq<eq}.

Then Jo C J if J # () since p € J, or J, = () otherwise. Moreover, Proposition 7.16 and
Equation (7.44) yield
€ =0q < (1rr)q (7.59)
for all g € J\ J2 and
€ = (1rg)g (7.60)

for all g € Js.
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By Lemma 7.55 there is for any p € Min (R) with €, < (y1,), a b®) € C\ {0} such that

for the element
ce I cHtffR)q”

q€Min (R)
defined by
b)ger if
= * e <(ra), (7.61)
0 else,
we have 2 € (V(R))gep_(e) = (V(R)) deg (o) (see Equation (7.58)).
Let now
we TI c[s™™]]
pEMin (R)
with
if p e J,
wy=14" "F (7.62)
0 else,
for any p € Min (R). Then Equations (7.59), (7.60), and (7.61) yield
pter — pPtw  ifpe J\ J
ay = ifp €T\ (7.63)
0 else.

Let p,q € Min (R) with p # q, and suppose that v, (¥~ (u)) € (Tr), \ (T'r)p- Then

ep = p(u) € (Tr), \ (Tr)y (7.64)

by Lemma 3.16, Theorem 6.2.(3) (see Equation (6.6)), and Equation (7.63). In particular,
this implies
peJ\Jo (7.65)
(see Equation (7.63)). Moreover, Equations (7.51), (7.59), and (7.65) yield q € J U Jy, and
Equations (7.48), (7.59), and (7.65) imply q ¢ Ji as otherwise ¢, = ap € (I'g)y in both
cases. Thus, we have
qeJ. (7.66)

Since € is a wW-element of S, Remark 7.15 and Equation (7.64) yield €5 € (I'r), \ (FR)’;,
and hence ¢ < (1), by Lemma 4.63. Therefore, q € J\ J; by Equations (7.59) and
(7.66). Then Equation (7.63) yields u, = b@Wtg". Since e is a W-element of S, we have
Tpq(€p) = €4 (see Definition 7.14 and Equation (7.64)), and since z € W(R), Theorem 6.2.(4)
and Equations (7.61) and (7.62) yield b®) = (yq(ep) b(TZ?](ep). Thus, u € U(R) since R is a

fibre product (see Definition 6.4), and hence

U € (V(R))geg () = (Y(B)) dego (a) (7.67)
by Theorem 6.2.(5) and Equation (7.58).
Now Equations (7.57) and (7.67) yield
yt+ue (W(R))degw(a)’ (768)
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and by Equations (7.54) and (7.63) we have
yp = a®t® if p € Min (R) \ (JU Jy) and ap < (R
(y+u), = quy =Pt ifpeJ\ s, (7.69)
0 else,

for any p € Min (R). Then

0 = inf {V(\Ilfl(y + U))77FR}
is by Lemma 7.41 and Equation (7.68) a w-element of I'p with § € I'g. Moreover, for any
p € Min (R) Equations (7.59) and (7.69) yield
5, = {ap < (yrp), ifp € Min(R)\ (J1 U Jz) with ap < (yr,,),,
(’YFR)p else’
since v(¥ ™! (y + u)) = ord; (y + u) by Theorem 6.2.(4). As a < 1, with oy, = (7ry)
by Equation (7.45), this implies
OMin (R)\J2 = ®Min (R)\Ja>
5J2 = (VFR)JQ'
In particular, if we set
J = {p € Jy ’ ap < (’yrR)p} C Jy
then

OMin (R)\J' = OMin (R)\J'>
g = (Yrp)q > aq for all g € J' O
Lemma 7.57. Let R be a quasihomogeneous curve with normal weights w € NMin (£) (see

Definition 6.3), and let o € [Tyemin (r) (TUr), be a W-element of . If R is a fibre product
(see Definition 6.4), then a € T'R.

Proof. If oo € Cry, the statement is trivial. So suppose that a € [[,enin (r) (TR), \ Crg-
Then there is a p € Min (R) such that ap < (yrp),- Since ap €

brl'gp, and since R is quasihomogeneous, there is by Proposition 7.6 and Theorem 7.19 a
w-element 5 of S with 8 € I'g and oy = B,. In particular, this implies

degz (a) = degg () (7.70)

(see Proposition 7.16 and Definition 7.17). Inductively applying Lemma 7.56 yields a chain
of subsets ... C J; € J C Min (R) such that for any ¢ > 1 we have J; = () or Ji41 C J;,
and there is a w-element B of T'p with

<5(i)>Min (R, = QMin (R)\J; -

Since Min (R) is finite by Corollary A.46, we eventually obtain that J, = @) for some n,
and hence o = (") € I'. O
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7.9. Proof of Theorems 7.23 and 7.24

Proof of Theorem 7.23. Let R be a quasihomogeneous curve with normal weights w and
connecting maps ¢ = ((Cpq)quin (R)\{P})peMin - (see Definition 6.3). Then I'r is quasiho-
mogeneous of type w by Proposition 7.6.

Let R be a fibre product (see Definition 6.4), and let o € [],cniin (r) (I'r), be a W-element
of 'g. Then a € I'p by Lemma 7.57, and hence I'g is w-closed.

Suppose now that ' is w-closed. Set
A =TFib (FR,@, C)

Then A is a quasihomogeneous curve with normal weights w by Proposition 6.6.(1) and
(2), and it is a fibre product by Proposition 6.6.(3). Therefore, I'4 is w-closed. Since
U~1(A) € Ry by Proposition 6.6.(4), Propositions 6.6.(4) and 7.22 yield

FR — F\Ij—l(A)-

Thus, R = A is a fibre product by Corollary 4.52 since R C ¥~1(A) by Theorem 6.2.(4).
The particular claim follows with Proposition 6.6. ]

Proof of Theorem 7.24. Let S be a quasihomogeneous semigroup of type w € N°. Then

Fib (S,w) is a quasihomogeneous curve with normal weights w by Proposition 7.12. Since

Fib (S, w) is also a fibre product by Proposition 7.12, T'py, (S,w) is w-closed by Theorem 7.23.

Since S C I'pyp, (5,0) With S; = (I‘Fib (S,w)). for any ¢ € I and Sf = (Fpib (S,w))]. for every
1 (2

j € I'\ {i} by Lemma 7.54, Proposition 7.22 yields S* = 'y}, (5,u)- O
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8. Normalization of Arrangements

Endomorphism rings occur in the construction of blow ups [15] or non-commutative
resolutions [16, 17]. A non-commutative crepant resolution of a curve can be computed [18]
considering the intermediate steps of a normalization algorithm [19] which is based on
a characterization of normality in terms of the endomorphism ring of a so-called test
ideal [20]: a reduced Noetherian ring R is normal if and only if R =i : i for a test ideal i of
R. If R is a reduced one-dimensional Noetherian semilocal ring, then the Jacobson radical
jr is a test ideal for R (see Definition B.47); if R is local, then the maximal ideal mp is
the unique test ideal for R (see Remark B.49).

The above criterion by Grauert and Remmert yields the following algorithm for normal-
ization (see Proposition B.57). Let R be a reduced Noetherian ring. Then for any test
ideal i of R there is a sequence of integral extensions

R=R® cRY ¢ ...cR,

where for any ¢ > 0 we set
RO+ — () . (&)

and

(D) — \/i6) RGi+1)

with i = i. If R is finite over R, then R is finite over R for every i € N, and there
is an n € N such that R = R = R for any i > n. Examples for classes of rings with
finite normalization are admissible rings (see Definition 3.18.(4) and Corollary C.15) or
reduced excellent rings (see Theorem B.36.(2)). If R is an admissible ring, then R is an
admissible ring for every i € N by Theorem 3.45.(1), and if R is a reduced excellent ring,
then R is a reduced excellent ring for every i € N by Lemma A.27 (since RO ¢ Qr) and
Theorem B.34.

In this chapter we apply the Grauert—Remmert algorithm to two kinds of arrangements.
Following an idea by Bohm, Decker, and Schulze [21] we use the semigroup of values to
determine the intermediate steps explicitly (also see [35]). We start in Section 8.1 with
a plane arrangement of smooth curves which pairwise intersect only transversally and
only in finitely many points. Then we can determine the number n of steps needed in
the Grauert—Remmert algorithm to obtain the normalization in terms of the number of
analytic branches in the singular points of the arrangement (see Theorem 8.1). For this, we
investigate the arrangement locally, that is, we consider the completion of the local rings
at all points (in fact, we only need to consider the singular points). Then we deal with
algebroid curves, and as in [21, 35] the semigroup of values helps to compute explicitly the
intermediate steps in the Grauert-Remmert algorithm (see Theorem 8.2).

Using Serre’s criterion (see Section B.5.1) which allows for checking normality in codi-
mension one, we apply this result in Section 8.2 to hyperplane arrangements. In fact,
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8. Normalization of Arrangements

the Grauert—-Remmert algorithm is compatible with localization (see Proposition B.58).
Geometrically, after localization in codimension one we look at “transversal slices” of the
arrangement. This reduces the problem to plane line arrangements whose cardinalities are
the numbers of hyperplanes intersecting the respective slices. Then the number of steps
needed to compute the normalization of the hyperplane arrangement equals the maximum
over the number of steps needed in each slice. This number can be deduced from the
combinatorics of the arrangement (see Theorem 8.14).

8.1. Plane Arrangements of Smooth Curves

Theorem 8.1. Let C' be a reduced plane curve over a field k, and suppose that the
analytic branches at the singular points of C' are regular and intersect transversally. For
a singular point p of C' we denote by n, the number of analytic branches at p. If |k| >
max {n, | p € Sing (C)}, then for any n € N we have

(0c)™ = 0c
if and only if n > max {n, | p € Sing (C)} — 1.

For the proof of Theorem 8.1 we consider the curve locally at the singular points. Then
Oc,p is a local reduced excellent ring by Lemma A.27 and Theorem B.34. Since completion
factors through localization, taking the completion with respect to the maximal ideal
corresponding to p we obtain

Oc = Ocy = KX, Y/ I] £, (8.1)

i€l
where I, is the set of branches of C' meeting in p, and
fi = a; X + b;Y + terms of higher degree

with (a;, b;) # (0,0) for any i € I, (since the analytic branches are smooth) and (a;, b;) #
(aj,b;) for all i,j € I, with ¢ # j (since the branches intersect transversally).
After a coordinate change we may assume that a; # 0. Then replacing f; by a% fi we
may assume that
fi = X + b;Y; + terms of higher order

for all ¢ € I,. Then locally we can describe the normalization process in more detail.

Theorem 8.2. Let I be a finite set, let k be a field with |k| > |I|, and let

R = K[[X, YH/<H f¢>,

i€l
where f; € k[[X,Y]] is of the form

fi = X + ;Y + terms of higher order
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8.1. Plane Arrangements of Smooth Curves

for any i € I with ¢; # c; for alli,j € I with i # j. Then for n € N we have
R™ =R

if and only if n > |I| — 1. Recall that the unique test ideal for R is its maximal ideal
(see Remark B.49), and hence the test ideal of any ring R™ s its Jacobson radical (see
Theorem A.12).

Moreover, for n < |I| — 1 we have

RM = R(n—1) + z”: k- z](-n) = k:H:c,y, zgn), e 21(1")”,
j=1

where
x = —ct + terms of higher order,
y=t,
Z](") = M=3Hl=7=1 for every j =1,....n,

with t = (t;);c1, ¢ = (¢i);e, and & = (Cf)z‘el for k € N. In particular, we have

Mm:kHKKZ@PHJﬁﬂﬁW
with
i) — m <fi,ZJ(»n) — cLIl_‘ij_"_1 ‘ j= 1,...,n>.
i€l

For any n € N the semigroup of values of R™ is

Tpm = (14 Neg | k€ I)U (1] = 1= n)p +N)
k
= {k + Z Nei(k)
=1 !

with conductor

4“6L0<k<ﬂ}UUM—1—mmrHW)

My = ([ =1=n)s.
With Theorem 8.2 we can prove Theorem 8.1.

Proof of Theorem 8.1. There is a g € k[X,Y] such that Oc = k[X,Y]/(g). Thus, O¢ is
excellent by Theorems B.34 and B.36 since it is a finitely generated algebra over a field.
Moreover, O¢ is reduced by assumption.

Since k is Cohen—Macaulay (see Remark C.3), also k[X,Y] is Cohen—-Macaulay by
Corollary C.9. Thus, O¢ is Cohen—Macaulay by Proposition C.10, and therefore it satisfies
Serre’s condition (Sz) by Corollary C.5.

Let n € N. Then Lemma B.61.(4) implies that (O¢)™ = O¢ if and only if

((0e),)" = ©@c),
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8. Normalization of Arrangements

for all p € Sing (O¢) with height p = 1. Recall that by assumption Sing (O¢) is finite, and
height p = 1 for all p € Sing (Oc¢). So let p € Sing (O¢). Then (Oc), is a reduced excellent
ring by Lemma A.27 and Theorem B.34. Inductively applying Proposition B.54 implies

that ((Oc)p)(n) = (Oc¢), if and only if

—— (n) —
((OC)p) = (Oc),-
With the considerations before Equation (8.1) we may assume that (60\)p is of the form

Oc = Oc, 2 KX, Y]/ ] £

i€l
where I, is the set of analytic branches of C' meeting in the point corresponding to p, and
fi = X + b;Y + terms of higher order

for any ¢ € I with ¢; # ¢ for all 4,5 € I, with ¢ # j. Then Theorem 8.2 yields the
claim. O

For the proof of Theorem 8.2 we need a few preliminary results. For the rest of this
section let I be a finite set, let k be a field with |k| > |I], and let

R = k[[X, Yn/<H f>

il
where f; € k[[X,Y]] is of the form

fi =X 4+ ¢;Y + terms of higher order

for any ¢ € I with ¢; # ¢; for all 4, j € I with i # j. In the following we identify R with its

image in
R =[] k[[t]
il
(see Theorem 3.44), i.e. we write
R = k[[z, y]]
with
x = —ct + terms of higher order, (8.2)
y=t (8.3)

(see [32, page 299]).

Remark 8.3. The ring R is an algebroid curve, and hence admissible by Proposition 3.41.
Then for every n € N also the ring R™ is admissible by Theorem 3.45.(1) and Proposi-
tion B.57.
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8.1. Plane Arrangements of Smooth Curves

Lemma 8.4. The family (cj)ﬂgl is linearly independent, where ¢/ = (cf)el for any
K]

jEN,

Proof. Assume that (¢/ )‘ 1 s linearly dependent. Then there is a non-zero family

(a )‘I| Le ]_[lll 'k such that Zm ! c7 =0 for all 7 € I, i.e. the coefficients ¢;, i € I, are

roots of the polynomial g = lelo a;j X7 € k[X]. Since g can have at most deg g different
roots, and since degg < |I| — 1, this is a contradiction to ¢; # ¢; for all 4,5 € I with

i# 7. O
Lemma 8.5. The value semigroup of R is

Tp=(1+Ne;|i€cl)

k
{k-i— Zn (K€, (k)

i eI and k,n g € N}
j=1 i J

with yrp, = (|I| —1);c; and pr, = 1.
Proof. Set

I'=(1+Ne;|iel)
and

{k+ ZTL *) €, (k)

=1 9

i € I and k,n @ € N}. (8.4)
J

Let a € IV. Then there is a k € N, and for j = 1,...,k there are ’L( ) e [ and n. (k) eN

such that .

a=k+ Zn (k)e (k) = Z ((1)iel + ni(_k)ei(_k)) el
J J

Jj=1 Jj=1
Now let 3 € I'. Then there is a k € N, and for j = 1,...,k there are i; € I and n;; € N

such that i

g = Z (1 +”ijeij> =k+ Zniy‘eij er”.

j=1 j=1
Thus, we have indeed
r=r. (8.5)
Now we want to show that I'r = I'. For any k£ € N and for all ¢ € I we have
ke; + Z e = u(x — ciy+yk) eTl'4.
Jen{i}

Thus, I' C T'g.

Let o € (|I| — 1);; + N’. If there is an ¢ € I such that o; = |I| — 1, then

a€ Y (1+NejcCT.
JEIN{i}

229



8. Normalization of Arrangements

If j > |I| — 1 for all ¢ € I, then
a€) (1+Nej)CT.
JEI

This implies (|I| —1),c; + N/ C T, and hence yr < (|I| — 1);c;. Moreover, for any i € I
we have

(I =2per+ Y, €= Y, (1+e)+edl,
JEN{i} JEN{il}
where [ € I'\ {i}. This implies v > (|1| = 2),c; + > jep iy € for all i € I, and hence

v = (U] = Dyer- (8.6)

Let now z € R™8, and suppose that v(z) € I'. Then v(z) # 7r. Therefore,
d=min{ordy, (z) |i € I} < |I| -1 (8.7)

by Equation (8.6). Since z € R, for all m,n € N there are a,, € k such that

_ m, n
z= E A "'y".
m,neN

As S ag.a_xc® # 0 by Equation (8.7) and Lemma 8.4, Equations (8.2) and (8.3) yield

z= Z Amn (cmt"”" + terms of higher order)
m,neN
d
= Z ak,d,kcktd + terms of higher order. (8.8)
k=0

So if v(z) ¢ T', then Equations (8.4), (8.5), and (8.7) imply that there is a J C I with
|J| > d such that v;(z) > d for all i € J. Therefore, we have by Equation (8.8)

d
k.d
Z Ok, d—kC; ti =0
k=0

for all 4 € J, i.e. the coefficients ¢;, 7 € J, are roots of the polynomial

d

g= Z ar.a_ 1 X%
k=0

But this yields a contradiction as g has only deg g < d roots but |J| > d and the coefficients
¢, 1 € I, are pairwise different. Thus, we obtain I'r =T. ]

Proof of Theorem 8.2. We proof the statement by induction on n. Note that with R also
R™ is an algebroid curve by Theorem 3.45.(2) since R(™ is an integral extension of R in
Qg by Proposition B.57. For n = 0 the statement is true since R(®) = R = k[, y] with

x = ct + terms of higher order,

y=1
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8.1. Plane Arrangements of Smooth Curves

(see Equations (8.2) and (8.3)), and the semigroup of values of R is
Tr=(1+Ne|iel

by Lemma 8.5.

Now let 0 < n < |I| — 1, and suppose the statement is true for n — 1. Then R™~1) is
local by Theorem 4.9, and we denote the maximal ideal by mp.-1). By Remark 4.8 and

Lemma 4.58 the conductor of I'pny =T is

mR(nfl) :mR(nfl)

FYFR(H) - ’yFmR(nfl)sz(nfl)
= fyFmR(nfl) o 'LLFmR(nfl)
- IYMFRWA) N ’uMFR(nq)
= M- — ’uMFR(nq)
= (] =n)ie; -1
= ([ =1=n)cs-
Set
D=l oy =T
=Mr_ .y = Mr
= {a € DFR(n—l) o+ MFR('n—l) C MFR(n—l)}
(see Remark 4.8) and
' = (1+Ney | k€ U (] - 1=n)e, +N). (8.9)

Then

k
T’ = {k + ZNeil(k)

=1

i ero<k< |1|} U (] =1=n),e; +N).

(see Lemma 8.5). Moreover, we obviously have IV C T', and Lemma 3.23.(1) yields
FR(n—l) C F.

Now let & € N\ I. Then a # . Thus, there is a k € N and a J C I with |J| > k
such that

o = k+ anej
jeJ

for some n; €N, j € J. Let l € I\ J, and set

le—l—el.
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8. Normalization of Arrangements

Then 5 € MFR(n_I), and
a+B=k+1+ > nje
JEJU{l}
with n; = 1. Since

k+1<ym+1=(I|=n)c; = M pn—1y2

and since |JU{l}| = |J|+1 > k+1, we have a + 5 & My ., and therefore a ¢ I'. This
implies

r=r. (8.10)
Set n
R=R"D 1Y k. (8.11)
j=1
Since for any j = 1,...,n we have
ZJ(,")x = (c\ll—j+1t|1|—n + terms of higher order) € Cpn-1),
z](-n)y = M=5ll=n ¢ Crin-1),
zj(.”)z](.?‘l) = A== 2U=n=1) ¢ @ oy forall j' = 1,...,n,
and

Zj(nfl) _ yzjn)

forall j =1,...,n—1, it follows that

R= k{[:ﬁ,y,zgn), e ,z(”)H,
is a regular R™=1Y_submodule of R™=1, and hence R € R pn-1). Moreover, we have
Rmpn-1) C Mpm-1) as

Z](n)zlin—l) _ 02|I|7jfkt2(|l\fn)fl c Q:R(nfl)

forallk=1,...,n—1 and

Mpn-1) = <az,y,z,(€"71) k=1,....,n— 1>.

Now we want to show that Fﬁ = I". On the one hand, we have I'z C T since for all
ij=1....n

v(2)) = 1= (|| = n)e; — 1
= (Il -n-1)

=r

Aln=1)

el

by Equations (8.9) and (8.10).
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8.1. Plane Arrangements of Smooth Curves

On the other hand, note that z*y(/I=1=7=k) ¢ R("=1 for all k = 0,...,|I| — 1 —n, and
we have
xkymflfnfk _ _cktm*l*" +0 (t’yR(nfl) )

Since also clI=iglll=1-n — z(n)

J Eﬁforjzl,...,n,wehave

kelll=1=n ¢ R

for all k = 0,...,]I| — 1. Then for any ¢ € I and for any k = 0,...,|I| — 1 there is an
al(;) € k such that
-1 _
tll\—l—nei _ Z a}(ﬁz)ckt|1|flfn cR
k=0

I-1
as the family (Ck>‘k10 is by Lemma 8.4 linearly independent. This implies that ' =T C T BT

and hence
I'=r" =

So we have R € R g(n—1) With ]?imR(n_n Cmpr-1y and 'z =T r Thus,

Lemma 4.53 yields

Mp(n—1) ~ ~Mpn-1)"

R=mpu-1 :Mpu-1) = R™.

Moreover, we can compute i(™ = ker ®, where

o k[[X,v, 2", 20| = k|22, 2],
X =,

Y =y,

Zj(n) — zj(-n) forany j=1,...,n.

Let n = |I| — 1. Then Lemma 4.58 yields

VFR<II|71) = fYFmR(mfz) me(|I]-2)

= e pri—y — P qr-2)
=M sy T EME s
= pqr-2) — MMFRW'_Q)
= (] =[=1);e; -1
=0.

Thus, we have T )- Then we obtain with Lemma 4.15 and Proposition 4.56

-1 = Pl pqri—
(also see Lemma A.34)

Q" R(1-D = QTRII-D = €1y € REIED ¢ 9" rani-1 |

and hence RI1I-1) = Crar-1). This implies RWII=1 = R(II-1), O
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8.2. Hyperplane Arrangements

In this section we apply the results of Section 8.1 to determine the number of steps needed
to compute the normalization of a hyperplane arrangement using the Grauert-Remmert
algorithm of Section B.5.2.

Definition 8.6. Let k be a field, and let V be a k-vector space of dimension n. A
hyperplane in V' is an affine subspace H of V of dimension n—1. A hyperplane arrangement
(A, V) is given by a finite set A of hyperplanes in V. A subarrangement of (A,V) is a
hyperplane arrangement (B,V) with B C A.

Remark 8.7. Let k be a field, and let (A, k™) be an arrangement of hyperplanes. We
describe the arrangement (A, k™) by its defining polynomial

Q,A - H fH7
HeA
where each factor .
fr=>"a"X; e k[X1,.... X (8.12)
j=1

defines a hyperplane H € A (see [37, page 11]). We assume that the hyperplanes in A are

pairwise different, i.e. the family (a(-H)> ‘ is linearly independent. Then the
7 =) gea

ring

Rao=k[X1,...,X,]/(Q4)
describing (A, V) is reduced. Moreover, since k is excellent by Theorem B.35, and since
R4 is a finitely generated k-algebra, it is excellent by Theorem B.34 (see Definition B.33).

In Theorem 8.14 we determine the number of steps needed in the Grauert—-Remmert
algorithm to compute the normalization of a hyperplane arrangement. We want to deduce
this number from the combinatorics of the arrangement.

Definition 8.8. Let k be a field, let V be a k-vector space, and let (A, V') be an arrangement
of hyperplanes. We denote by L(.A) the set of all non-empty intersections of elements of A.
In particular, L(A) includes V' as the intersection of the empty collection of hyperplanes.
On L(A) we define a partial order by reverse inclusion, i.e. for X,Y € L(A) we have
X <Y ifandonly if Y C X.

Definition 8.9. Let k be a field, let V be a k-vector space, and let (A, V') be an arrangement
of hyperplanes. A map

pa: L(A) x L(A) = Z
is called Mobius function of the arrangement (A, V) if for any X,Y € L(A) we have

1 if X=Y,
- Y palX,2) X <Y,
pa(X,Y) = ZEL(A) (8.13)
X<Z<Y
0 otherwise.
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Remark 8.10. Let k be a field, let V' be a k-vector space, and let (A, V') be an arrangement
of hyperplanes. Then there is a unique map p4: L(A) x L(A) — Z satisfying the conditions
of Equation (8.13), see [37, page 33].

Definition 8.11. Let k be a field, let V' be a k-vector space, and let (A,V) be an
arrangement of hyperplanes. For any X € L(A) we define a subarrangement (Ax, V) of
(A, V) by

Ax={He A| X C H}.
Remark 8.12. Let k be a field, and let (A, k™) be an arrangement of hyperplanes with
defining polynomial

Qa=[] fu

HeA

Let X € L(A). Then the defining polynomial of the hyperplane arrangement (Ax, k™) is

Qux = [][ fu
HeA
XCH
see Remark 8.7.

Proposition 8.13. Let be a field, let V be a k-vector space, let (A, V') be an arrangement
of hyperplanes, and let X € L(A) with codim X = 2. Then

Proof. See [37, page 35]. O

Theorem 8.14. Let k be an algebraically closed field, and let (A, k™) be an arrangement
of hyperplanes. We write
Ra=k[X1..., Xn]/(Qu),

where Q 4 is the defining polynomial of A. Then (RA)(q) is normal if and only if

q > max {|Ax| | X € L(A) with codim X =2} —1
= max {u(k", X) | X € L(A) with codim X = 2}.

In the following let k be an algebraically closed field, let V' be an n-dimensional k-vector
space, and let (A, V) be an arrangement of hyperplanes such that |k| > |A|. We write

Ra=k[X1...,Xn]/(Qua),

where Q4 is the defining polynomial of A.

Remark 8.15. The ring R4 is Cohen—Macaulay by Corollary C.9 and Proposition C.10.
Since R 4 is also reduced by definition and excellent by Theorem B.35, it is normalization-
finite by Theorem B.36.

For the proof of Theorem 8.14 we first show that the Grauert—Remmert algorithm
behaves well with respect to field extensions.
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Lemma 8.16. Any extension field L of k is flat over k.
Proof. See [26, Chapitre IV, § 2, no. 4, Proposition 3|. O

Lemma 8.17. Let L be an extension field of k, and let R be a k-algebra with R/m = k
for every m € Max (R). Then for any m € Max (R) we have m @ L € Max (R ®, L).

Proof. For every m € Max (R) there is an exact sequence
0—-m—R— R/m—0.
Since L is flat over k£ by Lemma 8.16, this yields the exact sequence
0—-meyL >R, L— (R/m)®,L=L—0.
Moreover, since m ®;. L is an ideal of R ®;, L, we have the exact sequence
0—-m®yL—-R®,L— (R, L)/(m®; L) — 0.

This implies that
(R®y L)/(m @y L) = (R/m) @ L

is a field, and hence m ®;, L € Max (R ®y L). O

Lemma 8.18. Let L be an extension field of k, and let R be a k-algebra. If i is an ideal

of R, then \/i®, L = Vi®y L.
Proof. We first show that

i@, L CViey L CViey L. (8.14)

The first inclusion follows from Lemma 8.16. For the second let Zf\il fi®ai € Viey L.
Then for every ¢ = 1,..., N there is a d; > 0 such that fz-di € i. Set d = max;—1,. N d;.
Then fl-d €iforeachi=1,..., N. Moreover, we have

Nd

N N
i=1

la|J=Nd  i=1

with some coefficients b, € k. Now |a| = Nd implies that there is a j € {1,..., N} such
that a; > d, and hence f;xj € i. Thus, we have

N
1/ =r 11 fifiei,
i=1 ie{1,...N}\{j}

and therefore

N Nd
(Zfi@’ai) €Ei1® L.
=1
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This implies
N
Y fi®wa; € VieyL,
i=1

and hence

Viep L iy L.

Next we want to show that v/i ®; L is a radical ideal in R ®) L. Then Equation (8.14)
implies

Vier L c\Viey L c iy L,
and therefore

VierL=\Viey L=Viey L.

Since L is flat over k by Lemma 8.16, the exact sequence
0—Vies R— R/Vi—0.
yields an exact sequence
0—->ViorL — R®p L — (R/\ﬂ) Qi L — 0.
As i®y L is an ideal of R ®; L, the exact sequence
0->ViogL — R@p L — (R®kL)/(\/i®k L) —0

implies

(Rex L)/(Vieg L) = (R/VA) @ L, (8.15)

Now R/ V/iis a reduced k-algebra as V/i is a radical ideal. Since k is a perfect field, and since
L is a reduced k-algebra, (R ®j L)/(\A Ok L) is by Equation (8.15) and Theorem A.8
reduced, as well. This implies that v/i ®;, L is a radical ideal in R ®y, L. ]

Lemma 8.19. Let L be an extension field of k, and let R be a k-algebra. Suppose that R
and R ®y, L are reduced excellent rings, and let i be a test ideal for R (see Definition B.47)
such that i @y L is a test ideal for R ®y L. Then

(R®@y, L)Y = Endpg, 1, (i®) L) = Endg (i) @ L = RV @ L, (8.16)

and the test ideal for (R ®y, L)(l) used in the Grauert—-Remmert algorithm is

\/(i ®k L) ((R Rk L)(l)) = ViR @ L.
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Proof. First note that
i®r L=1®r R®y L. (8.17)

Since L is flat over k by Lemma 8.16, also R®y, L is flat over R by Lemma A.9. Moreover,
i is finitely presented as an R ®; L-module by Remark A.41 since excellent rings are
Noetherian (see Definition B.33). Thus, Equation (8.17) and Proposition A.40 yield

Endg (1) ®r L = Endpg (1) RKr R® L
= Endgrg, 1 (i®or R®y L)
= EndR(X)kL (i R L).

Then Equation (8.16) and Lemma 8.18 yield

J (o D)((Rex L)) = /(@4 D(R @ L)
= ViR ® L
= \/@@k L. O

Remark 8.20. Note that in Lemma 8.19 the reducedness of R ®; L follows from the
reducedness of R and L, see Theorem A.8.

Lemma 8.21. Let L be an extension field of k, and let R be a k-algebra. Suppose that R
and R ®y, L are reduced excellent rings, and let i be a test ideal for R (see Definition B.47)
such that i ® L is a test ideal for R ®p L. Then R ® L is normal if and only if R is
normal.

Proof. By Theorem B.48 the ring R®y, L is normal if and only if R®y L = Endprg, 1, (i ®% L).
By Lemma 8.19 this is equivalent to R = Endg (i), and hence to R being normal by
Theorem B.48. O

Lemma 8.22. Let L be an extension field of k, and let R be a k-algebra. Suppose that R
and R ®y, L are reduced excellent rings, and let i be a test ideal for R (see Definition B.47)
such that i @ L s a test ideal for R ®; L. Then

(R @y, L)(q) =R g, L

and
(i @ L)(q) =ild g, L

for every q > 0.
Proof. This follows inductively from Lemma 8.19 and Proposition B.57. O

Using Proposition B.58 we want to apply the Grauert—-Remmert algorithm locally to
R 4. By Lemma B.61.(4) we only have to consider Sing (R4) (see Definition B.38).

Lemma 8.23. Let p be a prime ideal of R4. Then p € Sing (R4) if and only if there are
H,H' € A with H # H' such that fg + (Qa), fur + (QA) € p.
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Proof. Let p be a prime ideal of R 4. Since Rq = k[X1,..., X;,]/(Qa) with Q4 = [[gea fH,
there is by Proposition A.10.(3) a prime ideal q of k[X1,..., X,] with (Q4) C q such that
q/(Qa) =p. Since Q4 = [ fu, there is at least one H € A with fy € q.

Suppose that there is exactly one H € A with fg + (Q4) € p. After a linear coordinate
change we may assume that fi = X;. Then Theorem A.36 yields

(K[X1, .., X0l /(Qa)),
= (k[X1,..., Xn])y/Qa(k[X1, ..., Xu]),
= (K[X1, .., Xn]) o/ X1 (R[X1, .., Xa]),
(k[X1, ..., Xnl/X1)5
(k[ ]

X2,...,Xn),

where @ is the image of q in k[X1,..., X,]/ X1 = k[ X9, ..., X,]. The ring k[Xs,..., X,] is
regular (see [38, Theorem 2.2.13]. So if m is a maximal ideal of k[Xa, ..., X,,] containing
4, then (k[Xo,..., Xy,]),, is regular. Since q(k[X2,..., X,]),, is by Proposition A.20.(2) a
prime ideal of (k[Xa, ..., X,]),,, also the ring

([Xa2, - Xal)g = (KXo, Xo D Xl

(see Corollary A.23 for the equality) is regular (see [38, Corollary 2.2.9]). This implies
p & Sing (Ra).

Now suppose that there are H, H' € A with H # H’ such that fg+(Qu), fr+(QA) € p
Then Theorem A.36 yields

(Ra)y = (k[X1, Xal/(Qu),)
:(k[le"'v ])q/Q ( [X17'~-7Xn])q
)

= (k[X1,. o, Xal)y/ T far(R[Xy, ..., Xal)y
frrr€q

Since fr, fur € q, this implies that the images of fr and fg+ are non-zero but zerodivisors
in (Ra),. Thus, (R4), is not regular (see [38, Proposition 2.2.3]), i.e. p € Sing (R4). O

In fact, since R4 is Cohen—-Macaulay by Remark 8.15, it suffices by Proposition C.12 to
consider only prime ideals p € Sing (R 4) with height p = 1.

Lemma 8.24. Let p be a prime ideal of R4. Then p € Sing (R 4) with heightp = 1 if and
only if there are H,H' € A with H # H' such that p = (fu, f)Ra- In particular, for
every p € Sing (R 4) with height p = 1 there is a linear coordinate change X; + (Qa) — yi,
i=1,...,n, such that p = (y1,y2).

Proof. By Lemma 8.23 we have p € Sing (Ry4) if and only if there are H, H' € A with
H # H' such that fg + (QA), fur + (Qa) € p. After a linear coordinate change we may
assume that fy = X; and fir = Xo. Then (X, Xs) is a prime ideal of k[X1,..., X,]
containing Q4. Therefore, (X1, X2) R4 is by Proposition A.10.(3) a prime ideal of R 4.
The claim follows since height (X7, Xo) R4 = 1. O
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Lemma 8.25. There is a bijection
{p € Sing (R4) | heightp =1} — {X € L(A) | codim X = 2},

p—>X,= () H,
HeA
fa+{Qua)ep

(fu | X € HYR4 1 X.

Proof. Let p € Sing (R4) with heightp = 1. By Lemma 8.24 there are H, H' € A with
H # H' such that p = (fg, fu')R4. Then for any H” € A we have fg» + (Q4) € p if and
only if fgn € (fy, fr). This implies

X,=HNH.

In particular, codim X, = 2.

Conversely, let X € L(A) with codim X = 2. Then there are H, H' € A with H # H’
such that X = H N H'. Thus, for any H” € A with X C H” we have fgr € (fu, fu’)-
This implies

<fH// | H" € Awith X C H”>R_A = (fu, fu)Ra.

Moreover, we have by Lemma 8.23 (fr, fr/) R4 € Sing (R4) with height (fg, fg/) =1. O

Lemma 8.26. Let p € Sing (R4) with heightp = 1. Then for any q > 0 the ring
((RA)p)(q) is normal if and only if

q > |AXp‘ - 17
where
X,= (] HEeLA.
HeA
fa+(Qa)ep

Proof. Let ¢ > 0, and let q be a prime ideal of (RA)(q) with qN R4 = p (see Proposition B.57
and Theorem B.12). Since height p = 1, we may by Lemma 8.24 assume that p = (z1, z2),
where for any j = 1,...,n we set ; = X; + (Q4). Moreover, Lemma B.18 yields
height g = 1.

Let H € A. If fy = fg +(QA) € p, then there is a g € k[X7, ..., X,] such that

fH(1+g 11 fH/)ZfH-I-gQAE(Xl,Xz)-

H'c A\{H}

This implies

fu € (X1, Xo)
since (X1, X2) is a prime ideal and 1 + g[Tpecamy for € (X1, X2). If fo & p, then
fu € (k[Xl, - 7Xn](X1,X2>> , and hence

QUKIX1, -+ Xulix, xpy = FEIX1, -, Xl x, x0)
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with
f= 11 m= 11 - (8.18)
HeA HeA
fr€(X1,X2) Fa+H(Qua)ep

Therefore, Theorem A.36 yields

(Ra), = (K[X1, ..., Xa] /(QA)) (21 )

RIX1, o Xnlixg xa)/ Qak[ X, Xl ix,
k[X1,... 7Xn](X1,X2)/fk[X1’ T X”]<X1,X2>
(KIX1, Xa] x, xpy @k L)/ (FEIX1, Xal x, xy ®% L)
R®y L

with
L=kXs,...,X,)

and
R = (k[X17X2]/<f>)<x1,$2>7
where by abuse of notation we consider f € k[X1, Xs], and we write z; = X; + (f) for
j=1,2.
Since (R4), and R are local rings, Lemma 8.17 yields p(R4), = m ®; L, where m is
the maximal ideal of R. Moreover, (R A)p and R are by Theorems B.34 and B.35 reduced

excellent rings. Hence, by Remark B.49 p(R A)p is the unique test ideal for (R A)p, and m
is the unique test ideal for R. Then Lemma 8.22 yields for any ¢ > 0

((RA)p)(q) — R@ @, L.

Thus, ((RA)p>(q) is by Lemmas 8.21 and 8.22 normal if and only if R(?) is normal.

—

By Theorem B.36.(3) R@ is normal if and only if R(@ is normal, and Proposition B.54
yields R(@) = R@. Moreover, with

R = K[[X1, Xa])/(f)

Equation (8.18), Theorem 8.2, Remark 8.12, and Lemma 8.25 imply that R@ is normal if
and only if

¢>{Hec Al fu+(Qa) ep}—1

= |"4Xp| -1
where
Xo= () HeL(A). O
HeA
fa+(Qa)ep
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Proof of Theorem 8.14. Since R 4 is Cohen—Macaulay by Remark 8.15, it satisfies Serre’s
condition (S2) by Corollary C.5. Then for any ¢ > 0 the ring (R A)(q) satisfies Serre’s
condition (S2) by Lemma A.27, Theorem B.34, and Propositions B.46.(1) and B.57. Hence,
(R A)(q) is by Lemma B.61.(1) normal if and only if it satisfies Serre’s condition (Ry). By

Lemma B.61.(4) and Proposition C.12 this is equivalent to ((RA)p)(q) being normal for
every p € Sing (R 4) with height p = 1.

Let p € Sing (R 4) with heightp = 1. Then ((RA)p>(q) is by Lemma 8.26 normal if and
only if

q= |"4Xp‘ -1
where
HeA
fa+(Qa)ep

By Lemma 8.25 this implies that ((RA)p>(q) is normal for every p € Sing (R4) with
height p = 1 if and only if

q > max {|Ax,| | p € Sing (R4) with heightp =1} —1
=max {|Ax|| X € L(A) with codimX =2} —1
= max {u(k", X) | X € L(A) with codim X = 2},

where the last equality follows from Lemma 8.13. O
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Theorem A.1. Any homomorphic image of a Noetherian ring is Noetherian. Furthermore,
if R is a Noetherian ring, and A is a finitely generated algebra over R, then A is Noetherian.

Proof. See [39, Corollary 1.3]. O

Theorem A.2 (Prime Avoidance). Let iy,...,1i,,]j be ideals of a ring R, and suppose that
i C Ui, i If at most two of the ideals i;, i = 1,...,n are not prime, then j is contained in
one of the i;.

Proof. See [39, Lemma 3.3]. O

Lemma A.3. Let R be a ring, and let iy, ...,i, be ideals of R such that N;_;1; = 0. If
R/i; is Noetherian for alli=1,...,n, then R is Noetherian.

Proof. Since i, i; = 0, the canonical map

¢: R — [[ R/u,
=1

T (T +1)my

.n

is injective.

Let j1 Cj2 C ... be an ascending chain of ideals in R. Then for any ¢ = 1,...,n there is
an ascending chain j; +1; Cj2 +1; C ... of ideals of R/i;. Since R/i; is Noetherian, there
is n; such that j,, +1; = jp,+1 +1; = .... This implies

(b(JmaXZ:l ) m) - ¢(j(maxi:1 ,,,,, n TLZ‘)-i-].) =
Since ¢ is injective, this implies that R is Noetherian. O

Theorem A.4 (Krull Intersection Theorem). Let R be a Noetherian ring, and let i be an
ideal of R. If M s a finitely generated R-module, then there is an element r € i such that

(1—r) (ﬁ iiM> =0.

If R is a domain or a local ring, then

Ajg
B
o

@
Il
—

Proof. See [39, Corollary 5.4]. O

243



A. Commutative Algebra

Corollary A.5. Let R be a Noetherian ring, and let i be a proper ideal of R. Then
0 .
(i C R\ R,
i=1
Proof. Since R is a finitely generated R-module, Theorem A.4 yields an r € i such that
0 .
(1—r) <ﬂi’> =0.
i=i

Since i is a proper ideal of R, we have r # 1, and hence 1 — r # 0. Thus, every element in

(N2, i) is a zerodivisor. O

Lemma A.6. Let (R;),.; be a finite family of rings, and let R = [[;c; Ri. For j € I, we
denote by
prj: R = HRi — Rj
i€l
the projection.

(1) Let q be a prime ideal of R. Then there is a j € I such that

pr; () € Spec (R;)

and

forallie I\ {j}.

(2) There is a bijection
Spec (R) — |_| Spec (R;)
el
which is induced by the bijections
{q € Spec (R) | pr; (q) € Spec (Rj)} — Spec (R;),
q+ pr; (q),

px [ Ri<p
ieI\{j}

for 3 € I. In particular, for any i € I we have
height g = height pr; (q).
Proof. (1) Let q be a prime ideal of R. Then
R/q= 1] (Ri/pr; ()

el
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is a domain. This implies that there is j € I such that

Ri/pr;(q) =0

for alli € I'\ {j}, and hence

for all € I'\ {j}. This implies

R/q = R;/pr; (q),
and hence R;/pr, (q) is a domain. Thus, pr; (q) is a prime ideal of R;.

(2) The statement follows from (1) since for any prime ideal p of R; we obviously have
p X H R; € Spec (R). O
ien\{j}

Lemma A.7. Let R and A be rings, let ¢: R — A be a ring homomorphism. If A is flat
as an R-module (with respect to ¢), then ¢p(R*™8) C A8,

Proof. An element x € R is regular if and only if multiplication by x defines an injective
ring homomorphism ¢,: R — R. If A is flat, tensoring by A yields an injective ring
homomorphism ¢, ® 1: R®r A - R®p A, see [40, Proposition 2.19]. The claim follows
since we can identify R ®r A with A and ¢, ® 1 with multiplication by «a(x). O

Theorem A.8. Let k be a perfect field, and let R and S be two reduced k-algebras. Then
R ®y S is reduced.

Proof. See [41, Chapitre V, §15, no. 5, Theorem 3.(d)]. O

Lemma A.9. Let R be a ring, and let A be an R-algebra, and let M be a flat R-module.
Then M ®pr A is a flat A-module.

Proof. See [42, Chapter 2, (3.C)]. O
Proposition A.10. Let R and A be rings, and let ¢: R — A be a ring homomorphism.

(1) There is an injective map from the set of ideals of R into the set of ideals of A given
by
i o(i)A.
(2) There is a surjective map from the set of ideals of A onto the set of ideals of R given
by
e o),
and sending prime ideals to prime ideals.

(8) If ¢ is surjective, then the maps given in (1) and (2) yield mutually inverse bijections
between the set of ideals of R containing ker ¢ and the set of ideals of A, where prime
ideals correspond to prime ideals.
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Proof. See [40, page 9]. O

Lemma A.11. Let A be a ring, let I be a finite set, and let (R;);c; be a family of subrings
of A. Then R = (\,c; Ri is a subring of A with R* = (N (Ri)™.

Proof. We obviously have 0,1 € R. Let x,y € R. Then z,y € R; for all i € I, and hence
x+y,zy € (e Bi = R. For any i € I there is an z; € R; with  + x; = 0. Since these
equations also hold in A, we have z; = —x € (;c; R; = R for every ¢ € I by uniqueness of
inverse elements. Thus, R is a subring of A.

Let now x € R*. Then there is a z € R = ;7 R; with zz = 1. Thus, z € ;7 (R:)".
Conversely, let z € U;c; (R;)". Then for any i € I there is a z; € R; with xz; = 1. This
implies « € A*, and hence z; = ™! for all i € I. In particular, z~! € R*. O

Theorem A.12. Let R be a semilocal ring with Jacobson radical jr, and let A be a finite
R-algebra containing R. Then A is semilocal with Jacobson radical j4 = \/iRA.

Proof. See [43, § 6, Theorem 15]. O

Lemma A.13. Let R be a ring, let i be an ideal of R, let x €1, and let y € R\ i. Then
r+ye R\

Proof. Since x €1, also —z € 1. So if x +y € i, then y = x + y — x € i, contradicting the
assumption. U

A.1. Large Jacobson Radical

Proposition A.14. Let R be a ring with Jacobson radical jr, and let x € R. Then x € jr
if and only if 1 + xy is a unit in R for all y € R.

Proof. See [30, Section 7, page 422]. O

Proposition A.15. Let R be a ring with Jacobson radical jr. Then the following are
equivalent:

(a) Any prime ideal of R containing jr is mazximal.

(b) For each x € R there is y € R such that for all z € A and for all units r € R* both
x+ry and 1 + zxy are units in R.

(c) For each x € R there is a y € R such that x +y is a unit in R and zy € jg.

Proof. See [30, Proposition 19]. O

Definition A.16. A ring R is said to have a large Jacobson radical if it satisfies the
equivalent conditions of Proposition A.15.

Remark A.17. Let R be a ring.
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(1) If every prime ideal of R is maximal, or if R is (quasi)semilocal, then R has a large
Jacobson radical, see [30, Section 7, page 423].

(2) If Qr has a large Jacobson radical, then R is a Marot ring, see [23, Chapter I,
Proposition 1.12].

Proposition A.18. Let R be a Noetherian ring. Then R has a large Jacobson radical if
and only if it is semilocal.

Proof. See [30, Section 7, page 423]. O

A.2. Localization

Let R be a ring, and let U be a multiplicatively closed subset of R. We will always assume
that 1 € U. The localization of R at U is the R-algebra U~ 'R satisfying the following
universal property: the homomorphism a: R — U~ R satisfies a(R*) C (U™'R)", and if
A is a ring such that there is a ring homomorphism 5: R — A with (R*) C A*, then
there is a unique ring homomorphism ¢: U"'R — A such that the diagram

R—<=->U'R

x ® (A.1)
A
commutes.

Let M be an R-module. The localization U'M of M at U is the set of equivalence
classes ¥ with x € M and u € U, where = 7 if there is an element s € U such that

s(xv —yu) = 0. If M = R, then U~'R is a ring with the operations

T Yy xv+yu

B —
u v uUv

and
Yy Ty
U v Uv

forall £, % cU ~!R, and U~ 'R is an R-algebra with the natural homomorphism a: R —
U'R, z— 1. For an R-module M, the localization U~'M is both an R- and a U™ 'R-
module with the obvious operations.

The localization Qr = (Rreg)f1 is called the total ring of fractions of R. If p is a prime
ideal of R, then the localization of R at pis (R\p) ' R.

Let M, N be R-modules, and let ¢y: M — N be an R-module homomorphism. Then
there is an U~!R-module homomorphism

Ul¢: U'M - U N,
m ., é(m)

u u

the localization of ¢, see [39, Chapter 2] and [40, Chapter 3|.

9
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Remark A.19. Let R be a ring.
(1) Let U be a multiplicatively closed subset of R*. Then U~ 'R = R.

(2) The total ring of fractions of R is the “largest” localization of R at a multiplicatively
closed set U C R such that the natural map a: R — U~ 'R is an injection, see [39,
Chapter 2, page 60]. In particular, we may consider R as a subring of Q.

(3) Q" = Qk-
(4) If R is a domain, i.e. if R* = R\ {0}, then Qg is a field.

Proposition A.20. Let R be a ring, let U be a multiplicatively closed subset of R, and
let o: R — U~ 'R be the natural map x — 1- Then the following hold:

(1) For any ideal i C U™'R we have i = a1 (i))U™'R. Thus, the map i — a~1 (i) is
an injection of the set of ideals of UT'R into the set of ideals of R. It preserves

inclusions and intersections, and it takes prime ideals to prime ideals.

(2) An ideal i C R is of the form a1 (i) for some ideal i C U 'R if and only if
j=at (jUflR). This is the case if and only if for each uw € U, xu € j implies x € j
for any x € R. In particular, the correspondence i — a~' (i) is a bijection between
set of the prime ideals of U"'R and the set of prime ideals of R not meeting U.

Proof. See [39, Proposition 2.2]. O

Corollary A.21. A localization of a Noetherian ring is Noetherian.

Proof. See [39, Corollary 2.3]. O
Theorem A.22. Let R and A be rings with a ring homomorphism v¥: R — A, and let U
be a multiplicatively closed subset of R. Then U'A = (y(U)) " A, and the localized map
U ly: U™ = U 'A is a ring homomorphism.

Proof. See [44, Theorem 4.3]. O

Corollary A.23. Let R be a ring, let U be a multiplicatively closed subset of R, and let p
be a prime ideal of R with p U = (. Then

(UﬁlR)pU—lR - Rp.

In particular, if q is a prime ideal of R with p C q, then

Proof. See [44, Corollary 4 of Theorem 4.3]. O
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Proposition A.24. Let R be a ring, and let U be a multiplicatively closed subset of R.
Then the operation U™! is exact, i.e. if

M LM
is a sequence of R-modules which is exact at M, then
vt U8 gty U gy
is a sequence of U1 R-modules which is exact at U~'M.

Proof. See [40, Proposition 3.3]. O

Corollary A.25. Let R be a ring, let U be a multiplicatively closed subset of R, and let
x € R*®. Then i € (U'R)™® for anyy € U.

Proof. This follows from Lemma A.7 and Proposition A.24. O

Remark A.26. The statement of Corollary A.25 can also be proved directly. In fact, let
= € U~'R such that %% = (. Then there is a u € U such that uzv = 0. Since z is regular,

this implies uv = 0, and hence ;> = 0. Therefore, % € (UTIR)"™®.

Lemma A.27. Let R be a ring, and let U be a multiplicatively closed subset of R. Then
R is reduced if and only if U™ R is reduced.

n

Proof. If R is not reduced, there is z € R with " = 0. This implies ()" = % =0 in
U~'R. Hence, also U"'R is not reduced.
Suppose that R is reduced, and assume that U"'R is not reduced. Then there is
¢ € U™'R such that (%)" = 0 for some n € N. Thus, there is an s € U such that sa™ = 0.
This yields
(sa)" = s""1(sa™) = "0 = 0.

Hence, sa is a nilpotent element of R. But this is a contradiction as R is reduced. O

Lemma A.28. Let R be a ring, let U be a multiplicatively closed set, and let A be a
ring. If there is a map ¥: R — A with ¥(U) C A*, then the unique ring homomorphism
¢: U'R — A making Diagram (A.1) commutative is given by

g = () ($(y))

for any 5 € U'R.

Proof. Let % € U7'R, and let a: R — U~'R be the map z 7 for x € R. Since y € U,
Diagram (A.1) yields

8o) = doal) = o(7) =o(54) = ¢(% )s(%) =4 ()5

Since S(U) C A*, the statement follows. O
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Lemma A.29. Let R and A be rings, let U, respectively V', be a multiplicatively closed
subset of R, respectively A, and let a: R — A with «(U) C V. Then there is a natural
ring homomorphism
e: U 'R— V1A,
x o)

y o ay)

)

such that the diagram
R UR
A—"Tsv1A
commutes, where 3: R — U 'R and v: A — V1A are the localization maps.

Proof. The localization maps 3: R — U"'R and 7: A — VA fit into a commutative
diagram

RS U R

| N

A— VLA,
where § = v o . Since

S(U)=~oa(U)

=(a(U))
C (V)

*
c (v1a)
by assumption, the universal property of localization yields a unique homomorphism

e: U"'R — V1A such that the diagram

RLQR

| ™
(64 €
commutes. The explicit representation of € follows from Lemma A.28. ]

Lemma A.30. Let R and A be rings, let a: R — A be an injective ring homomorphism,
and let U be a multiplicatively closed subset of R such that o(U) C A™8. Then there is an
injective ring homomorphism

6: U'R — Qa,
v, oz)
y o a(y)
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Proof. Lemma A.29 yields a ring homomorphism
¢: U 'R — Qa,

x  ofr)

y  aly)

Let %, = ¢ U~1R such that qb(%) = qb(%) Then W) = aty)

v y
a(zy) = a(@)a(y) = a(z)a(y) = a(z'y).
= 2 and therefore ¢ is injective.

Q

= O]

Since « is injective, this implies xy’ = 2'y. Hence :
Lemma A.31. Let R be a ring, and let U be a multiplicatively closed subset of R. Then
there are natural ring homomorphisms
€: Qr = Qu-1g,
T

N/AY

y v
and

n: U'Qr = Qu-1g,

z/y :c/z
et

These homomorphisms fit into a commutative diagram

R—" 5 0n

U_lQRv

where a: R — U 'R, B: R — Qg and v: U"'R — Q-1 are the localization maps, and
0=U"'a: U'R - U'Qp.
Proof. By Corollary A.25 and Lemma A.29 there is a natural ring homomorphism

€: QR — QU_lRa

N

H
y oy

such that the diagram
R—" . 0n
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commutes. With the localization map ¢: Qr — U~'Qpg this leads to a commutative
diagram

R4>QR

LR

U'R —— QU IR

U_lQR.

Now we have

coB(U) =voal) c((U'R)") € (Qu-1A)"

Since U'Qpr = (B(U))_lQR by Theorem A.22, the universal property of localization
yields a unique homomorphism 7: U Qg — Q-1 such that the diagram

RLQR

U™'Qg

commutes.

NOW consider the localized map § = U~'3: U"'R — U~'Qpg (see Theorem A.22). For
any Z ¢ U1 R we have
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Therefore, we obtain a commutative diagram

RLQR

U_lQR.

Lemma A.32. Let R be a ring, and let U be a multiplicatively closed subset of R. If
v € (U=LR)™® implies x € R*8 or z € U for any 3 € Qr, then Qu-1p = U 'Qg.

Proof. With the notation of Lemma A.31 we have a commutative diagram

RLQR

U_lQR.

Let now § € (UTIR)™®. Then z € R™8 or x € U by assumption. If + € R'8, then
B(x) € (Qr)*, and hence 0(%) = % € (U™'Qg)" with inverse % If z € U,

then 9(%) = @ e (U _IQR)* with inverse @ Therefore, the universal property of

localization yields a unique homomorphism ¢: Qp-1z — U~ Qg such that the diagram

R—" . 0n

commutes. Using the universal property of the localization U'Qr of Qr, respectively the
localization Q-1 of UT'R, we obtain Qu-15 = U 'Qg. U

Remark A.33. Note that Lemma A.32 holds, in particular, if R is a domain.
Lemma A.34. Let R and A be rings such that RC A C Qgr. Then Q4 = Qr.

Proof. Since A C Qr, we have A™® C Q;gg = Q%. Therefore, the universal property of
localization (see Diagram (A.1)) yields a unique homomorphism Q4 — Qg.
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Since R C A, we have R™& C A™ C (Q%. So again the universal property of localization
yields a unique homomorphism Qr — Q4. Thus, we obtain a commutative diagram

R‘—>A‘—>QR

Qa.
Using the universal property of the localization Qg over R, respectively the localization
Qa4 over A, this implies Q4 = Qr. O

Lemma A.35. Let R be a ring, let U be a multiplicatively closed subset of R, and let M
be an R-module. We denote by o: M — U~ M the localization map.

(1) For any R-submodule N of M we have

ofl(Ule) ={zx €M |ux €N for someuecU}.

(2) For any U~'R-submodule P of UM we have
Ut (aH(P)) = P.

Proof. (1) Write N’ = {&x € M |uz € N for some u € U}. If z € N’, then there is a
u € U such that zu € N. Thus,

alx) = % = % cU'N.

Let now y € a~ (U "' N). Then thereis ann € N and a u € U such that ¥ = a(y) =
o Thus, there is a v € U such that vuy = nu. In particular, we have vu € U since
U is multiplicatively closed, and nu € N since U C R and N is an R-module. This
yields y € N'.

(2) Obviously, we have P C U~ (a™1(P)). So let T € U '(a'(P)). Then £ = a(z) €
(P) and y € U. Since i € U7'R, this implies sE€PasPisa U~ R-module. O

Theorem A.36. Let R be ring, let i be an ideal of R, let m: R — R/i be the canonical
surjection, and let U be a multiplicatively closed subset of R. Then

UT'R/iUTIR = (n (U)) H(R/}).
Proof. See [44, Theorem 4.2]. O

Lemma A.37. Let R and A be rings such that R C A C Qgr. Ifi is an ideal of R, then
1A is an ideal of A. Moreover, for any x € iA there are x1 € i and o2 € R'™® such that
x = 7L (considered in Qr, see Remark A.19.(2)).
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Proof. By Proposition A.10.(1) iA is an ideal of A. Also note that for any y € A there are
y1 € R and y2 € R™8 such that y = % in Qr. Let z € i. Then

Y1 Y1
ZYy=2— =",

Y2 Y2
where zy; € 1 and y3 € R™5. ‘ '
So if x € 1A, there is a finite set I, and for all i € I there are azgz) € iand xg) € R™¢
such that

Since Qr = (Rreg)_lR, we obtain

() (4) (4) (4) (4)
w2  engy @37 Zier @i Hjengy 3
r=) =2 ® (k) )

iel Ty’ ser llrer®s [Trer s
where . .
ngz) H l‘gj) €1
iel  jel\{i}
and .
vag) € R™8, O
iel

Proposition A.38. Let R be a ring, let U be a multiplicatively closed subset of R, and
let M be an R-module. The natural map M @ g U™'R — UM sending T@m to Tt s
an isomorphism.

Proof. See [39, Lemma 2.4]. O

Proposition A.39. Let R be a ring, and let U be a multiplicatively closed subset of R.
Then the ring U"'R is flat as an R-module.

Proof. See [39, Proposition 2.5]. O

Proposition A.40. Let R be a ring, and let A be an R-algebra. If M and N are R-modules,
then there is a unique A-module homomorphism

«: Homp (M,N) ®pr A — Hom 4 (M ®RA,N®RA)

that takes an element ¢ @ 1 € Homp (M, N) @ A to the A-module homomorphism ¢ Qg
1: M®@r A— N®A in Homy (M ®r A,N ®r A). If A is flat over R and M 1is finitely
presented, then « is an isomorphism. In particular, if M 1is finitely presented, then
Homp (M, N) localizes in the sense that the map o provides a natural isomorphism

Homy 15 (U—lM, U—lN) ~ U/~ Homp (M, N)

for any multiplicatively closed subset U of R.
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Proof. See [39, Proposition 2.10]. O

Remark A.41. If R is a Noetherian ring, an R-module M is finitely presented if and only if
M is finitely generated, see [39, p. 68]. In particular, every ideal of a Noetherian ring R is
finitely presented as an A-module.

Lemma A.42. Let R be a semilocal ring, and let M be an R-module such that My, is a
finite Ry-module for every m € Max (R). Then M is a finite R-module.

Proof. For any m € Max (R) there is a finite subset Xy, of My, such that My, is generated
as an Ry-module by the elements in Xp,. By clearing denominators of the elements in X,
we find a finite subset Up of M such that My = (f |z € U‘"">Rm'

Set U = UmeMax (r) Um, and let N = (U) be the R-submodule of M generated by the
elements in U. Then we have Ny, = My, for all m € Max (R). This yields M = N since
equality is a local property. In particular, M is finitely generated as an R-module by the
elements in U. O

A.3. Associated and Minimal Prime ldeals

Definition A.43. Let R be a ring. A prime ideal p of R is called minimal if height p = 0.
The set of minimal prime ideals of R is denoted by Min (R).

Definition A.44. Let R be a Noetherian ring, and let M be an R-module.

(1) The annihilator of M is

Ann (M) ={z € R| 29 = 0}.

(2) A prime ideal p of R is associated to M if p is the annihilator of an element of M.
The set of prime ideals associated to M is denoted by Ass (M).
Theorem A.45. Let R be a Noetherian ring, and let M be a finite non-zero R-module.

(1) Ass (M) is a finite, non-empty set of prime ideals of R, each containing Ann (M).
The set Ass (M) includes all the prime ideals which are minimal among the prime
ideals containing Ann (M).

(2) The union of the associated prime ideals of M consists of 0 and the set of zerodivisors
on M.

(8) The formation of the set Ass (M) commutes with localization at an arbitrary multi-
plicatively closed set U C R, in the sense that

Ass (UﬁlM) = {pUﬁlR ’ p € Ass(M) andpﬂUZQ)}.

Proof. See [39, Theorem 3.1]. O
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Corollary A.46. Let R be a Noetherian ring. Then Min (R) C Ass(R). In particular,
Min (R) is finite.

Proof. Since Ann (R) = (0), and since any ideal of R contains 0, this follows from Theo-
rem A.45.(1). O

Proposition A.47. Let R be a reduced Noetherian ring. Then
Ass (R) = Min (R).

Moreover,

U p=R\R*
peMin (R)

Proof. By Corollary A.46 we have Min (R) C Ass(R). So assume there are p,q € Ass (R)
with p C q. Then there is z € R such that zq = Ann (R) = (0), and hence zp = (0). Let
y € q\ p. Then zy = 0 € p implies = € p. But then 22 C 2p = (0) which contradicts the
reducedness of R. This implies

Ass (R) = Min (R),
and with Theorem A.45.(2) we obtain

R\R= ] . O
pEMin (R)

Lemma A.48. Let R be a reduced Noetherian ring. Then

N »=10),

peMin (R)

and
(0) ¢ q
g€Min (R)\{p}

for any p € Min (R).

Proof. This follows from Proposition A.47 and Primary Decomposition, see [39, Theo-
rem 3.10]. O

Lemma A.49. Let R be a reduced Noetherian ring, let p € Min (R), and let x € R\ p.
Then (z 4+ p) N R # ().

Proof. If x € R™#, the statement follows since 0 € p. So suppose that x € R\ R™® =
Uqenin (r) 4 see Proposition A.47. Then the subset

I'={qgeMin(R) |z € q}
of Min (R) is non-empty, and

x € ﬂ \ U q. (A.2)

g€l q’eMin (R)\I
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Assume now that

N acUd

q€Min (R)\I qgel

Then there is by Theorem A.2 a p’ € I such that NgeMin R\ C p’. This implies
Nyentin (r) 9 = Nyemin (r)\ {3 4> contradicting Lemma A.48. Thus, there is a

ye () a\Ud" (A.3)

q€Min (R)\I qel

Then Lemma A.13, Proposition A.47, and Equations (A.2) and (A.3) yield

cven ({99 (,Y,,.0)
qel @’ €Min (R)\I

=R\ | 4

q€Min (R)
— R™e.
The claim follows since p € Min (R) \ I by assumption, and hence y € p. O

Lemma A.50. Let R be a reduced Noetherian ring, and let p € Min (R). Then

Qr/p = QrR/PQR.

Proof. Since p N R™8 = () by Proposition A.47, and since p is a prime ideal, we have
pr(R™8) C (R/p)"*® = (R/p) \ {0}, where my: R — R/p is the canonical surjection.
Thus, Lemma A.49 implies m, (R™¢) = (R/p)"®, and hence the statement follows from
Theorem A.36. O

Proposition A.51. Let R be a reduced Noetherian ring. Then
Min (QR) = Max (QR)

Proof. Let i be a proper ideal of Qr. Then i C Qg \ Q%. Since Qg is reduced by
Lemma A.27, and since Q}; = Q»® (see Remark A.19.(3)), Proposition A.47 yields

icQr\QrE= |UJ »

peMin (Qr)

Then Theorem A.2 implies that there is a p € Min (R) containing i. The claim follows. [

A.4. Completion

For the definition of ideal-adic topologies and completions of rings and modules see for
example [45, Chapter II] or [42, Chapter 9.

Theorem A.52. Let R and A be semilocal rings such that A is a finite R-module. Then
the topology of A as a semilocal Ting coincides with the topology of A as a finite R-module.
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Proof. See [45, Theorem 16.8]. O

Theorem é.53. Let R be a Noetherian ring, and let i be an ideal of R. Then the i-adic
completion R of R is Noetherian.

Proof. See [40, Theorem 10.26]. O

Theorem A.54. Let R be a ring, and let i be an ideal of R. Then the i-adic completion
R of R is flat over R.

Proof. See [44, Theorem 8.8]. O

Theorem A.55. Let R be a Noetherian ring, let i be an ideal of R, and let M be a finite
R-module. Writing M and R for the i-adic completions of M and R we have

M=M®R,

and the topology of M as the completion of M coincides with its topology as a finite
R-module.

In particular, if R is complete, so is M.
Proof. See [44, Theorem 8.7]. O

Theorem A.56. Let R be a ring, let i be an ideal of R, and let R be the i-adic completion
of R. Then there is a bijection between the set of reqular ideals of R and the set of reqular
ideals of R given by

Proof. See [29, Theorem 2.8]. O

Definition A.57. A Zariski ring is a Noetherian ring R whose topology is defined by an
ideal i C jgp, where jg is the Jacobson radical of R.

Remark A.58. A Noetherian semilocal ring is a Zariski ring, see [42, 24.B].

Theorem A.59. Let R be a Zariski ring (with respect to an ideal i C jr), and let R be
the i-adic completion of R.

(1) R is a subring of R.
(2) There is a bijection
Max (R) — Max (R),

mn—>m§,
nNR+in.

In particular, if R is local, then R is local.
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(3) For any m € Max (R) we have R/m = R/mR.
Proof. See [42, Corollary of Theorem 56]. O

Theorem A.60. Let R be a Noetherian ring, and let i be an ideal of R. Then the i-adic
completion R of R is faithfully flat over R if and only if i C jg, i.e. R is a Zariski ring.

Proof. See [44, Theorem 8.14]. O

Theorem A.61. Let R be a semilocal ring. Then

P- [ T
meMax (R)

Proof. See [45, Theorem 17.7]. O

Corollary A.62. Let R be a semilocal Noetherian ring. Then ]/%-; = §m§ for any m €
Max (R). In particular,
R= ][] B

neMax (R)

Proof. Let m € Max (R). Then Ry, is a Zariski ring, see Corollary A.21 ‘and Remark A.58.
Thus, Ry, is by Theorem A.59.(2) a local ring with maximal ideal mRy Ry = mRy,, where
the equality follows from Theorem A.59.(1).

By Theorem A.59.(2) we have mR € Max (E), and Theorems A.61 and A.59.(1) yield

mR=m H R,
neMax (R)

= mﬁ; X H ml’%nj%\n
neMax (R)\{m}

=mRyx  [[  RuRa
neMax (R)\ {m}

= mRy X H R..
neMax (R)\{m}

Using again Theorem A.61 this implies fzmﬁ = ﬁ; The particular claim follows from
Theorem A.59.(2). O

Theorem A.63. Let R be a Noetherian local ring, and let M be a finite R-module. Then
dimp M = dimﬁM.

Proof. See [38, Corollary 2.1.8]. O

Corollary A.64. Let R be a Noetherian semilocal ring. Then dim R = dim R.
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Proof. Theorems A.59.(2) and A.63 and Corollary A.62 yield

dim R = max __ dim ﬁn
neMax (R)

= max dim R,
meMax (R)

= max dimR
meMax (R)

= dim R. O

Corollary A.65. Let R be a Noetherian semilocal ring. Then height m = height mR for
every m € Max (R).

Proof. Let m € Max (R). Then Corollaries A.62 and A.64 yield
height m = dim Ry, = dim Ry, = dim R_ = height mR. O

Definition A.66. Let A be a local ring with maximal ideal m. A subfield £ C A is called
a coefficient field of A if k= A/m under the canonical surjection A — A/m.

Theorem A.67 (Cohen Structure Theorem). Let R be a complete local Noetherian ring
with mazximal ideal m and residue field k = R/m, and let {z1,...,x,} be a set of gener-
ators for the maximal ideal m. If R contains a field, then there is a surjective k-algebra
homomorphism

m: k[ X1, ..., Xy]] > R,
Xi—=x; foralli=1,...,n.

In particular,
R=Ek[[Xy,...,X,]] /i,

where i = kerm C k[[X1,...,X,]], and R contains a coefficient field.
Proof. See [39, Theorem 7.7]. O

Lemma A.68. Let R be a semilocal ring. Then R is analytically reduced if and only if
Ry, is analytically reduced for every m € Max (R).

Proof. Let R be analytically reduced, i.e. its completion R is reduced. By Lemma A.27

this is equivalent to Eﬁ being reduced for every m € Max (ﬁ) Since }A%a = Ryp for
every m € Max (ﬁ) by Theorem A.59.(2) and Corollary A.62, the statement follows with
Theorem A.59.(2). O

A.5. Branches of Rings

Definition A.69. Let R be a ring. A branch of R is a quotient ring R/p for some
p € Min (R).
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Lemma A.70. Let R be a reduced Noetherian ring, and let A be a ring with R C A C QR.
If p € Min (R), then pA € Spec (A).

Proof.

By Proposition A.10.(1) pA is an ideal of A. So let z,y € A such that zy € pA. By
Lemma A.37, and since A C Qpg, there are z; € p, x1,y1 € R and 29,9, y2 € R™® such

that
Ty A

ZL2Y2 22'
This implies
T1Y122 = T2Y221 € P.

Since p is a prime ideal of R, this implies z1y1 € p as otherwise 29 € p N R™8 = () (see
Proposition A.47). Hence, we have x; € p or y; € p. This yields x € pA or y € pA, and
thus pA is a prime ideal of A. O

Lemma A.71. Let R be a reduced Noetherian ring, and let A be a ring with R C A C QR.
(1) Let p € Min (R). Then pA € Min (A).
(2) Let q € Min (A). Then qN R € Min (R).

Proof. (1) Let p € Min (R). Then pA is by Lemma A.70 a prime ideal of A. Assume
that p & Min (A). Then there is a prime ideal q of A such that

q < pA. (A.4)

By Proposition A.10.(2) p’ = qNR is a prime ideal of R with p’ C p. Since p € Min (R),
this implies p’ = p. However, this yields with Equation (A.4) the contradiction

pA=p'ACqA=qCpA
Therefore, pA € Min (A).

(2) Let q € Min (A). Then qN R by Proposition A.10.(2) a prime ideal of R. Assume
that ¢ N R ¢ Min (R). Then there is a p € Min (R) such that

pCqNR. (A.5)
By Proposition A.10.(2) and Lemma A.70 pA and (q N R)A are prime ideals of A,

and

pAC (qNR)ACq.
Since q € Min (A), this implies
pA=(qNR)A=q.
However, Equation (A.5) then yields the contradiction
gNR=pANR=pCqNR.
Hence, g N R € Min (R). O
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Theorem A.72. Let R be a reduced Noetherian ring, and let A be a ring with R C A C QR.
Then there is a bijection

Min (R) — Min (A),
p = pA,
gN R <+ q.

Proof. By Lemma A.71 there are maps
Min (R) — Min (A),
p—pA
and
Min (A) — Min (R),
q—qnNR.

Moreover, Proposition A.10.(1) yields pAN R = p for any p € Min (A).
Let now q € Min (A). Then g N R € Min (R) by Lemma A.71.(2). This implies by
Lemma A.70 that (q N R)A is a prime ideal of A, and

(@aNR)ACgA=q
as q is an ideal of A. Since q € Min (A), this yields
(aNR)A=q.
Thus, we obtain the statement. ]

Corollary A.73. Let R be a reduced Noetherian ring, and let A be a ring with R C A C QR.
If R is a domain, then A is a domain. Ol

Theorem A.74. Let R be a reduced Noetherian ring.
(1) There is a bijection

Min (R) — Max (Qr),

p = pQrg,
mNR+—m

such that
Qr/PQR = Qpyp-

for any p € Min (R).

(2) We have
Qr = H QR/p = H Qr/m.

peMin (R) meMax (QRr)
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Proof. Also see [1, Proposition 1.4.27 and Theorem 1.5.20].

(1) This follows from Lemma A.50, Proposition A.51, and Theorem A.72.

(2) The Chinese Remainder Theorem implies
Qr/ () m= [ @Qr/m= ][ Qrp
meMax (QRr) meMax (R) pEMin (R)

Since Qp is by Corollary A.21 and

where the second equality follows from (1).
Lemma A.27 Noetherian and reduced, Lemma A.48 and Proposition A.51 yield

ﬂ m= ﬂ p = (0).

meMax (Qr) peMin (Qr)
Corollary A.75. Let R be a reduced Noetherian ring, and let m € Max (Qr). Then
p=mNReMin(R), and
m=0 X H QR/q'

qeMin (R)\{p}

Proof. By Theorem A.74.(2),
Qr= J[ @Qrs
q€Min (R)
is a finite product of fields. Hence, there is by Lemma A.6.(2) a p € Min (R) such that
m=0 X H QR/q'

g€Min (R)\{p}

Moreover, since m N R € Min (R) by Theorem A.74.(2), we obtain

mmR:(OX 11 QR/q)mR:p.

g€Min (R)\{p}

Lemma A.76. Let R be a reduced Noetherian ring, let U be a multiplicatively closed subset

of R, and let

¢: R— U 'R,
X

-
T

Then for any p € Spec (R) with p U = 0 we have Qu-1g/¢m) = Qryp- Moreover,

Qu-ir= [] @Qrp-
pEMin (R)
pNU=0
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Proof. Let p € Spec (R) such that p U = (). By Theorem A.36 we have

U™'R/$(p) = (w (U)) ™ (R/p),

where m: R — R/p is the canonical surjection. Since R/p is a domain, and since « (U) is a
multiplicatively closed subset of R/p, Remark A.19.(1) and Lemma A.32 yield

Qu-1r/6(0) = Qi (v))~(Bfp) = QR/p-
The second part of the claim follows from Proposition A.20.(2) and Theorem A.74.(2). O

Proposition A.77 (See [25], Section 3.2). Let R be a reduced Noetherian ring, and let U
be a multiplicatively closed subset of R. Then

Qu-1r =U"'Qr.
Proof. By Proposition A.38 and Theorem A.74.(2) we have

U'Qr=U"'R®rQr

=U"Ror ] Qup
peMin (R)

= H U_lR ORr QR/p-
pEMin (R)

Let p € Min (R). First suppose that pNU # (), i.e. there is s € pNU. Since any element
of U"'R®p QRyp is of the form ¥ ® ;ﬁ—frg with u,x € R, v € U, and y € R\ p, we obtain

u T+ su _ x+
gITP _UgZTP

v y+p ) Yy+Pp

:£®s(x+p)
Sv y+p
U ST+ P

=—®
SU y+p

_u p

osv y+p

=0.

Hence, U"'R ®p Qrsp = 0.
Now suppose that p U = (). Then v € p, and hence

u _ x+ 1  wvx+
@ p p

v y—i—p_v VY + P
_ v _ur+p
v vy +p
_ ux +p
Ty +p
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This implies U'R ®r Qg/p = Qr/p- Therefore, Lemma A.76 yields

U'Qr= [ @Qap=Qu-x O
pEMin (R)
pNU=0

Lemma A.78. Let R be a complete Noetherian semilocal ring. Then for any p € Min (R)
there is a unique m € Max (R) with p C m.

Proof. Let p € Min (R). Since

R= ][] R

meMax (R)

by Corollary A.62, there is by Lemma A.6.(1) an m € Max (R) such that

p=pRn ¥ 11 R,.
neMax (R)\{m}

This implies p C m and p ¢ n for every n € Max (R) \ {m}. O
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B.1. Integral Extensions
Definition B.1. Let R be a ring, and let A be an R-algebra.

(1) An element a € A is called integral over R if there is a monic polynomial p € R [x]
such that p (a) = 0.

(2) The integral closure of R in A is the ring of all elements of A which are integral over
R.

(3) Suppose that A contains a copy of R as R-1. Then A is called an integral extension
of R if every element of A is integral over R.

(4) We denote the integral closure of R in its total ring of fractions Qg by R.

(5) If R is reduced, then R is called the normalization of R. The ring R is said to be
normal if R = R.

Lemma B.2. Let R be a ring, and let A be an integral extension of R. Then R* = A*NR.
Proof. Let x € AN R. Then there are n € N and ag,...,a,—1 € R such that
"+ a1z " 4+ 4 ap=0.
Multiplying by z", we obtain
1+ap—1z+...+apx™ =0,

and hence
1==x (an_l + ...+ aoxnfl) .

This implies z € R*, since x,aq,...,a,_1 € R, and hence (an,l +...+ aO:L""_l) cR O

Proposition B.3. Let R and A be rings such that R C A. Then the integral closure of R
in A is a subring of A containing R. In particular, it is an integral extension of R.

Proof. See [46, Corollary 2.1.11]. O
Corollary B.4. Let R be a ring. Then R* = R N R.

Proof. This follows from Lemma B.2 and Proposition B.3. O
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Proposition B.5. Let R, S and T be rings such that R C S CT. Then S is integral over
R and T is integral over S if and only if T is integral over R. In particular, the integral
closure of R in an overring is integrally closed.

Proof. See [46, Corollary 2.1.12]. O
Proposition B.6. Let R be a ring, and let A be an integral extension of R.
(1) For any ideal i of A the ring A/i is an integral extension of R/(iN R).

(2) For any multiplicatively closed subset U of R the ring U'A is an integral extension
of UT'R.

Proof. See [40, Proposition 5.6]. O

Proposition B.7. Let R, S and T be rings with R C S C T. Then the following are
equivalent:

(a) S is the integral closure of R in T.

(b) U~LS is the integral closure of U= R in U™'T for every multiplicatively closed subset
U of R.

(c) (R\ p)flS is the integral closure of Ry in (R\ p)flT for every prime ideal p of R.
(d) (R\m)~1S is the integral closure of Ry in (R\ m) ‘T for every m € Max (R).
Proof. See [46, Proposition 2.1.6]. O

Corollary B.8. Let R be a reduced ring, and let U be a multiplicatively closed subset of
R. Then
U-'R=U'R.

Proof. This follows from Propositions A.77 and B.7. O
Corollary B.9. Let R be a reduced ring. Then the following are equivalent:

(a) R is normal.

(b) ULR is normal for every multiplicatively closed subset U of R.

(¢) Ry is normal for every prime ideal p of R.

(d) Ru is normal for every m € Max (R).

Proof. First note that R is by Lemma A.27 reduced if and only if U~'R is reduced for
every multiplicatively closed subset U of R. Then the claim follows from Propositions A.77
and B.7. O

Theorem B.10. Let R be a ring, and let A be an R-algebra. The set of all elements of A
which are integral over R is a subalgebra of A. In particular, if A is generated by elements
integral over R, then A is integral over R.
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Proof. See [39, Theorem 4.2]. O

Theorem B.11. Let R be a ring, and let A be an R-algebra. Then A is finite over R if
and only if A is generated as an R-algebra by finitely many integral elements.

Proof. See [39, Corollary 4.5]. O

Theorem B.12 (Lying Over). Let R be a ring, and let A be an integral extension of R.
Then for any prime ideal p of R there is a prime ideal q of A such that N R = p.

Proof. See [46, Theorem 2.2.2]. O

Theorem B.13 (Incomparability). Let R be a ring, let A be an integral extension of R,
and let p and q be prime ideals of A withp C q. IfpN R =qN R, then p =q.

Proof. See [46, Theorem 2.2.3]. O

Theorem B.14. Let R be a ring, and let A be an integral extension of R. Then dim R =
dim A.

Proof. See [46, Theorem 2.2.5]. O

Proposition B.15. Let R be a ring, let A be an integral extension of R, and let q be a
prime ideal of A. Then q is a maximal ideal of A if and only if q N R is a mazimal ideal

of R.
Proof. See [39, Corollary 4.17]. O

Proposition B.16. Let R be a ring, let p be a prime ideal of R, and let A be a finitely
generated integral extension of R. Then there are only finitely many prime ideals of A
lying over p.

Proof. By Proposition B.6.(2) (R\ p) ‘A is a finitely generated integral extension of Ry,
and hence (R\ p) 'A/p(R\ p) ‘4 is a finitely generated integral extension of R, /pR,.
Then (R\ p) *A/p(R\ p) ' A is Noetherian by Theorem A.1 since R, /pRy is a field. More-
over, dim (R \ p) " A/p(R\ p) ' A = dim R, /pR, = 0 by Theorem B.14. This implies that
(R\p) "A/p(R\ p) ' Ais Artinian (see [40, Theorem 8.5]). Then (R\ p) 'A/p(R\p) ‘A4
is a product of local rings (see [40, Theorem 8.7]), and hence it is semilocal by Lemma A.6.(1).
Proposition A.10.(3) implies that there are finitely many maximal ideals of (R \ p) ' A con-
taining p(R \ p) ' A. Then by Proposition B.15 there are only finitely many maximal ideals
of (R\ p)flA which all are all lying over pR,. By Proposition A.20.(2) this implies that
there are only finitely many prime ideals of A lying over p. Also see [44, Exercise 9.3]. O

Corollary B.17. Let R be a semilocal ring, and let A be a finitely generated integral
extension of R. Then A is semilocal, as well.

Proof. This follows from Proposition B.15 and B.16. O

Lemma B.18. Let R be a reduced Noetherian ring, let A be an integral extension of R
with R C A C Qg, and let q be a prime ideal of A. If height q N R =1, then height q = 1.
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Proof. By Theorem B.13 we have height g N R > height q = 1, and Theorem A.72 implies
height q > 0. O

Lemma B.19. Let R be a ring, let A be an integral extension of R, and let q be a prime
ideal of A. Setp=qN A, U=A\p and B=U"1A. Then:

(1) R\pcC A\q.

(2) qB is a prime ideal of B, and height ¢B = height q.

(3) Ay = Byp.

(4) If B is local and dim B = height q, then Aq = B.

Proof.

(2)

270

(1) We have R\p=(ANR)\(qNR)=(A\q)NRC A\q.

By (1) g is a prime ideal of A not meeting R \ p. Thus, qB is a prime ideal of B by
Proposition A.20.(2). Since any prime ideal q’ of R with q' C q is not meeting R \ p,
as well, there is by Proposition A.20.(2) a bijection between chains of prime ideals
of A contained in q and chains of prime ideals of B contained in qB. This yields
height ¢ = height qB.

We have the following natural homomorphisms

a: A— B, al—>%
b

’)/ZB%BqB, b'—>I
d: A— Ay, a|—>%
e: B— Aq, .2
p p

Then a(A\ q) C B\ qB. Otherwise, there are by Proposition A.20.(2) a € A\ q,
a’ € gand b € R\p such that b (a — a’) = 0. This implies R\ q > ba = ba’ € q since by
(1) R\p C A\q, and A\ q is multiplicatively closed. Thus, setting f = yoa: A — Byp
we have (A \ q) C (Byp)". Hence, the universal property of Ay implies that there
is a unique homomorphism f: A; — By such that 3 = fo~.

By definition we have €(qB) C qAq, and hence € (B\ qB) C (Aq)". Thus, we get
by the universal property of Byp a unique homomorphism g: Byp — Aq such that
€=gon.

These considerations yield the following commutative diagram

/\/\

>BB—>A




B.2. Conductor

Since, moreover,

for all a € A, we obtain
gofod=eoa=09.
Hence, the universal property of A4 implies go f = ida,.

Since R\ p C A\ q by (1), we have S(R\p) C B(A\q) C (Byg)* (see above).
Then the universal property of B = (R p)_1 A yields a unique homomorphism
h: B — Byp such that 8 = hoa. Since v: B — Byp such that 8 = « o, this implies
h = . Hence, we have the following commutative diagram

B K
/ \ i &
BqB g > (A)q ¥ BqB-

Then fogoy=+yields fog=idp,; by the universal property of Byp, and hence
Aq = ByB.

(4) If dim B = height q, then qB is a maximal ideal of B by (2). If B is local, then qB is
the unique maximal ideal of B, and hence Byp = B. This implies B = Byp = (4) .
by (3). O]

Definition B.20. A ring R is called residually rational if for any m € Max (R) we have
R/m = R/n for every n € Max (E) with nN R =m.

Lemma B.21. Let R be a ring whose residue fields are algebraically closed, and let
m € Max (R). If A is an integral extension of R, then R/m = A/n for any n € Max (R)
with n N R =m. In particular, R is residually rational.

Proof. Let m € Max (R), and let n € Max (A) with n N R = m (see Theorem B.12 and
Proposition B.15). Let x € A/n. Then by Proposition B.6.(1) there are ag,...,a,—1 € R/m
such that 2" + ap_12" ' + ... 4+ ap = 0. Thus, A/n is an algebraic extension field of R/m.
Since R/m is algebraically closed by assumption, this implies R/m = A/n. O

B.2. Conductor

Definition B.22. Let R be a ring, and let J be an R-submodule of Qr. The conductor
of Jis ¢y =7:R.

Remark B.23. Let R be a ring, and let J be a regular R-submodule of Qg.

(1) The conductor €5 is a regular R-submodule of J. If J,R € Ry, then ¢5 € Ry, see
Proposition 2.7.(2).

(2) R€RJ C RJ C J implies €xJ C ;.
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(3) €5 is both an R- and an R-submodule of Qg, and €5 is the largest R-submodule of
J with this property.

Proposition B.24. Let R be a ring, and let J and J be R-submodules of Qr. Then
Ty =5 : 3.
Proof. By Lemma 2.3.(1) and Definition B.22 we have
Cy=(3:3):R=(3:R):3=0¢;:3. 0
Proposition B.25. Let R be a ring, and let I and J be R-submodules of Qr. Then
¢ (J:3) C ey

Proof. Let ¢ € €5 (J: 7). Then there are a; € €3 and b; € J : J, i = 1,...,n for some
n > 0 such that ¢ = >"1" | a;b;. Since a;R C J and b;J C J for all i = 1,...,n, we obtain

cR=> abRC) bJCJ.
=1 1=1

This implies ¢ € J : R = ¢5. O

B.3. Equidimensionality

Definition B.26. A ring R is called equidimensional if dim R/p = dim R for all p €
Min (R).

Proposition B.27. A one-dimensional ring R is equidimensional if and only if height m =
1 for all m € Max (R).

Proof. Let R be a one-dimensional ring, and suppose that R is equidimensional. Let
m € Max (R), and suppose that heightm < 1, i.e. heightm = 0. Then m € Min (R).
Since R is equidimensional, we have dim R/m = dim R = 1, and hence there is by
Proposition A.10.(3) an n € Max (R) with m C n and heightn = 1. This contradicts the
maximality of m. Thus, height m = 1.

Suppose now that height m = 1 for all m € Max (R). Let p € Min (R). Then height p = 0,
and hence p ¢ Max (R). Thus, there is m € Max (R) with height m = 1 and p C m. This
implies dim R/p = 1. Therefore, R is equidimensional. O

Lemma B.28. Let R be a complete equidimensional Noetherian semilocal ring. Then
height m = dim R for all m € Max (R).

Proof. Let m € Max (R), and let q € Min (Ry,) with dim q = dim Ry, = height m. Then by
Proposition A.20.(2) there is a prime ideal p of R with q = pRy,. In particular, this means
p C m. Since dimpR, = dimq = height m, Proposition A.20.(2) implies p € Min (R).
Since p C m, Proposition A.10.(3) and Lemma A.78 yield height m = dimp = dim R as R
is equidimensional. O
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Definition B.29. A ring R is called formally equidimensional if its completion R (at the
Jacobson radical jp of R) is equidimensional.

Lemma B.30. Let R be a formally equidimensional Noetherian semilocal ring. Then
height m = dim R for all m € Max (R).

Proof. Let m € Max (R). Then Theorem A.59.(2) yields mR € Max (]%) with

height m = height mR = dim R = dim R
by Corollaries A.64 and A.65 and Lemma B.28. O

Lemma B.31. Let R be a ring, and let A be an integral extension of R with R C A C QR.
If R is equidimensional, then so is A.

Proof. Let q € Min (A). Then gqNR € Min (R) by Theorem A.72, and by Proposition B.6.(1)
A/q is an integral extension of R/(q N R). Therefore, Theorem B.14 yields

dimA/q =dimR/(qN R) = dim R = dim A. O

Lemma B.32. Let R be a formally equidimensional Noetherian semilocal ring, and let A
be a finite integral extension of R with R C A C Qr. Then A is formally equidimensional,
as well. In particular,

height m = height m N R = dim R

for every m € Max (R).

Proof. By Theorems A.52 and A.55 A=A QR R is finite over R, and hence an integral
extension of R by Theorem B.11. Since A® R C Qr ® R C 5 by Lemma 2.16.(1) and

Theorem A.59.(1), Lemma B.31 implies that Ais equidimensional, and hence A is formally
equidimensional.

Since A is semilocal by Corollary B.17, and since it is Noetherian by Theorem A.1,
Lemma B.30 and Theorem B.14 yield for every m € Max (A)

height m = dim A = dim R = height m N R,

where the last equality follows from Proposition B.15. O

B.4. Excellent Rings

Definition B.33. A Noetherian ring R is called excellent if it satisfies the following
conditions.

(1) R is universally catenary,

(2) For all prime ideals p of R, all prime ideals q of Ry, and all finite field extensions L
of k(q) the ring Ry ®yq) L is regular.
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(3) For every finitely generated R-algebra A the singular locus Sing (A) is closed in
Spec (A).

Theorem B.34. Let R be an excellent ring. Then all localizations of R and all finitely
generated R-algebras are excellent.

Proof. See [42, (34.A)]. O

Theorem B.35. Complete semilocal Noetherian rings are excellent. In particular, any
field K, and hence any localization of any finitely generated K -algebra are excellent.

Proof. See [42, (34.B)]. O

The next theorem lists important properties of the normalization of reduced excellent
and reduced complete rings.

Theorem B.36. Let R be a reduced excellent ring.

(1) For any ideal i of R the i-adic completion R of R is reduced. If R is normal, then R
is normal.

(2) The normalization R of R is a finite R-module.

~

(3) If R is semilocal, then R=R. In particular,
(1) R=R=R ®r R is a finite R-module, and
(2) if R is complete, then R is complete.
Proof. See [21, Theorem 1.18]. O

B.5. Normalization

Definition B.37. The non-normal locus of a reduced ring R is
N(R) = {p € Spec (R) | Ry is not normal} .
Definition B.38. The singular locus of a ring R is
Sing (R) = {p € Spec (R) | R, is not regular}.

Theorem B.39. A reqular local ring is a normal domain. A regular ring is the direct
product of regular domains.

Proof. See [38, Corollary 2.2.20]. O
Corollary B.40. A regular ring is normal.

Proof. Let R be a regular ring. Then R is by Theorem B.39 the direct product of regular
domains. Hence, R is reduced.

Let m € Max (R). Then Ry, is by definition a regular local ring. Thus, Ry is by
Theorem B.39 a normal domain. Therefore, Corollary B.9 implies that R is normal. [
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Remark B.41. For any ring R Theorem B.39 implies Sing (R) C N(R).

Theorem B.42 (Splitting of Normalization). Let R be a reduced Noetherian ring. Then

R= [[ Ew

peMin (R)
Proof. See Theorem A.74.(2) and [46, Corollary 2.1.13]. O

Theorem B.43. Let R be a reduced Noetherian local ring of dimension one. Then R is
normal if and only if it is regular.

Proof. See [1, Theorem 4.4.9]. O

B.5.1. Ciriteria for Normality
Serre’s Conditions
Definition B.44. Let R be a ring, and let ¢ > 0 be an integer.

(1) Then R satisfies Serre’s condition (Ry) if for all p € Spec (R) with dim R, <14, R, is
a regular local ring.

(2) We say that R satisfies Serre’s condition (S;) if for all p € Spec (R) we have depth R, >
min {7, dim Ry}.

Theorem B.45. Let R be a ring.
(1) The ring R is reduced if and only if it satisfies Serre’s conditions (Rg) and (S1).
(2) The ring R is normal if and only if it satisfies Serre’s conditions (Ry1) and (S2).
Proof. See [38, page 71 and Theorem 2.2.22]. O

Proposition B.46. Let R be a reduced excellent ring, and suppose that R satisfies Serre’s
condition (S2). Then for any reqular radical ideal i of R the following hold:

(1) The ring i : i satisfies Serre’s condition (Ss).
(2) If R, is regqular for all p € Ass (i) with heightp =1, theni:i= R.
Proof. See [21, Lemma 3.6] and Lemma 2.13. O

Grauert and Remmert Criterion

Definition B.47. Let R be a reduced Noetherian ring. A regular radical ideal i of R is
called a test ideal for R if
N(R) C V(i).

Theorem B.48 (Grauert and Remmert Criterion). Let R be a reduced Noetherian ring,
and let i be a test ideal for R. Then R is normal if and only if

R=1i:i.
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Proof. See [20, Anhang §3.3, Satz 7], [27, Proposition 3.6.5], and Lemma 2.13. O
Remark B.49. Let R be a one-dimensional reduced Noetherian local ring. Then the maximal
ideal m of R is the unique test ideal for R, see [21, Remark 4.1].

Remark B.50. Let R be a reduced Noetherian ring. If R is finite over R (e.g. if R is
excellent, see Theorem B.36.(2)), then

see [21, Remark 2.2].

Definition B.51. Let R be a reduced excellent ring, and let W be a subset of Spec (R).
Then a regular radical ideal i is called a test ideal at W if

V(€gr,) C V(iRy)
forallp e W.

Proposition B.52. Let R be a reduced excellent ring, let i be an ideal of R, and let
W C Spec (R).

(1) Ifiis a test ideal at W, then iRy is a test ideal for R, for anyp € W.
(2) If N(R) C W, then i is a test ideal for R if and only if it is a test ideal at W.

Proof. See [21, Lemma 2.4]. O

Proposition B.53. Let R be a ring, and let i be an ideal of A. Then R =1:1 if and only
if Ry = iRy : iRy for all prime ideals p of R.

Proof. Since equality is a local property, we have R =i :iif and only if R, = (R \ p)_l(i i)
for all p € Min (R). The claim follows since Lemma 2.16.(3) and Proposition A.39 yield
(R\p) '(i:i) = iR, : iR, for every prime ideal p of R. Also see [21, Corollary 2.6] and
Lemma 2.13. O

Proposition B.54. Let R be a ring, let j be an ideal of R such that j is contained in the
Jacobson radical of R, and denote by R the j-adic completion of R. Then for any ideal i of
R we have R =1i:1 if and only ifﬁziﬁ:iﬁ.

Proof. By Lemma 2.16.(4) and Theorem A.60 we have R =i : i if and only if RR = (i : i)R.
Then the claim follows since RR = R by Theorem A.59.(1) and (i:i)R = iR : R by
Lemma 2.16.(3). Also see [21, Corollary 2.7] and Lemma 2.13.

(I

Proposition B.55. Let R be a reduced semilocal excellent ring, and let i be a test ideal
for R. Then i is a test ideal for R.

Proof. See [21, Lemma 2.5]. O
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B.5.2. Grauert and Remmert Algorithm for Normalization

Proposition B.56. Let R be a reduced Noetherian ring, and let A be a finite extension
ring of R. Ifi is a test ideal for R, then ViA is a test ideal for A.

Proof. See [19, Proposition 3.2]. O

Proposition B.57. Let R be a reduced Noetherian ring, and suppose that R is a finite
R-module (e.g. if R is excellent, see Theorem B.36.(2), or if R is a one-dimensional
analytically reduced semilocal Cohen—Macaulay ring, see Corollary C.15). Then for any
test ideal i of R there is a finite sequence of finite integral extensions

R=RO cRM c...c R™ =R,

where for any i > 0 we set
RO+ — () . (&)

and
(D — \/i0) R(i+1)

with i) = i. Moreover, R = R™ for any i > n.

Proof. By Theorem B.48 we have R = R if and only if R =i :i. Suppose that R is not
normal. Then R € RM =i:ic R, and R is by Remark 2.6.(1) and Proposition 2.7.(2)
finite over R. Thus, RY is by Theorem B.34 excellent. Moreover, since Qg is reduced
by Lemma A.27, and since RV C Qpg, also RY is reduced. Therefore, i) = ViR
is by Proposition B.56 a test ideal for RV, So by induction (using Lemma A.34 and
Proposition B.5) we obtain a sequence of integral extensions

R=R® cRY c...cR,

and for any i > 0 the ideal i) is a test ideal for R®. Since R is a finite R-module, there is
an n such that R = R+ — () . (") and hence R™ = R =R by Proposition B.5
and Theorem B.48. O

Proposition B.58. Let R be a reduced excellent ring, let p be a prime ideal of R, and let
i be a test ideal of R. Then iRy is a test ideal of Ry, and

(R\p)"'RY = (R\p)'(i:i) = iRy : iR, = (R,)""
Proof. This follows from Lemma 2.16.(3) and Propositions A.39 and B.52.(1). O
Proposition B.59. Let R be a reduced excellent ring, let p € Spec (R) \ N(R), and let
q € Spec (R(l)) with p = qN R (see Theorem B.12). Then (R(1)> =R,.
q

Proof. If p € Spec (R) \ N(R), then Ry is normal by definition. Thus, we have R, = (Rp)(l)
by Theorem B.48 (recall that by Lemma A.27, Theorem B.34, and Remark B.49 pR, is
the unique test ideal for Ry,). Moreover, Proposition B.53 yields

Ry = (Rp)Y = (R\ p)"'RW. (B.1)
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Let ¢’ be a prime ideal of R with q € ¢’ and ¢’ N (R \ p) = @. Then
p=qnNRCqdNRCp

implies ¢’ N R = p, and hence q = q' by Theorem B.13. Thus,

a((R\p)'RY) = pR,

is the maximal ideal of the local ring (R\ p) 'RM) = R, (see Equation (B.1)).

Proposition A.20.(2) yields
height p = height pR, = height q((R \p) 'R >) = height g.
Thus, we obtain by Lemma B.19.(4)
Ry = (R\p)"'RW = (RW) .
p=(R\p) 'R = (V)
Proposition B.60. Let R be a local ring with maximal ideal mg. Then

Fndg (mp) R if R is regular,
11 =
fATHR Hompg (mpg, R) otherwise.

In particular, if mg is regular, then

m R if R is regular,
R:ImMp =
R :mp otherwise.

Proof. See [21, Lemma 3.5]. The particular claim follows with Lemma 2.13.

Lemma B.61. Let R be a reduced excellent ring, let n € N, and set

Then

S, = {p € Sing (R) ‘ there is a prime ideal q of R"™ with heightq =1 and qN R = p}.

(1) If R satisfies Serre’s criterion (Sp), then R™ is normal if and only if it satisfies

(R1).

(2) The ring R™ satisfies Serre’s condition (Ry) if and only if (R(")) is a regular local
q

ring for all prime ideals q of R™ with height ¢ = 1 and qN R € Sing (R).

(8) The ring R™ satisfies Serre’s condition (Ry) if and only if (Rp)(n) is normal for all

peES,.

(4) If R satisfies Serre’s criterion (Sz), then R™ is normal if and only if (
reqular, equivalently normal, for allp € S,.
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Proof. (1) By Theorem B.45.(2) R is normal if and only if it satisfies Serre’s crite-

(4)

ria (Ry) and (S2). If dim R = 0, then dim R = dim R = 0 by Theorem B.14. Thus,
R™ satisfies (Sg). If dim R > 0, then the Jacobson radical jg is regular. Hence,
inductively applying Proposition B.46.(1) implies that R(™) satisfies (S). So R™ is
normal if and only if it satisfies (Rq).

Since R is reduced, also Qp is reduced by Lemma A.27, and hence R™ C Qp is
reduced. Hence, R™ satisfies (Rg) by Theorem B.45.(1). This implies that R("

satisfies (Ryp) if and only if (R(”)) is a regular local ring for all prime ideals q of
q
R™ with height q = 1.

Let g be a prime ideal of R(™ with height ¢ = 1, and set p = ¢V R. If p € Spec (R) \
Sing (R), then R, is regular by definition. Hence R, is normal by Theorem B.39. So
inductively applying Proposition B.59 implies that (R(”)) = Ry, is regular.

q

By (2) R™ satisfies (Ry) if and only if (R(”)> is a regular local ring for all prime
q

ideals q of R with height = 1 and q N R € Sing (R). Now let q be a prime ideal
of R™ with heightq = 1 and q N R € Sing (R), and set p = q N R. By inductively
applying Proposition B.58 we obtain

(1) = (R\ ) R®.

If we set B = (R\p) 'R™, then qB is by Lemma B.19.(2) a prime ideal of B.
Moreover, Lemma B.19.(3) yields

Byp = (R<”>)q.

So if B is normal, then Byp is normal by Proposition B.7, and therefore (R(”)) is
q

normal. Since height ¢ = 1, this implies by Theorem B.43 that (R(”)> is regular.
q
Thus, if (Rp)(") is normal for all p € S,,, then R™ satisfies Serre’s condition (Ry).

Assume now that B is not normal. Then there is a prime ideal i of B such that
B is not regular. By Proposition A.20.(2) there is a prime ideal q’ of R™ with
i = q'B. In particular, we have heighti = height ¢’ B < 1 by Proposition A.20.(1),

and (R(")) = Byp = Bi (see Lemma B.19.(3)) is by Corollary B.9 not normal.
q/
Therefore, (R(”)) ,» and hence R™ is not regular by Corollary B.40. So if there is
q

p € S, such that (Rp)(n) is not normal, then R(™ does not satisfy (R;).

This follows from (1) and (3). O
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C. Cohen—Macaulay Rings

Proposition C.1. Let R be a local Noetherian ring, and let M be a finite non-zero
R-module. Then depth M < dim M.

Proof. See [38, Proposition 1.2.12]. O

Definition C.2. Let R be a Noetherian local ring. A finite R-module M # 0 is a Cohen-
Macaulay module if depth M = dim M. If R is a Cohen-Macaulay module over itself, then it
is called a Cohen-Macaulay ring. A mazimal Cohen-Macaulay module is a Cohen-Macaulay
module M such that dim M = dim R.

If R is an arbitrary Noetherian ring, then M is a Cohen-Macaulay module if My, is a
Cohen-Macaulay module for all maximal ideals m € Supp (M). For M to be a maximal
Cohen-Macaulay module we also require that M, is a maximal Cohen-Macaulay Ry,-module
for each maximal ideal m of R. As in the local case, R is a Cohen-Macaulay ring if it is a
Cohen-Macaulay module over itself.

Remark C.3. Any zero-dimensional ring is Cohen—Macaulay.

Theorem C.4. Let R be a Noetherian ring, and let M be a Cohen—Macaulay R-module.
Then for any multiplicatively closed subset U of R the localization U~'M is also Cohen—
Macaulay. In particular, M, is Cohen-Macaulay for every p € Spec (R).

Proof. See [38, Theorem 2.1.3.(b)]. O
Corollary C.5. A Cohen—Macaulay ring satisfies Serre’s condition (Sx) for any k € N. [

Theorem C.6. Let R be a Noetherian local ring, and let M be a finite R-module. Then
M is Cohen—Macaulay if and only if its completion M is Cohen—Macaulay.

Proof. See [38, Corollary 2.1.8]. O

Corollary C.7. Let R be a Noetherian semilocal ring. Then R is Cohen—Macaulay if and
only if R is Cohen—Macaulay.

Proof. By definition R is Cohen-Macaulay if and only if Ry is Cohen-Macaulay for each
m € Max (R). By Theorem C.6 this is equivalent to Ry being Cohen—Macaulay for every
m € Max (R). This is by Theorem A.59.(2) and Corollary A.62 the case if and only if

(R)A is Cohen—Macaulay for every m € Max (J:Z) By definition this is equivalent to R
m
being Cohen—Macaulay. O

Proposition C.8. A Noetherian ring R is Cohen-Macaulay if and only if the polynomial
ring R[z] is Cohen-Macaulay.
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Proof. See [39, Proposition 18.9]. O

Corollary C.9. A Noetherian ring R is Cohen-Macaulay if and only if the polynomial
ring Rlx1,...,xy,] is Cohen-Macaulay.

Proof. Apply Proposition C.8 inductively to R[x1,...,z,] = R[x1, ..., Tn-1][zn] O

Proposition C.10. Let R be a Cohen—Macaulay ring, and let i be an ideal of R. If i is
generated by heighti elements, then R/i is a Cohen—Macaulay ring.

Proof. See [39, Proposition 18.13]. O
Proposition C.11. A local Cohen-Macaulay ring is equidimensional.
Proof. See [39, Corollary 18.11]. O

Proposition C.12. Let R be a reduced Cohen—Macaulay ring, and let A be a finite integral
extension of R with R C A C Qr. Then

height p = heightp N R
for every prime ideal p of A.

Proof. Let p be a prime ideal of A, and set ¢ = p N R. By Proposition B.6.(2) the ring
A= (R\ q) ' A is an integral extension of R. Since A is finite over R, also A’ = A ®p R,
is by Proposition A.38 finite over R;. As R is reduced, Propositions A.24 and A.77
yield R, € (R\p)'A Cc (R\p) 'Qr = Qr,. Moreover, Proposition A.20.(2) implies
pA’ € Max (A').

By Theorem C.4 the ring Ry is Cohen-Macaulay. Since the Cohen—-Macaulay property
commutes with completion by Theorem C.6, }/2; is by Theorem A.59.(2) and Proposition C.11
equidimensional, i.e. Ry is formally equidimensional.

Then Lemma B.32 yields

height pA" = height qR,.

Thus, we obtain
height p = height q

by Proposition A.20.(2). Also see [47, Proposition 8.7]. O

C.1. One-dimensional Cohen—Macaulay Rings

Proposition C.13. A one-dimensional reduced Noetherian ring is a Cohen—Macaulay
7ing.

Proof. Let R be a one-dimensional reduced Noetherian ring, and let m € Max (R). If
height m = 0, then Ry, is a Cohen—Macaulay ring (see Remark C.3). So let height m = 1.
Then Ry is a one-dimensional local reduced Noetherian ring by Corollary A.21 and
Lemma A.27. So in the following let R be a one-dimensional local reduced Noetherian ring
with maximal ideal m. We have to show that m™8 = ().
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So assume m*® = (). Then any z € m is a zerodivisor. Thus,

mCR\R®= (] »p
peMin (R)

by Proposition A.47, and hence m € Min (R) by Theorem A.2, and since m is prime. This
implies height m = 0, contradicting the assumption.
Hence, there is an z € m™2, and (x) is a maximal regular sequence in R since

depth R < dim R = heightm =1

by Proposition C.1. In particular, we have depth R = dim R, and hence R is Cohen—
Macaulay. ]

Theorem C.14. Let R be a one-dimensional local Cohen—Macaulay ring. Then R is
analytically reduced if and only if R is a finitely generated R-module.

Proof. See [23, Chapter II, Theorem 3.22]. O

Corollary C.15. Let R be a reduced one-dimensional semilocal Cohen—Macaulay ring.
Then R is analytically reduced if and only if R is a finite R-module.

Proof. By Lemma A.68 R is analytically reduced if and only if Ry, is analytically reduced
for every m € Max (R). This is by Proposition A.20.(2) and Theorem C.14 equivalent to
R = R (see Corollary B.8) being a finite Ry,-module for all m € Max (R) since Ry, is by
Lemma A.27 reduced for every m € Max (R). By Lemma A.42 this is the case if and only
if R is a finite R-module. O

Corollary C.16. Let R be a one-dimensional semilocal Cohen—Macaulay ring. If R is
analytically reduced, then & € Rz C R for any J € Rpy.

Proof. Since R is analytically reduced, we have R € Rr by Remark 2.6.(1) and Corol-
lary C.15. Hence, the statement follows from Lemmas 2.11 and 2.12. O

C.2. Canonical Module

Definition C.17. Let R be a ring, and let M be an R-module. The injective dimension
of M, denoted by inj dim M or inj dimp M, is the smallest integer n for which there exists
an injective resolution I* of M with I = 0 for all m > n. If there is no such n, the
injective dimension of M is infinite.

Definition C.18. Let R be a local ring with maximal ideal mg, and M be a finite non-zero
R-module. Then the number

r(M) = dimp/p , Exti?" ™ (R/mp, M)

is called the type of M.
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Definition C.19. Let R be a local Cohen—Macaulay ring. A maximal Cohen—Macaulay
module wg of type 1 and of finite injective dimension is called a canonical module of R.

Let R is an arbitrary Cohen—Macaulay ring. A finite R-module wg is a canonical module
of R if (wg),, is a canonical module of Ry, for all m € Max (R).

Theorem C.20. Let R be a local Cohen—Macaulay ring, and let wr and W be canonical
modules of R.

(1) The canonical modules wr and Wy are isomorphic.

(2) We have Hompg (wr,wy) = R, and any generator ¢ of Homp (wg,wp) = R is an
isomorphism.

(8) The canonical homomorphism R — Endg (wr) is an isomorphism.
Proof. See [38, Theorem 3.3.4]. O

Theorem C.21. Let R and A be local Cohen—Macaulay rings, and let ¢: R — A be a
local homomorphism such that A is a finite R-module. If the canonical wr of R exists, then
the canonical module wa of A exists, and

wy = Ext(}%im R=dimA (4 wp).
Proof. See [38, Theorem 3.3.7.(b)]. O

Theorem C.22. Let R be a local Cohen—Macaulay ring, and let wr be a finite R-module.
Then the following conditions are equivalent:

(a) wg is the canonical module of R.

(b) For any Cohen—Macaulay modules M of R we have
(1) Ext%mR_dimM (M,wpr) is a Cohen—Macaulay R-module of dimension dim M,
(2) Extly (M,wg) =0 for all i # dim R — dim M, and

(8) there is an isomorphism
M — EXthim R—dim M (EXt%m R—dim M (M, wR)wa)

which in the case dim M = dim R is the natural homomorphism from M into
its bidual with respect to wg.

(c) For any mazximal Cohen—Macaulay modules M of R we have
(1) Homp (M,wg) is a mazimal Cohen—Macaulay R-module,
(2) Extl (M,wg) =0 fori >0, and

(8) the natural homomorphism
M — HomR (HOIIIR (M, wR),wR)

is an isomorphism.
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Proof. See [38, Theorem 3.3.10]. O

Proposition C.23. Let R be a Cohen—Macaulay ring, and let wg be a canonical module
of R. If R is generically Gorenstein, i.e. if Ry is Gorenstein for all p € Min (R), then wg
can be identified with an ideal of R.

C.3. Gorenstein Rings

Definition C.24. A Noetherian local ring R is a Gorenstein ring if inj dimp R < co. A
Noetherian ring is a Gorenstein ring if Ry is a Gorenstein ring for every m € Max (R).

Proposition C.25. A Gorenstein ring is Cohen—Macaulay.

Proof. Let R be a Gorenstein ring. Then by definition Ry, is Gorenstein for every m €
Max (R). Hence, Ry, is Cohen-Macaulay for every m € Max (R) by [38, Proposition 3.1.20].
This implies that R is Cohen—Macaulay (see Definition C.2). O

Theorem C.26. Let R be a local Cohen—Macaulay ring. Then the following conditions
are equivalent:

(a) R is Gorenstein.
(b) The canonical module wr of R exists, and it is isomorphic to R.

Proof. See [38, Theorem 3.3.7.(a)]. O
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D. Valuations

D.1. Valuation Rings

Definition D.1. Let @ be a ring with Q™ = Q* having a large Jacobson radical.

(1) A waluation ring of @ is a subring V of @ with V' # @ such that the set Q \ V is
multiplicatively closed.

(2) Let V be a valuation ring of Q). Then for any subring R of V with Qr = @ we call
V' a wvaluation ring over R.

(3) If R is a subring of Q with Qr = @, the set of valuation rings of @) over R is denoted
by Vr.

Lemma D.2. Let QQ be a ring with Q™8 = Q* having a large Jacobson radical. A valuation
ring V' of Q is integrally closed in Q, and Q = Qv is the total ring of fractions of V.

Proof. See [23, Chapter I, Lemma 2.1]. O

Theorem D.3. Let Q be a ring with Q™ = Q* having a large Jacobson radical, and let V
be a subring of Q with V # Q and Qv = Q. Then the following statements are equivalent:

(a) V is a valuation ring of Q.

(b) For any x € Q™% we have either x €V orx~t € V.

(c) The set of reqular principal fractional ideals of V' is totally ordered by inclusion.

(d) The set Ry is totally ordered by inclusion.

(e) For any subring V-C A C Q there is a prime ideal p € Spec (V') such that pA = A.
Proof. See [23, Chapter I, Theorem 2.2] and Lemma D.2. O

Remark D.4. Let @ be a ring with Q"% = Q* having a large Jacobson radical, and let V'
be a valuation ring of Q.

(1) Every finitely generated regular fractional ideal of V' is principal, see [23, Chapter I,
Proposition 2.4.(2)].

(2) Recall that every invertible fractional ideal of any ring is regular and finitely generated,
see [23, Chapter II, Remark 2.1.(3) and Proposition 2.2.(2)]. Hence, Rj, consists
by (1) of the regular principal fractional ideals of V.
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(3) The set Ry, is by (2) and Theorem D.3.(c) totally ordered by inclusion.

Remark D.5. Let @ be a ring with Q™% = Q* having a large Jacobson radical, and let V'

be a valuation ring of Q). Then V has a unique regular maximal ideal, denoted by my .

In particular, we have V' \ V* C my. In fact, V has by [23, Chapter I, Theorem 2.2] a

unique maximal ideal my containing all regular non-units of V. Moreover, V is a Marot

ring, i.e. any regular ideal i of V' is generated by its regular elements, and hence i C my .
The infinite prime ideal of V is

Iy =V : @ € Spec (V) N Spec (Q),

see [23, Chapter I, Proposition 2.2.(3a)].
Remark D.6. Let @ be a ring with Q™% = * having a large Jacobson radical, and let V'

be a valuation ring of Q. If V is a domain, then my is the unique maximal ideal of V', and
hence V is local.

Definition D.7. Let @ be a ring with Q™% = Q* having a large Jacobson radical, and let V'
be a valuation ring of Q. We include Rj, into the totally ordered monoid Ry, ., = R}, U{Iv },
where 33 = Iy if {J,J} ¢ RY,, and the order is given by J < Iy for all 3 € R, and J < J
if gy Jfor 3,3 € Ry, cf. Remark D.4.(3).

Proposition D.8. Let Q) be a ring with Q% = Q* having a large Jacobson radical, and
let V' be a valuation ring of Q.

(1) We have
Iy=(13=1()73
JERy  JERL
(2) For any x € Q we have
(] T€RV&
JeRy
z€d

with Nyezer, I = Iv if and only if v € Iy .

(3) Let x € Q\ Iy, and let y € Q*°8. Then

if and only if zy~t € V \ my.

Proof. (1) Let z € Iy, and let y € Q*8. Then y~! € Q™8, and zy~! € V by definition
of Iyy. Therefore, x € yV. Since Q) is Marot, and hence any J € Ry is generated by
JT8 C ™8, this implies Iy C (er,, J. Thus, Iv C Nyer, J-
Since Ry, C Ry, we have (\3er, I C (yer:, I- Hence, there is an € (3eg: J. Let
now y € Q. Then there are a € V and b € V™8 such that y = ab~!. Moreover, we

288



D.1. Valuation Rings

have x € bV since bV € R},. Thus, zy = zab~! € V, and therefore z € V : Q = Iy.
So the chain of inclusions

Iy C ﬂ JC ﬂ JClIy
JERy  JERY

yields the claim.

(2) If z € Q\ Iy, then N,c5er, I is a regular principal fractional ideal of V, see [23,
Chapter I, Proposition 2.4(3b)]. Therefore, ,c5cr, J € Rj, by Remark D.4.(2).
The second part of the claim follows immediately from (1).

(3) See [23, Chapter I, Proposition 2.4.(3b)]. O

Remark D.9. Let @ be a ring with Q™% = Q* having a large Jacobson radical. If V is a
valuation ring of @, then Iy is already the intersection of all regular ideals of V', see [23,
Chapter I, Proposition 2.4].

Definition D.10. Let @ be a ring with Q"¢ = Q* having a large Jacobson radical, and
let V' be a valuation ring of Q). Considering Proposition D.8 we define the valuation of V'
as the map

pv: Q — R*V,oo
x = py (z) = ﬂ J.
JeRy
el

Proposition D.11. Let Q be a ring with Q™8 = Q* having a large Jacobson radical, and
let V' be a valuation ring of Q. For any x,y € Q the valuation py of V' satisfies

(V1) py (zy) = pv (z) pv (y) and
(V2) pv (z +y) = min{py (z), pyv (y)}-
Proof. See [23, Chapter I, Proposition 2.13]. O

Lemma D.12. Let Q be a ring with Q*® = Q* having a large Jacobson radical, let V' be
a valuation ring of Q, and let x € Q™8. Then

(1) py(x) =2V, and

(2) wy (™) = (uy ()"

Proof. (1) For any z € @ we have 2V C py(z) by Definition D.10. If x € Q8 then
zV € Ry, by Remark D.4.(2). Since x € 2V, Definition D.10 yields py (z) C V.

(2) We have
V= py (1) = py (227) = pv (@) v (7).

Since uy(z) € R}, by Proposition D.8.(2), this implies uy (z71) = py(z) : V =
(v (x)) ", see Section 2.1. O
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Proposition D.13. Let Q be a ring with Q™% = Q* having a large Jacobson radical, and
let V' be a valuation ring of Q. Then

(1) V={zeQ|pv(z) =V}
(2) V' ={z € Q" | py(x) =V},
(3) my ={z€Q|py(z) >V}, and
(4) Iv ={z € Iv | pv(z) = Iv}.
In particular, V* = (V \ my)™® and Iy C my.

Proof. (1) If x € V, then obviously py(z) > V. Conversely, if x € Q with uy(z) >V,
then x € py(x) C V. Hence, V={x € Q | py(z) > V}.

(2) Let x € V*. Then x € V™ C Q™8 and z~! € V, and hence py (z), py (z71) >V
by (1). Since py(z=') = (uy(z))”" by Lemma D.12.(2), this implies py (z) =
py (=) = V.

Let now = € Q**® with py(z) =V, ie. 2V =V by Lemma D.12.(1). Then z € V by
(1), and there is a y € V such that zy = 1, i.e. x € V*.

(3) Set m={ze€ Q| py(x) >V} If 2,y € m, then z +y € m by Proposition D.11 (see
Equation (V2)). For z € V we have uy (2) > V, and hence zz € m by Proposition D.11
(see Equation (V1)). Thus, m is an ideal of V', and by (1) and (2) it contains all
regular non-units of V. Thus, m = my, see Remark D.5.

(4) This follows from Proposition D.8.(2). O

Remark D.14. Let @ be a ring with ()**® = Q* having a large Jacobson radical, and let V'
be a valuation ring of Q.

(1) Let z,y € Q with puy (z) # pv (y). Since Ry, is totally ordered by reverse inclusion,
we have iy (z + ) = min {pv (z) , v ()}

(2) If Q is a field, then Proposition D.8.(2) and Lemma D.12.(1) yield Iy = (0).

Proposition D.15. Let Q be a ring with Q™8 = Q* having a large Jacobson radical, and
let V' be a valuation ring of Q, and let x,y € Q with x —y € Iyy. Then py (z) = py (y).

Proof. Recall that by Proposition D.8.(1) and Definition D.10

Iy = ﬂ JcC ﬂ J=py(x).
JERL  JERL
x€J
This implies y — x € uy (z), and hence y = x +y — = € py (x). Therefore, we obtain

pv (y) C py ().
Interchanging x and y also yields py (z) C py (y), and thus py () = py (y). O
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Proposition D.16. Let Q be a ring with Q™ = Q* having a large Jacobson radical, and
let V' be a valuation ring of Q such that Iy € Max (Q). Then V/Iy is a valuation ring of
Q/Iyv, and there is an order preserving isomorphism of monoids ¢: R;(/,oo — R?//Iv,oo such
that the diagram

commutes, where w: Q — Q/Iy is the canonical surjection.

Proof. Let T,y € (Q/Iy)\(V/Iy), and assume that 7y € V/Iy. Then there are z,y € Q\V
and z € V such that 7 (x) =7, 7 (y) =7 and 7 (2) = Ty. Since 7 (xy — 2) = 7 (z) 7 (y) —
7 (2) =0, we have xy — 2z € Iy C V, and hence zy € V. But this is a contradiction as
xz,y € Q\V,and V is a valuation ring of @, i.e. @\ V is multiplicatively closed. Therefore,
since /Iy is the field of fractions of V/Iy,, V/Iy is a valuation ring of Q/Iy.

Obviously, the map

(Z): 7g'*V,oo — R;/Iv,oo
J—7(J)

is an inclusion preserving homomorphism of monoids.
Let z € Q. Then

¢(uv(l‘))=7f( N ﬁ)

z€JERT,

C ﬂ 7 (J)

z€JERT,

c N 3
W(x)GJER’{//IV

= kv, (m(x)).

Moreover, we have

¢! (MV/IV (m (@)) =7 ! f J

w(z)ejeR;ﬂV

= N 7®

This implies ¢ o py (z) = py/r, o 7 (). O
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Proposition D.17. Let Q) be a ring with Q™% = Q* having a large Jacobson radical, let
p € Max (Q), and let V' be a valuation ring of Q/p. If m: Q@ — Q/p is the canonical
surjection, then m=1 (V') is a valuation ring of Q with infinite prime ideal Ii—ivy =p, and
there is an order preserving isomorphism of monoids ¢: R;—I(V),oo — Rt/,oo such that the
diagram

Q———Q/p

“Trl(v)l LUV

* = *
m=1(V),00 @ RV,OO

commutes.

Proof. Let z,y € Q\ 71 (V), and assume that zy € 7! (V). Then we have 7 (z),7 (y) €
V and 7 (z) 7 (y) = 7 (zy) € V. But this is a contradiction since V' is a valuation ring of
Q/p. Therefore, 7= (V) is a valuation ring of Q.

For any x € Q we have 2Q C 7! (V) if and only if 7 (2Q) = 7 (z) 7 (Q) C V. Thus,
x € I-1yy if and only if 7 () € Iy = 0 (see Remark D.14.(2)), and this is the case if and
only if x € p. This implies I.—1(y) = p.

The remaining part of the statement follows now from Proposition D.16. O

Corollary D.18. Let Q be a ring with Q™% = Q* having a large Jacobson radical, and
let p € Max (Q). There is a one-to-one correspondence between the valuation rings of Q
with infinite prime ideal p and valuation rings of Q/p with infinite prime ideals <O>Q/p.
Moreover, if V and V are corresponding valuation rings of Q and Q/p, respectively, then
there is an order preserving isomorphism of monoids ¢: Ryoo — R*V,oo such that the
diagram

Q———Q/p

| |

* = *
RV,OO P RV,OO

commutes, where m: Q@ — Q/p is the canonical surjection.

Proof. This follows from Propositions D.16 and D.17. Also see [23, Chapter I, Proposi-
tion 2.17]. O

Lemma D.19. Let Q be a ring with Q™ = Q* having o large Jacobson radical, let V' be a
valuation ring of Q, and let U be a multiplicatively closed subset of V' such that py (u) =V
for allu € U. We denote by a: Q — U~1Q the localization map.

(1) We have a Y (U~V) = V. In particular, U7V C U71Q.

(2) The set U~'Q \ U™V is multiplicatively closed. In particular, if (U71Q)"® =
(UT1Q)" and U'Q has a large Jacobson radical, then U™V is a valuation ring of
U~'Q (see Definition D.1).
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Proof. (1) Since py(u) =V for all u € U, Lemma A.35.(1) yields

ofl(UflV) ={x € Qr | ux € V for some u € R\ m}

C{r € Qr|ux eV for someuecV\my}
={z € Qr | uxr € V for some u € Qr with uy(u) =V},

where the last equality follows from Proposition D.13.(1) and (3). So with Propo-
sition D.13.(1) there is for any € 7~/ (U"'V) a u € Qg with py(u) = V such
that

V < pv(uz) = pv (wpv (2) = py(z)

by Proposition D.11, and hence = € V. Therefore,
<f4(U‘1V)::V
and, in particular, U~'V C U~1Q.

Let 3,5 € U-lQ\ UV, ie. a,c € Q\V, and suppose that 2o € U~'V. Then

there is an e € V and an f € U such that

ac ac (&

bd  cd  f’
i.e. there is a u € U such that
u(ace — cdf ) = 0.

Since b,d,u € I, and since U is multiplicatively closed, we have bdu € U. By
assumption this implies py (bdu) = V', and hence bdu € V' by Proposition D.13.(1).
So e € V implies

uacf = ubde € V.

Since u, f € U, we have uf € U, and hence py(uf) = V by assumption. Thus,
Propositions D.11 and D.13.(1) yield the contradiction

V < py(uacf) = py (uf)py(ac) = py(ac) < V

since ac € Q \ V as V is a valuation ring of @, i.e. @ \ V is multiplicatively closed,
and a,c€ Q\V. O

D.2. Valuations

Definition D.20. Let G be an additive abelian totally ordered group. We include G into
the totally ordered commutative monoid G, = G U {00}, where oo is a symbol such that
T+ 00 =00, 00+ 0o =00, and oo > z for all x € G.
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Definition D.21. Let A be a ring. A valuation of A is a map v from A onto G¥%, = (G"),
where G” is an additive abelian totally ordered group, satisfying

v (ey) = v (@) + v (y) (D.1)

and
v(z+y) 2 min{v(z),v(y)} (D.2)

for all x,y € A.
Let v: A — G%, a valuation of A.

(1) For x € A the element v (z) € G is called the value of x in the valuation.
(2) The group G" is called the value group of the valuation.

(3) The valuation v is said to be trivial if its value group G” is trivial, i.e. G¥ = {0}.
Otherwise, v is called non-trivial.

(4) If a subfield k& C A is specified as ground field, then v is said to be a valuation over k
if v is trivial on k, i.e. if v (¢) = 0 for all ¢ € k.

In the following, we collect some properties of valuations which follow immediately from
the definition.

Lemma D.22. Let A be a ring, and let v be a valuation of A.
(1) We have v (1) = 0. Moreover, if v is non-trivial, then v (0) = oco.
(2) For any x € A* we have v (z~ ') = —v (z). In particular, v (z) < co.

(3) Let x € A. If there is n € N such that ™ = 1, then v(xz) = 0. In particular,
v(—1)=0.

(4) For any x € A we have v (—z) = v (z).
(5) If 2,y € A such that v (z) # v (y), then
v(z+y) =min{v(z),v(y)}.
Proof. (1) For any x € A we have
v(e)=v(z-1)=v()+v(l),

and hence v (1) = 0.
If v is non-trivial, then there is an x € A with 0 # v () € G, and hence

v(0)=v(0z)=v(0)+v ()

implies v (0) = oo since otherwise v (z) = 0 yields a contradiction to the assumption.

294



D.2. Valuations

(2) If x € A*, then (1) yields
0=v(1) :V(a:'xA) :V(x)—i—y(x*l).

(3) Assume v(x) # 0, i.e. v(z) > 0 or v(z) < 0 since G” is totally ordered. Then we
have by (1)

0=v(l)=v(z")=v(zr)+ V(:E”_1> S V(m”_l) S...sv(x)s0
which is a contradiction.

(4) By (3) we have
v(i—z)=v(-1)+v(z)=v(x).

(5) Since v (z) # v (y), we may assume that v (x) > v (y). Then we have by the definition
of a valuation

v(z+y)>min(v(z),v(y) =v(y).

Moreover, also using Lemma D.22.(4) yields
v (x4 y—2) > min (v (2 +y) v (—2)) = min (v (& 4 y) v (2))

Now assume v (z) < v (z + y). Then
V() = v (@ +y—2) 2 min (@ +y),v (@) = v ().

But this is a contradiction to the assumption v (z) > v (y). Thus, we have v (z) >
v (z +y). This implies

viy) =v(z+y—x)
> min (v (z +y),v (z))
=v(z+y)
> min (v () ,v (y))
=v(y),
and hence v (z +y) = v (y) = min (v (z),v (y)). O
Definition D.23. Let A be a ring, and let v be a valuation of A. The valuation ring of v
Vi={xe€A|lv(z)>0} CA
Moreover, we denote by
m,={z€A|v(z)>0}CV,
the prime ideal of the valuation, and
I=v'(0)={z€A|v(z)=o00}

is called the infinite prime ideal of v.
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Remark D.24. Let A be a ring, and let v be a valuation of A. Note that in fact V, is a

subring of A. If v is non-trivial, then V,, is not equal to A since v is surjective. Moreover,

m, is a prime ideal of V,,, and the infinite prime ideal I, is a prime ideal of both V,, and A.
Also note that Lemma D.22.(2) implies

V;={zxec A" |v(x)=0}.
Remark D.25. Let @ be a ring with large Jacobson radical such that Q& = Q*.

(1) If v is a non-trivial valuation of @, then V,, is a valuation ring of @ as in Definition D.1.

(2) If V is a valuation ring of @, then the map py is by Proposition D.11 a valuation of
Q.

The following proposition characterizes which subrings of a ring A are rings of valuations
of A.

Proposition D.26. Let A be a ring, let V' be a subring of A, and let p be a prime ideal
of V.. Then the following are equivalent.

(a) For each subring R of A and any ideal q of R with V. C R and qN R =p we have
V =R.

(b) For any x € A\'V there is an y € p such that zy € V' \ p.
(¢) There is a valuation v of A with V =V, and p = m,.
Proof. See [48, Proposition 1]. O

Proposition D.27. Let A be a ring, and let v be a non-trivial valuation of A. Then the
infinite prime ideal of v is
I,=V,: A

Proof. Let x € I,,. Then we have for all y € A
v(zy) =v(x)+v(y) =00+ v(y) =o0>0.

This yields zy € V,,, and hence z € V,, : A.

Now let G¥ be the value group of v, and assume there is = € V, : A such that v (z) < oco.
Since GV is a group, we have —v () € G¥, and there is y € A with v (y) = —v (z) as v is
surjective. Moreover, there is z € A with v (z) < 0 since v is non-trivial.

Thus, we have yz € A, and therefore xyz € V,, since x € V, : A. Moreover, we have

vizyz) =v(z)+v(y)+v(z)=v(z)<0.

But this is a contradiction to zyz € V,, = {a € A | v (a) > 0}. Hence, we have v (z) = oo,
and thus z € I,,.
Then I, CV,: Aand V,,: AC I, yield I, =V, : A. O
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Definition D.28. Let A be a ring, and let v and v/ be valuations of A with value groups
GY, and Gg;, respectively. Then V/and V' are called equivalent if there is an order preserving
isomorphism ¢ from G%, onto G¥%, such that

Y (2) = dov ()
for all x € A\ I,,. We will identify equivalent valuations.

Proposition D.29. Let A be a ring, and let v and ' be valuations of A. Then v and v/
are equivalent if and only if V, =V, and my, = m,.

Proof. See [48, Proposition 2]. O

Proposition D.30. Let Q be a ring having a large Jacobson radical such that Q* = Q*°8,
and let v be a valuation of Q. Then m, =my, and I, = Iy, .

Proof. See [23, Chapter I, Proposition 2.12]. O

Corollary D.31. Let QQ be a ring having a large Jacobson radical such that Q* = Q°8,
and let v and V' be valuations of Q. Then v and V' are equivalent if and only if V,, = V.

Proof. This follows from Remark D.5 and Propositions D.29 and D.30. 0

Corollary D.32. Let Q be a ring having a large Jacobson radical such that Q* = Q'°8.
Then there is a bijection

V= py,
V, v

between the valuation rings and the valuations of Q.
In particular, we have for any valuation ring V of Q

V=V,
and for any valuation v of Q) we obtain

v =y,
(modulo equivalence of valuations).

Proof. This follows from Remark D.25 and Corollary D.31. Also see [23, Chapter I,
Propositions 2.12 and 2.13]. O

Proposition D.33. Let A be a ring, let v be a valuation of A, and let x,y € A with
x—yel, Thenv(z)=v(y).
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Proof. Let z,y € A such that z —y € I, and assume v (x) # v (y). Since v (y) = v (—y)
by Lemma D.22.(4), Lemma D.22.(5) yields

00 = v (& — y) = min (v (), (—y)) = min (v (z) ¥ (1) .
This implies v (z) > oo and v (y) > oo, and hence
v(z) =o00=v(y)

since v (z),v (y) € G%. However, this is a contradiction to the assumption v (z) #
v (y). O

Proposition D.34. Let A be a ring, and let v be a valuation of A. Then there is a
valuation p of the domain A/I, such that the diagram

A—"— A/,

| A

G%
commutes, where m: A — A/, is the canonical surjection. Moreover, we have
Ve=V,/1,

and
I, = <O>A/IV :

Proof. Since by Proposition D.33 v (z) = v (y) for all z,y € A with x —y € I,,, the map

w: AL, — G5,
z+1,—v(x)

is well-defined, and it is clearly a valuation of A/I,. The ring of yu is
Vi={a+1, €A/l |p(x+1,)=v(x)>0}=V,/I,. O

Proposition D.35. Let A be a ring, let p be a prime ideal of A, and let p be a valuation of
A/p with I, = <0>A/p' Then there is a valuation v of A with I, = p such that the diagram

commutes, where w: A — A/p is the canonical surjection. Moreover,

Vi/p =V,
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Proof. Obviously, the map

viA— GH

z s pi(z+p)

is a valuation of A.
For x € p we have

v(z)=p(x+p)=p0+p)=o0,
and hence z € I,. This implies p C I,
Let now z € I,. Then
oo = v(x) = p(z+¥).
This implies x +p € [, = <0>A/p7 i.e. x +p C p. This implies z € p, and hence I, C p.
The remaining part of the statement follows now from Proposition D.34 O

Corollary D.36. Let A be a ring, and let p be a prime ideal of A. There is a one-to-one
correspondence between valuations of A with infinite prime ideal p and valuations of A/p
with infinite prime ideal <0>A/p' Moreover, if v and T are corresponding valuations of A
and A/p, respectively, then there is an additive abelian totally ordered group G such that

the diagram
A . Afp
Goo

commutes, where m: A — A/p is the canonical surjection. Also see [23, Chapter I,
Proposition 2.17]. O
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E. Gradings and Derivations

E.1. Gradings

Definition E.1. Let R be a ring, and let G be an additive abelian group.

(1) A finite (G-)grading of R is a system
R G
(= )peG € (End (R))

of group endomorphisms such that

for all p,q € G and

If there is a finite G-grading of R, then R is called finitely (G-)graded.
(2) Let (ﬂﬁ) o R be a finite G-grading of R, and let M be an R-module. A finite
P
(G-)grading of M is a system
M G
(= )peG € (Endg (M))

of group endomorphisms such that

(mp () (ma (M) € mft (M)
for all p,q € G and
M= P rf(M).
peEG

If there is a finite G-grading of M, then M is called finitely (G-)graded.

Definition E.2. Let R be a Zariski ring (see Definition A.57), and let G be an additive
abelian group.

(1) A system of group endomorphisms

(”5);06@ € (End (R))®
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is called a (G-)grading of R if for any n € N it induces a finite G-grading

(") e = (7F)
pEG p peEG

of the ring R/n%.
If there is a G-grading of R, then R is called (G-)graded.

(2) Let R be G-graded, and let M be a finite R-module. A system of group endomor-
phisms

(w;yf )peG € (Endg (M))¢

is called a (G-)grading of M if for any n € N it induces a finite G-grading

M /n% M —r
(") o= (77)
peG peG

of the R/n%-module M/wi M, where R/n% is graded by the induced grading.
If there is a G-grading of M, then M is called (G )-graded.
In the following, let R be a Zariski ring (see Definition A.57), and let G be an additive
abelian group such that there is a G-grading (71'5) of R.
peEG

Definition E.3. Let M be a G-graded R-module, and let (azp)peG € M%. The sum > peG
is called convergent if there is an x € M such that for any n € N there is a finite subset
E,, C G such that for all finite subsets £ C G with E,, C E we have

x— Y xp€nhM.
pEE

We also say that >, x) converges to x € M, and we write
z=3 2,
peG

Proposition E.4. Let M be a G-graded R-module. Then
x = Z Wf(x)

peG

Jor any x € M. Conversely, if v = 3 cqxp with z, € FE(M) for all p € G, then
xp = 7 (x) for allp € G.

Proof. See [49, (1.1)]. O
Definition E.5. Let M be a G-graded R-module.

(1) Let z € M. For any p € G we call ), = W]f,w(x) the p-th homogeneous component of
x. If FIJ)W(.T) = x for some p € G, then x is called homogeneous, and p is the degree of

x. We write deg (z) for the degree of x.
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(2) For any p € G we set

M, = {x € M | x homogeneous with deg (z) = p}.

(3) An R-submodule N of M is called homogeneous if

W;)W(N)CN

for all p € G.
Proposition E.6. Let M be a G-graded R-module, and let N be an R-submodule of M.
(1) N is homogeneous if and only if it is generated by homogeneous elements.

(2) Let N be homogeneous. Then

is a G-grading of N.

(3) Let N be homogeneous. Then the G-grading of M induces a G-grading of the R-
module M /N .

Proof. See [49, (1.3), (1.4) and (1.5)]. O

Lemma E.7. Let M be a G-graded R-module, and let N be a homogeneous R-submodule
of M. For any p € G we have
(M/N), = (Mp)

(with respect to the induced grading on M /N, see Proposition E.6.(3)), where w: M — M/N
is the canonical surjection.

Proof. Since we consider the induced grading on M /N, there is for any p € G a commutative

diagram
7I.]\/I
M —"—— M

ﬁl lw
M/N —— M/N.

M/N
Tp

This implies
7 (My) = momd (M) = 7/ o 7 (M) = xl/N (M/N) = (M/N),. =

Definition E.8. Let M and N be G-graded R-modules. A homomorphism ¢: M — N is
called homogeneous (of type ¢ € G) if

o(m (M) € o (N)

orall peG.
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Proposition E.9. Let M and N be G-graded R-modules, and let ¢: M — N be homoge-
neous of type q € G. Then

o(mp! (1)) = mply(6(2))
forallz e M.
Proof. See [49, page 165]. O

E.2. Derivations

Definition E.10. Let k be a valued field. An analytic k-algebra is is a complete local
Noetherian ring with coefficient field .

Theorem E.11. Let k be a valued field, and let R be an analytic k-algebra.

(1) Letd be a k-derivation of R such that mp is generated by eigenvalues of 0. Then there
is exactly one ki-grading (ﬂf) ok of R such that ﬂf(R) consists of p-eigenvectors
P
of 0 for any p € k.

(2) Let (71'5) o be a ky-grading of R. Then there is exactly one k-derivation 0 of R
P
such that ﬂ'f(R) consists of p-eigenvectors of 0 for any p € k.
Proof. See [49, Satz (2.2) and (2.3)]. O

Definition E.12. Let k be a valued field, and let R be an analytic k-algebra. A k-derivation
0 of R is called diagonalizable if mp is generated by eigenvectors of 0.

Theorem E.13. Let k be a field, let A = k[[X1,...,X,]], let i be an ideal of A, and let
R = A/i. We denote by m: A — R the canonical surjection, and we write z; = w (X;) for
alli=1,...,n. Then for any w € k™ the following are equivalent:

(a) R is ky-graded, and x; is homogeneous with deg (x;) = w; for anyi=1,...,n.

(b) There is a diagonalizable k-derivation dr of R such that Or(z;) = wx; for all
1=1,...,n.

(¢) There is a diagonalizable k-derivation 04 of A such that 94(X;) = w; X; for all
1=1,...,n and i is invariant under 0 4.

(d) The ideal i is homogeneous with respect to weighted polynomial degree with weights w.
If these equivalent conditions hold, then there is a commutative diagram

A% 9

ﬂi iﬂ (E.1)

R— R.
oRr

Moreover, the grading on R is induced by the grading on A corresponding to 0 4.
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For the proof of Theorem E.13 we need the following Lemmas.

Lemma E.14. Let k be a field, let A = k[[X1,...,X},]], let i € A be an ideal, and let
R = A/i. We writew: A — R for the canonical surjection, and x; = 7 (X;) fori=1,...,n.
Let dp be a k-derivation of R. For any

n

(¥i)i=1,..n € H 7" (0r(x:))

=1

there is a k-derivation 04 of A such that the diagram

L S|
ﬂl lﬂ
R— R
oR
commutes, and 04X; = y; for all i = 1,...,n. If there is (wi)izl,...,n € k™ such that
Opx; = wix; for alli=1,...,n, then we may have 04 X; = w; X;.

In particular, for any diagonalizable k-derivation 0r of R there is a diagonalizable
k-derivation 04 of A with O om = wod 4.

Proof. See [49, (2.1)]. O

Lemma E.15. Let k be a field, let R be a ki -graded analytic k-algebra, and let 0 be the
k-derivation of R corresponding to the grading (see Theorem E.11.(2)). Then an ideal i of
R is homogeneous if and only if it is invariant under 0.

Proof. See [49, (2.4)]. O

Lemma E.16. Let k be a field, let A be a ky-graded analytic k-algebra, and let 0 be the k-
derivation of A corresponding to the grading (see Theorem E.11.(2)). If i is a homogeneous
ideal, then the induced grading on R = A/i (see Proposition E.6.(3)) corresponds to the
derivation

: R— R,
r+i—0(z)+i

(see Theorem E.11.(2)).

Proof. First note that 0 is well-defined since i is homogeneous, and hence ?(i) C i by
Lemma E.15.

Let now p € k4, and let € R,. Then by Lemma E.7 there is an element X € A, such
that = X +1i. Theorem E.11.(2) yields §(X) = pX. Thus, we obtain

z)=0(X)+i=pX +i=rpx.

This implies that Wﬁ(R) contains of p-eigenvectors of 9, and hence 9 is by Theorem E.11.(2)
the k-derivation of R corresponding to the induced grading on R. O
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Proof of Theorem E.13. (a) = (b) This follows from Theorem E.11.(2).

(b) = (c¢) Assume (b) holds. Then by Lemma E.14 there is a k-derivation 94 of A such
that 94(X;) = w; X; foralli =1,...,nand d9gom = mod 4. In particular, this implies

71'00,4(1) =0R Oﬂ'(i) = DR(O) = 0.
Thus,
04(i) C ker (m) =1,
i.e. 1 is invariant under 0 4.

(¢) = (d) This follows from Theorem E.11 and Lemma E.15.

(d) = (a) Since i is homogeneous, and deg (X;) = w; for all i = 1,...,n, this follows
from Proposition E.6.(3) as R = A/i.
If the equivalent conditions hold, the commutativity of Diagram (E.1) follows from
Lemma E.14.
Let y € R, and let Y € A such that 7 (Y) = y. Then

Or(y) =drom(Y)
= WODA(Y)
=04(Y) +i.

Thus, the grading on R is by Lemma E.16 induced by the grading on A corresponding to
04. O

Proposition E.17. Let k be a field of characteristic 0, and let R be an analytic k-algebra.
Let 0 be a k-derivation of R, and let i be an ideal of R with 9(i) C i. Then d(p) C p for
any associated prime ideal p of i.

Proof. See [49, (2.5)]. O
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