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Abstract

Using valuation theory we associate to a one-dimensional equidimensional semilocal Cohen–
Macaulay ring R its semigroup of values, and to a fractional ideal of R we associate its
value semigroup ideal. For a class of curve singularities (here called admissible rings)
including algebroid curves the semigroups of values, respectively the value semigroup ideals,
satisfy combinatorial properties defining good semigroups, respectively good semigroup
ideals. Notably, the class of good semigroups strictly contains the class of value semigroups
of admissible rings. On good semigroups we establish combinatorial versions of algebraic
concepts on admissible rings which are compatible with their prototypes under taking
values.

We give a definition for canonical semigroup ideals of good semigroups which characterizes
canonical fractional ideals of an admissible ring in terms of their value semigroup ideals.
Moreover, a canonical semigroup ideal induces a duality on the set of good semigroup
ideals of a good semigroup. This duality is compatible with the Cohen–Macaulay duality
on fractional ideals under taking values.
The properties of the semigroup of values of a quasihomogeneous curve singularity

lead to a notion of quasihomogeneity on good semigroups which is compatible with its
algebraic prototype. We give a combinatorial criterion which allows to construct from
a quasihomogeneous semigroup S a quasihomogeneous curve singularity having S as
semigroup of values.
Using the semigroup of values we compute endomorphism rings of maximal ideals

of algebroid curves. This yields an explicit description of the intermediate steps in an
algorithmic normalization of plane arrangements of smooth curves based on a criterion by
Grauert and Remmert. Applying this result to hyperplane arrangements we determine the
number of steps needed to compute the normalization of a the arrangement in terms of its
Möbius function.
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Overview

Chapter 2 In this chapter we introduce basic concepts for this thesis: fractional ideals,
discrete valuation( ring)s, and fibre products.

Chapter 3 We use valuation theory on one-dimensional Cohen–Macaulay rings to associate
to a class of so-called admissible rings including algebroid curves the semigroup of
values. We prove the compatibility of the semigroup of values with localization as
well as its invariance under completion.

Chapter 4 Based on the properties of the semigroup of values we introduce good semigroups
as a combinatorial counterpart of admissible rings. We study the properties of good
semigroups in particular in relation with the corresponding algebraic concepts.

Chapter 5 On good semigroups we establish a combinatorial counterpart of the Cohen–
Macaulay duality on fractional ideals. We relate the dualities by taking values. In
particular, we characterize canonical fractional ideals in terms of their value semigroup
ideals.

Chapter 6 Extending a result by Kunz and Ruppert we want to describe quasihomogeneous
curves in terms of their semigroups of values. An irreducible quasihomogeneous curve
is determined by the semigroup ring of its semigroup of values. A quasihomogeneous
curve with two branches can be reconstructed from its branches as a fibre product of
their branches over their intersection. In general, however, this construction yields
only an inclusion.

Chapter 7 Considering the properties of the semigroup of values of a quasihomogeneous
curve derived in the previous section we establish a notion of quasihomogeneity on
good semigroups which is compatible with its algebraic prototype. We introduce a
closedness property on quasihomogeneous semigroups which characterizes those quasi-
homogeneous curves that can be reconstructed as a fibre product. Moreover, any good
semigroup satisfying this property is the semigroup of values of a quasihomogeneous
curve.

Chapter 8 Using the semigroup of values we compute explicitly the intermediate steps in a
normalization algorithm based on a criterion by Grauert and Remmert for two kinds
of arrangements: plane arrangements of smooth curves and hyperplane arrangements.

v





Notations

In this thesis, all rings under consideration will be commutative and unitary. We use the
following notations.
`R(M) the length of a module M over a ring R
ei the ith unit generator of a free module
Spec (R) the set of prime ideals of a ring R
Min (R) the set of minimal prime ideals of a ring R
Max (R) the set of maximal ideals of a ring R
R̂ the i-adic completion of a ring R at an ideal i of R, where i is the

Jacobson radical of R if not specified otherwise
R∗ the set of units of a ring R
Rreg the set of regular elements (non-zerodivisors) of a ring R
QR the total ring of fractions of a ring R (see Section A.2)
R integral closure of R in QR (see Definition B.1)
Ireg Ireg = I ∩Qreg

R for an R-submodule I of the total ring of fractions
QR of a ring R

RR the set of regular fractional ideals of a ring R (see Definition 2.5)
CI the conductor of a fractional ideal I of a ring R (see Definition B.22)
VR the set of valuation rings of QR containing R (see Definition D.1.(3))
mV the regular maximal ideal of a valuation ring V (see Remark D.5)
IV the infinite prime ideal of a valuation ring V (see Remark D.5)
qV see Proposition 3.13.(1)
µV the valuation of a valuation ring (see Definition D.10)
Vν the ring of a valuation ν (see Definition D.23)
Qα, Iα see Definition 3.6
ΓR the semigroup of values of a one-dimensional equidimensional Cohen–

Macaulay ring (see Definition 3.14)
ΓI the value semigroup ideal of a regular fractional ideal I ∈ RR of a

one-dimensional equidimensional Cohen–Macaulay ring (see Defini-
tion 3.14)

(E0), (E1), (E2) see Definition 3.19
GS the set of good semigroup ideals of a good semigroup S
MS the maximal ideal of a local good semigroup S
EJ
′

J see Definition 4.60
Fib (F ) see Definition 2.29
Fib (ΓR, w, ζ) see Theorem 6.2.(4) and Lemma 6.13
Fib (S,w, ζ),
Fib (S,w)

see Definition 7.10
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1. Introduction

The parametrization of a curve singularity allows for the definition of the semigroup of
values associated to the singularity by taking the (multi)orders of regular elements.

(
x5 − y2)y = 0

Γ

x 7→
(
t21, t2

)
, y 7→

(
t51, 0

)
For a curve singularity C the normalization splits into a finite product of discrete

valuation rings, i.e.

ÔC ↪→ ÔC ∼=
s∏
i=1
ÔC/pi ∼=

s∏
i=1

C[[ti]],

where p1, . . . , ps are the minimal prime ideals of ÔC . Then on the total ring of fractions
QÔC

of ÔC we have the order

ordt : QÔC
∼=

s∏
i=1
→ (Z ∪ {∞})s,

and the multiplicative group Qreg
ÔC

of non-zerodivisors of QÔC maps onto the additive group
Zs.
The semigroup of values of the curve is then a submonoid of Ns. More generally, a

semigroup of values as a submonoid of Ns for some s can be associated to a one-dimensional
equidimensional semilocal Cohen–Macaulay ring R considering the (finitely many) discrete
valuations of its total ring of fractions containing R.

In the last decades semigroups of values have been studied most intensively in the cases
of irreducible or plane complex algebroid curves. For an irreducible plane curve singularity
the semigroup of values is a numerical semigroup which is equivalent to other classical
invariants like the characteristic exponents, the multiplicity sequence, or the resolution
graph [1, 2]. Moreover, the semigroup of values can be interpreted as the set of intersection
multiplicities of the curve singularity with all other plane curve singularities. Waldi showed
that any plane algebroid curve is determined by its value semigroup up to equivalence

1



1. Introduction

in the sense of Zariski [3, 4]. More recently, the semigroup of values played a central
role in the analytic classification of plane curve singularities with two branches by Hefez,
Hernandes, and Hernandes [5].
Kunz characterized irreducible Gorenstein curve singularities by having a symmetric

semigroup of values [6]. Later Delgado extended the notion of symmetry to non-numerical
semigroups of values. This allowed for a generalization of Kunz’ result to arbitrary curve
singularities [7]. Using Delgado’s symmetry condition D’Anna was able to characterize
(suitably normalized) canonical ideals of a curve singularity by having a certain set of
values [8].

The semigroup of values yields particularly strong constraints for quasihomogeneous
curve singularities. Kunz and Ruppert showed that an irreducible quasihomogeneous
complex curve singularity is determined completely by its semigroup of values. Moreover,
they reconstructed a quasihomogeneous complex curve singularity with two branches from
the semigroups of values of its branches and a certain coefficient map [9].

Semigroup of Values and Good Semigroups
The semigroup of values associated to a complex algebroid curve is a submonoid S of Ns,
where s is the number of branches of the curve. Delgado [7] described further combinatorial
properties of the semigroup of values S of a complex algebroid curve:

(E0) There is an α ∈ S such that α+ Ns ⊂ S.

(E1) For any α, β ∈ S, also inf {α, β} = (min {α1, β1}, . . . ,min {αs, βs}) ∈ S.

(E2) If α, β ∈ S with αi = βi for some i ∈ {1, . . . , s}, then there is a δ ∈ S with

δj > αi = βi,

δj ≥ min {αj , βj} for all j = 1, . . . , s,
δk = min {αk, βk} for every k ∈ {1, . . . , s} with αk 6= βk.

Consider the curve singularity defined by
(
x5 − y2)y = 0. Embedding the ring

ÔC = C[[x, y]]/
〈(
x5 − y2

)
y
〉

into its normalization
ÔC ∼= C[[t1]]× C[[t2]]

it can be described by
ÔC ∼= C

[[(
t21, t2

)
,
(
t51, 0

)]]
.

Then properties (E0), (E1), and (E2) can be understood in the following way:

(E0) Since the normalization ÔC is finite over ÔC , there is an x ∈ ÔC such that xÔC ⊂ ÔC ,
for example (

t91, t
5
2

)
(C[[t1]]× C[[t2]]) ⊂ C

[[(
t21, t2

)
,
(
t51, 0

)]]
.

2



Taking orders this yields
(9, 5) + Ns ⊂ S.

(E1) Property (E1) is the result of generic linear combinations of power series, where
generic means that in no component a term of least order is cancelled. For example,
the power series

(
t51 + t15

1 , t
7
2
)
and

(
t81, t

4
2
)
correspond to the semigroup elements (5, 7)

and (8, 4), and the sum(
t51 + t15

1 , t
7
2

)
+
(
t81, t

4
2

)
=
(
t51 + t81 + t15

1 , t
4
2 + t72

)
corresponds to the semigroup element

(5, 4) = inf {(5, 7), (8, 4)}.

(E2) Considering special linear combinations of power series which cause cancellations of
terms of least order leads to an “inverse” of property (E1) which we denote by (E2).
For example, taking now the power series

(
t51 + t15

1 , t
7
2
)
and

(
t51 + t81 + t15

1 , t
4
2 + t72

)
which have the values (5, 7) and (5, 4), the difference(

t51 + t81 + t15
1 , t

4
2 + t72

)
−
(
t51 + t15

1 , t
7
2

)
=
(
t81, t

4
2

)
has value

(8, 4).

The first aim of Chapter 3 is to find general algebraic hypotheses leading to value
semigroups and value semigroup ideals having these properties. We start with one-
dimensional equidimensional semilocal Cohen–Macaulay rings. For such a ring R there are
only finitely many valuations of the total ring of fractions containing R, and all of them
are discrete. This allows for the definition of a semigroup of values. If R̂ is reduced, the
normalization R̂ is finite, and hence R satisfies (E0). As illustrated above, for property (E1)
we need “sufficiently large” residue fields. Finally, for the cancellation of terms of least order
in (E2) we need the ring to be residually rational. This leads to the notion of admissible
rings.

As an abstract version of value semigroups D’Anna introduced the class of good semi-
groups [8]. A good semigroup is a submonoid of Ns for some s satisfying (E0), (E1), and
(E2). Then by definition the semigroup of values of an admissible ring is a good semigroup.
However, Barucci, D’Anna, and Fröberg showed that these properties do not characterize
semigroups of values; in fact, they gave an explicit example of a good semigroup which is
not the semigroup of values of a ring [10]. Nevertheless, good semigroups can be regarded
as combinatorial counterparts of admissible rings in many respects. It is a main motivation
for this thesis to establish combinatorial versions of algebraic concepts on admissible rings
which are compatible with their prototypes under taking values. In particular, we deal
with localization, conductors, the length of a module, duality, and quasihomogeneity.

3



1. Introduction

Ideals
A fractional ideal of an admissible ring R is an R-submodule I of the total ring of fractions
QR of R such that xI ⊂ R for some non-zerodivisor x ∈ R. Analogously we define a
semigroup ideal of a good semigroup S ⊂ Zs to be a non-empty subset E of Zs such that
E + S ⊂ E and α+ E ⊂ R for some α ∈ S. Moreover, we call E good if it satisfies (E1)
and (E2). Then the value semigroup ideal of a fractional ideal of R (defined by taking the
values of the elements of I which are non-zerodivisors in QR) is a good semigroup ideal of
ΓR.

A drawback of this construction is that taking values does in general not relate compatibly
the product and quotient of fractional ideals with their combinatorial counterparts, the
sum and difference of good semigroup ideals. In fact, the set of good semigroup ideals of a
good semigroup is in general not even closed under these operations. However, for example
in the case of conductors or canonical ideals, taking the difference is a operation on the set
of good semigroup ideals, and it is also compatible with the ideal quotient under taking
values.

Dualities
A canonical module ωR of a Cohen–Macaulay ring R induces a duality

M 7→ ExtdimR−dimM
R (M,ωR).

If, for example, R is generically Gorenstein, the canonical module can be chosen to be a
fractional ideal K, and on the fractional ideals of R the duality can be expressed in terms
of the ideal quotient as

I 7→ K : I.

This leads to the definition of a canonical ideal of a one-dimensional Cohen–Macaulay ring
R as a fractional ideal of R satisfying I = K : (K : I) for all fractional ideals I of R. Then
a canonical ideal of R is a canonical module of R.
So a one-dimensional Cohen–Macaulay ring R is Gorenstein if it is a canonical ideal of

itself. Kunz showed that an analytically irreducible and residually rational one-dimensional
local ring R is Gorenstein if and only if its (numerical) semigroup of values ΓR is symmetric
[6]. Jäger used this symmetry condition to define a semigroup ideal K such that (suitably
normalized) canonical ideals K of R are characterized by having value semigroup ideal
ΓK = K [11].
Waldi was the first to describe a symmetry property of the semigroup of values of

a plane algebroid curve with two branches [3]. In analogy to Kunz’ result, Delgado
then characterized general Gorenstein algebroid curves in terms of a symmetry of their
semigroups of values [12, 7]. Later Campillo, Delgado, and Kiyek extended Delgado’s result
to include analytically reduced and residually rational local rings with infinite residue
field [13].
In the spirit of Jäger’s approach, D’Anna turned Delgado’s symmetry condition into

an explicit formula for a canonical semigroup ideal K0. He showed that any (suitably

4



normalized) fractional ideal K of an analytically reduced and residually rational one-
dimensional local ring with infinite residue field is canonical if and only if ΓK = K0 [8].
More recently Pol computed explicitly the value semigroup ideal ΓR:I of the dual R : I of
any fractional ideal I of a Gorenstein algebroid curve R as ΓR:I = ΓR − ΓI [14].

In Chapter 5 we unify and extend D’Anna’s and Pol’s results. In particular, we work
in the more general class of admissible rings. First, however, we introduce a purely
combinatorial version of duality.

Statement (See Theorem 5.14). Any good semigroup S admits a canonical semigroup
ideal, that is a good semigroup ideal K of S inducing a duality E 7→ K − E on the good
semigroup ideals of S. In particular, the set of good semigroup ideals is closed under taking
duals, and

K − (K − E) = E

for every good semigroup ideal E of S.

It turns out that our canonical semigroup ideals are exactly the translations of D’Anna’s
K0. Moreover, using combinatorial properties we can relate the duality on fractional ideals
to the duality on good semigroup ideals in the following way.

Statement (See Theorems 5.31 and 5.34). Let R be an analytically reduced one-dimensional
equidimensional semilocal Cohen–Macaulay ring with sufficiently large residue fields and
trivial residue field extensions. A fractional ideal K of R is canonical if and only if its value
semigroup ideal is a canonical semigroup ideal of the semigroup of values of R. Moreover,
if K is a canonical ideal of R, then there is a commutative diagram

{
regular fractional

ideals of R

} {
regular fractional

ideals of R

}

	

{
good semigroup
ideals of ΓR

} {
good semigroup
ideals of ΓR

}
,

I 7→K:I

I7→ΓI I7→ΓI

E 7→ΓK−E

where ΓI denotes the value semigroup ideal of a fractional ideal I.

Algorithmic Normalization
Endomorphism rings occur in the construction of blow ups [15] or non-commutative
resolutions [16, 17]. A non-commutative crepant resolution of a curve can be computed [18]
considering the intermediate steps of a normalization algorithm [19] which is based on
a characterization of normality in terms of the endomorphism ring of a so-called test
ideal [20]: a reduced Noetherian ring R is normal if and only if R = EndR (i) for a test
ideal i of R. If R is a reduced one-dimensional Noetherian local ring, then the maximal
ideal m is the unique test ideal for R.

5



1. Introduction

The above criterion by Grauert and Remmert can be turned into an algorithm for
normalization computing successively endomorphism rings of test ideals. Following an
idea by Böhm, Decker, and Schulze [21] we use the semigroup of values to determine
the intermediate steps explicitly. In general, not much is known about the properties
of sequences obtained by the Grauert–Remmert algorithm. As a step towards a more
fundamental understanding, we prove in Chapter 5 the following result on Gorenstein
algebroid curves.

Statement (See Theorems 5.42 and 5.56). Let R be a Gorenstein complex algebroid curve
with maximal ideal m. Then EndR (m) is Gorenstein if and only if R is of type An for
some n ∈ N (see [22]).

In Chapter 8 we apply the Grauert–Remmert algorithm to two kinds of arrangements.
First we study plane arrangements of smooth curves.

Statement (See Theorems 8.1 and 8.2). Let C be a reduced plane curve. Suppose that
C has only finitely many singular points, and assume that the analytic branches at the
singular points of C are smooth and intersect transversally. Then the number of steps
in the Grauert–Remmert algorithm which is needed to compute the normalization of C is
determined by the maximal number of analytic branches intersecting in a singular point of
C.

Using Serre’s criterion which allows for checking normality in codimension one, we apply
this result to hyperplane arrangements. Geometrically, after localization in codimension
one we look at “transversal slices” of the arrangement. This reduces the problem to plane
line arrangements whose cardinalities are the numbers of hyperplanes intersecting the
respective slices.

Statement (See Theorem 8.14). Let (A, V ) be an arrangement of hyperplanes. Then the
Grauert–Remmert algorithm computes the normalization of the arrangement after

max {µA(V,X) | X ∈ L(A) with codimX = 2}

steps, where L(A) is the set of intersections of hyperplanes of A, and µA is the Möbius
function of the arrangement.

Quasihomogeneous Semigroups
Kunz and Ruppert gave a description of quasihomogeneous curve singularities with at most
two branches in terms of the semigroups of values of their branches [9]. An irreducible
quasihomogeneous curve singularity is determined completely by its semigroup of values,
and a quasihomogeneous curve singularity with two branches can be reconstructed as a
fibre product of its branches over their intersection from combinatorial and analytic data:
the semigroups of values of the branches as well as certain value semigroup ideals and a
coefficient map. We show that the combinatorial informations can be deduced from the
semigroup of values of the curve singularity.
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In Chapter 6 we give a generalization of this result to quasihomogeneous curve singularities
with arbitrarily many branches. Here we use an extended notion of fibre products which is
introduced in Chapter 2. This fibre product is determined by the semigroup of values of the
curve singularity and a certain coefficient map. In general, however, the curve singularity
is not completely described by the fibre product.

In Chapter 7 we transfer the concept of quasihomogeneity to good semigroups. First we
define gradings on a good semigroup, then we consider properties of values of homogeneous
elements of quasihomogeneous curve singularities. In fact, both approaches yield the same
concept of quasihomogeneity on good semigroups, and this is compatible with the algebraic
definition.

Statement (See Proposition 7.6). The semigroup of values of a quasihomogeneous curve
singularity is quasihomogeneous.

On quasihomogeneous semigroups we introduce a closedness property related to the
weights of the grading. This allows to characterize those quasihomogeneous curve singular-
ities which can be reconstructed as a fibre product.

Statement (See Theorem 7.23). A quasihomogeneous curve singularity is isomorphic to a
fibre product if and only if its semigroup of values is closed.

Moreover, this closedness allows to construct curve singularities from good semigroups.

Statement (See Theorem 7.24). A quasihomogeneous semigroup S is closed if and only if
it is the semigroup of values of a quasihomogeneous curve singularity. If S is closed, then
a quasihomogeneous curve singularity R with ΓR = S can be constructed as a fibre product
solely from S.

We show that a quasihomogeneous semigroup with two branches is always closed. This
yields the result by Kunz and Ruppert. Finally, the results above imply that a closed
quasihomogeneous semigroup can be reconstructed from information on its branches. In
fact, we obtain a stronger statement.

Statement (See Theorem 7.27). Any quasihomogeneous semigroup S can be reconstructed
from its branches and certain ideals of its branches (which are determined by S).
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2. Preliminaries

The purpose of this chapter is to provide the fundamental material for this thesis. In
Section 2.1 we introduce the monoid of regular fractional ideals of a ring. This concept is
important for the study of valuation rings (see Chapter D).
In Section 2.2 we deal with discrete valuation rings and discrete valuations. Later we

use valuation theory on one-dimensional Cohen–Macaulay rings to relate algebra and
combinatorics.

Finally, in Section 2.3 we introduce a generalization of the usual fibre product. This will
be applied in the context of quasihomogeneous curves in Chapters 6 and 7.

2.1. Regular and Fractional Ideals
In this section we study the set of R-submodules of the total ring of fractions QR of a ring
R. This set is a monoid with respect to the product, and it is closed under quotients (see
Proposition 2.7). In particular, we are interested in fractional ideals of R, that is “ideals
with a common denominator” (see Definition 2.5). The set of all regular fractional ideals is
a submonoid of the monoid of regular R-submodules of QR, and it is also closed under
quotients (see Proposition 2.7).

Definition 2.1. Let R be a ring, and let I and J be R-submodules of QR.

(1) The product of I and J is

IJ =

 ∑
(x,y)∈Λ

xy

∣∣∣∣∣ Λ ⊂ I× J finite

.
(2) The quotient of I and J in QR is

I :QR J = {x ∈ QR | xJ ⊂ I} ∈ RR.

We also write I : J instead of I :QR J.

Lemma 2.2. Let R be a ring, and let I and J be R-submodules of QR. Then IJ and I : J
are R-submodule of QR.

Proof. By definition we have IJ ⊂ QR and I : J ⊂ QR. Moreover, the set IJ is by
definition an R-module. So let x, y ∈ I : J, and let r, s ∈ R. Then

(rx+ sy)I = rxI + syI = xI + yI ⊂ J + J = J

since I and J are R-modules. Thus, I : J is an R-submodule of QR.

9



2. Preliminaries

Lemma 2.3. Let R be a ring, let x ∈ Qreg
R , and let I, I′, J, J′, and H be R-submodules

of QR. Then

(1) (I : J) : H = I : (JH) = (I : H) : J,

(2) (xI) : J = x(I : J) = I :
(
x−1J

)
,

(3) I : J′ ⊂ I : J ⊂ I′ : J if I ⊂ I′ and J ⊂ J′, and

(4) I : J = (I : A) : J if A is a ring with R ⊂ A ⊂ QR and J is an A-module.

Proof. (1) By the definition of the ideal quotient (see Definition 2.1) we have

(I : J) : H = {x ∈ QA | xy ∈ I : J for all y ∈ H} (2.1)
= {x ∈ QA | xyz ⊂ I for all y ∈ H and z ∈ J} (2.2)
= {x ∈ QA | xz ⊂ I : H for all z ∈ J} (2.3)
= (I : H) : J. (2.4)

Let x ∈ (I : J) : H, and let y, y′ ∈ H and z, z′ ∈ J. Then Equation (2.2) yields
xyz, xy′z′ ∈ I, and hence x (yz + y′z′) ∈ I since I ∈ RA. This implies xJH ⊂ I, and
Equation (2.2) yields

(I : J) : H = {x ∈ QA | xyz ⊂ I for all y ∈ H and z ∈ J}
= {x ∈ QA | xJH ⊂ I}
= I : (JH) .

(2) Since Qreg
R = Q∗R, we have

(xI) : J = {y ∈ QR | yJ ⊂ xI} =
{
y ∈ QR

∣∣∣ yx−1J ⊂ I
}
.

(3) This follows immediately from Definition 2.1.

(4) Since A is an R-submodule of QR, and since J is an A-module, (1) yields

I : J = I : (JA) = (I : A) : J.

Definition 2.4. Let R be a ring.

(1) An R-submodule I of QR is called regular if Ireg = I ∩ Qreg
R 6= ∅, or, equivalently,

QRI = QR.

(2) If every regular ideal i of R is generated by ireg, then R is called a Marot ring.

Definition 2.5. Let R be a ring.

(1) A fractional ideal of R is an R-submodule I of QA such that xI ⊂ R for some
x ∈ Rreg.

10



2.1. Regular and Fractional Ideals

(2) The set of regular fractional ideals of R is denoted by RR.

Remark 2.6. Let R be a ring.

(1) If R is Noetherian, then an R-submodule I of QR is a fractional ideal of R if and
only if it is finitely generated.

(2) If R is a Marot ring, then any regular fractional ideal I ∈ RR is generated by Ireg.

Proposition 2.7. Let R be a ring.

(1) The set of regular R-submodules of QR and the set RR are a commutative monoids
with respect to product of ideals (the neutral element is R).

(2) The set of regular R-submodules of QR and the set RR are closed under ideal quotient,
i.e. (I : J)reg 6= ∅ for all regular R submodules I and J of QR, and with I, J ∈ RR
also I : J ∈ RR.

Proof. Let I and J be regular R-submodules of QR. Then Ireg, Jreg 6= ∅. Moreover, IJ
and I : J are R-submodules of QR by Lemma 2.2. If I, J ∈ RR, then there are x, y ∈ Rreg

such that xI, yJ ⊂ R.

(1) For any x ∈ Ireg and y ∈ Jreg we have xy ∈ (IJ)reg. Hence, IJ is a regular R-
submodule of QR. Moreover, we obviously have HR = H for any H ∈ RR since H is
an R-module, and since 1 ∈ R.
If I, J ∈ RR, then yxIJ ⊂ yRI ⊂ yI ⊂ R, and hence IJ ∈ RR.

(2) Obviously, I : J is an R-submodule of QR. Let a ∈ Ireg. Then ay ∈ Qreg
R and

ayJ ⊂ aR ⊂ I. Thus, I : J is regular.
Suppose now that I, J ∈ RR, and let b ∈ Jreg. Then byx ∈ Rreg and yxb(I : J) ⊂
yxI ⊂ yR ⊂ R. Hence, I : J ∈ RR.

Definition 2.8. Let R be a ring. An R-submodule I of QR is called invertible if IJ = R
for some R-submodule J of QR which then is uniquely determined as J = R : I, see [23,
Ch. II, Prop. 2.2.(1)]. For an invertible R-submodule I of QR we write I−1 = R : I.

Remark 2.9. Let R be a ring.

(1) Let x ∈ Qreg
R and I ∈ RR. Then xI ∈ RR.

(2) Every invertible R-submodule I of QR is regular and finitely generated, see [23,
Ch. II, Rem. 2.1.(3) and Prop. 2.2.(1),(2)]. In particular, if an R-submodule I of QR
is invertible, then I ∈ RR

(3) The set R∗R of invertible (regular fractional) ideals of R is the largest submonoid of
RR which is also a group.

(4) If R is (quasi)semilocal, R∗R consists of the regular principal fractional ideals of R,
see [23, Ch. II, Prop. 2.2.(3)].
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2. Preliminaries

Lemma 2.10. Let R be a (quasi)semilocal Marot ring, let I, J ∈ RR, and let H ∈ R∗R.
Then (IJ) : H = I : (J : H). In particular, I : H = IH−1.

Proof. Since H ∈ R∗R, there is by Remark 2.9.(4) an x ∈ Qreg
R such that H = xR. Then

Lemma 2.3.(2) yields

(IJ) : H = (IJ) : (xR)
= x−1((IJ) : R)
= x−1IJ

= x−1I(J : R)
= I(J : xR)
= I(J : H).

In particular, this implies

I : H = (IR) : H = I(R : H) = IH−1.

Lemma 2.11. Let R and A be rings such that QR = QA and A ∈ RR. Then I : A ∈
RR ∩RA for any I ∈ RR.

Proof. Let I ∈ RR. Then I : A ∈ RR by Proposition 2.7.(2). Therefore, I : A is a
regular A-submodule of QR = QA. Moreover, since A ∈ RR, we also have A : R ∈ RA by
Proposition 2.7.(2). Hence, there is an x ∈ (A : R)reg. As I : A ∈ RR, there is a y ∈ Rreg

such that y(I : A) ⊂ A. This yields xy ∈ Areg and

xy(I : A) ⊂ xR ⊂ A.

Thus, I : A ∈ RA.

Lemma 2.12. Let R and A be rings such that R ⊂ A ⊂ QR and A ∈ RR. Then RA ⊂ RR.

Proof. If R ⊂ A ⊂ QR, then QR = QA by Lemma A.34. Let I ∈ RA. Then Ireg 6= ∅, and
RI ⊂ AI ⊂ I. Moreover, there is an x ∈ Areg such that xI ⊂ A. Since A ∈ RR, there is a
y ∈ Rreg such that yA ⊂ R. Then xy ∈ Rreg, and

xyI ⊂ xA ⊂ R.

Thus, I ∈ RR.

Lemma 2.13. Let R be a ring, and let I and J be regular R-submodules of QR. Then
there is a natural R-module isomorphism

φJI : HomR (I, J)→ J : I,

φ 7→ φ (x)
x

,

which is independent of the choice of a regular element x ∈ Ireg. In particular, any
φ ∈ HomR (I, J) is multiplication by an element of J : I, and it can be extended uniquely
to an endomorphism of QR.
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2.1. Regular and Fractional Ideals

Proof. See [24, Lemma 2.1] and [19, Lemma 3.1].

Remark 2.14. Let R be a ring. With Lemma 2.13 we may define the dual of a regular
fractional ideal I ∈ RR as

I∨ = HomR (I, R) ∼= R : I.

Note that if I ∈ R∗R, then I−1 ∼= I∨.

Proposition 2.15. Let R be a ring, and let I, J ∈ RR. Then

J ⊂ I : (I : J) .

Proof. Let x ∈ J. Then we have for all y ∈ I : J

xy ⊂ yJ ⊂ I.

This implies x ∈ I : (I : J).

Lemma 2.16 (See [25], Lemma 2.1.3). Let R and A be rings such that there is a flat ring
homomorphism α : R→ A. Then there is a ring homomorphism

φ : QR → QA,

x

y
7→ α(x)

α(y) .

Moreover, the following hold:

(1) Suppose α is injective. Then φ is injective, and

φ(I)A = I⊗R A

for any R-submodule I of QR.

(2) For any fractional ideal I of R we have

I⊗R A = φ(I)A.

Moreover, if I ∈ RR, then I⊗R A = φ(I)A ∈ RA.

(3) For any fractional ideals I and J of R we have

φ(I : J)A = φ(I)A : φ(J)A.

(4) If α is faithfully flat, then
φ(I)A ∩QR = I

and
φ(I ∩ J)A = φ(I)A ∩ φ(J)A

for any R-submodules I and J of QR.
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Proof. Since α : R→ A is flat, we have α(Rreg) ⊂ Areg by Lemma A.7. Thus, Lemma A.29
yields a ring homomorphism

φ : QR → QA,

x

y
7→ α(x)

α(y) .

(1) The ring homomorphism φ is injective by Lemma 7.54.
For the bilinear map

I×A→ φ(I)A,
(x, y) 7→ φ(x)y

the universal property of the tensor product yields the R-module homomorphism
β : I⊗R A→ φ(I)A,

x⊗ y 7→ φ(x)y.
Obviously, β is also an A-module homomorphism, and it is surjective.
Since I ⊂ QR, and since A is flat, we obtain I⊗R A ⊂ QR ⊗R A. Moreover, setting
I = QR yields a surjective A-module homomorphism

γ : I⊗R A→ φ(I)A,
x

y
⊗ a 7→ φ

(
x

y

)
a = α(x)

α(y)a.

In particular, we obtain a commutative diagram

I⊗R A φ(I)A

QR ⊗R A φ(QR)A.

β

γ

(2.5)

Since QR = (Rreg)−1R, Theorem A.22 and Proposition A.38 yield an R-module
isomorphism

δ : QR → (α(Rreg))−1A,

x

y
⊗ a 7→ α(x)a

α(y) .

Since (α(Rreg))−1A ⊂ QA by Lemma A.30 (recall that α(Rreg) ⊂ Areg by Lemma A.7),
we obtain with Diagram (2.5) a commutative diagram

I⊗R A φ(I)A

QR ⊗R A φ(QR)A

(α(Rreg))−1A QA.

β

γ

δ ∼=

14



2.1. Regular and Fractional Ideals

This implies that β is injective, and hence I⊗R A = φ(I)A.

(2) Let I be a fractional ideal of R. Then for the bilinear map

I×A→ φ(I)A,
(x, y) 7→ φ(x)y

the universal property of the tensor product yields the surjective homomorphism

ε : I⊗R A→ φ(I)A,
x⊗ y 7→ φ(x)y.

Suppose that I ⊂ R. Since A is a flat R-module, we obtain a commutative diagram

I⊗R A φ(I)A

R⊗R A A.

ε

∼=

This implies that ε is also injective, and hence

I⊗R A = φ(I)A. (2.6)

Let now I be a general fractional ideal of R. Then there is an x ∈ Qreg
R such

that xI ⊂ R. Moreover, φ(x) ∈ Qreg
A since Qreg

R = Q∗R and Qreg
A = Q∗A. Then

Equation (2.6) yields (considering A-modules)

φ(I)A = (φ(x))−1φ(x)φ(I)A
= (φ(x))−1φ(xI)A
= (φ(x))−1(xI⊗R A)
= (φ(x))−1(I⊗R φ(x)A)
= (φ(x))−1φ(x)(I⊗R A)
= I⊗R A.

Finally, φ(I)A is an A-submodule of QA, and φ(x)φ(I)A = φ(xI)A ⊂ φ(R)A = A.
If I ∈ RR, there is a y ∈ Ireg. Then φ(y) ∈ φ(I) ∩ Q∗A = φ(I) ∩ Qreg

A = (φ(I))reg.
Therefore, φ(I)A ∈ RA.

(3) For any fractional ideals I and J of R part (2) as well as Propositions A.40 and
2.7.(2) and Lemma 2.13 yield the following commutative diagram of isomorphisms

HomR (I, J)⊗R A (J : I)⊗R A φ(J : I)A

HomA (I⊗R A, J⊗R A) (J⊗R A) : (I⊗R A) φ(J)A : φ(I)A

HomA (φ(I)A, φ(J)).

∼=

∼=

=

∼= ∼=
∼=

=

=

∼=

15



2. Preliminaries

(4) See [26, Chapitre I, § 3, no. 5, Proposition 10].

Lemma 2.17. Let R be a Noetherian ring, and let I ∈ RR. Then I : I is an integral
extension of R. In particular,

R ⊂ I : I ⊂ R

Proof. Since I is a fractional ideal of R, we have IR ⊂ I, and hence R ⊂ I : I. In
particular, 1 ∈ I : I. Let x, y ∈ I : I. Then

xyI ⊂ xI ⊂ I.

Since I : I is an R-module by Lemma 2.2, this implies that it is a ring. Moreover, since
R is Noetherian, I : I is by Proposition 2.7.(2) and Remark 2.6.(1) finite over R. Thus,
I : I is by Theorem B.11 an integral extension of R. The particular claim follows with
Proposition B.5. Also see [27, Lemma 3.6.1] and Lemma 2.13.

2.2. Discrete Valuation( Ring)s
In order to relate algebra and combinatorics we apply valuation theory. A valuation of a
ring A is a surjective map ν from A onto a totally ordered abelian monoid Gν∞ such that

ν(xy) = ν(x) + ν(y), (2.7)
ν(x+ y) ≥ min {ν(x), ν(y)} (2.8)

for every x, y ∈ A, where Gν is a totally ordered additive abelian group (the value group
of ν) which we include into the totally ordered abelian monoid Gν∞ = Gν ∪ {∞} with
x +∞ = ∞, ∞ +∞ = ∞ and ∞ > x for all x ∈ Gν . To a valuation ν : A → Gν∞ we
associate its valuation ring

Vν = {x ∈ A | ν(x) ≥ 0}.

For more on valuations see Section D.2.

Definition 2.18. Let A be a ring. A valuation ν of A is said to be a discrete valuation if
there is an order preserving group isomorphism φ : Gν → Z.

We may also start with rings of valuations. Let Q be a ring having a large Jacobson
radical with Qreg = Q∗. A valuation ring of Q is a subring V of Q with V 6= Q such
that Q \ V is multiplicatively closed. If V is a valuation ring of Q, then the group R∗V
is totally ordered by reverse inclusion. We include R∗V into the totally ordered monoid
R∗V,∞ = R∗V ∪ {IV }, where IV = V : Q is the infinite prime ideal of V . Then the valuation
of V is the map

µV : Q→ R∗V,∞,

x 7→ µV (x) =
⋂

I∈R∗V
x∈I

I.
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This map is surjective, and it satisfies

µV (xy) = µv(x)µV (y),
µV (x+ y) ≥ min {µV (x), µV (y)}

for any x, y ∈ Q. Then
V = {x ∈ Q | µV (x) ≥ V },

and V has a unique regular maximal ideal

mV = {x ∈ Q | µV (x) > V }.

The infinite prime ideal of V is

IV = {x ∈ Q | µV (x) = IV }.

For more on valuation rings see Section D.1. Note that by Corollary D.32 there is a
bijection

V 7→ µV ,

Vν ←[ ν

between the valuation rings and the valuations (up to equivalence, see Definition D.28) of
Q.

Definition 2.19. Let Q be a ring having a large Jacobson radical with Qreg = Q∗. A
valuation ring V of Q with regular maximal ideal mV is called a discrete valuation ring of
Q if mV ∈ R∗V .

Remark 2.20. Let Q be a ring having a large Jacobson radical with Qreg = Q∗. A valuation
ring V of Q is by Remark D.4.(1) and (2) discrete if and only if its regular maximal ideal
mV is finitely generated.

Proposition 2.21. Let Q be a ring having a large Jacobson radical with Qreg = Q∗, and
let V be a discrete valuation ring of Q.

(1) For the regular maximal ideal mV of V we have

mV = min {I ∈ R∗V | V < I} ∈ R∗V .

(2) There is an order preserving group isomorphism

φV : R∗V → Z,

I 7→ φV (I) = max
{
k ∈ Z

∣∣∣ mk
V ≤ I

}
,

mk
V ←[ k.

Proof. (1) Let I ∈ R∗V with I > V . Then Ireg ⊂ mV by Remark D.5, and hence I ⊂ mV

since V is a Marot ring. The claim follows since mV ∈ R∗V by the definition of V .
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(2) Let I ∈ R∗V . Since RV is totally ordered by Remark D.4.(3), we have either I ≤ V
or I ≥ V . Suppose I ≥ V , i.e. I ⊂ V . Since mV ∈ R∗V , also mk

V ∈ R∗V for any k ∈ N.
Hence, for any k ∈ N Remark D.4.(3) yields either mk

V ≤ I or mk
V ≤ I. Assume

mk
V ≤ I for all k ∈ N. Then I ⊂

⋂∞
k=1 m

k
V ⊂ V \V reg by Corollary A.5, contradicting

I ∈ R∗. We obtain
⋂∞
k=1 m

k
V ( I ⊂ V , and hence there is max

{
k ∈ Z

∣∣∣ mk
V ≤ I

}
.

Suppose now that I ≤ V . Then I−1 ≥ V . Arguing as above we find

min
{
l ∈ Z

∣∣∣ ml
V ≥ I−1

}
= max

{
k ∈ Z

∣∣∣ mk
V ≤ I

}
.

These considerations show that for any I ∈ R∗V there is a k ∈ Z such that mk
V ≤ I

and mk+1
V 6≤ I. Then we have

V = mk
V : mk

V ≤ I : mk
V (2.9)

by Lemma 2.3.(3).
Assume I : mk

V ≥ mV . Since mV is invertible, this implies I ≥ mk+1
V by Lemma 2.10

contradicting the assumption on k. Therefore, I : mk
V < mV since I : mk

V ∈ R∗V and
since R∗V is totally ordered by Remark D.4.(3). Thus, (1) and Equation (2.9) yield
V = I : mk

V , i.e. I = mk
V by Lemma 2.10.

Let V be a discrete valuation ring of Q. Embedding Z into the totally ordered monoid
Z∞ = Z ∪ {∞} we may extend φV to an order preserving isomorphism of monoids

φV : R∗V,∞ → Z∞

by setting φV (IV ) =∞. Then Proposition 2.21.(2) yields a commutative diagram

Q

R∗V,∞ Z∞,

µV
νV

∼=
φV

(2.10)

where νV is a discrete valuation of Q. In particular, µV and νV are equivalent, and hence
V = VνV is by Proposition D.29 the ring of a discrete valuation.

Proposition 2.22. Let Q be a ring having a large Jacobson radical with Qreg = Q∗, and
let V be a valuation ring of Q. Then the following are equivalent:

(a) The ring V is a discrete valuation ring.

(b) V is the ring of a discrete valuation ν : Q→ Z∞.

(c) Every regular ideal of V is finitely generated.

(d) The regular maximal ideal mV is finitely generated, and mV is the only regular prime
ideal of V .
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Proof. See Propositions D.13.(1) and 2.21.(2) and [23, Chapter I, Proposition 2.15].

Proposition 2.23. Let Q be a ring having a large Jacobson radical with Qreg = Q∗, and
let V be a discrete valuation ring of Q.

(1) Any I ∈ RV contains a regular element of minimal value, i.e. there is an x ∈ Ireg

such that νV (x) ≤ νV (y) for all y ∈ I.

(2) Each I ∈ RV is generated by any element x ∈ Qreg with νV (x) = min {νV (y) | y ∈ I}.
In particular, mV is generated by any t ∈ Qreg with νV (t) = 1. Such a t is said to be
a uniformizing parameter for V .

(3) Let I ∈ RV . Any finite generating set for I contains an element x ∈ Q with
νV (x) = min {νV (y) | y ∈ I}.

(4) If I ∈ RV , then

I = {x ∈ Q | νV (x) ≥ min {νV (y) | y ∈ I}} .

(5) Let I ∈ R∗V . Then
φV (I) = min {νV (x) | x ∈ I} ,

and for any k ∈ Z we have

φ−1
V (k) = xV for all x ∈ Qreg with νV (x) = k

= 〈y ∈ Qreg | ν (y) = k〉
= {y ∈ Q | νV (y ≥ k)}

(see Proposition 2.21.(2)).

Proof. (1) Since I ∈ RV , there is an a ∈ V reg such that aI ⊂ V . This implies νV (ax) ≥ 0,
and hence νV (x) ≥ −νV (a) for all x ∈ I. Thus, there is y ∈ I such that ν (y) ≤ ν (x)
for all x ∈ I.
Assume now that y ∈ I \ Ireg. Since Q has a large Jacobson radical and V ⊂ Q, V is
a Marot ring, see [23, Chapter I, Proposition 1.12]. Then I is generated by Ireg, and
hence we find x1, . . . , xn ∈ Ireg and a1, . . . , an ∈ V such that y =

∑n
i=1 aixi. By the

definition of valuations we obtain

νV (y) = νV

(
n∑
i=1

aixi

)
≥ min

i=1,...,s
{νV (aixi)} .

Thus, there is x ∈ Ireg and a ∈ V such that

νV (y) ≥ νV (ax) = νV (a) + νV (x) .

Since a ∈ V yields νV (a) ≥ 0, this implies νV (y) ≥ νV (x). Hence, νV (y) = νV (x)
as y is of minimal value in I.
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(2) By (1) there is an element x ∈ Ireg of minimal value in I. Let now y ∈ Ireg. Then
νV (y) ≥ νV (x), and hence by Lemma D.22.(2)

νV

(
y

x

)
= νV (y) + ν

(
x−1

)
= ν (y)− ν (x) ≥ 0. (2.11)

This implies y
x ∈ V , and therefore y = x yx ∈ xV . Thus,

xV = 〈Ireg〉 = I

since V is a Marot ring (see above).
Let now z ∈ Qreg such that νV (x) = νV (z). Then we obtain as above with
Lemma D.22.(2)

νV

(
x

z

)
= νV (x) + νV

(
z−1

)
= νV (x)− νV (z) = 0 = νV

(
z

x

)
,

and hence x
z ,

z
x ∈ V . This implies zV = xV = I.

(3) Let {x1, . . . , xn} ⊂ I be a generating set for I. Since V = {x ∈ Q | νV (x) ≥ V },
Equations (2.7) and (2.8) imply

min {νV (x) | x ∈ I} = min {νV (x1), . . . , νV (xn)}.

(4) By (2), I = xV for any x ∈ Qreg with νV (x) = min {νV (y) | y ∈ Ireg}. If y ∈ Q with
νV (y) ≥ νV (x), then Lemma D.22.(2) yield as in Equation (2.11)

νV

(
y

x

)
= νV (y) + ν

(
x−1

)
= ν (y)− ν (x) ≥ 0,

and hence y
x ∈ V . This implies y = x yx ∈ xV = I.

(5) By (2) I = xV for any x ∈ Qreg with νV (x) = min {νV (y) | y ∈ Ireg}. Then
Remark D.14.(2) yields µV (x) = xV , and we obtain by Proposition 2.21.(2)

φV (I) = φV (xV )
= φV ◦ µV (x)
= νV (x)
= min {νV (y) | y ∈ Ireg} .

Let now k ∈ Z. By (2) the map

ψ : Z→ R∗V
k 7→ xV for some x ∈ Qreg with νV (x) = k

is well-defined, and by the considerations above we have ψ = φ−1. Then the equalities

φ−1
V (k) = 〈y ∈ Qreg | νV (y) = k〉 = {y ∈ Q | νV (y) ≥ k}

follow from (2) and (4).
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In the remainder of this section we list some more properties of discrete valuation rings.

Proposition 2.24. Let Q be a ring having a large Jacobson radical with Qreg = Q∗, and
let V be a discrete valuation ring of Q.

(1) Every regular fractional ideal of V is principal, i.e. RV = R∗V .

(2) Let now t ∈ Q such that mV = tV (see Proposition 2.23.(2)). Then t ∈ Qreg.
(1) We have Q = V

[
t−1].

(2) Every element x ∈ Qreg has a unique representation x = atk, where a ∈ V ∗ and
k ∈ Z.

(3) Any regular Q-submodule of V is of the form tkV for some k ∈ Z.

(3) We have IV =
⋂
k∈Nmk

V .

(4) There is no ring strictly between V and Q.

Proof. See Proposition 2.22 and [23, Chapter I, Proposition 2.15].

Corollary 2.25. Let Q be a ring having a large Jacobson radical with Qreg = Q∗, let V be
a discrete valuation ring of Q, and let t ∈ Q such that mV = tV (see Proposition 2.23.(2)).

(1) t is a uniformizing parameter for V .

(2) For any x ∈ Qreg there is a unique a ∈ V ∗ such that x = atνV (x).

Proof. (1) By Proposition 2.24.(2) we have t ∈ Qreg. Then Diagram (2.10) and Proposi-
tion 2.21.(1) yield

νV (t) = φV ◦ µV (t) = φV (tV ) = φV (mV ) = 1.

Hence, t is a uniformizing parameter for V .

(2) Let x ∈ Qreg. By Proposition 2.24.(2).(2) there is a unique a ∈ V ∗ and a unique
k ∈ Z such that x = atk. Then

νV (x) = νV (a) + kνV (t) = k

since νV (a) = 0 by Proposition D.13.(2) and Corollary D.32, and since νV (t) = 1 by
(1).

Theorem 2.26 (Approximation Theorem for Discrete Valuations). Let Q be a ring having
a large Jacobson radical with Qreg = Q∗, and let V be a finite set of discrete valuation rings
of Q. We set R =

⋂
V ∈V V .

(1) Every maximal ideal of R is regular, and there is a bijection

Max
(
R
)
→ V,

m 7→ ((R \m)reg)−1R,

mVi ∩R←[ Vi

such that (mV ∩R)V = mV for every V ∈ V.
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2. Preliminaries

(2) For any (xV )V ∈V ∈ QV and any α ∈ ZV there is an x ∈ Q such that

νV (x− xV ) ≥ αV

for every V ∈ V.

(3) For any α ∈ ZV there is an x ∈ Q such that

νV (x) = αV

for every V ∈ V.

Proof. See [23, Chapter I, Theorem 2.20].

Corollary 2.27. Let Q be a ring having a large Jacobson radical with Qreg = Q∗, let V be
a finite set of discrete valuation rings of Q, and suppose that {IV | V ∈ V} is the set of
prime ideals of Q.

(1) Let x ∈ Q. Then x ∈ Qreg if and only if νV (x) <∞ for every V ∈ V.

(2) For any α ∈ ZV there is an x ∈ Qreg such that

νV (x) = αV

for every V ∈ V.

(3) Every regular ideal of the ring
⋂
V ∈V V is principal.

Proof. See [23, Corollary 2.21].

2.3. Fibre Products
Let R be a reduced ring with two branches (see Definition A.69), say Min (R) = {p, q}.
Then R can be written as a fibre product

R = R/p×R/p+q R/q (2.12)
= {x ∈ R/p×R/q | πp (x) = πq (x)},

where πp : R→ R/p and πq : R→ R/q are the canonical surjections.
More generally, let C be a category, let A,B,C ∈ Ob C, and let f ∈ MorC (A,C) and

g ∈ MorC (B,C). The fibre product of A and B over C is an object A×C B ∈ Ob C with
morphisms f ′ ∈ MorC (A×C B,A) and g′ ∈ MorC (A×C B,B) such that the diagram

A×C B

A B

C

f ′ g′

f g
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2.3. Fibre Products

commutes, and it satisfies the following universal property: for any object D ∈ Ob C with
morphisms f ′′ ∈ MorC (D,A) and g′′ ∈ MorC (D,B) such that the diagram

D

A B

C

f ′′ g′′

f g

commutes there is a unique morphism h ∈ MorC (D,A×C B) such that the diagram

C

A×C B

A B

C

f ′′ h g′′

f ′ g′

f g

(2.13)

commutes.
This definition can easily be extended to more than two factors. However, to obtain a

description as in Equation (2.12) for reduced rings with arbitrarily many branches we need
more than one basis of the fibre product. In Definition 2.29 we introduce a more general
notion of a fibre product as a limit of a certain functor. In fact, such a fibre product
can equivalently be described by taking diagrams as (2.13) pairwise for all factors (see
Lemma 2.31). Note, however, that in general the equality in Equation (2.12) will be merely
an inclusion since we only consider pairwise relations of the branches of the ring R.

Definition 2.28. Let D : I → C be a diagram of type I for any category C and an
index category I. A cone to D is an object C ∈ C together with a family of morphisms
φA ∈ MorC (C,D (A)) indexed by Ob I such that for any two objects A,B ∈ Ob I and any
morphism f ∈ MorI (A,B) the diagram

C

D (A) D (B)

φA φB

D(f)

commutes.
A cone C to D is called universal if any cone to D factors through C. That is, a universal

cone to D satisfies the following universal property: for any cone C ′ to D with morphisms
φ′A ∈ MorC (C ′, D (A)) for A ∈ Ob I there is a unique morphism u ∈ MorC (C ′, C) such
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2. Preliminaries

that the diagram
C ′

C

D (A) D (B)

φ′A
u φ′B

φA φB

D(f)

commutes for any two objects A,B ∈ Ob I and any morphism f ∈ MorI (A,B).
A universal cone to D is also called a limit of D.

Note. Being defined by a universal property, a limit (if it exists) is unique up to unique
isomorphism.

Definition 2.29. Let I be a small category, let C be a category, and let D : I → C be a
diagram of type I. We define the category J by

ObJ = Ob I ×Ob I

and

MorJ
(
(A,B) ,

(
A′, B′

))
=



{
id(A,B)

}
if (A,B) = (A′, B′) ,

{(A,B)→ (B,A)} if (A,B) = (B′, A′) ,
{(A,A)→ (A,B′)} if A = B = A′,

∅ else.

Let F : J → C be a diagram of type J such that F ((A,A)) = D (A).
A fibre product in C over F is a limit of F , i.e. a fibre product is an object C ∈ C

together with morphisms φ(A,B) ∈ MorC (C,F (A,B)) for all (A,B) ∈ ObJ such that for
any two objects (A,B) , (A′, B′) ∈ ObJ and any morphism f ∈ MorJ ((A,B) , (A′, B′))
the diagram

C

F ((A,B)) F ((A′, B′))

φ(A,B) φ(A′,B′)

F (f)

(2.14)

commutes, and it satisfies the following universal property: if C ′ is a cone to F with
morphisms φ(A,B) ∈ MorC (C,F (A,B)) for all (A,B) ∈ ObJ , then there is a unique
morphism u ∈ MorC (C ′, C) such that the diagram

C ′

C

F ((A,B)) F ((A′, B′))

φ′(A,B) u
φ′(A′,B′)

φ(A,B) φ(A′,B′)

F (f)

(2.15)
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2.3. Fibre Products

commutes for any two objects (A,B) , (A′, B′) ∈ ObJ and any morphism

f ∈ MorJ
(
(A,B) ,

(
A′, B′

))
.

Since a fibre product over F is unique up to unique isomorphism, we denote it by Fib (F ).

Remark 2.30. For any (A,B) ∈ ObJ we have

((A,B)→ (B,A)) ◦ ((B,A)→ (A,B)) ∈ MorJ ((B,A) , (B,A)) =
{

id(B,A)
}

and

((B,A)→ (A,B)) ◦ ((A,B)→ (B,A)) ∈ MorJ ((A,B) , (A,B)) =
{

id(A,B)
}
.

Therefore, ((B,A)→ (A,B)), and hence also F ((B,A)→ (A,B)) are isomorphisms for
all (A,B) ∈ ObJ .

Lemma 2.31. Let C be a category, and let F : J → C be a diagram of type J as in
Definition 2.29. Let C ∈ Ob C together with morphisms ψA ∈ MorC (C,F ((A,A))) for all
A ∈ Ob I such that for any two objects A,B ∈ Ob I the diagram

C

F ((A,A)) F ((B,B))

F ((A,B)) F ((B,A)).

ψA ψB

F ((A,A)→(A,B)) F ((B,B)→(B,A))

F ((A,B)→(B,A))

(2.16)

commutes. Then C is a fibre product over F if and only if it satisfies the following universal
property: if C ′ ∈ Ob C satisfies Diagram (2.16) with morphisms ψ′A ∈ MorC (C ′, F ((A,A)))
for all A ∈ Ob I, then there is a unique morphism u ∈ MorC (C ′, C) such that the diagram

C ′

C

F ((A,A)) F ((B,B))

F ((A,B)) F ((B,A)).

ψ′A u ψ′B

ψA ψB

F ((A,A)→(A,B)) F ((B,B)→(B,A))

F ((A,B)→(B,A))

(2.17)

commutes for any two objects A,B ∈ Ob I.
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2. Preliminaries

Proof. Let C be a fibre product over F . Then putting together three diagrams of type (2.14)
we obtain a commutative diagram

C

F ((A,A)) F ((B,B))

F ((A,B)) F ((B,A))

φ(A,A)

φ(A,B)

φ(B,B)

φ(B,A)

F ((A,A)→(A,B)) F ((B,B)→(B,A))

F ((A,B)→(B,A))

for any two objects A,B ∈ Ob I. Thus, setting ψA = φ(A,A), C satisfies Diagram (2.16).
Now assume that C ′ satisfies Diagram (2.16), as well. Then for any two objects A,B ∈ Ob I
we have a commutative diagram

C ′

C

F ((A,A)) F ((B,B))

F ((A,B)) F ((B,A)).

ψ′A ψ′B

φ(A,A)

φ(A,B)

φ(B,B)

φ(B,A)

F ((A,A)→(A,B)) F ((B,B)→(B,A))

F ((A,B)→(B,A))

Setting

φ′(A,B) =

ψA ifA = B,

F ((A,A)→ (A,B)) ◦ ψ′(A,A) else

for any (A,B) ∈ ObJ , we obtain a commutative diagram of type (2.15) for any two
objects (A,B) , (A′, B′) ∈ ObJ and any morphism f ∈ MorJ ((A,B) , (A′, B′)). Hence,
the universal property of the fibre product yields a unique morphism u ∈ MorC (C ′, C) such
that Diagram (2.17) commutes, i.e. C satisfies the universal property of the statement.
Let now C ∈ Ob C satisfy the universal property of Diagram (2.17), and let C ′ ∈ Ob C

be a cone to F . Then we have a commutative diagram

C ′

F ((A,A)) C F ((B,B))

F ((A,B)) F ((B,A)).

φ′(A,A)
φ′(A,B) φ′(B,B)

φ′(B,A)

F ((A,A)→(A,B))

φ(A,A) φ(B,B)

F ((B,B)→(B,A))

F ((A,B)→(B,A))
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Setting ψ′A = φ′(A,A) for any A ∈ Ob I, we obtain a commutative diagram of type (2.17).
Hence, the universal property of C yields a unique morphism u ∈ MorC (C ′, C) such that
Diagram (2.17) commutes. Moreover, setting

φ(A,B) =
{
ψA if A = B,

F ((A,A)→ (A,B)) ◦ ψA else

for all (A,B) ∈ ObJ , u is the unique morphism in MorC (C ′, C) such that Diagram (2.15)
commutes. Thus, C is a fibre product over F .

Theorem 2.32. Let C be a category, and let F : J → C be a diagram of type J as in
Definition 2.29.

(1) Suppose that ∏
(A,B)∈ObJ

F ((A,B)) ∈ Ob C,

and let C be the subset of
∏

(A,B)∈ObJ F ((A,B)) consisting of all elements a ∈∏
(A,B)∈ObJ F ((A,B)) satisfying

F (f) ◦ pr(A,B) (a) = pr(A′,B′) (a)

for any (A,B), (A′, B′) ∈ ObJ and every morphism f ∈ MorC (F (A,B), F (A′, B′)),
where

pr(A,B) :
∏

(A′,B′)∈ObJ
F
((
A′, B′

))
→ F ((A,B)),

(
aA′,B′

)
(A′,B′)∈ObJ 7→ a(A,B)

is the projection for any (A,B) ∈ ObJ .

If C ∈ Ob C, then C together with the morphisms φ(A,B) = pr(A,B)

∣∣∣
C
for all (A,B) ∈

ObJ is a fibre product over F .

(2) Suppose that ∏
A∈Ob I

F ((A,A)) ∈ Ob C,

and let D be the subset of the product
∏
A∈Ob I F ((A,A)) consisting of all elements

a ∈
∏
A∈Ob I F ((A,A)) satisfying

F ((A,B)→ (B,A)) ◦ F ((A,A)→ (A,B)) ◦ prA (a) = F ((B,B)→ (B,A)) ◦ prB (a)

for all A,B ∈ Ob I, where

prA :
∏

A′∈Ob I
F
((
A′, A′

))
→ F ((A,A)),

(aA′)(A′)∈Ob I 7→ aA

is the projection for any A ∈ Ob I.
If D ∈ Ob C, then D together with the morphisms ψA = prA|D for all A ∈ Ob I is a
fibre product over F .
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In particular, if C,D ∈ Ob C, then C ∼= D.
Proof. (1) Assume that C ∈ Ob C. We have to show that C satisfies the universal property

of Diagram (2.15). So let C ′ ∈ Ob C together with morphisms φ′(A,B) : C ′ → F ((A,B))
for all (A,B) ∈ ObJ such that the diagram

C ′

F ((A,B)) F ((A′, B′))

φ′(A,B)
φ′(A′,B′)

F (f)

(2.18)

commutes for any two objects (A,B), (A′, B′) ∈ ObJ and all morphisms f ∈
MorC (F (A,B), F (A′, B′)).
Then the universal property of the product yields a unique morphism

u : C ′ →
∏

(A,B)∈ObJ
F ((A,B))

such that the diagram

C ′

F ((A,B))
∏

(A′′,B′′)∈ObJ
F
((
A′′, B′′

))
F ((A′, B′))

φ′(A,B)
u

φ′(A′,B′)

pr(A,B) pr(A′,B′)

commutes for any two objects (A,B), (A′, B′) ∈ ObJ . Together with Diagram (2.18)
we obtain

F (f) ◦ pr(A,B) ◦u = F (f) ◦ φ′(A,B) = φ(A′,B′) = pr(A′,B′) ◦u

for any two objects (A,B), (A′, B′) ∈ ObJ and all morphisms

f ∈ MorC
(
F (A,B), F

(
A′, B′

))
.

By the definition of C this implies u(C ′) ⊂ C.
Thus, there is a unique morphism

u ∈ MorC
(
C ′, C

)
such that the diagram

C ′

C

F ((A,B)) F ((A′, B′))

φ′(A,B) u
φ′(A′,B′)

φ(A,B) φ(A′,B′)

F (f)

commutes for any two objects (A,B), (A′, B′) ∈ ObJ and all morphisms f ∈
MorC (F (A,B), F (A′, B′)). Therefore, C is a fibre product over F .
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(2) Assume that D ∈ Ob C. Using Lemma 2.31, we have to show that D satisfies the
universal property of Diagram (2.17). So let D′ ∈ Ob C together with morphisms
ψ′A : D′ → F ((A,A)) for all A ∈ Ob I such that the diagram

D′

F ((A,A)) F ((B,B))

F ((A,B)) F ((B,A)).

ψ′A ψ′B

F ((A,A)→(A,B)) F ((B,B)→(B,A))

F ((A,B)→(B,A))

(2.19)

commutes for for any two objects A, b ∈ Ob I.
Then the universal property of the product yields a unique morphism

v : D′ →
∏

A∈Ob I
F ((A,A))

such that the diagram

D′

F ((A,A))
∏

A∈Ob I
F ((A,A)) F ((B,B))

ψ′A
v

ψ′B

prA prB

commutes for any two objects A, b ∈ Ob I. Together with Diagram (2.19) we obtain

F ((A,B)→ (B,A)) ◦ F ((A,A)→ (A,B)) ◦ prA ◦v
= F ((A,B)→ (B,A)) ◦ F ((A,A)→ (A,B)) ◦ ψ′A
= F ((B,B)→ (B,A)) ◦ ψ′B
= F ((B,B)→ (B,A)) ◦ prB ◦v

for any two objects A,B ∈ Ob I. By the definition of D, this implies v(D′) ⊂ D.
Thus, there is a unique morphism

v ∈ MorC
(
D′, D

)
such that the diagram

D′

D

F ((A,A)) F ((B,B))

F ((A,B)) F ((B,A)).

ψ′A u ψ′B

ψA ψB

F ((A,A)→(A,B)) F ((B,B)→(B,A))

F ((A,B)→(B,A))
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commutes for any two objects A,B ∈ Ob I. Therefore, D is by Lemma 2.31 a fibre
product over F .

With (1) and (2) the particular claim follows from the universal property of the fibre
product.

Theorem 2.33 (Mitchell’s Embedding Theorem). Let C be a small abelian category. Then
there exists a ring R and an exact fully faithful covariant functor F : C → R-Mod, where
R-Mod is the category of left R-modules and R-homomorphisms.

Proof. See [28, Theorem 1.12].

Corollary 2.34. Let C be a small abelian category, and let F : J → C be a diagram of type
J as in Definition 2.29. Then the fibre product over F exists, and it is isomorphic to the
subobject C of

∏
(A,B)∈J F ((A,B)) consisting of all elements a ∈

∏
(A,B)∈ObJ F ((A,B))

satisfying
F (f) ◦ pr(A,B) (a) = pr(A′,B′) (a) (2.20)

for any (A,B), (A′, B′) ∈ ObJ and every morphism f ∈ MorC (F (A,B), F (A′, B′)), where

pr(A,B) :
∏

(A′,B′)∈ObJ
F
((
A′, B′

))
→ F ((A,B)),

(
aA′,B′

)
(A′,B′)∈ObJ 7→ a(A,B)

is the projection for any (A,B) ∈ ObJ . Moreover, it is isomorphic to the subobject D of∏
A∈Ob I F ((A,A)) consisting of all elements a ∈

∏
A∈Ob I F ((A,A)) satisfying

F ((A,B)→ (B,A))◦F ((A,A)→ (A,B))◦prA (a) = F ((B,B)→ (B,A))◦prB (a) (2.21)

for all A,B ∈ Ob I, where

prA :
∏

A′∈Ob I
F
((
A′, A′

))
→ F ((A,A)),

(aA′)(A′)∈Ob I 7→ aA

is the projection for any A ∈ Ob I.

Proof. By Theorem 2.33 we only have to show the statement in the case that C is the
category of left modules over a ring R. Since products exist in C, we have to show that
C,D ∈ Ob C. The statement follows then from Theorem 2.32.
As C, respectively D, is a subset of the R-module

∏
(A,B)∈ObJ F ((A,B)), respectively∏

A∈Ob I F ((A,A)), we only have to show that C and D are closed under addition and
multiplication with scalars. In fact, since the products are closed under these operations,
we only have to show that they are compatible with Equations (2.20) and (2.21).

So let r1, r2 ∈ R, and let c1, c2 ∈ C. This implies

F (f) ◦ φ(A,B)(c1) = φ(A′,B′)(c1),
F (f) ◦ φ(A,B)(c2) = φ(A′,B′)(c2)
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for any two objects (A,B), (A′, B′) ∈ ObJ and all morphisms

f ∈ MorC
(
F (A,B), F

(
A′, B′

))
.

Since F (f), pr(A,B) and pr(A′,b′) are R-module homomorphisms, this yields

F (f) ◦ φ(A,B)(r1c1 + r2c2) = r1F (f) ◦ pr(A,B) (c1) + r2F (f) ◦ pr(A,B) (c2)
= r1 pr(A′,B′) (c1) + r2 pr(A′,B′) (c2)
= pr(A′,B′) (r1c1 + r2c2)

for any two objects (A,B), (A′, B′) ∈ ObJ and all morphisms

f ∈ MorC
(
F (A,B), F

(
A′, B′

))
.

Therefore, we have r1c1 + r2c2 ∈ C, and hence C ∈ Ob C.
Let now d1, d2 ∈ D. Then

F ((A,B)→ (B,A)) ◦ F ((A,A)→ (A,B)) ◦ prA (d1) = F ((B,B)→ (B,A)) ◦ prB (d1),
F ((A,B)→ (B,A)) ◦ F ((A,A)→ (A,B)) ◦ prA (d2) = F ((B,B)→ (B,A)) ◦ prB (d2)

for any two objects A,B ∈ Ob I. Since the maps F ((A,B)→ (B,A)), F ((A,A)→ (A,B)),
((B,B)→ (B,A)), prA and prB are R-module homomorphisms, this yields

F ((A,B)→ (B,A)) ◦ F ((A,A)→ (A,B)) ◦ prA (r1d1 + r2d2)
= r1F ((A,B)→ (B,A)) ◦ F ((A,A)→ (A,B)) ◦ prA (d1)

+ r2F ((A,B)→ (B,A)) ◦ F ((A,A)→ (A,B)) ◦ prA (d2)
= r1F ((B,B)→ (B,A)) ◦ prB (d1)

+ r2F ((B,B)→ (B,A)) ◦ prB (d2)
= F ((B,B)→ (B,A)) ◦ prB (r1d1 + r2d2)

for any two objects A,B ∈ Ob I. Therefore, we have r1d1 + r2d2 ∈ D, and hence
D ∈ Ob C.
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3. Valuations over One-dimensional
Cohen–Macaulay Rings

In this Chapter we introduce the semigroup of values. This will lead to good semigroups as
a combinatorial counterpart of curve singularities in Chapter 4. In Section 3.1 we start with
the valuation theory on one-dimensional Cohen–Macaulay rings. This is based on a theorem
which was proved by Matlis in the local case (see [29, Chapter VI]), and later generalized
by Kiyek and Vicente (see [23, Chapter II, Theorem 2.11]): if R is a one-dimensional
equidimensional semilocal Cohen–Macaulay ring, then the set VR of valuation rings of QR
which contain R is finite, and every V ∈ VR is a discrete valuation ring (see Theorem 3.2).
This allows us to introduce a discrete multivaluation

ν : QR → (Z ∪ {∞})VR .

In Section 3.1 we study the properties of the set VR and the multivaluation ν, in particular
its relations to the integral closure R of R in QR, and we introduce a filtration of QR,
respectively of any fractional ideal of R, which is based on the valuation ν (see Definition 3.6).
Moreover, we show that each valuation ring V ∈ VR can be associated to a branch of R,
i.e. a minimal prime ideal qV = IV ∩ R ∈ Min (R). Then the corresponding valuation is
constant along the other branches (see Proposition 3.13).

In Section 3.2 we associate to R its semigroup of values ΓR as the subset of NVR containing
the values of all regular elements of R. Similarly, we can define value semigroup ideals for
fractional ideals of R (see Definition 3.14). In fact, the value semigroup ideal of a fractional
ideal is a semigroup ideal of ΓR (see Proposition 3.22). As a first application we introduce
a concept of locality on the semigroup of values of R which is equivalent to R being local
(see Proposition 3.17). Particular algebraic hypotheses on R lead to properties of the
semigroup of values and the value semigroup ideals of fractional ideals (see Proposition 3.22
and Corollary 3.30) which will characterize the class of good semigroups (see Chapter 4).
We collect these hypotheses on R in the definition of admissible rings (see Definition 3.18).
In Proposition 2.7 we saw that the set RR is a monoid with respect to the product of
ideals, and that it is closed under taking quotients. However, taking values is in general
not compatible with these operations; for I, J ∈ RR we may have strict inclusions

ΓI + ΓJ ( ΓIJ

and
ΓI:J ( ΓI − ΓJ

(see Lemma 3.23 and Remark 3.24). In Chapters 4 and 5 we obtain equalities for two classes
of ideals, that is conductors (see Proposition 4.57) and canonical ideals (see Theorem 5.34).
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3. Valuations over One-dimensional Cohen–Macaulay Rings

Moreover, in Section 3.2.1 we show that the value semigroup is compatible with localization,
and in Section 3.2.2 we prove its invariance under completion.
An important example of admissible rings are algebroid curves (see Proposition 3.41).

Algebroid curves occur as the completion of local rings of curve singularities. For an
algebroid curve R there is a bijection between the set VR of valuation rings of QR over R
and the set Min (R) of minimal prime ideals of R. Using properties of discrete valuation
rings we show that an algebroid curve admits a parametrization (see Theorem 3.44).
Section 3.4 is dedicated to integral extensions of admissible rings and algebroid curves.

We show that an integral extension of an admissible ring in its total ring of fractions is
an admissible ring, and that an integral extension of an algebroid curve over a field is an
algebroid curve over the same field (see Theorem 3.45).

3.1. One-dimensional Cohen-Macaulay Rings
Remark 3.1. Let R be a one-dimensional semilocal Cohen–Macaulay ring. Then the total
ring of fractions QR has a large Jacobson radical since dimQR = 0 by Theorems A.72
and A.74.(1), and hence any prime ideal of QR is maximal, see Remark A.17.(1) and [30,
Section 7, page 423].

Theorem 3.2. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring.

(1) The set VR of valuation rings of QR containing R is finite and non-empty, and each
V ∈ VR is a discrete valuation ring of QR.

(2) We have Max (QR) = {IV | V ∈ VR}.

(3) Let m ∈ Max (QR). There is a bijection

{V ∈ VR | IV = m} → VR/(m∩R)

V 7→ V/IV ,

where QR/(m∩R) = QR/m.

(4) The integral closure of R in QR is R =
⋂
V ∈VR V .

(5) Any regular ideal of R is principal, and every regular prime ideal of R is maximal.

(6) There is a bijection

Max
(
R
)
→ VR

n 7→
((
R \ n

)reg)−1
R

mV ∩R←[ V.

In particular, R/
(
mV ∩R

)
= V/mV for any V ∈ VR.
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3.1. One-dimensional Cohen-Macaulay Rings

Proof. See [23, Chapter II, Theorem 2.11].

Corollary 3.3. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring, and set ν = (νV )V ∈VR : QR → ZVR . Then for any α ∈ ZVR there is an x ∈ Qreg

R such
that ν(x) = α.

Proof. This follows from Remark 3.1 Theorem 3.2.(1) and (2), and Corollary 2.27.

Let R be a one-dimensional semilocal Cohen–Macaulay ring. Then Corollary 3.3 and
Proposition 2.21.(2) (also cf. Diagram (2.10)) yield a commutative diagram

Qreg
R

∏
V ∈VR

R∗V,∞ ZVR∞ ,

µ ν

∼=
φR

(3.1)

where µ = (µV )V ∈VR , ν = (νV )V ∈VR and φ = (φV )V ∈VR . Moreover, φ is compatible with
the partial order on

∏
V ∈VR R

∗
V by reverse inclusion and the natural partial order on ZVR .

Lemma 3.4. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay ring.
Then

(1) R = {x ∈ Q | ν (x) ≥ 0},

(2) Qreg =
{
x ∈ Q

∣∣∣ ν (x) ∈ ZVR
}
and Rreg =

{
x ∈ Q

∣∣∣ ν (x) ∈ NVR
}
,

(3) R∗ = {x ∈ Q | ν (x) = 0}, and

(4) R∗ = R
∗ ∩R = {x ∈ R | ν (x) = 0}.

Proof. (1) If x ∈ R, then by Theorem 3.2.(4) x ∈ V , and hence νV ≥ 0 for all V ∈ VR.

Let now x ∈ Q such that ν (x) ≥ 0, i.e. νV (x) ≥ 0 for all V ∈ VR. Then x ∈ V for
all V ∈ VR, and hence x ∈

⋂
V ∈VR V = R, see again Theorem 3.2.(4).

(2) If x ∈ Qreg, then ν (x) ∈ ZVR by definition. So let x ∈ Q with ν (x) ∈ ZVR , and
assume x 6∈ Qreg. Then there is m ∈ Max (Q) such that x ∈ m. But then there is
by Theorem 3.2.(2) a V ∈ VR such that m = IV , and this implies νV (x) = ∞ by
Proposition D.8.(2) and Diagram (3.1), contradicting our assumption.

Moreover, we have by (1)

R
reg = R ∩Qreg =

{
x ∈ Q

∣∣∣ ν (x) ∈ NVR
}
.
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3. Valuations over One-dimensional Cohen–Macaulay Rings

(3) Since R ⊂ QR and V ⊂ QR for all V ∈ VR, Theorem 3.2.(4), Lemma A.11, and
Proposition D.13.(2) yield

R
∗ =

 ⋂
V ∈VR

V

∗

=
⋂

V ∈VR

V ∗

=
⋂

V ∈VR

{x ∈ Qreg | νV (x) = 0}

= {x ∈ Qreg | ν(x) = 0}
= {x ∈ Q | ν(x) = 0},

where the last equality follows from (2).

(4) This follows from (3) and Corollary B.4.

We can also relate
∏
V ∈VR R

∗
V and Diagram (3.1) to RR.

Proposition 3.5 (See [25], Section 3.1). Let R be a one-dimensional equidimensional
semilocal Cohen–Macaulay ring. Then there is an order preserving group isomorphism

ψ : RR →
∏
V ∈VR

R∗V

I 7→ (IV )V ∈VR⋂
V ∈VR

IV ←[ (IV )V ∈VR

such that the diagram
Qreg
R

RR
∏
V ∈VR

R∗V ZVR

µ ν

∼=
ψ

∼=
φ

commutes, where µ = (µV )V ∈VR , ν = (νV )V ∈VR and φ = (φV )V ∈VR .
Proof. By Theorem 3.2.(5) we have RR = R∗

R
, and for any I ∈ RR there is an x ∈ Qreg

such that I = xR. Then Theorem 3.2.(4) yields⋂
V ∈VR

IV =
⋂

V ∈VR

xV = x
⋂

V ∈VR

V = xR = I.

Hence, ψ is injective, and considering Diagram (3.1) we obtain a commutative diagram

Qreg
R

RR
∏
V ∈VR

R∗V ZVR .

α µ ν

ψ

∼=
φ
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3.1. One-dimensional Cohen-Macaulay Rings

The surjectivity of α follows from Theorem 3.2.(5), and the surjectivity of ν follows
from Corollary 3.3. This implies the surjectivity of µ, and hence of ψ. Moreover, the
isomorphisms ψ and φ preserve the partial orders onRR and

∏
V ∈VR R

∗
V by reverse inclusion

and the natural partial order on ZVR .

Definition 3.6. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring.

(1) We define a decreasing filtration Q• on QR by setting

Qα = {x ∈ QR | ν (x) ≥ α}

for any α ∈ ZVR .

(2) For any R-submodule I of QR we define a decreasing filtration I• on I by setting

Iα = I ∩Qα = {x ∈ I | ν (x) ≥ α}

for any α ∈ ZVR .

Lemma 3.7. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay ring.
For any α ∈ ZVR there is an x ∈ Rreg with ν(x) ≥ α.

Proof. By Corollary 3.3 and Lemma 3.4.(2) there is a fraction x
y ∈ Q

reg
R with ν(x)− ν(y) =

ν
(
x
y

)
= α, see Lemma D.22.(2). Since x

y ∈ Q
reg
R , we have x ∈ Rreg, and since x, y ∈ R, we

have ν(x), ν(y) ≥ 0. This implies ν(x) ≥ ν(x)− ν(y) = α.

Proposition 3.8. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring, and let α ∈ ZVR . For any I ∈ RR we have Iα ∈ RR.

Proof. Let x ∈ Iα, and let r ∈ R. Then ν(rx) = ν(r) + ν(x) ≥ ν(x) ≥ α. This implies
rx ∈ Iα since rx ∈ I.
Let y ∈ Iα. Then ν(x+ y) ≥ inf {ν(x), ν(y)} ≥ α. This implies x + y ∈ Iα since

x+ y ∈ I. Thus, Iα is an R-submodule of QR. Since I ∈ RR, there is an r ∈ Rreg such
that rIα ⊂ rI ⊂ R. Thus, Iα is a fractional ideal of R.
Since I ∈ RR, there is an x ∈ Ireg. Set β = α − ν(x). Then Lemma 3.4.(2) yields

β ∈ ZVR . By Lemma 3.7 there is an r ∈ Rreg with ν(x) ≥ β. Then rx ∈ Ireg with
ν(rx) = ν(r) + ν(x) ≥ α − ν(x) + ν(x) = α. This implies rx ∈ (Iα)reg. Therefore,
Iα ∈ RR.

Lemma 3.9 (See [25], Section 3.3). Let R be a one-dimensional equidimensional semilocal
Cohen–Macaulay ring.

(1) The isomorphism φ ◦ ψ of Proposition 3.5 is given by

φ ◦ ψ : RR → ZVR

I 7→ (min {νV (x) | x ∈ IV })V ∈VR
Qα ←[ α.
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3. Valuations over One-dimensional Cohen–Macaulay Rings

(2) Let α, β ∈ ZVR . Then

QαQβ = Qα+β,

Qα : Qβ = Qα−β,

(Qα)−1 = Q−α.

(3) Let I be an R-submodule of QR. For any α ∈ ZVR we have

ν (Iα) = {β ∈ ν (I) | β ≥ α} .

Proof. (1) This follows from Propositions 2.21.(2), 2.23.(5), and 3.5.

(2) This follows immediately from (1).

(3) This follows immediately from Definition 3.6.(2).

Proposition 3.10. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring. Then

Qα =
⋂

V ∈VR

(mV )αV

for any α ∈ ZVR .

Proof. This follows from Propositions 3.5 and 2.21.(2) and Lemma 3.9.(1).

Lemma 3.11. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring, and let I ∈ RR. Then I is generated by any x ∈ QR having the multivalue

ν(x) = (min {νV (x) | x ∈ IV })V ∈VR .

Moreover, any such x is regular.

Proof. Set α = (min {νV (x) | x ∈ IV })V ∈VR . Then

I = Qα

by Lemma 3.9.(1). Thus, there is an x ∈ I with ν(x) = α. Since α ∈ ZVR , this implies
x ∈ Ireg by Lemma 3.4.(2).
Let now y ∈ I = Qα. Then ν(y) ≥ ν(x) = α, and hence by Lemma D.22.(2)

ν

(
y

x

)
= ν(y) + ν

(
x−1

)
= ν(y)− ν(x) ≥ 0.

This implies y
x ∈ R by Lemma 3.4.(1), and therefore y ∈ xR.

Lemma 3.12. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring, and let I ∈ RR. For any x ∈ I there is a y ∈ Ireg such that νV (y) = νV (x) for all
V ∈ VR with x 6∈ IV .
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3.1. One-dimensional Cohen-Macaulay Rings

Proof. Since CI ∈ RR by Corollary C.16, there is by Lemma 3.9.(1) an α ∈ ZVR such that
CI = Qα. Hence, by Lemma 3.4.(2) there is a z ∈ Creg

I such that νV (z) > νV (x) for all
V ∈ VR with x 6∈ IV . Then Lemma D.22.(5) yields for any V ∈ VR

νV (x+ z) = min {νV (x), νV (z)} =
{
νV (x) if x 6∈ IV ,
νV (z) else.

In particular, we have ν(x+ z) ∈ ZVR , and hence y = x+ z ∈ Ireg by Lemma 3.4.(2).

Proposition 3.13. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring.

(1) For any V ∈ VR we have

IV = 0×
∏

p∈Min (R)\{qV }
QR/p,

where
qV = IV ∩R ∈ Min (R).

(2) For any q ∈ Min (R) there is a bijection

{V ∈ VR | qV = q} → VR/q,
V 7→ V/IV ,

V ×
∏

p∈Min (R)\{q}
QR/p ←[ V .

In particular, any valuation ring V ∈ VR is of the form

V = V/IV ×
∏

p∈Min (R)\{qV }
QR/p,

where V/IV ∈ VR/qV , and we have

νV = π ◦νV/IV ,

where π : QR → QR/IV is the canonical surjection.

(3) For any subset J ⊂ Min (R) there is a bijection

{V ∈ VR | qV ∈ J} → VR/⋂
p∈J p,

V 7→ V/
⋂
p∈J

pQR,

V ′ ×
∏

q∈Min (R)\J
QR/q ←[ V ′.

Moreover,
νV = π ◦νV/⋂

p∈J pQR

for any V ∈ VR with IV ∈ J , where π : QR → QR/
⋂

p∈J pQR is the canonical
surjection.
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3. Valuations over One-dimensional Cohen–Macaulay Rings

Proof. (1) By Theorem 3.2.(2) we have IV ∈ Max (QR), and hence the claim follows
from Corollary A.75.

(2) By (1) and Theorem 3.2.(2) and (3) there is a bijection

φ : {V ∈ VR | qV = q} → VR/q,
V 7→ V/IV .

If q ∈ Min (R) and V ∈ VR/q, then

V = V ×
∏

p∈Min (R)\{q}
QR/p

is by Theorems A.74.(2) and 3.2.(1) a discrete valuation ring of QR/q. Moreover,
since by (1)

IV = 0×
∏

p∈Min (R)\{qv}
QR/p,

we have qV = q and V/IV = V . Hence, the map

ψ : VR/q → {V ∈ VR | qV = q} ,

V 7→ V ×
∏

p∈Min (R)\{q}
QR/p

is the inverse of φ. Also see [23, Chapter II, 2.12].
The remaining part of the statement follows from Proposition D.16.

(3) Let V ∈ VR such that IV ∩R ∈ J . Then by (2)

V = V/IV ×
∏

p∈Min (R)\{qV }
QR/p,

where V/IV ∈ VR/qV . Moreover, Corollary A.75 yields

⋂
p∈J

pQR =
⋂
p∈J

0×
∏

q∈Min (R)\{p}
QR/q

 =
∏
p∈J

0×
∏

q∈Min (R)\J
QR/q.

Since qV ∈ J , this implies

V/
⋂
p∈J

pQR = V/IV ×
∏

q∈J\{qV }
QR/q. (3.2)

Now note that the canonical surjection π : R→ R′ = R/
⋂

p∈J p induces by Proposi-
tion A.10 an equality

Min
(
R′
)

=

π (q) = q +
⋂
p∈J

p/
⋂
p∈J

p

∣∣∣∣∣ q ∈ J
, (3.3)
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3.1. One-dimensional Cohen-Macaulay Rings

and, moreover,
R/q = R′/ π (q). (3.4)

Then Equations (3.2), (3.3), and (3.4) yield

V/
⋂
p∈J

pQR = V/IV ×
∏

q∈J\{qV }
QR′/ π (q) (3.5)

= V/IV ×
∏

q∈Min (R′)\{π (qV )}
QR′/ π (q). (3.6)

Since qV ∈ J , we obtain with Equation (3.4)

R′/ π (qV ) = R/qV ⊂ V/IV ⊂ QR/qV = QR′/ π (qV ),

where V/IV ∈ VR/qV by (1), and hence

V/IV ∈ VR′/ π qV . (3.7)

Thus, by (1) and Equations (3.6) and (3.7) there is a map

φ : {V ∈ VR | qV ∈ J} → VR′ ,
V 7→ V/

⋂
p∈J

pQR.

Let now V ′ ∈ VR′ . Then by (1) and Equations (3.3) and (3.4) we have

V ′ = V ′/IV ′ ×
∏

q∈Min (R′)\{qV ′}
QR′/q (3.8)

= V ′/IV ′ ×
∏

q∈J\{π−1 (qV ′ )}
QR′/ π (q) (3.9)

= V ′/IV ′ ×
∏

q∈J\{π−1 (qV ′ )}
QR/q. (3.10)

By (1) we have qV ′ ∈ Min (R′), and hence π−1 (qV ′) ∈ J by Equation (3.3). Since
V ′/IV ′ ∈ VR′/(IV ′∩R′) by (1), Equation (3.4) yields

R/π−1 (qV ′) = R′/qV ′ ⊂ V ′/IV ′ ⊂ QR′/qV ′ = QR/π−1 (qV ′ ),

and hence
V ′/IV ′ ∈ VR/π−1 (qV ′ ). (3.11)

Moreover, Equation (3.10) implies

V ′ ×
∏

q′∈Min (R)\J
QR/q′ = V ′/IV ′ ×

∏
q∈J\{π−1 (qV ′ )}

QR/q ×
∏

q′∈Min (R)\J
QR/q′

= V ′/IV ′ ×
∏

q∈Min (R)\{π−1 (qV ′ )}
QR/q.
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3. Valuations over One-dimensional Cohen–Macaulay Rings

Thus, (1) and Equations (3.4) and (3.11) imply

V ′ ×
∏

q′∈Min (R)\J
QR/q′ ∈ VR

with
qV ′×

∏
q′∈Min (R)\J QR/q′

= π−1 (qV ′) ∈ J.

Hence, there is a map

ψ : VR′ → {V ∈ VR | qV ∈ J},
V ′ 7→ V ′ ×

∏
q∈Min (R)\J

QR/q.

By construction, we obviously have φ ◦ ψ = idVR′ and ψ ◦ φ = id{V ∈VR|IV ∩R∈J}.
Therefore, φ and ψ are bijective and mutually inverse maps.
With what we just showed, the remaining part of the statement follows from Propo-
sition D.16.

3.2. Semigroup of Values
Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay ring. Theo-
rem 3.2.(1) provides the basis for the definition of the semigroup of values of R. We
consider the values in the finitely many discrete valuations of QR simultaneously. Similarly,
we associate to a regular fractional ideal of R its value semigroup ideal. Studying the
properties of these objects in relation to certain algebraic hypotheses (see Proposition 3.22
and Corollary 3.30) leads to the definition of admissible rings (see Definition 3.18) We
decompose the semigroup of values and value semigroup ideals into local components (see
Theorem 3.28), and we show their invariance under completion (see Theorem 3.34).

Definition 3.14. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring, and let VR be the set of (discrete) valuation rings of QR over R (see Theorem 3.2.(1)
and Definition D.1) with corresponding valuations

νR = (νV )V ∈VR : QR → ZVR∞ .

We will also write ν instead of νR.

(1) To a fractional ideal I ∈ RR we associate its value semigroup ideal

ΓI = ν (Ireg) ⊂ ZVR

(see Lemma 3.4.(2)).

(2) If I = R, then the monoid ΓR ⊂ NVR is called the value semigroup or semigroup of
values of R.
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3.2. Semigroup of Values

(3) The value semigroup ΓR is said to be local if 0 is the only element of ΓR with a zero
component in ZVR .

Remark 3.15 (See [25], Remark 3.1.10). Let R be a one-dimensional equidimensional
semilocal Cohen–Macaulay ring, and let E,F ∈ RR. If E ⊂ F, then ΓE ⊂ ΓF.

Lemma 3.16. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring, let I ∈ RR, and let x ∈ I. Then x ∈ Ireg if and only if ν(x) ∈ ΓI.

Proof. If x ∈ Ireg, then ν(x) ∈ ΓI by Definition 3.14.
If x ∈ I \ Ireg, then ν(x) ∈ (Z ∪ {∞})VR \ ZVR by Lemma 3.4.(2). Hence, ν(x) ∈

(Z ∪ {∞})VR \ ΓR.

The following result was stated without prove in [7, (1.1.1)] and [10, Section 2].

Proposition 3.17 (See [25], Proposition 3.1.4). A one-dimensional equidimensional semilo-
cal Cohen–Macaulay ring R is local if and only if its value semigroup ΓR is local. If R is
local, then the maximal ideal is

mR = {x ∈ R | ν(x) > 0} = R1.

Proof. Suppose first that R is local with maximal ideal mR. Then Theorem 3.2.(6) and
Propositions B.3, B.15, and D.13.(3) imply

mR ⊂
⋂

n∈Max (R)
n =

⋂
V ∈VR

mV =
⋂

V ∈VR

{x ∈ QR | νV (x) > 0} = {x ∈ VR | ν(x) > 0}.

The statement follows from Lemma 3.4.(4).

Suppose now that ΓR is local. We want to show that

m = {x ∈ R | ν (x) > 0}

is the unique maximal ideal of R.
We show that ν (x) has no zero component for any x ∈ m. Then

m = R1,

and hence it is an ideal of R by Proposition 3.8.
So assume that there is x ∈ m such that νV1 (x) = 0 for some V1 ∈ VR. Then x ∈

R \Rreg ⊂ Q \Qreg by the assumption on ΓR and Lemma 3.16. Hence, by Theorem 3.2.(2)
there is V2 ∈ VR such that x ∈ IV2 , and Proposition D.8.(2) and Diagram (3.1) imply
V1 6= V2.
Since R is a one-dimensional Cohen–Macaulay ring, there is a y ∈ Rreg \ R∗. Then

ν(x) ∈ ΓR, and Lemma 3.4.(2) and (4) yield ν (x) > 0 for every V ∈ VR. After replacing y
by a suitable power, we may assume that νV (x) 6= νV (y) for all V ∈ VR. Then

ν (x+ y) = inf {ν (x) , ν (y)} ∈ ZVR

43



3. Valuations over One-dimensional Cohen–Macaulay Rings

by Lemma D.22.(5) and since ν (y) ∈ ZVR . Thus, x+y ∈ Rreg = R∩Qreg by Lemma 3.4.(2),
and hence ν (x+ y) ∈ ΓR.
Since νV1(y) > 0, we have

νV1 (x+ y) = min {νV1(x), νV1(y)} = νV1 (x) = 0.

By assumption on ΓR, this implies ν (x+ y) = 0. Since νV2(x) =∞, we obtain

0 = νV2 (x+ y) = νV2 (y) .

But this contradicts the choice of y.
Since R∗ = R

∗ ∩ R = {x ∈ R | ν (x) = 0} by Lemma 3.4.(4), any proper ideal of R is
contained in m. Therefore, m is the unique maximal ideal of R.

Definition 3.18. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring.

(1) We call R analytically reduced if R̂ is reduced or, equivalently, R̂m is reduced for all
m ∈ Max (R) (see Lemma A.68).

(2) The ring R is called residually rational if R/m = R/n for any m ∈ Max (R) and
n ∈ Max

(
R
)
with n∩R = m. Equivalently, R/m = V/mV for any m ∈ Max (R) and

V ∈ VR with mV ∩R = m (see Theorem 3.2.(6)).

(3) We say that R has large residue fields if |R/m| ≥ |VRm | for all m ∈ Max (R).

(4) We call R admissible if it is analytically reduced and residually rational with large
residue fields.

Definition 3.19. Let S be a partially ordered monoid, isomorphic to NI with its natural
partial order, where I is a finite set. We consider the following properties of a subset E of
the group of differences DS

∼= ZI of S (see [7, Section 1] and [8, Section 2]).

(E0) There exists an α ∈ DS such that α+ S ⊂ E.

(E1) If α, β ∈ E, then inf {α, β} = (min {αi, βi})i∈I ∈ E.

(E2) For any α, β ∈ E and j ∈ I such that αj = βj there exists an ε ∈ E such that
εj > αj = βj and εi ≥ min {αi, βi} for all i ∈ I, where equality is obtained whenever
αi 6= βi.

We call E good if it satisfies (E0), (E1), and (E2).

The difference of two subsets E and F of DS is

E − F =
{
α ∈ DS | α+ F ⊂ E

}
Lemma 3.20 (See [25], Lemma 3.1.7). Any group isomorphism of Zs preserving the partial
order is defined by a permutation of the standard basis.
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3.2. Semigroup of Values

Proof. Let ϕ be an automorphism of Zs preserving the partial order. Then (ϕ (ei))i∈{1,...,s}
is a basis of Zs, and hence for j ∈ {1, . . . , s} there are λi ∈ Z, i = 1, . . . , s such that 0 <
ej =

∑
i λiϕ (ei) = ϕ (

∑s
i=1 λiei). Since ϕ preserves the order, this implies

∑s
i=1 λiei > 0,

and hence λi ≥ 0 for all i = 1, . . . , s. For the k-th component (k ∈ {1, . . . , s}) we have
s∑
i=1

λi(ϕ (ei))k =
(

s∑
i=1

λiϕ (ei)
)
k

= (ej)k =
{

1 if k = j,

0 else.

As ϕ is order preserving, we have φ(ei) > 0 for every i = 1, . . . , s. Therefore, ej = ϕ (ei)
for some i ∈ {1, . . . , s}.

Lemma 3.21 (See [25], Lemma 3.1.8). Let R be a one-dimensional equidimensional
analytically reduced semilocal Cohen–Macaulay ring, and let I ∈ RR. Then R ∈ RR, and
hence RR ⊂ RR. In particular, CI ∈ RR ∩ RR, and CI = xR for some x ∈ Creg

I with
ν(x) + NVR ⊂ ΓI.

Proof. Since R is analytically reduced, R is by Corollary C.15 a finite R-module. This
implies R ∈ RR (see Remark 2.6.(1)), and hence CI = I : R ∈ RR ∩ RR by Proposi-
tion 2.7.(2).

Moreover, CI ∈ RR implies by Lemma 3.11 that there is an x ∈ Qreg such that CI = xR.
Since 1 ∈ R, this yields x ∈ CI ∩ Qreg

R = Creg
I . Finally, we obtain by Lemma 3.4.(2),

Proposition 2.7.(1), and Remark 3.15

ν(x)NVR = ΓxR ⊂ ΓI

since ν is a group homomorphism, and since xR ⊂ I.

If R is a one-dimensional equidimensional semilocal Cohen–Macaulay ring, and if I ∈ RR,
then the value semigroup ideal ΓI of I is a semigroup ideal of ΓR. Moreover, due to D’Anna
(see [8]) certain algebraic hypotheses on R imply the properties (E0), (E1), and (E2) on ΓI.

Proposition 3.22 (See [25], Proposition 3.1.9). Let R be a one-dimensional equidimen-
sional semilocal Cohen–Macaulay ring, and let I ∈ RR.

(1) We have ΓI + ΓR ⊂ ΓI.

(2) If R is analytically reduced, then ΓI satisfies (E0) with I = VR and S = ΓR = NVR .

(3) If R is local and analytically reduced with large residue field, then ΓI satisfies (E1).

(4) If R is local and residually rational, then ΓI satisfies (E2).

In particular, if R is local admissible, then ΓI satisfies (E0), (E1), and (E2).

Proof. (1) This follows from ν being a homomorphism of groups.

(2) By Lemma 3.21 there is an x ∈ Creg
I such that

ν (x) + NVR = ν
(
xR

reg) = ν((CI)reg) ⊂ ν (Ireg) = ΓI

since ν is a group homomorphism and ν
(
R

reg) = NVR by Lemma 3.4.(2).
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3. Valuations over One-dimensional Cohen–Macaulay Rings

(3) See [25, Proposition 3.1.9.(c)].

(4) See [25, Proposition 3.1.9.(d)].

While taking the value semigroup preserves inclusions (see Remark 3.15), it is in general
not compatible with the expected counterparts of products and quotients of ideals.

Lemma 3.23 (See [25], Lemma 5.3.1). Let R be a one-dimensional equidimensional
semilocal Cohen–Macaulay ring, and let I, J ∈ RR.

(1) If I, J ∈ RR, then
ΓI + ΓJ ⊂ ΓIJ

and
ΓI:J ⊂ ΓI − ΓJ.

(2) If I, J ∈ RR, then
ΓIJ = ΓI + ΓJ

and
ΓI:J = ΓI − ΓJ.

Proof. (1) Let α ∈ ΓI + ΓJ. Then there is an x ∈ Ireg and a y ∈ Jreg such that
ν(x) + ν(y) = α. The claim follows since xy ∈ (IJ)reg, and since ν is a group
homomorphism.
Let α ∈ ΓI:J. Then there is x ∈ (I : J)reg such that ν (x) = α. Since xJ ⊂ I, this
yields by Proposition D.11 and Diagram (2.10)

α+ ΓJ = ν (x) + ν (Jreg) = ν (xJreg) ⊂ ν (Ireg) = ΓI.

Hence, α ∈ ΓI − ΓJ.

(2) This follows immediately from Definition 3.6.(1) and Lemma 3.9.(1) and (2).

Remark 3.24 (See [25], Remark 3.1.10). Let R be a one-dimensional equidimensional
semilocal Cohen–Macaulay ring, and let I, J ∈ RR.

(1) The inclusion ΓI + ΓJ ⊂ ΓIJ (see Lemma 3.23.(1)) is in general not an equality, see
Example 3.25 below.

(2) Similarly, the inclusion ΓI:J ⊂ ΓI − ΓJ (see Lemma 3.23.(1)) is in general not an
equality, see Example 3.26 below.

Example 3.25 (See [25], Example 4.1.3). Consider the admissible ring (see Proposi-
tion 3.41)

R = C
[[(
−t41, t2

)
,
(
−t31, 0

)
, (0, t2) ,

(
t51, 0

)]]
⊂ C [[t1]]× C [[t2]] = R,
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3.2. Semigroup of Values

ΓR ΓI

ΓJ ΓI + ΓJ

Figure 3.1.: The value semigroup (ideals) in Example 3.25.

and the R-submodules of QR

I =
〈(
t31, t2

)
,
(
t21, 0

)〉
R
,

J =
〈(
t31, t2

)
,
(
t41, 0

)
,
(
t51, 0

)〉
R
.

Then I, J ∈ RR (see Remark 2.6.(1)). Moreover, Figure 3.1 shows that R is local (see
Proposition 3.17), and that (E2) fails for ΓI + ΓJ. Thus, ΓI + ΓJ ( ΓIJ by Proposition 3.22.

Example 3.26. Barucci, D’Anna and Fröberg showed in [10, Example 3.3] that for the
local admissible ring (see Figure 3.2 and Propositions 3.17 and 3.41)

R = C[[x1, . . . , x11]]

with x1 =
(
t71, t

6
2
)
, x2 =

(
t61, t

7
2
)
, x3 =

(
t91, t

11
2
)
, x4 =

(
t10
1 , t

10
2
)
, x5 =

(
t11
1 , t

9
2
)
, x6 =

(
t11
1 , t

10
2
)
,

x7 =
(
t12
1 , t

12
2
)
, x8 =

(
t13
1 ,−t13

2
)
, x9 =

(
t20
1 , t

12
2
)
, x10 =

(
t16
1 , t

20
2
)
, x11 =

(
t12
1 , t

20
2
)
with

maximal ideal mR property (E2) fails for the difference ΓmR − ΓR, see Figure 3.2. Thus,
ΓmR − ΓR ( ΓmR:R by Proposition 3.22.

3.2.1. Compatibility with Localization

We show the compatibility of the semigroup of values of a one-dimensional equidimensional
reduced semilocal Cohen–Macaulay ring R with localization. Similarly, also the value
semigroup ideals of fractional ideals of R decompose into local components (see Theo-
rem 3.28). This enables us to extend the results of Proposition 3.22 to semilocal rings (see
Corollary 3.30).
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3. Valuations over One-dimensional Cohen–Macaulay Rings

ΓR ΓmR − ΓR

Figure 3.2.: The value semigroup (ideals) in Example 3.26, see [10, Example 3.3].

Proposition 3.27. Let R be a one-dimensional equidimensional semilocal Cohen–Macaulay
ring. Then Rm is a one-dimensional reduced local Cohen–Macaulay ring for every m ∈
Max (R).

Proof. Letm ∈ Max (R). Then heightm = 1 by Proposition B.27 since R is equidimensional.
Hence, dimRm = 1 by Proposition A.20.(2). Moreover, Rm is reduced by Lemma A.27 as R
is reduced. Moreover, Rm is Noetherian by Corollary A.21. Thus, Rm is a one-dimensional
reduced local Cohen–Macaulay by Proposition C.13.

The first part of the following Theorem was stated by Barucci, D’Anna and Fröberg
in [10, Section 1.1].

Theorem 3.28 (See [25], Theorem 3.2.2). Let R be a one-dimensional equidimensional
reduced semilocal Cohen–Macaulay ring. Then there is a decomposition

ΓR =
∏

m∈Max (R)
ΓRm

of ΓR into local value semigroups. Moreover, for any E ∈ RR there is a decomposition

ΓI =
∏

m∈Max (R)
ΓIm .

For the proof of Theorem 3.28 we need the following lemma.

Lemma 3.29 (See [25], Lemma 3.2.1). Let R be a one-dimensional equidimensional
reduced semilocal Cohen–Macaulay ring. For any m ∈ Max (R) the localization map

48



3.2. Semigroup of Values

π : QR → (QR)m = QRm (see Proposition A.77 for the equality) induces a bijection

ρm : {V ∈ VR | mV ∩R = m} → VRm ,

V 7→ Vm,

π−1(W )←[ W.

In particular, (mV )m = mρm(V ) for every V ∈ VR.

Proof. Let m ∈ Max (R), and let V ∈ VR with mV ∩R = m. Since localization is exact by
Proposition A.24, we have

Rm ⊂ Vm ⊂ (QR)m = QRm ,

where the last equality follows from Proposition A.77. Since R\m ⊂ V \mV by assumption,
and hence νV (x) = 0 for all x ∈ R \ m by Proposition D.13.(1) and (3), Lemma D.19
implies Vm ∈ VRm with π−1(Vm) = V . Thus, ρm is an injective map.
Let now W ∈ VRm , and set V = π−1(W ). Then Vm = W ( QRm by Lemma A.35.(2),

and hence R ⊂ V ( QR.
Let x, y ∈ QR \ V , and suppose that xy ∈ V . Then π(x), π(y) ∈ QRm \ Vm yields

π(x)π(y) = π(xy) ∈ π(V ) ⊂W which is a contradiction to QRm \W being multiplicatively
closed as W is a valuation ring of QRm . Thus, also QR \ V is multiplicatively closed, and
hence V ∈ VR.

Consider the commutative diagram of ring homomorphisms

R Rm

V W.

π|R

π

Then π−1(mW ) is a prime ideal of V by Proposition A.20.(1), and Theorem 3.2.(6) and
Propositions B.3 and B.15 yield

π−1(mW ) ∩R = π−1(mW ) ∩ π−1(Rm) ∩R
= π−1(mW ∩Rm) ∩R
= (π|R)−1(mW ∩Rm)
= (π|R)−1(mRm)
= m.

In particular, with m also p is regular, and hence p = mV by Theorem 3.2.(1) and
Proposition 2.22.(d).

Let R be a one-dimensional equidimensional reduced semilocal Cohen–Macaulay ring. By
Theorem 3.2.(1) and Proposition 2.22.(d) the sets {V ∈ VR | mV ∩R = m}, m ∈ Max (R),
form a partition of VR. By Lemma 3.29 there is a bijection

ρ : VR →
⊔

m∈Max (R)
VRm ,

V 7→ ρmV ∩R(V ) = VmV ∩R
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3. Valuations over One-dimensional Cohen–Macaulay Rings

inducing an order preserving group homomorphism (see Lemma 2.16.(2) and Proposi-
tions A.38 and A.39)

ρ′ :
∏
V ∈VR

R∗V →
∏

m∈Max (R)

∏
W∈VRm

R∗W ,

(IV )V ∈VR 7→
(((

Iρ−1(W )
)
ρ−1(W )∩R

)
W∈VRm

)
m∈Max (R)

.

Let (IV )V ∈VR ∈
∏
V ∈VR R

∗
V . Then Proposition 2.21.(2) yields IV = mkV

V with kV =
max

{
k ∈ Z | mk

V ≤ I
}
for every V ∈ VR. So Lemma 3.29 implies

ρ′
(
(IV )V ∈VR

)
= ρ′

((
mkV
V

)
V ∈VR

)

=


(mkρ−1(W )

ρ−1(W )

)
mρ−1(W )∩R


W∈VRm


m∈Max (R)

=


((mρ−1(W )

)
mρ−1(W )∩R

)kρ−1(W )

W∈VRm


m∈Max (R)

=
((

m
kρ−1(W )
W

)
W∈VRm

)
m∈Max (R)

.

Since ρ also induces an isomorphism

ρ′′ : ZVR →
∏

m∈Max (R)
ZVRm ,

we obtain with Diagram (3.1) a commutative diagram

∏
V ∈VR

R∗V ZVR

∏
m∈Max (R)

∏
W∈VRm

R∗W
∏

m∈Max (R)
ZVRm ,

φR
∼=

ρ′
ρ′′∼=

∏
m∈Max (R) φRm

∼=

and hence

ρ′ =

 ∏
m∈Max (R)

φRm

−1

◦ ρ′′ ◦ φR
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3.2. Semigroup of Values

is an isomorphism. With Proposition 3.5 it fits into a commutative diagram

Qreg
R

∏
m∈Max (R)

Qreg
Rm

RR
∏

m∈Max (R)
RRm

∏
V ∈VR

R∗V
∏

m∈Max (R)

∏
W∈VRm

R∗W

ZVR
∏

m∈Max (R)
ZVRm ,

νR ∏
m∈Max (R) νRm

ψR ∼=

ξ
∼=

∏
m∈Max (R) ψRm

∼=

φR ∼=

ρ′

∼=

∏
m∈Max (R) φRm

∼=

ρ′′

∼=

where

ξ : RR →
∏

m∈Max (R)
RRm

=
∏

m∈Max (R)
RRm

,

I 7→ (Im)m∈Max (R),

see Lemma 2.16.(2), Proposition A.39, and Corollary B.8. This implies

νR(x) =
(
νRm

(
x

1

))
m∈Max (R)

(3.12)

for all x ∈ Qreg
R . To ease notation we identify ZVR and

∏
m∈Max (R)

ZVRm via ρ′′.

Proof of Theorem 3.28. By Proposition A.20.(2) and Lemma A.27 Rm is a one-dimensional
reduced local Cohen–Macaulay ring, and hence ΓRm is local by Proposition 3.17 for all
m ∈ Max (R). To prove the Theorem we have to show the second decomposition of the
statement.
So let E ∈ RR. Then for any m ∈ Max (R) Proposition A.39 and Lemma 2.16.(2) yield

Em ∈ RRm , and by Equation (3.12) there is an inclusion

ΓE ⊂
∏

m∈Max (R)
ΓEm .

Let now
α = (αm)m∈Max (R) ∈

∏
m∈Max (R)

ΓEm .
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3. Valuations over One-dimensional Cohen–Macaulay Rings

Then for any m ∈ Max (R) there is xm
ym
∈ Em such that

νRm

(
xm
ym

)
= αm.

Since ym ∈ R \ m, and hence ym
1 ∈ (Rm)∗ for every m ∈ Max (R), Lemma 3.4.(4) implies

νRm(ym) = 0. So after clearing denominators we may assume that ym = 1 for all m ∈
Max (R).
The Chinese Remainder Theorem yields for any m ∈ Max (R) a

zm ∈

 ⋂
n∈Max (R)\{m}

n

 \m.
Then Theorem 3.2.(6), Propositions B.3, B.15, and D.13.(1) and (3) imply for any m ∈
Max (R)

νRm

(
zm
1

)
= 0,

νV

(
zm
1

)
> 0 for all V ∈ VRn for all V ∈ VRn for every n ∈ Max (R) \ {m}.

For every m ∈ Max (R) pick a

km > max
{
νV

(
xn
1

)
− νV

(
xm
1

) ∣∣∣∣∣ V ∈ VRn , n ∈ Max (R) \ {m}
}
.

Then
z =

∑
m∈Max (R)

xmz
km
m ∈ E

with
νRm

(
z

1

)
= αm

for all m ∈ Max (R). Thus,
ν(z) = α

by Equation (3.12), and the claim follows.

With Theorem 3.28 we are able to generalize Proposition 3.22.(3) and (4) to the semilocal
case.

Corollary 3.30 (See [25], Corollary 3.2.3). Let R be a one-dimensional equidimensional
reduced semilocal Cohen–Macaulay ring with large residue fields, and let I ∈ RR.

(1) If R is analytically reduced, then ΓI satisfies (E1).

(2) If R is residually rational, then ΓI satisfies (E2).

In particular, if R is admissible, then ΓI is good.
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3.2. Semigroup of Values

Proof. (1) This follows immediately from Theorem 3.28 and Proposition 3.22.(3).

(2) Let α, β ∈ ΓI such that αV = βV for some V ∈ VR, and set m = mV ∩ R ∈
Max (R) (see Theorem 3.2.(6) and Propositions B.3 and B.15). Then αm, βm ∈
ΓIm by Theorem 3.28, and Lemma 3.29 implies (αm)ρm(V ) = (βm)ρm(V ). Hence,
Proposition 3.22.(4) yields an εm ∈ ΓIm such that

(εm)χm(V ) > (αm)χm(V ) = (βm)χm(V ) ,

(εm)V ′ ≥ inf {(αm)V ′ , (βm)V ′} for all V ′ ∈ VRm \ {χm (V )},
(εm)V ′′ = inf {(αm)V ′′ , (βm)V ′′} for all V ′′ ∈ VRm \ {χm (V )}

with (αm)V ′′ 6= (βm)V ′′ .

Let now n ∈ Max (R) \ {m}. Since R has large residue fields, there is by Proposi-
tion 3.22 an

εn = inf {αn, βn} ∈ (ΓI)n.

Hence, if we set ε = (εm)m∈Max (R), then ε ∈ ΓI by Theorem 3.28, and

εV > αV = βV ,

εV ′ ≥ inf {αV ′ , βV ′} for all V ′ ∈ VR \ {V },
εV ′′ = inf {αV ′′ , βV ′′} for all V ′′ ∈ VR \ {V } with αV ′′ 6= βV ′′ .

Thus, ΓI satisfies (E2).
The particular claim follows with Proposition 3.22.

Remark 3.31. In the proof of Corollary 3.30.(2) we need to apply property (E1) in (ΓI)n
only for those n ∈ Max (R) with (αn)V 6= (βn)V for all V ∈ VRn . Otherwise property (E2)
is sufficient to construct an ε ∈ ΓI of the desired form.

The following corollary relates value semigroup ideals to jumps in the filtration induced
by Q•, see Definition 3.6 and [13, Remark 4.3].

Corollary 3.32 (See [25], Lemma 3.3.4). Let R be a one-dimensional equidimensional
analytically reduced semilocal Cohen–Macaulay ring with large residue fields, and let I be
an R-submodule of QR. For any α ∈ ZVR we have α ∈ ΓI if and only if Iα/Iα+eV 6= 0 for
all V ∈ VR.

Proof. We have Iα/Iα+eV 6= 0 for all V ∈ VR if and only if for every V ∈ VR there is
an x(V ) ∈ I with ν

(
x(V )

)
≥ α and νV

(
x(V )

)
= αV . In particular, we have x(V ) ∈ Iα.

Since R is a Marot ring by Corollary A.46, Theorem A.74.(1), and Remark A.17, and
since therefore Iα is by Proposition 3.8 and Remark 2.6.(2) generated by (Iα)reg, we may
assume that x(V ) ∈ (Iα)reg. Thus, there is for any V ∈ VR an x(V ) ∈ I with ν

(
x(V )

)
≥ α

and νV
(
x(V )

)
= αV if and only if for any V ∈ VR there is a β(V ) ∈ ΓI with β ≥ α and

βV = αV . Since ΓI satisfies (E1) by Corollary 3.30.(1), this is equivalent to α ∈ ΓI.
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3. Valuations over One-dimensional Cohen–Macaulay Rings

Lemma 3.33. A Noetherian semilocal ring R is admissible if and only if Rm is admissible
for every m ∈ Max (R).

Proof. This follows from Propositions 3.27 and A.24, Corollary B.8, Lemma A.68, and
Definition C.2.

3.2.2. Invariance under Completion
We show the invariance of the semigroup of values under completion. In the local case the
following statement is due to D’Anna [8, Section 1].

Theorem 3.34 (See [25], Theorem 3.3.4). Let R be a one-dimensional equidimensional
semilocal Cohen–Macaulay ring with large residue fields. If R is local or analytically reduced,
then

ΓI = Γ
Î

for any I ∈ RR.

For the proof of Theorem 3.34 we need the following Lemmas.

Lemma 3.35 (See [25], Lemma 3.3.1). With R also R̂ is a one-dimensional (semi)local
Cohen–Macaulay ring.

Proof. This follows from Theorem A.59.(2) and Corollaries A.64 and C.7.

Lemma 3.36 (See [25], Lemma 2.1.5). Let R be a one-dimensional local Cohen–Macaulay
ring. Then QRR̂ = Q

R̂
, and there is an inclusion preserving group isomorphism

RR → RR̂,

I 7→ Î,

J ∩QR ← [ J.

Proof. By [23, Chapter II, (2.4)] we have

Q
R̂

= R̂

[1
r

]
= QRR̂ (3.13)

for any r ∈ mreg, where m is the maximal ideal of R. Then Lemma 2.16.(2) and (4) and
Theorems A.55 and A.60 yield an injective map

RR → RR̂,

I 7→ IR̂ = Î

such that I = Î ∩QR for all I ∈ RR.
Let now J ∈ R

R̂
. Then there is an x ∈ R̂reg such that xJ ⊂ R̂, and by Equation (3.13)

we may assume that x ∈ Rreg. Now Theorem A.56 yields xJ ∩R ∈ RR with

(xJ ∩R)R̂ = xJ.

Thus, we obtain x−1(xJ ∩R) ∈ RR with

x−1(xJ ∩R)R̂ = x−1xJ = J.
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Theorem 3.37 (See [25], Theorem 3.3.2). Let R be a one-dimensional local Cohen–
Macaulay ring. Then there is a bijection

σ : VR → VR̂
V 7→ V R̂

W ∩QR ←[ W.

In particular, mV R̂ = mσ(V ) for every V ∈ VR.

Proof. See [23, Chapter II, Theorem 3.19.(2)] for the bijection σ : VR → VR̂.

Let mR be the maximal ideal of R. By Theorem A.59.(3) we have R̂/mRR̂ = R/mR,
and hence

R̂ = R+ mRR̂. (3.14)

Let V ∈ VR. SincemR ⊂ mV by Theorem 3.2.(6) and Proposition B.15, we havemR ⊂ mV .
This implies mRV R̂ ⊂ mV V R̂ = mV R̂. Therefore, we obtain with Equation (3.14)

V R̂ = V
(
R+ mRR̂

)
= V + mRV R̂ = V + mV R̂,

where we use mV R̂ ⊂ V R̂ for the last equality. This yields

V R̂/mV R̂ = V/
(
mV R̂ ∩ V

)
.

Since mV R̂ ∩ V = mV ∩QR ∩ V = mV ∩ V = mV by Lemma 2.16.(4) and Theorem A.60,
this implies that

V R̂/mV R̂ = V/mV

is a field. Therefore, mV R̂ is a maximal ideal of V R̂.
Moreover, since

∅ 6= (mR)reg = (mV ∩R)reg ⊂
(
(mV ∩R)R̂

)reg
=
(
mV R̂ ∩ R̂

)reg

by Lemmas 2.16.(4) and A.7, Theorems 3.2.(6) and A.60, and Proposition B.15, mV R̂ is a
regular maximal ideal of V R̂. Thus, mV R̂ = m

V R̂
by Remark D.5 since V R̂ ∈ V

R̂
.

Corollary 3.38 (See [25], Corollary 3.3.2). Let R be a one-dimensional local Cohen–
Macaulay ring. Then R̂ = RR̂. In particular, if R is finite over R, then R̂ = R̂.

Proof. Since R̂ is by Lemma 3.35 a one-dimensional local Cohen–Macaulay ring, Theo-
rem 3.2.(4) yields with Lemma 2.16.(4) and Theorems 3.37 and A.60 (see [23, Chapter II,
Theorem 3.19.(3)])

R̂ =
⋂

W∈V
R̂

W =
⋂

V ∈VR

V R̂ =

 ⋂
V ∈VR

V

R̂ = RR̂.

Remark 2.6.(1), Lemma 2.16.(2) and Theorems A.52 and A.55 yield the particular claim.
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3. Valuations over One-dimensional Cohen–Macaulay Rings

Let R be a one-dimensional local Cohen–Macaulay ring. The bijection σ : VR → VR̂ of
Theorem 3.37 induces an order preserving group isomorphism (see Lemma 2.16.(2) and
Theorem A.54)

σ′ :
∏
V ∈VR

R∗V →
∏

W∈V
R̂

R∗W ,

(IV )V ∈VR 7→
(
Iσ−1(W )R̂

)
W∈V

R̂

.

Let (IV )V ∈VR ∈
∏
V ∈VR R

∗
V . Then Proposition 2.21.(2) yields IV = mkV

V with kV =
max

{
k ∈ Z | mk

V ≤ I
}
for every V ∈ VR. So Theorem 3.37 implies

σ′
(
(IV )V ∈VR

)
= σ′

((
mkV
V

)
V ∈VR

)
=
(
mkV
V R̂

)
V ∈VR

=
(
m
kσ−1(W )
σ−1(W ) R̂

)
W∈V

R̂

=
((

mσ−1(W )R̂
)kσ−1(W )

)
W∈V

R̂

=
(
m
kσ−1(W )
W

)
W∈V

R̂

.

Since σ also induces an isomorphism

σ′′ : ZVR → ZVR̂ ,

we obtain with Diagram (3.1) a commutative diagram

∏
V ∈VR

R∗V ZVR

∏
W∈V

R̂

R∗W ZVR̂ ,

φR
∼=

σ′
σ′′∼=

∼=
φ
R̂

and hence

σ′ =
(
φ
R̂

)−1
◦ σ′′ ◦ φR
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3.2. Semigroup of Values

is an isomorphism. With Proposition 3.5 it fits into a commutative diagram

Qreg
R Qreg

R̂

RR R
R̂

∏
V ∈VR

R∗V
∏

W∈V
R̂

R∗W

ZVR ZVR̂ ,

νR ∏
m∈Max (R) νRm

ψR ∼=

η
∼=

ψ
R̂

∼=

φR ∼=

σ′

∼=

φ
R̂

∼=

σ′′

∼=

(3.15)

where

η : RR → RRR̂ = R
R̂
,

I 7→ IR̂,

see Lemma 2.16.(2), Corollary 3.38, and Theorem A.54. This implies

νR(x) = ν
R̂

(x)

for all x ∈ Qreg
R . To ease notation we identify ZVR and ZVR̂ via σ′′.

Proof of Theorem 3.34. Let I ∈ RR, and let m ∈ Max (R). Then Proposition A.38 yields

Îm = ̂I⊗R Rm.

Since I⊗R Rm ∈ RRm by Lemma 2.16.(2) and Proposition A.39, Theorem A.55 implies

Îm = ̂I⊗R Rm = I⊗R Rm ⊗Rm R̂m = I⊗R R̂m = I⊗R R̂m̂,

where the last equality follows from Theorems A.55 and A.59.(2). So with Proposition A.38
and Theorem A.55 we obtain

Îm = I⊗R R̂m̂ = I⊗R R̂⊗R̂ R̂m̂ = Î⊗
R̂
R̂m̂ = Îm̂.

Therefore, using Theorem 3.28 we may assume that R is local.
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3. Valuations over One-dimensional Cohen–Macaulay Rings

So let R be a one-dimensional local Cohen–Macaulay ring, and let α ∈ ZVR . Then
Lemmas 3.9.(1) and 3.35 and Diagram (3.15) yield

QαR̂ = η(Qα)

=
(
φ
R̂
◦ ψ

R̂

)−1
◦ σ′′ ◦ (φR ◦ ψR)(Qα)

=
(
φ
R̂
◦ ψ

R̂

)−1
◦ σ′′(α)

= Qα
R̂
.

So for any I ∈ RR we obtain with Lemma 2.16.(2) and (4), Proposition 3.8 and Theo-
rems A.55 and A.60

Îα = IαR̂ = (I ∩Qα)R̂ = IR̂ ∩QαR̂ = Î ∩Qα
R̂

= Îα. (3.16)

Now we have by Corollary 3.32 α ∈ ΓI if and only if Eα/Eα+eV 6= 0 for all V ∈ VR. The
claim follows since by Equation (3.16) and Theorem A.60 the latter condition commutes
with completion.

Remark 3.39. Let R be an analytically reduced one-dimensional local Cohen–Macaulay
ring. Then R̂ is a reduced one-dimensional local Cohen–Macaulay ring by Lemma 3.35.
Since R̂ = R̂ by Corollary 3.38 and Theorem C.14, Corollary A.62 yields

R̂ = R̂ =
∏

n∈Max
(
R̂

) R̂n =
∏

m∈Max
(
R̂

) R̂m. (3.17)

Since R̂ is equidimensional, also R̂ is equidimensional by Proposition B.3 and Lemma 5.30.
This implies heightm = dim R̂ = dim R̂ = 1 by Proposition B.27 and Theorem B.14 for
every m ∈ Max

(
R̂
)
. Thus, R̂m = R̂m is by Proposition B.5 and Corollary B.8 a one-

dimensional integrally closed local ring. Moreover, R̂m is reduced as a subring of the
reduced ring Q

R̂
(see Lemma A.27). Thus, R̂m is a one-dimensional integrally closed

local Cohen–Macaulay ring, and hence a domain by [23, Chapter I, Proposition 3.29 and
Chapter II, Proposition 2.5]. Therefore, there is by Equation (3.17) and Lemma A.6.(2) a
bijection

Max
(
R̂
)
→ Min

(
R̂
)

(3.18)

mapping m ∈ Max
(
R̂
)
to the unique p ∈ Min

(
R̂
)
contained in m.

Hence, Theorem 3.37, Theorem 3.2.(6), Equation (3.18), and Theorem A.72 yield a
sequence of bijections

VR → VR̂ → Max
(
R̂
)
→ Min

(
R̂
)
→ Min

(
R̂
)

(3.19)

mapping
V 7→ q

V̂

58



3.3. Algebroid Curves

(see Propositions 3.13 and D.13).
Suppose that R = R̂. Then

V/IV = R/qV

by Equation (3.19), Theorem 3.2.(4), and Proposition 3.13.(2). Moreover, Corollary D.32
and Proposition D.16 yield

νV = ν
R/qV

◦ πV ,

where πV : QR → QR/qV = QR/IV is the canonical surjection (see Theorem 3.2.(2),
Proposition 3.13.(1), and Theorem A.74.(1)). Therefore, the product(

ν
R/qV

)
V ∈VR

: QR =
∏
V ∈VR

QR/qV → ZVR

yields by Equation 3.19 and Theorem A.74.(2) the same notion of a semigroup of values as
defined in Definition 3.14. This alternative approach is often used in the literature, see for
example [31, 12, 7, 8].

3.3. Algebroid Curves
Definition 3.40. Let k be a field. An algebroid curve over k is a complete equidimensional
reduced Noetherian semilocal k-algebra R of dimension one such that |k| ≥ |Min (R)|, and
all residue fields of R are isomorphic to k (under the canonical surjections R→ R/m for
m ∈ Max (R)).

Proposition 3.41. An algebroid curve is an admissible ring.

Proof. Let R be an algebroid curve. Then by definition and Proposition C.13 R is a
one-dimensional equidimensional semilocal analytically reduced Cohen–Macaulay ring.
Moreover, since there is a bijection between Min (R) and VR (see Remark 3.39, Equa-
tion (3.19)), R also has large residue fields. Finally, R is residually rational by Lemma B.21
since its residue fields are isomorphic to k by assumption, and hence algebraically closed.

Proposition 3.42. Let k be a field, and let R be an algebroid curve over k. For any
m ∈ Max (R) there is an nm ∈ N and an ideal im of k

[[
x

(m)
1 , . . . , x

(m)
nm

]]
such that

R ∼=
∏

m∈max(R)
k
[[
x

(m)
1 , . . . , x(m)

nm

]]
/im

Proof. Since R is a reduced complete semilocal ring, Theorem A.61 yields

R ∼=
∏

m∈Max (R)
Rm,

and Rm is a reduced complete local ring for any m ∈ Max (R). For any maximal ideal m ∈
Max (R), let

(
x

(m)
1 , . . . , x

(m)
nm

)
be a family of generators of m. Since Rm/mRm = R/m = k

59



3. Valuations over One-dimensional Cohen–Macaulay Rings

and k ⊂ Rm for any m ∈ Max (R), Theorem A.67 yields ideals im ⊂ k
[[
x

(m)
1 , . . . , x

(m)
nm

]]
such that

Rm
∼= k

[[
x

(m)
1 , . . . , x(m)

nm

]]
/im

for any m ∈ Max (R).

Lemma 3.43. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, let V be a
discrete valuation ring of Q, and assume that V is a complete domain.

(1) The discrete valuation ring V is local with maximal ideal mV .

(2) If t ∈ Q is a uniformizing parameter of V , then there is an isomorphism

φ : V → k[[T ]],
t 7→ T,

where k = V/mV .

(3) The valuation of V is
νV = ordT ◦φ.

In particular, there is a commutative diagram

V Q

Z∞.

k[[T ]] k[[T ]]
[
T−1]

φ∼= ∼=

ν

ordt

Proof. (1) See Remark D.6.

(2) By Proposition 2.23.(2) the maximal ideal mV is generated by a uniformizing pa-
rameter t. Since V is complete by assumption and local by (1), Theorem A.67
yields

V ∼= k[[T ]]/i

for some ideal i ∈ k[[T ]], where k = V/mV . As dimV = 1 and V is a domain, we
obtain i = 〈0〉, and hence

V ∼= k[[T ]].

(3) By Proposition 2.24.(1) we have

Q = V
[
T−1

]
∼= k[[T ]]

[
T−1

]
,

see (2). So let f ∈ k[[T ]]
[
T−1]. Then

f = T ordT f f

T ordT f
,
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3.3. Algebroid Curves

and f
T ordT f ∈ (k[[T ]])∗ since

ordT
f

T ordT f
= 0.

Hence,
νV = ordT ◦φ

by Corollary 2.25.(2) since φ(t) = T .

Theorem 3.44. Let k be a field, and let R be an algebroid curve over k. The normalization
R of R is a finite product of discrete valuation rings

R ∼=
∏

p∈Min (R)
R/p.

For any p ∈ Min (R) there is an isomorphism

φp : R/p→ k[[Tp]],
tp 7→ Tp,

where tp is a uniformizing parameter for R/p. The valuation of R/p is

ν
R/p

= ordTp ◦φp.

In particular, there is a commutative diagram

R QR

(Z∞)Min (R).

∏
p∈Min (R) k[[Tp]]

∏
p∈Min (R) k[[Tp]]

[
T−1
p

]
(φp)p∈Min (R)∼= ∼=

ν

(ordTp)
p∈Min (R)

Proof. By Theorem B.42 we have

R =
∏

p∈Min (R)
R/p.

So let p ∈ Min (R). By Remark 3.39, R/p is a discrete valuation ring. Moreover, R/p is
a domain by Corollary A.73. Since R/p is a one-dimensional Cohen–Macaulay ring by
Proposition C.13, R/p is complete by Theorems A.52, A.55, and C.14. Then Lemma 3.43
yields the statement since R is residually rational, and hence by Theorem B.42 and
Lemma A.6.(2)

k = R/mR = R/mR =
(
R/p

)
/m

R/p

is a residue field for R/p.
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3. Valuations over One-dimensional Cohen–Macaulay Rings

Let k be a field, and let R be an algebroid curve over k. By Proposition 3.42 we may
assume that R = k[[X1, . . . , Xn]]/i for some ideal i of k[[X1, . . . , Xn]]. By Theorem 3.44
there is an isomorphism

φ : R→
∏

p∈Min (R)
k[[tp]],

where k[[tp]] is a discrete valuation ring with uniformizing parameter tp for any p ∈ Min (R).
This yields a parametrization

Xi 7→ xi(t) = φ(Xi),

see [32, Chapter I, Section 3.1]. If n = 2, the map φ can be computed using using the
Newton-Puiseux algorithm, see [32, Chapter I, Algorithm 3.6]. In the following, we may
identify R with its image

φ(R) ⊂
∏

p∈Min (R)
k[[tp]],

where
φ(R) = k[[X1(t), . . . , Xn(t)]].

The total ring of fractions of R is by Theorem A.74.(2) and Proposition 2.24.(1)

QR =
∏

p∈Min (R)
k[[tp]]

[
t−1
p

]
.

If I ∈ RR, then by Propositions 4.16.(2) and 4.56

CI = tγΓI

∏
p∈Min (R)

k[[tp]],

where we use the multi-index notation, i.e. if x ∈
∏

p∈Min (R) k[[tp]] and α ∈ ZMin (R), then

xα =
(
x
αp
p

)
p∈Min (R).

Also recall that by Corollary 2.25.(2) for any x ∈ Qreg there is a unique element a =
(ap)p∈Min (R) such that

x = atν(x).

The multivaluation of R (see Section 3.1) is by Theorem 3.44

ν = (νp)p∈Min (R) =
(
ordtp

)
p∈Min (R).

So for any I ∈ RR, its value semigroup ideal is

ΓI =

(ordtp xp(tp)
)
p∈Min (R)

∣∣∣∣∣ x = (xp)p∈Min (R) ∈ Ireg ⊂
∏

p∈Min (R)
k[[tp]]

[
t−1
p

]
⊂ ZMin (R).
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3.4. Integral Extensions of Admissible Rings
Theorem 3.45. Let R be a reduced ring, and let A be an integral extension of R in QR.

(1) If R is admissible, then A is admissible. Moreover, VR = VA.

(2) If R is an algebroid curve over a field k, then A is an algebroid curve over k.

For the proof of Theorem 3.45 we need the following Lemmas.

Lemma 3.46. Let R be an admissible ring, respectively an algebroid curve, and let A be
an integral extension of R in QR. Then A is finite over R.

Proof. Since A is an integral extension of R in QR, we have A ⊂ R. Since R is by definition,
respectively by Proposition 3.41, a one-dimensional analytically reduced semilocal Cohen–
Macaulay ring, there is by Lemma 3.21 and Remark B.23.(1) an x ∈ Rreg such that

xA ⊂ xR = CR ⊂ R.

Since R is A Noetherian, and since x ∈ Rreg, this implies that A is a finite R-module.

Lemma 3.47. Let R be an admissible ring, respectively an algebroid curve, and let A be
an integral extension of R in QR. Then A is Noetherian.

Proof. This follows from Lemma 3.46 and Theorem A.1.

Lemma 3.48. Let R be an admissible ring, and let A be an integral extension of R in QR.
Then A is a Cohen–Macaulay ring.

Proof. Since A is an integral extension of R, Theorem B.14 yields dimA = dimR = 1.
Moreover, since R is reduced by definition, also QR is reduced by Lemma A.27. Therefore,
A is reduced since A ⊂ QR. Since A is Noetherian by Lemma 3.47, it is a Cohen–Macaulay
ring by Proposition C.13.

Lemma 3.49. Let R be an admissible ring, respectively an algebroid curve, and let A be
an integral extension of R in QR. Then A is a semilocal ring.

Proof. The inclusions R ⊂ A ⊂ R imply QA = QR by Lemma A.34, and A = R by
Proposition B.5. By Theorem 3.2.(1) and (6), respectively by Theorem 3.2.(1) and (6) and
Proposition 3.41, the set Max

(
R
)

= Max
(
A
)
is finite. Since

Max (A) =
{
m ∩A

∣∣∣ m ∈ Max
(
A
)}

by Propositions B.3 and B.15 and Theorem B.12, A is semilocal.

Proof of Theorem 3.45. (1) By Lemmas 3.48 and 3.49 and Theorem B.14 A is a one-
dimensional semilocal Cohen–Macaulay ring. Since A is an integral extension of R in
QR, we have inclusions R ⊂ A ⊂ R. This implies QA = QR by Lemma A.34, and
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3. Valuations over One-dimensional Cohen–Macaulay Rings

A = R by Proposition B.5. Since A = R ⊂ V for all V ∈ VR and R = A ⊂W for all
W ∈ VA by Theorem 3.2.(4), and since QR = QA, we obtain VR = VA.
Since R is an analytically reduced one-dimensional semilocal Cohen–Macaulay ring,
R is by Theorem C.14 a finitely generated R-module. Then the inclusions R ⊂
A ⊂ R = A imply that A is a finite A-module. Thus, A is analytically reduced by
Theorem C.14.
Let m ∈ Max (A), and let n ∈ Max

(
A
)
with n ∩A = m. Then m ∩R ∈ Max (R) by

Propositions B.3 and B.15, and Proposition B.6.(1) yields field extensions

R/(m ∩R) ⊂ A/m ⊂ A/n.

Since A = R, and since R is residually rational, this implies

R/(m ∩R) = A/m = A/n. (3.20)

Hence, A is residually rational. Moreover, Equation (3.20) implies

|A/m| = |R/(m ∩R)| ≥ |VR| = |VA|.

Therefore, A has large residue fields. Since A is equidimensional by Lemma B.31, it
is admissible.

(2) Since A is an integral extension of R, Theorem B.14 yields dimA = dimR = 1.
Moreover, since R is reduced by definition, also QR is reduced by Lemma A.27.
Therefore, A is reduced since A ⊂ QR. Since R ⊂ A, and since R is a k-algebra, also
A is a k-algebra. Moreover, A is Noetherian by Lemma 3.47.
Since R is by definition a complete semilocal ring, and since A is a finite R-module
by Lemma 3.46, A is complete as R-module by Theorem A.55. As A is also semilocal
by Lemma 3.49, the topology of A as R-module coincides by Theorem A.52 with the
topology of A as a semilocal ring. Thus, A is a complete ring.
Let m ∈ Max (A). Then m ∩ R ∈ Max (R) by Proposition B.15, and Lemma B.21
yields

A/m ∼= R/(m ∩R) ∼= k.

since R is an algebroid curve over k. Moreover, we have |k| ≥ |Min (R)| = |Min (A)|
by Theorem A.72.
Thus, A is a complete reduced Noetherian k-algebra of dimension one such that |k| ≥
|Min (A)|, and all residue fields of A are isomorphic to k. Since A is equidimensional
by Lemma B.31, it is an algebroid curve over k.
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Motivated by the properties of the semigroup of values of an admissible ring we introduce
a combinatorial counterpart of curve singularities: good semigroups. Examples of good
semigroups include the semigroups of values of admissible rings and numerical semigroups.
In analogy to Definition 3.14 and Corollary 3.30 we define a good semigroup S as a
submonoid of NI (for a finite set I) satisfying properties (E0) (with S = NI), (E1), and
(E2) (see Definition 4.5). This Chapter is dedicated to the fundamental properties of good
semigroups.

Barucci, D’Anna, and Fröberg showed that not any good semigroup is the semigroup of
values of an admissible ring (see [10, Example 3.3] and Example 3.26). On good semigroups
we want to introduce combinatorial counterparts of algebraic concepts on admissible rings.
In Section 4.1 we define (good) semigroup ideals of good semigroups in analogy to fractional
ideals of rings. Moreover, there is as in Theorem 3.28 a combinatorial version of localization
for good semigroups and semigroup ideals (see Theorem 4.9) which is compatible under
taking values (see Remark 4.10).
The “semigroup operation” corresponding to the quotient of fractional ideals is the

difference of semigroup ideals (see Section 4.3). For a semigroup ideal E satisfying
property (E1) of a good semigroup S ∈ NI the difference E − NI defines the conductor
ideal of E (see Definition 4.26). We study properties of the conductor ideal in Section 4.4.
In particular, if I is a regular fractional ideal of an admissible ring R, then the value
semigroup ideal of the conductor of I is equal to the conductor of the value semigroup
ideal ΓI of I (see Proposition 4.56).
An important tool to relate good semigroups and good semigroup ideals to admissible

rings and fractional ideals is the distance (see Definition 4.46). The properties of this
function are examined in Section 4.5. Most importantly, it allows for computing the length
of a quotient of two fractional ideals from their value semigroup ideals (see Proposition 4.51).
In particular, we may check equality of fractional ideals using their value semigroup ideals
(see Corollary 4.52).

Projections of the semigroup onto its components correspond to passing to the branches
of an admissible ring (see Proposition 4.67). Moreover, from the semigroup of values of an
admissible ring R we can directly deduce the value semigroup ideal of a minimal prime
ideal p of R on branches of R not corresponding to p (see Proposition 4.69). For general
good semigroups this construction allows for computing the conductor of the semigroup
from information on its components (see Proposition 4.64). The results on branches of
Section 4.6 will be important in the study of quasihomogeneous curves and semigroups in
Chapters 6 and 7.
Important examples of good semigroups are numerical semigroups, i.e. submonoids of

N with a finite complement (see Section 4.7). Among good semigroups the numerical
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semigroups have some particular properties. For example all semigroup ideals of numerical
semigroup are good (see Remark 4.6.(2)), and a good semigroup is finitely generated if
and only if it is a numerical semigroup (see [3, Bemerkung 1.2.14.(3)]). Given a numerical
semigroup S and a semigroup ideal E of S we introduce a quotient semigroup S/E (see
Definition 4.74). Then for any ring R the quotient of the semigroup ring R[[S]] by the
ideal R[[E]] is given as the semigroup ring of the S/E modulo a certain relation (see
Proposition 4.79). Finally, in Section 4.8 we study properties of semigroup rings over C.

Before studying good semigroups we first discuss some general facts about monoids. Let
S be a cancellative commutative monoid. Then S embeds into its (free abelian) group of
differences DS . If S is partially ordered, then DS carries a natural induced partial order.
Let I be a finite set. On the group ZI we consider the natural partial order given by

α ≤ β for α, β ∈ ZI if and only if αi ≤ βi for all i ∈ I. We write α < β if α ≤ β and α 6= β.

Lemma 4.1. A finite cancellative monoid S is a group.

Proof. Let 0 6= α ∈ S. Since S is finite, there are m,n ∈ N with m < n such that

mα = nα.

As S is cancellative, this implies
0 = (n−m)α.

Hence,
α+ (n−m− 1)α = 0,

and therefore
−α = (n−m− 1)α.

Lemma 4.2. Let S be a partially ordered monoid. If α ∈ S is a unit, then α > 0 implies
−α < 0.

Proof. Let α ∈ S∗ such that α > 0. Since S is a partially ordered monoid, we have

0 = α− α > 0− α = −α.

Lemma 4.3. Let S be a partially ordered group. If any α ∈ S is comparable to 0, then 0
is the only element of finite order in S.

Proof. Assume there is 0 6= α ∈ S of finite order. Then there is n ∈ N with n > 0 such
that nα = 0. In particular, α is a unit. So by Lemma 4.2 we may assume without loss of
generality that α > 0. Since S is a partially ordered group, this yields the contradiction

0 = nα = (n− 1)α+ α > (n− 1)α > (n− 2)α > . . . > α > 0.

Lemma 4.4. Let S be a partially ordered cancellative commutative monoid, and suppose
that DS is generated by a finite set I such that there is an isomorphism

σ : DS → ZI

I 3 i 7→ ei.
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Assume that σ preserves the natural partial orders. Then I contains only positive elements.
Moreover, if J is a finite set generating DS such that there is an isomorphism

τ : DS → ZJ

J 3 j 7→ ej

preserving the natural partial orders, then I = J .

Proof. If σ preserves the natural partial orders, then ei > 0 implies i = σ−1 (ei) > 0 for all
i ∈ I.
Let J be a finite set generating DS such that the isomorphism τ : DS → ZJ preserves

the natural partial orders. Then there is a commutative diagram

DS

ZI ZJ .
∼=

σ τ
∼=

∼=
φ

(4.1)

Since φ is an isomorphism, we have |I| = |J |. Moreover, since σ and τ preserve the natural
partial orders, also φ = τ ◦ σ−1 preserves the natural partial orders. Then there is by
Lemma 3.20 a bijection φ : I → J such that

φ (ei) = eφ(i)

for all i ∈ I. Therefore, the commutativity of Diagram (4.1) yields

i = σ−1 (ei) = (τ)−1 ◦ φ (ei) = (τ)−1
(
eφ(i)

)
= φ (i)

for all i ∈ I. Thus, I = J .

4.1. Good Semigroups and Their Ideals
Having Definition 3.14, Proposition 3.22, and Corollary 3.30 in mind we consider submonoids
of NI (for a finite set I) satisfying properties (E0), (E1), and (E2). These objects are
called good semigroups by Barucci, D’Anna, and Fröberg [10]. We introduce local good
semigroups (corresponding to Proposition 3.17), and we decompose good semigroups and
their ideals into local components.

Definition 4.5. Let S be a partially ordered cancellative commutative monoid such that
α ≥ 0 for all α ∈ S. Assume that DS is generated by a finite set I such that there is an
isomorphism DS

∼= ZI which preserves the natural partial orders. Note that I is then
unique and contains only positive elements by Lemma 4.4. We set

S := {α ∈ DS | α ≥ 0} ∼= NI .

(1) We call S a good semigroup if it satisfies properties (E0), (E1), and (E2) (see
Definition 3.19).
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4. Good Semigroups

(2) A good semigroup S is said to be a numerical semigroup if |I| = 1.

(3) If 0 is the only element of S with a zero component in DS , then S is called local (cf.
Definition 3.14). The maximal (semigroup) ideal of a local good semigroup is

MS = S \ {0}.

(4) A semigroup ideal of a good semigroup S is a subset ∅ 6= E ⊂ DS such that E+S ⊂ E
and α+ E ∈ S for some α ∈ S.

(5) A good semigroup ideal of a good semigroup S is a semigroup ideal E of S satisfying
properties (E1) and (E2).

(6) For a good semigroup S we denote by GS the set of all good semigroup ideals of S.

Remark 4.6 (See [25], Remark 4.1.2).

(1) If S is a good semigroup, any semigroup ideal E of S satisfies property (E0) since S
does and E + S ⊂ E.

(2) Any numerical semigroup S is a local good semigroup. Moreover, E ∈ GS for any
semigroup ideal E of S.

(3) If S and S′ are good semigroups with S ⊂ S′ ⊂ S, then DS′ = DS , and hence S′ = S.
It follows that GS′ ⊂ GS , and, in particular, S′ ∈ GS .

(4) Let R be an admissible ring. Then by Definition 4.5 we have

ν((QR)reg) = DΓR .

(5) Let R be an admissible ring. Then by Lemma 3.21 there is an α ∈ ΓR such that
α + NVR ⊂ ΓR. It follows that DΓR = ZVR . Moreover, ΓR is a good semigroup
with ΓR = ΓR = NV (see Lemma 3.4.(2)), and ΓI ∈ GΓR for every I ∈ RR by
Proposition 3.22.(1) and Corollary 3.30.

Lemma 4.7. Let S be a local good semigroup. Then MS ∈ GS.

Proof. Since MS ⊂ S, we have S + MS ⊂ S. Moreover, S ≥ 0 and MS > 0 imply
MS + S > 0. Hence, MS is a semigroup ideal of S.
Let α, β ∈ MS ⊂ S. Then inf {α, β} ∈ S since S satisfies property (E1). Assume

inf {α, β} = 0. Then there is an i ∈ I such that without loss of generality αi = 0. Since S
is local, this implies α = 0, and hence α 6∈MS . Therefore, MS satisfies property (E2).
Assume there is i ∈ I such that αi = βi. Since S satisfies property (E2), there is an

ε ∈ S such that

εi > αi = βi,

εj ≥ inf {αj , βj} for all j ∈ I,
εk = inf {αk, βk} for all k ∈ I with αk 6= βk.

In particular, ε > inf {α, β} > 0, where the second inequality follows since MS satisfies
property (E1). This implies ε ∈MS , and hence MS satisfies property (E2).
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Remark 4.8. Let R be a local admissible ring with maximal ideal mR. Then ΓR is local,
and

ΓmR = MΓR ,

see Proposition 3.17 and Remark 4.6.(5).

Theorem 4.9 (See [25], Theorem 4.1.6). Any good semigroup S decomposes uniquely and
compatible with the partial orders as a finite direct product

S =
∏
m∈M

Sm

of good local semigroups Sm. Any semigroup ideal E of S satisfying (E1) decomposes as

E =
∏
m∈M

Em.

If E ∈ GS, then Em ∈ GSm for all m ∈M .

Proof. See [10, Theorem 2.5, Remark 2.6, and Proposition 2.12].

Remark 4.10 (See [25], Remark 4.1.7). The decompositions in Theorem 3.28 are special
cases of those in Theorem 4.9 (see Corollary 3.30).
In the following, let S ⊂ DS be a good semigroup. By Definition 4.5 we may identify

DS = ZI for some finite set I, and this identification is by Lemma 3.20 unique. So consider
S now as a submonoid of ZI .
Notation. For any J ⊂ I we write

prJ : ZI → ZJ ∼= Z|J |

α = (αi)i∈I 7→ αJ = (αj)j∈J .

For a relative ideal E of S we denote

EJ = prJ (E).

If J = {j} for some j ∈ I, we write prj = pr{j}.

Lemma 4.11 (See [25], Remark 4.1.5). Let M be a finite set, and let (Sm)m∈M be a family
of good semigroups, and for any m ∈M let Em be a semigroup ideal of Sm.

(1) Then
S =

∏
m∈M

Sm

is a good semigroup with
DS =

∏
m∈M

DSm

and
S =

∏
m∈M

Sm.
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4. Good Semigroups

(2) The set
E =

∏
m∈M

Em

is a semigroup ideal of S.

(3) If Em satisfies property (E1) for every m ∈M , then so does E.

(4) If Em ∈ GSm for every m ∈M , then E ∈ GS.
Proof. (1) For any m ∈M let αm : Sm → DSm be the canonical injection, and similarly

let αcolonS → DS be the canonical injection. Then the universal property of the
group of differences DS yields a unique group homomorphism

β : DS →
∏
m∈M

DSm

such that the diagram
S

DS

∏
m∈M

DSm

α

∏
m∈M αm

β

commutes. So for any n ∈M there is a commutative diagram

Sn S

DS

∏
m∈M

DSm

DSn ,

δn

αn

α

∏
m∈M αm

β

where
δn : Sn → S =

∏
m∈M

SM

is the natural injection. Therefore, the universal property of the group of differences
DSn yields a unique group homomorphism

ε : DSn → DS

such that the diagram

Sn S

DS

∏
m∈M

DSm

DSn

δn

αn

α

∏
m∈M αm

β

ε
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4.1. Good Semigroups and Their Ideals

commutes. Since the projection

ζn :
∏
m∈M

DSm → DSn

fits into the commutative diagram

Sn S

DS

∏
m∈M

DSm

DSn

δn

αn

α

∏
m∈M αm

β

ζn

ε

for all n ∈ M , the universal property of the product
∏
m∈M DSm yields a unique

group homomorphism
η :

∏
m∈M

DSm → DS

such that the diagram

Sn S

DS

∏
m∈M

DSm

DSn

δn

αn

α

∏
m∈M αm

β

η

ζn

ε

commutes. Therefore, DS =
∏
m∈M DSm , and this is compatible with the partial

order induced by that on S. Hence, it follows that S =
∏
m∈M Sm, and we have

α ≥ 0 for all α ∈ S.
Moreover, if Im is for any m ∈ M a finite set of generators of DSm such that
DSm

∼= ZIm , then I = {δm(i) | i ∈ Im, m ∈M} is a finite set of generators of DS

such that DS
∼= ZI .

Since Sm satisfies (E0) for everym ∈M , there is an αm ∈ Sm such that αm+Sm ⊂ Sm.
Thus,

(αm)m∈M + S = (αm)m∈M +
∏
m∈M

Sm =
∏
m∈M

(
α+ Sm

)
⊂

∏
m∈M

Sm = S,

and hence S satisfies (E0).
Let α, β ∈ S. Then αm, βm ∈ Sm for all m ∈ M . Since Sm satisfies (E1) for any
m ∈M , we have inf (αm, βm) ∈ Sm for every m ∈M . This implies

inf {α, β} = (inf {αm, βm})m∈M ∈
∏
m∈M

Sm = S,
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and hence S satisfies (E1).
Suppose now there is an m ∈M and an i ∈ Im such that αδn(i) = βδn(i). Since Sm
satisfies (E2), there is an εm ∈ Sm with

(εm)i > (αm)i = (βm)i,

(εm)j ≥ min
{

(αm)j , (βm)j
}
for all j ∈ Im,

(εm)k = min {(αm)k, (βm)k} for all k ∈ Im with (αm)k 6= (βm)k.

Setting εn = inf αn, βn ∈ Sm for every n ∈M and ε = (εn)n∈M we obtain ε ∈ S with

εδn(i) > minαδn(i) = βδn(i),

εj ≥ min {αj , βj} for all j ∈ I,
εk > min {αk, βk} for all k ∈ I with αk 6= βk.

Thus, S is a good semigroup.

(2) Since Em is a semigroup ideal of Sm for every m ∈M , we have( ∏
m∈M

Em

)
+ S =

( ∏
m∈M

Em

)
+
( ∏
m∈M

Sm

)

=
( ∏
m∈M

Em + Sm

)
⊂
( ∏
m∈M

Em

)
= E.

Moreover, for any m ∈M there is an αm ∈ Sm such that αm +Em ⊂ Sm, and hence

(αm)m∈M + E = (αm)m∈M +
∏
m∈M

Em =
∏
m∈M

(αm + Em) ⊂
∏
m∈M

Sm = S.

Thus, E is a semigroup ideal of S.

(3) Let α, β ∈ E. Then αm, βm ∈ Em for all m ∈ M . Since Em satisfies (E1) for any
m ∈M , we have inf (αm, βm) ∈ Em for every m ∈M . This implies

inf {α, β} = (inf {αm, βm})m∈M ∈
∏
m∈M

Em = S,

and hence E satisfies (E1).

(4) Suppose that Em ∈ GSm for every m ∈M . The E satisfies (E1) by (3). Let α, β ∈ E,
and assume that there is an m ∈ M and an i ∈ Im such that αδn(i) = βδn(i). Since
Em satisfies (E2), there is an εm ∈ Em with

(εm)i > (αm)i = (βm)i,

(εm)j ≥ min
{

(αm)j , (βm)j
}
for all j ∈ Im,

(εm)k = min {(αm)k, (βm)k} for all k ∈ Im with (αm)k 6= (βm)k.
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Since En satisfies (E1), we have εn = inf αn, βn ∈ Em for every n ∈ M . So setting
ε = (εn)n∈M we obtain ε ∈ E with

εδn(i) > minαδn(i) = βδn(i),

εj ≥ min {αj , βj} for all j ∈ I,
εk > min {αk, βk} for all k ∈ I with αk 6= βk.

Hence, E ∈ GS .

4.2. Minimal Elements
The group of differences DS of a good semigroup is partially ordered. Hence, semigroup
ideals of S are partially ordered. We show that any semigroup ideal E of S satisfying
property (E1) has a unique minimal element, i.e. an element µ which is comparable to,
and smaller than all other elements of E.

Lemma 4.12. Let E be a semigroup ideal of S. If E satisfies property (E1), then there
is a unique element µ ∈ E which is minimal with respect to the partial order on DS, i.e.
µ ≤ α for all α ∈ E.

Proof. By Definition 4.5.(4) there is an α ∈ DS such that α + E ⊂ S. Hence, the sets
Ei ⊂ Z are bounded from below for all i ∈ I. This implies that there are

β
(i)
i = min {Ei} ∈ Z

for all i ∈ I. Thus, there are δ(i) ∈ E with δ
(i)
i = β(i) for all i ∈ I. Since E satisfies

property (E1), this yields
µ = inf

{
δ(i)

∣∣∣ i ∈ I} ∈ E,
and by the construction we have µ ≤ α for all α ∈ E.
Now let µ′ ∈ E such that µ′ ≤ α for all α ∈ E. Then µ ≤ µ′ and µ′ ≤ µ implies

µ = µ′.

Definition 4.13. Let E be a semigroup ideal of S satisfying property (E1). The minimal
element of E is by Lemma 4.12 the unique element µE ∈ E satisfying µE ≤ α for all α ∈ E.

Lemma 4.14. Let E be a semigroup ideal of S satisfying (E1). Then µE = 0 if and only
if S ⊂ E ⊂ S.

Proof. Suppose that µE = 0. Then α ≥ µE = 0 for all α ∈ E, and hence E ⊂ S. Moreover,
since E is a semigroup ideal and µE ∈ E, we have

S = 0 + S = µE + S ⊂ E.

Conversely, if S ⊂ E ⊂ S, then 0 = µS ≥ µE ≥ µS = 0, and hence µE = 0.

Lemma 4.15. Let R be an analytically reduced one-dimensional semilocal Cohen–Macaulay
ring with large residue fields, and let I ∈ RR. Then I ⊂ QµΓI .

73
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Proof. By Proposition 3.22.(1) and (2) and Corollary 3.30.(1), ΓR is a good semigroup,
and ΓI is a semigroup ideal of ΓR satisfying property (E1). Hence, by Lemma 4.12 there
exists a minimal element µΓI

of ΓI.
Let x ∈ Ireg. Then ν (x) ∈ ΓI, and hence ν (x) ≥ µΓI

. This implies Ireg ⊂ QµΓI .
Now assume there is y ∈ I such that ν (y) 6≥ µΓI

. Then y ∈ I \ Ereg, and there is
W ∈ VR such that νW (y) < (µΓI

)W . By Remark 4.6.(1) we can choose an α ∈ ΓI such
that αV 6= νV (y) for all V ∈ VR. Then there is z ∈ Ireg such that ν (z) = α. Moreover, by
Lemma D.22.(5) we have

ν (y + z) = inf {ν (y) , ν (z)} ,

and hence νV (y + z) <∞ for all V ∈ VR. Lemma 3.4.(2) yields

y + z ∈ I ∩Qreg
R = Ireg,

and thus ν (y + z) ∈ ΓI. But since ν (z) ∈ ΓI, and hence ν (z) ≥ µΓI
, we have

νW (y + z) = νW (y) < (µΓI
)W ,

contradicting the minimality of µΓI
in ΓI, see Lemma 4.12.

Proposition 4.16. Let R be a one-dimensional semilocal normal Cohen–Macaulay ring.

(1) ΓR = ΓR = NVR is a good semigroup.

(2) ΓI is a good semigroup ideal of ΓR for any I ∈ RR. In particular, we have

I = QµΓI

and
ΓI = µΓI

+ ΓR.

Proof. (1) Since R = R, we have by Lemma 3.4.(2)

ΓR = ν(Rreg) = NVR .

Hence, ΓR = ΓR, and ΓR satisfies properties (E0), (E1), and (E2).

(2) Let I ∈ RR. Since R = R, there is by Lemma 3.9.(1) and α ∈ ZVR such that I = Qα.
This implies by Lemma 3.4.(2)

ΓI = ν(Ireg) = α+ NVR ⊂ ZVR = DΓR . (4.2)

Then by Proposition 4.16

ΓI + ΓR = α+ NVR + NVR = α+ NVR = ΓI,

and
−α+ ΓI = −α+ α+ NVR = NVR = ΓR.

Thus, ΓI is a semigroup ideal of ΓR. Moreover, ΓI obviously satisfies properties (E1)
and (E2), and hence ΓI ∈ GΓR . Therefore, ΓI has by Lemma 4.12 a unique minimal
element µΓI

, and Equation (4.2) yields µΓI
= α.
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4.3. Differences

The difference of semigroup ideals corresponds to the quotient of fractional ideals (see
Definition 2.1.(2)).

Definition 4.17. Let E and F be semigroup ideals of S. We write

E − F = {α ∈ DS | α+ F ⊂ E} .

The set RR of regular fractional ideals of a ring R is by Proposition 2.7.(2) closed
under the quotient. Example 3.26 shows that for a good semigroup S the set GS of good
semigroup ideals (which correspond to fractional ideals by Corollary 3.30) is in general
not closed under the difference. However, the property of being a semigroup ideal and
property (E1) are always preserved under the difference.

Lemma 4.18 (See [25], Lemma 4.1.4). For any two semigroup ideals E and F of S also
E − F is a semigroup ideal of S. If E satisfies (E1), so does E − F , and E − S ∈ GS ∩ GS.

Proof. Since F is a semigroup ideal of S, we have

(E − F ) + S + F = (E − F ) + F ⊂ E,

and hence
(E − F ) + S ⊂ E − F.

Since E is a semigroup ideal of S, there is α ∈ Zs such that α+ E ⊂ S. Then we have for
any β ∈ F ,

α+ β + (E − F ) ⊂ α+ E ⊂ S.

Thus, E − F is a semigroup ideal of S.
Assume now that E satisfies property (E1). Then for any α, β ∈ E − F and δ ∈ F we

have
inf {α, β}+ δ = inf {α+ δ, β + δ} ∈ E

since α+ δ, β + δ ∈ E. Hence, inf {α, β} ∈ E − F , and E − F satisfies property (E1).
We have (

E − S
)

+ S + S =
(
E − S

)
+ S ⊂ E,

and hence (
E − S

)
+ S ⊂ E − S.

Therefore, E − S is a semigroup ideal of S.
As just shown E − S satisfies (E1), and hence

inf {α, β}+ S ⊂ E − S

for any α, β ∈ E − S. Since S = NI , it follows that E − S satisfies (E2).
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Lemma 4.19. Let S be a good semigroup, and let S =
∏
m∈M Sm be the decomposition of

S into local good semigroups (see Theorem 4.9). Then for any two semigroup ideals E and
F of S we have

E − F =
∏
m∈M

(Em − Fm).

Proof. For any α ∈ DS we have α ∈ E − F if and only if∏
m∈M

(αm + Fm) = (αm)m∈M +
∏
m∈M

Fm = α+ F ⊂ E =
∏
m∈M

Em.

This is equivalent to αm + Fm ⊂ Em for all m ∈ M , and hence to α = (αm)m∈M ∈∏
m∈M (Em − Fm).

Lemma 4.20. Let E be a semigroup ideal with E ⊂ S. Then

S ⊂ S − E.

Proof. If E ⊂ S, the claim follows from Definition 4.17 since by Definition 4.5.(4)

E + S ⊂ E ⊂ S

For good semigroups we have analogously to Lemma 2.3 the following.
Remark 4.21 (See [25], Remark 4.1.3). Let α ∈ DS .

(1) The map

GS → GS ,
E 7→ α+ E

is a bijection.

(2) For any two semigroup ideals E and F of S, we have

(α+ E)− F = α+ (E − F ) = E − (−α+ F ).

(3) Let E, E′, F , and F ′ be semigroup ideals of S. If E ⊂ E′ and F ⊂ F ′, then

E − F ′ ⊂ E − F ⊂ E′ − F.

(4) For any E ∈ GS , we have E − S = S.

Lemma 4.22. Let E, F and G be semigroup ideals of S. Then

(E − F )−G = (E −G)− F = E − (F +G) .

Proof. By Definition 4.17 we have

(E − F )−G = {α ∈ DS | α+G ⊂ E − F}
= {α ∈ DS | α+ F +G ⊂ E} = E − (F +G)
= {α ∈ DS | α+ F ⊂ E −G} = (E −G)− F.
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Remark 4.23. In general, E − F does not satisfy property (E2) for E,F ∈ GS , see [10,
Example 2.10] and Example 3.26.

Lemma 4.24. Let E and F be semigroup ideals of S satisfying property (E1).

(1) If µE−F = 0, then F ⊂ E.

(2) If E = F , then µE−F = 0.

(3) If F ⊂ E, then µE−F ≤ 0.

(4) If E ( F , then µE−F > 0.

Proof. Since E and F satisfy property (E1), also E − F satisfies property (E1) by
Lemma 4.18. Hence, E, F , and E − F have unique minimal elements, see Lemma 4.12.

(1) If 0 = µE−F ∈ E − F , then

F = µE−F + F ⊂ E

by Definition 4.17.

(2) Let E = F . Then 0 + F = F = E, and hence 0 ∈ E − F . This implies µE−F ≤ 0.
So assume µE−F < 0. This yields

µE = µF > µF + µE−F ∈ E,

contradicting the minimality of µE in E.

(3) If F ⊂ E, then
0 + F = F ⊂ E,

and hence 0 ∈ E − F by Definition 4.17. This implies µE−F ≤ 0.

(4) Let E ( F , and assume µE−F ≤ 0. Then µE−F < 0 as otherwise F ⊂ E by (1).
Since µE−F ∈ E − F , we have µF + µE−F ∈ E by Definition 4.17. This yields

µE ≥ µF > µF + µE−F ≥ µE ,

and we obtain a contradiction. Therefore, µE−F > 0.

Proposition 4.25. Let E be a semigroup ideal of S. Then E − E is a partially ordered
cancellative commutative monoid with DE−E = DS and S ⊂ E − E ⊂ E − E = S. If E
satisfies property (E1), so does E − E.

Proof. Obviously, we have 0 ∈ E − E. Moreover, S ⊂ E − E since E is a semigroup ideal
of S, and hence E + S ⊂ E.

Let α, β ∈ E − E. Then

α+ E ⊂ E,
β + E ⊂ E.
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Hence,
α+ β + E ⊂ α+ E ⊂ E.

This implies α+β ∈ E−E. Thus, E−E is a monoid. Since E−E ⊂ DS by Definition 4.17,
it is partially ordered, cancellative and commutative. Moreover, as E − E is a semigroup
ideal of S, it satisfies property (E0), see Remark 4.6.(1). Hence, there is α ∈ E −E such
that α+ S ⊂ E − E, and therefore DE−E = DS .
Assume now that there is an α ∈ E − E with α 6≥ 0, i.e. αi < 0 for some i ∈ I. Since

E−E is a semigroup ideal of S by Lemma 4.18, there is β ∈ S such that β+ (E − E) ⊂ S.
In particular, this implies α + β ≥ 0. Let n = max (m ∈ N | mαi + β ≥ 0) (n exists
since αi < 0). But then (n+ 1)α ∈ E − E since E − E is a monoid, and (α+ β)i < 0,
contradicting β + (E − E) ⊂ S. Hence, E − E ⊂ E − E = S.

Finally, if E satisfies property (E1), then also E−E satisfies property (E1) by Lemma 4.18.

4.4. Conductor
An important case of the difference of semigroup ideals is the conductor. In analogy to
Definition B.22 we define the following.

Definition 4.26. Let S be a good semigroup, and let E be a semigroup ideal of S satisfying
property (E1). The conductor ideal of E is

CE = E − S =
{
α ∈ DS

∣∣∣ α+ S ⊂ E
}
,

and
γE = µCE = inf

{
α ∈ DS

∣∣∣ α+ S ⊂ E
}

(see Lemma 4.18) is called the conductor of E. We abbreviate τE = γE − 1.

Remark 4.27. Let S be a good semigroup, and let E be a semigroup ideal of S satisfying
property (E1).

(1) Since CE ∈ GS by Lemma 4.18, we have

CE = µCE + S = γE + S.

(2) Since 0 ∈ S, we have
CE ⊂ E.

Lemma 4.28. Let S be a good semigroup, and let S =
∏
m∈M Sm be the decomposition of

S into local good semigroups (see Theorem 4.9). Then for any semigroup ideal E ∈ GS we
have

CE =
∏
m∈M

CEm ,

and hence
γE = (γEm)m∈M .
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Proof. Since Em ∈ GSm by Theorem 4.9, and since Sm = Sm by Lemma 4.11.(1) for all
m ∈M , Lemma 4.19 yields

CE = E − S =
∏
m∈M

(
Em − Sm

)
=

∏
m∈M

(
Em − Sm

)
=

∏
m∈M

CEm .

Lemma 4.29. Let S be a good semigroup. Then for any E ∈ GS we have

γE − µE ≤ γS .

Proof. By Definition 4.5.(4) we have E + S ⊂ E. Since CS = γS + S ⊂ S by Remark 4.27
and µE ∈ E by Definition 4.13, this yields

µE + γS + S = µE + CS ⊂ E + S ⊂ E.

Therefore, Definition 4.26 and Remark 4.27.(1) yield

µE + γS ∈ E − S = CE = γE + S.

Hence
µE + γS ≥ γE

since µS = 0.

Proposition 4.30. Let S be a good semigroup, and let E ∈ GS and F ∈ GS. Then F = CF ,
and

E − F = CE−F .

Proof. Since F ∈ GS , we have
CF = F − S = F,

and Lemma 4.22 yields

E − F = E −
(
F − S

)
= (E − F )− S = CE−F .

The following objects were introduced by Delgado [12, 7] for investigating the Gorenstein
property on value semigroups.

Definition 4.31. Let S be a good semigroup, and let α ∈ DS .

(1) For J ⊂ I we set

∆J (α) = {β ∈ Zs | αj = βj for all j ∈ J and αi < βi for all i ∈ I \ J} ,

and we write
∆j (α) = ∆{j} (α)

for any j ∈ I.

(2) Let J ⊂ I, and let E be a semigroup ideal of S. Then

∆E
J (α) = ∆J (α) ∩ E.
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2

3

1

α

Figure 4.1.: The sets ∆1,3(α) (red) and ∆(α) =
⋃

i∈{1,2,3}∆i(α) (grey).

(3) We write
∆ (α) =

⋃
i∈I

∆i (α) .

(4) If E is a semigroup ideal of S, then

∆E (α) = ∆ (α) ∩ E.

See Figure 4.1.

Lemma 4.32 (See [25], Lemma 4.1.9). Let S be a good semigroup, let E ∈ GS, and assume
that there is an α ∈ E and J ⊂ I such that αj ≥ (γE)j for all j ∈ J . Then for any j ∈ J
we have α+ ej ∈ E.

Proof. Let j ∈ J , and choose β ∈ DS with

βj = αj ,

βi > αi for all i ∈ J,
βk > max {(γE)k , αk} for all k ∈ I \ J.

Then β ≥ γE , and hence β ∈ E. Applying property (E2) to α and β we obtain a δ ∈ E
with

δj > αj = βj ,

δi = min {αi, βi} = αi for all i ∈ J \ {j} .
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4.4. Conductor

Now let ε ∈ DS with

εj = αj + 1,
εi > αi for all i ∈ J,
εk > max {(γE)k , αk} for all k ∈ I \ J.

Then ε ≥ γE , and hence ε ∈ E. Applying property (E1) to δ and ε yields

α+ ej = inf {δ, ε} ∈ E.

Lemma 4.33 (See [25], Lemma 4.1.9). Let S be a good semigroup, let E ∈ GS, and assume
that there is α ∈ E and J ⊂ I such that αJ ≥ (γE)J . If δ ∈ DS with δJ ≥ (γE)J and
δI\J = αI\J , i.e.

δj ≥ (γE)j for all j ∈ J,
δk = αk for all k ∈ I \ J,

then δ ∈ E.

Proof. Repeatedly applying Lemma 4.32 we obtain (nj)j∈J ∈ NJ such that

δ ≤ α+
∑
j∈J

njej ∈ E.

Hence, we may assume that α ≥ δ.
Pick ε ∈ DS with

εj = δj for all j ∈ J,
εk > max {(γE)k , δk} for all k ∈ I \ J.

In particular, ε ≥ γE , and hence ε ∈ E. Thus, δ = min {ε, α} ∈ E since E satisfies
(E1).

Lemma 4.34 (See [25], Lemma 4.1.10). Let S be a good semigroup, and let E ∈ GS. Then

∆E (τE) = ∅.

Proof. Assume that ∆E (τE) 6= ∅. Then there is i ∈ I with a β ∈ ∆E
i (τE), i.e.

βi = (γE)i − 1,
βj ≥ (γE)j for all j ∈ I \ {i}.

Thus, Lemma 4.33 implies β+S ⊂ E, and hence γE > β ∈ CE contradicting the minimality
of γE in CE .

We show the the analogues to Propositions 2.15, B.24 and B.25 for good semigroup
ideals.
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Lemma 4.35 (See [25], Lemma 4.1.11). Let S be a good semigroup, and let E and F be
semigroup ideals of S satisfying property (E1). Then

γE−F = γE − µF .

Proof. Note that γE−F is defined since E − F satisfies property (E1) by Lemma 4.18.
Since F − µF ⊂ S and γE + S ⊂ E, we have by definition

γE − µF + S + F ⊂ γE + S ⊂ E.

This implies γE − µF + S ⊂ E − F , and hence γE − µF ≥ γE−F .
Conversely,

γE−F + µF + S = γE−F + µF − µF + F + S = γE−F + F + S ⊂ E

implies γE−F + µF ≥ γE .

Corollary 4.36. Let S be a good semigroup, and let F be a semigroup ideal of S satisfying
property (E1), and let E ∈ GS. Then

∆E−F (τE−F ) = ∅.

Proof. Note that τE−F is defined since E − F satisfies property (E1) by Lemma 4.18.
Now assume ∆E−F (τE−F ) 6= ∅, and let β ∈ ∆E−F (τE−F ). Then Lemma 4.35 yields

β + µF ∈ ∆ (τE−F ) + µF

= ∆ (τE−F + µF )
= ∆ (τE) .

Moreover, β ∈ E−F implies β+µF ∈ E, and hence β ∈ ∆E (τE) contradicting ∆E (τE) = ∅
by Lemma 4.34.

Lemma 4.37. Let S be a good semigroup, and let E and F be semigroup ideals of S
satisfying property (E1). Then

µE−F ≥ γE − γF .

Proof. Note that τE−F is defined since E − F satisfies property (E1) by Lemma 4.18.
By definition we have γF + S ⊂ F , and therefore

µE−F + γF + S ⊂ µE−F + F ⊂ E.

This implies
µE−F + γF ≥ γE .

Proposition 4.38. Let S is a local good semigroup. Then

S −MS = MS −MS .
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Proof. Lemmas 4.7 and 4.37 yield

µS−MS
≥ γS − γMS

= γS − γS = 0

(see Definition 4.5.(3)). This implies

(S −MS) +MS ⊂ {α ∈ S | α ≥ µMS
} = MS ,

and hence
S −MS ⊂MS −MS .

Since also
MS −MS ⊂ S −MS

by Remark 4.21.(3), this yields

S −MS = MS −MS .

Lemma 4.39. Let S be a good semigroup.

(1) We have
S − CS = S.

(2) If E is a semigroup ideal of S with CS ⊂ E ⊂ S, then

S ⊂ S − E ⊂ S.

Proof. (1) Since CS = S − S ∈ GS by Lemma 4.18, Proposition 4.30 yields S − CS =
CS−CS . As S −CS satisfies property (E1) by Lemma 4.18, we obtain by Lemma 4.35

µS−CS = µCS−CS = γCS−CS = γS−CS = γS − µCS = γs − γS = 0.

Then Remark 4.27.(1) and Proposition 4.30 yield

S − CS = CS−CS = µCS−CS + S = µS−CS + S = S.

(2) By (1) and Remarks 4.21.(3), (4) and 4.27.(2) we have

S = S − S ⊂ S − E ⊂ S − CS = S.

Lemma 4.40. Let S be a good semigroup, and let E and F be semigroup ideals of S. Then

(1) F ⊂ E − (E − F ).

(2) If E and F satisfy property (E1), E ( F , and γE = γF , then

F ( E − (E − F ) .

Proof. (1) Let α ∈ F , and let β ∈ E−F = {δ ∈ DS | δ + F ⊂ E}. This implies α+β ∈ E,
and hence

α ∈ {δ ∈ DS | δ + (E − F ) ⊂ E} = E − (E − F ) .
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4. Good Semigroups

(2) Since E and F satisfy property (E1), also E−F and E−(E − F ) satisfies property (E1)
by Lemma 4.18. Hence, E, F , E−F , and E−(E − F ) have unique minimal elements
and conductors, see Lemma 4.12.

If F ( E, then µE−F > 0 by Lemma 4.24.(4). Hence, Lemma 4.35 yields

γE−(E−F ) = γE − µE−F < γE = γF .

Then the claim follows since F ⊂ E − (E − F ) by (2).

4.5. Distance and Length

The combinatorial counterpart of the relative length of two fractional ideal is the distance
between two good semigroup ideals (see Definition 4.46). It serves as a main tool to relate
algebra and combinatorics (see Proposition 4.51).

First we introduce the notion of chains in partially ordered sets.

Definition 4.41. Let E be a partially ordered set.

(1) A chain in E is a finite subset C ⊂ E which is totally ordered with respect to the
order induced by the partial order on DS . The length of a chain E is |E| − 1.

(2) Let α, β ∈ E with α ≤ β. A chain in E between α and β is a chain C in E with
minC = α and maxC = β.

(3) A chain C in E is called saturated if for any chain C ′ in E with C ⊂ C ′, minC =
minC ′, and maxC = maxC ′ we have C = C ′.

(4) Two elements α, β ∈ E with α < β are called consecutive in E if there is no δ ∈ E
with α < δ < β.

Remark 4.42. Let E be a partially ordered set. A chain C in E is saturated if and only if
for any α ∈ C \ {maxC} there is a β ∈ C such that α and β are consecutive in E.

Definition 4.43. Let S be a good semigroup, and let E ⊂ DS . Additionally to the
properties in Definition 3.19 we consider the following property.

(E4) For any fixed α, β ∈ E every two saturated chains in E between α and β have the
same length.

Definition 4.44. Let S be a good semigroup, let E ⊂ DS , let α, β ∈ E with α ≤ β, and
suppose that E satisfies property (E4). The distance dE (α, β) of α and β in E is the
length of any saturated chain between α and β in E.

Proposition 4.45. Let S be a good semigroup. Then any E ∈ GS satisfies property (E4).

Proof. See [8, Proposition 2.3].
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Definition 4.46. Let S be a good semigroup, and let E and F be be two semigroup ideals
of S satisfying property (E4) with E ⊂ F . Then we call

d (F \ E) = dF (µF , γE)− dE (µE , γE)

the distance between E and F .

Remark 4.47. Let S be a good semigroup. By Definitions 4.44 and 4.46 the distance has
the following properties.

(1) Let E ⊂ DS satisfy property (E4). Then for any α, β ∈ E with α < β we have

d(α, β) ∈ N.

(2) Let E ⊂ F be semigroup ideals of S satisfying property (E4). Then

d(F \ E) ∈ N.

Remark 4.48 (See [25], Remark 4.2.3). Let S be a good semigroup, and let E and F be
semigroup ideals of S satisfying properties (E1) and (E4) with E ⊂ F .

(1) dE is additive with respect to composition of chains. That is, for any α, β, γ ∈ E
with α ≤ β ≤ δ we have

d (α, δ) = d (α, β) + d (β, δ) .

(2) dE(α, β) ≤ dF (α, β) for all α, β ∈ E.

(3) d(E \ F ) = d(α+ F \ α+ E) for all α ∈ DS .

(4) With the notation of Theorem 4.9 we have

d (F \ E) =
∑
m∈M

d (Fm \ Em) ,

see [10, Proposition 2.12].

(5) If ε ≥ γE , then (1) implies

d(F \ E) = dF (µF , γE)− dE(µE , γE)
= dF (µF , γE) + dF (γE , ε)− dE(µE , γE)− dE(γE , ε)
= dF (µF , ε)− dE(µE , ε)

since dF (γE , ε) = dE(γE , ε).

Lemma 4.49. Let E ⊂ F ⊂ G be semigroup ideals of S satisfying property (E4). Then

d (G \ E) = d (G \ F ) + d (F \ E) .
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4. Good Semigroups

Proof. See [8, Proposition 2.7].

The following result was first stated in [8, Proposition 2.8].

Proposition 4.50. Let E,F ∈ GS with E ⊂ F . Then E = F if and only if d (F \ E) = 0.

Proof. See [25, Proposition 4.2.6].

The following result relates the length of quotients of fractional ideals with the distance
of their value semigroups.

Proposition 4.51. Let R be an admissible ring. If I, J ∈ RR with I ⊂ J, then

`R (J/I) = d (ΓJ \ ΓI) .

Proof. See [25, Proposition 4.2.7].

Corollary 4.52 (See [25], Corollary 4.2.8). Let R be an admissible ring, and let I, J ∈ RR
with I ⊂ J. Then I = J if and only if ΓI = ΓJ.

Proof. By Remark 4.6.(5) ΓR is a good semigroup, and ΓI,ΓJ ∈ GΓR . Hence, Proposi-
tion 4.51 yields I = J if and only if 0 = `R (J/I) = d (ΓJ \ ΓI), and by Proposition 4.50
this is equivalent to ΓI = ΓJ. Also see [8, Proposition 2.5].

Lemma 4.53. Let R be an admissible ring, and let I, J ∈ RR. If there is an H ∈ RR such
that

HJ ⊂ I

and
ΓH = ΓI − ΓJ,

then
H = I : J.

Proof. If HJ ⊂ I, then H ⊂ I : J. This implies ΓH ⊂ ΓI:J. Moreover, we have ΓI:J ⊂
ΓI−ΓJ = ΓH by Lemma 3.23.(1) and the assumption. Thus, ΓH = ΓI:J, and Corollary 4.52
yields H = I : J.

Lemma 4.54. Let R and R′ be a admissible rings such that CR′ ⊂ R ⊂ R′ ⊂ QR.

(1) R′ ∈ RR.

(2) If ΓR = Γ′R, then R = R′.

Proof. (1) Let x ∈ Creg
R′ ⊂ Rreg. Then xR′ ⊂ CR′ ⊂ R. Since ∅ 6= Rreg ⊂ (R′)reg, this

yields R′ ∈ RR.

(2) Since R′ ∈ RR by (1), and since R ∈ RR, Corollary 4.52 yields R = R′.

Lemma 4.55. Let R be an admissible ring, and let I ∈ RR. Then:

(1) CI ⊂ QγΓI .
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4.5. Distance and Length

(2) CI = QγΓI if and only if ΓCI
= CΓI

.

Proof. (1) Since CI ∈ RR, there is by Lemma 3.9.(1) an α ∈ ZVR such that CI = Qα.
Then Lemmas 3.4.(2), 3.9.(3), and 3.23.(1) yield

α+ NVR = ΓCI
= ΓI:R ⊂ ΓI − ΓR = ΓI − NVR = CΓI

= γΓI
+ NVR .

Hence, α ≥ γΓI
, and CI = Qα ⊂ QγΓI .

(2) Assume that CI = QγΓI . Then Lemma 3.9.(3) yields

ΓCI
= ΓQ

γΓI = γΓI
+ NVR = CΓI

.

Now suppose that ΓCI
= CΓI

. In particular, this implies

µΓCI
= µCΓI

= γΓI
.

Since CI ∈ RR, Lemma 3.9.(1) yields then

CI = Q
µΓCI = QγΓI .

Proposition 4.56. Let R be an admissible ring, and let I ∈ RR. Then

CI = QγΓI ,

and hence
ΓCI

= CΓI

(see Lemma 4.55.(2)).

Proof. By Lemma 4.55.(1) we have

CI ⊂ {x ∈ QR | ν (x) ≥ γΓI
} = QγΓI .

Moreover, Lemma 3.9.(3) yields

CΓI
= γΓI

+ NVR = ΓI
γΓI = ΓQ

γΓI .

Since IγΓI ⊂ QγΓI , we obtain by Corollary 4.52

QγΓI = IγΓI ⊂ I.

As QγΓI ∈ RR, this implies
QγΓI = CQγΓI ⊂ CI,

and hence
CI ⊂ QγΓI ⊂ CI.
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By Proposition 4.56 taking value semigroup ideals commutes with conductors in the
sense that for an admissible ring R there is a commutative diagram

RR RR

GΓR GΓ
R
.

I 7→ΓI

I7→CI

C 7→ΓC

E 7→CE

(4.3)

We can generalize Proposition 4.56 as follows.

Proposition 4.57. Let R be an admissible ring, and let I ∈ RR and J ∈ RR. Then
J = CJ, ΓJ = CΓJ

, and
ΓI:J = ΓI − ΓJ.

Proof. Since J ∈ RR, we have
CJ = J : R = J, (4.4)

and Lemma 2.3.(1) yields

I : J = I :
(
J : R

)
= (I : J) : R = CI:J. (4.5)

Then we have by Equation (4.5), Proposition B.24, Lemma 3.23.(2) and Equation (4.4),
Proposition 4.56, Definition 4.26, Lemma 4.22, and Proposition 4.30

ΓI:J = ΓCI:J = ΓCI:J = ΓCI
− ΓJ = CΓI

− ΓJ =
(
ΓI − ΓR

)
− ΓJ

= (ΓI − ΓJ)− ΓR = CΓI−ΓJ
= ΓI − ΓJ.

Lemma 4.58. Let R be an admissible ring, and let I, J ∈ RR. Then

γΓI:J = γΓI−ΓJ
= γΓI

− µΓJ
.

Proof. By Lemma 3.23.(1) we have ΓI:J ⊂ ΓI − ΓJ. Thus,

CΓI:J = ΓI:J − ΓR ⊂ (ΓI − ΓJ)− ΓR = CΓI−ΓJ

by Remark 4.21.(3), and hence
γΓI:J ≥ γΓI−ΓJ

.

Moreover, Remark 4.6.(5), Lemma 4.35, and Proposition 4.56 imply

QγΓI−ΓJJ ⊂ QγΓI−ΓJQµΓJ = QγΓI−ΓJ
+µΓJ = QγΓI = CI.

Thus, we have QγΓI−ΓJ ⊂ CI : J = CI:J by Proposition B.24. Hence, Proposition 4.56 yields

γΓI−ΓJ
≥ γΓI:J .
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4.6. Branches
The following result was proved in [10, Proposition 2.2] for good semigroups. Here we
generalize it to semigroup ideals of a good semigroup S.

Proposition 4.59. Let S be a good semigroup, let J ⊂ I, and let E be a semigroup ideal
of S.

(1) The projection of S onto J ,

SJ = prJ (S) =
{
αJ ∈ ZJ

∣∣∣ there is β ∈ S such that βj = αj for all j ∈ J
}
,

is a good semigroup in ZJ .

(2) The projection of E onto J ,

EJ = prJ (E) =
{
αJ ∈ ZJ

∣∣∣ there is β ∈ E such that βj = αj for all j ∈ J
}
,

is a semigroup ideal of SJ = prJ (S).

(3) If E satisfies property (E1) in ZI , then EJ satisfies property (E1) in ZJ .

(4) If E satisfies property (E2) in ZI , then EJ satisfies property (E2) in ZJ .

Proof. (1) See [10, Proposition 2.2].

(2) By (1) SJ is a good semigroup in ZJ . Since E is a semigroup ideal of S, we have
E + S ⊂ E, and hence

prJ (E) + prJ (S) = prJ (E + S) ⊂ prJ (E) .

Moreover, there is an α ∈ Zs such that α+ E ⊂ S. This implies

prJ (α) + prJ (E) = prJ (α+ E) ⊂ prJ (S) .

Thus, EJ is a semigroup ideal of SJ .

(3) Let α, β ∈ EJ . Then there are α′, β′ ∈ E such that prJ (α′) = α and prJ (β′) = β.
Since E satisfies property (E1), we also have inf {α′, β′} ∈ E, and hence

inf {α, β} = inf
{
prJ

(
α′
)
,prJ

(
β′
)}

= prJ
(
inf
{
α′, β′

})
∈ E.

(4) Let α, β ∈ EJ with αj = βj for some j ∈ J . Then there are α′, β′ ∈ E such that
prJ (α′) = α, prJ (β′) = β and α′j = β′j . Since E satisfies property (E2), there is an
ε ∈ E such that

εj > α′j = β′j

εi ≥ min
{
α′i, β

′
i

}
for all i ∈ I

εk = min
{
α′i, β

′
i

}
for all k ∈ I with α′k 6= β′k.
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This implies εJ ∈ EJ with

(εJ)j > α′j = β′j

(εJ)i ≥ min
{
α′i, β

′
i

}
for all i ∈ I

(εJ)k = min
{
α′i, β

′
i

}
for all k ∈ I with α′k 6= β′k.

Hence, EJ satisfies property (E2).

Definition 4.60. Let S be a good semigroup, let E be a semigroup ideal of S satisfying
property (E1). For J, J ′ ⊂ I we define

EJ
′

J = {β ∈ DSJ | there is an α ∈ E such that αJ = β and αJ ′ ≥ (γE)J ′} ⊂ EJ .

If J = {i} for some i ∈ I, we write EJ ′i = EJ
′

{i}, if J
′ = {j} for some j ∈ I, we write

EjJ = E
{j}
J , and we write Eji = E

{j}
{i} for any i, j ∈ I with i 6= j.

Remark 4.61. Let S be a good semigroup, let J, J ′ ⊂ I, let E ∈ GS , and let α ∈ EJ . Then
we have by Lemma 4.33 α ∈ EJ ′J if and only if β ∈ E for any β ∈ DS with

βJ = αJ ,

βJ ′ ≥ (γE)J ′ .

Lemma 4.62. Let S be a good semigroup, let J, J ′ ⊂ I, and let E be a semigroup ideal of
S satisfying property (E1). Then EJ ′J is a semigroup ideal of SJ satisfying property (E1).
Moreover, if E ∈ GS, then EJ

′
J ∈ GSJ .

Proof. Let α ∈ EJ ′J , and let β ∈ SJ . Then there is a δ ∈ E such that

δJ = α, (4.6)
δJ ′ ≥ (γE)J ′ , (4.7)

and there is an ε ∈ S such that εJ = β. Since S ⊂ S, we have ε ≥ 0. This implies with
Equations (4.6) and (4.7)

(δ + ε)J ′ = δJ ′ + εJ ′ ≥ δJ ′ ≥ (γE)J ′ ,

and hence
α+ β = δJ + εJ = (δ + ε)J ∈ E

J ′
J .

Therefore, EJ ′J + SJ ⊂ EJ
′

J . Since EJ ′J ⊂ (DS)J = DSJ by Definition 4.60, EJ ′J is a
semigroup ideal of SJ .
Let now α, β ∈ EJ ′J . Then there are δ, ε ∈ E such that δJ = α, εJ = β and δJ ′ , εJ ′ ≥

(γE)J ′ . This implies
inf {δJ ′ , εJ ′} = (inf {δ, ε})J ′ ≥ (γE)J ′ ,

and hence
inf {α, β} = inf {δJ , εJ} = (inf {δ, ε})J ∈ E

J ′
J .
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Thus, EJ ′J satisfies property (E1).
Finally, let E ∈ GS , and assume there is an i ∈ J such that αi = βi. Then δi = εi, and

since E satisfies property (E2), there is a ζ ∈ E such that

ζi > δi = εi,

ζj ≥ min {δj , εj} for all j ∈ I,
ζk = min {δk, εk} for all k ∈ I with δk 6= εk.

This implies ζJ ′ ≥ (γE)J ′ , and hence ζJ ∈ EJ
′

J with

(ζJ)i = ζi > δi = εi = βi = αi,

(ζJ)j = ζj ≥ min {δj , εj} = min {αj , βj} for all j ∈ J,
(ζJ)k = ζk = min {δk, εk} = min {αk, βk} for all k ∈ J with δk 6= εk.

Therefore, EJ ′J satisfies property (E2), and hence EJ ′J ∈ GSJ .

Lemma 4.63. Let S be a good semigroup. Then for any i ∈ I we have (CS)i ⊂ SJi for
every J ⊂ I.

Proof. Let α ∈ (CS)i, i.e. there is β ∈ CS with βi = α. In particular, we have αJ ≥ (γS)J
for every J ⊂ I.

Proposition 4.64. Let S be a good semigroup. Then for any E ∈ GS we have

γE =
(
γ
E
I\{i}
i

)
i∈I
.

Proof. Set
γ =

(
γ
E
I\{i}
i

)
i∈I
.

Since γE + S ⊂ E by Definition 4.26, we have for any i ∈ I

(γE)i ≥ γEI\{i}i

.

Thus, γE ≥ γ.
Let now α ∈ S, in particular α ≥ 0. Then we have for any i ∈ I

γi + αi ≥ γEI\{i}i

,

and hence
γi + αi ∈ EI\{i}i .

Therefore, for any i ∈ I there is a β(i) ∈ E such that

β
(i)
i = γi + αi,

β
(i)
I\{i} ≥ (γE)I\{i}.
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By Lemma 4.33 we may assume that β(i)
I\{i} ≥ γI\{i}+αI\{i} for any i ∈ I. Since E satisfies

property (E1), this implies
γ + α = inf

i∈I
β(i) ∈ E,

and hence γ + S ⊂ E. Thus, γ ≥ γE .

Proposition 4.65. Let S be a good semigroup. Then S is local if and only if 0 ∈ Si \ Sji
for every i, j ∈ I with i 6= j.

Proof. Suppose there are i, j ∈ I with i 6= j such that 0 ∈ Sji . Then there is an α ∈ S
with αi = 0 and αj ≥ (γS)j (see Definition 4.60). Using Lemma 4.33 we may assume that
αj > 0. This implies that S is not local, see Definition 4.5.(3).

Now suppose that S is not local. Then there is an α ∈ S with αi = 0 and αj > 0 for some
i, j ∈ I. Moreover, we can find an n ∈ N such that nαj ≥ (γS)j . Since S is a semigroup,
and hence nα ∈ S with (nα)i = nαi = 0 and (nα)j = nαj ≥ (γS)j , this yields 0 ∈ Sji .

Lemma 4.66. Let S be a good semigroup, let E ∈ GS, and let J ⊂ I. Then δ ∈ E for all
δ ∈ DS with

δJ ∈ EI\JJ ,

δI\J ≥ (γE)I\J .

Proof. Let α ∈ EI\JJ . Then there is β ∈ E with

βJ = α,

βI\J ≥ (γE)I\J .

Thus, Lemma 4.33 yields the statement.

Proposition 4.67. Let R be an admissible ring, let J ⊂ Min (R), and let

J ′ = {V ∈ VR | qV ∈ J}.

We denote by
π : QR → QR/

⋂
p∈J

pQR = QR/
⋂

p∈J p

the canonical surjection (see Theorem A.74.(2) for the equality), and

pr′ : (Z ∪ {∞})VR → (Z ∪ {∞})
V
R/
⋂

p∈J p

is the composition of the isomorphism (Z ∪ {∞})
V
R/
⋂

p∈J p ∼= (Z ∪ {∞})J
′
induced by the

bijection VR/⋂
p∈J p → J ′ (see Proposition 3.13.(3)) and the projection (Z ∪ {∞})VR →

(Z ∪ {∞})J
′
.
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(1) There is a commutative diagram

QR (Z ∪ {∞})VR

QR/
⋂

p∈J p (Z ∪ {∞})
V
R/
⋂

p∈J p
,

π

ν

pr′

ν

where ν is the multivaluation of QR/⋂
p∈J p.

(2) For any I ∈ RR we have
Γπ (I) = (ΓI)J ′

(see Lemma 4.68.(2)).

For the proof of Proposition 4.67 we need the following Lemma.

Lemma 4.68. With the assumptions as in Proposition 4.67 we have the following:

(1) If x ∈ (QR)reg, then π (x) ∈
(
QR/

⋂
p∈J p

)reg
.

(2) Let I ∈ RR. Then π (I) ∈ RR/⋂
p∈J p.

Proof. 1. Assume π (x) is not regular. Then there is a y ∈ R such that π (y) 6= 0 and

π (xy) = π (x)π (y) = 0.

This implies
xy ∈

⋂
p∈J

pQR.

Thus, either x ∈ pQR or y ∈ pQR for any p ∈ J . Since pQR ∈ Max (QR) for all p ∈ J
by Theorem A.74.(1), and since x ∈ (QR)reg, this yields y ∈ pQR for all p ∈ J . But
then π (y) = 0, contradicting the choice of y.

2. Obviously, π (I) is an R/
⋂

p∈J p-submodule of QR/⋂
p∈J p, and it is regular by (1).

Since I is a fractional ideal of R, there is x ∈ Rreg such that xI ⊂ R. This implies

π (x)π (I) = π (xI) ⊂ π (R) = R/
⋂
p∈J

p,

and we have π (x) ∈
(
R/
⋂

p∈J p
)reg

by (1). Thus, π (I) ∈ RR/⋂
p∈J p.

Proof of Proposition 4.67. (1) This follows from Proposition 3.13.(3).
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(2) Let α ∈ (ΓI)J ′ . Then there is an x ∈ I such that (1) yields

ν(π (x)) = (ν(x))J ′ = α.

Hence, π (x) ∈ (π (I))reg by Lemma 3.4.(2) and Proposition 3.13.(3). This implies
α ∈ Γπ (I).
Let now α ∈ Γπ (I). Then there is an x ∈ (π (I))reg with ν(x) = α. This implies that
there is a y ∈ I with π (y) = x, and

(ν(y))J ′ = ν(π (y)) = ν(x) = α

by (1). Let now z ∈ (CI)reg with

νV (z) 6= νV (y) for all V ∈ VR,
νW (z) > νW (y) for all W ∈ J ′.

Then
νV (y + z) = min {νV (y), νV (z)} <∞

for all V ∈ VR (see Remark D.14.(1) and Lemma 3.4.(2)), and Lemma 3.4.(2) yields
y + z ∈ Ireg. Therefore,

ν(y + z) ∈ ΓI

with
(ν(x+ y))J ′ = (ν(y))J ′ = α.

Hence, α ∈ (ΓI)J ′ .

Proposition 4.69. Let R be an admissible ring, let p ∈ Min (R), let I ⊂ Min (R) \ {p},
and let

J = {V ∈ VR | qV = p},
J ′ = {V ∈ VR | qV ∈ I}.

Then
(ΓR)J

′

J = Γ⋂
q∈I q+p/p

(note that
⋂

q∈I q+ p/p ∈ RR/p since
⋂

q∈I q is an ideal of R not contained in p and R/p is
a domain).

Proof. Let α ∈ (ΓR)J
′

J . Then there is an x ∈ Rreg with

(ν(x))J = α,

(ν(x))J ′ ≥ (γΓR)J ′ .

Since QR =
∏

p′∈Min (R)QR/p
′QR by Theorem A.74.(2), and since I ⊂ Min (R) \ {p}, there

is by Proposition 3.13.(3) a y ∈ QR with

x− y ∈ qV for all V ∈ J ′, (4.8)
νW (y) > max

{
νW (x), (γΓR)W

}
for all W ∈ J, (4.9)

νW ′(y) ≥ (γΓR)W ′ for all W
′ ∈ VR \

(
J ∪ J ′

)
. (4.10)
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Then Proposition D.15 implies

νV (x) = νV (y) ≥ (γΓR)V
for all V ∈ J ′. Thus,

ν(y) ≥ γΓR ,

and hence
y ∈ QγΓR = CR ⊂ R

by Proposition 4.56. This yields x− y ∈ R with

νV (x− y) = min {νV (x), νV (y)}

for all V ∈ J , see Remark D.14.(1). Therefore,

ν(x− y + p) = (ν(x− y))J = α

by Proposition 4.67.(1), where ν is the multivaluation of QR/p. Hence, Equation (4.8)
yields

x− y + p ∈

⋂
q∈I

q + p/p

reg

by Lemma 3.4.(2) and Proposition 3.13.(3). Thus,

α ∈ Γ⋂
q∈I q+p/p.

Let now α ∈ Γ⋂
q∈I q+p/p. Then there is an x ∈

(⋂
q∈I q + p/p

)reg
with ν(x) = α. Thus,

there is a y ∈
⋂

q∈I q such that y + p = x, and Proposition 4.67.(1) yields

(ν(y))J = ν(x) = α.

Since y ∈
⋂

q∈I q, we have
νV (y) =∞

for all V ∈ J ′. So let z ∈ (CR)reg with

νV (z) 6= νV (y) for all V ∈ VR,
νW (z) > νW (y) for all W ∈ J.

Then
νV (y + z) = min {νV (y), νV (z)} <∞

for all V ∈ VR (see Remark D.14.(1) and Lemma 3.4.(2)), and Lemma 3.4.(2) yields
y + z ∈ Rreg. Therefore,

ν(y + z) ∈ ΓR
with

(ν(y + z))J = (ν(y))J = α,

(ν(x+ y))J ′ ≥ (γΓR)J ′

by Proposition 4.56. Hence, α ∈ (ΓR)J
′

J .
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Example 4.70. Let

R = C[[X,Y ]]/
〈(
X5 − Y 2

)
Y
〉

= C[[X,Y ]]/
(〈
X5 − Y 2

〉
∩ 〈Y 〉

)
= C

[[(
−t21, t2

)
,
(
t51, 0

)]]
.

The semigroup of values ΓR of R is depicted in Figure 4.2. Then

R/
〈
X5 − Y 2

〉
= C[[X,Y ]]/

〈
X5 − Y 2

〉
= C

[[
t21, t

5
1

]]
with semigroup of values

ΓR/〈X5−Y 2〉 = (ΓR)1 = 〈2, 5〉,

and
R/〈Y 〉 = C[[X,Y ]]/〈Y 〉 = C[[t2]]

with semigroup of values
ΓR/〈Y 〉 = (ΓR)2 = N

(see Proposition 4.67).
The value semigroup ideals of the ideals

〈Y 〉+
〈
X5 − Y 2

〉
/
〈
X5 − Y 2

〉
= t51C

[[
t21, t

5
1

]]
,

respectively 〈
X5 − Y 2

〉
+ 〈Y 〉/〈Y 〉 = t52C[[t2]],

are
Γ〈Y 〉+〈X5−Y 2〉/〈X5−Y 2〉 = (ΓR)2

1 = 5 + 〈2, 5〉,

respectively
Γ〈X5−Y 2〉+〈Y 〉/〈Y 〉 = (ΓR)1

2 = 5 + N,

see Proposition 4.69.

4.7. Numerical Semigroups
Numerical semigroups (see Definition 4.5.(2)) are particularly important examples of good
semigroups. Here we study some of their special properties. In particular, we consider
semigroup rings (see Definition 4.73), and we introduce quotients on numerical semigroups
(see Definition 4.74). We show that taking quotients “commutes” with the construction of
semigroup rings (see Proposition 4.79).

Proposition 4.71. A submonoid S of N is a numerical semigroup if and only if N \ S is
finite.

Proof. If S is a numerical semigroup, then N \ S is finite since S satisfies property (E0).
Conversely, if N\S is finite, then there is an α ∈ S such that α+N ⊂ S. Hence, DS = Z,

and S satisfies (E0). Since |I| = 1, S also satisfies properties (E1) and (E2). Thus, S is a
numerical semigroup.
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2

1

ΓR

(ΓR)1 \ (ΓR)2
1 (γΓR)1

(ΓR)2 \ (ΓR)1
2

(γΓR)2

(ΓR)2
1

(ΓR)1
2

Figure 4.2.: The semigroup of values of the admissible ring R = C[[X,Y ]]/
〈(
X5 − Y 2)Y 〉 of Exam-

ple 4.70.

Proposition 4.72. A numerical semigroup is finitely generated.

Proof. Let G = {α ∈ S | 0 < α < 2γS}. Then G is finite, and S is generated by G as a
monoid.

Definition 4.73. Let S be a numerical semigroup, and let R be a ring. We denote by
R
[
tS
]
the subset of R[t] consisting of all polynomials

∑
α∈S rαt

α, where only finitely many
coefficients rα are different from 0. With the usual addition∑

α∈S
rαt

α +
∑
β∈S

sβt
β =

∑
α∈S

(rα + sα)tα

and the multiplication

(∑
α∈S

rαt
α

)∑
β∈S

sβt
β

 =
∑
δ∈S

∑
α,β∈S,
α+β=δ

rαsβt
δ

for
∑
α∈S rαt

α ∈ R
[[
tS
]]

and
∑
β∈S sβt

β ∈ R
[[
tS
]]
, the set R

[[
tS
]]

is a ring, the semigroup
ring of S over R.

Definition 4.74. Let S be a numerical semigroup, and let E ∈ GS with E ⊂ S. The
quotient semigroup of S by E, denoted by S/E, is the set (S \ E)∪ {∞} together with the
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4. Good Semigroups

S E S/E
∞

Figure 4.3.: The semigroup S = 〈3, 5〉, the semigroup ideal E = 6 + S ∈ GS (red), and the quotient
semigroup S/E of Example 4.76.

operation defined by

α ∗ β =
{
α+ β if α, β ∈ S \ E and α+ β ∈ E,
∞ else

for any α, β ∈ S/E. We will also write + for the “addition” in S/E.

Remark 4.75. Let S be a numerical semigroup, and let E ∈ GS with E ⊂ S. Then S \E
and hence also S/E are finite since E satisfies property (E0). Moreover, S/E is indeed a
commutative monoid.

Example 4.76. Consider the numerical semigroup S = 〈3, 5〉 and the semigroup ideal
E = 6+S ∈ GS . Then the quotient semigroup S/E is given by the set {0, 3, 5, 8, 10, 13,∞},
see Figure 4.3. In S/E we have for example 5 + 8 = 13 and 3 + 13 =∞.

Definition 4.77. Let S be a numerical semigroup, let E ∈ GS with E ⊂ S, and let R be
a ring.

(1) We denote by R
[[
tE
]]

the set of all formal sums
∑
α∈E rαt

α with (rα)α∈E ∈ RE .

(2) If
∑
α∈E rαt

α ∈ R
[[
tE
]]

with rα = 0 for all α ∈ F for some subset F of E, we write∑
α∈E\F rαt

α =
∑
α∈E rαt

α.

(3) We write R
[
tS/E

]
for the set of formal sums

∑
α∈S/E rαt

α with (rα)α∈S/E ∈ RS/E

modulo the relation t∞ = 0. In particular, for any element of R
[
tS/E

]
we find a

representative of the form
∑
α∈S\E rαt

α with (rα)α∈S\E ∈ RS\E .

Remark 4.78. Let S be a numerical semigroup, let E,F ∈ GS with E,F ⊂ S, and let R be
a ring.

(1) With the usual addition∑
α∈S

rαt
α +

∑
β∈S

sβt
β =

∑
α∈E∪F

(rα + sα)tα

and the multiplication(∑
α∈S

rαt
α

)∑
β∈S

sβt
β

 =
∑
δ∈S

∑
α,β∈S,
α+β=δ

rαsβt
δ
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for
∑
α∈S rαt

α ∈ R
[[
tS
]]

and
∑
β∈S sβt

β ∈ R
[[
tS
]]
, the set R

[[
tS
]]

is an R-algebra.

Moreover, E ∈ GS with E ⊂ S implies that R
[[
tE
]]

is an ideal of R
[[
tS
]]
.

(2) Similarly, also the set R
[
tS/E

]
is an R-algebra.

Proposition 4.79. Let S be a numerical semigroup, let E ∈ GS with E ⊂ S, and let R be
a ring. There is a surjective R-algebra homomorphism

Ψ: R
[[
tS
]]
→ R

[
tS/E

]
,∑

α∈S
rαt

α 7→
∑

α∈S\E
rαtα

inducing an R-algebra isomorphism

ψ : R
[[
tS
]]
/R
[[
tE
]]
→ R

[
tS/E

]
,∑

α∈S
rαt

α +R
[[
tE
]]
7→

∑
α∈S\E

rαtα.

In particular, there is a commutative diagram

R
[[
tS
]]

R
[[
tS
]]
/R
[[
tE
]]

R
[
tS/E

]
,

π
Ψ

ψ
∼=

where π : R
[[
tS
]]
→ R

[[
tS
]]
/R
[[
tE
]]

is the canonical surjection.

Proof. Let
∑
α∈S rαt

α,
∑
β∈S sβt

β ∈ R
[[
tS
]]
. Then

ψ

∑
α∈S

rαt
α +

∑
β∈S

sβt
β

 = ψ

(∑
α∈S

(rα + sα)tα
)

=
∑

α∈S\E
(rα + sα)tα

=
∑

α∈S\E
rαtα +

∑
β∈S\E

sβtβ

= ψ

(∑
α∈S

rαt
α

)
+ ψ

∑
β∈S

sβt
β
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and

ψ

(∑
α∈S

rαt
α

)∑
β∈S

sβt
β

 = ψ

∑
δ∈S

∑
α,β∈S
α+β=δ

rαsβt
δ


=

∑
δ∈S\E

∑
α,β∈S
α+β=δ

rαsβtδ

=
∑

δ∈S\E

∑
α,β∈S\E
α+β=δ

rαsβtδ (4.11)

=

 ∑
α∈S\E

rαtα

 ∑
β∈S\E

sβtβ


=
(
ψ

(∑
α∈S

rαt
α

))ψ
∑
β∈S

sβt
β

,
where the equality in Equation (4.11) follows since E satisfies property (E0), i.e. E+S ⊂ E.
Moreover, since ψ is obviously R-linear, it is an R-algebra homomorphism.

Let now
∑
α∈S rαt

α ∈ R
[[
tS
]]

with

∑
α∈S\E

rαtα = ψ

(∑
α∈S

rαt
α

)
= 0.

Then rα = 0 for all α ∈ S \ E (see Definitions 4.74 and 4.77.(3)), and hence
∑
α∈S rαt

α ∈
R
[[
tE
]]
. Therefore, ker Ψ ⊂ R

[[
tE
]]
.

Moreover, if
∑
α∈E rαt

α ∈ R
[[
tE
]]
, then

Ψ
(∑
α∈E

rαt
α

)
= 0.

This yields ker Ψ = R
[[
tE
]]
.

Finally, let
∑
α∈S\E rαt

α ∈ R
[
tS/E

]
(note that we can write any element of R

[
tS/E

]
in this form, see Definition 4.77.(3)). Then by setting rα = 0 for all α ∈ E we obtain∑
α∈S rαt

α ∈ R
[[
tS
]]

and

ψ

(∑
α∈S

rαt
α

)
=

∑
α∈S\E

rαtα.

Hence, Ψ is also surjective, and the homomorphism theorem yields the statement.
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4.8. Semigroup Rings over C
Considering quasihomogeneous curves in Chapters 6 and 7 we will deal with semigroup
rings over C. Here we study some basic properties.

Proposition 4.80. Let S be a numerical semigroup. Then C
[[
tS
]]

is a local admissible
ring with maximal ideal

mC[[tS ]] =
{
x ∈ C

[[
tS
]] ∣∣∣ ordt (x) ≥ 0

}
.

Moreover, we have VC[[tS ]] = {C[[t]]}, the corresponding valuation is ordt, and

ΓC[[tS ]] = S.

Proposition 4.81. Let S be a numerical semigroup. The set

mC[tS ] =
{
x ∈ C

[
tS
] ∣∣∣ ordt (x) > 0

}
is a maximal ideal of C

[
tS
]
, and C

[[
tS
]]

is the mC[tS ]-adic completion of C
[
tS
]
.

Proof. Obviously, mC[tS ] is an ideal of C
[
tS
]
, and C

[
tS
]
/mC[tS ]

∼= C. Thus, mC[tS ] is a

maximal ideal of C
[
tS
]
. Then it is also easy to see that C

[[
tS
]]

is the mC[tS ]-adic completion

of C
[
tS
]
.

Lemma 4.82. Let S be a numerical semigroup. Then C
[
tS
]
is Noetherian.

Proof. By Proposition 4.72 S admits a finite set G of generators. Then C
[
tS
]
is generated

as a C-algebra by {tα | α ∈ G}. Thus, C
[
tS
]
is Noetherian by Theorem A.1.

Corollary 4.83. Let S be a numerical semigroup. Then C
[[
tS
]]

is Noetherian.

Proof. This follows from Proposition 4.80, Lemma 4.82 and Theorem A.53.

Lemma 4.84. Let S be a numerical semigroup. Then C[[tS ]] = C[[t]]. In particular,
dimC

[[
tS
]]

= 1.

Proof. Since S is a good semigroup (see Remark 4.6.(2)), we have

tγSC[[t]] ⊂ C
[[
tS
]]
. (4.12)

This implies QC[[tS ]] = C[[t]]
[
t−1]. Moreover, Equation (4.12) and Lemma 4.82 imply that

C[[t]] is finite over C
[[
tS
]]
. Thus C[[t]] is generated by integral elements over C

[[
tS
]]

by

Theorem B.11, and hence C[[t]] is integral over C
[[
tS
]]

by Theorem B.10. Since C[[t]] is
integrally closed in C[[t]]

[
t−1], this implies C[[tS ]] = C[[t]]. Moreover, Theorem B.14 yields

dimC
[[
tS
]]

= dimC[t] = 1.
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Lemma 4.85. Let S be a numerical semigroup. Then C
[[
tS
]]

is local with maximal ideal

m =
{
x ∈ C

[[
tS
]]
| ordt (x) > 0

}
. Moreover, if M is a finite set of generators of S (see

Proposition 4.72) not containing 0, then

m = 〈tα | α ∈M〉.

Proof. By Lemma 4.84 we have C[[tS ]] = C[[t]], and C[[t]] is local with maximal ideal
tC[[t]]. Thus, the statement follows from Propositions B.3 and B.15.
By Remark 4.6.(2) S is local, and hence µMS

= min {α ∈ S | α > 0}. Since M is a
set of generators of S, this implies µMS

∈ M . Moreover, 〈tα | α ∈M〉 ⊂ m, and for any
α ∈MS = S \ {0} there are β(α)

1 , . . . , β
(α)
nα ∈M with nα ≥ 1 such that α =

∑nα
i=1 β

(α)
i .

Let now
∑
α∈S aαt

α ∈ m. Then a0 = 0, and we can write∑
α∈MS

aαt
α =

∑
α∈S

α<µMS+γS

aαt
α +

∑
α∈S

α≥µMS+γS

aαt
α

=
∑
α∈S

α<µMS+γS

aαt
∑nα

i=1 β
(α)
i + tµMS

∑
α∈S

α≥µMS+γS

aαt
α−µMS

=
∑
α∈S

α<µMS+γS

aα

nα∏
i=1

tβ
(α)
i + tµMS

∑
α∈S

α≥µMS+γS

aαt
α−µMS .

Since aα ∈ C for all α ∈ S, since tµMS , tβ
(α)
i ∈ m for every α ∈M and for all i = 1, . . . , nα,

and since
∑

α∈S
α≥µMS+γS

aαt
α−µMS ⊂ tγC[[t]] ⊂ C

[[
tS
]]
, this yields the claim.

Lemma 4.86. Let S be a numerical semigroup. Then C
[[
tS
]]

is Cohen–Macaulay.

Proof. Since dimC
[[
tS
]]

= 1 by Lemma 4.84, since C
[[
tS
]]

is Noetherian by Corollary 4.83,

and since C
[[
tS
]]

is reduced by definition, the statement follows from Proposition C.13.

Proof of Proposition 4.80. By Lemmas 4.84 and 4.86 C
[[
tS
]]

is a one-dimensional ring.

Moreover, C
[[
tS
]]

is by construction reduced and complete, hence it is analytically reduced.

By Lemma 4.85 C
[[
tS
]]

is local with maximal ideal

m =
{
x ∈ C

[[
tS
]] ∣∣∣ ordt (x) > 0

}
.

This implies
C
[[
tS
]]
/m ∼= C ∼= C[[t]]/tC[[t]].

Therefore, C
[[
tS
]]

is residually rational as C[[tS ]] = C[[t]] by Lemma 4.84, and C[[t]] is

local with maximal ideal tC[[t]]. Since char
(
C
[[
tS
]]
/m
)

= char (C) = 0, C
[[
tS
]]

has a

large residue field. Thus, C
[[
tS
]]

is admissible.
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Obviously, ordt is a valuation of QC[[tS ]] = C[[t]]
[
t−1] with ordt (x) ≥ 0 for all x ∈

C
[[
tS
]]
. Since C

[[
tS
]]

is analytically irreducible, we have
∣∣∣VC[[tS ]]

∣∣∣ = 1, see Remark 3.39
(Equation (3.19)). Thus, VC[[tS ]] = {ordt}, and the valuation ring of the valuation ordt is{

x ∈ QC[[tS ]]

∣∣∣ ordt (x) ≥ 0
}

= C[[t]].

This implies
ΓC[[tS ]] = ordt

(
C
[[
tS
]]
\ {0}

)
= S.
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5. Duality and Gorenstein Property

The canonical module ωR of a Cohen–Macaulay ring R is characterized by the duality

M 7→ ExtdimR−dimM
R (M,ωR)

on the Cohen–Macaulay modules of R (see Theorem C.22). Equivalently, there is a duality
on the maximal Cohen–Macaulay modules of R given by

M 7→ HomR (M,ωR). (5.1)

If R is generically Gorenstein, then ωR can by Proposition C.23 be identified with a (regular)
fractional ideal K of R. If R is one-dimensional, then all regular fractional ideals of R are
maximal Cohen–Macaulay modules. Therefore, Equation (5.1) induces with Lemma 2.13 a
duality

I 7→ K : I

on RR. This leads to the definition of a canonical ideal of a one-dimensional Cohen–
Macaulay ring as a dualizing object on the fractional ideals, i.e. a regular fractional ideal K
of R such that

I = K : (K : I)

for all I ∈ RR. In fact, a canonical ideal of a one-dimensional Cohen–Macaulay ring R is a
canonical module of R (see Section 5.1).

This Chapter is dedicated to a combinatorial version of this duality on the good semigroup
ideals of a good semigroup and its relation to the duality on fractional ideals. In Section 5.2
we define a canonical semigroup ideal K of a good semigroup S as a dualizing object on
the good semigroup ideals of S, i.e. K − E is a good semigroup ideal, and

E = K − (K − E) (5.2)

for every good semigroup ideal E of S. Moreover, if R is an admissible ring, then canonical
ideals of its semigroup of values ΓR characterize the canonical (fractional) ideals of R in
terms of their value semigroup ideals (see Section 5.3). This unifies and extends results by
D’Anna [8] and Pol [14].

A Cohen–Macaulay ring R is by Theorem C.26 a Gorenstein ring if and only if R is a
canonical module of R. Historically, the first step in describing the value semigroup ideals
of canonical ideals was a characterization of the semigroups of values of Gorenstein rings.
Kunz showed that an analytically irreducible and residually rational one-dimensional

local ring R is Gorenstein if and only if its (numerical) semigroup of values is symmetric
[6], i.e. if and only if

ΓR = {α ∈ DΓR | τΓR − α 6∈ ΓR}. (5.3)
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5. Duality and Gorenstein Property

Jäger used this symmetry condition to define a canonical semigroup ideal

K = {α ∈ DΓR | τΓR − α 6∈ ΓR}

such that a fractional ideal K of R with R ⊂ K ⊂ R is a canonical ideal of R if and only if
ΓK = K [11].
Waldi was the first to describe a symmetry property of the semigroup of values of a

plane algebroid curve with two branches [3]. Note that plane algebroid curves are always
Gorenstein (see [1, Corollary 5.2.9]). Delgado extended this symmetry to plane algebroid
curves with arbitrarily many branches [12]. Later he generalized the symmetry of numerical
semigroups to good semigroups (see Definition 5.36), and in analogy to Kunz’ result he
characterized Gorenstein algebroid curves by the symmetry of their semigroups of values [7].
In his setup the symmetry of the semigroup of values of an algebroid curve can be written
as

ΓR =
{
α ∈ DΓR

∣∣∣ ∆ΓR(τΓR − α) = ∅
}

(5.4)

(see Definition 4.31). Note that in the irreducible case Equation (5.4) reduces to Equa-
tion (5.3). Later Campillo, Delgado, and Kiyek extended Delgado’s result to include
analytically reduced and residually rational local rings with infinite residue field [13].
Starting from this result D’Anna followed Jäger’s approach by turning Delgado’s sym-

metry condition into an explicit formula for a canonical semigroup ideal

K0
S =

{
α ∈ DS

∣∣∣ ∆S(τS − α) = ∅
}

of a good semigroup S (see Definition 5.8). In analogy to Jäger’s result he showed that a
fractional ideal K of an analytically reduced and residually rational one-dimensional local
ring R (having arbitrarily many branches) with R ⊂ K ⊂ R is a canonical ideal of R if and
only if ΓK = K0

ΓR [8]. In Section 5.2 we give an intrinsic definition of a canonical ideal of a
good semigroup (see Definition 5.10). For a good semigroup ideal of a good semigroup this
definition is equivalent to satisfying the duality of Equation (5.2) and to being a shift of
D’Anna’s K0 (see Theorem 5.14).

In Section 5.3 we relate the duality on good semigroups to the duality on fractional ideals.
We show that D’Anna’s characterization of canonical ideals by their value semigroup ideal
applies also for admissible rings. Moreover, with our definition of a canonical semigroup
ideal allowing for shifts we can prove that any fractional ideal K of an admissible ring R is
a canonical ideal of R if and only if its value semigroup ideal ΓK is a canonical ideal of the
semigroup of values ΓR of R (see Theorem 5.31).

While giving a further characterization of local Gorenstein algebroid curves, Pol computed
explicitly the value semigroup ideal of the dual R : I of a fractional ideal I of a Gorenstein
algebroid curve R [33, 14]. Using Delgado’s characterization of Gorenstein algebroid curves
in terms of their semigroups of values Pol’s formula can be written as

ΓR:I = ΓR − ΓI. (5.5)

Since R is Gorenstein, it is a canonical ideal of itself. Therefore, ΓR is a canonical
semigroup ideal of itself. Using properties of canonical semigroup ideals one can prove that
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5.1. Cohen–Macaulay Duality on One-dimensional Rings

Equation (5.5) is valid in any admissible ring if R is replaced by a canonical ideal K of R
(see Theorem 5.34). This shows that the duality on good semigroup ideals is compatible
with the duality on fractional ideals under taking values in the following sense: a regular
fractional ideal K of an admissible ring is a canonical ideal of R if and only if its value
semigroup ideal ΓK is a canonical ideal of ΓR, and we obtain a commutative diagram

RR RR

GΓR GΓR .

I 7→K:I

I7→ΓI I7→ΓI

E 7→ΓK−E

As a consequence of this result we extend in Section 5.4 Delgado’s and Pol’s characterizations
of Gorensteinness from local algebroid curves to admissible rings (see Corollaries 5.37 and
5.41).

With a view towards the Grauert–Remmert algorithm for normalization presented in
Section B.5.2 (also see Chapter 8) we study in Section 5.6 the endomorphism ring mR : mR

for a local Gorenstein algebroid curve R with maximal ideal mR. We show that mR : mR is
Gorenstein if and only if R is of type An (see [22]) for some n ∈ N (see Theorem 5.56). In
the proof we use the corresponding statement for good semigroups: a good local semigroup
S and MS −MS are symmetric if and only if S is the semigroup of values of an algebroid
curve of type An (see Theorem 5.42).

5.1. Cohen–Macaulay Duality on One-dimensional Rings
Let R be a one-dimensional equidimensional Cohen–Macaulay ring. Then Equation (5.1)
and Lemma 2.13 lead to the following definition of a dualizing object on RR.

Definition 5.1. Let R be a one-dimensional equidimensional Cohen–Macaulay ring. A
regular fractional ideal K ∈ RR is called a canonical (fractional) ideal of R if

I = K : (K : I)

for all I ∈ RR.

Being a canonical ideal is a local property in the following sense.

Lemma 5.2 (See [25], Lemma 5.1.3). Let R be a one-dimensional equidimensional Cohen–
Macaulay ring, and let K ∈ RR. Then R is a canonical ideal of R if and only if Km =
KRm ∈ RRm is a canonical ideal of Rm for every m ∈ Max (R).

Proof. This follows from Lemma 2.16.(2) and (3) and Proposition A.39 since equality is a
local property (see [24, Lemma 2.6]).

In fact, if a one-dimensional Cohen–Macaulay ring R has a canonical ideal K, then K is
a canonical module of R.
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5. Duality and Gorenstein Property

Remark 5.3. Let R be a one-dimensional equidimensional Cohen–Macaulay ring. Then a
canonical ideal of R is a canonical module of R, see [25, Remark 5.1.4].

Canonical ideals are unique “up to multiplication by units”.

Proposition 5.4. Let R be a one-dimensional equidimensional Cohen–Macaulay ring, and
let K be a canonical ideal of R. Then K′ ∈ RR is a canonical ideal of R if and only if
K′ = IK for some invertible fractional ideal I of R. If R is semilocal, then K′ is a canonical
ideal of R if and only if K′ = xK for some x ∈ Qreg

R .

Proof. See [25, Proposition 5.1.5].

The existence of canonical ideals for one-dimensional Cohen–Macaulay rings can be
characterized as follows.

Theorem 5.5. A one-dimensional local Cohen–Macaulay ring R has a canonical ideal if
and only if R̂ is generically Gorenstein. In particular, any one-dimensional analytically
reduced local ring has a canonical ideal.

Proof. See [24, Korollar 2.12 and Satz 6.21].

Note that the particular claim of Theorem 5.5 includes local admissible rings (see
Definition 3.18). Moreover, for a local admissible ring we can choose a “normalized”
canonical ideal.

Corollary 5.6. Any one-dimensional analytically reduced local Cohen–Macaulay ring R
with large residue field has a canonical ideal K such that R ⊂ K ⊂ R. It is unique up to
multiplication by R∗ with unique value semigroup ideal.

Proof. See [25, Corollary 5.1.7].

Finally, as in Theorem C.21 canonical ideals propagate along finite ring extensions.

Lemma 5.7. Let R and R′ be one-dimensional local Cohen–Macaulay rings, and let
φ : R→ R′ be a local homomorphism such that R′ is a finite R-module and QR = QR′. If
K is a canonical ideal of R, then K : R′ is a canonical ideal of R′.

Proof. See [25, Lemma 5.1.8].

5.2. Duality on Good Semigroups

Motivated by a result by Jäger in the irreducible case (see [11, Hilfssatz 5]) D’Anna
introduced the following semigroup ideal (see [8, Section 3]) based on a symmetry condition
on the semigroup of values of Gorenstein algebroid curves by Delgado (see [7, Theorem 2.8])
to characterize canonical ideals in terms of their value semigroup ideals (see [8, Theorem 4.1]
and Theorem 5.30).
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S K0
S

Figure 5.1.: A good semigroup S with canonical ideal K0
S .

Definition 5.8. Let S be a good semigroup. The set

K0
S =

{
α ∈ DS

∣∣∣ ∆S (τS − α) = ∅
}

is called the (normalized) canonical (semigroup) ideal of S (see Figure 5.1).

Lemma 5.9 (see [25], Lemma 5.2.2). Let S be a good semigroup.

(1) The set K0
S is a semigroup ideal of S satisfying property (E1)

(2) The minimal element of K0
S is µK0

S
= µS = 0. In particular, S ⊂ K0

S ⊂ S.

(3) The conductor of K0
S is γK0

S
= γS.

Proof. (1) See [8, Proposition 3.2].

(2) Since K0
S is a semigroup ideal of S satisfying property (E1) by (1), it has by

Lemma 4.12 a minimal element. By Lemma 4.34 we have

∆S (τS − 0) = ∆S (τS) = ∅,

and hence 0 ∈ K0
S by Definition 5.8.

Now assume there is α ∈ K0
S with α 6≥ 0. Then there is i ∈ I such that αi < 0.

Using (1) to apply property (E1) in K0
S to α and 0 yields a β ∈ K0

S with β < 0 and
βi < 0. Therefore, (τS − β)i ≥ γS , and hence ∆i (τS − β) 6= ∅. This implies β 6= K0

S ,
contradicting the assumption α ∈ K0

S . The particular claim follows from (1) and
Lemma 4.14.

(3) By (1) and Lemmas 4.12 and 4.18, K0
S also has a conductor. Since K0

S + S ⊂ K0
S

by (1) and 0 ∈ K0
S by (2), we have γK0

S
≤ γS .

Now let α ∈ DS with α ≥ γS . Then τS − α < 0, and hence ∆S (τS − α) = ∅ since
µS = 0. This implies γK0

S
≥ γS .

109



5. Duality and Gorenstein Property

The following definition of a canonical semigroup ideal relies on the inclusion relations
of good semigroup ideals and avoids a fixed conductor.

Definition 5.10. Let S be a good semigroup. A good semigroup ideal K ∈ GS is called a
canonical (semigroup) ideal of S if K ⊂ E implies K = E for all E ∈ G with γK = γE .

Remark 5.11 (See [25], Remark 5.2.6). If K is a canonical ideal of S, then also α+K is a
canonical ideal of S for any α ∈ DS . This follows immediately from Definition 5.10 and
Remark 4.21.(1).

Proposition 5.12. Let S be a good semigroup. Then for any α ∈ DS there is a canonical
ideal K of S having conductor γK = α.

Proof. First we show that there is a canonical ideal K of S with conductor γK = γS . By
Remark 4.6.(3) we have S ∈ GS . So there is a good semigroup ideal of S with conductor
γS . Now assume that S does not have a canonical ideal with conductor γS . Then for any
E ∈ GS with γE = γS there is an E′ ∈ GS with γE′ = γS and E ( E′. Then starting with
some E(0) ∈ GS with γE(0) = γS we find a sequence(

E(i)
)
i∈N
∈ (GS)N,

where γE(i) = γS and E(i) ⊂ E(i+1) for all i ∈ N. This yields

d
(
E(i+1) \ E(i)

)
> 0 (5.6)

for all i ∈ N by Remark 4.47.(2) and Proposition 4.50. Moreover, Lemma 4.29 implies

µE(i) ≥ γE(i) − γS = 0

for all i ∈ N, and hence E(i) ⊂ S.
Therefore, we obtain with Equation (5.6), Lemma 4.49 and Remark 4.47.(2) for any

i ∈ N
d
(
S \ E(i)

)
< d

(
S \ E(i)

)
− d

(
E(i+1) \ E(i)

)
= d

(
S \ E(i+1)

)
∈ N. (5.7)

Then by induction there is a j ∈ N such that

d
(
S \ E(j)

)
< 0,

contradicting Equation (5.7). Thus, there is a canonical ideal K of S with conductor
γK = γS .
Set β = α− γS . Then β +K is by Remark 5.11 a canonical ideal of S with conductor

γβ+K = β + γK = α+ γS − γS = α.

The following result was stated by Barucci, D’Anna, and Fröberg in for the normalized
canonical semigroup ideal (see [10, Proposition 2.15]).

Proposition 5.13 (See [25], Proposition 5.2.5). Let S be a good semigroup, and let
S =

∏
m∈M Sm be the decomposition of S into local good semigroups (see Theorem 4.9).

Then a good semigroup ideal K ∈ GS is a canonical ideal of S if and only if Km is a
canonical ideal of Sm for every m ∈M .
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5.2. Duality on Good Semigroups

Proof. First note that Km ∈ GSm for any m ∈ M by Theorem 4.9. Suppose that K is a
canonical ideal of S. Let m ∈ M , and assume that Km is not a canonical ideal of Sm.
Then there is an Em ∈ GSm with γEm = γKm and Km ( Em. Now Lemmas 4.11.(4) and
4.28 yield

E = Em ×
∏

n∈M\{m}
Kn ∈ GS

with γE = γK and K ( E, contradicting E being a canonical ideal.
Suppose now that Kn is a canonical ideal of Sm for all m ∈M . Let E ∈ GS with γE = γK

and E ⊂ K. Then for every m ∈M Theorem 4.9 and Lemma 4.28 yield Em ∈ GSm with
γEm = γKm and Km ⊂ Em. Since Km is a canonical ideal of Sm, this implies Km = Em
for every m ∈M , and hence E = K. Thus, K is a canonical ideal of S.

Our aim in this section is to establish the following result on canonical semigroup ideals
in analogy with the properties of canonical ideals of admissible rings (see Theorems C.20,
C.21, and C.22).

Theorem 5.14 (See [25], Theorem 5.2.6). Any good semigroup S has a canonical ideal.
Moreover, for any K ∈ GS the following are equivalent:

(a) K is a canonical ideal of S.

(b) There is an α ∈ DS such that α+K = K0
S.

(c) For all E ∈ GS we have K − (K − E) = E.

If K is a canonical ideal of S, then the following hold:

(1) S ⊂ K ⊂ S if and only if K = K0
S.

(2) If E ∈ GS, then K − E ∈ GS.

(3) K −K = S.

(4) If S′ is a good semigroup with S ⊂ S′ ⊂ S, then K ′ = K − S′ is a canonical ideal of
S′.

Proof. For the existence of a canonical ideal see Proposition 5.19.

(a) =⇒ (b) See Proposition 5.19.

(b) =⇒ (c) See Corollary 5.28.

(c) =⇒ (a) See Proposition 5.24.

(1) See Corollary 5.20.

(2) See Corollary 5.21.

(3) See Corollary 5.29.
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(4) See Corollary 5.23.

In particular, the equivalent statements of Theorem 5.14 show that for a good semigroup
S the normalized canonical ideal K0

S is a canonical ideal of S in the sense of Definition 5.10,
and hence a good semigroup ideal of S. This was stated in [10, Proposition 2.14].
Remark 5.15 (See [25], Remark 5.2.7). As the example given in Figure 5.2 shows, the
assumption E ∈ GS in Theorem 5.14.(c) and (2) is necessary.
The rest of this section is concerned with the proof of Theorem 5.14. To keep the

notations shorter, we will write τ for τS and γ for γS if S is a good semigroup.
First we deal with the statement of Theorem 5.14.(2) in the case K = K0

S . For this we
collect some properties of K0

S .

Lemma 5.16 (See [25], Lemma 5.2.8). Let S be a good semigroup. Then the semigroup
ideal K0

S of S (see Lemma 5.9.(1)) has the following properties:

(1) If E is a semigroup ideal of S, then

K0
S − E =

{
α ∈ DS

∣∣∣ ∆E (τ − α) = ∅
}
.

(2) ∆K0
S (τ) = ∅.

(3) If S is local (see Definition 4.5.(3)) and |I| ≥ 2, then

τ +
⋃
J⊂I

|J |≤|I|−2

∑
j∈J

Nej ⊂ K0
S .

(4) If S is local and |I| ≥ 3, then

τ +
⋃
i∈I

Nei ⊂ K0
S .

Proof. (1) See [8, Computation 3.3].

(2) Let α ∈ ∆K0
S (τ). Then there is i ∈ I such that

αi = τi,

αj > τj for all j ∈ I \ {j}.

This implies

τi − αi = 0,
τj − αj < 0 for all j ∈ I \ {j},

and hence
0 ∈ ∆i (τ − α) .

Since also 0 ∈ S, this yields ∆S (τ − α) 6= ∅. Therefore, α 6∈ K0
S by Definition 5.8.
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S K0
S

E K0
S − E

K0
S − (K0

S − E)

Figure 5.2.: A good semigroup S and semigroup ideal E of S satisfying property (E1) but not (E2),
where K0

S − E 6∈ GS and E ( K0
S −

(
K0

S − E
)
.
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(3) Let S be a local good semigroup, and let

α ∈
⋃
J⊂I

|J |≤|I|−2

τ +
∑
j∈J

Nej .

This means there is J ⊂ I with |J | ≤ |I| − 2, and for all j ∈ J there are nj ∈ N such
that

α = τ +
∑
j∈J

njej .

This implies
τ − α = −

∑
j∈J

njej ≤ 0.

Now assume there is
β ∈ ∆S (τ − α) 6= ∅,

i.e. there is i ∈ I such that

βi = τi − αi,
βj > τj − αj for all j ∈ I \ {i}.

In particular, βi ≤ 0. Thus, β ∈ S implies βi = 0 as µs = 0. Then β = 0 since S is
local, and hence αi = τi.
However, since |I| ≥ 2 and |J | ≤ |I| − 2, there is k ∈ I \ {i} such that

βk > τk − αk = 0,

and hence
0 6∈ ∆S (τ − α) .

This yields
∆ (τ − α) = ∅,

and thus α ∈ K0
S by Definition 5.8.

(4) Let S be local, and let
α ∈ τ +

⋃
i∈I

Nei.

Then there is i ∈ I and n ∈ N such that α = τ + nei. This implies

τ − α = −nei.

Therefore,

∆S
i (τ − α) = ∆S

i (−nei) = {β ∈ DS | βi = −n and βj > 0 for all j ∈ I \ {i}} = ∅

since µS = 0, and
∆S
j (τ − α) = ∆S

j (−nei) = ∅
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for all j ∈ I \ {i} since S is local, and hence 0 is the only element of S with a zero
component but

0 6∈ ∆S
j (−nei) = {β ∈ DS | βj = 0, βi > −n and βk > 0 for all k ∈ I \ {i, j}} .

Hence, α ∈ K0
S by Definition 5.8.

The proof of Theorem 5.14.(2) is obtained by the following Proposition. In particular, it
shows that K0

S is a good semigroup ideal of S. D’Anna established a weaker statement,
where (E2) is replaced by a certain property (E3) (see [8, Theorem 3.6]). This property (E3)
follows from (E2) (see [8, Proposition 2.3]).

Proposition 5.17 (See [25], Proposition 5.2.9). Let S be a good semigroup. Then K0
S−E ∈

GS for any E ∈ GS. In particular, K0
S ∈ GS.

Proof. The idea of the following proof is illustrated in Figure 5.3.
Let E ∈ GS , and suppose that K0

S − E 6∈ GS . Since K0
S − E is a semigroup ideal of S

satisfying property (E1) by Lemmas 4.18 and 5.9.(1), it then has to violate property (E2).
This means that there are α, β ∈ K0

S − E with

∅ 6= J = {j ∈ I | αj 6= βj} ⊂ I

such that
ζ(0) = inf {α, β} ∈ K0

S − E,

and there is an l0 ∈ I \ J such that

ζ 6∈ K0
S − E

for any ζ ∈ DS with

ζl0 > ζ
(0)
l0
,

ζi ≥ ζ(0)
i for all i ∈ I,

ζj ≥ ζ(0)
j for all j ∈ J.

In particular, any choice of a sequence (lr)r∈N in I \ J yields a sequence
(
ζ(r)

)
r∈N

in DS

with

ζ(0) ∈ K0
S − E, (5.8)

ζ(r) = ζ(r−1) + elr−1 6∈ K0
S − E. (5.9)

By Lemma 5.16.(1) this means that

∆E
(
τ − ζ(0)

)
= ∅, (5.10)

and that for any r ≥ 1 there is an i ∈ I such that

∆E
i

(
τ − ζ(r)

)
6= ∅. (5.11)
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We construct a sequence as above by induction on r with the additional property that
for r ≥ 1 we have

∆E
j

(
τ − ζ(r)

)
= ∅ (5.12)

for all j ∈ J , where in each step we pick an lr ∈ I \ J and a

δ(r) ∈ ∆E
lr

(
τ − ζ(r)

)
. (5.13)

Assume we have a sequence (lt)t=1,...,r−1 in I \ J satisfying Equations (5.8), (5.9), (5.10),
(5.11), (5.12), and (5.13), and suppose there is a j ∈ J such that

∆E
j

(
τ − ζ(r)

)
6= ∅.

In particular, we then have j 6= lr−1. By Equation (5.11), and since ζ(r) = ζ(r−1) + elr−1

(see Equation (5.9)), this implies that there is a

δ ∈ ∆E
j

(
τ − ζ(r)

)
(5.14)

= ∆E
j

(
τ − ζ(r−1)

)
∪∆E

{j,lr−1}

(
τ − ζ(r−1)

)
(5.15)

= ∆E
{j,lr−1}

(
τ − ζ(r−1)

)
, (5.16)

where the union in Equation (5.15) is disjoint, and the equality in Equation (5.16) follows
from the induction hypothesis ∆E

j

(
τ − ζ(r−1)

)
= ∅ for all j ∈ J (see Equation (5.12)). We

deduce contradictions with different arguments for r = 1 and r ≥ 2, respectively.
First consider the case r = 1. As j ∈ J , we may assume that

βj > αj = ζ
(0)
j , (5.17)

and we have
βl0 = ζ

(0)
l0

(5.18)

by the choice of l0 ∈ I \ J . Since β ∈ K0
S − E and δ ∈ E, we get

δ + β ∈ K0
S . (5.19)

Then Equations (5.14), (5.15), and (5.16) yield

δ + ζ(0) ∈ ∆{j,l0} (τ) ,

and this implies with Equations (5.17), (5.18), and (5.19)

δ + β ∈ ∆K0
S

l0
(τ) ,

contradicting Lemma 5.16.(2).
Assume now that r ≥ 2. By Equations (5.13) and (5.16), and since j 6= lr−1, we obtain

δlr−1 = τlr−1 − ζ
(r−1)
lr−1

= δ
(r−1)
lr−1
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and
δj = τj − ζ(r−1)

j < δj(r − 1).

Since E ∈ GS , property (E2) applied to δ(r−1), δ(r) ∈ E yields an ε ∈ E with

εlr−1 > δ
(r−1)
lr−1

= δlr−1 ,

εi ≥ min
{
δ

(r−1)
i , δi

}
for all i ∈ I,

εk = min
{
δ

(r−1)
k , δk

}
for all k ∈ I with δ(r−1)

k 6= δk.

In particular, we have
εj = δj = τj − ζ(r−1)

j .

Then Equation (5.16) yields
ε ∈ ∆j

(
τ − ζ(r−1)

)
,

contradicting the induction hypothesis (see Equation (5.12)).
Now pick

r >
∑
k∈I\J

∣∣∣τk − ζ(1)
k − (µE)k

∣∣∣ .
Then Equation (5.13) yields

δ
(r)
lr

= τlr − ζ
(r)
lr

< (µE)lr .

Since δ(r) ∈ E by Equation (5.11), this contradicts the minimality of µE in E. Thus, it
follows that K0

S − E ∈ GS .
In particular, since K0

S is a semigroup ideal of S by Lemma 5.9.(1), 0 ∈ S, and S ∈ GS
by Remark 4.6.(3), this yields

K0
S = K0

S − S ∈ GS .

We can now relate our definition of canonical semigroup ideals (see Definition 5.10) to
D’Anna’s definition of normalized canonical semigroup ideals (see Definition 5.8).

Lemma 5.18 (See [25], Proposition 5.2.10). Let S be a good semigroup. Then E ⊂ K0
S

for any E ∈ GS with γE = γ.

Proof. Let E ∈ GS with conductor γE = γ, and assume there is a β ∈ E \ K0
S . Then

Definition 5.8 implies that there is a δ ∈ ∆S (τ − β). Hence, β + δ ∈ ∆E (E). However,
this contradicts Lemma 4.34, and therefore E ⊂ K0

S .

Proposition 5.19 (See Theorem 5.14.(a) =⇒ (b) and [25], Proposition 5.2.10). Let S be
a good semigroup, and let K ∈ GS. Then K is a canonical ideal of S if and only if there
is an α ∈ DS such that K = α + K0

S. In particular, for any δ ∈ DS, there is a unique
canonical ideal K of S with γK = δ.
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kr

lr−1

∆ lr−
1
(τ −

ζ
(r) )

∆kr
(τ −

ζ
(r−

1) )

∆ {kr
,lr−

1}
(τ −

ζ
(r−

1) )

∆ lr−
1
(τ −

ζ
(r−

1) )

δ(r−1)δ(r)

ε

τ − ζ(r)

τ − ζ(r−1)

Figure 5.3.: Induction step in the proof of Proposition 5.17 in case I \ J = {lr−1}.
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Proof. Using Remark 5.11, it suffices to show that K0
S is the unique canonical ideal of S

with conductor γK0
S

= γ (see Lemma 5.9.(3)). For any E ∈ GS with γE = γ, Lemma 5.18
yields E ⊂ K0

S . Since K0
S ∈ GS by Proposition 5.17, this implies that K0

S is a canonical
ideal of S.
If K ∈ GS is a canonical ideal of S with γK = γ, then Lemma 5.18 yields K ⊂ K0

S ,
and hence K = K0

S by Definition 5.10. Thus, K0
S is the unique canonical ideal of S with

conductor γK0
S

= γ.

As a consequence we deduce the combinatorial counterpart of Lemma 5.7 on good
semigroups.

Corollary 5.20 (See Theorem 5.14.(1)). Let S be a good semigroup. If K is a canonical
ideal of S with S ⊂ K ⊂ S, then K = K0

S.

Proof. By Proposition 5.19 there is an α ∈ DS such that K = α+K0
S . Then Lemma 5.9.(2)

yields µK = α+ µK0
S

= α. Since S ⊂ K ⊂ S, we have

0 = µS ≥ µK + α ≥ µS = 0.

Thus, K = K0
S .

The relation of Proposition 5.19 between general canonical ideals of S and the normalized
canonical ideal of S allows for deducing the statements of Theorem 5.14 from results on
K0
S .

Corollary 5.21 (See Theorem 5.14.(2)). Let S be a good semigroup, and let K be a
canonical ideal of S. Then K − E ∈ GS for all E ∈ GS.

Proof. By Proposition 5.19 there is an α ∈ DS such that K = α+K0
S . Then

K − E =
(
α+K0

S

)
− E = α+

(
K0
S − E

)
by Remark 4.21.(2). Since K0

S − E ∈ GS by Proposition 5.17, Remark 4.21.(1) yields
K − E ∈ GS .

Corollary 5.22. Let S be a good semigroup, and let K be a canonical ideal of S. Then
E ⊂ K for all E ∈ GS with γE = γK .

Proof. This follows from Remark 4.21.(1), Lemma 5.18 and Proposition 5.19.

Corollary 5.23 (See Theorem 5.14.(4) and [25], Corollary 5.2.11). Let S and S′ be good
semigroups such that S ⊂ S′ ⊂ S. If K is a canonical ideal of S, then K ′ = K − S′ is a
canonical ideal of S′.
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5. Duality and Gorenstein Property

Proof. By Remark 4.6.(3) we have S′ ∈ GS , and Proposition 5.19 implies K = α+K0
S for

some α ∈ DS . Then Lemma 5.16.(1) and Remark 4.21.(2) yield

K ′ =
(
α+K0

S

)
− S′

= α+
(
K0
S − S′

)
= α+

{
β ∈ DS

∣∣∣ ∆S′ (τ − β) = ∅
}

= α+ τ − τS′ +
{
δ ∈ DS

∣∣∣ ∆S′ (τS′ − δ) = ∅
}

= α+ τ − τS′ +K0
S′ .

Thus, K ′ is a canonical ideal of S′ by Proposition 5.19.

In the following two Propositions 5.24 and 5.26 we establish an equivalent definition of
canonical semigroup ideals (see Theorem 5.14.(c)) which corresponds to the definition of
canonical fractional ideals (see Definition 5.1).

Proposition 5.24 (See Theorem 5.14.(c) =⇒ (a) and [25], Proposition 5.2.13). Let S be
a good semigroup. If K ∈ GS with K − (K − E) = E for all E ∈ GS, then K is a canonical
ideal of S.

Proof. Assume that K is not a canonical ideal of S. Then there is an E ∈ GS with γE = γK
and K ( E (see Definition 5.10). Then Lemma 4.40.(2) yields the contradiction

E ( K − (K − E) = E.

Hence, K is a canonical ideal of S.

Lemma 5.25 (See [25], Lemma 5.2.14). Let S be a good semigroup, let E be a semigroup
ideal of S, and let α ∈ K0

S −
(
K0
S − E

)
. If ζ ∈ DS satisfies ∆E (τ − ζ) = ∅, then

∆S (τ − ζ − α) = ∅.

Equivalently, if β ∈ DS satisfies ∆S (τ − β) 6= ∅, then

∆E (τ − β + α) 6= ∅.

Proof. Using Lemma 5.16.(1) we have

K0
S −

(
K0
S − E

)
=
{
α ∈ DS

∣∣∣ α+
(
K0
S − E

)
⊂ K0

S

}
=
{
α ∈ DS

∣∣∣ α+
{
ζ ∈ DS

∣∣∣ ∆E (τ − ζ) = ∅
}
⊂ K0

S

}
=
{
α ∈ DS

∣∣∣ ∆S (τ − ζ − α) = ∅ for all ζ ∈ DS with ∆E (τ − ζ) = ∅
}
.

Thus, if ζ ∈ DS satisfies ∆E (τ − ζ) = ∅, then

∆S (τ − ζ − α) = ∅
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5.2. Duality on Good Semigroups

for all α ∈ K0
S −

(
K0
S − E

)
. By setting ζ = β − α for α ∈ K0

S −
(
K0
S − E

)
, we obtain

equivalently
∆E (τ − β + α) 6= ∅

if β ∈ DS satisfies ∆S (τ − β) 6= ∅.

Proposition 5.26 (See [25], Proposition 5.2.15). Let S be a good semigroup. Then

K0
S −

(
K0
S − E

)
= E

for any E ∈ GS. In particular, K0
S −K0

S = S.

Proof. Note that the inclusion E ⊂ K0
S −

(
K0
S − E

)
holds trivially by Lemma 4.40.(1). So

assume that
E ( K0

S −
(
K0
S − E

)
.

By Lemmas 4.18 and 5.9.(1), K0
S −

(
K0
S − E

)
is a semigroup ideal of S satisfying prop-

erty (E1), and hence it also satisfies property (E0) by Remark 4.6.(1). Thus, there is
an

α ∈
(
K0
S −

(
K0
S − E

))
\ E

which is minimal with respect to the partial order on DS .
Since E satisfies property (E1), and since α 6∈ E, there is a k ∈ I such that no ε ∈ E

satisfies

εk = αk, (5.20)
εi ≥ αi for all i ∈ I \ {k}. (5.21)

We set β = γ − ek, i.e.

βk = τk, (5.22)
βi = γi for all i ∈ I \ {k}. (5.23)

Then 0 ∈ ∆S
k (τ − β) 6= ∅, and Lemma 5.25 yields a

ζ ∈ ∆E (τ − β + α) 6= ∅.

This means there is a j ∈ I such that ζ ∈ E with

ζj = τj − βj + αj ,

ζi > τi − βi + αi for all i ∈ I \ {j}.

Now j = k contradicts the choice of k as then, using Equations (5.22) and (5.23),

ζk = αk,

ζi ≥ αi for all i ∈ I \ {k},
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5. Duality and Gorenstein Property

see Equations (5.20) and (5.21) with ε = ζ. Thus, we have j 6= k and

ζj = αj − 1, (5.24)
ζk > αk, (5.25)
ζi ≥ αi for all i ∈ I \ {j, k}. (5.26)

Since ζ ∈ E ⊂ K0
S −

(
K0
S − E

)
by Lemma 4.40.(1), α ∈ K0

S −
(
K0
S − E

)
by assumption,

and since K0
S −

(
K0
S − E

)
satisfies property (E1) by Lemmas 4.18 and 5.9.(1), we obtain,

using Equations (5.24), (5.25), and (5.26),

α > α− ej = inf {α, ζ} ∈ K0
S −

(
K0
S − E

)
.

Now set α′ = inf {α, ζ}, and assume that α′ ∈ E. Then applying property (E2) to α′
and ζ in E yields an ε ∈ E with

εj > α′ = ζ = α− 1,
εk = min

{
α′k, ζk

}
= αk,

εi ≥ min
{
α′i, ζi

}
= αi for all i ∈ I \ {j, k}.

However, this is a contradiction to the choice of k, see Equations (5.20) and (5.21). Thus,

α > α′ ∈
(
K0
S −

(
K0
S − E

))
\ E,

contradicting the minimality of α. Therefore, we obtain

K0
S −

(
K0
S − E

)
= E.

Then setting E = S the particular claim follows from Remark 4.21.(3) and (4) and
Lemma 5.9.(1).

Remark 5.27. In case |I| = 1, there is an easier proof of Proposition 5.26: Let α ∈(
K0
S −

(
K0
S − E

))
\ E, and set β = τ . Since

∆S (τ − β) = ∆ (0) ∩ S = {0} ∩ S = {0} 6= ∅,

Lemma 5.25 yields

∅ 6= ∆E (τ − β + α) = ∆ (α) ∩ E = {α} ∩ E,

and hence α ∈ E. Thus, E = K0
S −

(
K0
S − E

)
.

Corollary 5.28 (See Theorem 5.14.(b) =⇒ (c)). Let α ∈ DS, and let K = α+K0
S ∈ GS

(see Remark 4.21.(1) and Proposition 5.17). Then

K − (K − E) = E

for any E ∈ GS.
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Proof. By Remark 4.21.(2) and Proposition 5.26 we have

K − (K − E) =
(
α+K0

S

)
−
((
α+K0

S

)
− E

)
= α− α+

(
K0
S −

(
K0
S − E

))
= E.

Corollary 5.29 (See Theorem 5.14.(3)). Let S be a good semigroup, and let K be a
canonical ideal of S. Then K −K = S.

Proof. By Proposition 5.19 there is α ∈ DS such that K = α + K0
S . Since S ∈ GS by

Definition 4.5, Remark 4.21.(4) and Corollary 5.28 yield

K −K = K − (K − S) = S.

5.3. Relation of Dualities

In this section we relate the duality on good semigroup ideals (see Section 5.2) to the
Cohen–Macaulay duality on fractional ideals (see Section 5.1). D’Anna characterized
normalized canonical ideals of a local admissible ring in the following way.

Theorem 5.30. Let R be a local admissible ring. Then a regular fractional ideal K of R
is canonical if and only if ΓK = K0

ΓR (see Definition 5.8).

Proof. See [8, Theorem 4.1].

Note that K0
ΓR is a canonical semigroup ideal of ΓR by Theorem 5.14. We extend

Theorem 5.30 to admissible rings dropping the normalization of canonical ideals.

Theorem 5.31 (See [25], Theorem 5.3.2). Let R be an admissible ring. Then K ∈ RR is
a canonical ideal of R if and only if ΓK is a canonical ideal of ΓR (see Definition 5.10).

Proof. First suppose that R is local. By Proposition 5.4 and Corollary 5.6 K is a canonical
ideal of R if and only if there is an x ∈ Qreg

R such that xK is a canonical ideal of R with
R ⊂ xK ⊂ R. By Theorem 5.30 this is equivalent to

K0
ΓR = ΓxK = ν(x) + ΓK.

By Theorem 5.14.(a)⇐⇒ (b) this is the case if and only if ΓK is a canonical ideal of ΓR.
Let now R be semilocal. By Lemma 5.2 K is a canonical ideal of R if and only if Km is a

canonical ideal of Rm for every m ∈ Max (R). By Lemma 3.33 and the local case this is
equivalent to (ΓK)m = ΓKm being a canonical ideal of (ΓR)m = ΓRm (see Theorem 4.9 and
Remark 4.10). By Remark 4.10 and Proposition 5.13 this is the case if and only if ΓK is a
canonical ideal of ΓR.
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5. Duality and Gorenstein Property

Example 5.32. Barucci, D’Anna, and Fröberg gave in [10, Example 2.16] the following
example of a good semigroup which is not the value semigroup of an admissible ring:
Consider the good semigroup S depicted in Figure 5.4, and suppose that there is an
admissible ring R with ΓR = S. Then R is local by Proposition 3.17. Thus, there is by
Corollary 5.6 a canonical ideal K of R with R ⊂ K ⊂ R. Theorem 5.30 yields ΓK = K0

S .
Consider the maximal chains

{µS = (0, 0), (6, 7), (9, 7), (12, 7),
(12, 14), (15, 14), (16, 14), (18, 14), (19, 14), (20, 14),

(21, 14), (22, 14), (23, 14), (24, 14), (25, 14), (26, 14), (27, 14),
(27, 15), (27, 18), (27, 19), (27, 21), (27, 22), (27, 23), (27, 25) = γS}

in S and{
µK0

S
= (0, 0), (6, 7), (9, 7), (12, 7), (12, 11),

(12, 14), (13, 14), (15, 14), (16, 14), (18, 14), (19, 14), (20, 14),
(21, 14), (22, 14), (23, 14), (24, 14), (25, 14), (26, 14), (27, 14),

(27, 15), (27, 18), (27, 19), (27, 21), (27, 22), (27, 23), (27, 25) = γK0
S

}
in K0

S . Then Proposition 4.51 yields

`R(K/R) = d
(
K0
S \ S

)
= 2.

Thus, there is an I ∈ RR with R ( I ( K. Remark 3.15 and Corollary 4.52 imply

S = ΓR ( ΓI ( ΓK = K0
S . (5.27)

However, it is easy to see that for any E ∈ GS with S ⊂ E which contains a point of
K0
S \ S we have K0

S ⊂ E. This is a contradiction to Equation (5.27) since ΓI ∈ GS by
Proposition 3.22.(4).

Let R be a local plane algebroid curve, and let I ∈ RR. Pol gave an explicit formula for
the value semigroup ideal ΓR:I of the dual R : I of I.

Theorem 5.33. Let R be a local plane algebroid curve. Then

ΓR:I =
{
α ∈ DΓR

∣∣∣ ∆ΓI(τΓR − α) = ∅
}
. (5.28)

Proof. See [33, Theorem 2.4].

Replacing I by R in Equation (5.28), Theorem 5.33 implies that for a local plane
algebroid curve R we have

ΓR =
{
α ∈ DΓR

∣∣∣ ∆ΓR(τΓR − α) = ∅
}

= K0
ΓR (5.29)
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S

K0
S

Figure 5.4.: A good semigroup S which is not the semigroup of values of an admissible ring (see
Example 5.32). The canonical ideal K0

S of S consists of S together with the red points.
The distance d

(
K0

S \ S
)

= 2 can be computed along the blue path. Moreover, using
properties (E1) and (E2) we see that any good semigroup ideal E of S which contains
a point of K0

S \ S has to contain K0
S . See [10, Example 2.16].
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5. Duality and Gorenstein Property

(see Definition 5.8) for the second equality). In fact, due to Delgado Equation (5.29) charac-
terizes Gorensteinness of local algebroid curves (see [7, Theorem 2.8]). Then Lemma 5.16.(1),
Theorem 5.33, and Equation (5.29) imply

ΓR:I = K0
ΓR − ΓI = ΓR − ΓI. (5.30)

Note that R is a canonical ideal by Theorem 5.31. We extend Equation (5.30) to admissible
rings replacing R by a canonical ideal K of R.

Theorem 5.34. Let R be an admissible ring with canonical ideal K. Then

ΓK:I = ΓK − ΓI

for any I ∈ RR, and
d(ΓK − ΓI \ ΓK − ΓJ) = d(ΓJ \ ΓI)

for any I, J ∈ RR with I ⊂ J.

Proof. See [25, Theorem 5.3.5].

5.4. Gorenstein Property and Symmetry of Good Semigroups
In this Section we give a characterization of Gorenstein (see Definition C.24) admissible
rings in terms of their semigroup of values. A Cohen–Macaulay is by Theorem C.26
Gorenstein if and only if it is a canonical module of itself.
Let R be a one-dimensional Cohen–Macaulay ring. If R is a canonical module of R,

then it is a canonical ideal of R. Since, moreover, any canonical ideal of R is a canonical
module of R by Remark 5.3, this yields the following characterization of one-dimensional
Gorenstein rings in terms of canonical ideals.

Theorem 5.35. A one-dimensional Cohen–Macaulay ring R is Gorenstein if and only if
R is a canonical ideal.

Proof. See [24, Korollar 3.4].

Theorem 5.31 leads to the following definition for good semigroups.

Definition 5.36. A good semigroup S is called symmetric if S is a canonical ideal of itself,
i.e. if

S = K0
S =

{
α ∈ DS | ∆S(τS − α) = ∅

}
(see Theorem 5.14.(1)).

This symmetry condition was introduced by Kunz in the irreducible case (see [6]), and
by Delgado for algebroid curves with arbitrarily many branches (see [7, Theorem 2.8]), to
characterize Gorenstein curves. Here we extend this result to admissible rings.

Corollary 5.37 (See [25], Proposition 5.3.6). Let R be an admissible ring. Then R is
Gorenstein if and only if ΓR is symmetric.
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-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
τS γS

0 4 7 8 11 12 14 15 16 18 19 20 21

Figure 5.5.: The symmetric semigroup S = 〈4, 7〉.

Proof. Gorensteinness of R is by Theorem 5.35 equivalent to R being a canonical ideal of
R, and hence to ΓR being a canonical semigroup ideal of ΓR by Theorem 5.31.

Remark 5.38. Let S be a good semigroup. If |I| = 1, then

S =
{
α ∈ DS

∣∣∣ τS − α 6∈ S}.
So the symmetry condition above indeed means a symmetry of gaps and non-gaps in the
semigroup, see Example 5.39 below.

Example 5.39. Let S = 〈4, 7〉. Then for any α ∈ DS we have α ∈ S if and only if
τS − α 6∈ S. So S is symmetric according to Definition 5.36, and there is a symmetry of
gaps and non-gaps of S, see Figure 5.5.

Example 5.40. Consider the admissible ring R = C[[x, y]]/〈x5y−y3〉 ∼= C[[(t21, t2), (t51, 0)]].
Then ΓR is symmetric (see Figure 5.6), and hence R is Gorenstein by Corollary 5.37. This
follows also from R being a plane algebroid curve (see [1, Corollary 5.2.9]).

Pol generalized Theorem 5.33 showing that local Gorenstein algebroid curves are
characterized by satisfying Equation (5.28) for every regular fractional ideal (see [14,
Théorème 5.2.1]). We extend Pol’s result to admissible rings.

Corollary 5.41 (See [25], Proposition 5.3.7). Let R be an admissible ring. Then R is
Gorenstein if and only if

ΓR:I = ΓR − ΓI =
{
α ∈ DΓR

∣∣∣ ∆ΓR(τΓR − α) = ∅
}

(5.31)

for any I ∈ RR.

Proof. Suppose that R is Gorenstein. Then ΓR is a canonical ideal by Corollary 5.37.
Thus, Lemma 5.16.(1) and Theorems 5.14.(1) and 5.34 yield

ΓR:I = ΓR − ΓI = K0
ΓR − ΓI =

{
α ∈ DΓR

∣∣∣ ∆ΓR(τΓR − α) = ∅
}

for every I ∈ RI.
Conversely, suppose that Equation (5.31) is satisfied for every I ∈ RR. Since R ∈ RR

with R : R = R (see Section 2.1), this implies

ΓR =
{
α ∈ DΓR

∣∣∣ ∆ΓR(τΓR − α) = ∅
}

= K0
ΓR .

Thus, R is Gorenstein by Corollary 5.37.
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∆(τΓR
− α)

α

τΓR
− α

∆(τΓR
− β)

βτΓR
− β

∆(τΓR
− δ)

δ

τΓR
− δ

∆(τΓR
− ε)

ε

τΓR
− ε

Figure 5.6.: The admissible ring C[[x, y]]/〈x5y − y3〉 ∼= C[[(t21, t2), (t51, 0)]] of Example 5.40 is Goren-
stein with symmetric semigroup of values ΓR (see Corollary 5.37). For instance, we
have α ∈ ΓR and ∆ΓR(τΓR

− α) = ∅, β 6∈ ΓR and ∆ΓR(τΓR
− β) 6= ∅, δ ∈ ΓR and

∆ΓR(τΓR
− δ) = ∅, and ε 6∈ ΓR and ∆ΓR(τΓR

− ε) 6= ∅.

128



5.5. Symmetric Semigroups

5.5. Symmetric Semigroups
In this section we study local symmetric semigroups. A local semigroup S has by Lemma 4.7
a maximal ideal MS ∈ GS (see Definition 4.5.(3)). We show that for a local symmetric
semigroup S the semigroup ideal MS −MS is a good semigroup with S ⊂ MS −MS ⊂
MS −MS = S (see Proposition 5.43).

As the main result of this section we give a characterization of the case when MS −MS

is also a symmetric semigroup.

Theorem 5.42. Let S be a local good semigroup. Then the following are equivalent:

(a) S and MS −MS are symmetric semigroups.

(b) We have |I| ≤ 2. If |I| = 1, then there is an n ∈ 2N such that

S = 〈2, n+ 1〉,

and if |I| = 2, then there is an n ∈ 1 + 2N such that

S =
〈
(1)i∈I

〉
∪
((

n+ 1
2

)
i∈I

+ NI
)

∼= 〈(1, 1)〉 ∪
((

n+ 1
2 ,

n+ 1
2

)
+ N2

)
.

Proposition 5.43. Let S be a local symmetric semigroup. Then MS −MS ∈ GS, and
MS −MS is a good semigroup with DMS−MS

= DS and S ⊂MS −MS ⊂MS −MS = S.

Proof. Since S is a local symmetric semigroup, Proposition 4.38 and Theorem 5.14.(2)
yield

MS −MS = S −MS ∈ GS .

Then MS −MS satisfies property (E0) by Remark 4.6.(1) and properties (E1) and (E2) by
definition. Moreover, MS −MS is by Lemma 4.7 and Proposition 4.25 a partially ordered
cancellative commutative monoid with DMS−MS

= DS and S ⊂MS −MS ⊂MS −MS =
S.

In the remainder of the section we prove Theorem 5.42. First we show the implication
(b) =⇒ (a) in Proposition 5.45, then we show the implication (a) =⇒ (b) for the case
|I| = 1 in Proposition 5.47 and for the case |I| = 2 in Proposition 5.52.

Lemma 5.44. Let S be a local symmetric semigroup. Then

MS −MS = S ∪∆ (τS) .

Proof. By Proposition 4.25 we have S ⊂MS −MS . Since S is local, we have µMS
≥ 1 (see

Lemma 4.7 and Definition 4.13). Then Lemma 4.35 yields

γMS−MS
= γMS

− µMS
≤ γS − 1 = τS ,
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5. Duality and Gorenstein Property

and hence ∆(τS) ⊂MS −MS .
Assume now that there is an

α ∈ (MS −MS) \ (S ∪∆(τS)).

Since S is symmetric, this implies that there is a

β ∈ ∆S(τS − α).

Therefore, we have α+ β ∈ ∆(τS).
As S∪∆(τS) = S∪

(
τS + S

)
by Lemma 5.16.(3) and (4), we have α ≤ τS−1. Therefore,

β ∈MS . This yields the contradiction

α+ β ∈ ∆(τS) ∩MS ⊂ ∆S(τS) = ∅,

where the last equality follows from Lemma 5.16.(2) since S is symmetric. Also see [8,
Lemma 3.5].

Next we show the implication (b) =⇒ (a) of Theorem 5.42.

Proposition 5.45. Let S be a good semigroup.

(1) If
S = 〈2, n+ 1〉

for some n ∈ 2N, then
MS −MS = 〈2, n− 1〉.

In particular, S and MS −MS are symmetric semigroups.

(2) If

S = 〈(1, 1)〉 ∪
((

n+ 1
2 ,

n+ 1
2

)
+ N2

)
for some n ∈ 1 + 2N, then

MS −MS = 〈(1, 1)〉 ∪
((

n− 1
2 ,

n− 1
2

)
+ N2

)
.

In particular, S and MS −MS are symmetric semigroups.

Proof. (1) Obviously, γS = n, and hence τS = n− 1. Then Lemma 5.44 yields

MS −MS = S ∪ {τS} =
{
〈2, n− 1〉 if n > 0
S = N if n = 0.

Clearly, S and MS −MS are symmetric.
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5.5. Symmetric Semigroups

(2) Obviously,
γS =

(
n+ 1

2 ,
n+ 1

2

)
,

and hence

τS = γS − 1 =
(
n+ 1

2 ,
n+ 1

2

)
− (1, 1) =

(
n− 1

2 ,
n− 1

2

)
.

Then Lemma 5.44 yields

MS −MS = S ∪∆ (τS) = 〈(1, 1)〉 ∪
((

n− 1
2 ,

n− 1
2

)
+ N2

)
.

Clearly, S and MS −MS are symmetric semigroups.

The following statement is well-known, see for example [6] or [1, Theorem 5.2.4].

Lemma 5.46. Let S be a local symmetric semigroup with |I| = 1. Then

γS = 2d
(
S \ S

)
.

Proof. First note that |I| = 1 implies

d
(
S \ S

)
=
∣∣∣S \ S∣∣∣ .

Now for any α ∈ DS we have by Remark 5.38 and Definitions 4.31 and 5.8 α ∈ S if and
only if τS − α 6∈ S since S is symmetric. As CS = γS + S ⊂ S and γ = τ + 1, this yields∣∣∣S \ S∣∣∣ = |S \ CS | .

Therefore, γS = 2d
(
S \ S

)
.

We can already prove the converse of Proposition 5.45.(1).

Proposition 5.47. Let S be a local symmetric semigroup with |I| = 1. If MS −MS is a
symmetric semigroup, then there is an n ∈ 2N such that

S = 〈2, n+ 1〉.

Proof. By Lemma 5.44 we have MS −MS = S ∪ {τS}. This implies

d
(
S \ (MS −MS)

)
= d

(
S \ S

)
− 1.

So if MS −MS is a symmetric semigroup, Lemma 5.46 yields

γMS−MS
= 2d

(
S \ (MS −MS)

)
= 2

(
d
(
S \ S

)
− 1

)
= γS − 2.

Thus, we obtain by Lemmas 4.7 and 4.35

2 = γS − γMS−MS
= µMS

∈MS ⊂ S.

This implies
S = 〈2, γS + 1〉,

and γS = 2d
(
S \ S

)
is even by Lemma 5.46.
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Lemma 5.48. Let S be a local symmetric semigroup. IfMS−MS is a symmetric semigroup,
then

µMS
+ (MS −MS) = MS .

Proof. Note that MS satisfies property (E1) by Lemma 4.7 since S is local. Hence, µMS
is

defined by Lemma 4.12.
Let β ∈ DS . First assume that β ∈ µMS

+ (MS −MS), i.e. β − µMS
∈MS −MS . Since

MS −MS is symmetric, Remark 5.38, Definitions 4.31 and 5.8, and Lemma 4.7 yield

∆MS−MS (τMS−MS
+ µMS

− β) = ∅.

By Lemma 4.35 we have

τMS−MS
+ µMS

= γMS−MS
+ µMS

− 1 = γS − 1 = τS ,

and hence we obtain
∆MS−MS (τS − β) = ∅.

Since S ⊂MS −MS by Lemmas 4.7 and 4.20, this yields

∆S (τS − β) = ∅.

As S is symmetric, we obtain β ∈ S by Remark 5.38 and Definitions 4.31 and 5.8. Moreover,
MS −MS ⊂ S by Lemma 4.39.(2) since S is local, and hence CS ⊂MS ⊂ S. This yields
β ≥ µMS

, i.e. β ∈MS by Definition 4.5.(3).
Suppose now that β 6∈ µMS

+MS −MS , i.e. β − µMS
6∈ MS −MS . Since MS −MS is

symmetric, this implies

∆MS−MS (τMS−MS
− (β − µMS−MS

)) 6= ∅. (5.32)

Since S ⊂MS −MS by Lemmas 4.7 and 4.20, and since

µMS
= γS − (γS − µMS

) = γS − (γMS
− µMS

) = γS − γMS−MS
= τS − τMS−MS

by Lemma 4.35, Equation (5.32) yields

∅ 6= ∆MS−MS (τMS−MS
− (β − µMS−MS

))
= ∆S(τMS−MS

− (β − (τS − τMS−MS
)))

= ∆S(τS − β).

Since S is symmetric, this implies β 6∈ S, and hence β 6∈MS . Thus,

µMS
+ (MS −MS) = MS .

Lemma 5.49. Let S be a local symmetric semigroup, and let α ∈MS \ CS. If MS −MS

is a symmetric semigroup, then
α− µMS

∈ S.
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Proof. By Lemmas 5.44 and 5.48 we have

α ∈MS = µMS
+ (MS −MS)

= µMS
+ (S ∪∆ (τS))

= (µMS
+ S) ∪∆ (τS + µMS

) .

Assume α ∈ ∆ (τS + µMS
). Then α ≥ γS since µMS

≥ 1 as S is local. But this is a
contradiction to the choice of α 6∈ CS . Hence, α− µMS

∈ S.

Lemma 5.50. Let S be a local symmetric semigroup, and let α ∈MS \ CS. If MS −MS

is a symmetric semigroup, then there is an n ∈ N such that

α = nµMS
.

In particular,
S = 〈µMS

〉 ∪ CS .

Proof. Since S is local, and since CS = γS + S by Remark 4.27.(1), repeatedly applying
Lemma 5.49 yields

α−mµMS
∈ S (5.33)

for all m ∈ N satisfying
(m− 1)µMS

< α. (5.34)

Since α is finite, there is

n = max {m ∈ N | (m− 1)µMS
< α} .

Then
nµMS

6< α (5.35)

by definition, and
α− nµMS

∈ S (5.36)

by Equations (5.33) and (5.34). Since µS = 0, Equation (5.36) implies α − nµMS
≥ 0.

However, α− nµMS
> 0 contradicts the choice of n (see Equation (5.35)), and hence we

obtain α− nµMS
= 0.

Lemma 5.51. Let S be a local symmetric semigroup. IfMS−MS is a symmetric semigroup,
then |I| ≤ 2.

Proof. Assume that |I| ≥ 3. Then

τS +
⋃
i∈I

Nei ⊂ S

by Lemma 5.16.(4). Since (
τS +

⋃
i∈I

Nei
)
∩ CS = ∅,

this is a contradiction to Lemma 5.50.
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To complete the proof of Theorem 5.42 we show the converse of Proposition 5.45.(2).

Proposition 5.52. Let S be a local symmetric semigroup with |I| = 2. If MS −MS is a
symmetric semigroup, then

µMS
= (1, 1) .

Moreover, there is an n ∈ 2N + 1 such that

S = 〈(1, 1)〉 ∪
((

n+ 1
2 ,

n+ 1
2

)
+ N2

)
.

Proof. Since |I| = 2, we may assume I = 1, 2. Note that MS satisfies property (E1) by
Lemma 4.7 since S is local. Hence, µMS

is defined by Lemma 4.12. Moreover, we have
µMS

≥ 1 by Definition 4.5.(3). Hence, Lemma 4.35 yields

γMS−MS
= γMS

− µMS
= γS − µMS

≤ γS − 1 = τS . (5.37)

Suppose that γMS−MS
< τS . Then

∆ (τS − 1) = (τS − 1) +
⋃
i∈I

Nei ⊂MS −MS

since |I| = 2. However,
∆ (τS − 1) 6⊂ S

by Lemma 5.50, and
∆ (τS − 1) ∩∆ (τS) = ∅

by Definition 4.31. Using Lemma 5.44 this yields the contradiction

∆ (τS − 1) 6⊂ S ∪∆ (τS) = MS −MS .

Hence, we obtain with Equation (5.37)

τS = γMS−MS
.

So Lemma 4.35 yields

µMS
= γS − γMS−MS

= γS − τS = 1. (5.38)

Therefore,
S = 〈(1, 1)〉 ∪ CS (5.39)

by Lemma 5.50.
Assume (γS)1 6= (γS)2. Then without loss of generality

(γS)1 < (γS)2 . (5.40)

By Equation (5.39) we have
(α, α) ∈ S (5.41)
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for any
(γS)1 ≤ α ∈ N. (5.42)

This implies by Lemma 4.33
(α, α) + Ne1 ⊂ S. (5.43)

Let now n ∈ N and
β = (α, α+ n) ∈ (α, α) + Ne2.

Then we have
(α+ n, α+ n) ∈ S

by Equations (5.41) and (5.42). Now α ≥ (γS)1 and max {α+ n, (γS)2} ≥ (γS)2 imply

(α,max {α+ n, (γS)2}) ∈ S.

Since S satisfies property (E1), this yields

β = min {(α+ n, α+ n) , (α,max {α+ n, (γS)2})} ∈ S,

and hence
(α, α) + Ne2 ⊂ S. (5.44)

Thus, Equations (5.43) and (5.44) imply

(α, α) +
⋃
i∈I

Nei ⊂ S,

for any (γS)1 ≤ α ∈ N, and hence

((γS)1 , (γS)1) + NI ⊂ S,

contradicting the assumption (γS)1 < (γS)2 (see Equation (5.40)).
Therefore, setting

n = (2γS)1 − 1 ∈ 2N + 1

(note that γS ≥ 1 since S is local) we obtain

CS =
(
n+ 1

2 ,
n+ 1

2

)
+ N2,

and hence
S = 〈(1, 1)〉 ∪

((
n+ 1

2 ,
n+ 1

2

)
+ N2

)
by Equation (5.39).

Combining Propositions 5.45, 5.47, and 5.52 yields the proof of Theorem 5.42.
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5. Duality and Gorenstein Property

Proof of Theorem 5.42. (a) =⇒ (b) Let S be a local symmetric semigroup. If MS −MS

is a symmetric semigroup, then |I| ≤ 2 by Lemma 5.51.
If |I| = 1, then by Proposition 5.47 there is an n ∈ 2N such that

S = 〈2, n+ 1〉.

If |I| = 2, then by Proposition 5.52 there is an n ∈ 2N + 1 such that

S = 〈(1, 1)〉 ∪
((

n+ 1
2 ,

n+ 1
2

)
+ N2

)
.

(b) =⇒ (a) See Proposition 5.45.

5.6. Gorenstein Algebroid Curves
In Section 5.5 we characterized the class of good semigroups S satisfying the property
that S and MS −MS are symmetric (see Theorem 5.42). This class equals the class of
semigroups of values of curve singularities of type An (see [34] and Proposition 5.54).
Conversely, we show that having semigroup of values An determines an algebroid curve to
be of type An (see Proposition 5.57).
In analogy to Theorem 5.42 we characterize the class of local algebroid curves R (with

maximal ideal mR) satisfying the property that R and mR : mR are Gorenstein as the class
of curve singularities of type An (see Theorem 5.56).
In dependence on the classification of singularities by Arnold (see [34, 22]) we use the

following notation.

Definition 5.53. Let n ∈ N.

(1) Let k be a field, and let R be an algebroid curve over k. Then R is said to be of type
An if there is a surjective k-algebra homomorphism

φ : k[[x, y]]→ R

with
kerφ =

〈
x2 − yn+1

〉
.

(2) A good semigroup S is said to be of type An if

S =


〈2, n+ 1〉 if n ∈ 2N and |I| = 1,〈
(1)i∈I

〉
∪
((

n+1
2

)
i∈I

+ NI
)

if n ∈ 2N + 1 and |I| = 2.

We relate algebroid curves of type An to good semigroups of type An.

Proposition 5.54. Let k be a field, let R be an algebroid curve over k, and suppose that
R is of type An for some n ∈ N.
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5.6. Gorenstein Algebroid Curves

(1) If n is even, then
R = k

[[
t2, tn+1

]]
⊂ k[[t]] = R.

(2) If n is odd, then

R = k

[[
(t1, t2),

(
−t

n+1
2

1 , t
n+1

2
2

)]]
⊂ k[[t1]]× k[[t2]] = R.

In particular, a good semigroup S is of type An if and only if there is an algebroid curve A
of type An with ΓA = S.

Proof. Let k be a field, and let R be an algebroid curve over k of type An for some n ∈ N.
Then we may assume that

R = k[[X,Y ]]/
〈
X2 − Y n+1

〉
(see Definition 5.53.(1)). We prove the claim by constructing the normalization of R.

(1) Suppose that n ∈ 2N. We write π : k[[X,Y ]]→ R for the canonical surjection, and
we set x = π (X) and y = π (Y ). Since y ∈ Rreg, we have

t = x

yn/2
∈ QR

with
t2 =

(
x

yn/2

)2
= x2

yn
= yn+1

yn
= y. (5.45)

This implies

t2(n+1) − xyn/2t =
(
t2
)n+1

− xyn/2 x

yn/2
= yn+1 − x2 = 0,

and hence
t ∈ R. (5.46)

Moreover, we have

tn+1 =
(
x

yn/2

)n+1
= xn+1

(yn+1)n/2
= xn+1

(x2)n/2
= x. (5.47)

Therefore, Equations (5.45), (5.46), and (5.47) yield

R ⊃ R[t] = k
[[
tn+1, t2

]]
[t] = k[[t]],

and hence R = k[[t]] since C[[t]] is integrally closed in

QR = Qk[[t]] = k[[t]]
[
t−1
]
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5. Duality and Gorenstein Property

(see Lemma A.34 and Proposition B.5). Then Proposition B.3 implies

R = k[[X,Y ]]/
〈
X2 − Y n+1

〉
= k[[x, y]]

= k
[[
tn+1, t2

]]
⊂ k[[t]]
= R.

(2) Suppose that n ∈ 2N + 1. Then

Min (R) =
{〈
X + Y

n+1
2
〉
R
,
〈
X − Y

n+1
2
〉
R

}
.

Set
R1 = R/

〈
X + Y

n+1
2
〉
R

= k[[X,Y ]]/
〈
X + Y

n+1
2
〉

and
R2 = R/

〈
X + Y

n+1
2
〉
R

= k[[X,Y ]]/
〈
X − Y

n+1
2
〉
.

Then Theorem B.42 implies
R = R1 ×R2. (5.48)

We write

t1 = Y +
〈
X + Y

n+1
2
〉
∈ R1,

t2 = Y +
〈
X − Y

n+1
2
〉
∈ R2.

Then

X +
〈
X + Y

n+1
2
〉

= −t
n+1

2
1 ,

X +
〈
X − Y

n+1
2
〉

= t
n+1

2
1 .

This implies
R1 = k

[[
−t

n+1
2

1 , t1

]]
= k[[t1]] = R1

and
R2 = k

[[
t
n+1

2
2 , t2

]]
= k[[t2]] = R2.

Thus, Equation (5.48) and Proposition B.3 imply

R = k[[X,Y ]]/
〈
X2 − Y n+1

〉
= k[[X,Y ]]/

(〈
X − Y

n+1
2
〉
∩
〈
X + Y

n+1
2
〉)

= k

[[(
−t

n+1
2

1 , t
n+1

2
2

)
, (t1, t2)

]]
⊂ k[[t1]]× k[[t2]]
= R1 ×R2

= R.
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The particular claim follows since by Theorem 3.44 the valuation of QR containing R is
ordt.

Corollary 5.55. Let k be a field, and let R be an algebroid curve over k. If R is of type
An for some n ∈ N, then R is Gorenstein.

Proof. This follows from Corollary 5.37, Theorem 5.42, and Proposition 5.54 (also see
Definition 5.53.(2)).

Theorem 5.56. Let k be an algebraically closed field, and let R be a local algebroid
curve over k with maximal ideal mR. Then R and mR : mR (see Remark B.49 and
Proposition B.57) are Gorenstein if and only if R is of type An for some n ∈ N.

To prove Theorem 5.56 we start with showing that over an algebraically closed ground
field also the converse of Proposition 5.54 is valid.

Proposition 5.57. Let k be an algebraically closed field, and let R be an algebroid curve
over k. Then R is of type An for some n if and only if ΓR is of type An, i.e.

ΓR = 〈2, n+ 1〉

with n ∈ 2N, respectively

ΓR = 〈(1, 1)〉 ∪
((

n+ 1
2 ,

n+ 1
2

)
+ N2

)
with n ∈ 2N + 1.

For the proof of Proposition 5.57 we need the following Lemmas.

Lemma 5.58 (See [35], Lemma 4.25). Let k be an algebraically closed field, and let R be
an irreducible algebroid curve over k. If ΓR is of type An with n ∈ 2N, i.e.

Γ = 〈2, n+ 1〉,

then R is of type An.

Proof. First note that the conductor of ΓR is γΓR = n.
Since 2 ∈ ΓR, there is an x ∈ R with ν(x) = 2. Hence, identifying R ∼= k[[t]] (see

Theorem 3.44), there are a ∈ k \ {0} and bi ∈ k for i ∈ N>0 such that

x = at2 +
∞∑
i=1

bit
2+i = ut2,

where

u = a+
∞∑
i=1

bit
i ∈ (k[[t]])∗.
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Since k is algebraically closed, there is a w ∈ (k[[t]])∗ such that w2 = u and x = (wt)2.
This yields a k-automorphism

k[[t]]→ k[[t]],
t 7→ w−1t,

sending x to t2. So we may assume that x = t2. Note that this assumption corresponds to
a suitable choice of a uniformizing parameter of R in the construction of the isomorphism
R ∼= k[[t]], see Proposition 2.23.(2), Lemma 3.43 and Theorem 3.44.
Since

CR = tγΓRk[[t]] ⊂ R

by Propositions 4.16.(2) and 4.56, we have

y = tγΓR+1 ∈ R

and
ν((k[[x, y]])reg) = ΓR. (5.49)

Moreover, R′ = k[[x, y]] is an algebroid curve over k with QR = QR′ and VR = VR′ . Thus,
Proposition 4.56 and Equation (5.49) yield

CR ⊂ k[[x, y]] ⊂ R.

Then we obtain by Lemma 4.54.(2) R = k[[x, y]]. Hence, R is of type Aγ .

Lemma 5.59. Let k be an algebraically closed field, and let R be an algebroid curve over
k. If ΓR is of type An with n ∈ 2N + 1, i.e.

ΓR = 〈(1, 1)〉 ∪
((

n+ 1
2 ,

n+ 1
2

)
+ N2

)
,

then R is of type An.

Proof. We set δ = n+1
2 ∈ N. Then the conductor of ΓR is γΓR = (δ, δ).

Since (1, 1) ∈ ΓR, there is an x ∈ A with ν(x) = (1, 1). Hence, identifying R ∼=
k[[t1]]× k[[t2]], there are a1, a2 ∈ k \ {0} and b1,i, b2,i ∈ k for i ∈ N>0 such that

x =
(
a1t1 +

∞∑
i=1

b1,it
1+i
1 , a2t2 +

∞∑
i=1

b2,it
1+i
2

)
= ut,

where
u =

(
a1 +

∞∑
i=1

b1,it
i
1, a2 +

∞∑
i=1

b2,it
i
2

)
∈ (k[[t1]]× k[[t2]])∗.

Thus, there is a k-automorphism

k[[t1]]× k[[t2]]→ k[[t1]]× k[[t2]],
t 7→ u−1t,
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sending x to t = (t1, t2). So we may assume x = t.
Since

CR = tγΓR (k[[t1]]× k[[t2]]) ⊂ R

by Propositions 4.16.(2) and 4.56, we have

y =
(
tδ1,−tδ2

)
∈ R

and
ν((k[[x, y]])reg) = ΓR. (5.50)

Moreover, R′ = k[[x, y]] is an algebroid curve over k with QR = QR′ and VR = VR′ . Thus,
Proposition 4.56 and Equation (5.50) yield

CR ⊂ k[[x, y]] ⊂ R.

Then we obtain by Lemma 4.54.(2) R = k[[x, y]]. Hence, R is of type An with n = 2δ−1.

Proof of Proposition 5.57. This follows from Proposition 5.54 and Lemmas 5.58 and 5.59.

Remark 5.60. Let R be Gorenstein. Then ΓR is a symmetric semigroup by Corollary 5.37,
and hence Proposition B.60, Theorem 5.34, Remark 4.8, and Proposition 4.38 yield

ΓmR:mR = ΓR:mR = ΓR − ΓmR = ΓR −MΓR = MΓR −MΓR .

Proof of Theorem 5.56. First note that mR : mR is by Lemma 2.17 an integral extension
of R, and hence an admissible ring with VR = VmR:mR by Theorem 3.45.(1). Let R and
mR : mR be Gorenstein. Then ΓR and ΓmR:mR = MΓR −MΓR (see Remark 5.60) are
symmetric semigroups by Corollary 5.37. Thus, Theorem 5.42 implies that ΓR is of type An
for some n ∈ N (see Definition 5.53.(2)), and therefore R is of type An by Proposition 5.57.
Let now R be of type An for some n ∈ N. Then ΓR is of type An by Proposition 5.57.

Hence, ΓR and MΓR −MΓR = ΓmR:mR (see Remark 5.60) are symmetric semigroups by
Theorem 5.42. Thus Corollary 5.37 implies that R and mR : mR are Gorenstein.
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In this Chapter we describe quasihomogeneous curves in terms of their semigroups of values
and a coefficient map.

Definition 6.1. Let R be a local complex algebroid curve, and let w ∈ Nn for some
n ∈ N with wi > 0 for all i = 1, . . . , n. Then R is called quasihomogeneous (of type w)
if there is a C-derivation d of R and a generating system (xi)ni=1 for the maximal ideal
mR of R with d(xi) = wixi for every i = 1, . . . , n. Equivalently, there is a surjective
homomorphism φ : C[[X1, . . . , Xn]] → R such that kerφ is homogeneous with respect to
weighted polynomial degree with weight w (see Theorems A.67 and E.13).

Since a quasihomogeneous curves is an algebroid curve by definition, it is an admissible
ring by Proposition 3.41. Kunz and Ruppert proved that an irreducible quasihomogeneous
curve R is isomorphic to the semigroup ring of its semigroup of values, i.e.

R ∼= C
[[
tΓR
]]
, (6.1)

see [9, Satz 3.1]. In Section 6.1 we re-prove this statement (see Theorem 6.9).

Let R be a quasihomogeneous curve with two branches. We write Min (R) = {p, q}.
Then R can be written as the fibre product of its branches over their intersection. The
branches are irreducible quasihomogeneous curve, and hence they can be expressed in
terms of their semigroup of values. Moreover, Kunz and Ruppert show that the intersection
of the branches can be described by the value semigroup ideal of a minimal prime ideal of
R in the branch corresponding to the other minimal prime ideal, i.e.

R/p + q ∼= C
[[
t
ΓR/p
p

]]
/C
[[
t
Γq+p/p
p

]]
∼= C

[[
t
ΓR/p/Γp+q/q
q

]]
, (6.2)

see [9, Satz 4.2]. The quotient semigroup is defined in Definition 4.74, and its semigroup
ring is defined in Definition 4.77.(3).
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So Equations (6.1) and (6.2) yield a commutative diagram

R

C
[[
t
ΓR/p
p

]]
R/p R/q C

[[
t
ΓR/q
q

]]

R/p + q

C
[[
t
ΓR/p/Γq+p/p
p

]]
C
[[
t
ΓR/q/Γp+q/q
q

]]
.

∼= ∼=

∼= ∼=

α
∼=

(6.3)
Hence,

R ∼= C
[[
t
ΓR/p
p

]]
×

C
[[
t
ΓR/p/Γq+p/p
p

]] C[[tΓR/qq

]]
, (6.4)

where we take the fibre product with respect to the composition of the canonical surjection
C
[[
t
ΓR/q
q

]]
→ C

[[
t
ΓR/q/Γp+q/q
q

]]
and the isomorphism α−1, see [9, Satz 4.2]).

The isomorphism α can be described more explicitly. First Kunz and Ruppert noted that
for a quasihomogeneous curve R′ there is a w ∈ NMin (R) with wp > 0 for all p′ ∈ Min (R)
such that for a homogeneous element x of a R′ we have

deg (x) = wpνp(x) (6.5)

for all p ∈ Min (R) with x 6∈ p, see [9, Section 3]. So considering the values of homogeneous
elements of R which are neither contained in p nor in q Kunz and Ruppert obtained a
bijection

τpq : ΓR/p \ Γq+p/p → ΓR/q \ Γp+q/q,

α 7→ wpα

wq
.

Then α is induced by this bijection τpq, see [9, Satz 4.1].
In the following we want to extend these results in two ways: we will drop the restriction

on the number of branches, and we will deduce the combinatorial data determining a
quasihomogeneous curve only from its semigroup of values. Passing to an arbitrary number
of branches we use the generalized notion of a fibre product introduced in Section 2.3.
Then considering the branches pairwise we obtain again diagrams as (6.3). However, in
general R is only contained in the fibre product of its branches but not isomorphic to it
anymore. In Chapter 7 we will give a criterion on the value semigroup of values which
determines this inclusion to be an isomorphism (see Theorem 7.23).

In order to deduce the combinatorial informations from the semigroup of values ΓR of a
quasihomogeneous curve R, we first note that for any minimal prime ideals p and q with
p 6= q we have

ΓR/p = (ΓR)p
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by Proposition 4.67 and
Γq+p/p = (ΓR)qp

by Proposition 4.69.

Theorem 6.2. Let R be a quasihomogeneous curve.

(1) There is a (wp)p∈Min (R) ∈ NMin (R) with wp > 0 for every p ∈ Min (R) such that for
any homogeneous element x ∈ R we have

deg (x) = wpνp(x)

for all p ∈ Min (R) with x 6∈ p.

(2) For any p, q ∈ Min (R) with p 6= q there is a bijection

τpq : (ΓR)p \ (ΓR)qp → (ΓR)q \ (ΓR)pq,

α 7→ wpα

wq

(see Definition 4.60).

(3) For any p ∈ Min (R) the isomorphism R→
∏

p∈Min (R) C[[tp]] of Theorem 3.44 induces
a homogeneous surjective homomorphism (see Definition E.8)

ψp : R→ C
[[
t
(ΓR)p
p

]]
with

νp|R = ordt ◦ψp, (6.6)

and for any p, q ∈ Min (R) with p 6= q there is a map

ζpq : (ΓR)p/(ΓR)qp → C

(see Definition 4.74) with

ζpq(α+ β) = ζpq(α) ζpq(β) (6.7)

for all α, β ∈ (ΓR)p\(ΓR)qp with α+β ∈ (ΓR)p\(ΓR)qp, and a homogeneous isomorphism

σpq : C
[
t
(ΓR)p/(ΓR)qp
p

]
→ C

[
t
(ΓR)q/(ΓR)pq
q

]
, (6.8)

tαp 7→ ζpq(α) tτpq(α)
q
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6. Quasihomogeneous Curves

induced by τpq and ζpq such that there is a commutative diagram

R

C
[[
t
(ΓR)p
p

]]
C
[[
t
(ΓR)q
q

]]

C
[
t
(ΓR)p/(ΓR)qp
p

]
C
[
t
(ΓR)q/(ΓR)pq
q

]
,

ψp ψq

χpq χqp

∼=
σpq

where χpq and χqp denote the homogeneous surjective homomorphisms of Proposi-
tion 4.79.

(4) With ζ =
(
(ζp,q)q∈Min (R)\{p}

)
p∈Min (R)

we denote by Fib (ΓR, w, ζ) the C-subalgebra

of
∏

p∈Min (R) C
[[
t
(ΓR)p
p

]]
consisting of the elements

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


p∈Min (R)

∈
∏

p∈Min (R)
C
[[
t
(ΓR)p
p

]]

with
a(p)
αp

= ζpq(αp) a(q)
τpq(αp) (6.9)

for any p ∈ Min (R), for every q ∈ Min (R) \ {p}, and for all αp ∈ (ΓR)p \ (ΓR)qp.
Then the C-algebra isomorphism

QR →
∏

p∈Min (R)
C[[tp]]

[
t−1
p

]
of Theorem 3.44 restricts to an injective homogeneous C-algebra homomorphism

Ψ: R→ Fib (ΓR, w, ζ),
x 7→ (ψp(x))p∈Min (R)

with ψp as in (3) for all p ∈ Min (R). Moreover, for any q, q′ ∈ Min (R) there is a
commutative diagram

R

C
[[
t
(ΓR)q
q

]]
Fib (ΓR, w, ζ) C

[[
t
(ΓR)q′
q′

]]
.

ψq

Ψ
ψq′

prq prq′
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(5) Let x ∈ R, and write Ψ(x) =
(∑

αp∈(ΓR)p a
(p)
αp t

αp
p

)
p∈Min (R)

. Then for any d ∈ Z and
for every p ∈ Min (R) we have

((Ψ(x))d)p = (ψp(x))d =

a(p)
d/wp

t
d
wp
p if there is an α ∈ (ΓR)p with wpα = d,

0 else.

Moreover,
ordt ((Ψ(x))d) ≥ ν(x)

for all d ∈ Z.

Proof. See Section 6.2.

To ease notation in future constructions of fibre products we introduce the following.

Definition 6.3. Let R be a quasihomogeneous curve. Using the notation of Theorem 6.2,
we call w normal weights and ζ =

(
(ζpq)q∈Min (R)\{p}

)
p∈Min (R)

connecting maps for R.

Unlike in the case |Min (R)| ≤ 2 which was treated by Kunz and Ruppert, in general the
homomorphism Ψ: R→ Fib (ΓR, w, ζ) of Theorem 6.2.(4) is only an inclusion. We give a
name to the special case when Ψ is an isomorphism.

Definition 6.4. Let R be a quasihomogeneous curve. We say that R is a fibre product if
the homomorphism Ψ: R→ Fib (ΓR, w, ζ) of Theorem 6.2.(4) is an isomorphism.

Remark 6.5. Let R be a quasihomogeneous curve with normal weights w ∈ NMin (R) and
connecting maps ζ (see Definition 6.3). Theorem 6.2.(4) and the following Proposition 6.6
show that the fibre product Fib (ΓR, w, ζ) is a “closure” of R in the following sense: It
is the “largest” quasihomogeneous curve contained in

∏
p∈Min (R) C

[[
t
(ΓR)p
p

]]
with normal

weights w and connecting maps ζ.

Proposition 6.6. Let R be a quasihomogeneous curve with normal weights w ∈ NMin (R)

and connecting maps ζ (see Definition 6.3), and set

A = Fib (ΓR, w, ζ).

(1) A is a quasihomogeneous curve.

(2) There is a bijection
η : Min (R)→ Min (A),

and A has normal weights

w(A) =
(
wη−1(p)

)
p∈Min (A)

∈ NMin (A)

and connecting maps

ζ(A) =
((
ζη−1(p),η−1(q)

)
q∈Min (R)\{p}

)
p∈Min (R)

.
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6. Quasihomogeneous Curves

(3) For any p ∈ Min (A) we have (considering (ΓA)p, (ΓR)η−1(p), (ΓA)qp and (ΓR)η
−1(q)
η−1(p)

as subsets of N)
(ΓA)p = (ΓR)η−1(p),

and
(ΓA)qp = (ΓR)η

−1(q)
η−1(p)

for every q ∈ Min (R) \ {p}. Moreover, A is a fibre product (see Definition 6.4), i.e.

A = Fib
(
ΓA, w(A), ζ(A)

)
.

(4) Let Ψ: R→
∏

p∈Min (R) C[[tp]] be the isomorphism of Theorem 3.44. Then

Ψ−1(A) ∈ RR,

and η induces a bijection

ΓΨ−1(A) → ΓA,

(αp)p∈Min (R) 7→
(
αη−1(q)

)
q∈Min (A)

.

Proof. See Section 6.3.

Finally, we show some important properties of the connecting maps of a quasihomogeneous
curve.

Lemma 6.7. Let R be a quasihomogeneous curve with connecting maps(
(ζpq)q∈Min (R)\{p}

)
p∈Min (R)

,

and let p, q ∈ Min (R) with p 6= q.

(1) For any α ∈ (ΓR)p \ (ΓR)qp we have ζpq(α) 6= 0.

(2) We have ζpq(0) = 1.

Proof. (1) The rings C
[
t
(ΓR)p/(ΓR)qp
p

]
and C

[
t
(ΓR)q/(ΓR)pq
q

]
are C-vector spaces with bases(

tαp

)
α∈(ΓR)p\(ΓR)qp

and
(
tβq
)
β∈(ΓR)q\(ΓR)pq

, respectively. Since

σpq : C
[
t
(ΓR)p/(ΓR)qp
p

]
→ C

[
t
(ΓR)q/(ΓR)pq
q

]
is by Theorem 6.2.(3) a C-vector space isomorphism, this implies ζpq(α) 6= 0 for all
α ∈ (ΓR)p \ (ΓR)qp (see Equation (6.8)).
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6.1. Irreducible Curves

(2) Since R is local, we have 0 ∈ (ΓR)p \ (ΓR)qp by Theorem 4.9 and Proposition 4.65.
Therefore, Theorem 6.2.(3) yields

ζpq(0) = ζpq(0 + 0) = ζpq(0) ζpq(0)

(see Equation (6.7)). Thus, we have either ζpq(0) = 0 or ζpq(0) = 1, and (1) yields
the claim.

Remark 6.8. Let R be a quasihomogeneous curve with normal weights w ∈ NMin (R) and
connecting maps ζ =

(
(ζpq)q∈Min (R)\{p}

)
p∈Min (R)

(see Definition 6.3). Then Lemma 6.7.(2)
implies that if x ∈ Fib (ΓR, w, ζ), then all components of x have the same constant term.
Thus, with Theorem 6.2.(4) we have inclusions

Ψ(R) ⊂ Fib (ΓR, w, ζ) ⊂

 ∏
p∈Min (R)


C

C
[[
t
(ΓR)p
p

]]
.

This was also shown by Kunz and Ruppert in [9, Satz 3.4].

6.1. Irreducible Curves
Before we treat the case of general quasihomogeneous curves, we investigate irreducible
curves. More precisely, we prove the following.

Theorem 6.9. Let R be an irreducible quasihomogeneous curve of type w ∈ Nn with respect
to dR ∈ DerC (R). This means that R is Z-graded.

(1) The normalization R is quasihomogeneous with respect to a derivation dR ∈ DerC
(
R
)

with dR
∣∣
R

= dR. In particular, there is a uniformizing parameter t ∈ R and a w ∈ N
such that dR(t) = wt.

(2) For any homogeneous element x ∈ Rreg we have

deg (x) = wν(x).

(3) The isomorphism

φ : R→ C[[T ]],
t 7→ T

of Theorem 3.44 is homogeneous, and it restricts to a homogeneous isomorphism

φ′ : R→ C
[[
TΓR

]]
,

and
ν = ordT ◦φ

if we extend φ to an isomorphism QR → C[[T ]]
[
T−1].
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6. Quasihomogeneous Curves

(4) Let R be also quasihomogeneous of type w′ ∈ Nn with respect to d′R ∈ DerC (R). Let
d′
R
∈ DerC

(
R
)
with d′

R

∣∣∣
R

= d′, s ∈ R a uniformizing parameter and w′ ∈ N such
that d′

R
(s) = w′s as in (1). Then with the isomorphism

φ : R→ C[[S]],
s 7→ S

of Theorem 3.44 we obtain commutative diagrams

R

ΓR ∪ {∞}

C[[T ]] C[[S]],

∼=
φ

ν|
R

ψ
∼=

ordT

∼=

ordS

and
R

ΓR ∪ {∞}

C
[[
TΓR

]]
C
[[
SΓR

]]
.

∼=
φ′

ν|R
ψ′

∼=

ordT

∼=

ordS

Moreover, there is a unit u ∈ (C[[S]])∗ such that

ψ ◦ φ−1 : C
[[
TΓR

]]
→ C

[[
SΓR

]]
,

T 7→ uS.

Note that the isomorphisms φ, φ′, ψ, and ψ′ are homogeneous but the isomorphisms
C[[T ]]→ C[[S]] and C

[[
TΓR

]]
→ C

[[
SΓR

]]
are in general not homogeneous.

(5) Let i be a homogeneous non-zero ideal of R. Then

φ(i) = C
[[
TΓi

]]
.

To prove Theorem 6.9 we need the following Lemmas.

Lemma 6.10. Let i ⊂ C[[X1, . . . , Xn]] be an ideal, and let C[[X1, . . . , Xn]]/i be quasihomo-
geneous of type w ∈ Nn with respect to d ∈ DerC (C[[x1, . . . , xn]]/i) such that d(xi) = wixi,
where xi = Xi + i, for all i = 1, . . . , n.
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6.1. Irreducible Curves

(1) There is a commutative diagram

C[[X1, . . . , Xn]] C[[X1, . . . , Xn]]

C[[X1, . . . , Xn]]/i C[[X1, . . . , Xn]]/i,

π

∑n

i=1 wiXi
∂
∂Xi

pr

d

where π : C[[X1, . . . , Xn]]→ C[[X1, . . . , Xn]]/i is the canonical surjection. Moreover,
n∑
i=1

wiXi
∂

∂Xi
(i) ⊂ i.

(2) An element y ∈ C[[X1, . . . , Xn]]/i is homogeneous with respect to d if and only if for
any α ∈ Nn with |α|w = deg (y) there is an aα ∈ C such that

y =
∑
α∈Nn

|α|w=deg (y)

aαX
α
,

where we write |α|w =
∑n
i=1wiαi.

Proof. (1) By Theorem E.13 there is a C-derivation d′ of C[[X1, . . . , Xn]] such that
d ◦ π = π ◦d′ and d(i) ⊂ i. Moreover, Theorem E.13 yields d′(Xi) = wiXi for all
i = 1, . . . , n. This implies

d′ =
n∑
i=1

wiXi
∂

∂Xi
.

(2) By Theorem E.13 an element y ∈ C[[X1, . . . , Xn]]/i is homogeneous if and only
if there is a homogeneous element Y ∈ (C[[X1, . . . , Xn]])deg (y) with pr (Y ) = y,
where on C[[X1, . . . , Xn]] we consider the grading corresponding to the C-derivation∑n
i=1wiXi

∂
∂Xi

(see Theorem E.11.(1)). Write Y =
∑
α∈Ns aαX

α. Then Y is by
Theorem E.11.(1) homogeneous of degree deg (y) if and only if∑

α∈Ns
deg (y)aαXα = deg (y)Y

=
n∑
i=1

wiXi
∂

∂Xi
(Y )

=
n∑
i=1

wiXi
∂

∂Xi

 ∑
α∈Nn

yαX
α


=
∑
α∈Nn

yα

n∑
i=1

wiXi
∂

∂Xi
(Xα)

=
∑
α∈Nn
|α|6=0

yα

n∑
i=1

wiαiX
α

=
∑
α∈Nn
|α|6=0

yα |α|wX
α.
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6. Quasihomogeneous Curves

Comparing coefficients we see that this is the case if and only if

Y =
∑
α∈Ns

|α|w=deg (y)

aαX
α.

Therefore, y is homogeneous if and only if for any α ∈ Ns with |α|w = deg (y) there
is an aα ∈ C such that

y = π

 ∑
α∈Ns

|α|w=deg (y)

aαX
α

 =
∑
α∈Ns

|α|w=deg (y)

aαx
α.

Lemma 6.11. Let R be an irreducible quasihomogeneous curve of type w ∈ Nn.

(1) The normalization R is quasihomogeneous with respect to a derivation dR ∈ DerC
(
R
)

with dR
∣∣
R

= dR. In particular, there is a uniformizing parameter t ∈ R and a w ∈ N
such that dR(t) = wt. Moreover, the isomorphism

φ : R→ C[[T ]],
t 7→ T,

of Theorem 6.9.(3) is homogeneous if we consider on C[[T ]] the grading corresponding
to the C-derivation wt ∂∂t (see Theorem E.11.(1)).

(2) Let (yd)d∈wZ ∈
∏
d∈wZRd. Then

∑
d∈wZ yd ∈ R. Moreover, R ∼=

∏
d∈wZRd.

(3) For any d ∈ Z we have

Rd =

φ−1
(
C · T

d
w

)
if d ∈ wN,

0 else.

(4) Let α ∈ N, and let x ∈ Rwα. Then ν(x) = α.

(5) For any α ∈ ΓR there is an x ∈ Rwα with ν(x) = α. In particular, x 6= 0.

(6) For any α ∈ N we have

Rwα =
{
Rwα = φ−1(C · Tα), if α ∈ ΓR,
0, else.

Proof. (1) By Theorem E.11.(2) the grading of R corresponds to a derivation dR ∈
DerC (R). Then by [36, Satz 2.12] R is quasihomogeneous with respect to a C-
derivation dR ∈ DerC

(
R
)
with dR

∣∣
R

= dR. Therefore, there are generators x1, . . . , xn

of the maximal ideal mR of R and weights w1, . . . , wn ∈ N>0 such that dR(xi) = wixi
for every i = 1, . . . , n. Since R is by Remark 3.39 a discrete valuation ring and a
domain by Corollary A.73, there is by Proposition 2.23.(2) and (3) a uniformizing
parameter t ∈ R such that dR(t) = wt for some w ∈ N.
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6.1. Irreducible Curves

(2) Since R is quasihomogeneous, there are generators x1, . . . , xn of the maximal ideal mR
of R and weights w1, . . . , wn ∈ N>0 such that xi is homogeneous with deg (xi) = wi
for any i = 1, . . . , n. By Theorem A.67 there is a surjective C-algebra homomorphism

φ : C[[X1, . . . , Xs]]→ R,

Xi 7→ xi for all i = 1, . . . , n.

By Theorem E.13 kerφ is homogeneous with respect to the grading on C[[X1, . . . , Xn]]
corresponding to the C-derivation

∑n
i=1wiXi

∂
∂Xi

(see Theorem E.11.(1)). Moreover,
the grading on A = C[[X1, . . . , Xs]]/ kerφ induced via ψ−1 agrees with the grading
induced by that on C[[X1, . . . , Xn]], where ψ : A→ R is the isomorphism induced by
φ.
Let (yd)d∈G ∈

∏
d∈GRd. Then φ(yd) is homogeneous in A for any d ∈ G, and hence

by Lemma 6.10.(2) there is

(zα)α∈{β∈Nn||β|w=d} ∈ C{β∈Nn||β|w=d}

such that
ψ−1(yd) =

∑
α∈Nn
|α|w=d

zαx
α.

Let now m ∈ N and v = max {wi | i = 1, . . . , n}. Then for any α ∈ Nn with |α|w = m
we have

m = |α|w =
n∑
i=1

wiαi ≤
n∑
i=1

vαi = v
n∑
i=1

αi,

and hence
n∑
i=1

αi ≥
m

v
.

This implies that for any d ∈ G we have

ψ−1(yd) ∈
(
〈x1, . . . , xn〉C[[x1,...,xn]]/i

)r
,

and hence
yd ∈ (mR)r (6.10)

for all r ∈ N with vr ≤ d.
For g ∈ N we write

y(g) =
∑
d∈G
d≤g

yd,

and we consider the sequence (
y(g)

)
g∈N
∈ RN.
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6. Quasihomogeneous Curves

Let now e ∈ N. Then for any g, g′ ∈ N with g, g′ ≥ ve we have with Equation (6.10)

y(g) − y(g′) =
∑
d∈G
d≤g

yd −
∑
d∈G
d≤g′

yd =
∑
d∈G

min (g,g′)<d≤max (g,g′)

yd ∈ (mR)e.

Hence,
(
y(g)

)
g∈N

is a Cauchy sequence in R, and since R is complete, this implies

∑
d∈G

yd = lim
g∈N

y(g) ∈ R.

Moreover, since by Proposition E.4 for any x ∈ R there is (zd)d∈G ∈
∏
d∈GRd such

that z =
∑
d∈G zd, we obtain R ∼=

∏
d∈GRd.

(3) Since φ is a homogeneous isomorphism by (1), we have

Rd = φ−1((C[[T ]])d)

for any d ∈ Z, where the grading on C[[T ]] corresponds to the C-derivation wt ∂∂t (see
Theorem E.11.(1)). The statement follows from Lemma 6.10.(2).

(4) Since φ is homogeneous by (1), there is an a ∈ C such that φ(x) = aTα. Since
ν = ordT ◦φ by Theorem 3.44, this implies ν(x) = α.

(5) Let α ∈ ΓR. Then there is an x ∈ R with ν(x) = α. Now let

(xd)d∈wZ ∈
∏
d∈wZ

Rd

such that x =
∑
d∈wZ xd. Then by Lemma 6.10.(2) and Proposition E.9 there is

(ad)d∈wZ ∈ CwZ such that

φ(x) = φ

 ∑
d∈wZ

xd

 =
∑
d∈wZ

φ(xd) =
∑
d∈wZ

adT
d
w .

Since ν = ordT ◦φ by Theorem 3.44, this implies awα 6= 0. Hence, xwα 6= 0, and

ν(xwα) = ordT ◦φ(xwα) = ordT
(
awαT

wα
w

)
= α.

(6) By (1) and Lemma 6.10.(2) we have for any α ∈ N

Rwα ⊂ Rwα = φ−1(C · Tα).

Moreover, if α ∈ N \ ΓR, then Rwα = 0 by (4). It remains to show that φ−1(aTα) ∈
Rwα for any α ∈ ΓR and for any a ∈ C.
So let α ∈ ΓR. Then by (5) there is x ∈ Rwα \ {0}, and Lemma 6.10.(2) yields a
b ∈ C such that φ(x) = bTα. So for any a ∈ C we have a

bx ∈ Rwα and

φ

(
a

b
x

)
= a

b
φ(x) = a

b
bTα = aTα.
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Proof of Theorem 6.9. (1) See Lemma 6.11.(1).

(2) Let x ∈ Rreg be homogeneous of degree deg (x), and let

φ : R→ C[[T ]],
t 7→ T

be the isomorphism of Theorem 3.44. Then φ is homogeneous by Lemma 6.11.(1)
if we consider on C[[T ]] the grading corresponding to the C-derivation wt ∂∂t (see
Theorem E.11.(1)), and hence φ(x) ∈ (C[[T ]])deg (x). So by Lemma 6.10.(2) there is

an a ∈ C such that φ(x) = aT
deg (x)
w . Thus, Theorem 3.44 yields

ν(x) = ordT ◦φ(x) = deg (x)
w

.

(3) The isomorphism φ is homogeneous by Lemma 6.11.(1), and Lemma 6.11.(2) and (6)
yield the homogeneous restriction φ′.

(4) The commutative diagrams follow immediately from (3). Now the isomorphism
ψ ◦ φ−1 is determined by

ψ ◦ φ−1(S) = f

for some power series f ∈ C[[T ]]. Since

1 = ordS (S) = ordT
(
ψ ◦ φ−1(S)

)
= ordT (f),

we obtain
f = Tg,

where g ∈ C[[T ]] with ordT (g) = 0. As ordT = ν ◦ φ−1, this implies g ∈ (C[[T ]])∗ by
Lemma 3.4.(3).

(5) Let i be a homogeneous non-zero ideal of R. Since R is Noetherian, i is by Proposi-
tion E.6.(1) generated by finitely many homogeneous elements y1, . . . , ym. For any
i = 1, . . . ,m there is by Lemma 6.10.(2) an bi ∈ C such that

φ(yi) = biT
deg (yi)

w .

Now let x ∈ R. Then there is (xd)d∈G ∈
∏
d∈GRd such that x =

∑
d∈G xd. Moreover,

by Lemma 6.10.(2) there is (ad)d∈G ∈ CG such that

φ(xd) = adT
d
w

for all d ∈ G. So for any i = 1, . . . ,m and any d ∈ G we have

φ(yixd) = φ(yi)φ(xd) = biadT
deg (yi)+d

w ,
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and Remark 4.6.(5) and Theorem 3.44 yield

deg (yi) + d

w
= ordT ◦φ(yixd) = ν(yixd) = ν(yi) + ν(xd) ∈ Γi.

Therefore, we obtain with Proposition E.9

φ(yix) = φ

yi ∑
d∈G

xd

 = φ

∑
d∈G

yixd

 =
∑
d∈G

φ(yixd) ∈ C
[[
TΓi

]]
.

This implies
φ(i) ⊂ C

[[
TΓi

]]
(6.11)

Since φ(R) = C
[[
TΓR

]]
by (3), since C

[[
TΓi

]]
∈ RC[[TΓR ]] (see Remark 4.78.(1)),

and since Γi = Γφ(i) = ΓC[[TΓi ]] by Theorem 3.44, Equation (6.11) yields with
Corollary 4.52

φ(i) = C
[[
TΓi

]]
.

We conclude this section with a lemma we will use later on.

Lemma 6.12. Let S be a numerical semigroup, and let E ∈ GS with E ⊂ S.

(1) Let M be a finite set of generators of S not containing 0 (see Proposition 4.72 and
Lemma 4.85). Then C

[[
TS
]]

is quasihomogeneous of type (α)α∈M ∈ NM .

(2) The ideal C
[[
tE
]]

of C
[[
tS
]]

(see Remark 4.78.(1)) is homogeneous.

(3) An element ∑
α∈S

aαtα ∈ C
[[
tS
]]
/C
[[
tE
]]

is homogeneous in the induced grading on C
[[
tS
]]
/C
[[
tE
]]

(see (1) and (2), Re-
mark 4.78.(1) and Proposition E.6.(3)) if and only if there is a β ∈ S \ E such that
aα = 0 for all α ∈ (S \ E) \ {β}.

Proof. (1) First note that C
[[
TS
]]

is a local admissible ring by Proposition 4.80, and it
is complete by Proposition 4.81. Hence, it is a complex local algebroid curve.
Consider the C-derivation

d = t∂t : C
[[
tS
]]
→ C

[[
tS
]]
.

Indeed we have for any
∑
α∈S aαt

α

d

(∑
α∈S

aαt
α

)
=
∑
α∈S

aαt∂tt
α =

∑
α∈S

αaαt
α ∈ C

[[
tS
]]
.
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In particular, for any α ∈M we obtain

d(tα) = t∂tt
α = αtα.

Since
〈tα | α ∈M〉 = mC[[tS ]]

by Lemma 4.85, the ring C
[[
tS
]]

is quasihomogeneous (see Definition 6.1).

(2) Let
∑
α∈E aαt

α ∈ C
[[
tE
]]
. Then

d

(∑
α∈E

aαt
α

)
=
∑
α∈E

αaαt
α.

Hence, the ideal C
[[
tE
]]

is homogeneous by Lemma E.15.

(3) An element
∑
α∈S aαt

α ∈ C
[[
tS
]]
/C
[[
tE
]]

is homogeneous with respect to the
induced grading if and only if∑

α∈S
αaαt

α = d

(∑
α∈S

aαt
α

)
∈
∑
α∈S

aαt
α + C

[[
tE
]]
.

The statement follows.

6.2. Proof of Theorem 6.2
Let R be a complex algebroid curve which is quasihomogeneous of type w ∈ Nn. Then every
p ∈ Min (R) is homogeneous by Proposition E.17, and hence also p + q is homogeneous for
any p, q ∈ Min (R). This implies that R/p and R/p + q are quasihomogeneous of type w
with the induced grading by Proposition E.6.(3).

Moreover, also q + p/p is a homogeneous ideal of R/p. Hence, (R/p)/(q + p/p) is
quasihomogeneous with respect to w with the induced grading by Proposition E.6.(3), and
this grading corresponds to that on R/p + q.
Since by Theorem E.11 any grading corresponds to a derivation, we obtain for any

p, q ∈ Min (R) a commutative diagram

R R

R/p R/p

(R/p)/(q + p/p) (R/p)/(q + p/p)

R/p + q R/p + q,

πp+q

πp

d

πp+q

πp

πq+p/p

dp

πq+p/p

dq+p/p

∼=

dp+q

∼=

(6.12)
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where πp, πp+q and πq+p/p are the canonical surjections, and d, dp, dq+p/p and dp+q are
the C-derivations of R, R/p, (R/p)/(q + p/p) and R/p + q corresponding to the respective
gradings.

So by Theorem 6.9.(4) and (5), Remark 3.39 (Equation (3.19)) and Propositions 4.67.(2),
4.69, and 4.79 there is a commutative diagram of homogeneous homomorphisms

C
[[
t
(ΓR)p
p

]]
C
[
t
(ΓR)p/(ΓR)qp
p

]

C
[[
t
ΓR/p
p

]]
C
[
t
ΓR/p/Γq+p/p
p

]

R/p C
[[
t
ΓR/p
p

]]
/C
[[
t
Γq+p/p
p

]]

R R/p + q

R/q C
[[
t
ΓR/q
q

]]
/C
[[
t
Γp+q/q
q

]]

C
[[
t
ΓR/q
q

]]
C
[
t
ΓR/q/Γp+q/q
q

]

C
[[
t
(ΓR)q
q

]]
C
[
t
(ΓR)q/(ΓR)pq
q

]
.

∼=

∼= ∼=

∼=

πq+p

∼=

πp

πq

∼=

∼=

∼=

πp+q

∼=

∼=
∼=

(6.13)

This leads to the proof of Theorem 6.2.

Proof of Theorem 6.2. Let R be quasihomogeneous of type w ∈ Nn. Then every p ∈
Min (R) is homogeneous by Proposition E.17, and hence R/p is quasihomogeneous of
type w with induced grading by Proposition E.6.(3). Hence, Theorem 6.9.(1) yields a
w = (wp)p∈Min (R) ∈ NMin (R) such that R/p is quasihomogeneous of type wp for any
p ∈ Min (R), i.e. R/p is Gp-graded with Gp = wpZ.

(1) Let x ∈ R homogeneous. Then πp (x) is homogeneous in R/p, and if π (x) 6= 0,
Remark 3.39, Proposition E.6.(3) and Theorem 6.9.(2) yield

deg (x) = deg (π (x)) = wpνp(x).

(2) Let p, q ∈ Min (R) with p 6= q, and let α ∈ (ΓR)p \ (ΓR)qp. Since (ΓR)p = ΓR/p
by Remark 3.39 (Equation (3.19)) and Proposition 4.67.(2) and (ΓR)qp = Γq+p/p by
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Proposition 4.69, there is by Lemma 6.11.(5) an

x ∈ (R/p)wpα
\
(
(q + p/p) ∩ (R/p)wpα

)
with ν

R/p
(x) = α (see Remark 3.39). In particular, x 6= 0. Then by Lemma E.7 there

is an
X ∈ Rwpα \

(
(p + q) ∩Rwpα

)
with πp (X) = x and νp(X) = ν

R/p
◦ πp (X) = α (see Remark 3.39).

Now Lemma E.7 yields

πq (X) ∈ (R/q)wpα
\
(
(p + q/q) ∩ (R/q)wpα

)
.

In particular, πq (X) 6= 0. So νq(X) ∈ (ΓR)\ (ΓR)pq by Remark 3.39 (Equation (3.19))
and Propositions 4.67.(2) and 4.69. Moreover, by (1) we obtain

wpα = wpνp(X) = deg (X) = wqνq(X).

This yields a map

τpq : (ΓR)p/(ΓR)qp → (ΓR)q/(ΓR)pq,

α 7→ wpα

wq
.

By symmetry, there is also a map τqp : (ΓR)p/(ΓR)qp → (ΓR)q/(ΓR)pq, and for any
α ∈ (ΓR)p/(ΓR)qp we have

τqp ◦ τpq(α) = τqp

(
wpα

wq

)
=
wq

wpα
wq

wp
= α.

Hence, τpq is surjective, and therefore bijective as (ΓR)p/(ΓR)qp and (ΓR)q/(ΓR)pq are
finite (see Remark 4.75).

(3) Let p ∈ Min (R). By Theorem 6.9.(3) there is an isomorphism

φp : R/p→ C
[[
t
ΓR/p
p

]]
such that νp = ordt ◦φp by Remark 3.39 (Equation (3.19)). Since ΓR/p = (ΓR)p
by Remark 3.39 (Equation (3.19)) and Proposition 4.67.(2), we obtain a natural
isomorphism

ηp : C
[[
t
ΓR/p
p

]]
→ C

[[
t
(ΓR)p
p

]]
.

This yields a surjective homomorphism

ψp = ηp ◦ φp ◦ πp : R→ C
[[
t
(ΓR)p
p

]]
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satisfying

νp = ordtp ◦ψp. (6.14)

Let now q ∈ Min (R) with p 6= q. Then q + p/p ∈ RR/p since q is an ideal of R not
contained in p (as p, q ∈ Min (R) with p 6= q), and since R/p is a domain. Moreover,
q + p/p is homogeneous since q ∈ Min (R) is homogeneous by Proposition E.17, and
since the grading on R/p is induced by that on R. Therefore, Theorem 6.9.(5) yields

φp(q + p/p) = C
[[
t
Γq+p/p
p

]]
.

Thus, we obtain an isomorphism

φpq : (R/p)/(q + p/p)→ C
[[
t
ΓR/p
p

]]
/C
[[
t
Γq+p/p
p

]]
such that φpq ◦ πq+p/p = θpq ◦ φp, where

πq+p/p : R/p→ (R/p)/(q + p/p)

and

θpq : C
[[
t
ΓR/p
p

]]
→ C

[[
t
ΓR/p
p

]]
/C
[[
t
Γq+p/p
p

]]
are the canonical surjections. Now Proposition 4.79 yields a isomorphism

µpq : C
[[
t
ΓR/p
p

]]
/C
[[
t
Γq+p/p
p

]]
→ C

[
t
ΓR/p/Γq+p/p
p

]

and a surjective homomorphism

ϑpq = µpq ◦ θpq : C
[[
t
ΓR/p
p

]]
→ C

[
t
ΓR/p/Γq+p/p
p

]
.

Since Γq+p/p = (ΓR)qp by Proposition 4.69, there is a natural isomorphism

λpq : C
[
t
ΓR/p/Γq+p/p
p

]
→ C

[
t
(ΓR)p/(ΓR)qp
p

]
.

So setting

χpq = λpq ◦ ϑpq ◦ (ηp)−1 : C
[[
t
(ΓR)p
p

]]
→ C

[
t
(ΓR)p/(ΓR)qp
p

]
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we obtain a commutative diagram

R/p + q

R R/p (R/p)/(q + p/p)

C
[[
t
ΓR/p
p

]]
C
[[
t
ΓR/p
p

]]
/C
[[
t
Γq+p/p
p

]]

C
[
t
ΓR/p/Γq+p/p
p

]

C
[[
t
(ΓR)p
p

]]
C
[
t
(ΓR)p/(ΓR)qp
p

]
,

κpq∼=
πp+q

πp

ψp

πq+p/q

φp∼= φpq∼=

θpq

ϑpq

ηp∼=

µpq∼=

λpq∼=

χpq

(6.15)

where πp+q : R → R/p + q denotes the canonical surjection, and κpq : R/p + q →
(R/p)/(q + p/p) denotes the natural isomorphism, see Diagram (6.12). Moreover,
since all gradings are induced from R, all maps in Diagram (6.15) are homogeneous.
So interchanging p and q we obtain a homogeneous isomorphism

σpq = κqp ◦ φqp ◦ µqp ◦ λqp ◦ (κpq ◦ φpq ◦ µpq ◦ λpq)−1 :

C
[
t
(ΓR)p/(ΓR)qp
p

]
→ C

[
t
(ΓR)q/(ΓR)pq
q

]
.

such that the diagram

R

C
[[
t
(ΓR)p
p

]]
C
[[
t
(ΓR)q
q

]]

C
[
t
(ΓR)p/(ΓR)qp
p

]
C
[
t
(ΓR)q/(ΓR)pq
q

]
,

ψp ψq

χpq χqp

∼=
σpq

(6.16)

commutes. It remains to prove that this isomorphism is induced by τpq, i.e. that
σpq
(
tαp

)
= cpqt

τpq(α)
p for some cpq ∈ C and for every α ∈ (ΓR)p \ (ΓR)qp.

So let α ∈ (ΓR)p \ (ΓR)qp, and let tαp ∈ C
[
t
(ΓR)p/(ΓR)qp
p

]
. Then

tαp ∈
(
C
[
t
(ΓR)p
p

])
wpα
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by Lemma E.7 since tαp ∈
(
C
[[
tΓRp
]])

wpα
by Lemma 6.11.(6) with χpq

(
tαp

)
= tαp .

Moreover, we have
tαp ∈ C

[[
t
ΓR/p
p

]]
\ C
[[
t
Γq+p/p
p

]]
by Proposition 4.79. Hence,

(ηp ◦ φp)−1
(
tαp

)
∈ (R \ p)wpα

\
(
q + p/p ∩ (R \ p)wpα

)
by Proposition 4.69 and Theorem 6.9.(5). Then there is by Lemma E.7 an x ∈ Rwpα

with ψp(x) = tαp and πq (x) 6= 0. Since νp(x) = α by Equation (6.14), (1) yields

νq(x) = wpα

wq
= τpq(α).

So Equation (6.14) yields with Lemma 6.10.(2) ψq(x) = aαt
τpq(α)
q for some aα ∈ C.

Then Diagram (6.16) implies

σpq
(
tαp

)
= σpq ◦ χpq ◦ ψp(x) = χqp ◦ ψq(x) = χqp

(
aαt

τpq(α)
q

)
= aαt

τpq(α)
q .

Moreover, since σpq is a C-algebra isomorphism, we have for any β ∈ (ΓR)p \ (ΓR)qp

aα+βt
τpq(α+β)
q = σpq

(
tα+β
p

)
= σpq

(
tαp t

β
p

)
= σpq

(
tαp

)
σpq

(
tβp

)
= aαaβt

τpq(α)
q t

τpq(α)
q

= aαaβt
τpq(α+α)
q .

Hence, we may define a map

ζpq : (ΓR)p/(ΓR)qp → C,
α 7→ aα

with
ζpq(α+ β) = ζpq(α) ζpq(β)

for all α, β ∈ (ΓR)p \ (ΓR)qp with α+ β ∈ (ΓR)p \ (ΓR)qp such that σpq is induced by
τpq and ζpq.

(4) Let C be the category of C-algebras, let I be a category with Ob I = Min (R), and
let D : I → C be a diagram of type I with D(p) = C

[[
t(ΓR)p

]]
for any p ∈ Min (R).
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Let J and F : J → C be as in Definition 2.29, where for any (p, q) ∈ ObJ with
p 6= q we have

F ((p, q)) = C
[
t
(ΓR)p/(ΓR)qp
p

]
,

F ((p, p)→ (q, p)) = χpq : C
[[
t
(ΓR)p
p

]]
→ C

[
t
(ΓR)p/(ΓR)qp
p

]
,

and
F ((p, q)→ (q, p)) = σpq.

Then by Corollary 2.34 there is a C-algebra isomorphism

Φ: Fib (F )→ A,

where A is the C-subalgebra of
∏

p∈Min (R) C
[[
t
(ΓR)p
p

]]
consisting of all elements

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


p∈Min (R)

∈
∏

p∈Min (R)
C
[[
t
(ΓR)p
p

]]

with

∑
αp∈(ΓR)p\(ΓR)qp

a
(p)
αp ζpq(αp) t

τpq(αp)
q = σpq

 ∑
αp∈(ΓR)p\(ΓR)qp

a
(p)
αp t

αp
p


= σpq ◦ χpq

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


= χqp

 ∑
αq∈(ΓR)q

a(q)
αq
t
αq
q


=

∑
αq∈(ΓR)q\(ΓR)pq

a
(q)
αq t

αq
q

for every p, q ∈ Min (R). This is equivalent to the condition

a(p)
αp

= ζpq(αp) a(q)
τpq(αp)

for all p ∈ Min (R), for any q ∈ Min (R) \ {p}, and for every αp ∈ (ΓR)p \ (ΓR)qp.
Thus,

A = Fib (ΓR, w, ζ)p∈Min (R),

where ζ =
(
(ζp,q)q∈Min (R)\{p}

)
p∈Min (R)

.
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By (3) and the universal property of the fibre product (see Lemma 2.31) there is a
unique C-algebra homomorphism

Ψ: R→ Fib (ΓR, w, ζ),
x 7→ (ψp(x))p∈Min (R).

By definition Ψ is the restriction of the isomorphism of Theorem 3.44 (cf. (3) and
the proof of (3)). In particular, Ψ is injective.

(5) Let x ∈ R, let ψp(x) =
∑
αp∈(ΓR)p a

(p)
αp t

αp for any p ∈ Min (R), and for every d ∈ Z

define yd ∈
∏

p∈Min (R) C
[[
t(ΓR)p

]]
by

(yd)p =

ad/wp
t
d
wp if there is an α ∈ (ΓR)p with wpα = d,

0 else,

for each p ∈ Min (R). Since ψp is homogeneous by (3), for any p ∈ Min (R),
Lemma 6.10.(2) yields

ψp(xd) = (ψp(x))d = (yd)p.

6.3. Proof of Proposition 6.6

Let R be a quasihomogeneous curve. With the notation of Theorem 6.2, we set

A = Fib (ΓR, w, ζ),

where ζ =
(
(ζpq)q∈Min (R)\{p}

)
p∈Min (R)

, i.e. A is the subset of
∏

p∈Min (R) C
[[
t
(ΓR)p
p

]]
con-

sisting of all elements ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


p∈Min (R)

∈
∏

p∈Min (R)
C
[[
t
(ΓR)p
p

]]

with
a(p)
αp

= ζpq(αp) a(q)
τpq(αp)

for any p ∈ Min (R), for every q ∈ Min (R) \ {p}, and for all αp ∈ (ΓR)p \ (ΓR)qp, where

τpq : (ΓR)p \ (ΓR)qp → (ΓR)q \ (ΓR)pq,

α 7→ wpα

wq
.

Lemma 6.13. In the natural way, A is a C-algebra.
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Proof. Let C be the category of C-algebras, let I be a category with Ob I = Min (R), and
let D : I → C be a diagram of type I with D(p) = C

[[
t
(ΓR)p
p

]]
for any p ∈ Min (R). Let

J and F : J → C be as in Definition 2.29, where for any (p, q) ∈ ObJ with p 6= q we have

F ((p, q)) = C
[
t
(ΓR)p/(ΓR)qp
p

]
,

F ((p, p)→ (q, p)) = χpq : C
[[
t
(ΓR)p
p

]]
→ C

[
t
(ΓR)p/(ΓR)qp
p

]
and

F ((p, q)→ (q, p)) = σpq.

Then Corollary 2.34 yields
A = Fib (F ).

In particular, A is a C-subalgebra of
∏

p∈Min (R) C[[tp]].

Lemma 6.14. The following hold for A.

(1) We have A = Ψ(R). In particular, dimA = 1.

(2) There is a bijection

η : Min (R)→ Min (A),
p 7→ pA,

q ∩R←[ q.

Proof. (1) By Theorem 6.2.(4) and Lemma 6.13 we have Ψ(R) ⊂ A ⊂ QΨ(R), and hence
Lemma A.34 yields QA = QΨ(R). Since Ψ(R) ⊂ A ⊂ Ψ(R) by construction (see
Theorem 3.44), Proposition B.5 implies A = Ψ(R). In particular,

dimA = dimR = 1

by Theorem B.14.

(2) This follows from (1) and Theorem A.72.

Lemma 6.15. The ring A is local with maximal ideal

mA = {x ∈ A | ordt (x) > 0}.

Proof. Assume A is not local, and let m, n ∈ Max (A) with m 6= n. Then by Propositions B.3
and B.15 and Theorem B.12 there are m, n ∈ Max

(
A
)
with m ∩ A = m and n ∩ A = n.

Since
A = Ψ(R) = Ψ

(
R
)

=
∏

p∈Min (R)
C[[tp]]
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by Theorems 3.44 and 6.2.(4) and Lemma 6.14.(1), there are by Lemma A.6.(2) pm, pn ∈
Min (R) such that

m = tpmC[[tpm ]]×
∏

p∈Min (R)\(pm)
C[[tp]],

n = tpnC[[tpn ]]×
∏

p∈Min (R)\(pn)
C[[tp]].

Then for any x ∈ m \ (n ∩m) this implies

prpm (x) ∈ tpmC[[tpm ]],
prpn (x) ∈ C[[tpn ]] \ tpnC[[tpn ]],

where for every p ∈ Min (R) we denote by prp :
∏

q∈Min (R) C[[tq]]→ C[[tp]] the projection.
In particular, we obtain ordtpm (x) > 0 and ordtpn (x) = 0. So writing

x =

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


we have

a
(pm)
0 = 0, (6.17)

a
(pn)
0 6= 0.

Since x ∈ A, since ΓR is local by Theorem 4.9, and since therefore 0 ∈ (ΓR)pm \ (ΓR)pnpm by
Proposition 4.65, Equation (6.17) and the definition of A yield the contradiction

0 = a
(pm)
0 = ζpmpn(0) a(pn)

τpmpn (0) = ζpmpn(0) a(pn)
0 6= 0,

where the last inequality follows as ζpmpn(0) 6= 0 by Lemma 6.7.(2). Thus, A is local, and
the maximal ideal of A is by Theorems 3.44 and B.12, Propositions B.3 and B.15 and
Lemmas A.6.(2) and 6.14

mA =

 ⋂
m∈Max (A)

m

 ∩A
=

 ⋂
p∈Min (R)

tpC[[tp]]×
∏

q∈Min (R)\{p}
C[[tq]]

 ∩A
=

t ∏
p∈Min (R)

C[[tp]]

 ∩A
= {x ∈ A | ordt (x) > 0}.

Lemma 6.16. The ring A is a local complex algebroid curve.
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6.3. Proof of Proposition 6.6

Proof. By definition the ring R is a local complex algebroid curve, and hence Ψ(R) is a
complex algebroid curve. By construction, we have Ψ(R) ⊂ A ⊂ Ψ(R) (see Theorem 3.44),
and hence A is an integral extension of Ψ(R). Thus, A is a complex algebroid curve by
Theorem 3.45.(2), and it is local by Lemma 6.15.

Since A is admissible, we may consider its semigroup of values.

Lemma 6.17. Let η : Min (R)→ Min (A) be the bijection of Lemma 6.14.(2). We have

VA = VΨ(R) = {Ψ(V ) | V ∈ VR},

and for any p ∈ Min (A) the corresponding valuation of QA is ordtη−1(p)
. Moreover,

considered as subsets of N, we obtain

(ΓA)p = (ΓR)η−1(p),

and for every q ∈ Min (R) \ {p} we have

(ΓA)qp = (ΓR)η
−1(q)
η−1(p).

Proof. Since Ψ(R) and A are admissible (see Definition 6.1, Lemma 6.16, and Proposi-
tion 3.41), and since A is by Theorems 3.44 and 6.2.(4) an integral extension of Ψ(R) in
QΨ(R), Theorem 3.45.(1) yields

VA = VΨ(R) = {Ψ(V ) | V ∈ VR}.

This implies
ΓR ⊂ ΓA.

Thus, for any p ∈ Min (R) we obtain

(ΓR)p ⊂ (ΓA)η(p).

Moreover, we have by definition

prp (A) ⊂ C
[[
t
(ΓR)p
p

]]
,

where prp :
∏

q∈Min (R) C[[tq]]→ C[[tp]] is the projection. Therefore,

(ΓA)η(p) ⊂ (ΓR)p

since the valuation corresponding to η(p) is ordtp (see Theorem 6.2.(4)). This yields

(ΓA)η(p) = (ΓR)p. (6.18)

Let now q ∈ Min (R) \ {p}. Since ΓR ⊂ ΓA, we have

(ΓR)qp ⊂ (ΓA)η(q)
η(p).
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6. Quasihomogeneous Curves

Let α ∈ (ΓA)η(q)
η(p). Then by Proposition 4.69 there is an x ∈ η(q) with ordtp (x) = α. So

writing

x =

 ∑
αp′∈(ΓR)p′

a(p′)
αp′
t
αp′
p′


p′∈Min (R)

we have

a(p)
αp

= 0 for all αp ∈ (ΓR)p with αp < α, (6.19)

a(p)
α 6= 0, (6.20)
a(q)
αq

= 0 for all αq ∈ (ΓR)q. (6.21)

By Equation (6.18) we have α ∈ (ΓR)p. Assume α ∈ (ΓR)p \ (ΓR)qp. Then τpq(α) ∈
(ΓR)q \ (ΓR)pq by Theorem 6.2.(2). Hence, Equation (6.21) and the definition of A yield

0 = a
(q)
τpq(α) = ζqp(τpq(α)) apα.

Since a(p)
α 6= 0 (see Equation (6.20)), this implies ζqp(τpq(α)) = 0. However, this is a

contradiction to ζqp(β) 6= 0 for all β ∈ (ΓR)q \ (ΓR)pq (see Lemma 6.7.(1)). Thus, α ∈ (ΓR)qp.
This yields

(ΓA)η(q)
η(p) ⊂ (ΓR)qp,

and therefore
(ΓR)qp = (ΓA)η(q)

η(p).

Lemma 6.18. The C-derivation (
wptp∂tp

)
p∈Min (R)

of
∏

p∈Min (R) C[[tp]] restricts to a C-derivation d of A.

Proof. Let x ∈ A, i.e.

x =

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


p∈Min (R)

∈
∏

p∈Min (R)
C
[[
t
(ΓR)p
p

]]

with
a(p)
αp

= ζpq(αp) a(q)
τpq(αp)

for any p ∈ Min (R), for every q ∈ Min (R) \ {p}, and for all αp ∈ (ΓR)p \ (ΓR)qp. Then

d(x) =

 ∑
αp∈(ΓR)p\{0}

wpαpa
(p)
αp
t
αp
p


p∈Min (R)

.
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6.3. Proof of Proposition 6.6

Now Theorem 6.2.(2) implies for any p ∈ Min (R), for every q ∈ Min (R) \ {p}, and for all
αp ∈ (ΓR)p \

(
(ΓR)qp ∪ {0}

)
wpαpa

(p)
αp

= wqαqζpq(αp) a(q)
τpq(αp).

Thus, d(x) ∈ A.

Lemma 6.19. An element

x =

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


p∈Min (R)

∈ A

is an eigenvector of d (see Lemma 6.18) if and only if there is d ∈ Z such that for any
p ∈ Min (R) we have

xp =
{
a

(p)
αp if there is an αp ∈ (ΓR)p such that wpαp = d,

0 else.

In particular, d has only eigenvalues in N.

Proof. Let

x =

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


p∈Min (R)

∈ A

be an eigenvector of d, i.e. there is c ∈ C such that

cx = d(x)

=

 ∑
αp∈(ΓR)p\{0}

wpαpa
(p)
αp
t
αp
p


p∈Min (R)

.

This implies

xp =
{
a

(p)
αp if there is an αp ∈ (ΓR)p such that wpαp = c,

0 else.

for any p ∈ Min (R). In particular, we have c ∈ N since w ∈ NMin (R) and ΓR ⊂ NMin (R).
Let now d ∈ Z, and let

x =

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


p∈Min (R)

∈ A

with

xp =
{
a

(p)
αp if there is an αp ∈ (ΓR)p such that wpαp = d,

0 else.
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6. Quasihomogeneous Curves

for any p ∈ Min (R). Then

d(x) =

 ∑
αp∈(ΓR)p\{0}

wpαpa
(p)
αp
t
αp
p


p∈Min (R)

= d

 ∑
αp∈(ΓR)p\{0}

a(p)
αp
t
αp
p


p∈Min (R)

= dx.

Note that x = 0 if d < 0 since w ∈ NMin (R) and ΓR ⊂ NMin (R).

Lemma 6.20. Let

x =

 ∑
αp∈(ΓR)p

a(p)
αp
t
αp
p


p∈Min (R)

∈ A,

and let d ∈ Z. For any p ∈ Min (R), for every q ∈ Min (R) \ {p}, and for all αp ∈
(ΓR)p \ (ΓR)qp we define

b(p)
αp

=
{
a

(p)
αp if wpαp = d,

0 else.

Then  ∑
αp∈(ΓR)p

b(p)
αp
t
αp
p


p∈Min (R)

∈ A.

Proof. Let d ∈ Z, let p ∈ Min (R), let q ∈ Min (R) \ {p}, and let αp ∈ (ΓR)p \ (ΓR)qp. First
suppose wpαp 6= d. Then also

wqτpq(αp) = wq
wpαp

wq
= wpαp 6= d,

and hence
b(p)
αp

= 0 = b
(q)
τpq(αp).

This implies
b(p)
αp

= ζpq(αp) b(q)τpq(αp).

Assume now that wpαp = d. Then also

wqτpq(αp) = wq
wpαp

wq
= wpαp = d,

Hence,
b(p)
αp

= a(p)
αp

= ζpq(αp) a(q)
τpq(αp) = ζpq(αp) b(q)τpq(αp).
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6.3. Proof of Proposition 6.6

This implies  ∑
αp∈(ΓR)p

b(p)
αp
t
αp
p


p∈Min (R)

∈ A.

Lemma 6.21. For any x ∈ A there is a sequence (xd)d∈Z ∈ AZ, where for every d ∈ Z
either xd = 0 or d(xd) = dxd, such that x =

∑
d∈Z xd.

Proof. This follows from Lemmas 6.19 and 6.20.

Lemma 6.22. The maximal ideal mA of A (see Lemma 6.15) is generated by eigenvectors
of d with positive eigenvalues.

Proof. We want to show that mA is generated by the set

M = {x ∈ A | ordt (x) > 0 and d(x) = dxx for some dx ∈ Z}.

Lemma 6.15 immediately yields M ⊂ mA.
Let x ∈ mA. Then ordt (x) > 0 by Lemma 6.15, and by Lemma 6.21 there is a sequence

(xd)d∈Z ∈ AZ with xd = 0 or d(xd) = dxd for every d ∈ Z such that x =
∑
d∈Z xd. In

particular, we have ordt (xd) > 0 (see Lemma 6.20), and hence xd ∈ mA for every d ∈ Z by
Lemma 6.15.
Pick an α ∈ CΓR with wpαp = wqαq for all p, q ∈ Min (R). Then tα ∈ Ψ(CR) ⊂ R ⊂ A

by Proposition 4.56 and Theorem 6.2.(4). Moreover,

d(tα) =
(
wpαpt

αp
p

)
p∈Min (R)

= dαt
α,

where dα = wpαp for all p ∈ Min (R), i.e. tα ∈M . Then

tα+γΓR
∏

p∈Min (R)
C[[tp]] = tαΨ(CR) ⊂ tαR ⊂ tαA ⊂ mA (6.22)

by Theorems 3.44 and 6.2.(4) and Lemma 6.15, and we can write

x =
∑
d∈Z

ordt (xd) 6≥α+γΓR

xd +
∑
d∈Z

ordt (xd)≥α+γΓR

xd,

where ∑
d∈Z

ordt (xd)≥α+γΓR

xd ∈ tαA

by Equation (6.22).
Let now d ∈ Z such that ordt (xd) 6≥ α+γΓR . Then by Lemma 6.19 there is a p ∈ Min (R)

such that d = wp ordtp (xd) ≤ wp(α+ γΓR)p. In particular, we have

d ≤ max
{
wp(α+ γΓR)p | p ∈ Min (R)

}
.
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6. Quasihomogeneous Curves

This implies that ∑
d∈Z

ordt (xd)6≥α+γΓR

xd

is finite. Thus,
x =

∑
d∈Z

ordt (xd)6≥α+γΓR

xd + tαy ∈ 〈M〉

with some y ∈ A.
Finally, note that by Lemma 6.19 the eigenvalue of every x ∈ M with respect to d is

positive.

Proof of Proposition 6.6. (1) By Lemma 6.16 A is a local complex algebroid curve. By
Lemma 6.22 (and since A is Noetherian) there is a generating system (xi)ni=1 for the
maximal ideal mA of A such that d(xi) = wixi for some wi ∈ N with wi > 0 for every
i = 1, . . . , n. Thus, A is quasihomogeneous.

(2) Lemma 6.14.(2) yields the bijection η : Min (R)→ Min (A). Since the grading on A
is induced by the restriction of the C-derivation(

wptp∂tp
)
p∈Min (R) =

(
wη−1(q)tη−1(q)∂tη−1(q)

)
q∈Min (A)

of Ψ(R) = A (see Lemma 6.14.(1)), and since the valuation of QA is ordt (see
Theorem 6.2.(3), Equation (6.6)), A has normal weights w (see Definition 6.3).

(3) Lemma 6.17 yields
A = Fib (ΓA, w, ζ).

Since A = Ψ(R) by Lemma 6.14.(1), A is a fibre product with connecting maps
ζ =

((
ζη−1(p)η−1(q)

)
q∈Min (A)\{p}

)
p∈Min (A)

(see Definitions 6.3 and 6.4).

(4) Let x ∈ (CR)reg. Then
xΨ−1(A) ⊂ xR ⊂ CR ⊂ R,

and hence Ψ−1(A) ∈ RR since ∅ 6= Rreg ⊂
(
Ψ−1(A)

)reg. The rest of the statement
follows from Lemma 6.17.
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7. Quasihomogeneous Semigroups

In this chapter we consider two approaches to introduce quasihomogeneity on good semi-
groups. First we define gradings on good semigroups in analogy to gradings on rings as in
Definition 6.1 and E.1 (see Section 7.1, in particular Definitions 7.2 and 7.3). Alternatively,
we use properties of the values of homogeneous ring elements to define “homogeneous”
semigroup elements (see Section 7.2, in particular Definition 7.14). Then a good semigroup
is quasihomogeneous if it is generated by taking sums and infima of these elements. It
turns out that both approaches lead to the same concept of quasihomogeneity (see Theo-
rem 7.19). Moreover, the quasihomogeneity on good semigroups is compatible with the
quasihomogeneity on algebroid curves under taking values, i.e. the semigroup of values of a
quasihomogeneous curve is quasihomogeneous (see Proposition 7.6).

An element of a graded ring can be decomposed as a sum of its homogeneous components
(see Proposition E.4). The semigroup operation corresponding to the addition on rings is
the infimum. Thus, in a quasihomogeneous semigroup we want to represent any element
as an infimum of its homogeneous components.

The values of homogeneous elements of a quasihomogeneous curve lie on lines which are
determined by the normal weights of the curve (see Theorem 6.2.(1)), like the blue, red,
and green lines in the following illustration.

∞

Here the color depends on the number of minimal primes a homogeneous element is
contained in.
In a graded ring the element 0 is homogeneous of any degree. The value of zero is ∞

but ∞ is not contained in a good semigroup. However, with Lemma 4.33 we can consider
the conductor instead of ∞. This motivates the following definition.
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7. Quasihomogeneous Semigroups

Definition 7.1. Let S be a good semigroup. On S we have an equivalence relation ∼
defined by α ∼ β for α, β ∈ S if for any i ∈ I we have βi = αi if αi < (γS)i and βi ≥ (γS)i
if αi ≥ (γS)i. Then S̃ = S/ ∼ denotes the quotient set of S by ∼.

7.1. Gradings
Using Definition 7.1 the graded parts of a quasihomogeneous semigroup S will be constructed
from equivalence classes in S̃. In particular, for each class we can choose a representative
which is less than or equal to the conductor γS of S. Then those representatives defining
the graded parts of S have to lie on the colored lines in the following illustration.

γ

In analogy to Definition E.1 we first introduce a general notion of a G-grading on a good
semigroup for some additive abelian group G.

Definition 7.2. Let S be a good semigroup, and let G be an additive abelian group.

(1) A (G-)grading of S is a system (ψd)d∈G of maps ψd : S → S̃ such that the following
hold:
(1) For any d ∈ G and every α, β ∈

⋃
δ∈S ψd(δ) we have

inf {α, β} ∈
⋃
δ∈S

ψd(δ).

(2) For any d, d′ ∈ G we have⋃
δ∈S

ψd(δ) +
⋃
ε∈S

ψd′(ε) ⊂
⋃
η∈S

ψd+d′(η).

(3) For any α ∈ S there is (
α(d)

)
d∈G
∈
∏
d∈G

ψd(α)
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2

1

S

Figure 7.1.: The good semigroup S is quasihomogeneous of type (3, 4), see Example 7.4. Its
homogeneous elements are marked red.

with α(d) ∈ ψd
(
α(d)

)
for all d ∈ G such that

α = inf
{
α(d)

∣∣∣ d ∈ G}.
If there is a G-grading of S, then S is called (G-)graded.

(2) Let S be G-graded, and let α ∈ S. For any d ∈ G we call every β ∈ ψd(α) a
d-th homogeneous component of α. If α ∈ ψd(α) for some d ∈ G, then α is called
homogeneous, and d is the degree of α. We denote the degree of α by deg (α).

As discussed above, Theorem 6.2 leads to the following definition of quasihomogeneous
semigroups.

Definition 7.3. Let S be a good semigroup, and let w ∈ NI with wi > 0 for all i ∈ I.
Then S is called quasihomogeneous (of type w) if there is a Z-grading (ψd)d∈Z of S such
that for any d ∈ Z every α ∈

⋃
β∈S ψd(β) satisfies

wiαi = d

for all i ∈ I with αi < (γS)i.

Example 7.4. The good semigroup S depicted in Figure 7.1 is quasihomogeneous of type
(3, 4).
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7. Quasihomogeneous Semigroups

Proposition E.4 shows that the decomposition of an element of a quasihomogeneous curve
into its homogeneous components is unique. The decomposition on quasihomogeneous
semigroups has weaker properties.

Proposition 7.5. Let S be a quasihomogeneous semigroup of type w ∈ NI , and let α ∈ S.
Then for any d ∈ Z and for every α(d) ∈ ψd(α) we have

inf
{
α(d), γS

}
≥ inf {α, γS}.

Moreover, for any i ∈ I with αi < (γS)i we have βi = αi for all β ∈ ψwiαi(α).

Proof. Since S is quasihomogeneous, there is a family(
β(d)

)
d∈Z
∈
∏
d∈Z

ψd(α)

such that
α = inf

{
β(d)

∣∣∣ d ∈ Z
}
, (7.1)

see Definition 7.2.(3). In particular, we have β(d) ≥ α. Let now α(d) ∈ ψd(α). Since
α(d) ∼ β(d) (see Definition 7.2.(1)), this implies for any i ∈ I(

α(d)
)
i
≥ (γS)i

if
(
β(d)

)
i
≥ (γS)i, and (

α(d)
)
i

=
(
β(d)

)
i
≥ αi

if
(
β(d)

)
i
< (γS)i. Thus,

inf
{
α(d), γS

}
≥ inf {α, γS}.

By Equation 7.1 there is for any i ∈ I a di ∈ Z such that
(
β(di)

)
i

= αi. Suppose that
αi < (γS)i. Then

di = wi
(
β(di)

)
i

= wiαi,

see Definition 7.3. Let now
β ∈ ψwiαi(α) = ψdi(α).

Then β ∼ β(di), see Definition 7.2.(1). Since
(
β(di)

)
i

= αi < (γS)i, this implies

βi =
(
β(di)

)
i

= αi.

Being constructed in analogy to the quasihomogeneity on algebroid curves we expect
the quasihomogeneity on good semigroups to be compatible with its algebraic prototype
under taking values. More precisely, we show the following.

Proposition 7.6. Let R be a quasihomogeneous curve with normal weights w (see Defini-
tion 6.3). Then ΓR is quasihomogeneous of type w.
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2

1

ΓR

Figure 7.2.: The semigroup of values of the quasihomogeneous curve R = C[[X,Y ]]/
〈(
X5 − Y 2)Y 〉

with normal weights (1, 2) is quasihomogeneous of type (1, 2), see Example 7.7. The
homogeneous elements are marked red.

Proof. See Section 7.7.

Example 7.7. The algebroid curve

R = C[[X,Y ]]/
〈(
X5 − Y 2

)
Y
〉

= C[[X,Y ]]/
(〈
X5 − Y 2

〉
∩ 〈Y 〉

)
∼= C

[[(
t21, t2

)
,
(
t51, 0

)]]
is quasihomogeneous of type (2, 5). Since X 7→

(
t21, t2

)
and Y 7→

(
t51, 0

)
, Theorem 6.2.(1)

implies that the normal weights of R are (1, 2) (see Definition 6.3). Then by Proposition 7.6
the semigroup of values ΓR of R is quasihomogeneous of type (1, 2), see Figure 7.2.

Let R be a quasihomogeneous curve with normal weights w. Then by Theorem 6.2.(2)
there is for any p, q ∈ Min (R) with p 6= q a bijection

τpq : (ΓR)p \ (ΓR)qp → (ΓR)q \ (ΓR)pq,

α 7→ wpα

wq
.

Therefore, Proposition 7.6 suggests the following.

Proposition 7.8. Let S be a quasihomogeneous semigroup of type w ∈ NI . For any
i, j ∈ I with i 6= j there is a bijection

τij : Si \ Sji → Sj \ Sij ,

α 7→ wiα

wj
.
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7. Quasihomogeneous Semigroups

Proof. Let S be a quasihomogeneous semigroup of type w ∈ NI , and let i, j ∈ I with i 6= j.
Let α ∈ Si \ Sji . In particular, we have α < (γS)i, see Definition 4.60. Pick a δ ∈ S with
δi = α. Since S is quasihomogeneous, there is by Proposition 7.5 a β ∈ ψwiα(δ) with
βi = α. As α ∈ Si \ Sji , we have βj < (γS)j , see Definition 4.60. Since β ∈

⋃
ε∈S ψwiα(ε),

this implies
wjβj = wiα = wiβi, (7.2)

see Definition 7.3. Hence, wiαwj = βj ∈ Sj . Suppose that βj ∈ Sij . Then there is a ζ ∈ S
with ζi ≥ (γS)i and ζj = βj . So property (E2) applied to β and ζ yields an η ∈ S
with ηi = min {βi, ζi} = βi = α and ηj > βj = ζj . Then by Proposition 7.5 there is a
θ ∈ ψwiα(η) with θi = ηi = α and θj ≥ ηj > βj . Since α ∈ Si \ Sji , we have θj < (γS)j , see
Definition 4.60. With Equation (7.2) this yields the contradiction

wiα = wjθj > wjβj = wiα,

see Definition 7.3. Thus, there is a map

τij : Si \ Sji → Sj \ Sij ,

α 7→ wiα

wj
.

Since, moreover,

τji ◦ τij(α) =
wj

wiα
wj

wi
= α,

it follows that τij is bijective.

Example 7.9.

(1) By Proposition 7.8 there is for the quasihomogeneous semigroup S of type (3, 4) of
Example 7.4 and Figure 7.1 a bijection

τ12 : S1 \ S2
1 → S2 \ S1

2 ,

α 7→ 3α
4 ,

see Figure 7.3.

(2) Similarly, for the quasihomogeneous semigroup ΓR of type (1, 2) of Example 7.7 and
Figure 7.2 there is a bijection

τ12 : (ΓR)1 \ (ΓR)2
1 → (ΓR)2 \ (ΓR)1

2,

α 7→ 1α
2 ,

see Figure 7.4.
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2

1

S

S2 \ S1
2

S1 \ S2
1

Figure 7.3.: The quasihomogeneous semigroup S of type (3, 4) of Example 7.4 and Figure 7.1 with
the bijection τ12 : S1 \ S2

1 → S2 \ S1
2 of Proposition 7.8, see Example 7.9.(1).
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2

1

ΓR

(ΓR)1 \ (ΓR)2
1

(ΓR)2 \ (ΓR)1
2

Figure 7.4.: The quasihomogeneous semigroup ΓR of type (1, 2) of Example 7.7 and Figure 7.2 with
the bijection τ12 : (ΓR)1\(ΓR)2

1 → (ΓR)2\(ΓR)1
2 of Proposition 7.8, see Example 7.9.(2).

Let R be a quasihomogeneous curve. With the normal weights w and the connecting
maps ζ we construct the fibre product

Fib (R,w, ζ)

of the semigroup rings
C
[[
t
(ΓR)p
p

]]
for p ∈ Min (R) over the semigroup rings

C
[[
t
(ΓR)p/(ΓR)qp
q

]]
for q ∈ Min (R) \ {p} (see Theorem 6.2.(4)).

Now the semigroup of values ΓR of R is quasihomogeneous of type w by Proposition 7.6.
So we want to extend the construction of Fib (ΓR, w, ζ) to general quasihomogeneous
semigroups S, given “connecting maps” ζij : Si \ Sji → C satisfying the properties of
Lemma 6.7.

Definition 7.10. Let S be a local quasihomogeneous semigroup of type w ∈ NI , and for
any i, j ∈ I with i 6= j let ζij : Si \ Sji → C be a map satisfying the following

(1) ζij(α+ β) = ζij(α) ζij(β) for all α, β ∈ Si \ Sji with α+ β ∈ Si \ Sji ,

(2) ζij(0) = 1, and
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7.1. Gradings

(3) ζij(α) 6= 0 for all α ∈ Si \ Sji .

Then with ζ =
(
(ζij)j∈I\{i}

)
i∈I

we denote by

Fib (S,w, ζ)

the subset of
∏
i∈I C

[[
tSii

]]
consisting of all elements ∑

αi∈Si
a(i)
αi t

αi
i


i∈I

∈
∏
i∈I

C
[[
tSii

]]
satisfying

a(i)
αi = ζij(αi) a(j)

τij(αi)

for all i ∈ I, for any j ∈ I \ {i}, and for every αi ∈ Si \ Sji (see Proposition 7.8).
If ζij(αi) = 1 for all i ∈ I, for any j ∈ I \ {i}, and for every αi ∈ Si \ Sji , we write

Fib (S,w) instead of Fib (S,w, ζ).

The object Fib (S,w, ζ) constructed in Definition 7.10 is indeed a fibre product.
Remark 7.11. Let S be a local quasihomogeneous semigroup of type w ∈ NI , and for any
i, j ∈ I with i 6= j let ζij : Si \ Sji → C be a map satisfying the following

(1) ζij(α+ β) = ζij(α) ζij(β) for all α, β ∈ Si \ Sji with α+ β ∈ Si \ Sji ,

(2) ζij(0) = 1, and

(3) ζij(α) 6= 0 for all α ∈ Si \ Sji .

With τij : Si \ Sji → Sj \ Sij as in Proposition 7.8 we define for any i, j ∈ I with i 6= j a
C-algebra isomorphism

σij : C
[
tSi/S

j
i

]
→ C

[
tSj/S

i
j

]
,

tα 7→ ζij(α) tτij(α).

Let C be the category of C-algebras, let I be a category with Ob I = I, and let D : I → C
be a diagram of type I with D(i) = C

[[
tSi
]]

for any i ∈ I. Let J and F : J → C be as in
Definition 2.29, where for any (i, j) ∈ ObJ with i 6= j we have

F ((i, j)) = C
[
tSi/S

j
i

]
,

F ((i, j)→ (j, i)) = χij : C
[[
tSi
]]
→ C

[
tSi/S

j
i

]
as in Proposition 4.79, and

F ((i, j)→ (j, i)) = σij .

Then Corollary 2.34 yields
Fib (S,w, ζ) = Fib (F ),

where ζ =
(
(ζij)j∈I\{i}

)
i∈I

. In particular, Fib (S,w, ζ) is a C-subalgebra of
∏
i∈I C

[[
tSii

]]
.
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In analogy to Proposition 6.6 we obtain the following.

Proposition 7.12. Let S be a local quasihomogeneous semigroup of type w ∈ NI , and for
any i, j ∈ I with i 6= j let ζij : Si \ Sji → C be a map satisfying the following

(1) ζij(α+ β) = ζij(α) ζij(β) for all α, β ∈ Si \ Sji with α+ β ∈ Si \ Sji ,

(2) ζij(0) = 1, and

(3) ζij(α) 6= 0 for all α ∈ Si \ Sji .

Then Fib (S,w, ζ) (with ζ =
(
(ζij)j∈I\{i}

)
i∈I

) is a quasihomogeneous curve with normal
weights w (see Definition 6.3). Moreover, Fib (S,w) is a fibre product (see Definition 6.4).

Proof. See Section 7.8.

7.2. w-Elements
The second approach to quasihomogeneity on good semigroups is based on the properties
of values of homogeneous elements of a quasihomogeneous curve.

Proposition 7.13. Let R be a quasihomogeneous curve with normal weights w ∈ NMin (R)

(see Definition 6.3), and let x ∈ R be a homogeneous element. Then for any p, q ∈ Min (R)
with p 6= q the following hold:

(1) If νp(x) ∈ (ΓR)p \ (ΓR)qp, then wqνq(x) = wpνp(x).

(2) If νp(x) ∈ (ΓR)qp, then either νq(x) =∞ (i.e. x ∈ q) or νq(x) ∈ (ΓR)pq with wqνq(x) =
wpνp(x).

See Figure 7.5.

Proof. Let x ∈ R be a homogeneous element, set d = deg (x), and let p, q ∈ Min (R) with
p 6= q. We may suppose that x 6∈ p. Then

d = wpνp(x) (7.3)

by Theorem 6.2.(1).
Let

Ψ: R→ Fib (ΓR, w, ζ)

be the injective homomorphism of Theorem 6.2.(4), where ζ =
(
(ζpq)q∈Min (R)\{p}

)
p∈Min (R)

are the connecting maps for R. We write

Ψ(x) =

 ∑
αp′∈(ΓR)p′

a(p′)
αp′
t
αp′
p′


p′∈Min (R)

.
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7.2. w-Elements

Then a(p)
d/wp
6= 0, and

(Ψ(x))p = a
(p)
d/wp

t
d
wp
p

by Theorem 6.2.(5) and Equation (7.3).
Suppose that d

wp
= νp(x) ∈ (ΓR)p \ (ΓR)qp. Then

d

wq
= τpq(νp(x)) ∈ (ΓR)q \ (ΓR)pq

by Theorem 6.2.(2). Therefore, Theorem 6.2.(5) implies

(Ψ(x))q = a
(q)
d/wq

t
d
wq
q .

Since

a
(q)
d/wq

= ζqp

(
d

wq

)
a

(p)
d/wp

by Theorem 6.2.(4) (see Equation (6.9)), and hence a(q)
d/wq

6= 0, this implies by Theo-
rem 6.2.(3)

νq(x) = d

wq
= wp

wq
νp(x).

Now suppose νp(x) ∈ (ΓR)qp, and assume that νq(x) ∈ (ΓR)q. Then

wpνp(x) = deg (x) = wqνq(x)

by Theorem 6.2.(1). If νq(x) ∈ (ΓR)q \ (ΓR)pq, then

νp(x) = wqνq(x)
wp

= τqp(νq(x)) ∈ (ΓR)p \ (ΓR)qp

by Theorem 6.2.(2). But this contradicts the assumption.

The properties of Proposition 7.13 lead to the following definition.

Definition 7.14. Let S be a good semigroup, and let w ∈ NI . An element α ∈
∏
i∈I Si is

called a w-element (of S) if for any i, j ∈ I with i 6= j the following hold (see Figure 7.6):

(1) If αi ∈ Si \ Sji , then wiαi = wjαj .

(2) If αi ∈ Sji \ (CS)i, then either αj ∈ (CS)j or αj ∈ Sij with wiαi = wjαj .

(3) If αi ∈ (CS)i, then αj ∈ Sij .

Remark 7.15. Let S be a good semigroup, let w ∈ NI , let α be a w-element of S, and let
i, j ∈ I with i 6= j. If αi ∈ Si \ Sji , then αj ∈ Sj \ Sij .
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2

1

∞

ΓR

∞

∞

(ΓR)1 \ (ΓR)2
1 (ΓR)2

1

(ΓR)2 \ (ΓR)1
2

(ΓR)1
2

Figure 7.5.: The values of homogeneous elements of the quasihomogeneous curve R =
C[[X,Y ]]/

〈(
X5 − Y 2)Y 〉 (red).
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2

1

S

S2 \ S1
2

S1
2

(γS)2

S1 \ S2
1 S2

1 (γS)1

Figure 7.6.: A good semigroup S with its w-elements (red) for w = (3, 4). Note that all w-elements
of S are contained in S (also see Proposition 7.25).
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7. Quasihomogeneous Semigroups

Let S be a good semigroup, and let w ∈ NI . If S is quasihomogeneous of type w,
the w-elements of S contained in S will be exactly the homogeneous elements of S (see
Theorem 7.19). First we associate to a w-element a “degree”.
Proposition 7.16. Let S be a good semigroup, and let w ∈ NI . If α ∈

∏
i∈I Si is a

w-element of S, then there is a d ∈ Z such that wiαi = d for all i ∈ I with αi < (γS)i.
Moreover, d is unique if α ∈ (

∏
i∈I Si) \ CS.

Proof. If α ∈ CS , the statement is trivial. So suppose α ∈
∏
i∈I Si \ CS .

Let i ∈ I with αi < (γS)i, and set d = wiαi. Let j ∈ I \ {i}. If αi ∈ Si \ Sji , then
wjαj = wiαi = d. If αi ∈ Sji , then αj ∈ Sij with αj ≥ (γS)j or wjαj = wiαi = d. So for
any w-element α ∈

∏
i∈I Si \ CS we obtain a unique d ∈ Z such that wiαi = d for all i ∈ I

with αi < (γS)i.

Definition 7.17. Let S be a good semigroup, let w ∈ NI , and let α ∈
∏
i∈I Si be a

w-element of S. If α ∈
∏
i∈I Si \ CS , we define the w-degree of α as

degw (α) = wiαi

for some i ∈ I with αi < (γS)i (see Proposition 7.16). If α ∈ CS , then degw (α) is arbitrary.
Remark 7.18. Let S be a good semigroup, let w ∈ NI , let α ∈

∏
i∈I \CS be a w-element of

S, and let i ∈ I with αi < (γS)i. Then Proposition 7.16 yields βi ≥ αi for any w-element
β of S with degw (β) = degw (α).

Let S be a good semigroup, and let w ∈ NI with wi > 0 for all i ∈ I. We want to use the
w-elements of S to determine quasihomogeneity of S. In a homogeneous ring every element
can be decomposed into a sum of its homogeneous components (see Proposition E.4). The
semigroup operation corresponding to addition in rings is the infimum. So we would like
to call a good semigroup quasihomogeneous of type w if for any element α ∈ S there is a
family

(
α(i)

)
i∈I

of w-elements of S with α(i) ∈ S such that
(
α(i)

)
i

= αi and

α = inf
(
α(i)

∣∣∣ i ∈ I).
This definition can be illustrated by

2

3

1

α

α(1)

α(2)
α(3)
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7.2. w-Elements

or

2

3

1

α

α(1) = α(3)

α(2)

Indeed it turns out that the definition of quasihomogeneity on good semigroups using
w-elements yields the same concept as the one introduced in Section 7.1 (see Definition 7.3).

Theorem 7.19. Let S be a good semigroup, and let w ∈ NI . The following are equivalent:

(a) S is quasihomogeneous of type w.

(b) For any α ∈ S there is a family (
α(i)

)
i∈I
∈ SI

of w-elements such that (
α(i)

)
i

= αi

for any i ∈ I and
α = inf

(
α(i)

∣∣∣ i ∈ I).
In particular, we have α(i) ≥ α for all i ∈ I.

If S is quasihomogeneous of type w, an element α ∈ S is homogeneous if and only if it is a
w-element, and for homogeneous elements α ∈ S we have deg (α) = degw (α).

Proof. See Section 7.4.

Example 7.20.

(1) The good semigroup S in Figure 7.6 is not quasihomogeneous of type w = (3, 4).
Indeed, we have for example (15, 11) ∈ S but there is no w-element α ∈ S with
α1 = 15.

(2) Since the good semigroups in Figures 7.1 and 7.2 are quasihomogeneous, their
homogeneous elements are their w-elements which are contained in the respective
semigroup. In fact, these are all the w-elements (also see Proposition 7.25).
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7.3. Properties
A quasihomogeneous curve R is a fibre product (see Definition 6.4) if its homogeneous
elements only satisfy certain relations between any pair of branches ofR (cf. Theorem 6.2.(5))
depending on the normal weights and the connecting maps (see Definition 6.3). After taking
values these relations correspond to the definition of w-elements of ΓR (see Propositions 7.6
and 7.13, Definition 7.14, and Theorem 7.19. So in analogy to being a fibre product we
introduce the following closedness property of a quasihomogeneous semigroup.

Definition 7.21. Let S be a good semigroup and let w ∈ NI . Then S is called closed with
respect to w or w-closed if α ∈ S for any w-element α ∈

∏
i∈I Si of S.

Let R be a quasihomogeneous curve with normal weights w and connecting maps ζ (see
Definition 6.3). Recall that the fibre product Fib (ΓR, w, ζ) is by Remark 6.5 the largest
quasihomogeneous curve in ∏

p∈Min (R)
C
[[
t
(ΓR)p
p

]]
with normal weights w and connecting maps ζ. For an analogous construction on quasiho-
mogeneous semigroups we use the property of w-closedness.

Proposition 7.22. Let S be a quasihomogeneous semigroup of type w ∈ NI . There is a
unique quasihomogeneous semigroup Sw of type w which is w-closed and satisfies

S ⊂ Sw ⊂ S

and (
Si,
(
Sji

)
j∈I\{i}

)
i∈I

=
(

(Sw)i,
(
(Sw)ji

)
j∈I\{i}

)
i∈I
.

The semigroup Sw is called the w-closure of S, and it is generated by the w-elements of S
in the following sense: for any element α ∈ DS we have α ∈ Sw if and only if there is a
family

(
α(i)

)
i∈I

of w-elements of S such that

α = inf
(
α(i)

∣∣∣ i ∈ I).
Proof. See Section 7.6.

Indeed, if R is a quasihomogeneous curve with normal weights w and connecting maps ζ
(see Definition 6.3), the fibre product Fib (ΓR, w, ζ) corresponds to the w-closure of ΓR in
the following sense.

Theorem 7.23. Let R be a quasihomogeneous curve with normal weights w (see Defini-
tion 6.3). Then R is a fibre product (see Definition 6.4) if and only if ΓR is quasihomoge-
neous of type w and w-closed. In particular, if R has normal weights w and connecting
maps ζ (see Definition 6.3), then

ΓFib (ΓR,w,ζ) = (ΓR)w.
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Proof. See Section 7.9.

Theorem 7.24. Let S be a local quasihomogeneous semigroup of type w ∈ NI . Then
Sw = ΓFib (S,w). In particular, S is w-closed if and only if S = ΓFib (S,w).

Proof. See Section 7.9.

As the following proposition shows, Theorem 7.23 leads to the description of a quasiho-
mogeneous curve with two branches in terms of the semigroups of values of its branches by
Kunz and Ruppert (see [9, Satz 4.2]).

Proposition 7.25. Let S be a quasihomogeneous semigroup of type w ∈ NI . If |I| ≤ 2,
then S is w-closed. In particular, if R is a quasihomogeneous curve with |Min (R)| ≤ 2,
then R is a fibre product (see Definition 6.4).

Proof. If |I| = 1, the claim is trivial. So suppose that I = {1, 2}, and let α be a w-element
of S. Assume that α1 ∈ S1 \ S2

1 . Then α2 ∈ S2 \ S1
2 with

w1α1 = w2α2 (7.4)

(see Definition 7.14 and Remark 7.15). Moreover, by Theorem 7.19 there is a w-element β
of S with β ∈ S and β1 = α1. Then Equation (7.4) implies α = β ∈ S.
So assume now that α1 ∈ S2

1 . Then there is a β ∈ S with β1 = α1 and β2 ≥ (γS)2.
By Lemma 4.33 we may assume that β2 ≥ α2. Since S is quasihomogeneous, there is by
Theorem 7.19 a w-element δ of S with δ ∈ S, δ1 = β1 = α1, and δ2 ≥ β2 ≥ α2. Since
α1 ∈ S2

1 implies α2 ∈ S1
2 (see Definition 7.14), there also is a w-element ε of S with ε ∈ S,

ε2 = α2, and ε1 ≥ α1. This implies α = inf {δ, ε} ∈ S. Thus, S is w-closed.
The particular claim follows then with Proposition 7.6 and Theorem 7.23.

A quasihomogeneous curve R can be embedded into the fibre product of its branches over
their pairwise intersections. Theorem 7.23 gives a criterion on the semigroup of values of
R which characterizes this embedding to be an isomorphism. If R is a fibre product, it can
be reconstructed from information on its branches. By Theorem 7.24 this implies that any
quasihomogeneous semigroup of type w ∈ NI which is w-closed can be reconstructed from
data on its branches. In fact, we can extend this statement to arbitrary quasihomogeneous
semigroups. In order to make this statement more precise we define the following “stronger”
version of w-elements.

Definition 7.26. Let S be a good semigroup, and let w ∈ NI . A w-element α of S is
called maximal if the following hold:

(1) α ∈ S.

(2) If α ∈ S \ CS , then there is i ∈ I with αi < (γS)i such that inf {α, γS} = inf {β, γS}
for all w-elements β of S with β ∈ S, βi = αi, and inf {α, γS} ≤ inf {β, γS}.

The set of maximal w-elements of S is denoted byMw (S).
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Theorem 7.27. Let S be a quasihomogeneous semigroup of type w ∈ NI . Then the
following data are equivalent:

(a) The semigroup S.

(b) The family (
Si,
(
SJi

)
J⊂I\{i}

)
i∈I

consisting of the branches Si of S together with all ideals SJi for every J ⊂ I \ {i}.

(c) The set of maximal w-elementsMw (S) of S.

The maximal w-elements determine the semigroup S in the following way: For an element
α ∈ DS we have α ∈ S if and only if there is a family(

α(i)
)
i∈I
∈ (Mw (S))I

with (
α(i)

)
i

= αi

for every i ∈ I and (
α(i)

)
j
≥ αj

for each j ∈ I \ {i}. In particular,

α = inf
(
α(i)

∣∣∣ i ∈ I).
Proof. See Section 7.5.

7.4. Proof of Theorem 7.19
Lemma 7.28. Let S be a quasihomogeneous semigroup of type w ∈ NI , let α ∈ S, let
d ∈ Z, and let β ∈ ψd(α). Then for any i ∈ I the following hold:

(1) If αi < (γS)i or βi < (γS)i, then βi ≥ αi. In particular, βi < (γS)i implies αi < (γS)i.

(2) If αi < (γS)i and wiαi = d, then βi = αi.

(3) If wiαi > d or αi ≥ (γS)i, then βi ≥ (γS)i.

Proof. (1) Since there is
(
δ(g)

)
g∈Z
∈
∏
g∈Z ψg(α) such that α = inf

{
δ(g)

∣∣∣ g ∈ Z
}
, we

have
δ(g) ≥ α (7.5)

for every g ∈ Z.
Let αi < (γS)i or βi < (γS)i, and assume that βi < αi. Then we have βi < (γS)i in
either case. So suppose that βi < (γS)i, and assume that βi < αi. Then δ(d) ∼ β

implies
(
δ(d)

)
i

= βi < αi since β, δ(d) ∈ ψd(α) (see Definition 7.1). But this
contradicts Equation (7.5).
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(2) Suppose that αi < (γS)i and wiαi = d. Since there is
(
δ(g)

)
g∈Z
∈
∏
g∈Z ψg(α) such

that α = inf
{
δ(g)

∣∣∣ g ∈ Z
}
, there is an e ∈ Z such that

(
δ(e)

)
i

= αi. This implies(
δ(e)

)
i
< (γS)i, and hence

e = deg
(
δ(e)

)
= wi

(
δ(e)

)
i

= wiαi = d.

Thus, β, δ(d) ∈ ψd(α), i.e. β ∼ δ(d), and we obtain βi =
(
δ(d)

)
i

= αi.

(3) Suppose αi ≥ (γS)i, and assume that βi < (γS)i. Then βi < αi, contradicting (1).
Suppose now that αi < (γS)i, and assume that βi < (γS)i. Then (1) yields d <
wiαi ≤ wiβi. But as β ∈ ψd(α) with βi < (γS)i, this is a contradiction to wiβi =
deg (β) = d.

Lemma 7.29. Let S be a quasihomogeneous semigroup (of type w ∈ NI), and let α ∈ S
be a homogeneous element. If αi ∈ Sji for some i, j ∈ I with i 6= j, then αj ∈ Sij.

Proof. Let α ∈ S with αi ∈ Sji , and assume αj ∈ Sj \ Sij . Then αi < (γS)i (see Def-
inition 4.60), and αj < (γS)j by Lemma 4.63. Since α is homogeneous, this implies
wiαi = deg (α) = wjαj .
As αi ∈ Sji , there is a β ∈ S with βi = αi and βj > (γS)j (see Definition 4.60). So

property (E2) yields a δ ∈ S with δi > αi and δj = min {αj , βj} = αj .
Let now ε ∈ ψdeg (α)(δ). Then εj = δj by Lemma 7.28.(2) since δj = αj < (γS)j and

wjδj = wjαj = deg (α), and εi ≥ (γS)i by Lemma 7.28.(3) since wiδi > wiαi = deg (α)
(see Definition 7.3). This implies αj = δj = εj ∈ Sij , contradicting the assumption.

Corollary 7.30. Let S be a quasihomogeneous semigroup (of type w ∈ NI). Any homoge-
neous element α ∈ S is a w-element of S with degw (α) = deg (α).

Proof. Let α ∈ S be homogeneous, and let i, j ∈ I with i 6= j. First assume αi ∈ Si \ Sji .
Then Lemma 7.29 yields αj ∈ Sj \ Sij . So, in particular, αi < (γS)i and αj < (γS)j
(see Definition 4.60). Since α is homogeneous, this implies wiαi = deg (α) = wjαj (see
Definition 7.3).
Let now αi ∈ Sji \ (CS)i. Then Lemma 7.29 yields αj ∈ Sij . So assume αj ∈ Sij \ (CS)j .

Since α is homogeneous, this implies again wiαi = deg (α) = wjαj .
If αi ∈ (CS)i, then αj ∈ Sij since α ∈ S. Thus, α is a w-element of S.
Finally, for any i ∈ I we have αi ≥ (γS)i or deg (α) = wiαi = degw (α).

Lemma 7.31. Let S be a good semigroup, let w ∈ NI with wi > 0 for every i ∈ I, and
let α, β ∈ S be w-elements with degw (α) = degw (β). Then inf {α, β} ∈ S is a w-element
with degw (inf {α, β}) = degw (α) = degw (β).

Proof. If α, β ∈ CS , then inf {α, β} ∈ CS by Lemma 4.18 and Definition 4.26. So assume
that α ∈ S \ CS or β ∈ S \ CS .
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Set δ = inf {α, β}, and let i, j ∈ I with i 6= j. First assume that δi ∈ Si \ Sji . Then
without loss of generality αi = δi ∈ Si \ Sji and βi ≥ αi. Since αi < (γS)i by Lemma 4.63,
Proposition 7.16 yields wiαi = wjαj and βj ∈ (CS)j or wjβj = degw (β) = degw (α) = wiαi.
In particular, since αj < (γS)j , we have βj ≥ αj . Hence wjδj = wjαj = wiαi = wiδi.

Now suppose that δi ∈ Sji \ (CS)i, and again assume without loss of generality that
δi = αi ≤ βi. Then αi = δi ∈ Sji \ (CS)i implies αj ∈ Sij with αj ∈ (CS)j or wjαj = wiαi =
degw (α) (see Definition 7.14

Assume that βi ∈ Si \ Sji . Then, in particular, βi < (γS)i by Lemma 4.63. Therefore, we
have by Proposition 7.16 wiαi = degw (α) = degw (β) = wiβi but αi = βi is a contradiction
to αi ∈ Sji and βi ∈ Si \ Sji . Thus, we have βi ∈ Sji .
This implies βj ∈ Sij (see Definition 4.60). In particular, we have βj ∈ (CS)j or

wjβj = degw (β) = degw (α) by Proposition 7.16. Since δj = min {αj , βj}, this yields
δj ∈ Sji with δj ∈ (CS)j or wjδj = degw (α) = degw (β). Therefore, inf {α, β} is a
w-element.

Let i ∈ I with δi < (γS)i. Without loss of generality, we may assume αi = δi < (γS)i by
Proposition 7.16. Hence, wiδi = wiαi = degw (α). Thus, degw (inf {α, β}) = degw (α) =
degw (β).

Lemma 7.32. Let S be a good semigroup, let w ∈ NI with wi > 0 for all i ∈ I, and let
α, β ∈

∏
i∈I Si.

(1) If (α+ β)i ∈ Si \ S
j
i for some i, j ∈ I with i 6= j, then αi, βi ∈ Si \ Sji .

(2) Let α and β be w-elements of S, and suppose that for every i, j ∈ I with i 6= j there
is a bijection

τij : Si \ Sji → Sj \ Sij ,

δ 7→ wiδ

wj
.

Then α+ β is a w-element of S with degw (α+ β) = degw (α) + degw (β).

Proof. (1) Let i, j ∈ I with i 6= j such that (α+ β)i ∈ Si \S
j
i , and assume αi ∈ Sji . Since

α, β ∈
∏
i∈I Si, there are δ, ε ∈ S with δi = αi, δj ≥ (γS)j and εi = βi. This yields

δ + ε ∈ S with (δ + ε)i = (α+ β)i and (δ + ε)j ≥ (γS)j . In particular, we obtain
(α+ β)i ∈ S

j
i , contradicting the assumption.

(2) Since α, β ∈
∏
i∈I Si, for every i ∈ I there are α(i), β(i) ∈ S with

(
α(i)

)
i

= αi and(
β(i)

)
i

= βi. Thus, (α+ β)i =
(
α(i) + β(i)

)
i
∈ Si.

Let i, j ∈ I with i 6= j, and assume that (α+ β)i ∈ Si \ S
j
i . Then αi, βi ∈ Si \ S

j
i by

(1). This implies wiαi = wjαj and wiβi = wjβj , see Definition 7.14. Hence,

wi(α+ β)i = wiαi + wiβi = wjαj + wjβj = wj(α+ β)j . (7.6)
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Suppose now that (α+ β)i ∈ Sji , and assume that (α+ β)j ∈ Sj \ Sij . Then
wj(α+ β)j = wi(α+ β)i by Equation (7.6) (with i and j interchanged). This
implies

(α+ β)i =
wj(α+ β)j

wi
= τij

(
(α+ β)j

)
∈ Si \ Sji ,

contradicting the assumption (α+ β)i ∈ S
j
i . Thus, (α+ β)j ∈ Sij .

Assume that (α+ β)i ∈ Sji \ (CS)i. Since α, β ≥ 0, (α+ β)i < (γS)i implies
αi, βi < (γS)i, i.e. αi, βi ∈ Si \ (CS)i. If (α+ β)j < (γS)j , then αj , βj < (γS)j , and
hence

wi(α+ β)i = wiαi + wiβi = wjαj + wjβj = wj(α+ β)j .

If αj ≥ (γS)j or βj ≥ (γS)j , then (α+ β)j ≥ (γS)j . Thus, α + β is a w-element of
S.

Lemma 7.33. Let S be a good semigroup, and let α, β ∈ S with α ∼ β. If α is a w-element
of S, then β is a w-element of S with degw (α) = degw (β).

Proof. Let α, β ∈ S with α ∼ β, and suppose that α is a w-element of S. Let i, j ∈ I
with i 6= j. First assume that βi ∈ Si \ Sji . Then βi < (γS)i by Lemma 4.63, and hence
αi = βi ∈ Si \ Sji as α ∼ β. Since α is a w-element, this implies αj ∈ Sj \ Sij with
wiαi = wjαj (see Definition 7.14 and Remark 7.15). In particular, we have αj < (γS)j (see
Definition 4.60), and hence

wjβj = wjαj = wiαi = wiβi

since α ∼ β.
Assume now that βi ∈ Sji \(CS)i. Then βi < (γS)i, and hence αi = βi ∈ Sji \(CS)i. Since

α is a w-element, this implies αj ∈ (CS)j or αj ∈ Sij with wiαi = wjαj . If αj ∈ (CS)j ,
then βj ∈ (CS)j since α ∼ β. If αj ∈ Sij \ (CS)j , then βj = αj ∈ Sij \ (CS)j since α ∼ β,
and we obtain

wiβi = wiαi = wjαj = wjβj

since α is a w-element.
If there is an i ∈ I with βi < (γS)i, then βi = αi < (γS)i since α ∼ β. This implies

degw (α) = degw (β).

Lemma 7.34. Let S be a good semigroup, let w ∈ NI with wi > 0 for all i ∈ I, and suppose
that for any α ∈ S there is a family

(
α(i)

)
i∈I
∈ SI of w-elements such that

(
α(i)

)
i

= αi for

any i ∈ I and α = inf
(
α(i)

∣∣∣ i ∈ I). Then for every i, j ∈ I with i 6= j there is a bijection

τij : Si \ Sji → Sj \ Sij ,

α 7→ wiα

wj
.
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Proof. Let i, j ∈ I with i 6= j, and let α ∈ Si \Sji . Then by assumption there is a w-element
β ∈ S of S with βi = α. This implies

wiα

wj
= wiβi

wj
= βj ∈ Sj

(see Definition 7.14). Suppose that βj ∈ Sji . Since β is a w-element, this implies βi ∈ Sji ,
contradicting βi = α ∈ Si \ Sji . Thus, there is a map

τij : Si \ Sji → Sj \ Sij ,

α 7→ wiα

wj
.

Since, moreover,

τji ◦ τij(α) =
wj

wiα
wj

wi
= α,

it follows that τij is bijective.

Proof of Theorem 7.19. (a) =⇒ (b) Let S be quasihomogeneous of type w. Then for any
α ∈ S there is a family (

α(d)
)
d∈Z
∈
∏
d∈Z

ψd(α)

such that
α = inf

(
α(d)

∣∣∣ d ∈ Z
)
.

In particular, this implies that for any i ∈ I there is an α(di) ∈ ψdi(α) with
(
α(di)

)
i

=

αi and
(
α(di)

)
j
≥ αj for all j ∈ I \ {i}. Thus, we have

α = inf
(
α(di)

∣∣∣ i ∈ I),
and by Corollary 7.30 α(di) is a w-element for any i ∈ I.

(b) =⇒ (a) Let α ∈ S, and suppose that there is a family
(
α(i)

)
i∈I
∈ SI of w-elements

such that for any i ∈ I we have
(
α(i)

)
i

= αi and
(
α(i)

)
j
≥ αj . Note that if αi ≥ (γS)i

for some i ∈ I, then we may assume that α(i) ≥ (γS)i.

For every d ∈ Z we set

β(d)
α = inf

(
{γS} ∪

{
α(i)

∣∣∣ i ∈ I and degw
(
α(i)

)
= d

})
. (7.7)

Then for any d ∈ Z we have (
β(d)
α

)
i
≥ αi (7.8)
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for all i ∈ I with αi ≤ (γS)i. Moreover, β(d)
α is by Lemma 7.31 a w-element with

degw
(
β

(d)
α

)
= d for any d ∈ Z, and we have β(d)

α ∈ S since S satisfies property (E1).
So repeating this construction for all δ ∈ S we may define a map

ψd : S → S̃, (7.9)

δ 7→ β
(d)
δ

for every d ∈ Z. If α is a w-element, then Proposition 7.16 and Equation 7.7 yield
for any d ∈ Z

ψd(α) =
{

inf {α, γS} = α if degw (α) = d,

γS else.

In particular, we have
α ∈ ψdegw (α)(α). (7.10)

We now verify that the map ψ satisfies the properties in Definition 7.2.(1).
(1) Let d ∈ Z, and let α, β ∈

⋃
δ∈S ψd(δ). Then α and β are by Lemma 7.33

and Equation (7.9) w-elements of S with α, β ∈ S and degw (α) = d =
degw (β) since β(d)

δ is a w-element of S with degw
(
β

(d)
δ

)
= d for every δ ∈ S.

Therefore, Lemma 7.31 implies that also inf {α, β} is a w-element of S with
degw (inf {α, β}) = d. Moreover, we have inf {α, β} ∈ S since S satisfies prop-
erty (E1). Thus, Equation (7.10) yields

inf {α, β} ∈ ψd(inf {α, β}) ⊂
⋃
δ∈S

ψd(δ).

(2) Let d, d′ ∈ Z, and let α ∈
⋃
δ∈S ψd(δ) and β ∈

⋃
ε∈S ψd′(ε). Then as before α

and β are w-elements of S with α, β ∈ S and degw (α) = d and degw (β) = d′

by Lemma 7.33. Therefore, Lemmas 7.32.(2) and 7.34 imply that α + β is a
w-element of S with degw (α+ β) = d+ d′. Moreover, we have α+ β ∈ S since
S is a monoid. Thus, Equation (7.10) yields

α+ β ∈ ψd+d′(α+ β) ⊂
⋃
δ∈S

ψd+d′(δ).

(3) Let now α ∈ S be any element, let d ∈ Z, and let δ(d) ∈ ψd(α). Then δ(d) ∼ β(d)
α

(see Equation (7.9)), where β(d)
α is defined as in Equation (7.7). Let i ∈ I, and

assume that αi < (γS)i. Since
(
α(j)

)
i
≥ αi for all j ∈ I, Equation (7.7) implies

(γS)i ≥
(
β

(d)
α

)
i
≥ αi, and hence

(
δ(d)

)
i
≥
(
β(d)
α

)
i
≥ αi (7.11)

(see Definition 7.1).
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If d = wiαi, then degw
(
α(i)

)
= d since

(
α(i)

)
i

= αi < (γS)i. As εi ≥ αi =(
α(i)

)
i
for all w-elements ε of S with degw (ε) = d (see Remark 7.18), this

implies(
β(d)
α

)
i

= min
(
{(γS)i} ∪

{(
α(j)

)
i

∣∣∣ j ∈ I and degw
(
α(j)

)
= d

})
=
(
α(i)

)
i

= αi.

Therefore, (
δ(d)

)
i

=
(
β(d)
α

)
i

= αi (7.12)

since
(
β

(d)
α

)
i

= αi < (γS)i and β
(d)
α ∼ δ(d).

Let now i ∈ I with αi ≥ (γS)i. Then
(
α(j)

)
i
≥ αi ≥ (γS)i for all j ∈ I. Hence,(

β(d)
α

)
i

= min
(
{(γS)i} ∪

{(
α(j)

)
i

∣∣∣ j ∈ I and degw
(
α(j)

)
= d

})
= (γS)i.

Since δ(d) ∼ β(d)
α , this implies

(
δ(d)

)
i
≥ (γS)i. Hence, we may by Lemma 4.33

assume that (
δ(d)

)
i

= αi (7.13)

(also see Definition 7.14).
Since wiαi ∈ Z for any i ∈ I with αi < (γS)i, Equations (7.11), (7.12), and
(7.13) imply

α = inf
{
δ(d)

∣∣∣ d ∈ Z
}
.

Thus, S is Z-graded. In fact, S is quasihomogeneous of type w by Equation (7.9)
since β(d)

δ is for any δ ∈ S a w-element (see Proposition 7.16.
Let S be a quasihomogeneous semigroup of type w. Then a homogeneous element α of

S is by Corollary 7.30 a w-element of S with degw (α) = deg (α). Conversely, a w-element
β of S is by Equation (7.10) a homogeneous element of S with deg (β) = degw (β).

7.5. Proof of Theorem 7.27
Lemma 7.35. Let S be a quasihomogeneous semigroup of type w ∈ NI . An element
α ∈

∏
i∈I Si is a maximal w-element of S if and only if α ∈ CS or there is an i ∈ I such

that

αi < (γS)i,
αJ ≥ (γS)J ,

wkαk = wiαi for all k ∈ I \ J,

where J ⊂ I \ {i} such that αi ∈ SJi and J ′ = J for all subsets J ′ of I \ {i} containing J
with αi ∈ SJ

′
i .
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Proof. Let α ∈ S \ CS . First suppose that α is a maximal w-element of S. Then there
is by Definition 7.26 an i ∈ I with αi < (γS)i such that inf {α, γS} = inf {β, γS} for all
w-elements β of S with β ∈ S, βi = αi and inf {α, γS} ≤ inf {β, γS}. Set

J =
{
j ∈ I

∣∣∣ αj ≥ (γS)j
}
.

Then αi ∈ SJi since α ∈ S (see Definition 4.60), and Proposition 7.16 and Definition 7.26
yield

αi < (γS)i,
αJ ≥ (γS)J ,

wkαk = degw (α) = wiαi for all k ∈ I \ J.

Let now J ′ ⊂ I \ {i} such that J ⊂ J ′ and αi ∈ SJ
′

i . Then there is β ∈ S with

βi = αi,

βJ ′ ≥ (γS)J ′

(see Definition 4.60). Since S is quasihomogeneous, Theorem 7.19 yields a w-element δ ∈ S
with δ ≥ β and δi = βi = αi. In particular, if we set

J ′′ =
{
j ∈ I

∣∣∣ δj ≥ (γS)j
}
,

then J ′ ⊂ J ′′. Since
wjαj = wiαi = wiδi = wjδj

for all j ∈ I \ J ′′ by Proposition 7.16, we obtain

min
{
αj , (γS)j

}
= (γS)j = min

{
δj , (γS)j

}
for all j ∈ J,

min {αk, (γS)k} = αk < (γS)k = min {δk, (γS)k} for all k ∈ J
′′ \ J,

min {αl, (γS)l} = αl = δl = min {δl, (γS)l} for all l ∈ I \ J
′′.

This implies
inf {α, γS} ≤ inf {δ, γS}.

Therefore, we have inf {α, γS} = inf {δ, γS} since α is maximal. Thus, J = J ′ = J ′′.
Let now α ∈

∏
i∈I Si, and suppose that there is an i ∈ I such that

αi < (γS)i, (7.14)
αJ ≥ (γS)J , (7.15)

wkαk = wiαi for all k ∈ I \ J, (7.16)

where J ⊂ I \ {i} such that αi ∈ SJi and J ′ = J for all J ⊂ J ′ ⊂ I \ {i} with αi ∈ SJ
′

i .
First we want to show that α is a w-element of S with α ∈ S. Since αi ∈ SJi , there is
β ∈ S with

βi = αi,

βJ ≥ (γS)J .
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(see Definition 4.60). Since S is quasihomogeneous of type w, there is by Theorem 7.19 a
w-element δ ∈ S with

δi = βi, (7.17)
δj ≥ βj for all j ∈ I \ {i}. (7.18)

In particular, we have

δi = αi < (γS)i, (7.19)
δJ ≥ (γS)J . (7.20)

Assume now that there is a k ∈ I \ ({i} ∪ J) such that δk ≥ (γS)k. Then J ( J ∪ {k} and
αi = δi ∈ SJ∪{k}i . But this is a contradiction to the definition of J . Therefore, we have
δk < (γS)k for all k ∈ I \ ({i} ∪ J), and Proposition 7.16 yields

wkδk = degw (δ) = wiδi (7.21)

for all k ∈ I \ J . Since αi = δi by Equation (7.19), combining Equations (7.16) and (7.21)
we obtain αj = δj for all j ∈ I \ J . Since αk ≥ (γS)k and δk ≥ (γS)k for all k ∈ J , this
yields α ∼ δ. Thus, α is a w-element of S by Lemma 7.33 since δ is a w-element.

Let now ε be a w-element of S with ε ∈ S, εi = αi and inf {α, γS} ≤ inf {ε, γS}. Thus, if
we set

J ′ =
{
j ∈ I

∣∣∣ εj ≥ (γS)j
}
,

then J ⊂ J ′ ⊂ I \ {i}. Since, moreover, we have αi = εi ∈ SJ
′

i (see Definition 4.60), the
definition of J yields J = J ′. Hence, we obtain inf {α, γS} = inf {ε, γS}. Therefore, α ∈ S
by Lemma 4.33, and hence α is a maximal w-element of S.

Lemma 7.36. Let S be a quasihomogeneous semigroup of type w ∈ NI , and let i ∈ I. For
any α ∈ Si and for any J ⊂ I \ {i} with α ∈ SJi there is a maximal w-element β of S with
βi = α and βJ ≥ (γS)J .

Proof. Possibly replacing J by a larger subset of I \ {i} containing J we may assume that
α ∈ SJi and J = J ′ for all J ⊂ J ′ ⊂ I \ {i} with α ∈ SJ ′i .

Suppose α 6∈ (CS)i. Since α ∈ SJi , there is a δ ∈ S with

δi = α,

δJ ≥ (γS)J .

Since S is quasihomogeneous of type w, there is by Theorem 7.19 a w-element β ∈ S with

βi = δi,

βj ≥ δj for all j ∈ I \ {i}.

In particular, we have

βi = α < (γS)i,
βJ ≥ (γS)J .

Then by Proposition 7.16 and Lemma 7.35 β is a maximal w-element of S.
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Lemma 7.37. Let S be a quasihomogeneous semigroup of type w ∈ NI , let
(
α(i)

)
i∈I
∈ SI ,

and set α = inf
(
α(i)

∣∣∣ i ∈ I). Then there is a map η : I → I (which is not necessarily
bijective) such that

α = inf
(
α(η(i))

∣∣∣ i ∈ I)
and (

α(η(i))
)
i

= αi

Proof. Since α = inf
(
α(i)

∣∣∣ i ∈ I), there is for any j ∈ I an ij ∈ I such that

(
α(ij)

)
j

= αj ,(
α(ij)

)
k
≥ αk for all k ∈ I \ {j}.

We define the map

η : I → I,

j 7→ ij .

Then we have for any i ∈ I (
α(η(i))

)
i

= αi,(
α(η(i))

)
j
≥ αj for all j ∈ I \ {i}.

This implies
inf
(
α(η(i))

∣∣∣ i ∈ I) = α.

Proof of Theorem 7.27. Obviously, the family
(
Si,
(
SJi

)
J⊂I\{i}

)
i∈I

is determined by S.

Since γS can be computed from
(
Si,
(
SJi

)
J⊂I\{i}

)
i∈I

by Proposition 4.64, the setMw (S)

of all maximal w-elements of S is determined by
(
Si,
(
SJi

)
J⊂I\{i}

)
i∈I

by Lemma 7.35.

So we want to show that S can be constructed from Mw (S) in the following way: for
any element α ∈ DS we have α ∈ S if and only if there is a family

(
α(i)

)
i∈I

of maximal
w-elements of S with (

α(i)
)
i

= αi,(
α(i)

)
j
≥ αj for all j ∈ I \ {i},

i.e. α = inf
(
α(i)

∣∣∣ i ∈ I).
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By Definition 7.26 we haveMw (S) ⊂ S. So for any family
(
α(i)

)
i∈I
∈ (Mw (S))I we

have inf
(
α(i)

∣∣∣ i ∈ I) ∈ S since S satisfies property (E1). Moreover, by Lemma 7.37 there
is a family β(i) ∈ (Mw (S))I with

(
β(i)

)
i

=
(
inf
(
α(k)

∣∣∣ k ∈ I))
i
,(

β(i)
)
j
≥
(
inf
(
α(k)

∣∣∣ k ∈ I))
j
for all j ∈ I \ {i},

Let now α ∈ S, and let i ∈ I. If αi ≥ (γS)i, we choose α(i) ∈ CS with(
α(i)

)
i

= αi,(
α(i)

)
j
≥ αj for all j ∈ I \ {i}.

Assume now that αi < (γS)i. Since S is quasihomogeneous, there is by Theorem 7.19 a
w-element β ∈ S with

βi = αi, (7.22)
βj ≥ αj for all j ∈ I \ {i}.

Set J =
{
j ∈ I

∣∣∣ βj ≥ (γS)j
}
. Then αi = βi ∈ SJi , and by Lemmas 4.33 and 7.36 there is

a maximal w-element α(i) of S with (
α(i)

)
i

= βi, (7.23)(
α(i)

)
J
≥ βJ .

Let j ∈ I \ J . Then βj < (γS)j . So if
(
α(i)

)
j
< (γS)j , then Proposition 7.16 yields

wj
(
α(i)

)
j

= wi
(
α(i)

)
i

= wiβi = wjβj ,

and hence (
α(i)

)
j

= βj . (7.24)

Equations (7.23) and (7.24) imply α(i) ≥ β with
(
α(i)

)
i

= βi. Thus, for any i ∈ I there is
by Equation (7.22) a w-element α(i) ∈WS with(

α(i)
)
i

= αi,(
α(i)

)
j
≥ αj .
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7.6. Proof of Proposition 7.22
Lemma 7.38. Let S be a quasihomogeneous semigroup of type w ∈ NI , and let(

α(i)
)
i∈I
,
(
β(i)

)
i∈I
∈ SI .

Then there are maps ηα : I → I and ηβ : I → I such that

inf
(
α(i)

∣∣∣ i ∈ I) = inf
(
α(ηα(i))

∣∣∣ i ∈ I),
inf
(
β(i)

∣∣∣ i ∈ I) = inf
(
β(ηβ(i))

∣∣∣ i ∈ I),
and

inf
(
α(i)

∣∣∣ i ∈ I)+ inf
(
β(i)

∣∣∣ i ∈ I) = inf
(
α(ηα(i)) + β(ηβ(i))

∣∣∣ i ∈ I).
Proof. Set α = inf

(
α(i)

∣∣∣ i ∈ I) and β = inf
(
β(i)

∣∣∣ i ∈ I). By Lemma 7.37 there are maps
ηα : I → I and ηβ : I → I such that for any i ∈ I we have(

α(ηα(i))
)
i

= αi,(
α(ηα(i))

)
j
≥ αj for all j ∈ I \ {i},

and (
β(ηβ(i))

)
i

= βi,(
β(ηβ(i))

)
j
≥ βj for all j ∈ I \ {i}.

Therefore, we have for any i ∈ I(
α(ηα(i)) + β(ηβ(i))

)
i

= αi + βi(
α(ηα(i)) + β(ηβ(i))

)
j
≥ αj + βj for all j ∈ I \ {i}.

This implies
α+ β = inf

(
α(ηα(i)) + β(ηβ(i))

∣∣∣ i ∈ I).
Lemma 7.39. Let S be a quasihomogeneous semigroup of type w ∈ NI , and let α be a
w-element of S. If i, j, k ∈ I pairwise different with αi ∈ Si \ Sji and αj ∈ Sj \ Skj , then
αi ∈ Si \ Ski .

Proof. Assume αi ∈ Ski . Then there is an element β ∈ S with βi = αi and βk ≥ (γS)k. Since
S is quasihomogeneous, there is by Theorem 7.19 a w-element δ ∈ S such that δi = βi = αi
and δk ≥ βk ≥ (γS)k, hence δj ∈ Skj . Moreover, we have wjδj = wiδi = wiαi = wjαj since
δi = αi ∈ Si \ Sji , and since α and δ are w-elements of S (see Definition 7.14). This implies
αj = δj ∈ Skj , contradicting the assumption.
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Lemma 7.40. Let S be a quasihomogeneous semigroup of type w ∈ NI . If S is w-closed,
then

γS =
(
max

(
γ
Sji

∣∣∣ j ∈ I \ {i}))
i∈I
.

Proof. Set
γ =

(
max

(
γ
Sji

∣∣∣ j ∈ I \ {i}))
i∈I
.

For any i ∈ I we have (γS)i ∈ CSji for every j ∈ I \{i} (see Definition 4.60 and Lemma 4.62).
This implies

γS ≥
(
max

(
γ
Sji

∣∣∣ j ∈ I \ {i}))
i∈I

= γ.

Let α ∈ γ + S. Then
αi ≥ γi = max

(
γ
Sji

∣∣∣ j ∈ I \ {i})
for any i ∈ I. In particular, we have αi ∈ Sji for every j ∈ I \ {i}. So if for any i ∈ I we
choose an element α(i) ∈

∏
i∈I Si with(

α(i)
)
i

= αi ∈
⋂

k∈I\{i}
Ski ,(

α(i)
)
j
≥ max

{
αj , (γS)j

}
∈ (CS)j for each j ∈ I \ {i},

then α(i) is a w-element of S (see Definition 7.14). Since S is w-closed, we have α(i) ∈ S
for all i ∈ I. Thus,

α = inf
(
α(i)

∣∣∣ i ∈ I) ∈ S
as S satisfies property (E1). This implies γ ≥ γS , and hence we obtain γ = γS .

Proof of Proposition 7.22. We show that the w-elements of S generate a good semigroup
Sw in the following sense: for any element α ∈ DS we have α ∈ Sw if and only if there is a
family

(
α(i)

)
i∈I

of w-elements of S such that α = inf
(
α(i)

∣∣∣ i ∈ I).
Sw is a good semigroup. By Proposition 7.8 and Lemmas 7.32.(2) and 7.38 Sw is a
partially ordered cancellative commutative monoid with DSw = DS and α ≥ 0 for all
α ∈ Sw. Since S ⊂ Sw and Sw = S, Sw satisfies property (E0). It remains to verify
properties (E1) and (E2) for Sw.

(E1) Let α, β ∈ Sw. Then by definition of Sw and by Lemma 7.37 there are families(
α(i)

)
i∈I

and
(
β(i)

)
i∈I

of w-elements of S with
(
α(i)

)
i

= αi and
(
β(i)

)
i

= βi for any

i ∈ I and
(
α(i)

)
j
≥ αj and

(
β(i)

)
j
≥ βj for all j ∈ I \ {i}. For any i ∈ I set

δ(i) =
{
α(i) if αi < βi,

β(i) else.
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Then
(
δ(i)
)
i

= min {αi, βi} and
(
δ(i)
)
j
≥ min {αj , βj} for all j ∈ I \ {i}. This shows

that
inf {α, β} = inf

(
δ(i)

∣∣∣ i ∈ I) ∈ Sw,
and hence Sw satisfies property (E1).

(E2) Suppose there is an i ∈ I such that αi = βi. First assume αi ≥ (γS)i. Then(
δ(j)

)
i
≥ (γS)i for all j ∈ I. Thus, for any j ∈ I there is a w-element ε(j) of S with(

ε(j)
)
i
> αi and

(
ε(j)
)
k

=
(
δ(j)

)
k
for all k ∈ I \ {i} (see Definition 7.14). Then

ε = inf
(
ε(j)

∣∣∣ j ∈ I) ∈ Sw
with

εi > αi = βi,

εj ≥ min {αj , βj} for all j ∈ I,
εk = min {αk, βk} for all k ∈ I with αk 6= βk.

Next we treat the case αi < (γS)i. Set

J = {j ∈ I | αj 6= βj}. (7.25)

We show that for every j ∈ J there is a w-element η(j) of S with η(j) ≥ inf {α, β},(
η(j)

)
i
> αi = βi, and

(
η(j)

)
j

= min {αj , βj}. For this we consider the family(
δ(k)

)
k∈I

of w-elements with δ(k) ≥ inf {α, β} and
(
δ(k)

)
k

= min {αk, βk} for any
k ∈ I as above.
Let j ∈ J . Then without loss of generality we may suppose that αj < βj . We
distinguish the cases αi ∈ Si \ Sji and αi ∈ Sji \ (CS)i.

First assume that αi ∈ Si \ Sji . If αj ∈ Sj \ Sij , then

wiαi = wiβi = wi
(
β(i)

)
i

= wj
(
β(i)

)
j
≥ wjβj

> wjαj = wj
(
α(j)

)
j

= wi
(
α(j)

)
i
≥ wiαi

(see Definition 7.14). This is a contradiction, and hence αj ∈ Sij . This implies(
δ(j)

)
i
> αi as otherwise

(
δ(j)

)
i

= αi ∈ Si \ Sji , and therefore αj =
(
δ(j)

)
j
∈ Sj \ Sij

by Remark 7.15 since δ(j) is a w-element of S. So if we set η(j) = δ(j), then
η(j) ≥ inf {α, β} with

(
η(j)

)
i
> αi = βi and

(
η(j)

)
j

= min {αj , βj} = αj .

Now assume that αi ∈ Sji \ (CS)i. If αj ∈ Sj \ Sij , then as above
(
δ(j)

)
i
> αi by

Remark 7.15 since δ(j) is a w-element. So if we set η(j) = δ(j), then η(j) ≥ inf {α, β}
with

(
η(j)

)
i
> αi = βi and

(
η(j)

)
j

= αj = min {αj , βj}.
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Let now αj ∈ Sij , and consider an element η(j) ∈
∏
k∈I Sk with(

η(j)
)
j

=
(
δ(j)

)
j
,(

η(j)
)
k
≥ max

{
(γS)k,

(
δ(j)

)
k

}
for all k ∈ I \ {j} with

(
δ(j)

)
j
∈ Skj ,(

η(j)
)
l

=
(
δ(j)

)
l
for all l ∈ I \ {j} with

(
δ(j)

)
j
∈ Sj \ Slj .

We show that η(j) is a w-element of S.
So let m,n ∈ I with m 6= n and(

η(j)
)
j

=
(
δ(j)

)
j
∈ Smj ∩ Snj .

Then (
η(j)

)
m
∈ (CS)m ⊂ S

j
m ∩ Snm

and (
η(j)

)
n
∈ (CS)n ⊂ S

j
n ∩ Smn

(see Lemma 4.63).
Let m,n ∈ I with m 6= n and(

η(j)
)
j

=
(
δ(j)

)
j
∈
(
Sj \ Smj

)
∩
(
Sj \ Snj

)
.

Then (
η(j)

)
m

=
(
δ(j)

)
m
∈ Sm \ Sjm

and (
η(j)

)
n

=
(
δ(j)

)
n
∈ Sn \ Sjn

by Remark 7.15 since δ(j) is a w-element of S. This implies(
η(j)

)
m

=
(
δ(j)

)
m
∈ Sm \ Snm

and (
η(j)

)
n

=
(
δ(j)

)
n
∈ Sn \ Smn

by Lemma 7.39. Moreover, we have

wj
(
η(j)

)
j

= wj
(
δ(j)

)
j

= wm
(
δ(j)

)
m

= wm
(
η(j)

)
m
,

wj
(
η(j)

)
j

= wj
(
δ(j)

)
j

= wn
(
δ(j)

)
n

= wn
(
η(j)

)
n
,

wm
(
η(j)

)
m

= wm
(
δ(j)

)
m

= wn
(
δ(j)

)
n

= wn
(
η(j)

)
n

(see Definition 7.14).
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Let m,n ∈ I with m 6= n and(
δ(j)

)
j
∈
(
Sj \ Smj

)
∩ Snj .

Then (
η(j)

)
m

=
(
δ(j)

)
m

and (
η(j)

)
n
≥ (γS)n.

Suppose that η(j) is not a w-element of S. Then(
δ(j)

)
m

=
(
η(j)

)
m
∈ Sm \ Snm

(see Definition 7.14). But then Lemma 7.39 yields the contradiction(
δ(j)

)
j
∈ Sj \ Snj .

Therefore, η(j) is a w-element of S.
Thus, for any j ∈ J (see Equation (7.25)) there is a w-element η(j) of S with
η(j) ≥ inf {α, β},

(
η(j)

)
i
> αi = βi, and

(
η(j)

)
j

=
(
δ(j)

)
j

= min {αj , βj}. So for
every k ∈ I \ J choose an element jk ∈ J with(

η(jk)
)
k

= min
((
η(j)

)
k

∣∣∣ j ∈ J),
and set η(k) = η(jk). Then

η = inf
{
η(j)

∣∣∣ j ∈ J} = inf
(
η(j)

∣∣∣ j ∈ I) ∈ Sw
with

ηi > αi = βi,

ηj = min {αj , βj} for all j ∈ J,
ηk ≥ min {αk, βk} for all k ∈ I.

Thus, Sw satisfies property (E2), and hence it is a good semigroup.

Sw is quasihomogeneous of type w. First note that S ⊂ Sw ⊂ S by Theorem 7.19, and
hence γS ≥ γSw . So by construction we have

Si = (Sw)i (7.26)

for any i ∈ I and
Sji ⊂ (Sw)ji (7.27)

for every j ∈ I \ {i}.
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Let now i, j ∈ I with i 6= j, and let α ∈ (Sw)ji . Then there is a β ∈ Sw with βi = α
and βj ≥ (γSw)j (see Definition 4.60). Since Sw is a good semigroup, Lemma 4.33 yields a
δ ∈ Sw with δi = βi = α and δj ≥ (γS)j . Then by construction of Sw there is a w-element
ε of S with εi = δi = α and εj ≥ δj ≥ (γS)j . Hence, α = εi ∈ Sji (see Definition 7.14).
Thus, with Equations (7.26) and (7.27) we obtain(

Si,
(
Sji

)
j∈I\{i}

)
i∈I

=
(

(Sw)i,
(
(Sw)ji

)
j∈I\{i}

)
i∈I
. (7.28)

Since S ⊂ Sw by Theorem 7.19, we have γS ≥ γSw . Thus, a w-element of S is also a w-
element of Sw since

(
Si,
(
Sji

)
j∈I\{i}

)
i∈I

=
(

(Sw)i,
(
(Sw)ji

)
j∈I\{i}

)
i∈I

by Equation (7.28).
This implies that Sw is quasihomogeneous of type w by construction and by Theorem 7.19.

Sw is w-closed. Let α be a w-element of Sw, and set

J = {i ∈ I | αi < (γSw)i}.

Then there is a w-element β of Sw with

βi = αi for all i ∈ J,

βj ≥ max
{
αj , (γS)j

}
for all j ∈ I \ J

(see Definition 7.14). By Equation (7.28) β is also a w-element of S (see again Defini-
tion 7.14). For any i ∈ J we set α(i) = β.
Let now i ∈ I \ J . Then αi ≥ (γSw)i, and hence αi ∈ (Sw)ji = Sji for all j ∈ I \ {i}, see

Equation (7.28). Thus, any element α(i) ∈
∏
j∈I Sj with(

α(i)
)
i

= αi,(
α(i)

)
j
≥ max

{
αj , (γS)j

}
for every j ∈ I \ {i}

is a w-element of S (see Definition 7.14). In particular, we obtain

α = inf
(
α(i)

∣∣∣ i ∈ I) ∈ Sw
by construction. Therefore, Sw is w-closed.

Sw is the unique w-closure of S. Assume that S′ is a quasihomogeneous semigroup of
type w which is w-closed and satisfies S ⊂ S′ ⊂ S and(

Si,
(
Sji

)
j∈I\{i}

)
i∈I

=
((
S′
)
i,
((
S′
)j
i

)
j∈I\{i}

)
i∈I
.

Then S and S′ have by Equation 7.28 the same w-elements since γSw = γS′ by Lemma 7.40,
and these elements have to be contained in Sw as well as in S′. Then Theorem 7.19 and
property (E1) yield Sw = S′.
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7.7. Proof of Proposition 7.6
Lemma 7.41. Let R be a quasihomogeneous curve, and let w ∈ Nn as in Theorem 6.2.
If x ∈ R is homogeneous and α ∈ CΓR with αp 6= νp(x) for all p ∈ Min (R), then
inf {ν(x), α} ∈ ΓR is a w-element of ΓR.

Proof. Let α ∈ CΓR with α > inf {ν(x), γΓR}. Then there is y ∈ (CR)reg with ν(y) =
α. Since νp(x+ y) = min {νp(x), νp(y)} < ∞ for all p ∈ Min (R) by Lemma D.22.(5),
Lemma 3.4.(2) yields x+ y ∈ Rreg, and hence inf {ν(x), α} ∈ ΓR.
Set

β = inf {ν(x), α}, (7.29)

and let p ∈ Min (R) such that βp < (γΓR)p. Then βp = νp(x), and hence x 6∈ p by
Theorems 3.2.(2) and A.74.(2) and Proposition D.13.(4). Therefore, Theorem 6.2.(1) yields

wpβp = wpνp(x) = deg (x). (7.30)

Let q ∈ Min (R) \ {p} such that βp ∈ (ΓR)p \ (ΓR)qp. Then βp < (γS)p by Lemma 4.63,
and hence βp = νp(x) by Equation (7.29). Since x is quasihomogeneous, Theorem 6.2.(5)
yields an a ∈ C such that

(Ψ(x))p = at
νp(x)
p

(see Equation (7.30)), where we use the notation of Theorem 6.2. Moreover, a 6= 0 since
ν = ordt ◦Ψ by Theorem 6.2.(3). Since νp(x) ∈ (ΓR)p \ (ΓR)qp, Theorem 6.2.(4) and (5)
imply

(Ψ(x))q = (ζpq(νp(x)))−1at
τpq(νq(x))
q .

Since ζpq(νp(x)) 6= 0 by Lemma 6.7.(1), Theorem 6.2.(2) and (3) yield where

νq(x) = τpq(νp(x)) = wpνp(x)
wq

∈ (ΓR)q \ (ΓR)pq.

Since νp(x) < (γΓR)p and νq(x) < (γΓR)q by Proposition 4.67.(2), Theorem 6.2.(1) yields

wqνq(x) = wpνp(x).

Moreover, we have νq(x) < (γΓR)q by Lemma 4.63, and hence

wqβq = wqνq(x) = wpνp(x) = wpβp

(see Equation (7.29)).

Proof of Proposition 7.6. Let α ∈ ΓR. Then there is an x ∈ Rreg with ν(x) = α. Let now
p ∈ Min (R). Then Theorem 6.2.(5) yields

ν
(
xwpαp

)
= ordt ◦Ψ

(
xwpαp

)
= ordt

(
(Ψ(x))wpαp

)
≥ ν(x)
= α
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with
νp
(
xwpαp

)
= νp(x) = αp

(also see Theorem 6.2.(3)).
Let now β ∈ CΓR with βq > αq for all q ∈ Min (R), and set

α(p) = inf
{
ν
(
xwpαp

)
, β
}
.

Then α(p) is a w-element of ΓR by Lemma 7.41 with(
α(p)

)
p

= αp,(
α(q)

)
q
≥ αq for all q ∈ Min (R) \ {p}.

Therefore, we can find a family
(
α(p)

)
p∈Min (R)

∈ (ΓR)Min (R) of w-elements such that

α = inf
(
α(p)

∣∣∣ p ∈ Min (R)
)
,

and hence ΓR is quasihomogeneous of type w by Theorem 7.19.

7.8. Proof of Proposition 7.12

Let S be a quasihomogeneous semigroup of type w ∈ NI , and for any i, j ∈ I with i 6= j let
ζij : Si \ Sji → C be a map satisfying ζij(α+ β) = ζij(α) ζij(β) for all α, β ∈ Si \ Sji with
α+ β ∈ Si \ Sji . We set

A = Fib (S,w, ζ)

with ζ =
(
(ζij)j∈I\{j}

)
i∈I

. Note that A is a C-subalgebra of
∏
i∈I C[[ti]], see Remark 7.11.

The proof of Proposition 7.12 is in parts analogous to that of Proposition 6.6, see
Section 6.3.

Lemma 7.42. We have A =
∏
i∈I C[[ti]]. In particular, dimA = 1.

Proof. First note that we have A ⊂
∏
i∈I C[[ti]], and Proposition 4.64 yields

tγS
∏
i∈I

C[[ti]] ⊂ A.

This implies
QA =

∏
i∈I

C[[ti]]
[
t−1
i

]
.
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Let now x =
(∑

αi∈N a
(i)
i t

αi
i

)
i∈I
∈ C[[ti]]. Then

x =

 ∑
αi∈N

αi≤(γS)i

a(i)
αi t

αi
i


i∈I

+

 ∑
αi∈N

αi>(γS)i

a(i)
αi t

αi
i


i∈I

=
∑
i∈I

∑
αi∈N

αi≤(γS)i

a(i)
αi (t

ei)αi +

 ∑
αi∈N

αi>(γS)i

a(i)
αi t

αi
i


i∈I

,

where for any i ∈ I we denote by ei the i-th unit vector in ZI . Since ∑
αi∈N

αi>(γS)i

a(i)
αi t

αi
i


i∈I

∈ tγS
∏
i∈I

C[[ti]] ⊂ A,

this implies that
∏
i∈I C[[ti]] is generated as an A-algebra by {tei | i ∈ I}.

Moreover, for any i ∈ I we have

(tei)(γS)i ∈ tγS
∏
i∈I

C[[ti]] ⊂ A.

Hence, tei is integral over A. Therefore,
∏
i∈I C[[ti]] is an integral extension of A in its

total ring of fractions. Proposition B.5 yields

A =
∏
i∈I

C[[ti]]

since
∏
i∈I C[[ti]] is integrally closed in QA. Moreover, Theorem B.14 yields dimA =

dim
∏
i∈I C[[ti]] = 1.

Lemma 7.43. The ring A is local with maximal ideal

mA = {x ∈ A | ordt (x) > 0}.

Proof. See the proof of Lemma 6.15.
Assume A is not local, and let m, n ∈ Max (A) with m 6= n. Then by Propositions B.3

and B.15 and Theorem B.12 there are m, n ∈ Max
(
A
)
with m ∩ A = m and n ∩ A = n.

Since
A =

∏
i∈I

C[[ti]]

by Lemma 7.42, there are by Lemma A.6.(2) im, in ∈ I such that

m = timC[[tim ]]×
∏

i∈I\(im)
C[[ti]],

n = tinC[[tin ]]×
∏

i∈I\(in)
C[[ti]].
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Then for any x ∈ m \ (n ∩m) this implies

prim (x) ∈ timC[[tim ]],
prin (x) ∈ C[[tin ]] \ tinC[[tin ]],

where for every i ∈ I we denote by pri :
∏
j∈I C[[tj ]]→ C[[ti]] the projection. In particular,

we obtain ordtim (x) > 0 and ordtin (x) = 0. So writing

x =

 ∑
αi∈(ΓR)i

a(i)
αi t

αp
p


we have

a
(im)
0 = 0, (7.31)

a
(in)
0 6= 0.

Since x ∈ A, since S is local, and since therefore 0 ∈ Sim \ Sinim by Proposition 4.65,
Equation (7.31) and the definition of A yield the contradiction

0 = a
(im)
0 = ζimin(0) a(in)

τimin (0) = ζimin(0) a(in)
0 6= 0,

where the last inequality follows as ζimin(0) 6= 0 by assumption. Thus, A is local, and the
maximal ideal of A is by Theorem B.12, Proposition B.15, and Lemmas 6.14 and A.6.(2)

mA =

 ⋂
m∈Max (A)

m

 ∩A
=

⋂
i∈I

tiC[[ti]]×
∏

j∈I\{i}
C[[tj ]]

 ∩A
=
(
t
∏
i∈I

C[[ti]]
)
∩A

= {x ∈ A | ordt (x) > 0}.

Lemma 7.44. For any p ∈ Min (A) there is an ip ∈ I such that

p =
{
x ∈ A

∣∣∣ prip (x) = 0
}
,

where prj : A→ C
[[
t
Sj
j

]]
is the projection for any j ∈ I. Conversely, for every i ∈ I we

have
pi = {x ∈ A | pri (x) = 0} ∈ Min (A).

In particular, there is a bijection

Min (A)→ I,

p 7→ ip,

pi ←[ i.
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Proof. By Lemma 7.42 we have A =
∏
i∈I C[[ti]]. Then Lemma A.6.(2) yields

Min
(
A
)

=

0×
∏

j∈I\{i}
C[[ti]]

∣∣∣∣∣ i ∈ I
.

Thus, the statement follows from Theorem A.72.

Lemma 7.45. For any i ∈ I there is a numerical subsemigroup S′i of Si such that

pri (A) = C
[[
t
S′i
i

]]
,

where pri :
∏
j∈I C[[tj ]]→ C[[ti]] is the projection.

Proof. Let i ∈ I, and set

S′i =

α ∈ Si
∣∣∣∣∣ there is

 ∑
αj∈Sj

a(j)
αj t

αj
j


j∈I

∈ A with a(i)
αi 6= 0

. (7.32)

Let α ∈ S′i, and let  ∑
αj∈Sj

a(j)
αj t

αj
j


j∈I

∈ A

with a(i)
αi 6= 0. Set

J =
{
j ∈ I \ {i}

∣∣∣ α ∈ Sji },
and for any j ∈ I let

bj =


0 if j ∈ J,
a

(i)
α if j = i,

a
(j)
τij(α) else,

and

βj =


∞ if j ∈ J,
α if j = i,

τij(α) else.

Then we have for any j, k ∈ I \ J with j 6= k

b
(j)
βj

= a
(j)
βj

= ζjk(βj) a
(k)
τjk(βj) = ζjk(βj) b

(k)
τjk(βj).

Let j ∈ J . Since α ∈ Sji , and since S is quasihomogeneous of type w, there is a w-element
δ ∈ S with δi = α and δj ≥ (γS)j . Let now k ∈ I \ J . Then δk < (γS)k, and hence
δk = τik(α) by Proposition 7.16. Thus, τik(α) ∈ Sjk. This implies that(

bjt
βj
j

)
j∈I
∈ A, (7.33)
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where we use the convention t∞j = 0 for any j ∈ I. Thus, S′i is a subsemigroup of Si.
Moreover, 0 ∈ S′i as C ⊂ A. Since obviously (CS)i ⊂ S′i, S′i is a numerical semigroup.
Therefore, Equations (7.32) and (7.33) yield

C
[[
t
S′i
i

]]
⊂ pri (A).

Lemma 7.46. The ring A is Noetherian.

Proof. By Lemma 7.44 there is a bijection

I → Min (A),
i 7→ pi = {x ∈ A | pri (x) = 0} ∈ Min (A),

where pri :
∏
j∈I C[[tj ]]→ C[[ti]] is the projection for any i ∈ I. This obviously yields

⋂
p∈Min (A)

p = {0}.

Moreover, for any i ∈ I we obtain

ker (pri) = pi.

Thus, the Homomorphism Theorem yields an isomorphism

A/pi ∼= pri (A).

Since by Lemma 7.45 there is a numerical subsemigroup S′i of Si such that pri (A) = C
[[
t
S′i
i

]]
,

A/pi is Noetherian by Corollary 4.83. Therefore, A is Noetherian by Lemma A.3.

Lemma 7.47. The ring A is reduced.

Proof. This follows from the definition of A as a subring of the reduced ring
∏
i∈I C[[ti]].

Lemma 7.48. The ring A is a local complex algebroid curve.

Proof. By Remark 7.11 and Lemmas 7.43, 7.46 and 7.47 A is a local complete reduced
Noetherian C-algebra with maximal ideal mA = {x ∈ A | ordt (x) > 0}. Since ζij(0) = 1,
and since 0 ∈ Si \ Sji for any i, j ∈ I with i 6= j, all components of an element x ∈ A have
the same constant term. This implies A/mA

∼= C. Hence, A is a local complex algebroid
curve.

Lemma 7.49. The C-derivation
(witi∂ti)i∈I

of
∏
i∈I C[[ti]] restricts to a C-derivation d of A.
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Proof. Let x ∈ A, i.e.

x =

 ∑
αi∈Si

a(i)
αi t

αi
i


i∈I

∈
∏
i∈I

C[[ti]]

with
a(i)
αi = ζij(αi) a(j)

τij(αi)

for any i ∈ I, for every j ∈ I \ {i}, and for all αi ∈ Si \ Sji . Then

d(x) =

 ∑
αi∈Si\{0}

wiαia
(i)
αi t

αi
i


i∈I

.

Now Proposition 7.8 implies for any i ∈ I, for every j ∈ I \ {i}, and for all αi ∈
Si \

(
Sji ∪ {0}

)
wiαia

(i)
αi = wjαjζij(αi) a(j)

τij(αi).

Thus, d(x) ∈ A.

Lemma 7.50. An element

x =

 ∑
αi∈Si

a(i)
αi t

αi
i


i∈I

∈ A

is an eigenvector of d (see Lemma 7.49) if and only if there is a d ∈ Z such that for any
i ∈ I we have

xi =
{
a

(i)
αi t

αi
i if there is an αi ∈ Si such that wiαi = d,

0 else.

In particular, d has only eigenvalues in N.

Proof. Let x =
(∑

αi∈Si a
(i)
αi t

αi
i

)
i∈I

be an eigenvector of d, i.e. there is c ∈ C such that

cx = d(x)

=

 ∑
αi∈Si\{0}

wiαia
(i)
αi t

αi
i


i∈I

.

This implies

xi =
{
a

(i)
αi t

αi
i if there is an αi ∈ Si such that wiαi = c,

0 else.

for any i ∈ I. In particular, we have c ∈ N since w ∈ NI and S ⊂ NI .
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Let now d ∈ Z, and let x =
(∑

αi∈Si a
(i)
αi t

αi
i

)
i∈I

with

xi =
{
a

(i)
αi t

αi
i if there is an αi ∈ Si such that wiαi = d,

0 else.

for any i ∈ I. Then

d(x) =

 ∑
αi∈Si\{0}

wiαia
(i)
αi t

αi
i


i∈I

= d

 ∑
αi∈Si\{0}

a(i)
αi t

αi
i


i∈I

= dx.

Note that x = 0 if d < 0 since w ∈ NI and S ⊂ NI .

Lemma 7.51. Let

x =

 ∑
αi∈Si

a(i)
αi t

αi
i


i∈I

∈ A,

and let d ∈ Z. For any i ∈ I, for every j ∈ I \ {i}, and for all αi ∈ Si \ Sji we define

b(i)αi =
{
a

(i)
αi if wiαi = d,

0 else.

Then  ∑
αi∈Si

b(i)αi t
αi
i


i∈I

∈ A.

Proof. Let d ∈ Z, let i ∈ I, let j ∈ I \ {i}, and let αi ∈ Si \ Sji . First suppose wiαi 6= d.
Then also

wjτij(αi) = wj
wiαi
wj

= wiαi 6= d,

and hence
b(i)αi = 0 = b

(j)
τij(αi).

This implies
b(i)αi = ζij(αi) b(j)τij(αi).

Assume now that wiαi = d. Then also

wjτij(αi) = wj
wiαi
wj

= wiαi = d,

Hence,
b(i)αi = a(i)

αi = ζij(αi) a(j)
τij(αi) = ζij(αi) b(j)τij(αi).
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This implies  ∑
αi∈Si

b(i)αi t
αi
i


i∈I

∈ A.

Lemma 7.52. For any x ∈ A there is a sequence (xd)d∈Z ∈ AZ, where for every d ∈ Z
either xd = 0 or d(xd) = dxd, such that x =

∑
d∈Z xd.

Proof. This follows from Lemmas 7.50 and 7.51.

Lemma 7.53. The maximal ideal mA of A (see Lemma 7.43) is generated by eigenvectors
of d with positive eigenvalues.

Proof. We want to show that mA is generated by the set

M = {x ∈ A | ordt (x) > 0 and d(x) = dxx for some dx ∈ Z}.

Lemma 7.43 immediately yields M ⊂ mA.
Let x ∈ mA. Then ordt (x) > 0 by Lemma 6.15, and by Lemma 7.52 there is a sequence

(xd)d∈Z ∈ AZ with xd = 0 or d(xd) = dxd for every d ∈ Z such that x =
∑
d∈Z xd. In

particular, we have ordt (xd) > 0 (see Lemma 7.51), and hence xd ∈ mA for every d ∈ Z by
Lemma 7.43.
Pick an α ∈ CS with wiαi = wjαj for all i, j ∈ I. Then tα ∈ A by the definition of A

since αi ∈ Sji for any i, j ∈ I with i 6= j, see Lemma 4.63. Moreover,

d(tα) = (wiαitαii )i∈I
= dαt

α,

where dα = wiαi for all i ∈ I, i.e. tα ∈M . Then

tα+γS
∏
i∈I

C[[ti]]tαA ⊂ mA (7.34)

by the definition of A since αi ∈ Sji for any i, j ∈ I with i 6= j (see Lemma 4.63), and we
can write

x =
∑
d∈Z

ordt (xd)6≥α+γS

xd +
∑
d∈Z

ordt (xd)≥α+γS

xd,

where ∑
d∈Z

ordt (xd)≥α+γS

xd ∈ tαA

by Equation (7.34).
Let now d ∈ Z such that ordt (xd) 6≥ α+ γS . Then by Lemma 7.50 there is an i ∈ I such

that d = wi ordti (xd) ≤ wi(α+ γS)i. In particular, we have d ≤ max {wi(α+ γS)i | i ∈ I}.
This implies that ∑

d∈Z
ordt (xd)6≥α+γS

xd
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is finite. Thus,
x =

∑
d∈Z

ordt (xd)6≥α+γS

xd + tαy ∈ 〈M〉

with some y ∈ A.
Finally, note that by Lemma 7.50 the eigenvalue of every x ∈ M with respect to d is

positive.

Lemma 7.54. Using the bijection η : Min (Fib (S,w)) → I of Lemma 7.44 to identify
NI = NMin (Fib (S,w)) we have

S ⊂ ΓFib (S,w) (7.35)

as well as equalities equalities (
ΓFib (S,w)

)
p

= Sη(p)

for any p ∈ Min (Fib (S,w)) and (
ΓFib (S,w)

)q
p

= S
η(q)
η(p)

for every q ∈ Min (Fib (S,w)) \ {q}.

Proof. Let α ∈ S. Then tα ∈ Fib (S,w) since S is quasihomogeneous. Using η to identify
NI = NMin (Fib (S,w)) this implies

S ⊂ ΓFib (S,w),

and hence Sη(p) ⊂
(
ΓFib (S,w)

)
p
for any p ∈ Min (Fib (S,w)). Moreover, by Lemma 7.44

and the definition of A we have for any p ∈ Min (Fib (S,w))

Fib (S,w)/p ∼= prη(p) (Fib (S,w)) ⊂ C
[[
t
Sη(p)
η(p)

]]
.

This implies (
ΓFib (S,w)

)
p

= Sη(p). (7.36)

Let now p ∈ Min (Fib (S,w)), and let q ∈ Min (Fib (S,w)) \ {p}. Since S ⊂ ΓFib (S,w)

(see Equation (7.35)), we have Sη(q)
η(p) ⊂

(
ΓFib (S,w)

)q
p
.

Let α ∈ (Fib (S,w))qp. Then by Proposition 4.69 there is an x ∈ q with ordtη(p) (x) = α.
So writing

x =

 ∑
αp′∈Sη(p′)

a(p′)
αp′
t
αp′

η(p′)


p′∈Min (Fib (S,w))

we have by Lemma 7.44

a(p)
αp

= 0 for all αp ∈ Sη(p) with αp < α, (7.37)

a(p)
α 6= 0, (7.38)
a(q)
αq

= 0 for all αq ∈ Sη(q). (7.39)

216



7.8. Proof of Proposition 7.12

By Equation (7.36) we have α ∈ Sη(p). Assume α ∈ Sη(p) \ S
η(q)
η(p) . Then τη(p)η(q)(α) ∈

Sη(q) \ S
η(p)
η(q) by Proposition 7.8. Hence, Equation (7.39) and the definition of A yield

0 = a
(q)
τη(p)η(q)(α) = ζη(q)η(p)

(
τη(p)η(q)(α)

)
apα.

Since a(p)
α 6= 0 (see Equation (7.38)), this implies ζη(q)η(p)

(
τη(q)η(p)(α)

)
= 0, contradicting

the assumption. Thus, α ∈ Sη(q)
η(p) . This yields (ΓA)qp ⊂ S

η(q)
η(p) , and therefore

S
η(q)
η(p) = (ΓA)qp.

Proof of Proposition 7.12. By Lemma 7.48 A is a local complex algebroid curve. By
Lemma 7.53 (and since A is Noetherian) there is a generating system (xi)ni=1 for the
maximal ideal mA of A such that d(xi) = w′ixi for some w′i ∈ N with w′i > 0 for every
i = 1, . . . , n. Thus, A is quasihomogeneous. Since the grading on A is induced by the
C-derivation

(witi∂ti)i∈I

on A =
∏
i∈I C[[ti]] (see Lemma 7.42), and since the valuation of QA is ordt, A has normal

weights w (see Definition 6.3).
Using the bijection η : Min (Fib (S,w)) → I of Lemma 7.44, we have by Lemma 7.54

equalities (
ΓFib (S,w)

)
p

= Sη(p)

for any p ∈ Min (Fib (S,w)) and

(
ΓFib (S,w)

)q
p

= S
η(q)
η(p)

for every q ∈ Min (Fib (S,w)) \ {q}. This yields commutative diagrams

C
[[
t
Sη(p)
η(p)

]]
C
[[
t
(ΓFib (S,w))p
p

]]

C
[[
t
Sη(p)\S

η(q)
η(p)

η(p)

]]
C
[[
t
(ΓFib (S,w))p\(ΓFib (S,w))qp
p

]]
,

∼=

∼=

and hence
Fib (S,w) = Fib

(
ΓFib (S,w), w

)
,

is a fibre product (see Definition 6.4).
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7.9. Proof of Theorems 7.23 and 7.24
Lemma 7.55. Let R be a quasihomogeneous curve with normal weights w ∈ NMin (R) (see
Definition 6.3). Then for any w-element α of ΓR with α ∈ ΓR there is a homogeneous
element x ∈ Rdegw (α) with

νp(x) =
{
αp if αp < (γΓR)p,
∞ else,

for any p ∈ Min (R). In particular, for any p ∈ Min (R) with αp < (γΓR)p there is an
a(p) ∈ C \ {0} such that

(Ψ(x))p =
{
a(p)t

αp
p if αp < (γΓR)p,

0 else,

where we use the notations of Theorem 6.2.

Proof. If α ∈ CΓR , then the statement is trivial. So let α ∈ ΓR \ CΓR , and let x ∈ R with
ν(x) = α. Since α is a w-element of ΓR, Proposition 7.16 yields wpαp = degw (α) for every
p ∈ Min (R) with αp < (γΓR)p.
In the notation of Theorem 6.2, there is by Theorem 6.2.(5) for any p ∈ Min (R) with

αp < (γΓR)p an a(p) ∈ C such that(
(Ψ(x))degw (α)

)
p

= apt
αp
p .

Then ap 6= 0 for every p ∈ Min (R) with αp < (γΓR)p by Theorem 6.2.(3) since ν(x) = α.
Let now y ∈ QR with

(Ψ(y))p =


(
(Ψ(x))degw (α)

)
p

if αp ≥ (γΓR)p,

0 else,

for any p ∈ Min (R). Then ν(y) ≥ γΓR , and hence y ∈ CR by Proposition 4.56. Moreover,
y ∈ Rdegw (α) by construction. Thus, x− y ∈ Rdegw (α) with

(Ψ(x− y))p =
{
a(p)t

αp
p if αp < (γΓR)p,

0 else,

for every p ∈ Min (R). Then the claim follows from Theorem 6.2.(3).

Lemma 7.56. Let R be a fibre product with normal weights w ∈ NMin (R) (see Defini-
tions 6.3 and 6.4), let α ∈

∏
p∈Min (R) (ΓR)p \ CΓR be a w-element of ΓR, let β ∈ ΓR be a

w-element of ΓR with βp = αp for some p ∈ Min (R) with αp < (γΓR)p (see Proposition 7.6
and Theorem 7.19), and set

J =
{
q ∈ Min (R)

∣∣∣ αq < min
{
βq, (γΓR)q

}}
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If J = ∅, then α ∈ ΓR, and if J 6= ∅, then there is a subset J ′ of J with J ′ 6= J and a
w-element δ of ΓR with δ ∈ ΓR such that

δMin (R)\J ′ = αMin (R)\J ′ ,

δq > αq for all q ∈ J ′

Proof. By Lemma 4.33 we may replace α by inf {α, γΓR} and β by inf {β, γΓR} (see
Definition 7.14). Then

J = {q ∈ Min (R) | αq < βq}, (7.40)

and we set
J1 = {p ∈ Min (R) | βq < αq}. (7.41)

Since there is a p ∈ Min (R) with αp < (γΓR)p and αp = βp, we have

degw (α) = degw (β) (7.42)

(see Definition 7.17). The construction of the sets J and J1 yields with Proposition 7.16
and Equation (7.42)

αMin (R)\(J∪J1) = βMin (R)\(J∪J1), (7.43)
αp < (γΓR)p for all p ∈ J, (7.44)
αJ1 = (γΓR)J1

, (7.45)
βJ = (γΓR)J , (7.46)
βq < (γΓR)q for all q ∈ J1. (7.47)

This implies with Definition 7.14

αp ∈ (ΓR)qp for any p ∈ Min (R) and q ∈ J1 with p 6= q (7.48)
βp ∈ (ΓR)qp for any p ∈ Min (R) and q ∈ J with p 6= q, (7.49)

αp = βp ∈ (ΓR)qp for any p ∈ Min (R) \ (J ∪ J1) and q ∈ J ∪ J1, (7.50)
αp, βp ∈ (ΓR)qp for any p ∈ J ∪ J1 and q ∈ Min (R) \ (J ∪ J1), (7.51)

where Equation (7.51) follows from Equation (7.50) applying Definition 7.14.
Let

Ψ: QR →
∏

p∈Min (R)
C[[tp]]

[
t−1
p

]
be the C-algebra isomorphism of Theorem 3.44 (also see Theorem 6.2.(4)). Then by
Lemma 7.55 there is a homogeneous element x ∈ (Ψ(R))degw (β) such that for any p ∈
Min (R) we have

xp =
{
a(p)t

βp
p if βp < (γΓR)p,

0 else,
(7.52)

where a(p) ∈ C \ {0} for all p ∈ Min (R) with βp < (γΓR)p. Note that, in particular, we
have xp = 0 for all p ∈ J by Equation (7.46).
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Let now
y ∈

∏
p∈Min (R)

C
[[
t
(ΓR)p
p

]]
with

yp =
{
xp if p ∈ Min (R) \ J1,

0 else,
(7.53)

for any p ∈ Min (R). Then Equations (7.43), (7.46), and (7.52) yield

yp =
{
a(p)t

βp
p = a(p)t

αp
p if p ∈ Min (R) \ (J ∪ J1) and αp < (γΓR)p,

0 else,
(7.54)

Let p, q ∈ Min (R) with p 6= q, and suppose that νp
(
Ψ−1(y)

)
∈ (ΓR)p \ (ΓR)qp. Then

βp = νp
(
Ψ−1(y)

)
∈ (ΓR)p \ (ΓR)qp (7.55)

by Lemma 3.16, Theorem 6.2.(3) (see Equation (6.6)), and Equation (7.54). In particular,
this implies

p ∈ Min (R) \ (J ∪ J1) (7.56)

(see Equation (7.54)). Moreover, since β is a w-element of ΓR, Equation (7.55) yields
βq ∈ (ΓR)q \ (ΓR)pq by Remark 7.15. Therefore, q ∈ Min (R) \ (J ∪ J1) by Equation (7.51),
and hence αq = βq < (γΓR)q by Lemma 4.63 and Equation (7.43). This implies yq = a(q)t

βq
q

by Equation (7.54). Since β is a w-element of ΓR, we have τpq(βp) = βq, and since
x ∈ R, Theorem 6.2.(4) and Equations (7.52) and (7.53) yield a(p) = ζpq(βp) a(q)

τpq(βp). Thus,
y ∈ Ψ(R) by Theorem 6.2.(4) since R is a fibre product (see Definition 6.4). Hence,

y ∈ (Ψ(R))degw (β) = (Ψ(R))degw (α) (7.57)

by Theorem 6.2.(5), Proposition 7.16, and Equation (7.42).
Let p ∈ J . Then by Proposition 7.6 and Theorem 7.19 there is a w-element ε ∈ ΓR with

εp = αp. In particular, this implies

degw (α) = degw (ε) (7.58)

by Proposition 7.16 and Equation (7.44). Set

J2 = {q ∈ J | αq < εq}.

Then J2 ( J if J 6= ∅ since p ∈ J , or J2 = ∅ otherwise. Moreover, Proposition 7.16 and
Equation (7.44) yield

εq = αq < (γΓR)q (7.59)

for all q ∈ J \ J2 and
εq ≥ (γΓR)q (7.60)

for all q ∈ J2.

220



7.9. Proof of Theorems 7.23 and 7.24

By Lemma 7.55 there is for any p ∈ Min (R) with εp < (γΓR)p a b(p) ∈ C \ {0} such that
for the element

z ∈
∏

q∈Min (R)
C
[[
t
(ΓR)q
q

]]
defined by

zp =
{
b(p)tεp if εp < (γΓR),
0 else,

(7.61)

we have z ∈ (Ψ(R))degw (ε) = (Ψ(R))degw (α) (see Equation (7.58)).
Let now

u ∈
∏

p∈Min (R)
C
[[
t
(ΓR)p
p

]]
with

up =
{
zp if p ∈ J,
0 else,

(7.62)

for any p ∈ Min (R). Then Equations (7.59), (7.60), and (7.61) yield

up =
{
b(p)tεp = b(p)tαp if p ∈ J \ J2,

0 else.
(7.63)

Let p, q ∈ Min (R) with p 6= q, and suppose that νp
(
Ψ−1(u)

)
∈ (ΓR)p \ (ΓR)qp. Then

εp = νp(u) ∈ (ΓR)p \ (ΓR)qp (7.64)

by Lemma 3.16, Theorem 6.2.(3) (see Equation (6.6)), and Equation (7.63). In particular,
this implies

p ∈ J \ J2 (7.65)

(see Equation (7.63)). Moreover, Equations (7.51), (7.59), and (7.65) yield q ∈ J ∪ J1, and
Equations (7.48), (7.59), and (7.65) imply q 6∈ J1 as otherwise εp = αp ∈ (ΓR)qp in both
cases. Thus, we have

q ∈ J. (7.66)

Since ε is a w-element of S, Remark 7.15 and Equation (7.64) yield εq ∈ (ΓR)q \ (ΓR)pq,
and hence εq < (γΓR)q by Lemma 4.63. Therefore, q ∈ J \ J2 by Equations (7.59) and
(7.66). Then Equation (7.63) yields uq = b(q)t

εq
q . Since ε is a w-element of S, we have

τpq(εp) = εq (see Definition 7.14 and Equation (7.64)), and since z ∈ Ψ(R), Theorem 6.2.(4)
and Equations (7.61) and (7.62) yield b(p) = ζpq(εp) b(q)τpq(εp). Thus, u ∈ Ψ(R) since R is a
fibre product (see Definition 6.4), and hence

u ∈ (Ψ(R))degw (ε) = (Ψ(R))degw (α) (7.67)

by Theorem 6.2.(5) and Equation (7.58).
Now Equations (7.57) and (7.67) yield

y + u ∈ (Ψ(R))degw (α), (7.68)
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and by Equations (7.54) and (7.63) we have

(y + u)p =


yp = a(p)tαp if p ∈ Min (R) \ (J ∪ J1) and αp < (γΓR)p,
up = b(p)tαp if p ∈ J \ J2,

0 else,
(7.69)

for any p ∈ Min (R). Then

δ = inf
{
ν
(
Ψ−1(y + u)

)
, γΓR

}
is by Lemma 7.41 and Equation (7.68) a w-element of ΓR with δ ∈ ΓR. Moreover, for any
p ∈ Min (R) Equations (7.59) and (7.69) yield

δp =
{
αp < (γΓR)p if p ∈ Min (R) \ (J1 ∪ J2) with αp < (γΓR)p,
(γΓR)p else,

since ν
(
Ψ−1(y + u)

)
= ordt (y + u) by Theorem 6.2.(4). As α ≤ γΓR with αJ1 = (γΓR)J1

by Equation (7.45), this implies

δMin (R)\J2 = αMin (R)\J2 ,

δJ2 = (γΓR)J2
.

In particular, if we set
J ′ =

{
p ∈ J2

∣∣∣ αp < (γΓR)p
}
⊂ J2

then

δMin (R)\J ′ = αMin (R)\J ′ ,

δq = (γΓR)q > αq for all q ∈ J ′

Lemma 7.57. Let R be a quasihomogeneous curve with normal weights w ∈ NMin (R) (see
Definition 6.3), and let α ∈

∏
p∈Min (R) (ΓR)p be a w-element of ΓR. If R is a fibre product

(see Definition 6.4), then α ∈ ΓR.

Proof. If α ∈ CΓR , the statement is trivial. So suppose that α ∈
∏

p∈Min (R) (ΓR)p \ CΓR .
Then there is a p ∈ Min (R) such that αp < (γΓR)p. Since αp ∈
brΓRp, and since R is quasihomogeneous, there is by Proposition 7.6 and Theorem 7.19 a
w-element β of S with β ∈ ΓR and αp = βp. In particular, this implies

degw (α) = degw (β) (7.70)

(see Proposition 7.16 and Definition 7.17). Inductively applying Lemma 7.56 yields a chain
of subsets . . . ⊂ J1 ( J ⊂ Min (R) such that for any i ≥ 1 we have Ji = ∅ or Ji+1 ( Ji,
and there is a w-element β(i) of ΓR with(

β(i)
)

Min (R)\Ji
= αMin (R)\Ji .

Since Min (R) is finite by Corollary A.46, we eventually obtain that Jn = ∅ for some n,
and hence α = β(n) ∈ ΓR.
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Proof of Theorem 7.23. Let R be a quasihomogeneous curve with normal weights w and
connecting maps ζ =

(
(ζpq)q∈Min (R)\{p}

)
p∈Min (R)

(see Definition 6.3). Then ΓR is quasiho-
mogeneous of type w by Proposition 7.6.

Let R be a fibre product (see Definition 6.4), and let α ∈
∏

p∈Min (R) (ΓR)p be a w-element
of ΓR. Then α ∈ ΓR by Lemma 7.57, and hence ΓR is w-closed.
Suppose now that ΓR is w-closed. Set

A = Fib (ΓR, w, ζ).

Then A is a quasihomogeneous curve with normal weights w by Proposition 6.6.(1) and
(2), and it is a fibre product by Proposition 6.6.(3). Therefore, ΓA is w-closed. Since
Ψ−1(A) ∈ RR by Proposition 6.6.(4), Propositions 6.6.(4) and 7.22 yield

ΓR = ΓΨ−1(A).

Thus, R = A is a fibre product by Corollary 4.52 since R ⊂ Ψ−1(A) by Theorem 6.2.(4).
The particular claim follows with Proposition 6.6.

Proof of Theorem 7.24. Let S be a quasihomogeneous semigroup of type w ∈ Ns. Then
Fib (S,w) is a quasihomogeneous curve with normal weights w by Proposition 7.12. Since
Fib (S,w) is also a fibre product by Proposition 7.12, ΓFib (S,w) is w-closed by Theorem 7.23.

Since S ⊂ ΓFib (S,w) with Si =
(
ΓFib (S,w)

)
i
for any i ∈ I and Sji =

(
ΓFib (S,w)

)j
i
for every

j ∈ I \ {i} by Lemma 7.54, Proposition 7.22 yields Sw = ΓFib (S,w).
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8. Normalization of Arrangements
Endomorphism rings occur in the construction of blow ups [15] or non-commutative
resolutions [16, 17]. A non-commutative crepant resolution of a curve can be computed [18]
considering the intermediate steps of a normalization algorithm [19] which is based on
a characterization of normality in terms of the endomorphism ring of a so-called test
ideal [20]: a reduced Noetherian ring R is normal if and only if R = i : i for a test ideal i of
R. If R is a reduced one-dimensional Noetherian semilocal ring, then the Jacobson radical
jR is a test ideal for R (see Definition B.47); if R is local, then the maximal ideal mR is
the unique test ideal for R (see Remark B.49).

The above criterion by Grauert and Remmert yields the following algorithm for normal-
ization (see Proposition B.57). Let R be a reduced Noetherian ring. Then for any test
ideal i of R there is a sequence of integral extensions

R = R(0) ( R(1) ( . . . ⊂ R,

where for any i ≥ 0 we set
R(i+1) = i(i) : i(i)

and
i(i+1) =

√
i(i)R(i+1)

with i(0) = i. If R is finite over R, then R(i) is finite over R for every i ∈ N, and there
is an n ∈ N such that R(i) = R(n) = R for any i ≥ n. Examples for classes of rings with
finite normalization are admissible rings (see Definition 3.18.(4) and Corollary C.15) or
reduced excellent rings (see Theorem B.36.(2)). If R is an admissible ring, then R(i) is an
admissible ring for every i ∈ N by Theorem 3.45.(1), and if R is a reduced excellent ring,
then R(i) is a reduced excellent ring for every i ∈ N by Lemma A.27 (since R(i) ⊂ QR) and
Theorem B.34.

In this chapter we apply the Grauert–Remmert algorithm to two kinds of arrangements.
Following an idea by Böhm, Decker, and Schulze [21] we use the semigroup of values to
determine the intermediate steps explicitly (also see [35]). We start in Section 8.1 with
a plane arrangement of smooth curves which pairwise intersect only transversally and
only in finitely many points. Then we can determine the number n of steps needed in
the Grauert–Remmert algorithm to obtain the normalization in terms of the number of
analytic branches in the singular points of the arrangement (see Theorem 8.1). For this, we
investigate the arrangement locally, that is, we consider the completion of the local rings
at all points (in fact, we only need to consider the singular points). Then we deal with
algebroid curves, and as in [21, 35] the semigroup of values helps to compute explicitly the
intermediate steps in the Grauert–Remmert algorithm (see Theorem 8.2).
Using Serre’s criterion (see Section B.5.1) which allows for checking normality in codi-

mension one, we apply this result in Section 8.2 to hyperplane arrangements. In fact,
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8. Normalization of Arrangements

the Grauert–Remmert algorithm is compatible with localization (see Proposition B.58).
Geometrically, after localization in codimension one we look at “transversal slices” of the
arrangement. This reduces the problem to plane line arrangements whose cardinalities are
the numbers of hyperplanes intersecting the respective slices. Then the number of steps
needed to compute the normalization of the hyperplane arrangement equals the maximum
over the number of steps needed in each slice. This number can be deduced from the
combinatorics of the arrangement (see Theorem 8.14).

8.1. Plane Arrangements of Smooth Curves
Theorem 8.1. Let C be a reduced plane curve over a field k, and suppose that the
analytic branches at the singular points of C are regular and intersect transversally. For
a singular point p of C we denote by np the number of analytic branches at p. If |k| ≥
max {np | p ∈ Sing (C)}, then for any n ∈ N we have

(OC)(n) = OC

if and only if n ≥ max {np | p ∈ Sing (C)} − 1.

For the proof of Theorem 8.1 we consider the curve locally at the singular points. Then
OC,p is a local reduced excellent ring by Lemma A.27 and Theorem B.34. Since completion
factors through localization, taking the completion with respect to the maximal ideal
corresponding to p we obtain

ÔC = ÔC,p ∼= k[[X,Y ]]/
∏
i∈Ip

fi, (8.1)

where Ip is the set of branches of C meeting in p, and

fi = aiX + biY + terms of higher degree

with (ai, bi) 6= (0, 0) for any i ∈ Ip (since the analytic branches are smooth) and (ai, bi) 6=
(aj , bj) for all i, j ∈ Ip with i 6= j (since the branches intersect transversally).

After a coordinate change we may assume that ai 6= 0. Then replacing fi by 1
ai
fi we

may assume that
fi = X + biYi + terms of higher order

for all i ∈ Ip. Then locally we can describe the normalization process in more detail.

Theorem 8.2. Let I be a finite set, let k be a field with |k| ≥ |I|, and let

R = k[[X,Y ]]/
〈∏
i∈I

fi

〉
,

where fi ∈ k[[X,Y ]] is of the form

fi = X + ciY + terms of higher order
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8.1. Plane Arrangements of Smooth Curves

for any i ∈ I with ci 6= cj for all i, j ∈ I with i 6= j. Then for n ∈ N we have

R(n) = R

if and only if n ≥ |I| − 1. Recall that the unique test ideal for R is its maximal ideal
(see Remark B.49), and hence the test ideal of any ring R(n) is its Jacobson radical (see
Theorem A.12).

Moreover, for n < |I| − 1 we have

R(n) = R(n−1) +
n∑
j=1

k · z(n)
j = k

[[
x, y, z

(n)
1 , . . . , z(n)

n

]]
,

where

x = −ct+ terms of higher order,
y = t,

z
(n)
j = c|I|−jt|I|−n−1 for every j = 1, . . . , n,

with t = (ti)i∈I , c = (ci)i∈I , and ck =
(
cki

)
i∈I

for k ∈ N. In particular, we have

R(n) = k
[[
X,Y, Z

(n)
1 , . . . , Z(n)

n

]]
/i(n)

with
i(n) =

⋂
i∈I

〈
fi, Z

(n)
j − c|I|−ji Y |I|−n−1

∣∣∣ j = 1, . . . , n
〉
.

For any n ∈ N the semigroup of values of R(n) is

ΓR(n) = 〈1 + Nek | k ∈ I〉 ∪
(
(|I| − 1− n)i∈I + NI

)
=
{

k +
k∑
l=1

Ne
i
(k)
l

∣∣∣∣∣ i(k)
j ∈ I, 0 ≤ k ≤ |I|

}
∪
(
(|I| − 1− n)i∈I + NI

)
with conductor

γΓ
R(n) = (|I| − 1− n)i∈I .

With Theorem 8.2 we can prove Theorem 8.1.

Proof of Theorem 8.1. There is a g ∈ k[X,Y ] such that OC = k[X,Y ]/〈g〉. Thus, OC is
excellent by Theorems B.34 and B.36 since it is a finitely generated algebra over a field.
Moreover, OC is reduced by assumption.
Since k is Cohen–Macaulay (see Remark C.3), also k[X,Y ] is Cohen–Macaulay by

Corollary C.9. Thus, OC is Cohen–Macaulay by Proposition C.10, and therefore it satisfies
Serre’s condition (S2) by Corollary C.5.
Let n ∈ N. Then Lemma B.61.(4) implies that (OC)(n) = OC if and only if(

(OC)p
)(n)

= (OC)p
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8. Normalization of Arrangements

for all p ∈ Sing (OC) with height p = 1. Recall that by assumption Sing (OC) is finite, and
height p = 1 for all p ∈ Sing (OC). So let p ∈ Sing (OC). Then (OC)p is a reduced excellent
ring by Lemma A.27 and Theorem B.34. Inductively applying Proposition B.54 implies
that

(
(OC)p

)(n)
= (OC)p if and only if

(
(̂OC)p

)(n)
= (̂OC)p.

With the considerations before Equation (8.1) we may assume that (̂OC)p is of the form

ÔC = ÔC,p ∼= k[[X,Y ]]/
∏
i∈Ip

fi,

where Ip is the set of analytic branches of C meeting in the point corresponding to p, and

fi = X + biY + terms of higher order

for any i ∈ I with ci 6= cj for all i, j ∈ Ip with i 6= j. Then Theorem 8.2 yields the
claim.

For the proof of Theorem 8.2 we need a few preliminary results. For the rest of this
section let I be a finite set, let k be a field with |k| ≥ |I|, and let

R = k[[X,Y ]]/
〈∏
i∈I

fi

〉
,

where fi ∈ k[[X,Y ]] is of the form

fi = X + ciY + terms of higher order

for any i ∈ I with ci 6= cj for all i, j ∈ I with i 6= j. In the following we identify R with its
image in

R =
∏
i∈I

k[[ti]]

(see Theorem 3.44), i.e. we write
R = k[[x, y]]

with

x = −ct+ terms of higher order, (8.2)
y = t (8.3)

(see [32, page 299]).
Remark 8.3. The ring R is an algebroid curve, and hence admissible by Proposition 3.41.
Then for every n ∈ N also the ring R(n) is admissible by Theorem 3.45.(1) and Proposi-
tion B.57.
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8.1. Plane Arrangements of Smooth Curves

Lemma 8.4. The family
(
cj
)|I|−1
j=0 is linearly independent, where cj =

(
cji

)
i∈I

for any
j ∈ N.

Proof. Assume that
(
cj
)|I|−1
j=0 is linearly dependent. Then there is a non-zero family

(aj)|I|−1
j=1 ∈

∏|I|−1
j=1 k such that

∑|I|−1
j=0 ajc

j
i = 0 for all i ∈ I, i.e. the coefficients ci, i ∈ I, are

roots of the polynomial g =
∑|I|−1
j=0 ajX

j ∈ k[X]. Since g can have at most deg g different
roots, and since deg g ≤ |I| − 1, this is a contradiction to ci 6= cj for all i, j ∈ I with
i 6= j.

Lemma 8.5. The value semigroup of R is

ΓR = 〈1 + Nei | i ∈ I〉

=

k +
k∑
j=1

n
i
(k)
j

e
i
(k)
j

∣∣∣∣∣ i(k)
j ∈ I and k, n

i
(k)
j

∈ N


with γΓR = (|I| − 1)i∈I and µΓA = 1.

Proof. Set
Γ = 〈1 + Nei | i ∈ I〉

and

Γ′ =

k +
k∑
j=1

n
i
(k)
j

e
i
(k)
j

∣∣∣∣∣ i(k)
j ∈ I and k, n

i
(k)
j

∈ N

. (8.4)

Let α ∈ Γ′. Then there is a k ∈ N, and for j = 1, . . . , k there are i(k)
j ∈ I and n

i
(k)
j

∈ N
such that

α = k +
k∑
j=1

n
i
(k)
j

e
i
(k)
j

=
k∑
j=1

(
(1)i∈I + n

i
(k)
j

e
i
(k)
j

)
∈ Γ.

Now let β ∈ Γ. Then there is a k ∈ N, and for j = 1, . . . , k there are ij ∈ I and nij ∈ N
such that

β =
k∑
j=1

(
1 + nijeij

)
= k +

k∑
j=1

nijeij ∈ Γ′.

Thus, we have indeed
Γ = Γ′. (8.5)

Now we want to show that ΓR = Γ. For any k ∈ N and for all i ∈ I we have

kei +
∑

j∈I\{i}
ej = ν

(
x− ciy + yk

)
∈ ΓA.

Thus, Γ ⊂ ΓR.
Let α ∈ (|I| − 1)i∈i + NI . If there is an i ∈ I such that αi = |I| − 1, then

α ∈
∑

j∈I\{i}
(1 + Nej) ⊂ Γ.
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8. Normalization of Arrangements

If αi > |I| − 1 for all i ∈ I, then

α ∈
∑
j∈I

(1 + Nej) ⊂ Γ.

This implies (|I| − 1)i∈I + NI ⊂ Γ, and hence γΓ ≤ (|I| − 1)i∈I . Moreover, for any i ∈ I
we have

(|I| − 2)k∈I +
∑

j∈I\{i}
ei =

∑
j∈I\{i,l}

(1 + ej) + el 6∈ Γ,

where l ∈ I \ {i}. This implies γΓ ≥ (|I| − 2)k∈I +
∑
j∈I\{i} ei for all i ∈ I, and hence

γΓ = (|I| − 1)k∈I . (8.6)

Let now z ∈ Rreg, and suppose that ν(z) 6∈ Γ. Then ν(z) 6≥ γΓ. Therefore,

d = min {ordti (z) | i ∈ I} < |I| − 1 (8.7)

by Equation (8.6). Since z ∈ R, for all m,n ∈ N there are am,n ∈ k such that

z =
∑

m,n∈N
am,nx

myn.

As
∑d
k=0 ak,d−kc

k 6= 0 by Equation (8.7) and Lemma 8.4, Equations (8.2) and (8.3) yield

z =
∑

m,n∈N
am,n

(
cmtm+n + terms of higher order

)

=
d∑

k=0
ak,d−kc

ktd + terms of higher order. (8.8)

So if ν(z) 6∈ Γ, then Equations (8.4), (8.5), and (8.7) imply that there is a J ⊂ I with
|J | > d such that νi(z) > d for all i ∈ J . Therefore, we have by Equation (8.8)

d∑
k=0

ak,d−kc
k
i t
d
i = 0

for all i ∈ J , i.e. the coefficients ci, i ∈ J , are roots of the polynomial

g =
d∑

k=0
ak,d−kX

d.

But this yields a contradiction as g has only deg g ≤ d roots but |J | > d and the coefficients
ci, i ∈ I, are pairwise different. Thus, we obtain ΓR = Γ.

Proof of Theorem 8.2. We proof the statement by induction on n. Note that with R also
R(n) is an algebroid curve by Theorem 3.45.(2) since R(n) is an integral extension of R in
QR by Proposition B.57. For n = 0 the statement is true since R(0) = R = k[x, y] with

x = ct+ terms of higher order,
y = t
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8.1. Plane Arrangements of Smooth Curves

(see Equations (8.2) and (8.3)), and the semigroup of values of R is

ΓR = 〈1 + Nei | i ∈ I〉

by Lemma 8.5.

Now let 0 < n < |I| − 1, and suppose the statement is true for n− 1. Then R(n−1) is
local by Theorem 4.9, and we denote the maximal ideal by mR(n−1) . By Remark 4.8 and
Lemma 4.58 the conductor of ΓR(n) = Γm

R(n−1) :m
R(n−1) is

γΓ
R(n) = γΓm

R(n−1) :m
R(n−1)

= γΓm
R(n−1)

− µΓm
R(n−1)

= γMΓ
R(n−1)

− µMΓ
R(n−1)

= γΓ
R(n−1) − µMΓ

R(n−1)

= (|I| − n)i∈I − 1
= (|I| − 1− n)i∈I .

Set

Γ = Γm
R(n−1) − Γm

R(n−1)

= MΓ
R(n−1) −MΓ

R(n−1)

=
{
α ∈ DΓ

R(n−1)

∣∣∣ α+MΓ
R(n−1) ⊂MΓ

R(n−1)

}
(see Remark 4.8) and

Γ′ = 〈1 + Nek | k ∈ I〉 ∪
(
(|I| − 1− n)i∈I + NI

)
. (8.9)

Then

Γ′ =
{

k +
k∑
l=1

Ne
i
(k)
l

∣∣∣∣∣ i(k)
j ∈ I, 0 ≤ k ≤ |I|

}
∪
(
(|I| − 1− n)i∈I + NI

)
.

(see Lemma 8.5). Moreover, we obviously have Γ′ ⊂ Γ, and Lemma 3.23.(1) yields

ΓR(n−1) ⊂ Γ.

Now let α ∈ NI \ Γ′. Then α 6≥ γΓ′ . Thus, there is a k ∈ N and a J ( I with |J | > k
such that

α = k +
∑
j∈J

njej

for some nj ∈ N, j ∈ J . Let l ∈ I \ J , and set

β = 1 + el.
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Then β ∈MΓ
R(n−1) , and

α+ β = k + 1 +
∑

j∈J∪{l}
njej

with nl = 1. Since
k + 1 < γΓ′ + 1 = (|I| − n)i∈I = γΓ

R(n−1) ,

and since |J ∪ {l}| = |J |+ 1 > k+ 1, we have α+ β 6∈MΓ
R(n−1) , and therefore α 6∈ Γ. This

implies
Γ = Γ′. (8.10)

Set
R̃ = R(n−1) +

n∑
j=1

kz
(n)
j . (8.11)

Since for any j = 1, . . . , n we have

z
(n)
j x =

(
c|I|−j+1t|I|−n + terms of higher order

)
∈ CR(n−1) ,

z
(n)
j y = c|I|−jt|I|−n ∈ CR(n−1) ,

z
(n)
j z

(n−1)
j′ = c2|I|−j−j′t2(|I|−n−1) ∈ CR(n−1) for all j′ = 1, . . . , n,

and
z

(n−1)
j = yz

(n)
j

for all j = 1, . . . , n− 1, it follows that

R̃ = k
[[
x, y, z

(n)
1 , . . . , z(n)

n

]]
,

is a regular R(n−1)-submodule of R(n−1), and hence R̃ ∈ RR(n−1) . Moreover, we have
R̃mR(n−1) ⊂ mR(n−1) as

z
(n)
j z

(n−1)
k = c2|I|−j−kt2(|I|−n)−1 ∈ CR(n−1)

for all k = 1, . . . , n− 1 and

mR(n−1) =
〈
x, y, z

(n−1)
k

∣∣∣ k = 1, . . . , n− 1
〉
.

Now we want to show that Γ
R̃

= Γ. On the one hand, we have Γ
R̃
⊂ Γ since for all

j = 1, . . . , n

ν
(
z
n)
j

)
≥ γΓ

A(n−1) − 1 = (|I| − n)i∈I − 1

= (|I| − n− 1)i∈I
= γΓ

by Equations (8.9) and (8.10).
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On the other hand, note that xky(|I|−1−n−k) ∈ R(n−1) for all k = 0, . . . , |I| − 1− n, and
we have

xky|I|−1−n−k = −ckt|I|−1−n +O (tγR(n−1) ).

Since also c|I|−jt|I|−1−n = z
(n)
j ∈ R̃ for j = 1, . . . , n, we have

ckt|I|−1−n ∈ R̃

for all k = 0, . . . , |I| − 1. Then for any i ∈ I and for any k = 0, . . . , |I| − 1 there is an
a

(i)
k ∈ k such that

t
|I|−1−n
i ei =

|I|−1∑
k=0

a
(i)
k c

kt|I|−1−n ∈ R̃

as the family
(
ck
)|I|−1

k=0
is by Lemma 8.4 linearly independent. This implies that Γ = Γ′ ⊂ Γ

R̃
,

and hence
Γ = Γ

R̃
.

So we have R̃ ∈ RA(n−1) with R̃mR(n−1) ⊂ mR(n−1) and Γ
R̃

= Γm
R(n−1) − Γm

R(n−1) . Thus,
Lemma 4.53 yields

R̃ = mR(n−1) : mR(n−1) = R(n).

Moreover, we can compute i(n) = ker Φ, where

Φ: k
[[
X,Y, Z

(n)
1 , . . . , Z(n)

n

]]
→ k

[[
x, y, z

(n)
i , . . . , z(n)

n

]]
,

X 7→ x,

Y 7→ y,

Z
(n)
j 7→ z

(n)
j for any j = 1, . . . , n.

Let n = |I| − 1. Then Lemma 4.58 yields

γΓ
R(|I|−1) = γΓm

R(|I|−2) :m
R(|I|−2)

= γΓm
R(|I|−2)

− µΓm
R(|I|−2)

= γMΓ
R(|I|−2)

− µMΓ
R(|I|−2)

= γΓ
R(|I|−2) − µMΓ

R(|I|−2)

= (|I| − |I| − 1)i∈I − 1
= 0.

Thus, we have γΓ
R(|I|−1) = µΓ

R(|I|−1) . Then we obtain with Lemma 4.15 and Proposition 4.56
(also see Lemma A.34)

Q
µΓ
R(|I|−1) = Q

γΓ
R(|I|−1) = CR(|I|−1) ⊂ R(|I|−1) ⊂ Q

µΓ
R(|I|−1) ,

and hence R(|I|−1) = CR(|I|−1) . This implies R(|I|−1) = R(|I|−1).
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8.2. Hyperplane Arrangements
In this section we apply the results of Section 8.1 to determine the number of steps needed
to compute the normalization of a hyperplane arrangement using the Grauert–Remmert
algorithm of Section B.5.2.

Definition 8.6. Let k be a field, and let V be a k-vector space of dimension n. A
hyperplane in V is an affine subspace H of V of dimension n−1. A hyperplane arrangement
(A, V ) is given by a finite set A of hyperplanes in V . A subarrangement of (A, V ) is a
hyperplane arrangement (B, V ) with B ⊂ A.

Remark 8.7. Let k be a field, and let (A, kn) be an arrangement of hyperplanes. We
describe the arrangement (A, kn) by its defining polynomial

QA =
∏
H∈A

fH ,

where each factor
fH =

n∑
j=1

a
(H)
j Xj ∈ k[X1, . . . , Xn] (8.12)

defines a hyperplane H ∈ A (see [37, page 11]). We assume that the hyperplanes in A are
pairwise different, i.e. the family

((
a

(H)
j

)
j=1,...,n

)
H∈A

is linearly independent. Then the
ring

RA = k[X1, . . . , Xn]/〈QA〉

describing (A, V ) is reduced. Moreover, since k is excellent by Theorem B.35, and since
RA is a finitely generated k-algebra, it is excellent by Theorem B.34 (see Definition B.33).
In Theorem 8.14 we determine the number of steps needed in the Grauert–Remmert

algorithm to compute the normalization of a hyperplane arrangement. We want to deduce
this number from the combinatorics of the arrangement.

Definition 8.8. Let k be a field, let V be a k-vector space, and let (A, V ) be an arrangement
of hyperplanes. We denote by L(A) the set of all non-empty intersections of elements of A.
In particular, L(A) includes V as the intersection of the empty collection of hyperplanes.
On L(A) we define a partial order by reverse inclusion, i.e. for X,Y ∈ L(A) we have
X ≤ Y if and only if Y ⊂ X.

Definition 8.9. Let k be a field, let V be a k-vector space, and let (A, V ) be an arrangement
of hyperplanes. A map

µA : L(A)× L(A)→ Z

is called Möbius function of the arrangement (A, V ) if for any X,Y ∈ L(A) we have

µA(X,Y ) =


1 if X = Y,

−
∑

Z∈L(A)
X≤Z<Y

µA(X,Z) if X < Y,

0 otherwise.

(8.13)
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Remark 8.10. Let k be a field, let V be a k-vector space, and let (A, V ) be an arrangement
of hyperplanes. Then there is a unique map µA : L(A)×L(A)→ Z satisfying the conditions
of Equation (8.13), see [37, page 33].

Definition 8.11. Let k be a field, let V be a k-vector space, and let (A, V ) be an
arrangement of hyperplanes. For any X ∈ L(A) we define a subarrangement (AX , V ) of
(A, V ) by

AX = {H ∈ A | X ⊂ H}.

Remark 8.12. Let k be a field, and let (A, kn) be an arrangement of hyperplanes with
defining polynomial

QA =
∏
H∈A

fH .

Let X ∈ L(A). Then the defining polynomial of the hyperplane arrangement (AX , kn) is

QAX =
∏
H∈A
X⊂H

fH ,

see Remark 8.7.

Proposition 8.13. Let be a field, let V be a k-vector space, let (A, V ) be an arrangement
of hyperplanes, and let X ∈ L(A) with codimX = 2. Then

µ(V,X) = |AX | − 1.

Proof. See [37, page 35].

Theorem 8.14. Let k be an algebraically closed field, and let (A, kn) be an arrangement
of hyperplanes. We write

RA = k[X1 . . . , Xn]/〈QA〉,

where QA is the defining polynomial of A. Then (RA)(q) is normal if and only if

q ≥ max {|AX | | X ∈ L(A) with codimX = 2} − 1
= max {µ(kn, X) | X ∈ L(A) with codimX = 2}.

In the following let k be an algebraically closed field, let V be an n-dimensional k-vector
space, and let (A, V ) be an arrangement of hyperplanes such that |k| ≥ |A|. We write

RA = k[X1 . . . , Xn]/〈QA〉,

where QA is the defining polynomial of A.
Remark 8.15. The ring RA is Cohen–Macaulay by Corollary C.9 and Proposition C.10.
Since RA is also reduced by definition and excellent by Theorem B.35, it is normalization-
finite by Theorem B.36.
For the proof of Theorem 8.14 we first show that the Grauert–Remmert algorithm

behaves well with respect to field extensions.
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Lemma 8.16. Any extension field L of k is flat over k.

Proof. See [26, Chapitre IV, § 2, no. 4, Proposition 3].

Lemma 8.17. Let L be an extension field of k, and let R be a k-algebra with R/m ∼= k
for every m ∈ Max (R). Then for any m ∈ Max (R) we have m⊗k L ∈ Max (R⊗k L).

Proof. For every m ∈ Max (R) there is an exact sequence

0→ m→ R→ R/m→ 0.

Since L is flat over k by Lemma 8.16, this yields the exact sequence

0→ m⊗k L→ R⊗k L→ (R/m)⊗k L = L→ 0.

Moreover, since m⊗k L is an ideal of R⊗k L, we have the exact sequence

0→ m⊗k L→ R⊗k L→ (R⊗k L)/(m⊗k L)→ 0.

This implies that
(R⊗k L)/(m⊗k L) = (R/m)⊗k L

is a field, and hence m⊗k L ∈ Max (R⊗k L).

Lemma 8.18. Let L be an extension field of k, and let R be a k-algebra. If i is an ideal
of R, then

√
i⊗k L =

√
i⊗k L.

Proof. We first show that

i⊗k L ⊂
√
i⊗k L ⊂

√
i⊗k L. (8.14)

The first inclusion follows from Lemma 8.16. For the second let
∑N
i=1 fi ⊗ ai ∈

√
i⊗k L.

Then for every i = 1, . . . , N there is a di > 0 such that fdii ∈ i. Set d = maxi=1,...,N di.
Then fdi ∈ i for each i = 1, . . . , N . Moreover, we have

(
N∑
i=1

fi ⊗ ai

)Nd
=

∑
|α|=Nd

bα

N∏
i=1

fαii ⊗
N∏
i=1

aαii

with some coefficients bα ∈ k. Now |α| = Nd implies that there is a j ∈ {1, . . . , N} such
that αj ≥ d, and hence fαjj ∈ i. Thus, we have

N∏
i=1

fαii = f
αj
j

∏
i∈{1,...,N}\{j}

fαii ∈ i,

and therefore (
N∑
i=1

fi ⊗ ai

)Nd
∈ i⊗k L.
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This implies
N∑
i=1

fi ⊗ ai ∈
√
i⊗k L,

and hence √
i⊗k L ⊂

√
i⊗k L.

Next we want to show that
√
i⊗k L is a radical ideal in R⊗k L. Then Equation (8.14)

implies √
i⊗k L ⊂

√√
i⊗k L ⊂

√
i⊗k L,

and therefore √
i⊗k L =

√√
i⊗k L =

√
i⊗k L.

Since L is flat over k by Lemma 8.16, the exact sequence

0→
√
i→ R→ R/

√
i→ 0.

yields an exact sequence

0→
√
i⊗k L→ R⊗k L→

(
R/
√
i
)
⊗k L→ 0.

As i⊗k L is an ideal of R⊗k L, the exact sequence

0→
√
i⊗k L→ R⊗k L→ (R⊗k L)/

(√
i⊗k L

)
→ 0

implies
(R⊗k L)/

(√
i⊗k L

)
=
(
R/
√
i
)
⊗k L. (8.15)

Now R/
√
i is a reduced k-algebra as

√
i is a radical ideal. Since k is a perfect field, and since

L is a reduced k-algebra, (R⊗k L)/
(√

i⊗k L
)
is by Equation (8.15) and Theorem A.8

reduced, as well. This implies that
√
i⊗k L is a radical ideal in R⊗k L.

Lemma 8.19. Let L be an extension field of k, and let R be a k-algebra. Suppose that R
and R⊗k L are reduced excellent rings, and let i be a test ideal for R (see Definition B.47)
such that i⊗k L is a test ideal for R⊗k L. Then

(R⊗k L)(1) = EndR⊗kL (i⊗k L) = EndR (i)⊗k L = R(1) ⊗k L, (8.16)

and the test ideal for (R⊗k L)(1) used in the Grauert–Remmert algorithm is√
(i⊗k L)

(
(R⊗k L)(1)

)
=
√
iR(1) ⊗k L.
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Proof. First note that
i⊗k L = i⊗R R⊗k L. (8.17)

Since L is flat over k by Lemma 8.16, also R⊗kL is flat over R by Lemma A.9. Moreover,
i is finitely presented as an R ⊗k L-module by Remark A.41 since excellent rings are
Noetherian (see Definition B.33). Thus, Equation (8.17) and Proposition A.40 yield

EndR (i)⊗k L = EndR (i)⊗R R⊗k L
= EndR⊗kL (i⊗R R⊗k L)
= EndR⊗kL (i⊗k L).

Then Equation (8.16) and Lemma 8.18 yield√
(i⊗k L)

(
(R⊗k L)′

)
=
√

(i⊗k L)(R′ ⊗k L)

=
√
iR′ ⊗k L

=
√
iR′ ⊗k L.

Remark 8.20. Note that in Lemma 8.19 the reducedness of R ⊗k L follows from the
reducedness of R and L, see Theorem A.8.

Lemma 8.21. Let L be an extension field of k, and let R be a k-algebra. Suppose that R
and R⊗k L are reduced excellent rings, and let i be a test ideal for R (see Definition B.47)
such that i ⊗k L is a test ideal for R ⊗k L. Then R ⊗k L is normal if and only if R is
normal.

Proof. By Theorem B.48 the ring R⊗kL is normal if and only if R⊗kL = EndR⊗kL (i⊗k L).
By Lemma 8.19 this is equivalent to R = EndR (i), and hence to R being normal by
Theorem B.48.

Lemma 8.22. Let L be an extension field of k, and let R be a k-algebra. Suppose that R
and R⊗k L are reduced excellent rings, and let i be a test ideal for R (see Definition B.47)
such that i⊗k L is a test ideal for R⊗k L. Then

(R⊗k L)(q) = R(q) ⊗k L

and
(i⊗k L)(q) = i(q) ⊗k L

for every q ≥ 0.

Proof. This follows inductively from Lemma 8.19 and Proposition B.57.

Using Proposition B.58 we want to apply the Grauert–Remmert algorithm locally to
RA. By Lemma B.61.(4) we only have to consider Sing (RA) (see Definition B.38).

Lemma 8.23. Let p be a prime ideal of RA. Then p ∈ Sing (RA) if and only if there are
H,H ′ ∈ A with H 6= H ′ such that fH + 〈QA〉, fH′ + 〈QA〉 ∈ p.
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Proof. Let p be a prime ideal of RA. Since RA = k[X1, . . . , Xn]/〈QA〉 withQA =
∏
H∈A fH ,

there is by Proposition A.10.(3) a prime ideal q of k[X1, . . . , Xn] with 〈QA〉 ⊂ q such that
q/〈QA〉 = p. Since QA =

∏
H∈A fH , there is at least one H ∈ A with fH ∈ q.

Suppose that there is exactly one H ∈ A with fH + 〈QA〉 ∈ p. After a linear coordinate
change we may assume that fH = X1. Then Theorem A.36 yields

(RA)p = (k[X1, . . . , Xn]/〈QA〉)p
= (k[X1, . . . , Xn])q/QA(k[X1, . . . , Xn])q
= (k[X1, . . . , Xn])q/X1(k[X1, . . . , Xn])q
= (k[X1, . . . , Xn]/X1)q
= (k[X2, . . . , Xn])q,

where q is the image of q in k[X1, . . . , Xn]/X1 = k[X2, . . . , Xn]. The ring k[X2, . . . , Xn] is
regular (see [38, Theorem 2.2.13]. So if m is a maximal ideal of k[X2, . . . , Xn] containing
q, then (k[X2, . . . , Xn])m is regular. Since q(k[X2, . . . , Xn])m is by Proposition A.20.(2) a
prime ideal of (k[X2, . . . , Xn])m, also the ring

(k[X2, . . . , Xn])q = ((k[X2, . . . , Xn])m)q(k[X2,...,Xn])m

(see Corollary A.23 for the equality) is regular (see [38, Corollary 2.2.9]). This implies
p 6∈ Sing (RA).

Now suppose that there are H,H ′ ∈ A with H 6= H ′ such that fH+〈QA〉, fH′+〈QA〉 ∈ p.
Then Theorem A.36 yields

(RA)p =
(
k[X1, . . . , Xn]/〈QA〉p

)
= (k[X1, . . . , Xn])q/QA(k[X1, . . . , Xn])q
= (k[X1, . . . , Xn])q/

∏
fH′′∈q

fH′′(k[X1, . . . , Xn])q.

Since fH , fH′ ∈ q, this implies that the images of fH and fH′ are non-zero but zerodivisors
in (RA)p. Thus, (RA)p is not regular (see [38, Proposition 2.2.3]), i.e. p ∈ Sing (RA).

In fact, since RA is Cohen–Macaulay by Remark 8.15, it suffices by Proposition C.12 to
consider only prime ideals p ∈ Sing (RA) with height p = 1.

Lemma 8.24. Let p be a prime ideal of RA. Then p ∈ Sing (RA) with height p = 1 if and
only if there are H,H ′ ∈ A with H 6= H ′ such that p = 〈fH , fH′〉RA. In particular, for
every p ∈ Sing (RA) with height p = 1 there is a linear coordinate change Xi + 〈QA〉 7→ yi,
i = 1, . . . , n, such that p = 〈y1, y2〉.

Proof. By Lemma 8.23 we have p ∈ Sing (RA) if and only if there are H,H ′ ∈ A with
H 6= H ′ such that fH + 〈QA〉, fH′ + 〈QA〉 ∈ p. After a linear coordinate change we may
assume that fH = X1 and fH′ = X2. Then 〈X1, X2〉 is a prime ideal of k[X1, . . . , Xn]
containing QA. Therefore, 〈X1, X2〉RA is by Proposition A.10.(3) a prime ideal of RA.
The claim follows since height 〈X1, X2〉RA = 1.
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Lemma 8.25. There is a bijection

{p ∈ Sing (RA) | height p = 1} → {X ∈ L(A) | codimX = 2},
p 7→ Xp =

⋂
H∈A

fH+〈QA〉∈p

H,

〈fH | X ⊂ H〉RA ←[ X.

Proof. Let p ∈ Sing (RA) with height p = 1. By Lemma 8.24 there are H,H ′ ∈ A with
H 6= H ′ such that p = 〈fH , fH′〉RA. Then for any H ′′ ∈ A we have fH′′ + 〈QA〉 ∈ p if and
only if fH′′ ∈ 〈fH , fH′〉. This implies

Xp = H ∩H ′.

In particular, codimXp = 2.
Conversely, let X ∈ L(A) with codimX = 2. Then there are H,H ′ ∈ A with H 6= H ′

such that X = H ∩ H ′. Thus, for any H ′′ ∈ A with X ⊂ H ′′ we have fH′′ ∈ 〈fH , fH′〉.
This implies 〈

fH′′ | H ′′ ∈ A with X ⊂ H ′′
〉
RA = 〈fH , fH′〉RA.

Moreover, we have by Lemma 8.23 〈fH , fH′〉RA ∈ Sing (RA) with height 〈fH , fH′〉 = 1.

Lemma 8.26. Let p ∈ Sing (RA) with height p = 1. Then for any q ≥ 0 the ring(
(RA)p

)(q)
is normal if and only if

q ≥
∣∣AXp

∣∣− 1,

where
Xp =

⋂
H∈A

fH+〈QA〉∈p

H ∈ L(A).

Proof. Let q ≥ 0, and let q be a prime ideal of (RA)(q) with q∩RA = p (see Proposition B.57
and Theorem B.12). Since height p = 1, we may by Lemma 8.24 assume that p = 〈x1, x2〉,
where for any j = 1, . . . , n we set xj = Xj + 〈QA〉. Moreover, Lemma B.18 yields
height q = 1.
Let H ∈ A. If fH = fH + 〈QA〉 ∈ p, then there is a g ∈ k[X1, . . . , Xn] such that

fH

1 + g
∏

H′∈A\{H}
fH′

 = fH + gQA ∈ 〈X1, X2〉.

This implies
fH ∈ 〈X1, X2〉

since 〈X1, X2〉 is a prime ideal and 1 + g
∏
H′∈A\{H} fH′ 6∈ 〈X1, X2〉. If fH 6∈ p, then

fH ∈
(
k[X1, . . . , Xn]〈X1,X2〉

)∗
, and hence

QAk[X1, . . . , Xn]〈X1,X2〉 = fk[X1, . . . , Xn]〈X1,X2〉
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with
f =

∏
H∈A

fH∈〈X1,X2〉

fH =
∏
H∈A

fH+〈QA〉∈p

. (8.18)

Therefore, Theorem A.36 yields

(RA)p = (k[X1, . . . , Xn]/〈QA〉)〈x1,x2〉

= k[X1, . . . , Xn]〈X1,X2〉/QAk[X1, . . . , Xn]〈X1,X2〉

= k[X1, . . . , Xn]〈X1,X2〉/fk[X1, . . . , Xn]〈X1,X2〉

=
(
k[X1, X2]〈X1,X2〉 ⊗k L

)
/
(
fk[X1, X2]〈X1,X2〉 ⊗k L

)
= R⊗k L

with
L = k(X3, . . . , Xn)

and
R = (k[X1, X2]/〈f〉)〈x1,x2〉,

where by abuse of notation we consider f ∈ k[X1, X2], and we write xj = Xj + 〈f〉 for
j = 1, 2.
Since (RA)p and R are local rings, Lemma 8.17 yields p(RA)p = m ⊗k L, where m is

the maximal ideal of R. Moreover, (RA)p and R are by Theorems B.34 and B.35 reduced
excellent rings. Hence, by Remark B.49 p(RA)p is the unique test ideal for (RA)p, and m
is the unique test ideal for R. Then Lemma 8.22 yields for any q ≥ 0(

(RA)p
)(q)

= R(q) ⊗k L.

Thus,
(
(RA)p

)(q)
is by Lemmas 8.21 and 8.22 normal if and only if R(q) is normal.

By Theorem B.36.(3) R(q) is normal if and only if R̂(q) is normal, and Proposition B.54
yields R̂(q) = R̂(q). Moreover, with

R̂ = k[[X1, X2]]/〈f〉

Equation (8.18), Theorem 8.2, Remark 8.12, and Lemma 8.25 imply that R̂(q) is normal if
and only if

q ≥ |{H ∈ A | fH + 〈QA〉 ∈ p}| − 1
=
∣∣AXp

∣∣− 1,

where
Xp =

⋂
H∈A

fH+〈QA〉∈p

H ∈ L(A).
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Proof of Theorem 8.14. Since RA is Cohen–Macaulay by Remark 8.15, it satisfies Serre’s
condition (S2) by Corollary C.5. Then for any q ≥ 0 the ring (RA)(q) satisfies Serre’s
condition (S2) by Lemma A.27, Theorem B.34, and Propositions B.46.(1) and B.57. Hence,
(RA)(q) is by Lemma B.61.(1) normal if and only if it satisfies Serre’s condition (R1). By
Lemma B.61.(4) and Proposition C.12 this is equivalent to

(
(RA)p

)(q)
being normal for

every p ∈ Sing (RA) with height p = 1.
Let p ∈ Sing (RA) with height p = 1. Then

(
(RA)p

)(q)
is by Lemma 8.26 normal if and

only if
q ≥

∣∣AXp

∣∣− 1,

where
Xp =

⋂
H∈A

fH+〈QA〉∈p

H ∈ L(A).

By Lemma 8.25 this implies that
(
(RA)p

)(q)
is normal for every p ∈ Sing (RA) with

height p = 1 if and only if

q ≥ max
{∣∣AXp

∣∣ | p ∈ Sing (RA) with height p = 1
}
− 1

= max {|AX | | X ∈ L(A) with codimX = 2} − 1
= max {µ(kn, X) | X ∈ L(A) with codimX = 2},

where the last equality follows from Lemma 8.13.

242



A. Commutative Algebra

Theorem A.1. Any homomorphic image of a Noetherian ring is Noetherian. Furthermore,
if R is a Noetherian ring, and A is a finitely generated algebra over R, then A is Noetherian.

Proof. See [39, Corollary 1.3].

Theorem A.2 (Prime Avoidance). Let i1, . . . , in, j be ideals of a ring R, and suppose that
j ⊂

⋃n
i=1 ii.If at most two of the ideals ii, i = 1, . . . , n are not prime, then j is contained in

one of the ii.

Proof. See [39, Lemma 3.3].

Lemma A.3. Let R be a ring, and let i1, . . . , in be ideals of R such that
⋂n
i=1 ii = 0. If

R/ii is Noetherian for all i = 1, . . . , n, then R is Noetherian.

Proof. Since
⋂n
i=1 ii = 0, the canonical map

φ : R→
n∏
i=1

R/ii,

x 7→ (x+ ii)i=1,...,n,

is injective.
Let j1 ⊂ j2 ⊂ . . . be an ascending chain of ideals in R. Then for any i = 1, . . . , n there is

an ascending chain j1 + ii ⊂ j2 + ii ⊂ . . . of ideals of R/ii. Since R/ii is Noetherian, there
is ni such that jni + ii = jni+1 + ii = . . .. This implies

φ
(
jmaxi=1,...,n ni

)
= φ

(
j(maxi=1,...,n ni)+1

)
= . . . .

Since φ is injective, this implies that R is Noetherian.

Theorem A.4 (Krull Intersection Theorem). Let R be a Noetherian ring, and let i be an
ideal of R. If M is a finitely generated R-module, then there is an element r ∈ i such that

(1− r)
(∞⋂
i=i

iiM

)
= 0.

If R is a domain or a local ring, then
∞⋂
i=1

ii = 0.

Proof. See [39, Corollary 5.4].
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Corollary A.5. Let R be a Noetherian ring, and let i be a proper ideal of R. Then

∞⋂
i=1

ii ⊂ R \Rreg.

Proof. Since R is a finitely generated R-module, Theorem A.4 yields an r ∈ i such that

(1− r)
(∞⋂
i=i

ii
)

= 0.

Since i is a proper ideal of R, we have r 6= 1, and hence 1− r 6= 0. Thus, every element in(⋂∞
i=i i

i
)
is a zerodivisor.

Lemma A.6. Let (Ri)i∈I be a finite family of rings, and let R =
∏
i∈I Ri. For j ∈ I, we

denote by
prj : R =

∏
i∈I

Ri → Rj

the projection.

(1) Let q be a prime ideal of R. Then there is a j ∈ I such that

prj (q) ∈ Spec (Rj)

and
pri (q) = Ri

for all i ∈ I \ {j}.

(2) There is a bijection
Spec (R)→

⊔
i∈I

Spec (Ri)

which is induced by the bijections{
q ∈ Spec (R) | prj (q) ∈ Spec (Rj)

}
→ Spec (Rj),

q 7→ prj (q),

p×
∏

i∈I\{j}
Ri ← [ p

for j ∈ I. In particular, for any i ∈ I we have

height q = height pri (q).

Proof. (1) Let q be a prime ideal of R. Then

R/q =
∏
i∈I

(Ri/pri (q))
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is a domain. This implies that there is j ∈ I such that

Ri/pri (q) = 0

for all i ∈ I \ {j}, and hence
pri (q) = Ri

for all i ∈ I \ {j}. This implies

R/q ∼= Rj/ prj (q),

and hence Rj/ prj (q) is a domain. Thus, prj (q) is a prime ideal of Rj .

(2) The statement follows from (1) since for any prime ideal p of Ri we obviously have

p×
∏

i∈I\{j}
Ri ∈ Spec (R).

Lemma A.7. Let R and A be rings, let φ : R→ A be a ring homomorphism. If A is flat
as an R-module (with respect to φ), then φ(Rreg) ⊂ Areg.

Proof. An element x ∈ R is regular if and only if multiplication by x defines an injective
ring homomorphism φx : R → R. If A is flat, tensoring by A yields an injective ring
homomorphism φx ⊗ 1: R⊗R A→ R⊗R A, see [40, Proposition 2.19]. The claim follows
since we can identify R⊗R A with A and φx ⊗ 1 with multiplication by α(x).

Theorem A.8. Let k be a perfect field, and let R and S be two reduced k-algebras. Then
R⊗k S is reduced.

Proof. See [41, Chapitre V, §15, no. 5, Theorem 3.(d)].

Lemma A.9. Let R be a ring, and let A be an R-algebra, and let M be a flat R-module.
Then M ⊗R A is a flat A-module.

Proof. See [42, Chapter 2, (3.C)].

Proposition A.10. Let R and A be rings, and let φ : R→ A be a ring homomorphism.

(1) There is an injective map from the set of ideals of R into the set of ideals of A given
by

i 7→ φ(i)A.

(2) There is a surjective map from the set of ideals of A onto the set of ideals of R given
by

j 7→ φ−1(j),

and sending prime ideals to prime ideals.

(3) If φ is surjective, then the maps given in (1) and (2) yield mutually inverse bijections
between the set of ideals of R containing kerφ and the set of ideals of A, where prime
ideals correspond to prime ideals.
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Proof. See [40, page 9].

Lemma A.11. Let A be a ring, let I be a finite set, and let (Ri)i∈I be a family of subrings
of A. Then R =

⋂
i∈I Ri is a subring of A with R∗ =

⋂
i∈I (Ri)∗.

Proof. We obviously have 0, 1 ∈ R. Let x, y ∈ R. Then x, y ∈ Ri for all i ∈ I, and hence
x + y, xy ∈

⋂
i∈I Ri = R. For any i ∈ I there is an xi ∈ Ri with x + xi = 0. Since these

equations also hold in A, we have xi = −x ∈
⋂
j∈I Rj = R for every i ∈ I by uniqueness of

inverse elements. Thus, R is a subring of A.

Let now x ∈ R∗. Then there is a z ∈ R =
⋂
i∈I Ri with xz = 1. Thus, x ∈

⋂
i∈I (Ri)∗.

Conversely, let x ∈
⋃
i∈I (Ri)∗. Then for any i ∈ I there is a zi ∈ Ri with xzi = 1. This

implies x ∈ A∗, and hence zi = x−1 for all i ∈ I. In particular, x−1 ∈ R∗.

Theorem A.12. Let R be a semilocal ring with Jacobson radical jR, and let A be a finite
R-algebra containing R. Then A is semilocal with Jacobson radical jA =

√
jRA.

Proof. See [43, § 6, Theorem 15].

Lemma A.13. Let R be a ring, let i be an ideal of R, let x ∈ i, and let y ∈ R \ i. Then
x+ y ∈ R \ i.

Proof. Since x ∈ i, also −x ∈ i. So if x+ y ∈ i, then y = x+ y − x ∈ i, contradicting the
assumption.

A.1. Large Jacobson Radical
Proposition A.14. Let R be a ring with Jacobson radical jR, and let x ∈ R. Then x ∈ jR
if and only if 1 + xy is a unit in R for all y ∈ R.

Proof. See [30, Section 7, page 422].

Proposition A.15. Let R be a ring with Jacobson radical jR. Then the following are
equivalent:

(a) Any prime ideal of R containing jR is maximal.

(b) For each x ∈ R there is y ∈ R such that for all z ∈ A and for all units r ∈ R∗ both
x+ ry and 1 + zxy are units in R.

(c) For each x ∈ R there is a y ∈ R such that x+ y is a unit in R and xy ∈ jR.

Proof. See [30, Proposition 19].

Definition A.16. A ring R is said to have a large Jacobson radical if it satisfies the
equivalent conditions of Proposition A.15.

Remark A.17. Let R be a ring.
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(1) If every prime ideal of R is maximal, or if R is (quasi)semilocal, then R has a large
Jacobson radical, see [30, Section 7, page 423].

(2) If QR has a large Jacobson radical, then R is a Marot ring, see [23, Chapter I,
Proposition 1.12].

Proposition A.18. Let R be a Noetherian ring. Then R has a large Jacobson radical if
and only if it is semilocal.

Proof. See [30, Section 7, page 423].

A.2. Localization
Let R be a ring, and let U be a multiplicatively closed subset of R. We will always assume
that 1 ∈ U . The localization of R at U is the R-algebra U−1R satisfying the following
universal property: the homomorphism α : R→ U−1R satisfies α(R∗) ⊂

(
U−1R

)∗, and if
A is a ring such that there is a ring homomorphism β : R → A with β(R∗) ⊂ A∗, then
there is a unique ring homomorphism φ : U−1R→ A such that the diagram

R U−1R

A

α

β
φ (A.1)

commutes.
Let M be an R-module. The localization U−1M of M at U is the set of equivalence

classes x
u with x ∈ M and u ∈ U , where x

u = x
v if there is an element s ∈ U such that

s(xv − yu) = 0. If M = R, then U−1R is a ring with the operations

x

u
+ y

v
= xv + yu

uv

and
x

u
· y
v

= xy

uv

for all xu ,
y
v ∈ U

−1R, and U−1R is an R-algebra with the natural homomorphism α : R→
U−1R, x 7→ x

1 . For an R-module M , the localization U−1M is both an R- and a U−1R-
module with the obvious operations.

The localization QR = (Rreg)−1 is called the total ring of fractions of R. If p is a prime
ideal of R, then the localization of R at p is (R \ p)−1R.
Let M,N be R-modules, and let ψ : M → N be an R-module homomorphism. Then

there is an U−1R-module homomorphism

U−1φ : U−1M → U−1N,

m

u
7→ φ(m)

u
,

the localization of φ, see [39, Chapter 2] and [40, Chapter 3].
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Remark A.19. Let R be a ring.

(1) Let U be a multiplicatively closed subset of R∗. Then U−1R = R.

(2) The total ring of fractions of R is the “largest” localization of R at a multiplicatively
closed set U ⊂ R such that the natural map α : R→ U−1R is an injection, see [39,
Chapter 2, page 60]. In particular, we may consider R as a subring of QR.

(3) Qreg
R = Q∗R.

(4) If R is a domain, i.e. if Rreg = R \ {0}, then QR is a field.

Proposition A.20. Let R be a ring, let U be a multiplicatively closed subset of R, and
let α : R→ U−1R be the natural map x 7→ x

1 . Then the following hold:

(1) For any ideal i ⊂ U−1R we have i = α−1 (i)U−1R. Thus, the map i 7→ α−1 (i) is
an injection of the set of ideals of U−1R into the set of ideals of R. It preserves
inclusions and intersections, and it takes prime ideals to prime ideals.

(2) An ideal j ⊂ R is of the form α−1 (i) for some ideal i ⊂ U−1R if and only if
j = α−1 (jU−1R

)
. This is the case if and only if for each u ∈ U , xu ∈ j implies x ∈ j

for any x ∈ R. In particular, the correspondence i 7→ α−1 (i) is a bijection between
set of the prime ideals of U−1R and the set of prime ideals of R not meeting U .

Proof. See [39, Proposition 2.2].

Corollary A.21. A localization of a Noetherian ring is Noetherian.

Proof. See [39, Corollary 2.3].

Theorem A.22. Let R and A be rings with a ring homomorphism ψ : R→ A, and let U
be a multiplicatively closed subset of R. Then U−1A = (ψ(U))−1A, and the localized map
U−1ψ : U−1 → U−1A is a ring homomorphism.

Proof. See [44, Theorem 4.3].

Corollary A.23. Let R be a ring, let U be a multiplicatively closed subset of R, and let p
be a prime ideal of R with p ∩ U = ∅. Then(

U−1R
)
pU−1R

= Rp.

In particular, if q is a prime ideal of R with p ⊂ q, then

(Rq)pRq
= Rp.

Proof. See [44, Corollary 4 of Theorem 4.3].
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Proposition A.24. Let R be a ring, and let U be a multiplicatively closed subset of R.
Then the operation U−1 is exact, i.e. if

M ′
φ−→M

ψ−→M ′

is a sequence of R-modules which is exact at M , then

U−1M ′
U−1φ−−−→ U−1M

U−1ψ−−−→ U−1M ′

is a sequence of U−1R-modules which is exact at U−1M .

Proof. See [40, Proposition 3.3].

Corollary A.25. Let R be a ring, let U be a multiplicatively closed subset of R, and let
x ∈ Rreg. Then x

y ∈
(
U−1R

)reg for any y ∈ U .

Proof. This follows from Lemma A.7 and Proposition A.24.

Remark A.26. The statement of Corollary A.25 can also be proved directly. In fact, let
v
w ∈ U

−1R such that x
y
v
w = 0. Then there is a u ∈ U such that uxv = 0. Since x is regular,

this implies uv = 0, and hence v
w = 0. Therefore, xy ∈

(
U−1R

)reg.

Lemma A.27. Let R be a ring, and let U be a multiplicatively closed subset of R. Then
R is reduced if and only if U−1R is reduced.

Proof. If R is not reduced, there is x ∈ R with xn = 0. This implies
(
x
1
)n = xn

1 = 0 in
U−1R. Hence, also U−1R is not reduced.
Suppose that R is reduced, and assume that U−1R is not reduced. Then there is

a
b ∈ U

−1R such that
(
a
b

)n = 0 for some n ∈ N. Thus, there is an s ∈ U such that san = 0.
This yields

(sa)n = sn−1(san) = sn−10 = 0.

Hence, sa is a nilpotent element of R. But this is a contradiction as R is reduced.

Lemma A.28. Let R be a ring, let U be a multiplicatively closed set, and let A be a
ring. If there is a map ψ : R→ A with ψ(U) ⊂ A∗, then the unique ring homomorphism
φ : U−1R→ A making Diagram (A.1) commutative is given by

x

y
7→ ψ(x)(ψ(y))−1

for any x
y ∈ U

−1R.

Proof. Let x
y ∈ U

−1R, and let α : R→ U−1R be the map x 7→ x
1 for x ∈ R. Since y ∈ U ,

Diagram (A.1) yields

β(x) = φ ◦ α(x) = φ

(
x

1

)
= φ

(
x

y

y

1

)
= φ

(
x

y

)
φ

(
y

1

)
= φ

(
x

y

)
β(y).

Since β(U) ⊂ A∗, the statement follows.
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Lemma A.29. Let R and A be rings, let U , respectively V , be a multiplicatively closed
subset of R, respectively A, and let α : R → A with α(U) ⊂ V . Then there is a natural
ring homomorphism

ε : U−1R→ V −1A,

x

y
7→ α(x)

α(y) ,

such that the diagram
R U−1R

A V −1A

β

α ε

γ

commutes, where β : R→ U−1R and γ : A→ V −1A are the localization maps.

Proof. The localization maps β : R → U−1R and γ : A → V −1A fit into a commutative
diagram

R U−1R

A V −1A,

β

α
δ

γ

where δ = γ ◦ α. Since

δ(U) = γ ◦ α(U)
= γ(α(U))
⊂ γ(V )

⊂
(
V −1A

)∗
by assumption, the universal property of localization yields a unique homomorphism
ε : U−1R→ V −1A such that the diagram

R QR

A QA

β

α
δ

ε

γ

commutes. The explicit representation of ε follows from Lemma A.28.

Lemma A.30. Let R and A be rings, let α : R→ A be an injective ring homomorphism,
and let U be a multiplicatively closed subset of R such that α(U) ⊂ Areg. Then there is an
injective ring homomorphism

φ : U−1R→ QA,

x

y
→ α(x)

α(y) .
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Proof. Lemma A.29 yields a ring homomorphism

φ : U−1R→ QA,

x

y
→ α(x)

α(y) .

Let x
y ,

x′

y′ ∈ U
−1R such that φ

(
x
y

)
= φ

(
x′

y′

)
. Then α(x)

α(y) = α(x′)
α(y′) , i.e.

α
(
xy′
)

= α(x)α
(
y′
)

= α
(
x′
)
α(y) = α

(
x′y
)
.

Since α is injective, this implies xy′ = x′y. Hence x
y = x′

y′ , and therefore φ is injective.

Lemma A.31. Let R be a ring, and let U be a multiplicatively closed subset of R. Then
there are natural ring homomorphisms

ε : QR → QU−1R,

x

y
7→

x/1
y/1
,

and

η : U−1QR → QU−1R,

x/y

z
7→

x/z
y/1
.

These homomorphisms fit into a commutative diagram

R QR

U−1R QU−1R

U−1QR,

β

α ε

ζγ

θ

η

where α : R→ U−1R, β : R→ QR and γ : U−1R→ QU−1R are the localization maps, and
θ = U−1α : U−1R→ U−1QR.

Proof. By Corollary A.25 and Lemma A.29 there is a natural ring homomorphism

ε : QR → QU−1R,

x

y
7→

x/1
y/1
,

such that the diagram
R QR

U−1R QU−1R

β

α ε

γ
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commutes. With the localization map ζ : QR → U−1QR this leads to a commutative
diagram

R QR

U−1R QU−1R

U−1QR.

β

α
δ

ε

ζ

γ

Now we have

ε ◦ β(U) = γ ◦ α(U) ⊂ γ
((
U−1R

)∗)
⊂ (QU−1R)∗.

Since U−1QR = (β(U))−1QR by Theorem A.22, the universal property of localization
yields a unique homomorphism η : U−1QR → QU−1R such that the diagram

R QR

U−1R QU−1R

U−1QR

β

α
δ

ε

ζ

γ
η

commutes.
Now consider the localized map θ = U−1β : U−1R→ U−1QR (see Theorem A.22). For

any x
y ∈ U

−1R we have

η ◦ θ
(
x

y

)
= η

(
β(x)
y

)
= η

(
β(x)(β(y))−1

)
= ε(β(x))(ε(β(y)))−1

= δ(x)(δ(y))−1

= γ ◦ α(x)(γ ◦ α(y))−1

= γ(α(x))γ
(
(α(y))−1

)
= γ

(
x

y

)
.
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Therefore, we obtain a commutative diagram

R QR

U−1R QU−1R

U−1QR.

β

α
δ

ε

ζγ

θ

η

Lemma A.32. Let R be a ring, and let U be a multiplicatively closed subset of R. If
x
y ∈

(
U−1R

)reg implies x ∈ Rreg or x ∈ U for any x
y ∈ QR, then QU−1R = U−1QR.

Proof. With the notation of Lemma A.31 we have a commutative diagram

R QR

U−1R QU−1R

U−1QR.

β

α
δ

ε

ζγ

θ

η

Let now x
y ∈

(
U−1R

)reg. Then x ∈ Rreg or x ∈ U by assumption. If x ∈ Rreg, then

β(x) ∈ (QR)∗, and hence θ
(
x
y

)
= β(x)

y ∈
(
U−1QR

)∗ with inverse (β(x))−1y
1 . If x ∈ U ,

then θ
(
x
y

)
= β(x)

y ∈
(
U−1QR

)∗ with inverse β(y)
x . Therefore, the universal property of

localization yields a unique homomorphism ι : QU−1R → U−1QR such that the diagram

R QR

U−1R QU−1R

U−1QR.

β

α
δ

ε ζ

γ

θ

ι

η

commutes. Using the universal property of the localization U−1QR of QR, respectively the
localization QU−1R of U−1R, we obtain QU−1R = U−1QR.

Remark A.33. Note that Lemma A.32 holds, in particular, if R is a domain.

Lemma A.34. Let R and A be rings such that R ⊂ A ⊂ QR. Then QA = QR.

Proof. Since A ⊂ QR, we have Areg ⊂ Qreg
R = Q∗R. Therefore, the universal property of

localization (see Diagram (A.1)) yields a unique homomorphism QA → QR.
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Since R ⊂ A, we have Rreg ⊂ Areg ⊂ Q∗A. So again the universal property of localization
yields a unique homomorphism QR → QA. Thus, we obtain a commutative diagram

R A QR

QA.

Using the universal property of the localization QR over R, respectively the localization
QA over A, this implies QA = QR.

Lemma A.35. Let R be a ring, let U be a multiplicatively closed subset of R, and let M
be an R-module. We denote by α : M → U−1M the localization map.

(1) For any R-submodule N of M we have

α−1
(
U−1N

)
= {x ∈M | ux ∈ N for some u ∈ U}.

(2) For any U−1R-submodule P of U−1M we have

U−1
(
α−1(P )

)
= P.

Proof. (1) Write N ′ = {x ∈M | ux ∈ N for some u ∈ U}. If x ∈ N ′, then there is a
u ∈ U such that xu ∈ N . Thus,

α(x) = x

1 = ux

u
∈ U−1N.

Let now y ∈ α−1(U−1N
)
. Then there is an n ∈ N and a u ∈ U such that y

1 = α(y) =
n
u . Thus, there is a v ∈ U such that vuy = nu. In particular, we have vu ∈ U since
U is multiplicatively closed, and nu ∈ N since U ⊂ R and N is an R-module. This
yields y ∈ N ′.

(2) Obviously, we have P ⊂ U−1(α−1(P )
)
. So let x

y ∈ U
−1(α−1(P )

)
. Then x

1 = α(x) ∈
(P ) and y ∈ U . Since 1

y ∈ U
−1R, this implies x

y ∈ P as P is a U−1R-module.

Theorem A.36. Let R be ring, let i be an ideal of R, let π : R → R/i be the canonical
surjection, and let U be a multiplicatively closed subset of R. Then

U−1R/iU−1R = (π (U))−1(R/i).

Proof. See [44, Theorem 4.2].

Lemma A.37. Let R and A be rings such that R ⊂ A ⊂ QR. If i is an ideal of R, then
iA is an ideal of A. Moreover, for any x ∈ iA there are x1 ∈ i and x2 ∈ Rreg such that
x = x1

x2
(considered in QR, see Remark A.19.(2)).
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Proof. By Proposition A.10.(1) iA is an ideal of A. Also note that for any y ∈ A there are
y1 ∈ R and y2 ∈ Rreg such that y = y1

y2
in QR. Let z ∈ i. Then

zy = z
y1
y2

= zy1
y2
,

where zy1 ∈ i and y2 ∈ Rreg.
So if x ∈ iA, there is a finite set I, and for all i ∈ I there are x(i)

1 ∈ i and x(i)
2 ∈ Rreg

such that

x =
∑
i∈I

x
(i)
1

x
(i)
2
.

Since QR = (Rreg)−1R, we obtain

x =
∑
i∈I

x
(i)
1

x
(i)
2

=
∑
i∈I

x
(i)
1
∏
j∈I\{i} x

(j)
2∏

k∈I x
(k)
2

=
∑
i∈I x

(i)
1
∏
j∈I\{i} x

(j)
2∏

k∈I x
(k)
2

,

where ∑
i∈I

x
(i)
1

∏
j∈I\{i}

x
(j)
2 ∈ i

and ∏
i∈I

x
(i)
2 ∈ R

reg.

Proposition A.38. Let R be a ring, let U be a multiplicatively closed subset of R, and
let M be an R-module. The natural map M ⊗R U−1R→ U−1M sending x

u ⊗m to xm
u is

an isomorphism.

Proof. See [39, Lemma 2.4].

Proposition A.39. Let R be a ring, and let U be a multiplicatively closed subset of R.
Then the ring U−1R is flat as an R-module.

Proof. See [39, Proposition 2.5].

Proposition A.40. Let R be a ring, and let A be an R-algebra. IfM and N are R-modules,
then there is a unique A-module homomorphism

α : HomR (M,N)⊗R A→ HomA (M ⊗R A,N ⊗R A)

that takes an element φ⊗ 1 ∈ HomR (M,N)⊗R A to the A-module homomorphism φ⊗R
1: M ⊗R A→ N ⊗A in HomA (M ⊗R A,N ⊗R A). If A is flat over R and M is finitely
presented, then α is an isomorphism. In particular, if M is finitely presented, then
HomR (M,N) localizes in the sense that the map α provides a natural isomorphism

HomU−1R

(
U−1M,U−1N

)
∼= U−1 HomR (M,N)

for any multiplicatively closed subset U of R.
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Proof. See [39, Proposition 2.10].

Remark A.41. If R is a Noetherian ring, an R-module M is finitely presented if and only if
M is finitely generated, see [39, p. 68]. In particular, every ideal of a Noetherian ring R is
finitely presented as an A-module.

Lemma A.42. Let R be a semilocal ring, and let M be an R-module such that Mm is a
finite Rm-module for every m ∈ Max (R). Then M is a finite R-module.

Proof. For any m ∈ Max (R) there is a finite subset Xm of Mm such that Mm is generated
as an Rm-module by the elements in Xm. By clearing denominators of the elements in Xm

we find a finite subset Um of M such that Mm =
〈
x
1 | x ∈ Um

〉
Rm

.
Set U =

⋃
m∈Max (R) Um, and let N = 〈U〉R be the R-submodule of M generated by the

elements in U . Then we have Nm = Mm for all m ∈ Max (R). This yields M = N since
equality is a local property. In particular, M is finitely generated as an R-module by the
elements in U .

A.3. Associated and Minimal Prime Ideals
Definition A.43. Let R be a ring. A prime ideal p of R is called minimal if height p = 0.
The set of minimal prime ideals of R is denoted by Min (R).

Definition A.44. Let R be a Noetherian ring, and let M be an R-module.

(1) The annihilator of M is

Ann (M) = {x ∈ R | xM = 0}.

(2) A prime ideal p of R is associated to M if p is the annihilator of an element of M .
The set of prime ideals associated to M is denoted by Ass (M).

Theorem A.45. Let R be a Noetherian ring, and let M be a finite non-zero R-module.

(1) Ass (M) is a finite, non-empty set of prime ideals of R, each containing Ann (M).
The set Ass (M) includes all the prime ideals which are minimal among the prime
ideals containing Ann (M).

(2) The union of the associated prime ideals of M consists of 0 and the set of zerodivisors
on M .

(3) The formation of the set Ass (M) commutes with localization at an arbitrary multi-
plicatively closed set U ⊂ R, in the sense that

Ass
(
U−1M

)
=
{
pU−1R

∣∣∣ p ∈ Ass (M) and p ∩ U = ∅
}
.

Proof. See [39, Theorem 3.1].
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Corollary A.46. Let R be a Noetherian ring. Then Min (R) ⊂ Ass (R). In particular,
Min (R) is finite.

Proof. Since Ann (R) = 〈0〉, and since any ideal of R contains 0, this follows from Theo-
rem A.45.(1).

Proposition A.47. Let R be a reduced Noetherian ring. Then

Ass (R) = Min (R).

Moreover, ⋃
p∈Min (R)

p = R \Rreg.

Proof. By Corollary A.46 we have Min (R) ⊂ Ass (R). So assume there are p, q ∈ Ass (R)
with p ( q. Then there is x ∈ R such that xq = Ann (R) = 〈0〉, and hence xp = 〈0〉. Let
y ∈ q \ p. Then xy = 0 ∈ p implies x ∈ p. But then x2 ⊂ xp = 〈0〉 which contradicts the
reducedness of R. This implies

Ass (R) = Min (R),

and with Theorem A.45.(2) we obtain

R \Rreg =
⋃

p∈Min (R)
p.

Lemma A.48. Let R be a reduced Noetherian ring. Then⋂
p∈Min (R)

p = 〈0〉,

and
〈0〉 (

⋂
q∈Min (R)\{p}

q

for any p ∈ Min (R).

Proof. This follows from Proposition A.47 and Primary Decomposition, see [39, Theo-
rem 3.10].

Lemma A.49. Let R be a reduced Noetherian ring, let p ∈ Min (R), and let x ∈ R \ p.
Then (x+ p) ∩Rreg 6= ∅.

Proof. If x ∈ Rreg, the statement follows since 0 ∈ p. So suppose that x ∈ R \ Rreg =⋃
q∈Min (R) q, see Proposition A.47. Then the subset

I = {q ∈ Min (R) | x ∈ q}

of Min (R) is non-empty, and

x ∈
⋂
q∈I
\

⋃
q′∈Min (R)\I

q′. (A.2)
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Assume now that ⋂
q∈Min (R)\I

q ⊂
⋃
q′∈I

q′.

Then there is by Theorem A.2 a p′ ∈ I such that
⋂

q∈Min (R)\I q ⊂ p′. This implies⋂
q∈Min (R) q =

⋂
q′∈Min (R)\{p′} q

′, contradicting Lemma A.48. Thus, there is a

y ∈
⋂

q∈Min (R)\I
q \

⋃
q′∈I

q′. (A.3)

Then Lemma A.13, Proposition A.47, and Equations (A.2) and (A.3) yield

x+ y ∈ R \

⋃
q∈I

q

 ∪
 ⋃

q′∈Min (R)\I
q′


= R \

⋃
q∈Min (R)

q

= Rreg.

The claim follows since p ∈ Min (R) \ I by assumption, and hence y ∈ p.

Lemma A.50. Let R be a reduced Noetherian ring, and let p ∈ Min (R). Then

QR/p = QR/pQR.

Proof. Since p ∩ Rreg = ∅ by Proposition A.47, and since p is a prime ideal, we have
pr (Rreg) ⊂ (R/p)reg = (R/p) \ {0}, where πp : R → R/p is the canonical surjection.
Thus, Lemma A.49 implies πp (Rreg) = (R/p)reg, and hence the statement follows from
Theorem A.36.

Proposition A.51. Let R be a reduced Noetherian ring. Then

Min (QR) = Max (QR).

Proof. Let i be a proper ideal of QR. Then i ⊂ QR \ Q∗R. Since QR is reduced by
Lemma A.27, and since Q∗R = Qreg

R (see Remark A.19.(3)), Proposition A.47 yields

i ⊂ QR \Qreg
R =

⋃
p∈Min (QR)

p.

Then Theorem A.2 implies that there is a p ∈ Min (R) containing i. The claim follows.

A.4. Completion
For the definition of ideal-adic topologies and completions of rings and modules see for
example [45, Chapter II] or [42, Chapter 9].

Theorem A.52. Let R and A be semilocal rings such that A is a finite R-module. Then
the topology of A as a semilocal ring coincides with the topology of A as a finite R-module.
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Proof. See [45, Theorem 16.8].

Theorem A.53. Let R be a Noetherian ring, and let i be an ideal of R. Then the i-adic
completion R̂ of R is Noetherian.

Proof. See [40, Theorem 10.26].

Theorem A.54. Let R be a ring, and let i be an ideal of R. Then the i-adic completion
R̂ of R is flat over R.

Proof. See [44, Theorem 8.8].

Theorem A.55. Let R be a Noetherian ring, let i be an ideal of R, and let M be a finite
R-module. Writing M̂ and R̂ for the i-adic completions of M and R we have

M̂ = M ⊗ R̂,

and the topology of M̂ as the completion of M coincides with its topology as a finite
R̂-module.
In particular, if R is complete, so is M .

Proof. See [44, Theorem 8.7].

Theorem A.56. Let R be a ring, let i be an ideal of R, and let R̂ be the i-adic completion
of R. Then there is a bijection between the set of regular ideals of R and the set of regular
ideals of R̂ given by

I 7→ IR̂,

J ∩R←[ J.

Proof. See [29, Theorem 2.8].

Definition A.57. A Zariski ring is a Noetherian ring R whose topology is defined by an
ideal i ⊂ jR, where jR is the Jacobson radical of R.

Remark A.58. A Noetherian semilocal ring is a Zariski ring, see [42, 24.B].

Theorem A.59. Let R be a Zariski ring (with respect to an ideal i ⊂ jR), and let R̂ be
the i-adic completion of R.

(1) R is a subring of R̂.

(2) There is a bijection

Max (R)→ Max
(
R̂
)
,

m 7→ mR̂,

n ∩R←[ n.

In particular, if R is local, then R̂ is local.
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(3) For any m ∈ Max (R) we have R/m ∼= R̂/mR̂.

Proof. See [42, Corollary of Theorem 56].

Theorem A.60. Let R be a Noetherian ring, and let i be an ideal of R. Then the i-adic
completion R̂ of R is faithfully flat over R if and only if i ⊂ jR, i.e. R is a Zariski ring.

Proof. See [44, Theorem 8.14].

Theorem A.61. Let R be a semilocal ring. Then

R̂ =
∏

m∈Max (R)
R̂m.

Proof. See [45, Theorem 17.7].

Corollary A.62. Let R be a semilocal Noetherian ring. Then R̂m = R̂
mR̂

for any m ∈
Max (R). In particular,

R̂ =
∏

n∈Max
(
R̂
) R̂n.

Proof. Let m ∈ Max (R). Then Rm is a Zariski ring, see Corollary A.21 and Remark A.58.
Thus, R̂m is by Theorem A.59.(2) a local ring with maximal ideal mRmR̂m = mR̂m, where
the equality follows from Theorem A.59.(1).

By Theorem A.59.(2) we have mR̂ ∈ Max
(
R̂
)
, and Theorems A.61 and A.59.(1) yield

mR̂ = m
∏

n∈Max (R)
R̂n

=
∏

n∈Max (R)
mR̂n

= mR̂m ×
∏

n∈Max (R)\{m}
mRnR̂n

= mR̂m ×
∏

n∈Max (R)\{m}
RnR̂n

= mR̂m ×
∏

n∈Max (R)\{m}
R̂n.

Using again Theorem A.61 this implies R̂
mR̂

= R̂m. The particular claim follows from
Theorem A.59.(2).

Theorem A.63. Let R be a Noetherian local ring, and let M be a finite R-module. Then
dimRM = dim

R̂
M̂ .

Proof. See [38, Corollary 2.1.8].

Corollary A.64. Let R be a Noetherian semilocal ring. Then dimR = dim R̂.
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Proof. Theorems A.59.(2) and A.63 and Corollary A.62 yield

dim R̂ = max
n∈Max

(
R̂
) dim R̂n

= max
m∈Max (R)

dim R̂m

= max
m∈Max (R)

dimR

= dimR.

Corollary A.65. Let R be a Noetherian semilocal ring. Then heightm = heightmR̂ for
every m ∈ Max (R).

Proof. Let m ∈ Max (R). Then Corollaries A.62 and A.64 yield

heightm = dimRm = dim R̂m = dim R̂
mR̂

= heightmR̂.

Definition A.66. Let A be a local ring with maximal ideal m. A subfield k ⊂ A is called
a coefficient field of A if k ∼= A/m under the canonical surjection A� A/m.

Theorem A.67 (Cohen Structure Theorem). Let R be a complete local Noetherian ring
with maximal ideal m and residue field k = R/m, and let {x1, . . . , xn} be a set of gener-
ators for the maximal ideal m. If R contains a field, then there is a surjective k-algebra
homomorphism

π : k[[X1, . . . , Xn]]� R,

Xi 7→ xi for all i = 1, . . . , n.

In particular,
R ∼= k [[X1, . . . , Xn]] /i,

where i = kerπ ⊂ k[[X1, . . . , Xn]], and R contains a coefficient field.

Proof. See [39, Theorem 7.7].

Lemma A.68. Let R be a semilocal ring. Then R is analytically reduced if and only if
Rm is analytically reduced for every m ∈ Max (R).

Proof. Let R be analytically reduced, i.e. its completion R̂ is reduced. By Lemma A.27
this is equivalent to R̂m̂ being reduced for every m̂ ∈ Max

(
R̂
)
. Since R̂m̂ = R̂m̂∩R for

every m̂ ∈ Max
(
R̂
)
by Theorem A.59.(2) and Corollary A.62, the statement follows with

Theorem A.59.(2).

A.5. Branches of Rings
Definition A.69. Let R be a ring. A branch of R is a quotient ring R/p for some
p ∈ Min (R).
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Lemma A.70. Let R be a reduced Noetherian ring, and let A be a ring with R ⊂ A ⊂ QR.
If p ∈ Min (R), then pA ∈ Spec (A).

Proof.
By Proposition A.10.(1) pA is an ideal of A. So let x, y ∈ A such that xy ∈ pA. By
Lemma A.37, and since A ⊂ QR, there are z1 ∈ p, x1, y1 ∈ R and z2, x2, y2 ∈ Rreg such
that

xy = x1y1
x2y2

= z1
z2
.

This implies
x1y1z2 = x2y2z1 ∈ p.

Since p is a prime ideal of R, this implies x1y1 ∈ p as otherwise z2 ∈ p ∩ Rreg = ∅ (see
Proposition A.47). Hence, we have x1 ∈ p or y1 ∈ p. This yields x ∈ pA or y ∈ pA, and
thus pA is a prime ideal of A.

Lemma A.71. Let R be a reduced Noetherian ring, and let A be a ring with R ⊂ A ⊂ QR.

(1) Let p ∈ Min (R). Then pA ∈ Min (A).

(2) Let q ∈ Min (A). Then q ∩R ∈ Min (R).

Proof. (1) Let p ∈ Min (R). Then pA is by Lemma A.70 a prime ideal of A. Assume
that p 6∈ Min (A). Then there is a prime ideal q of A such that

q ( pA. (A.4)

By Proposition A.10.(2) p′ = q∩R is a prime ideal of R with p′ ⊂ p. Since p ∈ Min (R),
this implies p′ = p. However, this yields with Equation (A.4) the contradiction

pA = p′A ⊂ qA = q ( pA.

Therefore, pA ∈ Min (A).

(2) Let q ∈ Min (A). Then q ∩ R by Proposition A.10.(2) a prime ideal of R. Assume
that q ∩R 6∈ Min (R). Then there is a p ∈ Min (R) such that

p ( q ∩R. (A.5)

By Proposition A.10.(2) and Lemma A.70 pA and (q ∩R)A are prime ideals of A,
and

pA ⊂ (q ∩R)A ⊂ q.

Since q ∈ Min (A), this implies

pA = (q ∩R)A = q.

However, Equation (A.5) then yields the contradiction

q ∩R = pA ∩R = p ( q ∩R.

Hence, q ∩R ∈ Min (R).
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Theorem A.72. Let R be a reduced Noetherian ring, and let A be a ring with R ⊂ A ⊂ QR.
Then there is a bijection

Min (R)→ Min (A),
p 7→ pA,

q ∩R←[ q.

Proof. By Lemma A.71 there are maps

Min (R)→ Min (A),
p 7→ pA

and

Min (A)→ Min (R),
q 7→ q ∩R.

Moreover, Proposition A.10.(1) yields pA ∩R = p for any p ∈ Min (A).
Let now q ∈ Min (A). Then q ∩ R ∈ Min (R) by Lemma A.71.(2). This implies by

Lemma A.70 that (q ∩R)A is a prime ideal of A, and

(q ∩R)A ⊂ qA = q

as q is an ideal of A. Since q ∈ Min (A), this yields

(q ∩R)A = q.

Thus, we obtain the statement.

Corollary A.73. Let R be a reduced Noetherian ring, and let A be a ring with R ⊂ A ⊂ QR.
If R is a domain, then A is a domain.

Theorem A.74. Let R be a reduced Noetherian ring.

(1) There is a bijection

Min (R)→ Max (QR),
p 7→ pQR,

m ∩R←[ m

such that
QR/pQR = QR/p.

for any p ∈ Min (R).

(2) We have
QR =

∏
p∈Min (R)

QR/p =
∏

m∈Max (QR)
QR/m.
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Proof. Also see [1, Proposition 1.4.27 and Theorem 1.5.20].

(1) This follows from Lemma A.50, Proposition A.51, and Theorem A.72.

(2) The Chinese Remainder Theorem implies

QR/
⋂

m∈Max (QR)
m =

∏
m∈Max (R)

QR/m =
∏

p∈Min (R)
QR/p,

where the second equality follows from (1). Since QR is by Corollary A.21 and
Lemma A.27 Noetherian and reduced, Lemma A.48 and Proposition A.51 yield⋂

m∈Max (QR)
m =

⋂
p∈Min (QR)

p = 〈0〉.

Corollary A.75. Let R be a reduced Noetherian ring, and let m ∈ Max (QR). Then
p = m ∩R ∈ Min (R), and

m = 0×
∏

q∈Min (R)\{p}
QR/q.

Proof. By Theorem A.74.(2),
QR =

∏
q∈Min (R)

QR/q

is a finite product of fields. Hence, there is by Lemma A.6.(2) a p ∈ Min (R) such that

m = 0×
∏

q∈Min (R)\{p}
QR/q.

Moreover, since m ∩R ∈ Min (R) by Theorem A.74.(2), we obtain

m ∩R =

0×
∏

q∈Min (R)\{p}
QR/q

 ∩R = p.

Lemma A.76. Let R be a reduced Noetherian ring, let U be a multiplicatively closed subset
of R, and let

φ : R→ U−1R,

x 7→ x

1 .

Then for any p ∈ Spec (R) with p ∩ U = ∅ we have QU−1R/φ(p) = QR/p. Moreover,

QU−1R =
∏

p∈Min (R)
p∩U=∅

QR/p.
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Proof. Let p ∈ Spec (R) such that p ∩ U = ∅. By Theorem A.36 we have

U−1R/φ(p) = (π (U))−1(R/p),

where π : R→ R/p is the canonical surjection. Since R/p is a domain, and since π (U) is a
multiplicatively closed subset of R/p, Remark A.19.(1) and Lemma A.32 yield

QU−1R/φ(p) = Q(π (U))−1(R/p) = QR/p.

The second part of the claim follows from Proposition A.20.(2) and Theorem A.74.(2).

Proposition A.77 (See [25], Section 3.2). Let R be a reduced Noetherian ring, and let U
be a multiplicatively closed subset of R. Then

QU−1R = U−1QR.

Proof. By Proposition A.38 and Theorem A.74.(2) we have

U−1QR = U−1R⊗R QR
= U−1R⊗R

∏
p∈Min (R)

QR/p

=
∏

p∈Min (R)
U−1R⊗R QR/p.

Let p ∈ Min (R). First suppose that p∩U 6= ∅, i.e. there is s ∈ p∩U . Since any element
of U−1R⊗R QR/p is of the form u

v ⊗
x+p
y+p with u, x ∈ R, v ∈ U , and y ∈ R \ p, we obtain

u

v
⊗ x+ p

y + p
= su

sv
⊗ x+ p

y + p

= u

sv
⊗ s(x+ p)

y + p

= u

sv
⊗ sx+ p

y + p

= u

sv
⊗ p

y + p

= 0.

Hence, U−1R⊗R QR/p = 0.
Now suppose that p ∩ U = ∅. Then v 6∈ p, and hence

u

v
⊗ x+ p

y + p
= 1
v
⊗ uvx+ p

vy + p

= v

v
⊗ ux+ p

vy + p

= 1⊗ ux+ p

vy + p
.
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This implies U−1R⊗R QR/p = QR/p. Therefore, Lemma A.76 yields

U−1QR =
∏

p∈Min (R)
p∩U=∅

QR/p = QU−1R.

Lemma A.78. Let R be a complete Noetherian semilocal ring. Then for any p ∈ Min (R)
there is a unique m ∈ Max (R) with p ⊂ m.

Proof. Let p ∈ Min (R). Since
R =

∏
m∈Max (R)

Rm.

by Corollary A.62, there is by Lemma A.6.(1) an m ∈ Max (R) such that

p = pRm ×
∏

n∈Max (R)\{m}
Rn.

This implies p ⊂ m and p 6⊂ n for every n ∈ Max (R) \ {m}.
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B.1. Integral Extensions
Definition B.1. Let R be a ring, and let A be an R-algebra.

(1) An element a ∈ A is called integral over R if there is a monic polynomial p ∈ R [x]
such that p (a) = 0.

(2) The integral closure of R in A is the ring of all elements of A which are integral over
R.

(3) Suppose that A contains a copy of R as R · 1. Then A is called an integral extension
of R if every element of A is integral over R.

(4) We denote the integral closure of R in its total ring of fractions QR by R.

(5) If R is reduced, then R is called the normalization of R. The ring R is said to be
normal if R = R.

Lemma B.2. Let R be a ring, and let A be an integral extension of R. Then R∗ = A∗∩R.

Proof. Let x ∈ A ∩R. Then there are n ∈ N and a0, . . . , an−1 ∈ R such that

x−n + an−1x
−(n−1) + . . .+ a0 = 0.

Multiplying by xn, we obtain

1 + an−1x+ . . .+ a0x
n = 0,

and hence
1 = x

(
an−1 + . . .+ a0x

n−1
)
.

This implies x ∈ R∗, since x, a0, . . . , an−1 ∈ R, and hence
(
an−1 + . . .+ a0x

n−1) ∈ R.
Proposition B.3. Let R and A be rings such that R ⊂ A. Then the integral closure of R
in A is a subring of A containing R. In particular, it is an integral extension of R.

Proof. See [46, Corollary 2.1.11].

Corollary B.4. Let R be a ring. Then R∗ = R
∗ ∩R.

Proof. This follows from Lemma B.2 and Proposition B.3.
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Proposition B.5. Let R, S and T be rings such that R ⊂ S ⊂ T . Then S is integral over
R and T is integral over S if and only if T is integral over R. In particular, the integral
closure of R in an overring is integrally closed.

Proof. See [46, Corollary 2.1.12].

Proposition B.6. Let R be a ring, and let A be an integral extension of R.

(1) For any ideal i of A the ring A/i is an integral extension of R/(i ∩R).

(2) For any multiplicatively closed subset U of R the ring U−1A is an integral extension
of U−1R.

Proof. See [40, Proposition 5.6].

Proposition B.7. Let R, S and T be rings with R ⊂ S ⊂ T . Then the following are
equivalent:

(a) S is the integral closure of R in T .

(b) U−1S is the integral closure of U−1R in U−1T for every multiplicatively closed subset
U of R.

(c) (R \ p)−1S is the integral closure of Rp in (R \ p)−1T for every prime ideal p of R.

(d) (R \m)−1S is the integral closure of Rm in (R \m)−1T for every m ∈ Max (R).

Proof. See [46, Proposition 2.1.6].

Corollary B.8. Let R be a reduced ring, and let U be a multiplicatively closed subset of
R. Then

U−1R = U−1R.

Proof. This follows from Propositions A.77 and B.7.

Corollary B.9. Let R be a reduced ring. Then the following are equivalent:

(a) R is normal.

(b) U−1R is normal for every multiplicatively closed subset U of R.

(c) Rp is normal for every prime ideal p of R.

(d) Rm is normal for every m ∈ Max (R).

Proof. First note that R is by Lemma A.27 reduced if and only if U−1R is reduced for
every multiplicatively closed subset U of R. Then the claim follows from Propositions A.77
and B.7.

Theorem B.10. Let R be a ring, and let A be an R-algebra. The set of all elements of A
which are integral over R is a subalgebra of A. In particular, if A is generated by elements
integral over R, then A is integral over R.
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Proof. See [39, Theorem 4.2].

Theorem B.11. Let R be a ring, and let A be an R-algebra. Then A is finite over R if
and only if A is generated as an R-algebra by finitely many integral elements.

Proof. See [39, Corollary 4.5].

Theorem B.12 (Lying Over). Let R be a ring, and let A be an integral extension of R.
Then for any prime ideal p of R there is a prime ideal q of A such that q ∩R = p.

Proof. See [46, Theorem 2.2.2].

Theorem B.13 (Incomparability). Let R be a ring, let A be an integral extension of R,
and let p and q be prime ideals of A with p ⊂ q. If p ∩R = q ∩R, then p = q.

Proof. See [46, Theorem 2.2.3].

Theorem B.14. Let R be a ring, and let A be an integral extension of R. Then dimR =
dimA.

Proof. See [46, Theorem 2.2.5].

Proposition B.15. Let R be a ring, let A be an integral extension of R, and let q be a
prime ideal of A. Then q is a maximal ideal of A if and only if q ∩R is a maximal ideal
of R.

Proof. See [39, Corollary 4.17].

Proposition B.16. Let R be a ring, let p be a prime ideal of R, and let A be a finitely
generated integral extension of R. Then there are only finitely many prime ideals of A
lying over p.

Proof. By Proposition B.6.(2) (R \ p)−1A is a finitely generated integral extension of Rp,
and hence (R \ p)−1A/p(R \ p)−1A is a finitely generated integral extension of Rp/pRp.
Then (R \ p)−1A/p(R \ p)−1A is Noetherian by Theorem A.1 since Rp/pRp is a field. More-
over, dim (R \ p)−1A/p(R \ p)−1A = dimRp/pRp = 0 by Theorem B.14. This implies that
(R \ p)−1A/p(R \ p)−1A is Artinian (see [40, Theorem 8.5]). Then (R \ p)−1A/p(R \ p)−1A
is a product of local rings (see [40, Theorem 8.7]), and hence it is semilocal by Lemma A.6.(1).
Proposition A.10.(3) implies that there are finitely many maximal ideals of (R \ p)−1A con-
taining p(R \ p)−1A. Then by Proposition B.15 there are only finitely many maximal ideals
of (R \ p)−1A which all are all lying over pRp. By Proposition A.20.(2) this implies that
there are only finitely many prime ideals of A lying over p. Also see [44, Exercise 9.3].

Corollary B.17. Let R be a semilocal ring, and let A be a finitely generated integral
extension of R. Then A is semilocal, as well.

Proof. This follows from Proposition B.15 and B.16.

Lemma B.18. Let R be a reduced Noetherian ring, let A be an integral extension of R
with R ⊂ A ⊂ QR, and let q be a prime ideal of A. If height q ∩R = 1, then height q = 1.
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Proof. By Theorem B.13 we have height q ∩R ≥ height q = 1, and Theorem A.72 implies
height q > 0.

Lemma B.19. Let R be a ring, let A be an integral extension of R, and let q be a prime
ideal of A. Set p = q ∩A, U = A \ p and B = U−1A. Then:

(1) R \ p ⊂ A \ q.

(2) qB is a prime ideal of B, and height qB = height q.

(3) Aq = BqB.

(4) If B is local and dimB = height q, then Aq = B.

Proof. (1) We have R \ p = (A ∩R) \ (q ∩R) = (A \ q) ∩R ⊂ A \ q.

(2) By (1) q is a prime ideal of A not meeting R \ p. Thus, qB is a prime ideal of B by
Proposition A.20.(2). Since any prime ideal q′ of R with q′ ⊂ q is not meeting R \ p,
as well, there is by Proposition A.20.(2) a bijection between chains of prime ideals
of A contained in q and chains of prime ideals of B contained in qB. This yields
height q = height qB.

(3) We have the following natural homomorphisms

α : A→ B, a 7→ a

1

γ : B → BqB, b 7→ b

1
δ : A→ Aq, a 7→ a

1
ε : B → Aq,

a

p
7→ a

p
.

Then α (A \ q) ⊂ B \ qB. Otherwise, there are by Proposition A.20.(2) a ∈ A \ q,
a′ ∈ q and b ∈ R\p such that b (a− a′) = 0. This implies R\q 3 ba = ba′ ∈ q since by
(1) R\p ⊂ A\q, and A\q is multiplicatively closed. Thus, setting β = γ◦α : A→ BqB

we have β (A \ q) ⊂ (BqB)∗. Hence, the universal property of Aq implies that there
is a unique homomorphism f : Aq → BqB such that β = f ◦ γ.

By definition we have ε(qB) ⊂ qAq, and hence ε (B \ qB) ⊂ (Aq)∗. Thus, we get
by the universal property of BqB a unique homomorphism g : BqB → Aq such that
ε = g ◦ γ.

These considerations yield the following commutative diagram

A B

Aq BqB Aq.

δ β

α

γ ε

f g
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Since, moreover,
ε ◦ α (a) = ε

(
a

1

)
= a

1 = δ (a) .

for all a ∈ A, we obtain
g ◦ f ◦ δ = ε ◦ α = δ.

Hence, the universal property of Aq implies g ◦ f = idAq .
Since R \ p ⊂ A \ q by (1), we have β (R \ p) ⊂ β (A \ q) ⊂ (BqB)∗ (see above).
Then the universal property of B = (R \ p)−1A yields a unique homomorphism
h : B → BqB such that β = h◦α. Since γ : B → BqB such that β = γ ◦α, this implies
h = γ. Hence, we have the following commutative diagram

B A

BqB (A)q BqB.

γ
ε

γ

α

β

g f

Then f ◦ g ◦ γ = γ yields f ◦ g = idBqB
by the universal property of BqB, and hence

Aq = BqB.

(4) If dimB = height q, then qB is a maximal ideal of B by (2). If B is local, then qB is
the unique maximal ideal of B, and hence BqB = B. This implies B = BqB = (A′)q
by (3).

Definition B.20. A ring R is called residually rational if for any m ∈ Max (R) we have
R/m ∼= R/n for every n ∈ Max

(
R
)
with n ∩R = m.

Lemma B.21. Let R be a ring whose residue fields are algebraically closed, and let
m ∈ Max (R). If A is an integral extension of R, then R/m = A/n for any n ∈ Max (R)
with n ∩R = m. In particular, R is residually rational.

Proof. Let m ∈ Max (R), and let n ∈ Max (A) with n ∩ R = m (see Theorem B.12 and
Proposition B.15). Let x ∈ A/n. Then by Proposition B.6.(1) there are a0, . . . , an−1 ∈ R/m
such that xn + an−1x

n−1 + . . .+ a0 = 0. Thus, A/n is an algebraic extension field of R/m.
Since R/m is algebraically closed by assumption, this implies R/m = A/n.

B.2. Conductor
Definition B.22. Let R be a ring, and let I be an R-submodule of QR. The conductor
of I is CI = I : R.

Remark B.23. Let R be a ring, and let I be a regular R-submodule of QR.

(1) The conductor CI is a regular R-submodule of I. If I, R ∈ RR, then CI ∈ RR, see
Proposition 2.7.(2).

(2) RCRI ⊂ RI ⊂ I implies CRI ⊂ CI.

271



B. Integral Extensions and Normalization

(3) CI is both an R- and an R-submodule of QR, and CI is the largest R-submodule of
I with this property.

Proposition B.24. Let R be a ring, and let I and J be R-submodules of QR. Then

CI:J = CI : J.

Proof. By Lemma 2.3.(1) and Definition B.22 we have

CI:J = (I : J) : R =
(
I : R

)
: J = CI : J.

Proposition B.25. Let R be a ring, and let I and J be R-submodules of QR. Then

CI (J : I) ⊂ CJ.

Proof. Let c ∈ CI (J : I). Then there are ai ∈ CI and bi ∈ J : I, i = 1, . . . , n for some
n ≥ 0 such that c =

∑n
i=1 aibi. Since aiR ⊂ I and biI ⊂ J for all i = 1, . . . , n, we obtain

cR =
n∑
i=1

aibiR ⊂
n∑
i=1

biI ⊂ J.

This implies c ∈ J : R = CJ.

B.3. Equidimensionality
Definition B.26. A ring R is called equidimensional if dimR/p = dimR for all p ∈
Min (R).

Proposition B.27. A one-dimensional ring R is equidimensional if and only if heightm =
1 for all m ∈ Max (R).

Proof. Let R be a one-dimensional ring, and suppose that R is equidimensional. Let
m ∈ Max (R), and suppose that heightm < 1, i.e. heightm = 0. Then m ∈ Min (R).
Since R is equidimensional, we have dimR/m = dimR = 1, and hence there is by
Proposition A.10.(3) an n ∈ Max (R) with m ⊂ n and height n = 1. This contradicts the
maximality of m. Thus, heightm = 1.

Suppose now that heightm = 1 for all m ∈ Max (R). Let p ∈ Min (R). Then height p = 0,
and hence p 6∈ Max (R). Thus, there is m ∈ Max (R) with heightm = 1 and p ⊂ m. This
implies dimR/p = 1. Therefore, R is equidimensional.

Lemma B.28. Let R be a complete equidimensional Noetherian semilocal ring. Then
heightm = dimR for all m ∈ Max (R).

Proof. Let m ∈ Max (R), and let q ∈ Min (Rm) with dim q = dimRm = heightm. Then by
Proposition A.20.(2) there is a prime ideal p of R with q = pRm. In particular, this means
p ⊂ m. Since dim pRm = dim q = heightm, Proposition A.20.(2) implies p ∈ Min (R).
Since p ⊂ m, Proposition A.10.(3) and Lemma A.78 yield heightm = dim p = dimR as R
is equidimensional.
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Definition B.29. A ring R is called formally equidimensional if its completion R̂ (at the
Jacobson radical jR of R) is equidimensional.

Lemma B.30. Let R be a formally equidimensional Noetherian semilocal ring. Then
heightm = dimR for all m ∈ Max (R).

Proof. Let m ∈ Max (R). Then Theorem A.59.(2) yields mR̂ ∈ Max
(
R̂
)
with

heightm = heightmR̂ = dim R̂ = dimR

by Corollaries A.64 and A.65 and Lemma B.28.

Lemma B.31. Let R be a ring, and let A be an integral extension of R with R ⊂ A ⊂ QR.
If R is equidimensional, then so is A.

Proof. Let q ∈ Min (A). Then q∩R ∈ Min (R) by Theorem A.72, and by Proposition B.6.(1)
A/q is an integral extension of R/(q ∩R). Therefore, Theorem B.14 yields

dimA/q = dimR/(q ∩R) = dimR = dimA.

Lemma B.32. Let R be a formally equidimensional Noetherian semilocal ring, and let A
be a finite integral extension of R with R ⊂ A ⊂ QR. Then A is formally equidimensional,
as well. In particular,

heightm = heightm ∩R = dimR

for every m ∈ Max (R).

Proof. By Theorems A.52 and A.55 Â = A⊗R R̂ is finite over R̂, and hence an integral
extension of R̂ by Theorem B.11. Since A⊗ R̂ ⊂ QR ⊗ R̂ ⊂ QR̂ by Lemma 2.16.(1) and
Theorem A.59.(1), Lemma B.31 implies that Â is equidimensional, and hence A is formally
equidimensional.
Since A is semilocal by Corollary B.17, and since it is Noetherian by Theorem A.1,

Lemma B.30 and Theorem B.14 yield for every m ∈ Max (A)

heightm = dimA = dimR = heightm ∩R,

where the last equality follows from Proposition B.15.

B.4. Excellent Rings
Definition B.33. A Noetherian ring R is called excellent if it satisfies the following
conditions.

(1) R is universally catenary,

(2) For all prime ideals p of R, all prime ideals q of Rp, and all finite field extensions L
of k(q) the ring R̂p ⊗k(q) L is regular.
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(3) For every finitely generated R-algebra A the singular locus Sing (A) is closed in
Spec (A).

Theorem B.34. Let R be an excellent ring. Then all localizations of R and all finitely
generated R-algebras are excellent.

Proof. See [42, (34.A)].

Theorem B.35. Complete semilocal Noetherian rings are excellent. In particular, any
field K, and hence any localization of any finitely generated K-algebra are excellent.

Proof. See [42, (34.B)].

The next theorem lists important properties of the normalization of reduced excellent
and reduced complete rings.

Theorem B.36. Let R be a reduced excellent ring.

(1) For any ideal i of R the i-adic completion R̂ of R is reduced. If R is normal, then R̂
is normal.

(2) The normalization R of R is a finite R-module.

(3) If R is semilocal, then R̂ = R̂. In particular,

(1) R̂ = R̂ = R⊗R R̂ is a finite R̂-module, and
(2) if R is complete, then R is complete.

Proof. See [21, Theorem 1.18].

B.5. Normalization
Definition B.37. The non-normal locus of a reduced ring R is

N(R) = {p ∈ Spec (R) | Rp is not normal} .

Definition B.38. The singular locus of a ring R is

Sing (R) = {p ∈ Spec (R) | Rp is not regular}.

Theorem B.39. A regular local ring is a normal domain. A regular ring is the direct
product of regular domains.

Proof. See [38, Corollary 2.2.20].

Corollary B.40. A regular ring is normal.

Proof. Let R be a regular ring. Then R is by Theorem B.39 the direct product of regular
domains. Hence, R is reduced.
Let m ∈ Max (R). Then Rm is by definition a regular local ring. Thus, Rm is by

Theorem B.39 a normal domain. Therefore, Corollary B.9 implies that R is normal.
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Remark B.41. For any ring R Theorem B.39 implies Sing (R) ⊂ N(R).

Theorem B.42 (Splitting of Normalization). Let R be a reduced Noetherian ring. Then

R =
∏

p∈Min (R)
R/p.

Proof. See Theorem A.74.(2) and [46, Corollary 2.1.13].

Theorem B.43. Let R be a reduced Noetherian local ring of dimension one. Then R is
normal if and only if it is regular.

Proof. See [1, Theorem 4.4.9].

B.5.1. Criteria for Normality
Serre’s Conditions

Definition B.44. Let R be a ring, and let i ≥ 0 be an integer.

(1) Then R satisfies Serre’s condition (Ri) if for all p ∈ Spec (R) with dimRp ≤ i, Rp is
a regular local ring.

(2) We say thatR satisfies Serre’s condition (Si) if for all p ∈ Spec (R) we have depthRp ≥
min {i, dimRp}.

Theorem B.45. Let R be a ring.

(1) The ring R is reduced if and only if it satisfies Serre’s conditions (R0) and (S1).

(2) The ring R is normal if and only if it satisfies Serre’s conditions (R1) and (S2).

Proof. See [38, page 71 and Theorem 2.2.22].

Proposition B.46. Let R be a reduced excellent ring, and suppose that R satisfies Serre’s
condition (S2). Then for any regular radical ideal i of R the following hold:

(1) The ring i : i satisfies Serre’s condition (S2).

(2) If Rp is regular for all p ∈ Ass (i) with height p = 1, then i : i = R.

Proof. See [21, Lemma 3.6] and Lemma 2.13.

Grauert and Remmert Criterion

Definition B.47. Let R be a reduced Noetherian ring. A regular radical ideal i of R is
called a test ideal for R if

N(R) ⊂ V (i).

Theorem B.48 (Grauert and Remmert Criterion). Let R be a reduced Noetherian ring,
and let i be a test ideal for R. Then R is normal if and only if

R = i : i.
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Proof. See [20, Anhang §3.3, Satz 7], [27, Proposition 3.6.5], and Lemma 2.13.

Remark B.49. Let R be a one-dimensional reduced Noetherian local ring. Then the maximal
ideal m of R is the unique test ideal for R, see [21, Remark 4.1].

Remark B.50. Let R be a reduced Noetherian ring. If R is finite over R (e.g. if R is
excellent, see Theorem B.36.(2)), then

V (CR) = N(R),

see [21, Remark 2.2].

Definition B.51. Let R be a reduced excellent ring, and let W be a subset of Spec (R).
Then a regular radical ideal i is called a test ideal at W if

V
(
CRp

)
⊂ V (iRp)

for all p ∈W .

Proposition B.52. Let R be a reduced excellent ring, let i be an ideal of R, and let
W ⊂ Spec (R).

(1) If i is a test ideal at W , then iRp is a test ideal for Rp for any p ∈W .

(2) If N(R) ⊂W , then i is a test ideal for R if and only if it is a test ideal at W .

Proof. See [21, Lemma 2.4].

Proposition B.53. Let R be a ring, and let i be an ideal of A. Then R = i : i if and only
if Rp = iRp : iRp for all prime ideals p of R.

Proof. Since equality is a local property, we have R = i : i if and only if Rp = (R \ p)−1(i : i)
for all p ∈ Min (R). The claim follows since Lemma 2.16.(3) and Proposition A.39 yield
(R \ p)−1(i : i) = iRp : iRp for every prime ideal p of R. Also see [21, Corollary 2.6] and
Lemma 2.13.

Proposition B.54. Let R be a ring, let j be an ideal of R such that j is contained in the
Jacobson radical of R, and denote by R̂ the j-adic completion of R. Then for any ideal i of
R we have R = i : i if and only if R̂ = iR̂ : iR̂.

Proof. By Lemma 2.16.(4) and Theorem A.60 we have R = i : i if and only if RR̂ = (i : i)R̂.
Then the claim follows since RR̂ = R̂ by Theorem A.59.(1) and (i : i)R̂ = iR̂ : R̂ by
Lemma 2.16.(3). Also see [21, Corollary 2.7] and Lemma 2.13.

Proposition B.55. Let R be a reduced semilocal excellent ring, and let i be a test ideal
for R. Then î is a test ideal for R̂.

Proof. See [21, Lemma 2.5].

276



B.5. Normalization

B.5.2. Grauert and Remmert Algorithm for Normalization
Proposition B.56. Let R be a reduced Noetherian ring, and let A be a finite extension
ring of R. If i is a test ideal for R, then

√
iA is a test ideal for A.

Proof. See [19, Proposition 3.2].

Proposition B.57. Let R be a reduced Noetherian ring, and suppose that R is a finite
R-module (e.g. if R is excellent, see Theorem B.36.(2), or if R is a one-dimensional
analytically reduced semilocal Cohen–Macaulay ring, see Corollary C.15). Then for any
test ideal i of R there is a finite sequence of finite integral extensions

R = R(0) ( R(1) ( . . . ( R(n) = R,

where for any i ≥ 0 we set
R(i+1) = i(i) : i(i)

and
i(i+1) =

√
i(i)R(i+1)

with i(0) = i. Moreover, R(i) = R(n) for any i ≥ n.

Proof. By Theorem B.48 we have R = R if and only if R = i : i. Suppose that R is not
normal. Then R ( R(1) = i : i ⊂ R, and R(1) is by Remark 2.6.(1) and Proposition 2.7.(2)
finite over R. Thus, R(1) is by Theorem B.34 excellent. Moreover, since QR is reduced
by Lemma A.27, and since R(1) ⊂ QR, also R(1) is reduced. Therefore, i(1) =

√
iR(1)

is by Proposition B.56 a test ideal for R(1). So by induction (using Lemma A.34 and
Proposition B.5) we obtain a sequence of integral extensions

R = R(0) ( R(1) ( . . . ⊂ R,

and for any i ≥ 0 the ideal i(i) is a test ideal for R(i). Since R is a finite R-module, there is
an n such that R(n) = R(n+1) = i(n) : i(n), and hence R(n) = R(n) = R by Proposition B.5
and Theorem B.48.

Proposition B.58. Let R be a reduced excellent ring, let p be a prime ideal of R, and let
i be a test ideal of R. Then iRp is a test ideal of Rp, and

(R \ p)−1R(1) = (R \ p)−1(i : i) = iRp : iRp = (Rp)(1)

Proof. This follows from Lemma 2.16.(3) and Propositions A.39 and B.52.(1).

Proposition B.59. Let R be a reduced excellent ring, let p ∈ Spec (R) \ N(R), and let
q ∈ Spec

(
R(1)

)
with p = q ∩R (see Theorem B.12). Then

(
R(1)

)
q

= Rp.

Proof. If p ∈ Spec (R)\N(R), then Rp is normal by definition. Thus, we have Rp = (Rp)(1)

by Theorem B.48 (recall that by Lemma A.27, Theorem B.34, and Remark B.49 pRp is
the unique test ideal for Rp). Moreover, Proposition B.53 yields

Rp = (Rp)(1) = (R \ p)−1R(1). (B.1)
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Let q′ be a prime ideal of R(1) with q ⊂ q′ and q′ ∩ (R \ p) = ∅. Then

p = q ∩R ⊂ q′ ∩R ⊂ p

implies q′ ∩R = p, and hence q = q′ by Theorem B.13. Thus,

q
(
(R \ p)−1R(1)

)
= pRp

is the maximal ideal of the local ring (R \ p)−1R(1) = Rp (see Equation (B.1)). Then
Proposition A.20.(2) yields

height p = height pRp = height q
(
(R \ p)−1R(1)

)
= height q.

Thus, we obtain by Lemma B.19.(4)

Rp = (R \ p)−1R(1) =
(
R(1)

)
q
.

Proposition B.60. Let R be a local ring with maximal ideal mR. Then

EndR (mR) =
{
R if R is regular,
HomR (mR, R) otherwise.

In particular, if mR is regular, then

mR : mR =
{
R if R is regular,
R : mR otherwise.

Proof. See [21, Lemma 3.5]. The particular claim follows with Lemma 2.13.

Lemma B.61. Let R be a reduced excellent ring, let n ∈ N, and set

Sn =
{
p ∈ Sing (R)

∣∣∣ there is a prime ideal q of R(n) with height q = 1 and q ∩R = p
}
.

(1) If R satisfies Serre’s criterion (S2), then R(n) is normal if and only if it satisfies
(R1).

(2) The ring R(n) satisfies Serre’s condition (R1) if and only if
(
R(n)

)
q
is a regular local

ring for all prime ideals q of R(n) with height q = 1 and q ∩R ∈ Sing (R).

(3) The ring R(n) satisfies Serre’s condition (R1) if and only if (Rp)(n) is normal for all
p ∈ Sn.

(4) If R satisfies Serre’s criterion (S2), then R(n) is normal if and only if (Rp)(n) is
regular, equivalently normal, for all p ∈ Sn.
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Proof. (1) By Theorem B.45.(2) R(n) is normal if and only if it satisfies Serre’s crite-
ria (R1) and (S2). If dimR = 0, then dimR(n) = dimR = 0 by Theorem B.14. Thus,
R(n) satisfies (S2). If dimR > 0, then the Jacobson radical jR is regular. Hence,
inductively applying Proposition B.46.(1) implies that R(n) satisfies (S2). So R(n) is
normal if and only if it satisfies (R1).

(2) Since R is reduced, also QR is reduced by Lemma A.27, and hence R(n) ⊂ QR is
reduced. Hence, R(n) satisfies (R0) by Theorem B.45.(1). This implies that R(n)

satisfies (R1) if and only if
(
R(n)

)
q
is a regular local ring for all prime ideals q of

R(n) with height q = 1.
Let q be a prime ideal of R(n) with height q = 1, and set p = q∩R. If p ∈ Spec (R) \
Sing (R), then Rp is regular by definition. Hence Rp is normal by Theorem B.39. So
inductively applying Proposition B.59 implies that

(
R(n)

)
q

= Rp is regular.

(3) By (2) R(n) satisfies (R1) if and only if
(
R(n)

)
q
is a regular local ring for all prime

ideals q of R(n) with height q = 1 and q ∩R ∈ Sing (R). Now let q be a prime ideal
of R(n) with height q = 1 and q ∩ R ∈ Sing (R), and set p = q ∩ R. By inductively
applying Proposition B.58 we obtain

(Rp)(n) = (R \ p)−1R(n).

If we set B = (R \ p)−1R(n), then qB is by Lemma B.19.(2) a prime ideal of B.
Moreover, Lemma B.19.(3) yields

BqB =
(
R(n)

)
q
.

So if B is normal, then BqB is normal by Proposition B.7, and therefore
(
R(n)

)
q
is

normal. Since height q = 1, this implies by Theorem B.43 that
(
R(n)

)
q
is regular.

Thus, if (Rp)(n) is normal for all p ∈ Sn, then R(n) satisfies Serre’s condition (R1).

Assume now that B is not normal. Then there is a prime ideal i of B such that
Bi is not regular. By Proposition A.20.(2) there is a prime ideal q′ of R(n) with
i = q′B. In particular, we have height i = height q′B ≤ 1 by Proposition A.20.(1),
and

(
R(n)

)
q′

= Bq′B = Bi (see Lemma B.19.(3)) is by Corollary B.9 not normal.

Therefore,
(
R(n)

)
q′
, and hence R(n), is not regular by Corollary B.40. So if there is

p ∈ Sn such that (Rp)(n) is not normal, then R(n) does not satisfy (R1).

(4) This follows from (1) and (3).
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Proposition C.1. Let R be a local Noetherian ring, and let M be a finite non-zero
R-module. Then depthM ≤ dimM .

Proof. See [38, Proposition 1.2.12].

Definition C.2. Let R be a Noetherian local ring. A finite R-module M 6= 0 is a Cohen-
Macaulay module if depthM = dimM . If R is a Cohen-Macaulay module over itself, then it
is called a Cohen-Macaulay ring. A maximal Cohen-Macaulay module is a Cohen-Macaulay
module M such that dimM = dimR.
If R is an arbitrary Noetherian ring, then M is a Cohen-Macaulay module if Mm is a

Cohen-Macaulay module for all maximal ideals m ∈ Supp (M). For M to be a maximal
Cohen-Macaulay module we also require thatMm is a maximal Cohen-Macaulay Rm-module
for each maximal ideal m of R. As in the local case, R is a Cohen-Macaulay ring if it is a
Cohen-Macaulay module over itself.

Remark C.3. Any zero-dimensional ring is Cohen–Macaulay.

Theorem C.4. Let R be a Noetherian ring, and let M be a Cohen–Macaulay R-module.
Then for any multiplicatively closed subset U of R the localization U−1M is also Cohen–
Macaulay. In particular, Mp is Cohen–Macaulay for every p ∈ Spec (R).

Proof. See [38, Theorem 2.1.3.(b)].

Corollary C.5. A Cohen–Macaulay ring satisfies Serre’s condition (Sk) for any k ∈ N.

Theorem C.6. Let R be a Noetherian local ring, and let M be a finite R-module. Then
M is Cohen–Macaulay if and only if its completion M̂ is Cohen–Macaulay.

Proof. See [38, Corollary 2.1.8].

Corollary C.7. Let R be a Noetherian semilocal ring. Then R is Cohen–Macaulay if and
only if R̂ is Cohen–Macaulay.

Proof. By definition R is Cohen–Macaulay if and only if Rm is Cohen–Macaulay for each
m ∈ Max (R). By Theorem C.6 this is equivalent to R̂m being Cohen–Macaulay for every
m ∈ Max (R). This is by Theorem A.59.(2) and Corollary A.62 the case if and only if(
R̂
)
m̂
is Cohen–Macaulay for every m̂ ∈ Max

(
R̂
)
. By definition this is equivalent to R̂

being Cohen–Macaulay.

Proposition C.8. A Noetherian ring R is Cohen-Macaulay if and only if the polynomial
ring R [x] is Cohen-Macaulay.
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Proof. See [39, Proposition 18.9].

Corollary C.9. A Noetherian ring R is Cohen-Macaulay if and only if the polynomial
ring R[x1, . . . , xn] is Cohen-Macaulay.

Proof. Apply Proposition C.8 inductively to R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

Proposition C.10. Let R be a Cohen–Macaulay ring, and let i be an ideal of R. If i is
generated by height i elements, then R/i is a Cohen–Macaulay ring.

Proof. See [39, Proposition 18.13].

Proposition C.11. A local Cohen-Macaulay ring is equidimensional.

Proof. See [39, Corollary 18.11].

Proposition C.12. Let R be a reduced Cohen–Macaulay ring, and let A be a finite integral
extension of R with R ⊂ A ⊂ QR. Then

height p = height p ∩R

for every prime ideal p of A.

Proof. Let p be a prime ideal of A, and set q = p ∩ R. By Proposition B.6.(2) the ring
A′ = (R \ q)−1A is an integral extension of R. Since A is finite over R, also A′ = A⊗R Rq

is by Proposition A.38 finite over Rq. As R is reduced, Propositions A.24 and A.77
yield Rp ⊂ (R \ p)−1A ⊂ (R \ p)−1QR = QRp . Moreover, Proposition A.20.(2) implies
pA′ ∈ Max (A′).
By Theorem C.4 the ring Rq is Cohen–Macaulay. Since the Cohen–Macaulay property

commutes with completion by Theorem C.6, R̂p is by Theorem A.59.(2) and Proposition C.11
equidimensional, i.e. Rq is formally equidimensional.

Then Lemma B.32 yields
height pA′ = height qRq.

Thus, we obtain
height p = height q

by Proposition A.20.(2). Also see [47, Proposition 8.7].

C.1. One-dimensional Cohen–Macaulay Rings
Proposition C.13. A one-dimensional reduced Noetherian ring is a Cohen–Macaulay
ring.

Proof. Let R be a one-dimensional reduced Noetherian ring, and let m ∈ Max (R). If
heightm = 0, then Rm is a Cohen–Macaulay ring (see Remark C.3). So let heightm = 1.
Then Rm is a one-dimensional local reduced Noetherian ring by Corollary A.21 and
Lemma A.27. So in the following let R be a one-dimensional local reduced Noetherian ring
with maximal ideal m. We have to show that mreg 6= ∅.
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So assume mreg = ∅. Then any x ∈ m is a zerodivisor. Thus,

m ⊂ R \Rreg =
⋃

p∈Min (R)
p

by Proposition A.47, and hence m ∈ Min (R) by Theorem A.2, and since m is prime. This
implies heightm = 0, contradicting the assumption.
Hence, there is an x ∈ mreg, and (x) is a maximal regular sequence in R since

depthR ≤ dimR = heightm = 1

by Proposition C.1. In particular, we have depthR = dimR, and hence R is Cohen–
Macaulay.

Theorem C.14. Let R be a one-dimensional local Cohen–Macaulay ring. Then R is
analytically reduced if and only if R is a finitely generated R-module.

Proof. See [23, Chapter II, Theorem 3.22].

Corollary C.15. Let R be a reduced one-dimensional semilocal Cohen–Macaulay ring.
Then R is analytically reduced if and only if R is a finite R-module.

Proof. By Lemma A.68 R is analytically reduced if and only if Rm is analytically reduced
for every m ∈ Max (R). This is by Proposition A.20.(2) and Theorem C.14 equivalent to
Rm = Rm (see Corollary B.8) being a finite Rm-module for all m ∈ Max (R) since Rm is by
Lemma A.27 reduced for every m ∈ Max (R). By Lemma A.42 this is the case if and only
if R is a finite R-module.

Corollary C.16. Let R be a one-dimensional semilocal Cohen–Macaulay ring. If R is
analytically reduced, then CI ∈ RR ⊂ RR for any I ∈ RR.

Proof. Since R is analytically reduced, we have R ∈ RR by Remark 2.6.(1) and Corol-
lary C.15. Hence, the statement follows from Lemmas 2.11 and 2.12.

C.2. Canonical Module
Definition C.17. Let R be a ring, and let M be an R-module. The injective dimension
of M , denoted by inj dimM or inj dimRM , is the smallest integer n for which there exists
an injective resolution I• of M with Im = 0 for all m > n. If there is no such n, the
injective dimension of M is infinite.

Definition C.18. Let R be a local ring with maximal ideal mR, andM be a finite non-zero
R-module. Then the number

r(M) = dimR/mR ExtdepthM
R (R/mR,M)

is called the type of M .
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Definition C.19. Let R be a local Cohen–Macaulay ring. A maximal Cohen–Macaulay
module ωR of type 1 and of finite injective dimension is called a canonical module of R.

Let R is an arbitrary Cohen–Macaulay ring. A finite R-module ωR is a canonical module
of R if (ωR)m is a canonical module of Rm for all m ∈ Max (R).

Theorem C.20. Let R be a local Cohen–Macaulay ring, and let ωR and ω′R be canonical
modules of R.

(1) The canonical modules ωR and ω′R are isomorphic.

(2) We have HomR (ωR, ω′R) ∼= R, and any generator φ of HomR (ωR, ω′R) ∼= R is an
isomorphism.

(3) The canonical homomorphism R→ EndR (ωR) is an isomorphism.

Proof. See [38, Theorem 3.3.4].

Theorem C.21. Let R and A be local Cohen–Macaulay rings, and let φ : R → A be a
local homomorphism such that A is a finite R-module. If the canonical ωR of R exists, then
the canonical module ωA of A exists, and

ωA ∼= ExtdimR−dimA
R (A,ωR).

Proof. See [38, Theorem 3.3.7.(b)].

Theorem C.22. Let R be a local Cohen–Macaulay ring, and let ωR be a finite R-module.
Then the following conditions are equivalent:

(a) ωR is the canonical module of R.

(b) For any Cohen–Macaulay modules M of R we have
(1) ExtdimR−dimM

R (M,ωR) is a Cohen–Macaulay R-module of dimension dimM ,
(2) ExtiR (M,ωR) = 0 for all i 6= dimR− dimM , and
(3) there is an isomorphism

M → ExtdimR−dimM
R

(
ExtdimR−dimM

R (M,ωR), ωR
)

which in the case dimM = dimR is the natural homomorphism from M into
its bidual with respect to ωR.

(c) For any maximal Cohen–Macaulay modules M of R we have
(1) HomR (M,ωR) is a maximal Cohen–Macaulay R-module,
(2) ExtiR (M,ωR) = 0 for i > 0, and
(3) the natural homomorphism

M → HomR (HomR (M,ωR), ωR)

is an isomorphism.
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Proof. See [38, Theorem 3.3.10].

Proposition C.23. Let R be a Cohen–Macaulay ring, and let ωR be a canonical module
of R. If R is generically Gorenstein, i.e. if Rp is Gorenstein for all p ∈ Min (R), then ωR
can be identified with an ideal of R.

C.3. Gorenstein Rings
Definition C.24. A Noetherian local ring R is a Gorenstein ring if inj dimRR <∞. A
Noetherian ring is a Gorenstein ring if Rm is a Gorenstein ring for every m ∈ Max (R).

Proposition C.25. A Gorenstein ring is Cohen–Macaulay.

Proof. Let R be a Gorenstein ring. Then by definition Rm is Gorenstein for every m ∈
Max (R). Hence, Rm is Cohen–Macaulay for every m ∈ Max (R) by [38, Proposition 3.1.20].
This implies that R is Cohen–Macaulay (see Definition C.2).

Theorem C.26. Let R be a local Cohen–Macaulay ring. Then the following conditions
are equivalent:

(a) R is Gorenstein.

(b) The canonical module ωR of R exists, and it is isomorphic to R.

Proof. See [38, Theorem 3.3.7.(a)].
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D.1. Valuation Rings
Definition D.1. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical.

(1) A valuation ring of Q is a subring V of Q with V 6= Q such that the set Q \ V is
multiplicatively closed.

(2) Let V be a valuation ring of Q. Then for any subring R of V with QR = Q we call
V a valuation ring over R.

(3) If R is a subring of Q with QR = Q, the set of valuation rings of Q over R is denoted
by VR.

Lemma D.2. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical. A valuation
ring V of Q is integrally closed in Q, and Q = QV is the total ring of fractions of V .

Proof. See [23, Chapter I, Lemma 2.1].

Theorem D.3. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and let V
be a subring of Q with V 6= Q and QV = Q. Then the following statements are equivalent:

(a) V is a valuation ring of Q.

(b) For any x ∈ Qreg we have either x ∈ V or x−1 ∈ V .

(c) The set of regular principal fractional ideals of V is totally ordered by inclusion.

(d) The set RV is totally ordered by inclusion.

(e) For any subring V ( A ⊂ Q there is a prime ideal p ∈ Spec (V ) such that pA = A.

Proof. See [23, Chapter I, Theorem 2.2] and Lemma D.2.

Remark D.4. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and let V
be a valuation ring of Q.

(1) Every finitely generated regular fractional ideal of V is principal, see [23, Chapter I,
Proposition 2.4.(2)].

(2) Recall that every invertible fractional ideal of any ring is regular and finitely generated,
see [23, Chapter II, Remark 2.1.(3) and Proposition 2.2.(2)]. Hence, R∗V consists
by (1) of the regular principal fractional ideals of V .

287



D. Valuations

(3) The set R∗V is by (2) and Theorem D.3.(c) totally ordered by inclusion.

Remark D.5. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and let V
be a valuation ring of Q. Then V has a unique regular maximal ideal, denoted by mV .
In particular, we have V reg \ V ∗ ⊂ mV . In fact, V has by [23, Chapter I, Theorem 2.2] a
unique maximal ideal mV containing all regular non-units of V . Moreover, V is a Marot
ring, i.e. any regular ideal i of V is generated by its regular elements, and hence i ⊂ mV .
The infinite prime ideal of V is

IV = V : Q ∈ Spec (V ) ∩ Spec (Q),

see [23, Chapter I, Proposition 2.2.(3a)].
Remark D.6. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and let V
be a valuation ring of Q. If V is a domain, then mV is the unique maximal ideal of V , and
hence V is local.

Definition D.7. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and let V
be a valuation ring of Q. We includeR∗V into the totally ordered monoidR∗V,∞ = R∗V ∪{IV },
where IJ = IV if {I, J} 6⊂ R∗V , and the order is given by I < IV for all I ∈ R∗V and I < J
if J ⊂ I for I, J ∈ R∗V , cf. Remark D.4.(3).

Proposition D.8. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and
let V be a valuation ring of Q.

(1) We have
IV =

⋂
I∈RV

I =
⋂

I∈R∗V

I.

(2) For any x ∈ Q we have ⋂
I∈RV
x∈I

I ∈ R∗V,∞

with
⋂
x∈I∈RV I = IV if and only if x ∈ IV .

(3) Let x ∈ Q \ IV , and let y ∈ Qreg. Then⋂
I∈RV
x∈I

I = yV

if and only if xy−1 ∈ V \mV .

Proof. (1) Let x ∈ IV , and let y ∈ Qreg. Then y−1 ∈ Qreg, and xy−1 ∈ V by definition
of IV . Therefore, x ∈ yV . Since Q is Marot, and hence any I ∈ RV is generated by
Ireg ⊂ Qreg, this implies IV ⊂

⋂
I∈RV I. Thus, IV ⊂

⋂
I∈RV I.

Since R∗V ⊂ RV , we have
⋂

I∈RV I ⊂
⋂

I∈R∗V
I. Hence, there is an x ∈

⋂
I∈R∗V

I. Let
now y ∈ Q. Then there are a ∈ V and b ∈ V reg such that y = ab−1. Moreover, we
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have x ∈ bV since bV ∈ R∗V . Thus, xy = xab−1 ∈ V , and therefore x ∈ V : Q = IV .
So the chain of inclusions

IV ⊂
⋂

I∈RV

I ⊂
⋂

I∈R∗V

I ⊂ IV

yields the claim.

(2) If x ∈ Q \ IV , then
⋂
x∈I∈RV I is a regular principal fractional ideal of V , see [23,

Chapter I, Proposition 2.4(3b)]. Therefore,
⋂
x∈I∈RV I ∈ R∗V by Remark D.4.(2).

The second part of the claim follows immediately from (1).

(3) See [23, Chapter I, Proposition 2.4.(3b)].

Remark D.9. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical. If V is a
valuation ring of Q, then IV is already the intersection of all regular ideals of V , see [23,
Chapter I, Proposition 2.4].

Definition D.10. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and
let V be a valuation ring of Q. Considering Proposition D.8 we define the valuation of V
as the map

µV : Q→ R∗V,∞
x 7→ µV (x) =

⋂
I∈RV
x∈I

I.

Proposition D.11. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and
let V be a valuation ring of Q. For any x, y ∈ Q the valuation µV of V satisfies

(V1) µV (xy) = µV (x)µV (y) and

(V2) µV (x+ y) ≥ min {µV (x) , µV (y)}.

Proof. See [23, Chapter I, Proposition 2.13].

Lemma D.12. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, let V be
a valuation ring of Q, and let x ∈ Qreg. Then

(1) µV (x) = xV , and

(2) µV
(
x−1) = (µV (x))−1.

Proof. (1) For any x ∈ Q we have xV ⊂ µV (x) by Definition D.10. If x ∈ Qreg, then
xV ∈ R∗V by Remark D.4.(2). Since x ∈ xV , Definition D.10 yields µV (x) ⊂ xV .

(2) We have
V = µV (1) = µV

(
xx−1

)
= µV (x)µV

(
x−1

)
.

Since µV (x) ∈ R∗V by Proposition D.8.(2), this implies µV
(
x−1) = µV (x) : V =

(µV (x))−1, see Section 2.1.
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Proposition D.13. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and
let V be a valuation ring of Q. Then

(1) V = {x ∈ Q | µV (x) ≥ V },

(2) V ∗ = {x ∈ Qreg | µV (x) = V },

(3) mV = {x ∈ Q | µV (x) > V }, and

(4) IV = {x ∈ IV | µV (x) = IV }.

In particular, V ∗ = (V \mV )reg and IV ⊂ mV .

Proof. (1) If x ∈ V , then obviously µV (x) ≥ V . Conversely, if x ∈ Q with µV (x) ≥ V ,
then x ∈ µV (x) ⊂ V . Hence, V = {x ∈ Q | µV (x) ≥ V }.

(2) Let x ∈ V ∗. Then x ∈ V reg ⊂ Qreg and x−1 ∈ V , and hence µV (x), µV
(
x−1) ≥ V

by (1). Since µV
(
x−1) = (µV (x))−1 by Lemma D.12.(2), this implies µV (x) =

µV
(
x−1) = V .

Let now x ∈ Qreg with µV (x) = V , i.e. xV = V by Lemma D.12.(1). Then x ∈ V by
(1), and there is a y ∈ V such that xy = 1, i.e. x ∈ V ∗.

(3) Set m = {x ∈ Q | µV (x) > V }. If x, y ∈ m, then x+ y ∈ m by Proposition D.11 (see
Equation (V2)). For z ∈ V we have µV (z) ≥ V , and hence xz ∈ m by Proposition D.11
(see Equation (V1)). Thus, m is an ideal of V , and by (1) and (2) it contains all
regular non-units of V . Thus, m = mV , see Remark D.5.

(4) This follows from Proposition D.8.(2).

Remark D.14. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and let V
be a valuation ring of Q.

(1) Let x, y ∈ Q with µV (x) 6= µV (y). Since R∗V,∞ is totally ordered by reverse inclusion,
we have µV (x+ y) = min {µV (x) , µV (y)}.

(2) If Q is a field, then Proposition D.8.(2) and Lemma D.12.(1) yield IV = 〈0〉.

Proposition D.15. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and
let V be a valuation ring of Q, and let x, y ∈ Q with x− y ∈ IV . Then µV (x) = µV (y).

Proof. Recall that by Proposition D.8.(1) and Definition D.10

IV =
⋂

I∈R∗V

I ⊂
⋂

I∈R∗V
x∈I

I = µV (x) .

This implies y − x ∈ µV (x), and hence y = x + y − x ∈ µV (x). Therefore, we obtain
µV (y) ⊂ µV (x).

Interchanging x and y also yields µV (x) ⊂ µV (y), and thus µV (x) = µV (y).
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Proposition D.16. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and
let V be a valuation ring of Q such that IV ∈ Max (Q). Then V/IV is a valuation ring of
Q/IV , and there is an order preserving isomorphism of monoids φ : R∗V,∞ → R∗V/IV ,∞ such
that the diagram

Q Q/IV

R∗V,∞ R∗V/IV ,∞

µV

π

µV/IV

∼=
φ

commutes, where π : Q→ Q/IV is the canonical surjection.

Proof. Let x, y ∈ (Q/IV )\(V/IV ), and assume that xy ∈ V/IV . Then there are x, y ∈ Q\V
and z ∈ V such that π (x) = x, π (y) = y and π (z) = xy. Since π (xy − z) = π (x)π (y)−
π (z) = 0, we have xy − z ∈ IV ⊂ V , and hence xy ∈ V . But this is a contradiction as
x, y ∈ Q \V , and V is a valuation ring of Q, i.e. Q \V is multiplicatively closed. Therefore,
since Q/IV is the field of fractions of V/IV , V/IV is a valuation ring of Q/IV .
Obviously, the map

φ : R∗V,∞ → R∗V/IV ,∞
I 7→ π (I)

is an inclusion preserving homomorphism of monoids.
Let x ∈ Q. Then

φ (µV (x)) = π

 ⋂
x∈I∈R∗V

I


⊂

⋂
x∈I∈R∗V

π (I)

⊂
⋂

π(x)∈J∈R∗
V/IV

J

= µV/IV (π (x)) .

Moreover, we have

φ−1
(
µV/IV (π (x))

)
= π−1

 ⋂
π(x)∈J∈R∗

V/IV

J


=

⋂
π(x)∈J∈R∗

V/IV

π−1 (J)

⊂
⋂

x∈I∈R∗V

I

= µV (x) .

This implies φ ◦ µV (x) = µV/IV ◦ π (x).
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Proposition D.17. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, let
p ∈ Max (Q), and let V be a valuation ring of Q/p. If π : Q → Q/p is the canonical
surjection, then π−1 (V ) is a valuation ring of Q with infinite prime ideal Iπ−1(V ) = p, and
there is an order preserving isomorphism of monoids φ : R∗π−1(V ),∞ → R

∗
V,∞ such that the

diagram
Q Q/p

R∗π−1(V ),∞ R∗V,∞

µπ−1(V )

π

µV

∼=
φ

commutes.

Proof. Let x, y ∈ Q \π−1 (V ), and assume that xy ∈ π−1 (V ). Then we have π (x) , π (y) ∈
V and π (x)π (y) = π (xy) ∈ V . But this is a contradiction since V is a valuation ring of
Q/p. Therefore, π−1 (V ) is a valuation ring of Q.
For any x ∈ Q we have xQ ⊂ π−1 (V ) if and only if π (xQ) = π (x)π (Q) ⊂ V . Thus,

x ∈ Iπ−1(V ) if and only if π (x) ∈ IV = 0 (see Remark D.14.(2)), and this is the case if and
only if x ∈ p. This implies Iπ−1(V ) = p.
The remaining part of the statement follows now from Proposition D.16.

Corollary D.18. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, and
let p ∈ Max (Q). There is a one-to-one correspondence between the valuation rings of Q
with infinite prime ideal p and valuation rings of Q/p with infinite prime ideals 〈0〉Q/p.
Moreover, if V and V are corresponding valuation rings of Q and Q/p, respectively, then
there is an order preserving isomorphism of monoids φ : R∗V,∞ → R∗V ,∞ such that the
diagram

Q Q/p

R∗V,∞ R∗
V ,∞

µV

π

µ
V

∼=
φ

commutes, where π : Q→ Q/p is the canonical surjection.

Proof. This follows from Propositions D.16 and D.17. Also see [23, Chapter I, Proposi-
tion 2.17].

Lemma D.19. Let Q be a ring with Qreg = Q∗ having a large Jacobson radical, let V be a
valuation ring of Q, and let U be a multiplicatively closed subset of V such that µV (u) = V
for all u ∈ U . We denote by α : Q→ U−1Q the localization map.

(1) We have α−1(U−1V
)

= V . In particular, U−1V ( U−1Q.

(2) The set U−1Q \ U−1V is multiplicatively closed. In particular, if
(
U−1Q

)reg =(
U−1Q

)∗ and U−1Q has a large Jacobson radical, then U−1V is a valuation ring of
U−1Q (see Definition D.1).
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Proof. (1) Since µV (u) = V for all u ∈ U , Lemma A.35.(1) yields

α−1
(
U−1V

)
= {x ∈ QR | ux ∈ V for some u ∈ R \m}

⊂ {x ∈ QR | ux ∈ V for some u ∈ V \mV }
= {x ∈ QR | ux ∈ V for some u ∈ QR with µV (u) = V },

where the last equality follows from Proposition D.13.(1) and (3). So with Propo-
sition D.13.(1) there is for any x ∈ π−1(U−1V

)
a u ∈ QR with µV (u) = V such

that
V ≤ µV (ux) = µV (u)µV (x) = µV (x)

by Proposition D.11, and hence x ∈ V . Therefore,

α−1
(
U−1V

)
= V,

and, in particular, U−1V ( U−1Q.

(2) Let a
b ,

c
d ∈ U

−1Q \ U−1V , i.e. a, c ∈ Q \ V , and suppose that a
b
c
d ∈ U

−1V . Then
there is an e ∈ V and an f ∈ U such that

a

b

c

d
= ac

cd
= e

f
,

i.e. there is a u ∈ U such that

u(ace− cdf) = 0.

Since b, d, u ∈ I, and since U is multiplicatively closed, we have bdu ∈ U . By
assumption this implies µV (bdu) = V , and hence bdu ∈ V by Proposition D.13.(1).
So e ∈ V implies

uacf = ubde ∈ V.

Since u, f ∈ U , we have uf ∈ U , and hence µV (uf) = V by assumption. Thus,
Propositions D.11 and D.13.(1) yield the contradiction

V ≤ µV (uacf) = µV (uf)µV (ac) = µV (ac) < V

since ac ∈ Q \ V as V is a valuation ring of Q, i.e. Q \ V is multiplicatively closed,
and a, c ∈ Q \ V .

D.2. Valuations

Definition D.20. Let G be an additive abelian totally ordered group. We include G into
the totally ordered commutative monoid G∞ = G ∪ {∞}, where ∞ is a symbol such that
x+∞ =∞, ∞+∞ =∞, and ∞ > x for all x ∈ G.
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Definition D.21. Let A be a ring. A valuation of A is a map ν from A onto Gν∞ = (Gν)∞,
where Gν is an additive abelian totally ordered group, satisfying

ν (xy) = ν (x) + ν (y) (D.1)

and
ν (x+ y) ≥ min {ν (x) , ν (y)} (D.2)

for all x, y ∈ A.
Let ν : A→ Gν∞ a valuation of A.

(1) For x ∈ A the element ν (x) ∈ G∞ is called the value of x in the valuation.

(2) The group Gν is called the value group of the valuation.

(3) The valuation ν is said to be trivial if its value group Gν is trivial, i.e. Gν = {0}.
Otherwise, ν is called non-trivial.

(4) If a subfield k ⊂ A is specified as ground field, then ν is said to be a valuation over k
if ν is trivial on k, i.e. if ν (c) = 0 for all c ∈ k.

In the following, we collect some properties of valuations which follow immediately from
the definition.

Lemma D.22. Let A be a ring, and let ν be a valuation of A.

(1) We have ν (1) = 0. Moreover, if ν is non-trivial, then ν (0) =∞.

(2) For any x ∈ A∗ we have ν
(
x−1) = −ν (x). In particular, ν (x) <∞.

(3) Let x ∈ A. If there is n ∈ N such that xn = 1, then ν (x) = 0. In particular,
ν (−1) = 0.

(4) For any x ∈ A we have ν (−x) = ν (x).

(5) If x, y ∈ A such that ν (x) 6= ν (y), then

ν (x+ y) = min {ν (x) , ν (y)} .

Proof. (1) For any x ∈ A we have

ν (x) = ν (x · 1) = ν (x) + ν (1) ,

and hence ν (1) = 0.
If ν is non-trivial, then there is an x ∈ A with 0 6= ν (x) ∈ Gν , and hence

ν (0) = ν (0x) = ν (0) + ν (x)

implies ν (0) =∞ since otherwise ν (x) = 0 yields a contradiction to the assumption.
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(2) If x ∈ A∗, then (1) yields

0 = ν (1) = ν
(
x · x−1

)
= ν (x) + ν

(
x−1

)
.

(3) Assume ν(x) 6= 0, i.e. ν(x) > 0 or ν(x) < 0 since Gν is totally ordered. Then we
have by (1)

0 = ν (1) = ν (xn) = ν(x) + ν
(
xn−1

)
≶ ν

(
xn−1

)
≶ . . . ≶ ν(x) ≶ 0

which is a contradiction.

(4) By (3) we have
ν (−x) = ν (−1) + ν (x) = ν (x) .

(5) Since ν (x) 6= ν (y), we may assume that ν (x) > ν (y). Then we have by the definition
of a valuation

ν (x+ y) ≥ min (ν (x) , ν (y)) = ν (y) .

Moreover, also using Lemma D.22.(4) yields

ν (x+ y − x) ≥ min (ν (x+ y) , ν (−x)) = min (ν (x+ y) , ν (x)) .

Now assume ν (x) ≤ ν (x+ y). Then

ν (y) = ν (x+ y − x) ≥ min (ν (x+ y) , ν (x)) = ν (x) .

But this is a contradiction to the assumption ν (x) > ν (y). Thus, we have ν (x) >
ν (x+ y). This implies

ν (y) = ν (x+ y − x)
≥ min (ν (x+ y) , ν (x))
= ν (x+ y)
≥ min (ν (x) , ν (y))
= ν (y) ,

and hence ν (x+ y) = ν (y) = min (ν (x) , ν (y)).

Definition D.23. Let A be a ring, and let ν be a valuation of A. The valuation ring of ν
is

Vν = {x ∈ A | ν (x) ≥ 0} ⊂ A.

Moreover, we denote by

mν = {x ∈ A | ν (x) > 0} ⊂ Vν

the prime ideal of the valuation, and

Iν = ν−1 (∞) = {x ∈ A | ν (x) =∞}

is called the infinite prime ideal of ν.
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Remark D.24. Let A be a ring, and let ν be a valuation of A. Note that in fact Vν is a
subring of A. If ν is non-trivial, then Vν is not equal to A since ν is surjective. Moreover,
mν is a prime ideal of Vν , and the infinite prime ideal Iν is a prime ideal of both Vν and A.
Also note that Lemma D.22.(2) implies

V ∗ν = {x ∈ A∗ | ν (x) = 0} .

Remark D.25. Let Q be a ring with large Jacobson radical such that Qreg = Q∗.

(1) If ν is a non-trivial valuation of Q, then Vν is a valuation ring of Q as in Definition D.1.

(2) If V is a valuation ring of Q, then the map µV is by Proposition D.11 a valuation of
Q.

The following proposition characterizes which subrings of a ring A are rings of valuations
of A.

Proposition D.26. Let A be a ring, let V be a subring of A, and let p be a prime ideal
of V . Then the following are equivalent.

(a) For each subring R of A and any ideal q of R with V ⊂ R and q ∩ R = p we have
V = R.

(b) For any x ∈ A \ V there is an y ∈ p such that xy ∈ V \ p.

(c) There is a valuation ν of A with V = Vν and p = mν .

Proof. See [48, Proposition 1].

Proposition D.27. Let A be a ring, and let ν be a non-trivial valuation of A. Then the
infinite prime ideal of ν is

Iν = Vν : A.

Proof. Let x ∈ Iν . Then we have for all y ∈ A

ν (xy) = ν (x) + ν (y) =∞+ ν (y) =∞ > 0.

This yields xy ∈ Vν , and hence x ∈ Vν : A.
Now let Gν be the value group of ν, and assume there is x ∈ Vν : A such that ν (x) <∞.

Since Gν is a group, we have −ν (x) ∈ Gν , and there is y ∈ A with ν (y) = −ν (x) as ν is
surjective. Moreover, there is z ∈ A with ν (z) < 0 since ν is non-trivial.

Thus, we have yz ∈ A, and therefore xyz ∈ Vν since x ∈ Vν : A. Moreover, we have

ν (xyz) = ν (x) + ν (y) + ν (z) = ν (z) < 0.

But this is a contradiction to xyz ∈ Vν = {a ∈ A | ν (a) ≥ 0}. Hence, we have ν (x) =∞,
and thus x ∈ Iν .

Then Iν ⊂ Vν : A and Vν : A ⊂ Iν yield Iν = Vν : A.
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Definition D.28. Let A be a ring, and let ν and ν ′ be valuations of A with value groups
Gν∞ and Gν′∞, respectively. Then ν and ν ′ are called equivalent if there is an order preserving
isomorphism φ from Gν∞ onto Gν′∞ such that

ν ′ (x) = φ ◦ ν (x)

for all x ∈ A \ Iν . We will identify equivalent valuations.

Proposition D.29. Let A be a ring, and let ν and ν ′ be valuations of A. Then ν and ν ′
are equivalent if and only if Vν = Vν′ and mν = mν′.

Proof. See [48, Proposition 2].

Proposition D.30. Let Q be a ring having a large Jacobson radical such that Q∗ = Qreg,
and let ν be a valuation of Q. Then mν = mVν and Iν = IVν .

Proof. See [23, Chapter I, Proposition 2.12].

Corollary D.31. Let Q be a ring having a large Jacobson radical such that Q∗ = Qreg,
and let ν and ν ′ be valuations of Q. Then ν and ν ′ are equivalent if and only if Vν = Vν′.

Proof. This follows from Remark D.5 and Propositions D.29 and D.30.

Corollary D.32. Let Q be a ring having a large Jacobson radical such that Q∗ = Qreg.
Then there is a bijection

V 7→ µV ,

Vν ← [ ν

between the valuation rings and the valuations of Q.
In particular, we have for any valuation ring V of Q

V = VµV ,

and for any valuation ν of Q we obtain

ν = µVν

(modulo equivalence of valuations).

Proof. This follows from Remark D.25 and Corollary D.31. Also see [23, Chapter I,
Propositions 2.12 and 2.13].

Proposition D.33. Let A be a ring, let ν be a valuation of A, and let x, y ∈ A with
x− y ∈ Iν . Then ν (x) = ν (y).
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Proof. Let x, y ∈ A such that x− y ∈ Iν , and assume ν (x) 6= ν (y). Since ν (y) = ν (−y)
by Lemma D.22.(4), Lemma D.22.(5) yields

∞ = ν (x− y) = min (ν (x) , ν (−y)) = min (ν (x) , ν (y)) .

This implies ν (x) ≥ ∞ and ν (y) ≥ ∞, and hence

ν (x) =∞ = ν (y)

since ν (x) , ν (y) ∈ Gν∞. However, this is a contradiction to the assumption ν (x) 6=
ν (y).

Proposition D.34. Let A be a ring, and let ν be a valuation of A. Then there is a
valuation µ of the domain A/Iν such that the diagram

A A/Iν

Gν∞

ν

π

µ

commutes, where π : A→ A/Iν is the canonical surjection. Moreover, we have

Vµ = Vν/Iν

and
Iµ = 〈0〉A/Iν .

Proof. Since by Proposition D.33 ν (x) = ν (y) for all x, y ∈ A with x− y ∈ Iν , the map

µ : A/Iν → Gν∞

x+ Iν 7→ ν (x)

is well-defined, and it is clearly a valuation of A/Iν . The ring of µ is

Vµ = {x+ Iν ∈ A/Iν | µ (x+ Iν) = ν (x) ≥ 0} = Vν/Iν .

Proposition D.35. Let A be a ring, let p be a prime ideal of A, and let µ be a valuation of
A/p with Iµ = 〈0〉A/p. Then there is a valuation ν of A with Iν = p such that the diagram

A A/Iν

Gµ∞

ν

π

µ

commutes, where π : A→ A/p is the canonical surjection. Moreover,

Vν/p = Vµ.
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Proof. Obviously, the map

ν : A→ Gµ∞

x 7→ µ (x+ p)

is a valuation of A.
For x ∈ p we have

ν (x) = µ (x+ p) = µ (0 + p) =∞,

and hence x ∈ Iν . This implies p ⊂ Iν .
Let now x ∈ Iν . Then

∞ = ν (x) = µ (x+ p) .

This implies x+ p ∈ Iµ = 〈0〉A/p, i.e. x+ p ⊂ p. This implies x ∈ p, and hence Iν ⊂ p.
The remaining part of the statement follows now from Proposition D.34

Corollary D.36. Let A be a ring, and let p be a prime ideal of A. There is a one-to-one
correspondence between valuations of A with infinite prime ideal p and valuations of A/p
with infinite prime ideal 〈0〉A/p. Moreover, if ν and ν are corresponding valuations of A
and A/p, respectively, then there is an additive abelian totally ordered group G such that
the diagram

A A/p

G∞

ν

π

ν

commutes, where π : A → A/p is the canonical surjection. Also see [23, Chapter I,
Proposition 2.17].
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E.1. Gradings
Definition E.1. Let R be a ring, and let G be an additive abelian group.

(1) A finite (G-)grading of R is a system(
πRp

)
p∈G
∈ (End (R))G

of group endomorphisms such that(
πRp (R)

)(
πRq (R)

)
⊂ πRp+q(R)

for all p, q ∈ G and
R ∼=

⊕
p∈G

πRp (R).

If there is a finite G-grading of R, then R is called finitely (G-)graded.

(2) Let
(
πRp

)
p∈G

R be a finite G-grading of R, and let M be an R-module. A finite
(G-)grading of M is a system(

πMp

)
p∈G
∈ (EndR (M))G

of group endomorphisms such that(
πRp (R)

)(
πRq (M)

)
⊂ πRp+q(M)

for all p, q ∈ G and
M ∼=

⊕
p∈G

πRp (M).

If there is a finite G-grading of M , then M is called finitely (G-)graded.

Definition E.2. Let R be a Zariski ring (see Definition A.57), and let G be an additive
abelian group.

(1) A system of group endomorphisms(
πRp

)
p∈G
∈ (End (R))G
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is called a (G-)grading of R if for any n ∈ N it induces a finite G-grading(
π
R/nnR
p

)
p∈G

=
(
πRp

)
p∈G

of the ring R/nnR.
If there is a G-grading of R, then R is called (G-)graded.

(2) Let R be G-graded, and let M be a finite R-module. A system of group endomor-
phisms (

πMp

)
p∈G
∈ (EndR (M))G

is called a (G-)grading of M if for any n ∈ N it induces a finite G-grading(
π
M/nnRM
p

)
p∈G

=
(
πMp

)
p∈G

of the R/nnR-module M/nnRM , where R/nnR is graded by the induced grading.
If there is a G-grading of M , then M is called (G)-graded.

In the following, let R be a Zariski ring (see Definition A.57), and let G be an additive
abelian group such that there is a G-grading

(
πRp

)
p∈G

of R.

Definition E.3. Let M be a G-graded R-module, and let (xp)p∈G ∈M
G. The sum

∑
p∈G

is called convergent if there is an x ∈M such that for any n ∈ N there is a finite subset
En ⊂ G such that for all finite subsets E ⊂ G with En ⊂ E we have

x−
∑
p∈E

xp ∈ nnRM.

We also say that
∑
p∈G xp converges to x ∈M , and we write

x =
∑
p∈G

xp.

Proposition E.4. Let M be a G-graded R-module. Then

x =
∑
p∈G

πRp (x)

for any x ∈ M . Conversely, if x =
∑
p∈G xp with xp ∈ πRp (M) for all p ∈ G, then

xp = πRp (x) for all p ∈ G.

Proof. See [49, (1.1)].

Definition E.5. Let M be a G-graded R-module.

(1) Let x ∈M . For any p ∈ G we call xp = πMp (x) the p-th homogeneous component of
x. If πMp (x) = x for some p ∈ G, then x is called homogeneous, and p is the degree of
x. We write deg (x) for the degree of x.

302



E.1. Gradings

(2) For any p ∈ G we set

Mp = {x ∈M | x homogeneous with deg (x) = p}.

(3) An R-submodule N of M is called homogeneous if

πMp (N) ⊂ N

for all p ∈ G.

Proposition E.6. Let M be a G-graded R-module, and let N be an R-submodule of M .

(1) N is homogeneous if and only if it is generated by homogeneous elements.

(2) Let N be homogeneous. Then(
πNp

)
p∈G

=
(
πMp

∣∣∣
N

)
p∈G

is a G-grading of N .

(3) Let N be homogeneous. Then the G-grading of M induces a G-grading of the R-
module M/N .

Proof. See [49, (1.3), (1.4) and (1.5)].

Lemma E.7. Let M be a G-graded R-module, and let N be a homogeneous R-submodule
of M . For any p ∈ G we have

(M/N)p = π (Mp)

(with respect to the induced grading onM/N , see Proposition E.6.(3)), where π : M →M/N
is the canonical surjection.

Proof. Since we consider the induced grading onM/N , there is for any p ∈ G a commutative
diagram

M M

M/N M/N.

π

πMp

π

π
M/N
p

This implies

π (Mp) = π ◦πMp (M) = πM/N
p ◦ π (M) = πM/N

p (M/N) = (M/N)p.

Definition E.8. Let M and N be G-graded R-modules. A homomorphism φ : M → N is
called homogeneous (of type q ∈ G) if

φ
(
πMp (M)

)
⊂ πNp+q(N)

or all p ∈ G.
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Proposition E.9. Let M and N be G-graded R-modules, and let φ : M → N be homoge-
neous of type q ∈ G. Then

φ
(
πMp (x)

)
= πNp+q(φ(x))

for all x ∈M .

Proof. See [49, page 165].

E.2. Derivations
Definition E.10. Let k be a valued field. An analytic k-algebra is is a complete local
Noetherian ring with coefficient field k.

Theorem E.11. Let k be a valued field, and let R be an analytic k-algebra.

(1) Let d be a k-derivation of R such that mR is generated by eigenvalues of d. Then there
is exactly one k+-grading

(
πRp

)
p∈k

of R such that πRp (R) consists of p-eigenvectors
of d for any p ∈ k.

(2) Let
(
πRp

)
p∈G

be a k+-grading of R. Then there is exactly one k-derivation d of R
such that πRp (R) consists of p-eigenvectors of d for any p ∈ k.

Proof. See [49, Satz (2.2) and (2.3)].

Definition E.12. Let k be a valued field, and let R be an analytic k-algebra. A k-derivation
d of R is called diagonalizable if mR is generated by eigenvectors of d.

Theorem E.13. Let k be a field, let A = k[[X1, . . . , Xn]], let i be an ideal of A, and let
R = A/i. We denote by π : A→ R the canonical surjection, and we write xi = π (Xi) for
all i = 1, . . . , n. Then for any w ∈ kn the following are equivalent:

(a) R is k+-graded, and xi is homogeneous with deg (xi) = wi for any i = 1, . . . , n.

(b) There is a diagonalizable k-derivation dR of R such that dR(xi) = wixi for all
i = 1, . . . , n.

(c) There is a diagonalizable k-derivation dA of A such that dA(Xi) = wiXi for all
i = 1, . . . , n and i is invariant under dA.

(d) The ideal i is homogeneous with respect to weighted polynomial degree with weights w.

If these equivalent conditions hold, then there is a commutative diagram

A A

R R.

π

dA

π

dR

(E.1)

Moreover, the grading on R is induced by the grading on A corresponding to dA.
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For the proof of Theorem E.13 we need the following Lemmas.

Lemma E.14. Let k be a field, let A = k[[X1, . . . , Xn]], let i ∈ A be an ideal, and let
R = A/i. We write π : A→ R for the canonical surjection, and xi = π (Xi) for i = 1, . . . , n.
Let dR be a k-derivation of R. For any

(yi)i=1,...,n ∈
n∏
i=1

π−1 (dR(xi))

there is a k-derivation dA of A such that the diagram

A A

R R

dA

π π

dR

commutes, and dAXi = yi for all i = 1, . . . , n. If there is (wi)i=1,...,n ∈ kn such that
dRxi = wixi for all i = 1, . . . , n, then we may have dAXi = wiXi.
In particular, for any diagonalizable k-derivation dR of R there is a diagonalizable

k-derivation dA of A with dR ◦ π = π ◦dA.

Proof. See [49, (2.1)].

Lemma E.15. Let k be a field, let R be a k+-graded analytic k-algebra, and let d be the
k-derivation of R corresponding to the grading (see Theorem E.11.(2)). Then an ideal i of
R is homogeneous if and only if it is invariant under d.

Proof. See [49, (2.4)].

Lemma E.16. Let k be a field, let A be a k+-graded analytic k-algebra, and let d be the k-
derivation of A corresponding to the grading (see Theorem E.11.(2)). If i is a homogeneous
ideal, then the induced grading on R = A/i (see Proposition E.6.(3)) corresponds to the
derivation

d : R→ R,

x+ i 7→ d(x) + i

(see Theorem E.11.(2)).

Proof. First note that d is well-defined since i is homogeneous, and hence d(i) ⊂ i by
Lemma E.15.

Let now p ∈ k+, and let x ∈ Rp. Then by Lemma E.7 there is an element X ∈ Ap such
that x = X + i. Theorem E.11.(2) yields δ(X) = pX. Thus, we obtain

d(x) = d(X) + i = pX + i = px.

This implies that πRp (R) contains of p-eigenvectors of d, and hence d is by Theorem E.11.(2)
the k-derivation of R corresponding to the induced grading on R.
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Proof of Theorem E.13. (a) =⇒ (b) This follows from Theorem E.11.(2).

(b) =⇒ (c) Assume (b) holds. Then by Lemma E.14 there is a k-derivation dA of A such
that dA(Xi) = wiXi for all i = 1, . . . , n and dR ◦π = π ◦dA. In particular, this implies

π ◦dA(i) = dR ◦ π (i) = dR(0) = 0.

Thus,
dA(i) ⊂ ker (π) = i,

i.e. i is invariant under dA.

(c) =⇒ (d) This follows from Theorem E.11 and Lemma E.15.

(d) =⇒ (a) Since i is homogeneous, and deg (Xi) = wi for all i = 1, . . . , n, this follows
from Proposition E.6.(3) as R = A/i.

If the equivalent conditions hold, the commutativity of Diagram (E.1) follows from
Lemma E.14.

Let y ∈ R, and let Y ∈ A such that π (Y ) = y. Then

dR(y) = dR ◦ π (Y )
= π ◦dA(Y )
= dA(Y ) + i.

Thus, the grading on R is by Lemma E.16 induced by the grading on A corresponding to
dA.

Proposition E.17. Let k be a field of characteristic 0, and let R be an analytic k-algebra.
Let d be a k-derivation of R, and let i be an ideal of R with d(i) ⊂ i. Then d(p) ⊂ p for
any associated prime ideal p of i.

Proof. See [49, (2.5)].
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[22] V. I. Arnol′d, S. M. Gusĕın-Zade, and A. N. Varchenko. Singularities of differentiable
maps. Vol. I, volume 82 of Monographs in Mathematics. Birkhäuser Boston, Inc.,
Boston, MA, 1985. The classification of critical points, caustics and wave fronts,
Translated from the Russian by Ian Porteous and Mark Reynolds.

[23] K. Kiyek and J. L. Vicente. Resolution of curve and surface singularities, volume 4
of Algebras and Applications. Kluwer Academic Publishers, Dordrecht, 2004. In
characteristic zero.

[24] Jürgen Herzog and Ernst Kunz, editors. Der kanonische Modul eines Cohen-Macaulay-
Rings. Lecture Notes in Mathematics, Vol. 238. Springer-Verlag, Berlin-New York,
1971. Seminar über die lokale Kohomologietheorie von Grothendieck, Universität
Regensburg, Wintersemester 1970/1971.

[25] Philipp Korell, Mathias Schulze, and Laura Tozzo. Duality on value semigroups. J.
Commut. Algebra, 2018. Advance publication.

[26] N. Bourbaki. Éléments de mathématique. Fascicule XXVII. Algèbre commutative.
Chapitre 1: Modules plats. Chapitre 2: Localisation. Actualités Scientifiques et
Industrielles, No. 1290. Herman, Paris, 1961.

308



Bibliography

[27] Gert-Martin Greuel and Gerhard Pfister. A Singular introduction to commutative al-
gebra. Springer, Berlin, extended edition, 2008. With contributions by Olaf Bachmann,
Christoph Lossen and Hans Schönemann, With 1 CD-ROM (Windows, Macintosh
and UNIX).

[28] R. G. Swan. Algebraic K-theory. Lecture Notes in Mathematics, No. 76. Springer-
Verlag, Berlin-New York, 1968.

[29] Eben Matlis. 1-dimensional Cohen-Macaulay rings. Lecture Notes in Mathematics,
Vol. 327. Springer-Verlag, Berlin-New York, 1973.

[30] Malcolm Griffin. Valuations and Prüfer rings. Canad. J. Math., 26:412–429, 1974.

[31] Ernst Kunz and Rolf Waldi. Über den Derivationenmodul und das Jacobi-Ideal von
Kurvensingularitäten. Math. Z., 187(1):105–123, 1984.

[32] G.-M. Greuel, C. Lossen, and E. Shustin. Introduction to singularities and deformations.
Springer Monographs in Mathematics. Springer, Berlin, 2007.

[33] Delphine Pol. Logarithmic residues along plane curves. C. R. Math. Acad. Sci. Paris,
353(4):345–349, 2015.

[34] V. I. Arnol′d. Local normal forms of functions. Invent. Math., 35:87–109, 1976.

[35] Philipp Korell. Normalization Steps for Singularities from Arnold’s List. Diplomarbeit,
TU Kaiserslautern, March 2014.

[36] Günter Scheja and Hartmut Wiebe. Zur Chevalley-Zerlegung von Derivationen.
Manuscripta Math., 33(2):159–176, 1980/81.

[37] Peter Orlik and Hiroaki Terao. Arrangements of hyperplanes, volume 300 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin, 1992.

[38] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

[39] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[40] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[41] Nicolas Bourbaki. Éléments de mathématique. Masson, Paris, 1981. Algèbre. Chapitres
4 à 7. [Algebra. Chapters 4–7].

[42] Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note
Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition,
1980.

309



Bibliography

[43] Oscar Zariski and Pierre Samuel. Commutative algebra. Vol. II. Springer-Verlag, New
York-Heidelberg, 1975. Reprint of the 1960 edition, Graduate Texts in Mathematics,
Vol. 29.

[44] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989.
Translated from the Japanese by M. Reid.

[45] Masayoshi Nagata. Local rings. Interscience Tracts in Pure and Applied Mathematics,
No. 13. Interscience Publishers a division of John Wiley & Sons New York-London,
1962.

[46] Craig Huneke and Irena Swanson. Integral closure of ideals, rings, and modules, volume
336 of London Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 2006.

[47] Corinna Birghila and Mathias Schulze. Blowup of conductors. arXiv.org, 1610:04525,
2016.

[48] Merle E. Manis. Valuations on a commutative ring. Proc. Amer. Math. Soc., 20:193–
198, 1969.

[49] Günter Scheja and Hartmut Wiebe. Über Derivationen von lokalen analytischen
Algebren. In Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa,
INDAM, Rome, 1971), pages 161–192. Academic Press, London, 1973.

310



Danksagung

Ich möchte mich bei allen bedanken, die mich bei der Entstehung dieser Arbeit unterstützt
haben.

An erster Stelle danke ich meinem Betreuer

Prof. Dr. Mathias Schulze.

Besonderer Dank gilt außerdem meinem zweiten Gutachter

Prof. Dr. Antonio Campillo

sowie

Prof. Dr. Wolfram Decker,

Laura Tozzo,

Isabel Stenger,

Petra Bäsell, Raul Epure, Adrian Popescu, Carlo Sircana,

dem Fachbereich Mathematik der Technischen Universität Kaiserslautern,

und meiner Familie.

311





Lebenslauf

Bildung

seit 2014 Doktorand am Fachbereich Mathematik der Technischen Universität
Kaiserslautern, Betreuer: Prof. Dr. Mathias Schulze

März 2014 Diplom in Mathematik an der Technischen Universität
Kaiserslautern, Normalization Steps for Singularities from Arnold’s
List, Vertiefung: Algebraische Geometrie und Computeralgebra,
Betreuer: Prof. Dr. Wolfram Decker und Prof. Dr. Mathias Schulze

September 2012 Diplom in Physik an der Technischen Universität Kaiserslautern,
Phasendiagramm und Spektralfunktion monoatomarer Ketten,
Vertiefung: Theoretische Physik, Betreuer: Jun.-Prof. Dr. Jesko
Sirker

März 2007 Abitur am Albert-Schweitzer-Gymnasium Kaiserslautern

Beschäftigung

seit März 2017 Wissenschaftlicher Mitarbeiter am Fachbereich
Mathematik der Technischen Universität Kaiserslautern

Oktober 2015 – Februar 2017 Doktorand im EU Marie Curie Career Integration
Grant “Codimension-one properties of singularities” bei
Prof. Dr. Mathias Schulze am Fachbereich Mathematik
der Technischen Universität Kaiserslautern

Veröffentlichungen

2016 Philipp Korell, Mathias Schulze, and Laura Tozzo. Duality on Value Semigroups.
to appear on J. Comm. Alg., arXiv.org:1510.04072

2013 Nicholas Sedlmayr, Philipp Korell, and Jesko Sirker. Two-band Luttinger liquid
with spin-orbit coupling: Applications to monatomic chains on surfaces.
Phys. Rev. B 88, 195113

313



Bibliography

Vorträge und Workshops
September 2017 Imaginary-Workshop, Schülerinnentag 2017, Technische Universität

Kaiserslautern
Juni 2016 Invited Talk Quasihomogeneous Semigroups, Meeting of the Catalan,

Swedish, Spansih Math. Societies, Umeå (Schweden)
2015 – 2017 Doktorandenseminar Algebraic Geometry, Technische Universität

Kaiserslautern
September 2016 Imaginary-Workshop, Schülerinnentag 2016, Technische Universität

Kaiserslautern
Juli 2017 Invited Talk Duality on Value Semigroups, International Meeting on

numerical semigroups with applications, Levico Terme (Italien)
Juli 2016 Imaginary-Workshop, Tag der Mathematik 2016, Technische

Universität Kaiserslautern
Juni 2016 Invited Talk Duality on Value Semigroups, Second joint Conference

of the Belgian, Royal Spanish and Luxembourg Mathematical
Societies, Logroño (Spanien)

Lehre
Wintersemester 2017/18 Mathematik für Informatiker: Algebraische Strukturen,

Assistent
Mathematik für Informatiker: Kombinatorik und Analysis,
Assistent und Übungsleiter

Sommersemester 2017 Mathematik für Informatiker: Algebraische Strukturen,
Assistent und Übungsleiter
Mathematik für Informatiker: Kombinatorik und Analysis,
Assistent

Wintersemester 2016/17 Mathematik für Informatiker: Algebraische Strukturen,
Übungsleiter

Sommersemester 2016 Einführung in das symbolische Rechnen, Assistent und
praktische Übungen in Singular

Wintersemester 2015/16 Seminar Hyperebenenarrangements, Assistent
Sommersemester 2015 Grundlagen der Mathematik II, Übungsleiter

Wintersemester 2013/14 Vielteilchentheorie wechselwirkender Quantengase und
magnetischer Systeme, Assistent und Übungsleiter

Sommersemester 2013 Theoretische Grundlagen der klassischen Physik, Assistent
und Übungsleiter

Stipendien
2014 – 2015 Promotionsstipendium des Fachbereichs Mathematik der Technischen

Universität Kaiserslautern

314



Curriculum Vitae

Education

June 2014 – present Doctoral researcher, Department of Mathematics, Technische
Universität Kaiserslautern, Advisor: Prof. Dr. Mathias Schulze

March 2014 Diploma in Mathematics, Technische Universität Kaiserslautern,
Normalization Steps for Singularities from Arnold’s List,
Specialization: Algebrac Geometry and Computer Algebra,
Advisors: Prof. Dr. Wolfram Decker and Prof. Dr. Mathias
Schulze

September 2012 Diploma in Physics, Technische Universität Kaiserslautern,
Phasendiagramm und Spektralfunktion monoatomarer Ketten,
Specialization: Theoretical Physics, Advisor: Jun.-Prof. Dr.
Jesko Sirker

March 2007 Abitur, Albert-Schweitzer-Gymnasium Kaiserslautern

Employment

March 2017 – present Scientific Assistant, Department of Mathematics,
Technische Universität Kaiserslautern

October 2015 – February 2017 Doctoral Researcher in the EU Marie Curie Career
Integration Grant “Codimension-one properties of
singularities” with Prof. Dr. Mathias Schulze,
Department of Mathematics, Technische Universität
Kaiserslautern

Publications

2016 Philipp Korell, Mathias Schulze, and Laura Tozzo. Duality on Value Semigroups.
to appear on J. Comm. Alg., arXiv.org:1510.04072

2013 Nicholas Sedlmayr, Philipp Korell, and Jesko Sirker. Two-band Luttinger liquid
with spin-orbit coupling: Applications to monatomic chains on surfaces.
Phys. Rev. B 88, 195113

315



Bibliography

Talks and Workshops

September 2017 Imaginary-Workshop, Schülerinnentag 2017, Technische Universität
Kaiserslautern

June 2016 Invited Talk Quasihomogeneous Semigroups, Meeting of the Catalan,
Swedish, Spansih Math. Societies, Umeå (Sweden)

2015 – 2017 PhD Seminar Algebraic Geometry, Technische Universität
Kaiserslautern

September 2016 Imaginary-Workshop, Schülerinnentag 2016, Technische Universität
Kaiserslautern

July 2017 Invited Talk Duality on Value Semigroups, International Meeting on
numerical semigroups with applications, Levico Terme (Italy)

July 2016 Imaginary-Workshop, Tag der Mathematik 2016, Technische
Universität Kaiserslautern

June 2016 Invited Talk Duality on Value Semigroups, Second joint Conference
of the Belgian, Royal Spanish and Luxembourg Mathematical
Societies, Logroño (Spain)

Teaching

Winter 2017/18 Mathematik für Informatiker: Algebraische Strukturen (Mathematics
for Computer Sciences: Algebraic Structures), teaching assistant
Mathematik für Informatiker: Kombinatorik und Analysis
(Mathematics for Computer Sciences: Combinatorics and Analysis),
teaching assistant and exercise class

Summer 2017 Mathematik für Informatiker: Algebraische Strukturen (Mathematics
for Computer Sciences: Algebraic Structures), teaching assistant and
exercise class
Mathematik für Informatiker: Kombinatorik und Analysis
(Mathematics for Computer Sciences: Combinatorics and Analysis),
teaching assistant

Winter 2016/17 Mathematik für Informatiker: Algebraische Strukturen (Mathematics
for Computer Sciences: Algebraic Structures), exercise class

Summer 2016 Introduction to symbolic computation, teaching assistant and
Singular courses

Winter 2015/16 Seminar Hyperplane Arrangements, teaching assistant
Summer 2015 Grundlagen der Mathematik II (Linear Algebra and Analysis II),

exercise class
Winter 2013/14 Vielteilchentheorie wechselwirkender Quantengase und magnetischer

Systeme (Many-body theory of interacting quantum gases and
magnetic systems), teaching assistant and exercise class

Summer 2013 Theoretische Grundlagen der klassischen Physik (Theoretical
foundations of classical physics), teaching assistant and exercise class

316



Bibliography

Scholarships
2014 – 2015 PhD scholarship of the Department of Mathematics at the Technische

Universität Kaiserslautern

317


	Introduction
	Preliminaries
	Regular and Fractional Ideals
	Discrete Valuation( Ring)s
	Fibre Products

	Valuations over One-dimensional Cohen–Macaulay Rings
	One-dimensional Cohen-Macaulay Rings
	Semigroup of Values
	Compatibility with Localization
	Invariance under Completion

	Algebroid Curves
	Integral Extensions of Admissible Rings

	Good Semigroups
	Good Semigroups and Their Ideals
	Minimal Elements
	Differences
	Conductor
	Distance and Length
	Branches
	Numerical Semigroups
	Semigroup Rings over C

	Duality and Gorenstein Property
	Cohen–Macaulay Duality on One-dimensional Rings
	Duality on Good Semigroups
	Relation of Dualities
	Gorenstein Property and Symmetry of Good Semigroups
	Symmetric Semigroups
	Gorenstein Algebroid Curves

	Quasihomogeneous Curves
	Irreducible Curves
	Proof of Theorem 6.2
	Proof of Proposition 6.6

	Quasihomogeneous Semigroups
	Gradings
	w-Elements
	Properties
	Proof of Theorem 7.19
	Proof of Theorem 7.27
	Proof of Proposition 7.22
	Proof of Proposition 7.6
	Proof of Proposition 7.12
	Proof of Theorems 7.23 and 7.24

	Normalization of Arrangements
	Plane Arrangements of Smooth Curves
	Hyperplane Arrangements

	Commutative Algebra
	Large Jacobson Radical
	Localization
	Associated and Minimal Prime Ideals
	Completion
	Branches of Rings

	Integral Extensions and Normalization
	Integral Extensions
	Conductor
	Equidimensionality
	Excellent Rings
	Normalization
	Criteria for Normality
	Grauert and Remmert Algorithm for Normalization


	Cohen–Macaulay Rings
	One-dimensional Cohen–Macaulay Rings
	Canonical Module
	Gorenstein Rings

	Valuations
	Valuation Rings
	Valuations

	Gradings and Derivations
	Gradings
	Derivations

	Bibliography

