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Abstract 

Fucoidan is a class of biopolymers mainly found in brown seaweeds. Due to its diverse medical 

importance, homogenous supply as well as a GMP-compliant product is of a special interest. 

Therefore, in addition to optimization of its extraction and purification from classical resources, 

other techniques were tried (e.g., marine tissue culture and heterologous expression of enzymes 

involved in its biosynthesis). Results showed that 17.5% (w/w) crude fucoidan after pre-treatment 

and extraction was obtained from the brown macroalgae F. vesiculosus. Purification by affinity 

chromatography improved purity relative to the commercial purified product. Furthermore, 

biological investigations revealed improved anti-coagulant and anti-viral activities compared with 

crude fucoidan. Furthermore, callus-like and protoplast cultures as well as bioreactor cultivation 

were developed from F. vesiculosus representing a new horizon to produce fucoidan 

biotechnologically. Moreover, heterologous expression of several enzymes involved in its 

biosynthesis by E. coli (e.g., FucTs and STs) demonstrated the possibility to obtain active enzymes 

that could be utilized in enzymatic in vitro synthesis of fucoidan. All these competitive techniques 

could provide the global demands from fucoidan.  

Zusammenfassung 

Fuciodane sind Biopolymere mit sulfatiertem Homo- oder Heteropolysaccharidrückgrat. Sie 

kommen hauptsächlich in Braunalgen (Phaeophyta) vor. Durch ihre medizinische Bedeutung ist eine 

einheitliche Versorgung und GMP-konforme Produktion von besonderem Interesse. Aus diesem 

Grund wurden in dieser Arbeit verschiedene Techniken zur Fucoidan-Produktion angewendet (z.B. 

Optimierung von Extraktion und Aufreinigung aus klassischen Quellen, marine Gewebekultur und 

heterologe Expression von Enzymen, die in die Biosynthese von Fucoidan involviert sind). Die 

Ergebnisse zeigen, dass nach Vorbehandlung und Extraktion 17,5 % w/w Fucoidan aus der 

Braunalge F. vesiculosus gewonnen werden konnte. Durch Aufreinigung mittels 

Affinitätschromatographie konnte eine höhere Reinheit im Vergleich zu einem kommerziellen 

Produkt erreicht werden. Biologische Analysen ergaben verbesserte antikoagulante und antivirale 

Eigenschaften. Kallus- und Protoplastkulturen von F. vesiculosus, sowie Kulturen im Bioreaktor 

repräsentieren neue Wege, Fucoidan biotechnologisch herzustellen. Außerdem demonstrierte die 

heterologe Expression von mehreren Enzymen der Fucoidan-Biosynthese in E. coli (z.B. FucTs und 

STs) die Möglichkeit, aktive Enzyme zu erhalten, die in enzymatischer de-novo-Synthese von 

Fucoidan eingesetzt werden können. All diese Entwicklungen könnten dabei helfen, die globale 

Nachfrage an Fucoidan zu befriedigen. 
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1. State of the Art and Objectives 

Since the early life of the humankind on the Earth, nature represents the most powerful source for 

his major needs from food, energy and therapeutics. Oceans cover more than 70% of the Earth’s 

surface, and therefore, they continue to offer exceptional scaffolds improving the quality of the 

human life. For example, marine microbes, which represent 98% of ocean biomass [1], perform vital 

functions in global food chain cycle, CO2 fixation as well as assimilation of nutrients to maintain 

oxygen, nitrogen and phosphorous in their normal environmental levels [2].  

In addition, the interest in marine-related fields has grown in the last period (e.g., taxonomy, ecology, 

chemistry,…etc.) to explore such source for bio- and chemical diversity and other valuables, such 

as the marine-derived bioactive compounds. The obtained results were promising and have 

encouraged the performance of further studies to discover new medicaments from natural sources 

and provide the global market with its required demands.    

 

1.1. Marine-derived products 

Marine organisms represent around 50% of the worldwide biodiversity [3] in addition to their 

chemical and genetic diversities, and therefore represent a potential source of broad spectrums of 

commercially-valuable and diverse products, such as polysaccharides, enzymes, peptides, lipids, 

steroids and terpenoids [4,5]. From more than 300,000 described organisms, 12,000 novel 

compounds have been discovered attracting a great interest in the last decades [6]. Most of these 

compounds are produced as secondary metabolites as a defense mechanism to protect themselves 

against invaders. Marine-derived products have a wide range of applications in pharmaceuticals as 

anti-tumor and anti-viral among others, nutraceuticals as dietary supplements and food additives, 

agrochemicals with insecticidal, herbicidal, and fungicidal activities and cosmetics as photo-

protective and anti-aging compounds. These compounds are believed to be superior to that derived 

from terrestrial nature in terms of their chemical novelty and their ability to induce potential activities 

[7]. They are mainly obtained from different marine taxonomic groups including antarctic fungi, 

bacteria, epiphytic bacteria and fungi, macroalgae or seaweeds, microalgae and mediterranean 

sponges [8].  

In addition, advances in marine pharmacology have helped in the discovery of a lot of marine-

derived bioactive compounds. The real marine drug development has started with the discovery of 

Cephalosporin C in the 1940s from the mediterranean fungus Acremonium chrysogenum. It was the 
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first compound in the antibiotic class of cephalosporin. Moreover, isolation of spongouridine and 

spongothymidine in the 1950s from the Caribbean sponge Tethya crypta led to the synthesis and 

approval of the more active nucleoside analogues cytarabine and vidarabine as potent anti-cancer 

and anti-viral drugs, respectively [9,10]. Some examples of these marine-derived products were 

summarized in Table 1.  

 

Table 1: Selected categories and examples of marine-derived products 

 

Product category Compound name Biological source Importance Ref.  

 Pharmaceuticals Mycosporine-Gly  Palythoa tubereulosa Anti-oxidant [11] 

C-Phycocyanin Spirulina platensis [12,13] 

Fucoidan Brown macroalgae (e.g., 

Fucus vesiculosus) 

Anti-coagulant [14] 

Eunicellane 

diterpenoid 

- Klyxum molle 

- Cladiella krempfi 

Anti-inflammatory [15] 

Carotenoid Padina boergesenii Hepatoprotective [16,17] 

Axisonirile-3 Acanthella klethra Anti-malarial [18] 

α-Kainic acid - Digenia sp. 

- Sargassum sp. 

Anti-parasitic [19] 

Vidarabine (Ara-A) Tethya crypta Anti-viral [10] 

Avarol Disidea avara 

Cytarabine (Ara-C) Cryptotheca crypta Anti-tumor [20] 

Fucoxanthin Microalgae (e.g., 

bacillariophytes) and brown 

macroalgae (Laminaria 

japonica) 

[21] 

Borophycin Cyanobacteria (e.g., Nostoc 

linckia and N. spongiaeforme 

var. tenue) 

[22] 

Chalcomycin Streptomyces sp. HK-2006-1 Anti-microbial [23] 

Sesterterpene 

sulphate 

Dysidea sp. [24,25] 

 

- Cristatumins A 

- Cristatumins D 

Eurotium 

cristatum EN-220 

[26] 
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Cont., Table 1: Selected categories and examples of marine-derived products 

 

Product category Compound name Biological source Importance Ref.  

 Cosmetics 

 

Scytonemin Cyanobacteria sp. Topical photo-

protective 

[21] 

Astaxanthin Haematococcus 

pluvialis 

Anti-aging 

 Nutraceuticals, 

food additives and 

dietary 

supplements 

Arachidonic acid Porphyridium sp. Polyunsaturated fatty 

acids (PUFAs) 

[8] 

γ-Linolenic acid Arthrospira sp. 

Alginate Brown algae (e.g., 

Laminaria sp.) 

Gelling, emulsifying 

agents and stabilizers 

[27,28] 

Agar Red algae (e.g., 

Gelidium amansii) 

[29] 

Carrageenan Red algae (e.g., 

Kappaphycus 

alvarezii) 

[30,31] 

 Others 

- Enzyme inhibitors 

Speradine A Aspergillus tamari Inhibitory activity 

against Ca2+-ATPase 

and histone 

deacetylase 

[32] 

- Source of enzymes Polyketide synthase Pseudoceratina 

clavata 

Polyketide synthesis [33] 

Alginate lyase Microbulbifer sp. Alginate degradation [34] 

Fucoidanase Dendryphiella 

arenaria 

Degradation to low 

molecular weight 

fucoidan (LMWF)  

[35] 

 

As Table 1 showed, a lot of marine-derived products have been commercialized such as agar-agar, 

alginate, carrageenan…etc.  However, few drugs succeeded to be approved by FDA and marketed 

such as ziconotide (Prialt®) as a potent analgesic,  trabectedin (Yondelis®), and cytarabine or ara-C 

(Cytosar-U®) as anti-tumour agents, vidarabine or ara-A (Vira-A®) and iota-carrageenan 

(Carragelose®) as an anti-viral, and omega-3-acid ethylesters (Lovaza®) which is a combination of 

ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for treating 

hypertriglyceridemia [17]. Other compounds are still investigated in different pre-clinical and 

clinical phases and marketed shortly [36].  

License of investigational pharmaceutical products for human use should obey the GMP guidelines 

in most of the world countries. The application of these principles assure production of a high-quality 
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product, consistency between the investigational product and the future commercial product and thus 

reliability and the relevance of clinical trials to the product’s efficacy and safety [37]. This low 

number of approved drugs reflected the presence of different challenges and problems to produce 

GMP-compliant bioproducts which include a sustainable supply without harmful ecological 

consequences, identification of a practical formulation, structural complexity and low therapeutic 

index of marine-derived compounds [36].  

 

1.2. Seaweeds 

Seaweeds or macroalgae have a long history of multiple applications as a human food (e.g., 

Laminaria japonica, Undaria pinnatifida, Pyropia sp. (formerly Porphyra) and Sargassum 

fusiforme) especially in the South-east countries, biofuels, source of various valuable products, in 

water purification from organic and inorganic wastes or a commercial source of hydrocolloids 

including agar, carrageenan and alginate. Interestingly, hydrocolloids’ global annual production has 

recently reached 100,000 tons with a market value above US $ 1.1 billion [38]. Moreover, according 

to FAO statistics (FAO, 2014, 2016), of the top seven most cultivated seaweed taxa, three were used 

mainly for hydrocolloid content: Eucheuma sp. and Kappaphycus alvarezii for carrageenans, and 

Gracilaria sp. for agar [39]. These benefits have urged the commercial market to find out 

competitive techniques to increase the global yield from seaweeds, such as sea farming or 

aquaculture and biotechnology. In 2014, the annual production of cultivated seaweeds reached 27.3 

million tons, representing 27% of the total marine aquaculture production [40]. Fig. 1 shows the 

global production of seaweeds in tons aquaculture, according to the FAO, 2016 report [39]. In 

addition, a 2015 report from the market analyst Smithers Rapra expected that the global market for 

marine biotechnology or blue biotechnology for industrial applications has the potential to reach US 

$4.8 billion by 2020, rising to US $6.4 billion by 2025 [41]. 
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Fig. 1: Seaweed production in the year 2014 by Aquaculture [39]  

Colour scale in wet metric tons (FAO, 2016). 

 

Sulphated and non-sulphated polysaccharides from marine macroalgae have a wide-ranging of 

interesting medical applications, such as anti-coagulant and/or anti-thrombotic, immunomodulatory 

ability, anti-tumor, hypoglycemic, antibiotics, anti-inflammatory and anti-oxidant making them 

promising pharmaceutical products [42] including Phaeophytes or brown algae (e.g., fucoidan, 

laminarin and alginate), Rhodophytes or red algae (e.g., porphyrin and carrageenan) and 

Chlorophytes or green algae (e.g., rhamnans and ulvan). Unfortunately, structural and content 

heterogeneity of non-sulphated polysaccharides within the same genus resulted in poor investigation 

regarding chemical structure, biological activities and their structural-activity relationship (SAR) in 

comparison with sulphated analogues. Sulphated polysaccharides showed diverse molecular 

weights, monosaccharide compositions, sulphate contents and positions, which interact with various 

biological systems at different levels leading to diverse and interesting pharmacological activities 

[42,43,44,45].   

Particularly, brown macroalgae or Phaeophyceae consists of ca. 285 genera and 1181 species [46] 

distributed not only on Fucales and Laminariales, which are the main commercial resources of the 

algal sulphated polysaccharides, but also contains Chordariales, Dictyotales, Dictyosiphonales, 

Ectocarpales, and Scytosiphonales. Fucales are one of the largest and most diversified orders within 
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the class Phaeophyceae. They are composed of 8 families (41 genera and 485 species); namely the 

Ascoseiraceae, Cystoseiraceae, Durvillaeaceae, Fucaceae, Hormosiraceae, Himanthaliaceae, 

Sargassaceae, and Seirococcaceae [47]. As Fig. 2 shows, the major species of brown macroalgae are 

often dominant components of tropical to temperate marine forests and intertidal communities.  

   

 
 

Fig. 2: Global distribution of the major brown macroalgae species [48] 

 

1.3. Fucoidan and its bioactivities  

Fucoidan is a marine polysaccharide isolated mainly from brown macroalagae with interesting and 

promising pharmacological activities [14]. Several articles discussed and proved potential, versatile 

and promising pharmacological activities of fucoidan, such as anti-coagulant and anti-thrombotic 

activity owing to structural similarity with heparin [49,50], anti-inflammatory [51], anti-oxidant 

[52], anti-viral against number of viruses like HSV [53], CMV [54] and HIV [55] …etc., resulting 

in great interest in fucoidan in the last few decades as a candidate for drug discovery from nature 

with less side effects. Several features are involved and affect these activities, such as 

monosaccharide composition, molecular weight, sulphate esters content and sulphation pattern [56].  
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In more details, the following sections describe some of these activities. 

 

1.3.1. Anti-coagulant activity 

Physiologically, blood coagulation system or hemostasis functions through two cascades; namely 

extrinsic and intrinsic pathways, which are stimulated differently either by tissue injury or abnormal 

pathological conditions. However, they converged in a common pathway at the step of conversion 

of prothrombin to thrombin which catalyze the formation of the non-soluble fibrin blood clot. 

Extrinsic cascade is initiated as a response to a tissue or vascular injury that stimulates secretion of 

tissue factor or tissue thromboplastin from traumatized tissue. However, contact with exposed vessel 

wall or negatively charged surfaces, such as lipoprotein particles, release of phospholipids from 

activated platelets or even bacteria resulted in activation of contact or intrinsic coagulation pathway. 

Coagulation cascades are monitored through a number of clinical laboratory tests, such as APTT for 

the intrinsic pathway, PT for extrinsic pathway, and TT for common pathway. 

Despite heparin has a long history to treat patients with thrombosis since 1940, it has suffered from 

a number of side effects including bleeding, thrombocytopenia in addition to possible pathogenic 

contamination from animal during production phases [57]. Several publications discussed the 

potential anti-coagulant activity of fucoidan [49,50,58]. They demonstrated that fucoidan acts in a 

heparin-like manner and interfered mainly with intrinsic pathway of coagulation system. It showed 

prolonged APTT and TT without a significant effect on PT. Moreover, not only negative charge 

distribution of fucoidan structure contributed to inhibition of thrombin, but also its enough long 

polysaccharide chain, high molecular weight, and structure comfortability were required for 

thrombin deactivation and discontinue of the fibrinogen conversion to fibrin [43].  

 

1.3.2. Anti-viral activity 

Fucoidan has a potential anti-viral activity against a number of enveloped viruses like HSV [53], 

CMV [54] and HIV [55] comparable to chemical drugs analogues such as ribavirin and acyclovir. 

Moreover, it has antiviral activity irrespective of whether these are DNA or RNA viruses [59]. 

Furthermore, Elizondo-Gonzalez, et al. proved the anti-viral activity of Cladosiphon okamuranus 

fucoidan against the enveloped virus Newcastle Disease Virus (NDV) in poultry field [60]. They 

found that fucoidan interferes with virus replication to inhibit viral-induced syncytia formation and 

cell-to-cell contact, possibly by blocking the fusion (F) protein. It mediates fusion of the virus and 
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cell membrane, an essential step for entry of the viral genome in the cell cytoplasm and initiation of 

a new infectious cycle [61]. Recently, fucoidan showed inhibitory activity against Hepatitis B Virus 

(HBV) replication by activation of the extracellular signal-regulated kinase (ERK) pathway, which 

leads to production of type I interferon (INF) [62]. Chemically, sulphate ester groups at C-4 of α-(1-

3)-linked fucopyranosyl units appeared to be involved in the anti-herpetic activity of fucoidan (HSV-

1 and HSV-2). This structure activity relationship was investigated in the brown seaweed Cystoseira 

indica fucoidan [63]. 

 

1.3.3. Cytotoxic and anti-tumor activity 

Interestingly, a lot of researches discussed the potential anti-cancers activity of fucoidan [64]. 

Several fucoidans from Sargassum fulvellum, S. kjellmanianum, L. angustata, L. angustata var. 

longissima, L. japonica, Ecklonia cava, and Eisenia bicyclis have been found to have remarkable 

growth inhibitory activities against various types of tumors. Fucoidan induces cell apoptosis of 

several cancerous cell lines, such as melanoma, HT-29 colon cancer, MCF-7 human breast cancer, 

HS-Sultan human lymphoma through activation of different caspases-dependent pathways [65]. 

Other theories suggested activation of macrophages which resulted in production of cytokines such 

as IL-1, IL-2 and IFN- γ with subsequent stimulation of T-cell [65]. 

 

1.3.4. Anti-oxidant and radicle scavenging activity 

Antioxidants are medically beneficial compounds that fight against harmful reactive oxygen and free 

radicle species. Anti-oxidants are also important in food industry, where they prevent food 

deterioration. Despite potential fucoidan anti-oxidant activity against different free radicles (e.g., 

DPPH, superoxide, hydroxyl and lipid peroxides) [66] was discussed in many publications in vitro, 

most of these assays were investigated in crude fucoidan extracts [67,68,69], or/and its purified 

fractions [70]. It was observed that crude fucoidan had higher activity than its purified fractions and 

these findings indicated that co-extracted contaminants such as polyphenols interfere with this 

activity.   

Nevertheless, its biogenic resources function potential ecosystem services and due to oppressive 

harvest from wild marine forests in the last decades, their populations in many regions around the 

world have declined and/or spatially shifted [48]. As a result, wild harvest was prohibited by many 

governmental legislations. In addition, fucoidan production and chemical structure are greatly 
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affected by many other factors, such as seasonal and geographical factors as well as extraction 

methods which affect its pharmacological activities as a result. Therefore, production of a GMP-

compliant product that could be investigated clinically is impossible without establishment of 

innovative and competitive techniques which guarantee a structurally-homogenous and eco-friendly 

supply. 

 

1.4. Goals of the work  

As seen in Fig. 3, The present dissertation deals with various aspects of fucoidan production, 

including optimization of fucoidan classical extraction and purification from marine crude algal 

extract to obtain a high-quality and native product, development of new biotechnological techniques 

without harmful effects on the global ecosystem through either callus and protoplast culture from 

brown algae or heterologous expression of enzymes involved in fucoidan biosynthesis (e.g., FucTs 

and STs). These routes of production should guarantee an improved yield of fucoidan with minimal 

structural differences in a commercial scale. 

  

 
 

Fig. 3: Overview of the different strategies dealt in the present work 

The techniques aimed to produce fucoidan that is compliant with GMP guidelines and from eco-

friendly resources. 

 

In details, the following aspects will be discussed within this thesis. 

- Production of a GMP high-quality and native fucoidan in a simple, time-saving and cheap 

protocol is a challenging. To date, a standard and optimized protocol for extraction and 
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purification techniques of fucoidan have not been developed yet. Recently, immobilized 

thiazine dyes succeeded in capture of fucoidan from a raw synthetic extract in a simple and 

fast procedure. However, this procedure has not been applied to real crude extracts and its 

effect on physico-chemical and pharmacological properties of fucoidan was not investigated. 

In Chapter 2, downstream processes applying different extraction and purification 

parameters (e.g., temperature, pH, time) of fucoidan from F. vesiculosus were studied to 

isolate different fucoidan fractions applying the recently developed thiazine dyes-derivatized 

beads. These fractions were characterized physico-chemically (e.g., melting point, 

monomeric composition, and molecular weight) and pharmacologically (e.g., anti-coagulant, 

and anti-viral activities) afterwards. These studies aimed to reveal and understand some of 

fucoidan’s SAR. In addition and for more effective purification, immobilization of the 

sensitive Heparin Red® (Redprobes UG) chemically-related PDD would be performed and 

applied to capture of fucoidan from a crude algal extract. 

- In Chapter 3, growing of various cell cultures derived from F. vesiculosus was discussed. 

Development of closed-system bioreactors for seaweeds cultivation is a particularly 

challenging opportunity for marine bioprocess engineers [71]; where, cultivation in a closed-

system bioreactors ensures the growth of seaweeds at optimum conditions and production of 

consistent and homogenous value-added fucoidan as well. This type of production may 

minimize the structural heterogeneity, which are greatly affected with harvesting time and 

place, producing species and method of extraction. Since removal of marine microbes from 

macroalgae represents a rate-limiting step in the development of axenic tissue culture 

systems, a combination of various as well as delicate reagents should be optimally applied 

to establish a surface sterilization protocol and at the same time maintain explant viability. 

These axenic explants would be used in establishment of various types of growing cell 

phototrophic cultures.  

- A novel technique for fucoidan production should be put into consideration; it is enzymatic 

synthesis. Heterologous expression of the enzymes involved in its biosynthesis in a bacterial 

cell line could open new chances to produce a high-quality and homogenous engineered 

fucoidan in vitro instead of classical extraction from its biogenic resources. The research in 

Chapter 4 aimed to clone some genes from the brown macroalge E. siliculosus to 

heterologous express their corresponding enzymes that are involved in fucoidan biosynthesis 

in E. coli BL21 (DE3)  (e.g., FucTs and STs)
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2. Optimization of Fucoidan Extraction and Purification from 

Brown Macroalgae 

2.1. Introduction 

2.1.1. Definition and functions 

Fucoidan is defined as a class of fucose-rich, water-soluble and sulphated homo- or 

heteropolysaccharides or fucose-containing sulphated polysaccharides (FCSPs) as it is commonly 

abbreviated. It exits mainly in the fibrillar cell walls and intercellular spaces especially of brown 

seaweeds (Phaeophyta) [65], urchins and marine invertebrates as well. It presumably functions in 

brown algae as a cross linker between cellulose and hemicellulose, and therefore is always 

accompanied with the polyphenolic phlorotannin to give the cell wall its integrity. Moreover, it has 

other roles in cell polarity and development, cell-to-cell communication and brown macroalgae 

defense mechanism, as shown in Fig. 4 [46,72]. Furthermore, fucoidan content was observed to be 

greatly affected by seasonal variations and tides level in the same organism, suggesting a possible 

protection role against organism desiccation [58,73,74]. 

 

 
 

Fig. 4: Cell wall model in a brown macroalgae showing various fucoidan physiological functions 

Fucoidan is involved in cell wall integrity, cell development, cell polarity, organism defense 

mechanism, osmotic adjustment and cell-to-cell communication [46]. 
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In 1913, the Swedish scholar Kylin isolated fucoidan as a polymer of fucose for the first time (or 

fucoidin as he named it at this time) during his researches in the field of sea algae and fucosan content 

in different Fucus and Laminaria sp. extracts [75,76]. According to ISI web of knowledge (Clarivate 

Analytics), researches performed on fucoidan were scarce till 1980s. However, interest in fucoidan 

as a drug candidate has dramatically increased in the last few decades due to its chemical diversity, 

cheap and available resources and promising pharmacological activities, as shown in Fig. 5. This 

interest has resulted in 1833 published articles till July 2017 dealing with various aspects of fucoidan. 

   

 
 

Fig. 5: Published articles on fucoidan since 1900 till July 2017, according to ISI web of knowledge 

(Clarivate Analytics) 

It shows that a great interest has drawn in fucoidan since 1990s.   

 

2.1.2. Fucoidan chemistry 

Structural complexity and homogeneity of isolated fucoidan vary with its biological origin, for 

example; fucoidan of seaweeds showed commonly branching and more sulphated backbone with the 

presence of sugar monomers other than β-L-fucose. However, marine invertebrates’ fucoidan such 

as sea cucumber is more simple, homogenous and composed of  a linear-chain of repeating units 

[46,77,78]. These differences resulted in multiple biological activities of seaweeds’ fucoidan making 

them a more preferable biogenic resource than marine invertebrates [79].  

Literally, Cumashi et al. proposed that seaweeds’ fucoidan is composed mainly from either α-(1-3) 

or alternating α-(1-3) with α-(1-4)-linked sulphated linear or branched L-fucopyranoside backbone, 

based on their study of the chemical structures isolated from different brown seaweeds species. Other 
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sugar units could be also present like mannose, xylose, galactose or even glucose in addition to 

uronic acids, but their positions and binding mode are still unclear. In addition, its fundamental 

subunit L-fucose is further mono- or di- sulphated or acetylated imparting a negative charge and 

anionic character on fucoidan molecular structure [14]. As shown in Fig. 6, fucoidan’s chemical 

structures are between the different species of brown seaweeds and heterogenous regarding 

monomeric composition, glycosidic linkages and sulphation pattern. Moreover, its chemical 

structure might be affected by the applied extraction methods with the same organism [65,76].  

 

            

        Fucus serratus L.                       Fucus vesiculosus and                       Fucus evanescens C. Ag 

                                                             Ascophyllum nodosum 

 

Fig. 6a: Different chemical structures of fucoidan from some Fucales seaweeds [65]  

They showed an alternating α-(1-4) and α-(1-3) linked L-fucopyranoside backbone. C-2 is usually 

substituted with sulphate ester groups in addition to alternating C-3 or C-4 in L-fucopyranose residue, 

according to the glycosidic linkages. In addition, branched chain polymers could be also found as in 

F. serratus. Other minor sugar units (e.g., mannose, galactose …etc.,) share in fucoidan structure in 

certain unknown positions [14].  
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Laminaria saccharina (Laminariales)    Cladosiphon okamuranus (Chordariales)      Chorda filum (Laminariales) 

 

Fig. 6b: Chemical structures of fucoidan from some Laminariales and Chordariales seaweeds [65] 

 Both orders show repeated α-(1-3) linked branched L-fucopyranoside backbone at C-2. Sulphate 

ester groups substitute mainly C-4 and sometimes C-2. 

  

Due to its complex chemical structures, several spectroscopical methods (e.g., FTIR, NMR and MS) 

have been used to elucidate its structural features including position of sulphate groups, glycosidic 

bonds and molecular weight. Furthermore, application of regio- and stereo-selective enzymatic 

degrading fucoidanases isolated from marine bacteria provided new insight into the chemical 

structure of fucoidan [43,74]. 

        

2.1.3. Methods of extraction 

Since fucoidan is a water soluble polymer and insoluble in ethanol, aqueous extraction then its 

precipitation with ethanol are always applied. However, the process is not as simple as expected, 

due to the presence of fucoidan with many other intercalating components of the cell wall matrix 

(e.g., cellulose, hemicellulose, alginates, laminarin … etc.). A standard extraction protocol for 

fucoidan has not yet been established, and therefore, different procedures at different pHs and 

temperatures, were applied to let protons or hydroxide ions to interfere with hydrogen bonds and 

then destruct the cell wall’s matrix liberating fucoidan from the other polymers to the extraction 

medium [44,65,78,79]. These trials aimed to optimize extraction conditions and included extraction 

with hot or cold [80], acidic water (pH 2.0 - 2.3) [81], and alkaline water [82]. Using of CaCl2 was 

observed to be also advantageous during extraction for precipitation of alginate as Ca-alginate [46].  
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Recently, other novel extraction methods were applied utilizing hydrolytic enzymes (e.g., 

laminarinase, alginate lyase) under moderate conditions (EAE) [79,83], ultrasound (UAE) [84,85], 

and microwave (MAE) [86,87] for improving the rate, yield and selectivity. These techniques have 

also succeeded to eliminate the usage of chemicals and harsh extraction conditions and maintain the 

native nature of fucoidan. 

For a more effective extraction, a pre-treatment step for the algal biomass after collection from 

beaches and coasts was performed. It included the removal of algal pigments (e.g., chlorophyll and 

fucoxanthin), lipids and other extraneous compounds which might co-extracted with fucoidan. This 

process included the treatment with acetone, methanol or methanol:chloroform:water (4:2:1) 

[79,88,89]. 

 

2.1.4. Purification  

Even after pre-treatment, extraction of fucoidan from either brown macroalgae is, in most cases, 

accompanied with co-extracted contaminants (e.g., alginate, proteins, polyphenols,....etc.) and needs 

a purification step later on [79]. The presence of such impurities influences the biological activities 

of FCSPs, and therefore, it may delay full understanding of the biological activity of FCSPs [89] and 

physico-chemical properties as well. According to the ISI web of knowledge (accessed on 

12.09.2017), only 95 published articles discussed the process of fucoidan purification from crude 

brown algae extracts, despite the word fucoidan was mentioned in 1865 articles representing 5% of 

the published articles. This survey indicated the difficulty and complexity of fucoidan purification 

by the available techniques and the need for other simpler novel techniques. Common examples of 

purification are described in the following sections. 

2.1.4.1. Exchange-based purification (Ion exchange chromatography, IEX) 

Anionic properties of fucoidan are involved in all techniques applied in fucoidan purification. 

Anionic resins (e.g., Diethylaminoethyl-cellulose (DEAE-C) or Diethylaminoethyl-sepharose) are 

usually applied, where negatively charged fucoidan can be exchanged with negative ions bound on 

the positively charged quaternary amino group of the diethyaminoethyl [88,90]. For fucoidan 

elution, a gradient concentration of NaCl is applied resulting in different fractions of fucoidan with 

different molecular weight, sulphate content and variables biological activities. 

Disadvantages of this technique included contamination of eluted fucoidan with high percent of 

NaCl and other small anionic compounds that could be ionized at used pH such as amino acids, 
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alginate and polyphenols. These contaminants required a further chromatographic step with GPC 

technique to remove them. Both chromatographic steps led to increase the costs of purification 

process. Furthermore, resins to be re-used, it should be regenerated making the process more tedious 

and time-consuming [91].  

2.1.4.2. Biologicals-based affinity chromatography  

Biologicals were also successfully applied as a tool for fucoidan purification, such as anti-thrombin 

III and heparin co-factor II, depending on the binding affinity of fucoidan in performing its anti-

coagulant function. These compounds were immobilized on concanavalin A-Sepharose and were 

applied to purify fucoidan [92]. More recently, fucose-specific lectins were applied in a single step 

to capture fucoidan similarly to fucose-containing proteins [43,93]. However, these techniques 

suffered also from several disadvantages, such as high expenses and inability of lectins to identify 

masked fucose units due to sulphate ester groups [94].   

2.1.4.3. Metachromasia-based affinity chromatography  

Thiazine cationic dyes (e.g., methylene blue and toluidine blue) are well-known in cell and tissue 

staining based on a metachromatic change from its blue to purple colour [95]. Moreover, analytical 

methods for detection and quantification of anionic polysaccharides were well-established through 

the formation of a charge transfer complex [96,97,98]. Hahn, et al. described the interaction between 

toluidine blue and the sulphated polysaccharide fucoidan, that it is strong enough and not only driven 

by ionic interaction, but also by disperse interactions between the stacked dye molecules [94,98]. In 

addition, TB was immobilized successfully on an amino derivatized Sepabeads® EC-EA by an 

innovative immobilization protocol through a glutaraldehyde bridge, as shown in Fig. 7. 

Furthermore, the adsorption kinetics and the binding capacity of the resin were analyzed. A Sips 

model was used to approximate the adsorption isotherm, resulting in a maximum loading capacity 

of 127.7 mg fucoidan per g adsorbent [94]. TB-immobilized adsorbent could capture fucoidan in a 

cheaper, in comparison with IEX-GPC and immobilized biologicals, from a synthetic raw extract, 

in which similar substances to that present in the crude algal extract, such as lactose.H2O, gluconic 

acid, gallic acid, and of BSA, were incorporated [94]. Yet, this procedure has not been investigated 

in crude fucoidan extracts. 
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Fig. 7: Steps of TB immobilization protocol on amino derivatized Sepabeads® EC-EA [94]  

The protocol involved derivatization of the beads with glutaraldehye, then a nucleophilic attack on 

carbonyl group of Sepabeads® EC-EA-glutaraldehye derivative was performed by TB in the presence 

of Na2S2O4. Finally, a step pf oxidation at highly acidic pH produced the final form of the TB-

derivatized beads. 

 

2.1.5. Fucoidan from F. vesiculosus or bladder wrack 

As an example of fucalean fucoidan is the fucoidan isolated from F. vesiculosus or as commonly 

named bladder wrack. It is classified as GRAS substance and produced by many companies, such 

as Marinova (Maritech®) [99] and Sigma-Aldrich®. In comparison with the other fucoidan isolated 

from different brown algal species, it is characterized by its relatively simpler chemical structure. It 
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is composed of 44.1% fucose, 26.3% sulfate and 31.1% ash, in addition to a little aminoglucose [43]. 

As shown previously in Fig. 6A, it is composed from repeating alternating α-(1-3)- with α-(1-4)-

linked L-fucopyranose units [14]. Therefore, fucoidan from F. vesiculosus was chosen as a model 

product for this work.  

F. vesiculosus inhabits the littoral zone, where the tide changes the depth of the water, and the 

sublittoral zone, where the organism is constantly submerged around the north Atlantic, in more 

temperate waters with lower salinity for four to five years old, as shown in Fig. 8 [100]. In Nordic 

countries, two types of cultivation are available; onshore cultivation, where cultivation is established 

in tanks which is more expensive and offshore cultivation, where the cultivation is placed in the 

ocean with optimization of growth conditions. It is also possible to create the right conditions on the 

seabeds at intertidal, sheltered place with a wild population to settle and grow [101]. 

 

 

 

Fig. 8: Habitat of F. vesiculosus or bladder wrack across the north Atlantic in more temperate zone 

[100] 

 

As a marine plant, the organism shows a number of morphological adaptations, such as the presence 

of a root-like structure holdfast which anchor the thallus to hard substrata such as pebbles, rocks, 

and dense seabeds. Moreover, fronds survive against sea waves by a flexible stipe and kept near to 

the water surface by means of vesicles or air bubbles found in lamina blades to continue the 

photosynthetic process. Fronds have also conceptacles at their tips which contain either one of the 

reproductive structures; antheridia or oogonia, as demonstrated in Fig. 9. Furthermore, taxonomy of 

F. vesiculosus could be described as followed in Table 2 [102,103].  
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Fig. 9: Morphology and anatomical parts of F. vesiculosus thallus (modified after [103]) 

 

Table 2: Taxonomy of F. vesiculosus [102,103] 

 

Empire Eukaryota 

Kingdom Chromista 

Phylum Ochrophyta 

Class Phaeophyceae 

Subclass Fucophycidae 

Order Fucales 

Family Fucaceae 

Genus Fucus 

Species vesiculosus 
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2.2. Material and Methods 

2.2.1. Algae harvesting and pre-treatment 

Fresh algal biomass of F. vesiculosus was harvested from the North Sea at the region of south 

beaches of Wilhelmshaven (Germany, 53°31.236N, 8°13.849E), as seen in Fig. 10. The algal 

biomass was washed with tap, and then deionized water, air-dried for few days, then in the drying 

oven at 50 °C until giving a constant dry weight, and milled afterwards. The milled algal powder 

was stored in a plastic container at room temperature. 

   

 

Fig. 10: Growth of the brown macroalgae F. vesiculosus at the south beaches of Wilhelmshaven (North 

Sea, 53°31.236N, 8°13.849E, Germany)  

 

Before the extraction step and in a ration of 1:10 between the algal biomass and used solvent, except 

acetone step was 1:20, 10 g of a dried algal biomass were handled by several pre-treatment steps 

successively in a shaker incubator (Infors HT Ecotron) at a constant shaking rate (100 rpm) for 

overnight each at 25° C with of acetone, hexane : isopropanol (3:2), 80% (v/v) ethanol, ethanol : 

water : formaldehyde (80:15:5) at pH 2.0, and finally washed again with 80% (v/v) ethanol. After 

each step, the suspension was centrifuged (4000 rpm, 10 min) by a bench centrifuge, and the 

supernatant was decanted. The pretreated algal powder was then dried again at 60 °C and stored at 

room temperature in a well-closed plastic container.  Scheme 1 demonstrates an overview of the 

major steps of pre-treatment. 
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Scheme 1: Overview of pre-treatment steps of the dried algae biomass before fucoidan extraction  

Steps were performed in a ration of 1:10 between the algal biomass and solvent, except acetone 

treatment in a shaker incubator a dusted at a constant rate (100 rpm) for overnight each at 25° C.  

 

2.2.2. Optimization of fucoidan extraction 

In an extraction set composed of a silicone oil bath over a magnetic heated stirrer and supplied with 

a thermometer and a temperature control device, as seen in Fig. 11, extraction was performed from 

the pre-treated F. vesiculosus biomass. 

 

 
 

Fig. 11: Extraction set of fucoidan from dried pretreated F. vesiculosus 

It shows an oil bath on heated magnetic stirrer and provided with a temperature control and 

thermometer. An air reflux column was applied in extraction Procedure A and B. 

 

Three methods for fucoidan extraction were applied; Procedure A, B and C, which resulted in 

production of four fractions of crude fucoidan. Procedure A was performed by exhaustion for two 

times of 7 g of the pre-treated powder with 70 mL of 1% (w/v) aqueous CaCl2 for 6 h at 70 °C using 
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a reflux and continuous stirring (500 rpm) at pH 2.0, as described previously by Hahn, et al. [94]. 

The pH was adjusted regularly every 1-2 h at 1 by 1 M HCl, as necessary. After centrifugation (4500 

rpm, 15 min), the algal biomass was removed and the supernatant was neutralized to pH 6.0 by 2.0 

M ammonium carbonate. Crude fucoidan was then isolated via precipitation by ethanol at a final 

concentration of 70% (v/v), cooling overnight at 4 °C, centrifugation, and then drying of the 

precipitate at 50 °C resulting in Fucoidan_A production. However, Procedure B administered 1% 

(w/v) CaCl2 in 20 mM MAB at pH 1 as an extraction solvent. The extraction was carried out using 

the same conditions previously mentioned in Procedure A. Centrifugation was then used to separate 

the supernatant from the algal biomass. The supernatant containing Fucoidan_B was stored 

afterwards at 4 °C until the next step of purification. Procedure C was also performed at moderate 

conditions at pH 2.7 at 42 °C for 3 h without reflux. Fucoidan_40% and Fucoidan_70% crude 

fucoidan fractions were isolated by precipitation with 40% (v/v) and 70% (v/v) ethanol, respectively. 

As an overview for the extraction process and isolated crude fucoidan, Fig. 12 illustrated the whole 

process. 

 

 
 

Fig. 12: Overview of fucoidan extraction process from pre-treated F. vesiculosus biomass and obtained 

crude fucoidan 

Different fractions of crude fucoidan were isolated; namely Fucoidan_A, Fucoidan_B and 

Fucoidan_40% and Fucoidan_70%.  
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2.2.3. Quantitative assay for crude fucoidan fractions’ contents 

Aqueous crude fucoidan solutions; Fucoidan_A, Fucoidan_(40%) and Fucoidan_(70%) were 

prepared in a concentration of 1 mg mL-1 and several contents were quantified (e.g., sugar, fucoidan, 

fucose and free sulphate contents) as described in the following sections. 

2.2.3.1. Sugar content  

According to Dubois and Holtkamp, Dubois or Phenol-Sulphuric acid assay was performed 

[104,105]. At the beginning, 200 µL of each solutions were mixed with 200 µL of a 5% (w/v) phenol 

solution gently in a 1.5 mL reaction vessel. Afterwards, 1 mL of concentrated sulphuric acid was 

added carefully and gently. After 10 min, the samples were mixed vigorously for about 15 sec and 

30 min later at room temperature, the absorbance was measured at 490 nm by a Uv/Vis-spectrometer. 

Different concentrations (0.025 - 0.25 g L-1) of aqueous glucose solution were measured as 

standards.  

2.2.3.2. Fucoidan content 

Toluidine blue assay was performed according to Hahn, et al. [98]. Briefly, 10 µL of fucoidan 

containing solutions were mixed with 990 µL of 0.06 mM TB which was prepared in 20 mM MAB 

(pH 1) for a better reaction sensitivity. Absorbance was afterwards measured at 632 nm using the 

aqueous solution of commercially-available fucoidan (>95% pure) purchased from Sigma-Aldrich® 

as a reference standard in a concentration range of 0 - 2.5 g L-1.  

Moreover, Heparin Red® Ultra assay, according to Warttinger, et al., was carried out for 

Fucoidan_A [106] after some modifications. In brief, 5 μL of the fucoidan-containing sample were 

pipetted into a 96 microplate well. Then, 180 μL of Heparin Red® Ultra solution was added as 

quickly as possible. The microplate was immediately placed in the fluorescence microplate reader 

adjusted at an excitation λ at 570 nm and emission was recorded at 605 nm with a spectral band 

width 13.5 nm and read height of 8 mm. Mixing was performed using the plate shaking function 

(setting “high”, 1 min) and fluorescence was measured within one minute after mixing. Fucoidan 

from Sigma-Aldrich® was used as standard (0 – 8 µg mL-1). 

2.2.3.3. Fucose content  

Dische or cysteine-H2SO4 assay was performed to quantify L-fucose content in hydrolyzed fucoidan 

solutions [105,107]. At first, 400 µL of crude fucoidan solutions were mixed with 1.8 mL diluted 

sulphuric acid (1:6). The mixtures were subsequently cooked in a silicone oil bath at 100 °C for a 

period of 10 min and the reaction was stopped by cooling in an ice bath. Thereafter, 40 µL of an 
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aqueous 3% (w/v) L-cysteine.HCl solution was added and the absorbance was measured at 396 nm 

and 430 nm. With the difference of those two measurements the influence of other sugars could be 

neglected. As a standard, aqueous L-fucose solutions were used in a concentration range of 0.03 – 

0.21 g L-1.  

2.2.3.4. Free sulphate content  

Using BaSO4 assay, free or hydrolyzed suphate ester content was determined [108]. In a 20 mM 

MAB (pH 2), aqueous 5 g L-1 crude fucoidan and 10% (w/v) BaCl2 solutions were prepared. 250 µL 

of each crude fucoidan solutions were mixed with 500 µL of 10% (w/v) BaCl2. After incubation on 

ice for 15 min, absorbance at 600 nm was measured. A concentration range (0.1 - 0.6 g L-1) of 

(NH4)2SO4 was used as a standard for calibration. 

 

2.2.4. Perylene diimide derivative synthesis (PDD) 

Synthesis of the red fluorescent PDD was performed at the Institute of Inorganic Chemistry in 

Heidelberg University by Prof. Dr. Roland Krämer as described previously by Szelke, et al. [109]. 

In brief, 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid dianhydride was converted to the 

diimide derivative by reaction with tris-(t-Butoxycarbonyl) protected by tetraamine spermine. After 

deprotection with trifluoroacetic acid, the product was isolated as a trifluoroacetate salt.  

 

2.2.5. Immobilization of thiazine dyes and perylene diimide derivative [108] 

Thiazine dyes (e.g., toluidine blue and thionin acetate) and PDD were immobilized according to the 

protocol described by Hahn, et al. [94] on Sepabeads® EC-EA purchased from Resindion S.R.l, Italy. 

The beads are porous ethyl amino-derivatized polymethacrylate enzyme carrier [110]. Steps were 

described in details in Appendix D: Protocols.  

 

2.2.6. Adsorption kinetics in crude fucoidan  

Applying the same conditions previously used in section 2.2.6, Fucoidan_A instead of the 

commercial fucoidan was incubated with 75 mg of TB- and PDD derivatized beads. After 1080, 

1440, 2400 and 2640 min for immobilized TB, and 5, 60 and 960 min for immobilized PDD, a 

sample volume of 10 µL were analyzed by TB assay and percent of adsorbed fucoidan was calculated 

based on the decrease in fucoidan concentration in the incubation supernatant.  
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2.2.7. Fucoidan purification and optimization 

2.2.7.1. Batch process 

Immobilized TB and PDD were applied to purify fucoidan from the isolated Fucoidan_A crude 

fraction following Hahn’s previously-described protocol which was applied in a raw synthetic 

extract [108]. Four phases were executed including adsorption, washing, elution and recovery of 

fucoidan from eluate. Briefly, 50 mg of derivatized beads in a 2 mL reaction vessel was incubated 

with 1.5 mL of 2.5 mg mL-1 of crude fucoidan. Then, two steps of washing with deionized water and 

0.1 M NaCl in 20 mM MAB (pH 2) and elution with NaCl prepared in 30% (v/v) ethanol in MES 

(pH 6) were performed. In more details, steps of fucoidan purification and recovery were described 

in Appendix D: Protocols. Moreover, Different factors which may affect fucoidan adsorption and 

elution were studied. At the same time, different purified fucoidan fractions were produced to 

investigate the effect of purification conditions on fucoidan’s physico-chemical and pharmacological 

properties. These factors and isolated purified fractions were discussed in the following sections.  

a. Incubation pH 

Stock solutions of a 2.5 mg mL-1 concentration were prepared in buffers of different pH values, such 

as 20 mM MAB (pH 1) and 20 mM MES (pH 6) to study the effect of incubation pH on percent 

capture and molecular weight of isolated fucoidan. The incubation with 50 mg of TB-derivatized 

beads produced Fucoidan_1 and Fucoidan_6 as a result from incubation at pH 1 and pH 6, 

respectively. However, purification with PDD-derivatized beads at pH 6 resulted in Fucoidan_PDD. 

b. Type and molarity of thiazine dye  

In addition to 2 mM of TB, TA was immobilized for a purpose of comparison. Moreover, different 

molarities of TB and TA (2, 4 and 6 mM) were immobilized on Sepabeads® EC-EA. Mixed beads 

were also applied to capture fucoidan. These factors were studied using the same condition applied 

in pH factor. 

c. Presence of interferences and skipping of precipitation step 

Fucoidan_B was purified by TB-derivatized beads using the same conditions. This step produced a 

fourth purified fraction; namely Fucoidan_M.   

d. Quantity of derivatized beads 

Derivatized beads (50 mg and 75 mg) were compared regarding their loading capacity for capturing 

fucoidan from crude Fucoidan_A in MES (pH 6). 
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e. Multiple use of beads 

TB- and PDD-derivatized beads (75 mg) were used for two cycles to compare between beads’ 

loading capacity for 44 h and 16 h, respectively. The 2nd cycle was performed after elution of 

adsorbed fucoidan from the 1st cycle. 

f. NaCl molarity in eluent  

Different eluents with 1, 2 and 3 M NaCl were prepared in 30% (v/v) ethanol in 20 mM MES (pH 

6). All eluents were applied for 16 h using a thermoshaker at 50 °C and 800 rpm. NaCl molarity was 

investigated to show its relationship with eluted fucoidan (%) and fucoidan molecular weights.  

 

2.2.7.2. FPLC process 

For a scale-up and an automated purification process, a FPLC was used to establish a protocol that 

had the same optimized phases as in the batch process. 3.2 g of previously-conditioned with MES 

(pH 6) PDD-derivatized beads were packed in a class column (XK 16/20, 72x16 mm, 4 cm3), then 

1 mL of 50 mg mL-1 in MES of crude Fucoidan_A fraction was injected. Afterwards, different flow 

rates and volumes were applied during the purification phases as shown in Table 3.  

 

Table 3: Description of an automated fucoidan purification process by immobilized PDD using FPLC 

 Different eluents with different flow rates and volumes were applied during the purification phases. 

 

Step Eluent used Flow rate 

(mL min-1) 

Step volume 

(mL) 

Column conditioning 20 mM MES (PH 6) 1.0 15 

Sample injection 50 mg.mL-1 Fucoidan_A in 20 mM 

MES (pH 6) 

1.0 1.0 

Adsorption  20 mM MES (pH6) 0.5 30 

Washing  Deionized water 1.0 15 

0.1 M NaCl in 20 mM MAB (pH 2) 1.0 20 

Elution 3M NaCl in 30% v/v ethanol in 20 mM 

MES (pH 6) 

2.0 50 

 

Effluents of 2 mL fraction were collected during flow through, washing and elution phases which 

analyzed by TB assay for fucoidan content. The process was repeated for two times. This process 

produced two further fractions of purified fucoidan which named Fucoidan_PDD_1 and 

Fucoidan_PDD_2 from the 1st and 2nd cycle, respectively. Fig. 13 summarized the whole 

purification process and the different fractions obtained from crude fucoidan fraction. 
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Fig. 13: Overview for isolated fractions of purified fucoidan 

Six fractions were obtained from crude fucoidan using batch and FPLC processes. 

 

 

2.2.8. Purified fucoidan fractions characterization 

2.2.8.1. Physico-chemical investigations 

Several investigations were carried out to characterize the isolated purified fucoidan fractions and 

evaluate the different studied factors in comparison with crude fucoidan (Fucoidan_A) and the 

commercially-available fucoidan (>95%) purchased from Sigma-Aldrich® isolated from F. 

vesiculosus. These investigations were performed as described in the following sections. 

a. Elemental (CHNS) analysis 

Samples of 1.6 to 1.8 mg or higher, especially in case of low element percent values, in tin boats 

were combusted. Combustion gases were reduced by hot copper at 830 °C in the reduction oven, 

then separated in the absorption column into its single components by temperature programmed 

desorption and the components were transferred sequentially to the thermal conductivity detector. 

The processor unit calculated afterwards the element concentrations from the measured values and 

the sample weight based on an instrument calibration. Elemental analysis was performed by the 

elemental Vario Micro cube apparatus which was calibrated previously with sulphanilic acid. 

b. Molecular weight parameters 

Molecular weight measurements were performed using an isocratic HPLC-GPC system. Samples 

were dissolved in phosphate buffer (0.05 M Na2HPO4, pH 9.1) in a concentration of 4 mg mL-1 and 
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then diluted with an equal volume of 1 mg mL-1 ethylene glycol solution as a flow marker. Separation 

was performed at 25 °C using a GPC_MCX column, which was previously calibrated with dextran 

of GPC analytical standard grade of different molecular sizes (5.0-670 kDa). The injection volume 

was 10 µL and the volumetric flow rate 1 mL min-1. The signal detections were performed using RI 

detector. 

c. Melting point 

Two mg of each fraction were placed in a capillary tube and placed in the melting point apparatus. 

Temperature increment was 2 °C min-1 and three temperature points, at which solids started to melt, 

changed their colour to dark brown, and finally at complete decomposition with charring, were 

observed and recorded. 

d. Specific optical rotation 

An aqueous 0.4% (w/v) solution of each fucoidan fraction was prepared and the specific optical 

rotation was measured at 22 °C by a digital polarimeter supplied with a sodium spectral adjusted at 

λ 589 nm. 

e. Monomeric composition 

Monomeric composition was determined according to protocols developed by Rühmann, et al. 

[111]. Briefly, 1 mg mL-1 aqueous solution of each fucoidan fractions was prepared and hydrolyzed 

with 2 M trifluroacetic acid for 90 min at 121 °C. Sugar monomers were detected, afterwards, as 

PMP derivatives with a HPLC-UV-ESI-MS system. Tempered column to 50 °C, an autosampler to 

20 °C, a flow rate of 0.6 mL min-1 and an injection volume of 10 μL were used. Mobile phase A and 

B consisted of 5 mM CH3COONH4 (pH 5.6) with 15% acetonitrile and pure acetonitrile, 

respectively. The gradient was programmed as following: start of mobile phase B at 1% (v/v), with 

increase to 5% over 5 min, hold for 2 min, with following increase to 18% over 1 min. The gradient 

was further increased to 40 % over 0.3 min, hold for 2 min and returned within 0.2 min to starting 

conditions for 1.5 min. Before entering ESI-MS the flow was splitted 1:20. Fucose, xylose, and 

galactose were detected by the diode array detector, while glucose and uronic acid dimers were 

detected by MS detector. 

f. FT-IR spectrometry 

Two to three mg of desiccated fucoidan fractions were transferred to FT-IR lens and scanned 

between 4000 - 650 cm-1. Measurements were applied to identify and characterize fucoidan fractions 

in comparison with reference fucoidan. 
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g. 1H-NMR 

Few mg of each samples were dissolved in D2O to give 5 mL of clear solutions. The samples were 

scanned at 80° C by a 400 MHz NMR spectrometer.  

 

2.2.8.2. Pharmacological investigations 

a. Anti-coagulant activity 

Anti-coagulant studies were performed using the blood coagulation system (BCS® System) which 

was completely programmed to mix, pre-warm and incubate the reaction contents at 37° C in 

addition to measure the coagulation time in s. The experiments were repeated for three times using 

platelet-poor plasma isolated from healthy patients’ blood, reagents purchased from Siemens 

Healthcare Diagnostics Products GmbH, 0.9% (w/v) NaCl as a negative control and 0.005 µg mL-1 

as a positive control. Fucoidan fractions were dissolved in an isotonic solution of 0.9% (w/v) NaCl. 

Fucoidan_1, Fucoidan_6, Fucoidan_M were investigated at a concentration of 0.01 mg mL-1. 

However, Fucoidan_PDD was investigated in a dose-response manner in concentration ranges of 

0.01-0.1 mg mL-1 in aPPT and 0.001-0.05 mg mL-1 in TT investigations. 

i. Activated Partial Thromboplastin Time (aPTT) 

According to the protocol described by Anderson, et al. [112] with few modifications. With each 

fucoidan fraction, 0.6 mL of plasma was mixed with 0.3 mL of fucoidan solutions. The mixture was 

then introduced to the blood coagulation system which was programmed to incubate it for 60 s, add 

0.5 mL of pre-warmed Pathrombin® SL reagent and  incubate again for 5 min at 37 °C. Afterwards, 

0.6 mL of a pre-warmed 0.25 M CaCl2 solution was added and the time for clot formation recorded. 

In a dose-dependent method, 50 µL of each spiked Fucoidan_PDD platelet-poor plasma solution 

were mixed equally with Pathromtin SL® reagent, incubated then for 2 min, 50 µL CaCl2 solution 

was added and the coagulation time recorded. According to the provider, Pathrombin® SL reagent 

consisted of silicon dioxide particles (1.2 g L-1), plant phospholipids (0.25 g L-1), NaCl and HEPES 

(pH 7.6). 

ii. Prothrombin Time (PT) 

PT was determined following the protocol of Quick [113] with some modifications. The blood 

coagulation system was also programmed to perform the same procedure mentioned previously in 

APTT determination, but each plasma and fucoidan solution mixture was incubated for 3 min. 

Afterwards, 0.6 mL pre-warmed Dade® Innovin® reagent was added and the time for clot formation 
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was observed. Dade® Innovin® reagent was a lyophilized product of recombinant human tissue factor 

and synthetic phospholipids (thromboplastin), calcium ions, a heparin-neutralizing compound, 

buffers and stabilizers (BSA), as provided by the producer.   

iii. Thrombin Time (TT) 

TT was measured applying the protocol described by Denson and Bonnnar [114] with some 

modifications. In a ratio of 3:1, 0.6 mL of plasma was mixed with 0.2 mL of fucoidan solutions. 

Each mixture was then incubated for 3 min before the addition of 0.2 mL pre-warmed BC Thrombin 

Reagent (BC THROMBIN) and the time for clot formation was recorded. In addition, 50 µL of pre-

warmed Fucoidan-PDD-spiked plasma at different concentrations were mixed with 100 µL 

Thrombin Reagent and the time for the coagulation was measured.  BC Thrombin Reagent consisted 

of lyophilized bovine thrombin (≤0.8 IU mL-1) and bovine albumin in HEPES (pH 7.4), according 

the product’s data sheet.  

 

b. Anti-viral assay 

The anti-viral activity was carried out against a representative of the double stranded DNA (dsDNA) 

viruses; Herpes Simplex virus-type 1 (HSV-1). The screening assay was based on modified 

Kleymann and Werling’s Tissue Culture Infection Dose 50 (TCID50) protocol for anti-viral 

candidates [115]. Briefly, a stock solution of 5 mg mL-1 of different fucoidan fractions were 

dissolved in PBS (pH 7.4), while aciclovir as 10 mM in DMSO. The IC50 was determined using a 

two-fold serial dilution in the range of 0.2 - 100 and 0.054 - 28 µg mL-1 for fucoidan solutions and 

aciclovir, respectively. Each well contained 10,000 cells of Vero B4 cells (50 µL of a solution with 

2x105 cells mL-1 provided in Roswell Park Memorial Institute medium (RPMI) containing 10% fetal 

calf serum (FCS) and penicillin/streptomycin (PS), 50 µL pathogen with 5 to 500 CFU of HSV-1 

(strain HF ATCC-VR-260), the final volume of each well was then completed to 200 µL by the 

culture medium. Negative controls were performed by mixing 50 µL of pathogen, 50 µL cell 

suspensions, and 100 µL medium. After the respective incubation period, the wells of the microplate 

were washed with 200 µL PBS and then filled with 200 μL 10 μg mL-1 fluorescein diacetate prepared 

in PBS. Fluorescein diacetate is a non-fluorescent dye and widely used to count viable cells and 

analyzes their vitality, where viable cells are able to convert the dye enzymatically by a cellular 

esterase activity releasing the fluorophore from the quenched dye. After 45 min of incubation at 

room temperature, RFU was measured using 485 nm for excitation and 538 nm for emission. 
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c. Anti-microbial activity 

With the same principle applied in the anti-viral assay, anti-fungal and anti-bacterial activities of 

fucoidan fractions were investigated. In anti-fungal activity, Candida albicans, C. tropicalis and C. 

glabrata were chosen as fungal representatives in Vero B4 cell line and amphotericin B was used as 

a positive control, while S. aureus as a Gram +ve and E. coli as a Gram –ve in HeLa and CHO-K1 

cell lines were used to detect the anti-bacterial activity of fucoidan fractions. The activity 

investigation applied ciprofloxacin as a bench marker.   

 

d. Free-Radical scavenging anti-oxidant activity 

According to Mensor [116] and Paul [117], with some modifications, 2 mL of a freshly prepared 

methanolic DPPH solution (0.1 mM) was mixed with 0.1 mL of a serial dilution of aqueous fucoidan 

fraction solutions in a concentration range of 25 - 1000 µg mL-1. The mixtures were incubated at 

room temperature in a dark place for 30 min, before absorbance measuring with Uv/Vis-

spectrometer at 517 nm. Ascorbic acid (6.25 - 200 µg mL-1) was used as a reference. The percent 

scavenging activity of each fucoidan fraction in addition to ascorbic acid was calculated applying 

Eq. 1. 

 

% Scavenging activity =100 - [(Abssample - Absblank) × 100] / Abscontrol  ………    (Eq. 1) 

Where; 

- Abssample is the Absorbance of fucoidan solution at each concentration  

- Absblank is the Absorbance without DPPH  

- Abscontrol is the Absorbance without fucoidan  

 

2.2.9. Process scaling-up and application of optimized conditions 

Starting with 100 g of a dried biomass of F. vesiculosus, pre-treatment was performed. Then, the 

resulted pre-treated biomass was extracted as described previously in Procedure A. Procedures for 

fucoidan purification and recovery were carried out at the optimized conditions by incubation of 

both TB- and PDD-derivatized beads (75 mg) with 1.5 mL of the stock solution (2.5 mg mL-1) of 

Fucoidan_A prepared in 20 mM MES (pH 6). The process was performed in a 2 mL reaction vessel 

at room temperature for 40 h for TB- and 16 h for PDD-deivatized beads, and placed in an overhead 

shaker adjusted at 30 rpm. The beads were then washed with water and 0.1 M NaCl in 20 mM MAB 

at pH 2, successively for 3 h and 5 h, respectively. Fucoidan was eluted with 1.5 mL of 3M NaCl 
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dissolved in 30% (v/v) ethanol in a 20 mM MES (pH 6) with vigorous shaking (800 rpm) at 50 °C 

for 16 h. To recover fucoidan, a rotary evaporator was utilized to concentrate the eluate and remove 

ethanol as well (60 °C, 90 mbar). Concentrated solution was then dialyzed using a dialysis membrane 

with a 3.5 kDa MWCO. During this procedure, deionized water was changed periodically every 2 h 

and conductivity was measured by a conductivity meter set until the resulting solution had the same 

conductivity value as deionized water. Finally, freezing at - 20°C for overnight, then lyophilization 

in a freeze dryer for 48 h adjusted at - 20° C and 1.03 mbar were carried out to obtain a fluffy white 

product.  
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2.3. Results and Discussion 

2.3.1. Pre-treatment, extraction and preparation of crude extract 

Fucoidan content in F. vesiculosus is affected by seasonal and geographical factors and represents a 

minor component, in relation to other carbohydrates [79,118,119], as shown in Fig. 14. Therefore, 

several steps of pre-treatment were carried out to remove extraneous matters (e.g., mannitol, lipids, 

polyphenols, etc.), which might be co-extracted with fucoidan and interfered afterwards with 

purification processes [120,121].  

 

 
 

Fig. 14: Average composition of the dried biomass of F. vesiculosus [79] 

It shows that fucoidan content represents approx. 12% w/w of the dried algal biomass.   

  

Acetone was applied to remove thallus pigments (e.g., chlorophyll), and non-polar fatty acids, while 

a hexane/isopropanol mixture removed lipids and more polar fatty acids. An 80% (v/v) ethanol was 

used to get rid of the major reserve food material mannitol for the algae. An 

ethanol/water/formaldehyde mixture at pH 2 was used to capture and polymerize polyphenols, which 

are usually tightly bound to fucoidan in the cell wall and responsible for the brown colour of 

contaminated fucoidan [122], and finally again with 80% (v/v) ethanol for washing and cleaning up 

the biomass from residual formaldehyde and condensed polyphenol complexes. 

An aqueous, acidic conditions and in the presence of calcium ion optimized extraction conditions, 

and facilitated the precipitation of alginate as Ca salt using several extraction procedures; 

Procedure_A, Procedure_B and Procedure_C. Besides, a neutralization step with (NH4)2CO3 was 

carried out in Procedure_A and Procedure_C after extraction to protect fucoidan’s glycosidic 

linkages and sulphate esters from acid hydrolysis [120,121]. Moreover, Procedure_B was performed 
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to study the effect of long incubation of fucoidan in acidic condition and possibility to purify 

fucoidan without the ethanol precipitation step. However, Procedure_C was applied at moderate 

conditions based on optimized extraction conditions from F. vesiculosus previously performed by 

Hahn, et al. [79]. Different crude fucoidan fractions were precipitated with different volumes of 

ethanol. In Procedure A, a yield of 2.58 g crude precipitated fucoidan (Fucoidan_A) was obtained, 

representing 17.5% (w/w) from the starting dried algal biomass. However, Procedure_C resulted in 

0.37 g and 0.38 g as yields from Fucoidan_40% and Fucoidan_70%, respectively. The low yield 

of crude fucoidan obtained from Procedure_C indicated that reflux, high temperature and more 

acidic conditions were critical factors for better extraction. Moreover, extraction conditions used in 

Procedure_A confirmed its ability to obtain a higher yield than that stated in the literature. 

 

2.3.2. Characterization of crude fucoidan fractions 

Crude fucoidan fractions; Fucoidan_A, Fucoidan_40% and Fucoidan_70% before purification 

protocols were characterized regarding its sugar, fucoidan, fucose and free sulphate contents, 

according to Dubois (Phenol-Sulphuric acid assay), TB and Heparin Red® Ultra assays, Dische 

(Cysteine-H2SO4 assay) and BaSO4 assay, respectively. Results were summarized in Table 4, it 

shows that Fucoidan_A has the best quality, which had the highest sugar and lowest hydrolyzed 

free sulphate contents. In addition, its fucoidan and fucose contents were comparable with 

Fucoidan_70%. Furthermore, 70% (v/v) ethanol proved its efficiency to precipitate crude fucoidan 

with higher fucoidan and fucose contents. However, the low fucoidan content (approx. 70% w/w) 

confirmed that there were still co-extracted contaminants with fucoidan, despite of the extensive 

performed pre-treatment steps, and therefore a further step of purification was needed to obtain an 

improved product. Fucoidan_A was considered as a candidate to give a high-quality fucoidan and 

more preferred than the other fractions to perform the further purification process. 
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Table 4: Sugar, fucoidan, fucose and sulphate contents in different crude extracted fucoidan fractions 

from F. vesiculosus by Procedure_A and C 

 

Parameter  Method of 

Determination 

Standard 

used 

Concentration (g/g crude 

fucoidan)  

Fucoidan_

A 

Fucoidan_

40% 

Fucoidan_

70% 

Sugar content Dubois test (Phenol-

Sulphuric acid assay) 

D-Glucose 0.2079 0.176 0.14 

Fucoidan 

content 

TB assay Fucoidan 

(>95%pure, 

Sigma-

Aldrich®) 

0.731 0.0915 0.76 

Heparin Red® Ultra 

assay 

0.69 n.d* n.d 

Fucose content Dische assay 

(Cysteine-H2SO4) 

L-Fucose 0.165 0.172 0.0654 

Free sulphate 

content 

BaSO4 assay Ammonium 

sulphate 

0.0367 0.1559 0.0657 

*: not determined 

 

The colour developed in Dubois assay is due to the conversion of the sugars into furfural derivatives 

by a dehydration reaction with sulphuric acid. The furfural product is condensed with phenol to a 

coloured compound, which can be detected colorimetry at 490 nm. Colour formation is stable for 

several hours and proportional to the amount of the sugar present. Its detection limit is 7 µg L-1 

[105]. 

In addition, the Dische assay is a specific-oxidation reaction for methylpentoses like fucose. 

Cysteine combines with the different breakdown compounds of sugars yielding products with 

different absorption spectra. Therefore, relative absorbance should be measured at two wavelengths 

to eliminate possible interferences from other sugars. The detection limit of this test is 10 µg L-1 

[105].  

Moreover, TB assay was considered a specific test to determine fucoidan content. The test is based 

on a metachromatic change of TB due to a charge-transfer complex formation when reacted with 

polyanionic polymers in acidic or slightly acidic pH, such as fucoidan [98]. The assay was preferred 

to be performed in a highly acidic pH (pH 1) to ensure the specificity and sensitivity for sulphated 

compounds. At pH 1, only sulphate groups of fucoidan could ionize, because of their lower pKa 

value than other carboxylic and phosphate groups from alginate and nucleic acids, respectively. 

Moreover, in acidic medium amino groups of thiazine dyes were also protonated and could form a 

donor-acceptor complex specifically with fucoidan. 
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In addition to thiazine dyes, Heparin Red® (Redprobes UG) proved its effectiveness in the detection 

of heparin in plasma [123] and urine [124] and, more recently, for the quantification of fucoidan in 

spiked plasma [106]. The reaction is based on the formation of electrostatically-driven aggregates 

with polyanionic sulphated polysaccharides, such as heparin and fucoidan followed by fluorescent 

quenching, as shown in Fig 15. To assure test selectivity, Na-alginate samples were analyzed 

separately, which showed no affinity and fluorescence quenching activity toward Heparin Red® 

probes. 

 

 
 

Fig. 15: Representation of the polyanionic polysachharide reaction with fluorescent Heparin Red®  

The reaction resulted in formation of electrostatically aggregates and followed by fluorescence 

quenching (modified according to [125]). 

 

Furthermore, reaction of free sulphate ions with barium ions produced BaSO4 as a precipitate. The 

solution turbidity could be measured at a λ of 600 nm. This principle was applied to quantify free 

sulphate content in crude fucoidan fractions. Lower free sulphate content is advantageous and 

indicated lower percent of decomposed or hydrolysed sulphate ester groups during extraction step.  

     

2.3.3. Application and optimization of fucoidan purification  

Fucoidan_A was used in application and optimization of purification of Hahn’s protocol [108] due 

to its higher production yield and better quality as discussed previously in section 2.3.2. Investigated 

conditions were classified to be either during fucoidan’s adsorption phase or elution phase. In 

addition, several fractions of purified fucoidan were isolated to be characterized afterwards to reach 

the optimum purification conditions regarding physico-chemical, pharmacological properties in 

addition to the degree of purity.   
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2.3.3.1. Adsorption or incubation phase 

a. Kinetic, adsorption pH and type of thiazine dye  

Fucoidan adsorption (%) by immobilized 2 mM TB, TA and mixed TA and TB were compared at 

pH 1 and pH 6. As shown in Fig. 16, results revealed that fucoidan required long incubation periods 

to be captured significantly confirming the results obtained previously from kinetic and sorption 

isotherm studies by Hahn [108]. In addition, capture (%) was higher at highly acidic pH 1 than 

slightly acidic pH 6 conditions. Therefore, it could be concluded that at pH 1, a partial acid 

hydrolysis of fucoidan occurred and the diffusion rates (rate limiting step) of the lower molecular 

weight fucoidan [94] were possibly improved making the adsorption easier and faster through 

immobilized dyes found on the beads surface and in pores. In addition, the highly acidic pH may 

help more sulphate ester groups to be ionized which interacted proportoionally with TB. 

Furthermore, similar adsorption (%) by mixed dyes proved that both beads did not enhance or 

compete with each other during fucoidan capturing process. 
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Fig. 16: Adsorption (%) of fucoidan by immobilized 2 mM TB, TA and mixed dyes at pH 1 and pH 6 

The adsorption (%) was determined after incubation of 1.5 mL 2.5 mg mL-1 of Fucoidan_A at 1080, 

1440, 2400 and 2640 min with 50 mg of derivatized beads at room temperature. 

 

b. Molarity of immobilized dye  

As a trial to increase the availability of dyes for fucoidan, and therefore a higher percent of captured 

fucoidan, immobilization of higher concentrations of dyes; 4 and 6 mM of thiazine dyes, were 

applied. Results of adsorption at pH 1 showed that, not only the percent of captured fucoidan was 

not significantly affected by increasing the dye molarity, as shown in Fig. 17, but also dyes leaching 

was higher than immobilized 2 mM. Because of these reasons, 2 mM immobilized TB was preferred 

in the downstream process for purified fucoidan production. 
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Fig. 17: Comparison between adsorption (%) of fucoidan by immobilized 2, 4 and 6 mM TB at pH 1  

The process was performed after incubation of 1.5 mL 2.5 mg mL-1 of Fucoidan_A with 50 mg of 

derivatized beads at room temperature. Samples from supernatant were taken at 1080, 1440, 2400 

and 2640 min of incubation and analyzed to determine adsorption rates. 

 

c.   Incubation time 

Adsorption of fucoidan is a time-dependent process and required at least 30 h of incubation to attain 

the equilibrium between beads and available fucoidan [94], and therefore an extended incubation 

period was studied for 60 h. As shown in Fig. 18, captured fucoidan (%) was increased by time at 

both pH, especially at pH 1, but the possibility of a non-specific acid hydrolysis for fucoidan may 

be occurred, and therefore affected the native molecular weight of fucoidan at these conditions. 
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Fig. 18: Adsorption (%) of fucoidan by 2 mM immobilized TB for 60 h of incubation at pH 1 and pH 6 

The process was performed by incubation of 1.5 mL 2.5 mg mL-1 of Fucoidan_A with 50 mg of 

derivatized beads at room temperature for 60 h (3600 min). Samples from supernatant were taken at 

1080, 1440, 2400, 2640 and 3600 min of incubation and analyzed to determine adsorption rates. 

 

d. Quantity of derivatized beads 

As shown in Fig. 19, incubation of crude fucoidan at pH 1 and 6 with 75 mg of TB-derivatized beads 

succeeded to increase adsorption (%) to 99.5% and 83.8%, respectively after 44 h of incubation. 

This was another proof that the non-completed adsorption, long incubation periods and difficultly to 

reach the equilibrium state were related to the the beads porosity and the slower and variable 

diffusion rates of fucoidan polymers.  
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Fig. 19: Adsorption (%) of fucoidan from Fucoidan_A by 75 mg of 2 mM immobilized TB at pH 1 and 

pH 6 

The process was performed by incubation of 1.5 mL 2.5 mg mL-1 of Fucoidan_A at room temperature 

for 44 h in a 2 mL reaction vessel.  

 

e. Effect of multiple use of immobilized beads  

TB-derivatized beads were used for several cycles to adsorb fucoidan from raw synthetic extract 

efficiently [94]. Similarily, immobilized TB showed reproducible and comparable fucoidan 

adsorption (%) from the crude extract of F. vesiculosus with multiple use in two cycles, as shown in 

Fig. 20. This factor confirmed also that elution step regenerateed the beads’ function without the 

need to an additional regeneration step as in IEX process. 
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Fig. 20: Adsorbed fucoidan (%) by 75 mg of immobilized TB for two cycles at pH 1 and pH 6 

The process was performed by incubation of 1.5 mL 2.5 mg mL-1 of Fucoidan_A at room temperature 

for 44 h in a 2 mL reaction vessel.  

 

2.3.3.2. Elution phase 

For elution and effective break down of the charge-transfer complex formed between the 

immobilized TB and the adsorbed fucoidan, high molar concentration of NaCl, ethanol and heating 

were required. Ethanol was used to enhance the hydrophobic interaction between the stacked dye 

molecules. In addition, high temperatures e.g., 50 ºC provided the necessary activation energy for 

desorption and NaCl for suppression of ionic interactions between the dye and the sulphated 

polysaccharide [94]. Only the effect of NaCl molarity on elution of fucoidan (%) was studied. 

As demonstrated in Fig. 21, increasing of NaCl molarity in eluent resulted in increasing of eluted 

fucoidan (%). Molarity of NaCl resulted in obtaining different fractions of fucoidan with different 

molecular weights (discussed later). The process was tested in adsorbed fucoidan at pH 1 and showed 

that 3 M NaCl was the best and succeeded to elute 70.3% in average of adsorbed fucoidan.  However, 

non-completed elution could be related to the difficulty of elution of fucoidan present in the beads 

pores, and therefore further optimization were still required. In addition, leaching of the immobilized 

dye might be possible which reacted with some the free eluted fucoidan molecules and total eluted 

fucoidan could not be determined exactly by the TB assay as a result. Non-eluted or strongly bound 

fucoidan affected negatively on the beads’ efficiency with multiple uses as a result, as shown 

previously in Fig. 20. In addition, leached dye from derivatized beads at the elution conditions 

decreased the number of immobilized molecules with each cycle. 
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Fig. 21: Effect of NaCl molarity in eluent on eluted fucoidan (%)  

Elution (%) was increased by increasing NaCl molarity and performed for 16 h in a thermoshaker at 

a temperature of 50° C and vigorous shaking at 800 rpm. 

  

Results obtained from investigated factors revealed that neither a completed adsorption of fucoidan 

nor the maximum loading capacity of immobilized dye were not achieved till 60 h of incubation at 

both pH values using 50 mg of beads with 2.625 mg of fucoidan. However, the reaction between TB 

and fucoidan occurred immediately. The previously-studied sorption isotherm concluded that 72 h 

were required to reach the maximum capacity of beads (127.7 mg g-1) [94]. This might be explained 

by several reasons including the presence of co-extracted contaminants which delayed fucoidan 

adsorption or competed for adsorption sites, differences in polymers chain lengths and molecular 

weights which led to different diffusion rates and beads porosity as well. Moreover, amino groups 

in thiazine dyes were a limiting factor; i.e., one group per each dye molecule after immobilization, 

as demonstrated in Fig. 22. Based on these arguments, further optimization steps should be 

performed to overcome these disadvantages.    
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Fig. 22: Immobilized TB and TA on Sepabeads® EC-EA  

After immobilization, they showed only one available amino group which could be ionized to capture 

fucoidan. 

  

2.3.4. Application of PDD for fucoidan purification 

Following the high affinity and sensitivity of Heparin Red® to polyanionic polysaccharides [106], a 

fluorescent structurally-related compound to Heparin Red®; polycationic perylene diimide 

derivative or PDD (N,N′-Bis-(1-amino-4,9-diaza dodecyl)-1,7-di bromo perylene-3,4,9,10-

tetracarboxylic acid diimide), as shown in Fig. 23, was synthesized and immobilized successfully. 

  

 
(a)                                                                 (b) 

 

Fig. 23: Molecular structure of a) perylene diimide derivative (N,N′-Bis-(1-amino-4,9-diaza dodecyl)-

1,7-di bromo perylen-3,4:9,10-tetracarboxylic acid diimide, and b) Heparin Red® 

PDD shows different primary and secondary amino groups available for immobilization on amino-

derivatized beads through a glutaraldehyde bridge as well as formation of a charge transfer-like 

aggregate with fucoidan in acidic or neutral pH. 
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PDD showed a lot of advantages in comparison with thiazine dyes. These advantages include five 

adsorption amino groups, as shown in Fig. 24, in addition to the wide distance between beads and 

amino groups which may ease their function to hook the huge and slower fucoidan macromolecules. 

Moreover, availability of adsorption sites on beads surface overcame the problem of beads porosity.  

  

 
 

Fig. 24: Immobilized PDD on Sepabeads® EC-EA  

It shows five amino groups for fucoidan binding. The figure is based on a 1:1 ratio of immobilization 

between beads and PDD molecules.  

 

2.3.4.1. Adsorption kinetic in crude fucoidan 

As shown in Fig. 25, application of immobilized PDD at pH 6 proved its efficiency to capture 

fucoidan from crude extract and improved purification process drastically. More than 80% (83%) of 

available fucoidan was captured in 960 min, compared with 83% in 2640 min with immobilized TB 

incubated at the same conditions, as shown previously in Fig. 19. 
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Fig. 25: Time dependence adsorption (%) of fucoidan from Fucoidan_A by immobilized PDD 

The process was performed using 75 mg derivatized beads with a 2.5 mg mL-1 solution of 

Fucoidan_A in MES (pH 6) at room temperature and a 2 mL reaction vessel. 

 

2.3.4.2. Multiple use of immobilized PDD 

Moreover, PDD-derivatized beads were recycled like immobilized TB without effect on beads 

efficiency, as shown in Fig. 26. Interestingly, it was observed that the beads were able to adsorb 

much fucoidan (%) in the 2nd and 3rd cycles, which were constant, than the 1st cycle. This observation 

might be due to a non-optimized PDD solution used in immobilization step. Much concentrated PDD 

solution saturated the beads and the additional molecules, despite of the several washing steps, bound 

to fucoidan and inhibited its adsorption in the 1st cycle. 

       

 
 

Fig. 26: Multiple use of PDD-derivatized beads for three cycles 

Process was performed using 75 mg beads with 2.5 mg mL-1 of Fucoidan_A solution in MES (pH 

6) which incubated for 18 h (1080 min) in a 2 mL reaction vessel. 
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2.3.4.3. FPLC automated purification process  

Preliminary results of batch process were a motivation to establish a protocol using FPLC. This 

could help automation, improve downstream processing, further minimize the time required for the 

process, and overcome the disadvantages regarding manual solvents exchange during the different 

purification phases. Furthermore, this process might help in an industrial-scale fucoidan production. 

The new protocol was developed to imitate batch process with its four phases and performed in only 

150 min. A sample of 50 mg mL-1 was prepared, which was less than the maximum loading capacity 

of the column material, due to a crude fucoidan solubility problem. Concentrations more than 50 

mg.mL-1 resulted in a turbid solution. First, 20 mM MES buffer (pH 6) was used for column 

conditioning. Then, a 50 mg mL-1 sample in MES was injected in 1 mL loop, followed by buffer 

again at a slower flow rate to give adequate time for fucoidan adsorption by derivatized beads. 

Deionized water and 0.1 M NaCl in MAB (pH 2) were used afterwards for washing to remove the 

non-specific bound molecules. Investigation of flow through and washing collected fractions by TB 

assay confirmed a complete adsorption of fucoidan.With elution by 3 M NaCl in 30% ethanol, 

fucoidan started to leave its complex easily when conductivity and pH were increased to approx. 95 

µS/cm and slightly acidic pH 6 (see Appendix), respectively. A similar elution pattern of fucoidan, 

as shown in Fig. 27, was observed in two cycles.  

Fucoidan was observed to be eluted and reached its maximum concentration earlier with the 2nd 

application of the derivatized beads. Fractions (6-20) from the 1st and 2nd cycles were pooled (30 mL 

each) to give yields of Fucoidan_PDD_1 and Fucoidan_PDD_2 of 16.9 and 16.3 mg, respectively.  
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Fig. 27: Fucoidan elution pattern from FPLC column in two successive cycles 

Similar pattern of fucoidan elution was observed in the two cycles of fucoifan purification by FPLC. 

Fucoidan concentrations were determined in column eluates by TB assay. 

 

If the fucoidan content of the injected sample (50 mg mL-1) was considered, only 68% (34 mg) 

represented fucoidan. This means that the column could elute only 50% of the introduced fucoidan. 

The low elution (%) might be due to the absence of heating and vigorous shaking applied in batch 

process. 

 

2.3.5. Physico-chemical characterization of purified fucoidan fractions 

After freeze-drying, white and hygroscopic fluffy powders were obtained as in Fucoidan_1, 

Fucoidan_6 and Fucoidan_PDD, while Fucoidan_M was white to brownish colour. All of them 

were soluble in water, sparingly soluble in DMSO, and insoluble in ethanol. 

 

2.3.5.1. Elemental Analysis (CHNS Analysis) 

As shown in Table 5, the presence of traces of nitrogen content N (%) in all fucoidan types, in 

contrast with reference fucoidan, suggested the successful removal of a high percent of 

proteinaceous compounds. These traces were possibly due to the presence of some amino sugars 

[43,126]. Fucoidan_PDD demonstrated the lowest N (%); 0.2% (m/m) compared with the other 

fractions. In contrast, Fucoidan_M showed the highest S%; 12.11% (m/m), which is critical for 

some biological activities (e.g., anti-viral activity). Based on CHNS analysis, number of sulphate 
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ester group per sugar unit and degree of sulphation were calculated using the ratio between C (%) 

and S (%) contents, as shown in Eq. 2 and Eq. 3, respectively. Fucoidan fractions’ degree of 

sulphation were consistent and interesting compared with literature’s values, especially with 

Fucoidan_6 and Fucoidan_PDD [127]. 

 

No. of sulphate group per sugar unit = [
𝐶(%)

12
𝑆(%)

32

] /6 ……………… (Eq. 2) 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑖𝑜𝑛 = 1
𝑁𝑜. 𝑜𝑓 𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒 𝑔𝑟𝑜𝑢𝑝 𝑝𝑒𝑟 𝑠𝑢𝑔𝑎𝑟 𝑢𝑛𝑖𝑡⁄    ……….  (Eq. 3) 

 

Where; 12 is the atomic weight of Carbon, 6 is the number of Carbon atoms in the sugar monomer, and 32 is 

the atomic mass of Sulphur. 

 

Table 5: Elemental analysis (CHNS) and degree of sulphation results of different fucoidan 

fractions 

The results were compared with commercially-available analogue purchased from Sigma-

Aldrich® in addition to calculated degree of sulphation. 

 

Sample N (%)  C (%)  H (%)  S (%)  
Degree of 

sulphation 

Reference fucoidan  n.d.* 24.78 4.42 8.89 0.8 

Fucoidan_1 0.3 24.14 4.43 11.18 1.09 

Fucoidan_6 0.34 26.12 4.63 9.83 0.84 

Fucoidan_PDD 0.22 25.35 4.51 8.45 0.75 

Fucoidan_PDD_1 0.3 25.77 4.57 8.78 0.766 

Fucoidan_PDD_2 0.29 25.95 4.54 8.78 0.761 

Fucoidan_M  0.26 23.31 4.28 12.11 1.16 

Crude fucoidan 

(Fucoidan_A) 
0.59 22.89 4.54 6.88 

0.67 

* not detected. 

 
Reference fucoidan (>95% pure isolated from F. vesiculosus) was purchased from Sigma-Aldrich®;   

Fucoidan_1 was purified by immobilized TB from crude fucoidan at pH 1; 

Fucoidan_6 was purified by immobilized TB from crude fucoidan at pH 6; 

Fucoidan_PDD was purified by immobilized PDD from crude fucoidan at pH 6; 

Fucoidan_PDD_1 was purified using a FPLC protocol from crude fucoidan at pH 6 (1st cycle); 

Fucoidan_PDD_1 was purified using a FPLC protocol from crude fucoidan at pH 6 (2nd cycle); 

Fucoidan_M was purified from MAB crude extract at pH 1 without crude fucoidan precipitation. 
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The higher degree of sulphation, especially in Fucoidan_1 and Fucoidan_M, were due to lower 

C(%) to S(%) ration which was affected by highly acidic pH and resulted in polymer hydrolysis, as 

will be discussed in the following section 2.3.5.2. 

 

2.3.5.2. Molecular weight parameters 

For ideal characterization of any polymer, three different parameters should be calculated, which are 

Mw, Mn and Mp. Mn indicates the number of molecules in a sample of a given weight, while Mw 

takes into account the molecular weight of chains contributing to the molecular weight average [128] 

and Mp determines the polymer molecular weight at the top of peak or the most prominent molecular 

weight. In addition, the PDI measures the broadness of molecular weight distribution of polymers; 

the larger the PDI, the broader the molecular weight. According to Agilent Technologies [128], the 

following equations (Eq. 4 – 6) were applied. 

 

𝑀𝑛 =  
∑ 𝑁𝑖 𝑀𝑖

∑ 𝑁𝑖

     …………….   (Eq. 4)            𝑀𝑤 =   
∑ 𝑁𝑖 𝑀𝑖

2 

∑ 𝑁𝑖 𝑀𝑖
 …………….  (Eq. 5) 

𝑃𝐷𝐼 =  
𝑀𝑤

𝑀𝑛
   ………………..   (Eq. 6) 

 

Where; Mi is the molecular weight of a chain, and Ni is the number of chains of that molecular 

weight. 

  

Natural polymers like proteins and polysaccharides are monodisperse and therefore have PDI near 

to 1. As demonstrated in Table 6a, purification processes either by immobilized TB or PDD 

improved molecular weight parameters and its quality as well. Fucoidan_1 and Fucoidan_M 

showed the lowest- measured Mw and this proved that long incubation periods in acidic conditions 

during adsorption phase had a strong hydrolytic effect on fucoidan polymer, despite of higher 

adsorption rates. Moreover, low molecular weight obtained from FPLC method suggested that 

elution conditions were only able to elute low molecular weight fucoidan (LMWF). 

Not only % eluted fucoidan, but also molecular weight averages of eluted fucoidan fractions were 

affected by the NaCl molarity. Table 6b shows that molecular weight of fucoidan purified at the 

same conditions could be sub-fractionated by gradient elution using different molarities of NaCl. 

The higher NaCl molarity applied, the more fucoidan molecular weight is obtained.  
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Table 6a: Molecular weight parameters and polydispersity index (PDI) of different purified fucoidan 

fractions. 

The fucoidan fractions were compared with reference fucoidan purchased from Sigma-Aldrich® 

and crude fucoidan before purification 

 

Fucoidan type Mwx104 Mnx104 Mpx104 PDI 

Reference fucoidan  9.5 4.2 5.1 2.2 

Fucoidan_1 5.8 3.9 3.3 1.4 

Fucoidan_6 9.8 5.4 5.7 1.8 

Fucoidan_PDD 8.6 4.2 3.2 2.04 

Fucoidan_PDD_1 5.8 2.5 3.4 2.3 

Fucoidan_PDD_2 6.6 3.98 4.02 1.66 

Fucoidan_M  4.8 1.8 2.6 2.6 

Crude fucoidan 6.6 3.1 4.2 2.1 

Mw: weight average molecular weight, Mn: Number average molecular weight, and Mp: peak molecular 

weight 

 

Table 6b: Molecular weight parameters of fractions obtained by different NaCl molarity 

 Fractionation was performed by applying different 1, 2 and 3 M NaCl in eluent. 

 

Molarity of NaCl (M) Molecular weight averages (x104) Da 

Mw Mn Mp 

1 5.7 4.1 3.7 

2 6.6 4.8 4.9 

3 9.2 4.9 4.4 

 

2.3.5.3. Melting point  

Since the melting point of crystallized compounds assesses also sample purity and is affected by 

molecular weight, melting points were measured for some fractions to proof relations with the 

previously measured molecular weight parameters [129]. All organic polymers like fucoidan melt 

and decompose when exposed to heat in an analysis called combustion analysis. Fucoidan fractions 

followed the same pattern with increasing the temperature; namely colour changing: yellow, brown 

and then to black and was reflected by a gas development. The temperature ranges between starting 

of melting till complete decomposition were 5-6 ºC degrees for Fucoidan_1 and Fucoidan_M, 

while they were wide (20 ºC) for Fucoidan_6. These data indicated and confirmed higher molecular 

weight of Fucoidan_6 and results obtained from molecular weight measurement. Table 7 

summarizes a comparison among the phases at which the different fractions of fucoidan purified by 



Optimization of Fucoidan Extraction and Purification from Brown Macroalgae 

52 
 

immobilized TB changed their colour, melted and then decomposed with charring at higher 

temperatures. 

Table 7: Comparison among the different fucoidan fractions purified by immobilized TB, regarding 

start, colour change and decomposition temperature points  

 

Fucoidan fraction Start (°C) Color Change (°C) Decomposition (°C) 

Fucoidan_1  130 132–133 135 

Fucoidan_6  140 153–156 161 

Fucoidan_M  130 133–134 136 

 

2.3.5.4. Specific optical rotation 

Specific optical rotation [α]589
22  results, as shown also in Table 8, proved the levorotatory (l) and 

asymmetric nature of fucoidan fractions. This confirmed the presence of l-fucose as a major 

stereoisomer of fucose monomer in fucoidan. Fucoidan fractions in addition to commercial analogue 

showed similar, [𝛼]589
22  values in the range from -117° for Fucoidan_6 to -130° for Fucoidan_M. 

These values could be related also to fucoidan molecular weight and fucose content as an indirect 

relationship. Furthermore, these values are also consistent with the data reported previously in 

literature: -123° [43]. 

 

Table 8: Comparison among the different fractions of fucoidan regarding specific optical rotation  

All fucoidan fractions are l-form polymers.  

 

Fucoidan fraction Specific optical rotation [𝛼]589
22   

Reference Fucoidan  - 121 

Fucoidan_1  - 128 

Fucoidan_6  - 117 

Fucoidan_M  - 130 

 

2.3.5.5. Monomeric composition 

Monomeric composition affects significantly fucoidan biological activities [43]. As Table 9 shows, 

fucose is the major monomer in all fucoidan fractions and represents more than 80% of the total 

monomers. Other monomers, such as galactose, uronic acid/glucose dimers were also detected. Yet, 

xylose was detected only in Fucoidan_1 and Fucoidan_6. Uronic acids/glucose dimers were only 

detected by MS; nevertheless, their quantities could not be accurately determined since there were 
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no standards available in addition to their poor retention behaviors. These results confirmed that the 

monomeric composition of fucoidan was also dependent on the purification method and its 

molecular structure as well. 

 

Table 9: Monomeric composition (%) of different purified fucoidan fractions 

 

Composition % Galactose % Xylose % Fucose 

Fucoidan_1  7.4 ± 0.06 4.0 ± 0.06 88.59 ± 0.03 

Fucoidan_6  8.99 ± 0.25 4.2 ± 0.45 86.8 ± 0.45 

Fucoidan_M  7.56 ± 0.2 - * 92.43 ± 0.2 

*: not detected 

 

2.3.6. Spectroscopical identification of purified fucoidan fractions 

2.3.6.1. FT-IR 

Because of the complex and diverse structure of fucoidan, identification of fucoidan functional 

groups is always performed by IR [43,87,130,131]. Generally, it shows characteristic and typical IR 

bands for its functional structural building blocks, (e.g., OH group of its monomeric 

monosaccharides, S=O and C-S-O of sulphate ester groups, O-C-O and C-O-C of glycosidic and 

intra-molecular linkages, at 3430, 1220, 830, 1620, 1020 cm-1, respectively).  

FT-IR was used as an identification tool for fucoidan before and after application of the purification 

protocol. As revealed in Fig. 28, as an example, a comparison between IR bands for Fucoidan-PDD, 

crude fucoidan and the commercially-available pure fucoidan purchased from Sigma-Aldrich® 

(>95% pure). Obviously, crude fucoidan showed an additional band at 1418 cm-1 which may belong 

to co-extracted impurities, e.g., alginate [132]. Being purified, fucoidan fractions had not any more 

this band as shown in Fucoidan_PDD. 
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Fig. 28: FT-IR spectra of fucoidan before (Fucoidan_crude) and after (Fucoidan_PDD) in comparison 

with the commercially-available reference fucoidan purchased from Sigma-Aldrich® (>95% 

pure) 

Fucoidan_PDD showed typical IR bands for OH, O-C-O, S=O, C-O-C, C-S-O groups as well as 

methyl pentoses of fucoidan. FT-IR of Fucoidan_PDD is only shown, as an example, for a simple 

overview. 

 

2.3.6.2. 1H-NMR 

1H-NMR of fucoidan fractions demonstrated poorly-translated spectra including commercially-

available purified fucoidan purchased from Sigma-Aldrich®. Supposing that fucoidan is a polymer 

α-(1-3)-linked L-fucopyranoside repeating unit, as previously hypothesized by Cumashi, et al. [14], 

as shown in Fig. 29, some structural features could be elucidated from NMR spectra. All fractions 

showed peaks of the shielded protons at around 1.2 and 2.15 ppm as singlets (did not appear in 

commercial fucoidan), which could be assigned to CH3- of L-fucose monomer and acetyl groups, 

respectively. Other peaks appeared slightly shifted between 3.8 and 4.5 ppm assigned to H2, H3, H4 

and H5. Anomeric proton H1 appeared highly down fielded at 5.2 rpm, confirmed α-linked sugar 

monomers. 
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Fig. 29: Representation of an α-(1-3)-linked L-fucopyranoside repeating unit of fucoidan, as previously 

described by Cumashi, et al. [14]  

 

Fucoidan required further pre-treatment before NMR analysis for better and high quality spectra. 

This pre-treatment includes polymer hydrolysis to oligomers to simplify its structure which could 

be analyzed afterwards by different 1D and 2D-NMR techniques.   

 

2.3.7. Pharmacological activities 

2.3.7.1. Anti-coagulant activity 

a. Activated partial thromboplastin time (aPTT) 

Normally, aPTT records between 30-40 s, evaluates mainly the effect of anti-coagulants on the 

intrinsic pathway of blood coagulation system and to monitor patient’s response to heparin therapy 

[133]. Results proved that fucoidan has a potential heparin-like or a heparinoid [134] anti-coagulant 

activity and interfered with intrinsic coagulation cascade. Coagulation times were significantly 

prolonged in comparison with the negative control (0.9% NaCl) which recorded 41.8 s. 

Fig. 30 a shows that the purification process improved the anti-coagulant activity of crude fucoidan 

through prolongation of aPTT, where, in a concentration of 0.01 mg mL-1, Fucoidan_1 and 

Fucoidan_6 prolonged coagulation times to 73 and 75 s, respectively, in comparison with 44.8 s for 

crude fucoidan. Fucoidan_M extended coagulation time, as well, but to a lesser extent to just only 

51 s which was nearly similar to the reference analogue: 48.3 s. The effect on aPTT did not help 

discriminate between the LMWF Fucoidan_1 and the HMWF Fucoidan_6. However, heparin of 

0.005 mg mL-1 recorded 89.3 s indicating more than two times effectiveness than Fucoidan_6. In 

other experimental conditions, effect of Fucoidan_PDD was investigated on aPTT, as shown in Fig. 

30 b. Fucoidan_PDD prolonged also aPTT significantly in a dose-dependent manner.  
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Fig. 30 a: Effect of different fucoidan fractions on aPPT at a concentration of 0.01 mg mL-1 

0.9% NaCl and 0.005 mg mL-1 heparin were chosen as negative and positive controls, respectively 

(n=3). 

 

 

 
 

Fig. 30 b: A dose-dependent effect of Fucoidan_PDD on aPTT 

Effect was compared with crude fucoidan and reference fucoidan (Fucoidan_Sigma) (n=3). 
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b. Prothrombin Time (PT) 

PT is usually used to evaluate the effect of anti-coagulants (e.g., warfarin) on the blood extrinsic 

coagulation pathway. It is obvious in Fig. 31 that all types of fucoidan were not able to prolong PT 

significantly in comparison with the negative control. These data were consistent with the 

mechanism of fucoidan as an anti-coagulant, which has a heparin-like effect and mediated by serine 

protease thrombin enzyme and/or heparin cofactor II inhibition [135] present in common and 

intrinsic pathways. 

 

 
 

Fig. 31: Effect of different types of fucoidan on PT at a concentration of 0.01 mg mL-1  

0.9% NaCl and 0.005 mg mL-1 heparin were used as negative and positive control, respectively (n=3). 

 

c. Thrombin Time (TT) 

TT studies specifically thrombin function and the effect of anticoagulants against fibrinogen 

transformation into non-soluble fibrin threads. This step is enzymatically catalyzed by thrombin 

(Factor IIa). The reference range for the thrombin time is usually less than 20 s [136]. Results, as 

shown in Fig. 32, revealed a similar pattern as in Fig. 30 a, where Fucoidan_6 also demonstrated 

the highest activity and recorded the longest time required for blood coagulation. Fucoidan_1 and 

Fucoidan_6 prolonged coagulation time significantly to 47 and 66 s, respectively, compared to 

19.27 s for the negative control, while Fucoidan_M showed the weakest effect on coagulation time. 
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It increased the coagulation time only to 23.5 s compared with 31.3 and 29.2 s for reference and 

crude fucoidan, respectively.  

The anti-thrombin differences revealed the importance of sugar composition, molecular weights, and 

structural comfortability, where higher galactose, an enough long sugar chain and comfortable 

structure found in Fucoidan_6 were more critical than sulphate content for thrombin inhibition 

[43,137]. These conclusions could be confirmed by the weak effect of the low molecular weight of 

Fucoidan_1and Fucoidan_M, despite of their higher sulphate contents. More sulphate content than 

the required threshold could also lead to a decrease in the anti-thrombin activity [138,139,140]. 

Moreover, in a dose dependent manner, the effect of Fucoidan_PDD as an anti-thrombin was 

investigated separately, as shown in Fig. 32 b. Results confirmed previous conclusions regarding 

the importance of polymer molecular weight and chain comfortability for anti-thrombin activity. 

 

 
 

Fig. 32 a: Effect of different fucoidan fractions on TT at a concentration of 0.01 mg mL-1 

0.9% NaCl and 0.005 mg mL-1 heparin were tested as negative and positive control, respectively 

(n=3) 
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Fig. 32 b: A dose-dependent anti-thrombin effect of Fucoidan_PDD 

 The effect on TT was studied in a comparison with crude and commercially-pure fucoidan 

(Fucoidan_Sigma) (n=3). 

 

2.3.7.2. Anti-viral activity 

Herpes simplex virus type 1 or HSV-1 is a human dsDNA virus that infects human and transmitted 

through oral-to-oral contact and causes cold sores. According to WHO, 67% of world population 

whose age under 50, have HSV-1 [141]. Fucoidan exhibits its anti-viral activity against HSV-1 

mainly through interference with viral replication [134], adsorption and penetration through cellular 

surface modification, and subsequently, it prevents the viral syncytium formation [63]. For this 

action, sulphate ester groups’ position and content are critical for the anti-HSV-1 activity [134]. 

Consistent with literature, the fraction with the highest sulphate content, Fucoidan_M, exerted a 

highly potent anti-viral effect in comparison with other types. Fig. 33 demonstrates the anti-viral 

activity (%) with different serial dilutions for the different fucoidan fractions against HSV-1 and 

followed by calculated IC50 values in Table 10. IC50 varied among different fucoidan fractions from 

2.41 µg mL-1 for Fucoidan_M to 5.69 µg mL-1 for Fucoidan_6. Furthermore, fucoidan had an 

advantageous less cytotoxic effect against Vero B cell culture than the commercially-used reference 

anti-viral aciclovir.  
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Fig. 33: Comparison between the anti-viral activities of fucoidan fractions against HSV-1 

The activity was compared with the commercial analogue purchased from Sigma-Aldrich® 

(Reference fucoidan) against HSV-1. Aciclovir was used as a positive control.  

 

Table 10: IC50 (μg mL-1) of different fucoidan fractions isolated and purified from F. vesiculosus against 

HSV-1 in comparison with aciclovir 

 
 IC50 (μg mL-1) 

Reference Fucoidan  3.3 

Fucoidan_1  4.09 

Fucoidan_6  5.69 

Fucoidan_M  2.41 

Crude fucoidan 3.99 

Acicolvir 0.52 

 

2.3.7.3. Anti-oxidant activity (DPPH Radical scavenging activity) 

Radicle scavenging anti-oxidant activity of fucoidan was investigated its ability to capture the free 

radical DPPH. As shown in Fig. 34, all fractions of fucoidan, including crude and reference fucoidan, 

were DPPH inactive scavengers. The results are inconsistent with literature that confirmed the DPPH 

radicle antioxidant activity of fucoidan of F. vesiculosus [87,88]. Most of the published articles 

discussed the potential anti-oxidant activity of fucoidan applied a pre-treatement step with acetone, 

water/chloroform/methanol mixture and did not use formaldehyde, because of its toxicity. 

Formaldehyde functions to polymerize polyphenols which have a strong relationship with the 
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potential anti-oxidant activity of fucoidan. Diaz-Rubio et al. have determined significant polyphenol 

content (960 mg phloroglucinol 100 g−1 dry weight) in commercial fucoidan from F. vesiculosus 

(Sigma-Aldrich, Spain) [89]. Since formaldehyde was applied in pre-treatment steps, anti-oxidant 

inactivity results for all fucoidan fractions are reasonable.  

 

 
 

Fig. 34: Antioxidant activity of different fucoidan fractions in comparison with ascorbic acid  

The figure demonstrates the potential DPPH radicle scavenging activity of ascorbic acid. However 

there is no activity for all fucoidan fractions. 

 

2.3.7.4. Anti-microbial activities 

a. Anti-fungal activity 

Fucoidan’s anti-fungal activity was investigated against a number of candida species, such as C. 

albicans, C. glabrata and C. tropicalis. All fucoidan fractions did not show any activity and failed 

to eradicate the fungal growth. This means that fucoidan could not affect sites of actions of common 

anti-fungal agents, such as sterols synthesis in cell membrane like polyene anti-fungal drugs or 

inhibition of cytochrome P450-dependent enzymes as in azole anti-fungal drugs.  
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b. Anti-bacterial activity 

As in anti-oxidant and anti-fungal investigations, fucoidan was non-toxic to either Gram +ve as S. 

aureus or Gram –ve bacteria such as E. coli. 

  

2.3.8. Process scaling-up and application of optimized conditions 

Scheme 2 demonstrates the downstream fucoidan extraction and purification processes. The process 

initiated with algae harvesting from its natural habitat, then pre-treatment, extraction of crude 

fucoidan and finally purification with immobilized TB and PDD at pH 6. In addition, obtained yields 

from the different fucoidan fractions are mentioned in Fig. 35.  

 

 

 

Scheme 2: Graphical summary for fucoidan purification process from F. vesiculosus  

The downstream process includes algae harvesting, pre-treatment, extraction and purification with 

either TB- or PDD-derivatized beads.     
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Fig. 35: Downstream process for fucoidan extraction and purification by either TB- or PDD-derivatized 

beads at pH 6 

The processes resulted in production of 5.0 g and 9.5 g of purified fucoidan after purication with TB- 

and PDD-derivatized beads, respectively. 

 

Moreover, fucoidan content (%) or purity was investigated using TB and Heparin Red® Ultra assay 

methods. Fucoidan purity was improved in comparsion with crude fucoidan by 1.69 and 1.4 fold 

after purification through TB- and PDD-immobilized beads, respectively. Fig. 36 shows that after 

purification by PDD-immobilized beads, the investigated concentrations of Fucoidan_PDD were 

similar to the commercial product regarding fucoidan content. Concentration of Fucoidan _PDD 

relative to standard was derived from the calibration curve. Purified fucoidan (Fucoidan_PDD) 

showed 97% purity relative to the reference fucoidan (Fucoidan_Sigma). Furthermore, alginate, the 

major contaminant in fucoidan crude extract, did not show with Heparin Red® any fluorescence 

quenching behavior (Fig. 77). Since the response of Heparin Red is sensitive to the charge density 

of the polysulphated polysaccharide and the sulphation degree of Fucidan_PDD is lower than that 

of the reference fucoidan (Table 5), the actual purity of Fucoidan_PDD could be even higher. 

 

 

 



Optimization of Fucoidan Extraction and Purification from Brown Macroalgae 

64 
 

 

 

Fig. 36: Determination of Fucoidan_PDD purity using Heparin Red® Ultra assay, in comparison with 

the commercial standard product (>95% pure) purchased from Sigma-Aldrich® 

Fucoidan content recorded 97% relative to the standard product. However, it was 69% in case of 

crude fucoidan (Fucoidan_A). Determination was compared with a calibration curve of the reference 

fucidan (red diamonds), using linear regeression for the range 0.0-8.0 µg mL-1 (R2=0.9974). 

Fucoidan_PDD samples (0.4 and 0.6 µg.mL-1) were prepared and the fluorescence determined 

(violet circles). 
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2.4. Conclusion and Prospectives 

Pre-treatment with different solvents succeeded to reduce the co-extraction of other extraneous algal 

constituents (e.g., lipids, pigments, mannitol, and polypehenols). In addition, extraction in acidic 

condition at higher temperature with reflux improved the production yield of extracted crude 

fucoidan. Interestingly, application of the recently-developed dye affinity chromatography protocol 

was possible to purify fucoidan from its crude extract. Different conditions and factors were studied 

to optimize the process. Moreover, TB-derivatized beads had the selectivity to capture fucoidan even 

without fucoidan precipitation with ethanol. This procedure resulted in production of a new fucoidan 

fraction; Fucoidan_M. However, the results revealed that the process suffered from some 

disadvantages, such as long incubation periods and acidic pH were required to achieve the maximum 

loading capacity of the immobilized dyes, in addition to the inherent problems related to both 

thiazine dyes represented by limited number of adsorption sites and fucoidan as slower and different 

diffusion rates of fucoidan polymers and beads porosity, as well.  

These challenges were overcome by synthesis and immobilization of a Heparin Red®-structurally 

related PDD which has more available adsorption sites than thiazine dyes. Immobilized PDD 

succeeded to capture similar quantities of fucoidan in a shorter incubation period at a slightly acidic 

condition. The second challenge with fucoidan diffusion rates was resolved by performing of the 

adsorption phase under an external pressure to push the fucoidan molecules much faster to the 

adsorption sites by developing a FPLC protocol. The last technique helped also to automate and 

scale-up of the purification process.   

Future work should focus on using non-porous beads with more surface reactive sites. In addition, 

optimization of FPLC protocol in adsorption phase and in elution phase should be performed. It was 

clear that the maximum loading capacity of the column was not reached and this means that there 

were still available adsorption sites. The concentration of injected sample could be increased using 

a 5 mL injection loop to load the column with much fucoidan content considering the breakthrough 

curve of the purification process. Moreover, elution and fucoidan recovery (%) could be optimized 

by varying the eluent flow rates, applying warmer temperatures and another force instead of the 

vigorous shaking used in the batch process. Furthermore, application of such sensitive technique 

could be performed in fucoidan capture and analysis in different raw synthetic dosage forms in the 

presence of other drug excipients. These experiments could achieve great success in 

pharmacokinetic studies toward a FDA approval of fucoidan as a medicament. 
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3. Development of Axenic Protoplast and Callus-like Cultures 

from F. vesiculosus 

3.1. Introduction 

3.1.1. Marine biotechnology challenges 

Seaweed farming through aquaculture (e.g., tanks, cages) was established to provide the expanding 

global market with its demands. However, major problems, such as control of epiphytes, fouling 

algae, grazing animals, and low levels of planting stock are greatly limiting industrial-scale seaweed 

cultivation. Moreover, seaweed farms occupy large areas hampering shipping and fishing and 

creating a lot of social problems as a result. Furthermore, seaweeds harvesting affects natural marine 

and terrestrial ecosystems negatively [143]. Expansion of market requirements from seaweeds and 

their valuable products needs new technologies, especially these eco-friendly techniques (e.g., 

marine biotechnology), as alternative tools. 

Marine biotechnology has drawn a special interest in the last few decades following advances 

developed in plant and animal fields [1,145] as a potential tool for the discovery and development, 

of marine-derived compounds with biomedical applications. It involves tissue culture, protoplast 

isolation, cell fusion and gene transfer [146]. Its advantages include the production of a high-yield 

with improved quality products from fast growing and diseases-free strains [147]. However, the 

challenge facing the marine biotechnology industry in the next millennium is to: 

• identify new sources of marine bioproducts; 

• develop novel screening technologies; 

• provide a sustainable source of supply; and 

• optimize production and recovery of the bioproducts [148]. 

Microalgae have rapid growth rates, simple structures and ability to adapt in different cultivation 

conditions [149]. These factors led to interesting advances in cultivation techniques including 

isolation and purification of microalgae from natural habitat and well-characterized nutritional 

requirements. As a result, a possible establishment of a lot of microalgae single strain cultures either 

in a closed or open system. Therefore, microalgae have been seen as potential candidates in 

biotechnological researches and industrial applications for production of biofuels and valuable 

bioactive compounds. These achievements encouraged the performance of similar techniques for the 

more developed and complicated seaweeds in the last few decades. 
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3.1.2.  Marine microbes and macroalgae tissue culture 

Adding to the complex structure of marine macroalgae, marine microbes live in a symbiotic 

relationship with seaweeds. They produce vital compounds for macroalgae immune system resulting 

in improving the host resistance [150,151] or function in the food chain cycle, as well as nutrients 

assimilation. Macroalgae host various marine microbes and diatoms providing them protection from 

tides and predators. Moreover, marine bacteria are very important for macroalgae development and 

morphogenesis, such as the green algae Ulva mutabilis through a cell to cell communication signals 

[152,153].  

A crucial requirement for bioprocess technologies for production of valuable marine products is the 

development of an axenic, fast-growing culture before scale-up to various bioreactor cultivations 

[145,154]. The surface of seaweeds is heavily infested by various microbial and larger epiphytes. 

Some of these organisms are implanted in cell walls and between meristematic cells which are 

frequently located on the surface and will be impaired upon chemical treatment [132]. Meristematic 

cells are highly divided cells and seen as a potential tissue for starting various marine biotechnology 

techniques. Due to microbes’ diversity, an efficient and easily-applicable surface sterilization 

protocol is needed. This protocol should combine more than one strategy to combat against the 

different marine populations. In contrast to terrestrial plant, thallus tissue is mainly composed of 

delicate parenchyma tissues. Application of sodium hypochlorite (NaOCl) and 70% (v/v) ethanol 

are commonly-used as disinfectants in terreistrial plant surface sterilization protocols eradicating 

most of the symbiotically-lived microorganisms. However, they could bleach and destroy 

macroalgae parenchymal tissues and thereby reducing photosynthetic ability and viability.  

Several strategies could be applied to obtain marine aseptic cultures, such as using ultraviolet 

radiation [155], povidone iodine and broad spectra antibiotics [154]. Nevertheless, these strategies 

are ineffective, time-consuming; especially, when used as separate procedures and their doses should 

be further controlled. Moreover, the effect of surface sterilization procedures on tissue vitality should 

be evaluated afterwards before starting cultivation as well. Trials to develop marine STC are still in 

their  infancy compared to PTC for production of valuable compounds [156]. This status could be 

related to tissue structure complexity found in macroalgae in addition to nutritional and long-term 

aseptic requirements. These factors determine the part within the thalli from which the explant is 

excised and the degree of relationship between marine microbiomes and macroalgae.  
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3.1.3. Development of marine macroalgal cultures 

Callus-like cultures are well-known cell lines for decades as friable totipotent non-differentiated 

cells. These lines used as production systems for a lot of bioactive compounds in PTC (e.g., 

paclitaxel and Scopolamine) [157]. However, marine callus-like growth appears usually as filaments 

originating from exposed cut meristematic active cells, as shown in Fig. 37. Through further culture 

optimization (i.e., medium solidity, photoperiod regime and phytohormones), organogenesis and 

development into a plantlet were possible [158].  

 

 
 

Fig. 37: Callus and plantlet regeneration from an intact marine macroalgae thallus of Agardhiella 

subulata [158] 

 

Moreover, Huang and Rorrer established a microplantlet suspension culture from the red algae 

Agardhiella subulata in a stirred tank photobioreactor [159]. Such achievements could lead to 

elicitation of a diverse array of valuable natural compounds from a reliable supply of a macroalgae 

cell biomass. 

Another relatively new biotechnological strategy to develop a marine biomass culture is protoplast 

cultivation. Although, protoplast isolation in terrestrial plants was known since 1960s, it has only 

been recently shown in seaweeds. Marine protoplasts have cell membranes but lack their 

polysaccharide cell walls. Macroalgae cell walls could be removed through a specifically enzymatic 

attack to both the microfibrillar and polysaccharide matrix components (i.e., alginate, galactans and 

fucoidan) [160,161]. Isolation of protoplasts from red and brown algae are more difficult than in 

green algae, because of their cell wall resistance to cellulase and pectinase [162]. Reddy and Fujita 
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isolated protoplast from three species of green algae and succeeded to regenerate plantlet from 

axenic protoplast culture of Enteromorpha linza [163].  

 

3.1.4. Growth requirements and previously-performed trials  

Axenic as well as vital explants could be cultivated and induced to give a callus-like growth and 

continue further to develop a cultivation in a closed system bioreactor. Different growth conditions 

and factors could be applied and affect culture growth, as demonstrated in Fig. 38. 

 

 
 

Fig. 38: Summary of previously-applied growth conditions and variables to develop marine macroalgal 

cultures 

  

In more details, several experiments were previously mentioned for development of a callus-like 

growth and plantlet regeneration from seaweeds, as shown in Table 11. Nevertheless, few of them 

could succeed to produce valuable products in bioreactor systems (e.g., Laminaria saccharina 

suspension culture system) which biosynthesized three bioactive hydroxy fatty acids deriving from 

ω-6 lipoxygenase oxidation [158].  

 

 

 

 

 

 

 

Growth factors and 
process variables

Mode of 
nutrition

Phototrophic 

Heterotrophic

Mixotrophic

Culture 
source

Explant

Protoplast

Carbon 
source

(e.g., 
mannitol)

Medium

(e.g., PES, ASP, F/2, sea 
water)

Solid 
medium

0.5, 0.7 and 
1.5% (w/v) agar

Liquid 
medium

Growth 
regulators

Cytokinins 
(e.g., 

6-BAP)

Auxins (e.g., 
IAA)

Temperature

(e.g., 

14-25 °C)

Light 
regime

(e.g., L:D 
14:10, 12:12)
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Table 11: Some selected trials with callus cultures and plant regeneration in marine macroalgae 

organisms 

 

Macroalagae 

class 

Parameters Organism Medium Ref. 

1. Brown 

algae 

 T: 12 °C, 

 L:D (8:14) 

 

Apical 

meristematic 

cells of F. 

vesiculosus 

Sterile sea water [164] 

 T: 14 °C, 

 L:D (14:10), 2000 Lux 

 3% Mannitol 

Dictyosiphon 

foeniculaceus 

ASP 12-NTA, 0.1% yeast, 

1.5% agar (ASP-C-1 

medium) 

[165] 

 T: 20-22 °C, 

 L:D (12:12), 30 µE m-2 s-1 

 

Phycocolloid 

yielding 

seaweeds 

(e.g., 

Turbinaria 

conoides) 

PES for red seaweeds or 

modified PES with 0.4% 

KI (PESI) for brown 

seaweeds with 1.5% 

Bacto agar 

[166] 

 T: 15 °C, 

 L:D (16:8), 100 µE m-2 s-1 

Sargassum 

heterophyllum 

ASP-12 NTA [167] 

 T: 15 to 25 °C  

 L:D (12:12), 20-200 µE m-2 s-1 

(Blue light) 

Sargassum 

horneri 

ESL medium 

supplemented with 5 μM 

uniconazole (a triazole-

type inhibitor of 

cytochrome P450 enzymes) 

[168] 

 T: 14 °C, 

 L:D (14:10), 2000 Lux, cool 

white fluorescent lamps 

Medullary 

tissues of 

Laminaria 

angustata 

ASP 12-NTA medium 

solidified with 1.0% agar 

[169] 

 

 

 

 

 

 

 

 

 

 

 



Development of Axenic Protoplast and Callus-like Cultures from F. vesiculosus 

71 

 

Cont., Table 11: Some selected trials with callus cultures and plant regeneration in marine macroalgae 

organisms 

 

Macroalagae 

class 

Growth parameters Organism Medium Ref. 

2. Green and 

Red algae 

 T: 18 °C, 

 L:D (12:12), 60 µE m-2 s-1 

Different 

species of 

green and red 

macroalgae 

Seven different media 

in liquid form and as 

gels (e.g., sea water, 

PES, ASP-C-1) (agar 

0.3-1.5%, or 

carrageenans 0.5-3%). 

[170] 

 T: 20 °C, 

 L:D (12:12), 10-20 µE m-2 s-1 

Some species 

of red algae 

ASP-12 NTA solid 

medium (1.5% agar) 

supplemented with IAA 

and BAP 

[171] 

For solid medium: 

 T: 19 °C, 

 L:D (14:10), 25 µE m-2 s-1 

 

For liquid medium: 

 T: 19 °C, 

 L:D (14:10), 98 µE m-2 s-1 

Green algae 

(Ulva pertusa) 

Artificial sea water 

(0.7% agar) 

supplemented with 

different plant growth 

regulators, organic acids 

and sugars 

[172] 

 T: 20-22 °C, 

 L:D (12:12), 5 µE m-2 s-1 

Red algae 

(Gelidiella 

acerosa) 

PES medium solidified 

with 1.5% agar 

[173] 
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3.2. Materials and Methods 

3.2.1. Harvest and pre-treatment of algae  

The brown algae F. vesiculosus was chosen also as a model for the brown macroalgae tissue culture 

development. Algae was harvested by Alfred Wegner Institute-Helmholtz Institute for Polar and 

Marine Research (Helgoland, Germany) from the North Sea in summer 2015. It was kept wet with 

sea water in ice-cooled boxes during transportation to the laboratory which was performed directly 

after collection. 

As soon as algae had reached the laboratory, the thalli were washed thoroughly with tap water for 

2-3 min removing visible symbionts with hands and brush, and then 1-2 min using sterile sea water 

or normal saline. Cleaned thalli were stored afterwards in wet hand tissues at 4 °C. 

 

3.2.2. Surface sterilization  

All the following steps were performed in a laminar flow cabinet and with sterile reagents and 

materials. In addition, reagents were prepared in a sterile sea water. Thalli were cut into 7-10 cm 

pieces which divided afterwards into six groups to evaluate different surface sterilization protocols. 

 

a. Protocol 1: 2% (w/v) Povidone iodine and 70% (v/v) ethanol 

Thallus pieces were dipped in 70% (v/v) ethanol for 3-5 s, dried on filter paper, and washed with 

deionized water for 2 min to rinse the alcohol. Then, they were rubbed smoothly with Kleenex® for 

cleansing before being immersed in 2% (w/v) povidone iodine solution for 4 min. Povidone iodine 

was then removed with a filter paper and washed out for several times with deionized water for 2 

min.  

b. Protocol 2: 2% (w/v) Povidone iodine, 70% ethanol and UV radiation 

The same steps were performed as in Protocol 1. Pieces were then cultured in MB50 and LB agar 

plates which further exposed to UV radiation for 15 min. 

c. Protocol 3: 2% (w/v) Povidone iodine, 70% ethanol, 10 µM GeO2 and 1% (v/v) Triton X-100 

The same steps were performed as in Protocol 1, except that 10 µM GeO2 was added to the povidone 

iodine solution, which was prepared in 1% (v/v) Triton X-100.  

c. Protocol 4: Ultrasound, 5% (w/v) povidone iodine,10 µM GeO2 and antibiotics 

In the following Protocols (4-6), other mechanical and chemical treatments (e.g., ultrasound and 

antibiotics) were performed. The 7-10 cm pieces were thoroughly washed in PESA medium (PES 
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medium without vitamins) three times (2 min each), and stored overnight in a fresh medium at 4 °C. 

These pieces were then treated for 10 s in an ultrasound bath (40%) at room temperature, and then 

rinsed once with water and once with medium. Pieces were then immersed in groups of 3-5 in a 

solution of 10 mL of 1% (v/v) Triton X-100, 10 mL 5% (w/v) povidone iodine and 30 mL PESA 

medium. The suspension was shaken vigorously with hand for 5 min and then treated in an 

ultrasound bath for 5 s again. To remove the brown colour of iodine, pieces were washed five times 

in a PESA medium. The next step utilized a concentrated antibiotic treatment. Thallus pieces were 

incubated for 1 h at 4 °C with 5 mL 1% (v/v) Triton X-100, 15 mL 30x filter-sterilized antibiotic 

mixture (constituents of antibiotic stock solution are described in Table 12) and 20 mL of PESA 

medium. Thallus pieces were washed several times with medium before a second antibiotic 

treatment with 5 mL of antibiotic stock solution in 45 mL PESA medium. This treatment was applied 

for 48 h without shaking in conditions similar to cultivation conditions (e.g., a photoincubator 

adjusted to 17 °C, photoperiod of L:D (16:8) and 35 µE m-2 s-1 as a light intensity). Finally, pieces 

were thoroughly washed several times with PESA medium to remove antibiotic residuals before 

sterility and viability assessments.  

 

Table 12: Antibiotic stock solution (30x) composition [274]  

Antibiotics were used in Protocol 4-6.  

 

Component Quantity (mg) /100 mL 

Ampicillin sodium 360.0 

Kanamycin sulphate 600.0 

Tetracycline hydrochloride  360.0 

Chloramphenicol ** 300.0 

Gentamycin sulphate 240.0 

Penicillin G sodium 600.0 

Erythromycin** 600.0 

Nystatin*** 300.0 

* After preparation, the stock suspension was filter-sterilized and stored at - 20 °C. 

** Prepared in 5 mL in 70% ethanol before addition to the stock solution. 

*** Prepared in 5 mL in DMF before addition to the stock solution and used only in Protocol 6. 

 

d. Protocol 5: Ultrasound, 5% (w/v) povidone iodine, 10 µM GeO2, antibiotics and UV radiation 

The same steps as Protocol 4 were performed, but cultured pieces were incubated in LB and MB50 

media plates and then exposed to UV light for 15 min. 
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e. Protocol 6: Ultrasound, povidone iodine, 10 µM GeO2, antibiotics and Nystatin 

Protocol 6 was performed similarly as Protocol 4, except that 300 mg of Nystatin as an anti-fungal 

agent was mixed with the 30x antibiotic stock solution. Due to its poor water solubility of Nystatin, 

it was prepared in 5 mL DMF before addition to the antibiotic stock solution. Performed processes 

of Protocols (1-6) could be summarized in Table 13.  

 

Table 13: Summary of processes performed in all surface sterilization protocols  

Steps are described after algae harvesting, washing with sterile sea water and cutting into 7-10 cm 

pieces. 

 

Type of treatment Protocol 

1 

Protocol 

2 

Protocol 

3 

Protocol 

4 

Protocol 

5 

Protocol 

6 

2% (w/v) Povidone 

iodine  

+ + + - - - 

70% (v/v) ethanol + + + - - - 

UV radiation - + - - + - 

5% (w/v) Povidone 

iodine  

- - - + + + 

Ultrasound radiation - - - + + + 

10 µM GeO2 - - + + + + 

1% Triton X-100 - - + + + + 

Antibiotic without 

Nystatin 

- - - + + - 

Antibiotic with 

Nystatin 

- - - - - + 

+: applied; -: not applied 

 

3.2.3. Sterility investigation 

After each protocol, treated thalli pieces were further cut into 2-3 cm pieces and cultured on MB50 

and LB (Miller) solid media for sterility investigation. They were incubated in groups of 2-3 pieces 

for 2 weeks at 17 °C and 26 °C, respectively, in dark to check for any type of microbial growth. 

Incubation was performed in a static shaker incubator. 

  

3.2.4. Genotyping of microbial contaminants 

As described by AllPrep® DNA/RNA mini Kit (Qiagen, Germany) manual, genetic materials from 

contaminated explants were extracted and purified [174]. Samples were ground and put in sterile E-

Matrix-tubes (MP Biomedicals GmbH, Germany) which were filled with 600 µL RLT lysis buffer 



Development of Axenic Protoplast and Callus-like Cultures from F. vesiculosus 

75 

 

and 6 µL mercaptoethanol. Then, tissue and cell lysis was performed in a tissuelyzer for 2 min at 30 

Hz and frozen at -70 °C for 5 min in liquid nitrogen and repeated for three times. 18S SSU rRNA 

genes were identified and amplified from DNA and cDNA using the universal eukaryotic primers 

Euk-A (5′-AACCTGGTTGATCCTGCCAGT-3′) and Euk-B (5′-

GATCCTTCTGCAGGTTCACCTAC-3′) [175]. An initial denaturation at 98 °C for 30 s, followed 

by 35 cycles at 98 °C for 10 s, 67 °C for 30 s and 72 °C for 30 s and finally at 72 °C for 5 min were 

carried out. PCR products were checked by gel electrophoresis using 1% (w/v) agarose and then 

purified by MinElute PCR Purification Kit (Qiagen, Germany). Afterwards, a nested PCR 

experiment was performed for the purified products using the Euk82F (5′-

GAAAGTCTGCTGAACTGGCTC-3′) and Euk1517R (5′-ACGGCTACCTTGTTACGACTT-3′) 

primers following the protocol which consisted of 98 °C for 30 s for denaturation, 30 cycles of 98 

°C for 10 s, 53 °C for 30 s, and 72 °C for 30 s and finally at 72 °C for 5 min. Amplicons were 

checked and purified again as described before. Ligation and cloning of the PCR products were 

achieved as described in manual of NEB PCR cloning kit using pMiniT as a vector, before the 

isolated constructs were sent for sequencing by Seq-It GmbH (Kaiserslautern, Germany). Alignment 

of sequencing results were performed by NCBI-blast database in order to identify the microbial 

contamination.     

 

3.2.5. Vitality investigation (2,3,5-Triphenyltetrazolium chloride (TTC) assay) 

According to a previously described protocol by Nam, et al. [176], 0.8% (w/v) TTC was prepared 

in a 50 mM Tris-HCl buffer (pH 7) in PESA medium. Triplicates of 0.1 g pieces of treated as well 

as non-treated thalli were each incubated in 15 mL capped test tubes with 4 mL of TTC colorless 

solution and two drops of mineral oil. After 1 h incubation in the dark at 20 °C without shaking, 

thalli were washed with sterile PESA medium 3 times. To extract the red and water insoluble 

reduction product triphenylformazan (TPF) from tissues, 2 mL of 0.2 M KOH prepared in 25% (v/v) 

ethanol was incubated with the thalli for 15 min in a drying oven at 60 °C. For a quantitative 

determination of TPF, hexane (2 mL) was added to a cooled extract, the sample was then vortexed 

for 10 s and centrifuged (4500 rpm) for 1 min. Finally, the upper red hexane layer was measured by 

colorimetry at 545 nm, using hexane as a blank. 
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3.2.6.  Protoplast isolation and culture development  

Protoplasts from F. vesiculosus were isolated and purified as described previously by Mussio and 

Rusig [177]. Briefly, 0.7 g of previously-sterilized explant with Protocol 6 was digested with 20 mL 

of a filter-sterilized enzyme solution (see Appendix C: Medium composition and preparations) 

for 20 h in the dark at room temperature in addition to 1 h in an overhead shaker (F1 mode, 30 rpm). 

After tissue digestion, the cell suspension was filtered by an autoclaved sieve with a 40 µm mesh 

size. Isolated protoplasts were washed for two times in a sterile washing solution (5 mL each) 

containing 0.4 M NaCl and 5 mM CaCl2. A sample of isolated protoplasts was detected by UV light 

using 10 µg mL-1 Calcofluor white stain and a microscope.     

 

3.2.7. Development of protoplast and callus-like cultures 

Several growth variables were investigated to check their ability to induce callus and protoplast 

cultures either in solid, suspension cultures in addition to bioreactors. Cultures were incubated in a 

photoincubator at controlled parameters including temperatures and light regimes and intensities. 

Applied growth conditions were summarized, as shown in Fig. 39. 

 

 
 

Fig. 39: Applied growth conditions and variables to induce callus-like and protoplast cultures 

These conditions were applied separately and in combinations during callus development.  

   

 

 

 

 

 

Growth requirements

Mode of 
nutrition

Phototrophic 

Heterotrophic

Mixotrophic

Culture 
source

Explant

Protoplast

Carbon 
source

3% (w/v) 
Sucrose

2% (w/v) 
Mannitol

2% (v/v) 
Glycerin

Medium

(PES, ASP, F/2, MS)

Solid culture

0.5, 0.7 and 
1.5% (w/v) 

agar

Liquid culture

100 mL in 300 
mL Erlenmeyer 

flask

1 L in 2 L 
Wave-bag 
bioreactor

Growth 
regulators

Cytokinins 
(e.g., 6-BAP, 

K)

Auxins (e.g., 
IAA, 2,4-D)

Temperature

17 and 28 °C

Light regiem 
and intensity

L:D 14:10, 
16:8 and 

12:12

60, 45 and 35 
µE m-2 s-1
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In more details, the different culture types were induced, as described in the following sections. 

3.2.7.1 Protoplast culture 

Induction of cell wall reformation and cell reproduction were performed as follows: 1 mL of washed 

isolated protoplasts was cultured in 2 steps, for one week as a heterotroph in a 50 mL protoplast 

medium containing 2 mM HEPES, 1% (v/v) PES with 3.8% sea salt, 0.25 M glucose, 0.15 M 

sucrose, 0.025% (w/v) casein hydrolysate, 20 μM ornithine and supplemented with a combination 

of 45 µM 2,4-D and 40 µM CPPU as plant growth regulators [178]. Afterwards, in a 50 mL PES 

medium, 10 mL of cultured protoplasts were sub-cultured as phototroph at 17 °C with a shaking rate 

(130 rpm) using an orbital shaker and L:D 14:10, 35 µE m-2 s-1. Mixotrophic and heterotrophic 

cultivation using 2% (v/v) glycerin as a carbon source were also investigated. In parallel, cultivation 

in solid medium supplemented with 0.5% (w/v) agar at the same previously conditions were applied. 

 

3.2.7.2 Callus induction  

a.  Solid cultures 

ASP-12-NTA, according to Provasoli [165], PES [155] and F/2 (Guillard’s (F/2) Marine Enrichment 

medium purchased from Sigma-Aldrich® 50x stock solution) media supplemented with 0.5, 0.7 and 

1.5 % (w/v) agar were incubated with 2-3 explants that were previously surface sterilized with 

Protocol 6. The cultures were cultivated as phototrophs, mixotrophs and heterotrophs in different 

light regimes including intensities at 60, 45 and 35 µE m-2 s-1 and with photoperiods L:D of (16:8, 

14:10 and 12:12) at 17 °C and 28 °C. In mixotrophic and heterotrophic cultivation, either 3% (w/v) 

sucrose or 2% (w/v) mannitol or 2% (v/v) glycerin were used as a carbon source. 

In addition, different growth regulators, such as auxins (e.g., 2,4-D and IAA) and cytokinins (e.g., 

K and BAP) were supplemented some cultivation medium to study their effect on callus induction 

from explants. They were applied in concentrations of 0.1 mg mL-1 for IAA and BAP [171], 4 µM 

for 2,4-D and 2 µM for K.  

 

b. Liquid suspension cultures 

i. Cultivation in Erlenmeyer flasks 

Applying the same conditions in solid cultures, two-three explant pieces were cultivated in 100 mL 

media in 300 mL Erlenmeyer flasks. The flasks were incubated for a week at static condition, then 
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agitated at 130 rpm using an orbital shaker. Sub-culturing was performed regularly at 6-8 weeks 

intervals.  

ii. Cultivation in wave bag photobioreactor (PBR) 

Rhythmic, wave-like movement of the wave bag bioreactor was attempted to induce callus growth 

directly from explants. In a 2 L bag, 20 algae explants of F. vesciculosus were incubated in 

phototrophic growth conditions in a 1 L PES medium at 18 °C with a rocking speed 15 r min-1, a 

10° angel and an air flow rate of 90 m.min-1 with a photoperiod of L:D (16:8) and light intensity of 

30-50 µE m-2 s1. Regularly, 100 mL of medium were replaced weekly with a fresh medium under 

sterile conditions. 
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3.3. Results and Discussion 

3.3.1. Sterility investigations 

3.3.4.1 Surface sterilization procedures 

Complex interrelationships between marine organisms resulted in difficult complete removal of 

marine microbes and production of axenic cultures. Such features limit advances in in vitro marine 

biotechnology. Collection of clean and healthy algae from regions of low contamination or from 

deep water is recommended to ease the process of sterilization and obtain an axenic culture. Different 

treatments were investigated to produce axenic or unialgal cultures, for example: 

a. 70% (v/v) Ethanol had a harmful effect on microorganisms’ cell wall leading to protein 

denaturation and precipitation. A major disadvantage of ethyl alcohol was its bleaching and 

nonspecific tissue destructive effect (i.e., immersion of explants for more than 10 s) resulted in 

a pale green colored explant. 

b. UV radiation had a germicidal effect. It penetrates microorganisms’ cell wall and cytoplasmic 

membrane causing a molecular rearrangement of the microorganism’s DNA that prevents it from 

reproducing.  

c. GeO2 was applied to suppress the growth of diatoms. GeO2 competes with SiO2 in diatoms 

biochemical metabolic reactions. It was reported that the presence of GeO2 could inhibit growth 

of brown algae contrary to green and red algae [179]. Therefore, washing with sterilized sea 

water for several times was performed immediately after this step to remove Ge residuals.   

d. Povidone iodine or Betadine® is a surface disinfectant against a broad spectrum of germs. Such 

treatment is well-known to establish axenic marine cultures [166,180]. 

e. Ultrasound radiation and Triton X-100 were effective tools to disintegrate and dislodge 

associated adherent microorganisms [181]. 

f. Broad-spectrum antibiotics with bactericidal and bacteriostatic effect were applied in two steps 

as the main tool to remove marine bacteria including cyanobacterial contamination [181,182]. 

Because the nature of marine bacterial flora is variable and not well-characterized, a mixture of 

broad-spectrum antibiotics was effectively applied. 

g. Anti-fungal agent like Nystatin was used to control the fungal contamination [154]. 

Results showed that cultured explants sterilized by all protocols, except Protocol 6, suffered from 

contamination in all cultured plates in LB and MB50 plates. The best results were obtained from 

Protocol 6, which showed that more than 90% of cultivated explants were sterile. In Protocol 6, the 
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cultured explants on MB50 and LB media still showed contamination until the second treatment of 

antibiotics, as reported in Fig. 40. 

 

 
 

Fig. 40: Different explants of F. vesiculosus incubated on MB50 (a, b, c, d and e) and LB (f) media at 

17 °C and 26 °C, respectively, after different steps of Protocol 6  

a: non-treated explant; b: after washing with sterilized PESA medium step; c: after sonication step; 

d: after treatment with povidone iodine and Triton X-100; e: after a 2nd treatment with broad-spectrum 

antibiotics including Nystatin; f: after a 2nd treatment step with antibiotics including Nystatin on LB 

medium. 

 

3.3.4.1 Genotyping of microbial contaminants  

Results of 18S rRNA nucleotide sequencing which was isolated from contaminated explants 

revealed the presence of Aplanochytrium sp. with an identity of 97%. Aplanochytrium sp. 

(Labryinothulomycota) are marine heterotrophic stramenopiles that associate often in a parasitic 

relationship with dead and decay marine algae [183]. These findings showed the importance of the 

addition of an anti-fungal agent during surface sterilization procedures. 

       

3.3.2. Vitality investigation 

Enzymatic reduction of TTC was investigated to determine quantitatively axenic explants vitality 

and their metabolic activity, in comparison with non-sterilized thallus tissues. TTC is a colourless, 

water-soluble reagent that enzymatically-transformed to red, water-insoluble TPF through a 
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reduction reaction [184]. This biotransformation reaction occurred through a tetrazolium radicle, as 

shown in Fig. 41, and thus tissue dehydrogenase activity and vitality could be quantitatively 

determined. The enzymatic conversion was evaluated by absorbance measurement at 545 nm to 

prevent interferences from other pigments [185]. Since TTC is oxygen- [186] and light-sensitive 

[184], mineral oil was added to cover the reaction surface without shaking and performed in 

darkness, respectively.    

In optimized protocol (i.e., Protocol 6), tissue vitality (%) after the washing step with sterilized sea 

water or PESA medium, after ultrasound treatment and by the end of the protocol recorded 78±1.01, 

51±1.13 and 29±0.026 %, respectively, relative to vitality of a non-sterile thallus. Before complete 

axenic conditions, marine microbes interfered also with this reaction results, because they had also 

the ability to reduce TTC. Therefore, by the end of protocol, the explants were only responsible for 

the 29% vitality detected during the TTC conversion to TPF.  

 

 
 

Fig. 41: Enzymatic reduction of tetrazolium chloride (TTC) (Tetrazolium cation, colorless) to 

triphenylformazan (TPF) (Formazan, red color) 

 

3.3.3. Protoplasts isolation and culture development 

After protoplasts isolation from F. vesiculosus axenic explant, protoplasts protected themselves  

from destruction [156] and were elicited to reform their cell walls and then reproduce normally. This 

was performed by incubation of them in the protoplast cultivation medium which was a highly 

osmotic medium. Therefore, protoplast cultivation medium was supplemented with 250 mM 

glucose, 150 mM sucrose and 3.8% (w/v) sea salts, that increased medium osmotic pressure. As Fig. 

42 demonstrates, protoplasts after isolation were scattered irregularly without any specific 

arrangement, but upon culturing, they begun to reproduce with clumps or aggregates formation. 
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Fig. 42: Protoplasts after 72 h heterotroph cultivation in the protoplast medium showing start of cell 

multiplication and aggregation 

Isolated protoplasts were identified by UV light with the aid of Calcofluor white stain [177] (not 

shown). However, cell aggregates were detected normally using white light. 

 

The results were highly promising for the transfer of such reformed cells to specific PES solid 

medium with 0.5% (w/v) agar and liquid marine media supplemented with 2% (v/v) glycerin to 

develop either mixotrophic or heterotrophic protoplast cultures of F. vesiculosus. Unfortunately, 

cells stopped their reproduction with sub-culturing.   

 

3.3.4. Callus-like development from F. vesiculosus explant 

3.3.4.1. Solid medium 

Another strategy to develop a callus-like growth from brown seaweeds was carried out. Different 

combinations of nutrition mode, media, light regime and phytohormones were applied. A 

phototrophic callus-like structure was successfully induced on ASP-12-NTA medium supplemented 

with 0.5% (w/v) agar using a light regime of L:D (14:10), 35 µE m-2 s-1 at 17 °C after five weeks of 

cultivation. The callus showed colourless with friable to filamentous-like cell mass, as demonstrated 

in Fig. 43. The callus was sub-cultured afterwards regularly every six-to-eight weeks on the same 

medium composition solidified with 0.7% (w/v) agar. 
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                                                      a                                                             b    

           
c 

 

Fig. 43: Development of a phototrophic callus-like growth from F. vesiculosus explant in ASP-12-NTA 

medium 

(a) Axenic F. vesiculosus explants in ASP-12-NTA medium supplemented with 0.5% (w/v) agar. 

Phototrophic cultivation after three weeks led to the disappearance of the explant greenish colour. 

After five weeks of a phototroph cultivation applying L:D (14:10) light regime, 35 µE m-2 s-1 at a 

temperature of 17 °C, a callus-like growth was developed and sub-cultured on the same medium 

supplemented with 0.7% (w/v) agar. (b,c) Filamentous callus-like growth after six months of sub-

culturing developed into a plantlet-like growth.  

 

3.3.4.2. Cultivation in liquid suspension cultures 

Induction of callus-like growth in normal shaking flasks applying different conditions was not 

possible. Fortunately, cultivation in a wave bag-mixed bioreactor successfully utilized its advantage 

of rhythmic wave-like movement and produced a callus-like growth in a shorter cultivation time 

than classical techniques. After four weeks in a PES medium of phototrophic cultivation, explants 
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of F. vesiculosus showed a filamentous, callus-like growth similar to that developed on solid 

medium, as shown in Fig. 44 (b). Application of a wave bag bioreactor in the field of seaweeds 

tissue culture was used for the first time. It is often used in cultivation of animal, insect and plant 

cell lines [145]. 

  

 
a 

 

  
b 

 

Fig. 44: (a) Cultivation of F. vesiculosus explants in a wave bag bioreactor, (b) Filamentous callus-like 

growth from F. vesiculosus explant developed after four weeks of phototrophic cultivation in 

PES medium 
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3.4. Conclusion and Prospectives 

Development of axenic protoplast and callus-like phototrophic cultures were possible. A time-saving 

and efficient surface sterilization protocol was established for marine macroalgae in only three days. 

The protocol combined different mechanical and chemical treatments, instead of ineffective 

separately-applied sterilization techniques. In comparison with different sterilization protocols, 

results showed that more than 90% of cultivated explants demonstrated unialgal cultures, when an 

anti-fungal agent was added to the broad spectra antibiotics. Moreover, the optimized protocol did 

not greatly affect the explant viability and had 29% vitality relative to a non-sterile tissue.    

Furthermore, induction of protoplast, callus-like were performed either in a solid medium or a wave 

bag bioreactor from brown macroalgae. Moreover, in comparison with terrestrial plants, 

phytohormones did not have a significant effect on callus induction confirming its debatably role in 

marine biotechnology [145]. Interestingly, algal farming through tissue culture in a wave bag 

bioreactor was applied for the first time in marine biotechnology. Unfortunately, maintenance of 

callus-like and protoplasts cultures sterile and undefined nutrition requirements were limiting factors 

to continue their further growing and durability.  

Future work should focus on maintenance of cultures’ axenic conditions and defining of nutritional 

requirements to obtain a high-weighed biomass that could be induced to produce their secondary 

metabolites including fucoidan. Different variables including dehydration stress and cultivation 

using warm conditions might induce fucoidan production as a trial preventing algae desiccation [74]. 

In addition, development of a fast growing hairy root system has not been known or performed yet 

in marine biotechnology of brown macroalgae. However, transformation of tissues from terrestrial 

plants with the “natural genetic engineer” Agrobacterium rhizogenes, has been successfully 

performed for more than three decades as a tool for plant cultivation. So far, hairy root cultures have 

been developed from more than 100 plant species, including several endangered medicinal plants, 

giving opportunities to produce important phytochemicals in environment-friendly conditions [187]. 

In nature ecosystem, wounded plants secrete simple phenolic compounds, such as acetosyringone, 

which induce the plasmid-localized vir (virulence) genes of A. tumefaciens transferring the T-DNA 

fragments of the Ti-(tumor inducing) plasmid to plant cells. This transfer results in a rapidly-dividing 

tumor cell or hairy-root-like growth [188].  
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Interestingly, it was reported that photosynthetic dinoflagellates (e.g. Symbiodinium sp.) were 

susceptible to be transformed by A. tumefaciens [189]. This was a motivation to start transfection of 

F. vesiculosus explant with A. tumefaciens and development of a hairy-root culture. 

 

3.4.1. Crown gall-like growth development in F. vesiculosus 

Rhizopium radiobacter (previously, Agrobacterium tumefaciens DSM 30147) was ordered from the 

Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures.  The lyophilized 

bacterial strain was then regenerated and cultured on nutrient agar medium at 30 °C for two days, as 

described by the supplier’s protocol. A liquid culture was afterwards prepared from a bacterial 

colony previously grown on solid medium.  

As mentioned before by Georgiev, et. al. in hairy-root induction in terrestrial plants [187], previously 

two-to-three wounded aseptic explants of F. vesiculosus were then transfected by incubation with R. 

radiobacter in a nutrient liquid, and then solid media with 1.5% (w/v) agar each of 72 h at 30 °C. 

Transgenic explants were, afterwards, transferred to an agar medium supplemented with 1x 

antibiotic solution for another 72 h. Sterile transformed tissues were then cultivate as phototroph 

using PES, Guillard’s F/2 and ASP-12 NTA supplemented with 0.7% (w/v) agar.  

As shown in Fig. 45, a crown gall or a hairy-root disease was detected in transformed F. vesiculosus 

tissues after six days of incubation of wounded explants with A. tumefaciens in a nutrient liquid and 

agar media each of three days. 
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                                                           a                                                                 b 

 

 
                                                                              c   

 

Fig. 45: Development of crown gall or hairy-root in F. vesiculosus explants after transfection with R. 

radiobacter or A. tumefaciens DSM 30147  

(a): Non-infected intact smooth surface of F. vesiculosus; (b and c): Developed crown gall and hairy-

root disease from a wounded explant after incubation with R. radiobacter liquid and agar nutrient 

media each of three days.  

 

Unfortunately, excised hairy-root growth was deteriorated and not able to accommodate after 

phototrophic sub-culturing in PES, Guillard’s F/2 and ASP-12 NTA solid media. In addition, transfer 

of Ti-plasmid to algal cells has not been confirmed genetically yet. Further experiments should be 

also performed to investigate the required cultivation conditions for accommodation and growth of 

the newly-born crown gall-like growth from F. vesiculosus. Moreover, genomic DNA should be 

identified to confirm the presence of the Ti-plasmid of R. radiobacter in infected tissues [190]. 
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4. Heterologous Expression of Enzymes Involved in Fucoidan 

Biosynthesis 
 

4.1. Introduction 

Problematic cultivation of brown seaweeds through tissue culture discussed previously in Chapter 

3, in addition to structure heterogeneity of extracted fucoidan discussed in Chapter 2 created a novel 

strategy to produce an engineered fucoidan by its enzymatic synthesis. Enzymatic synthesis of a 

GMP-compliant fucoidan is a novel technique that has not been discussed in literature yet. An 

advantage for this strategy is a product that can be easily manipulated without being affected by 

algae species, extraction method, seasonal and geographical variations. Systematic chemical 

synthesis of low molecular weight fucoidan was performed successfully [191]; nevertheless specific 

synthesis by regio-specific and stereo-selective enzymes is still a challenge to provide a high-quality, 

consistent and long chain product in a short and time saving protocol. 

Recent extensive bioinformatics and phylogenetic analyses have been performed in the brown 

macroalgae Ectocarpus siliculosus. They succeeded to reveal a lot of biosynthetic and remodeling 

information concerning the extracellular matrix (ECM) polysaccharides including fucoidan, 

cellulose and alginate [192]. Furthermore, performed genome analysis revealed the genes encode 

for enzymes that involved in fucoidan biosynthesis. 

Fucoidan, as a high molecular weight homo- or hetero- sulphated polysaccharides, several enzymes 

contribute to its biosynthetic pathway. As shown in Fig. 46, it was postulated that fucoidan or 

sulphated fucan is synthesized in brown algae from the precursor GDP-L-fucose, which is obtained 

either by a de novo pathway from GDP-mannose or a salvage pathway from L-fucose. De novo 

synthesis of GDP-L-fucose is carried out in 2 steps catalyzed by GDP-mannose 4,6-dehydratase 

(GM46D) (1) and a bifunctional GDP-L-fucose synthetase (GFS) or GDP-4-keto-6-deoxy-D-

mannose epimerase-reductase (2). However, salvage pathway is minor and catalyzed by the 

bifunctional l-fucokinase (FK) and GDP-fucose pyrophosphorylase (GFPP) with an aid from the 

GHMP kinase [192] from cytosolic L-fucose. GDP-L-fucose is further polymerized and elongated 

by different fucosyltransferases (FucTs) related to Glycosyltransferases families GT10, 23 and 65 

to fucan polymer (5). The polymer is afterwards sulphated in a specific pattern by another group of 

enzymes; namely carbohydrate sulphotransferases (STs) to the final product sulphated fucan or 

fucoidan (6).  
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Fig. 46: The two different possible pathways for fucoidan biosynthesis in the brown algae Ectocarpus 

siliculosus (a) De novo pathway and b) salvage pathway  

1) GDP-mannose 4,6-dehydratase (GM46D); 2) GDP-L-Fucose synthetase (GFS) or GDP-4-keto-

6-deoxy-D-mannose epimerase-reductase (GMER); 3) L-Fucokinase (FK); 4) GDP-fucose 

pyrophosphorylase (GFPP); 5) Fucosyltransferases (FuTs); 6) Sulphotransferases (STs). Modified 

after Michel, G. et al. [192]. 

 

In more details, Fig. 47 illustrates the de novo and salvage pathways for GDP-L-fucose synthesis 

from GDP-mannose and L-fucose, respectively, according to Yan Ren, et. al., in the filamentous 

fungus Mortierella alpina [193]. 

 

 
 

Fig. 47: Detailed de novo (a) and salvage pathway (b) for GDP-L-fucose biosynthesis either from GDP-

mannose or cytosolic L-fucose, respectively (modified according to [193]) 
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Alternatively, heterologous expression of such enzymes in fast growing cell lines such as bacteria, 

yeast or even mammalian cell lines could be a potential technique for fucoidan production. Enzymes 

with similar functions were successfully over-expressed in bacteria and other cell lines which 

encouraged performing and starting similar experiments in the production cell factory E. coli.    

Table 14 summarizes some of the previously-performed heterologous expression experiments of 

similar enzymes from different biogenic sources in bacteria, yeast and mammalian cell lines. 

    

Table 14: Examples of previous trials with heterologous expression to overexpress similar enzymes 

from different resources to that involved in fucoidan biosynthesis 

 

Name of the 

enzyme 

Name of gene Source Expression system Ref. 

a. de novo GDP-L-Fucose synthesis 

GM46D and GFS 

or GMER 

cDNA Mortierella 

alpine  

E. coli BL21 (DE3) [193] 

gmd (GM46D) and 

wcaG (GFS or GMER) 

E. coli K-12 

 

S. cerevisiae [194] 

E. coli BL21(DE3) 

 

[195] 

BT_1224 (GM46D) 

and BT_1225 (GFS or 

GMER) 

Bacteroides 

thetaiotaomicron 

[196] 

gmd E. coli (INVF1) E. coli [197] 

Human cDNA Human Defective Lec13, a CHO 

cell line deficient in 

GM46D activity 

[198] 

bceN Burkholderia 

cenocepacia 

J2315 

E. coli BL21 (DE3) [199] 

cDNA Homo sapiens  human hepatocarcinoma 

cell line HepG2 

[200] 

HP0044 and HP0045 Helicobacter 

pylori 

E. coli BL21 (DE3) [201] 

MUR1 (GM46D) Arabidopsis 

thaliana 

E. coli [202] 

[203] 

A118R (GM46D) and 

A295L (GMER) 

Paramecium 

bursaria 

Chlorella Virus 1 

(PBCV-1) 

E. coli K803 [204] 
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Cont., Table 14: Examples of previous trials with heterologous expression to overexpress similar 

enzymes from different resources to that involved in fucoidan biosynthesis 

 

Name of the 

enzyme 

Name of gene Source Expression system Ref. 

b. Salvage GDP-L-fucose synthesis 

FK and GMER fk/gfpp  Bacteroides 

fragilis 

S. cerevisiae [205] 

fkp  E. coli BL21(DE3) [206] 

[207] 

AtFKGP A. thaliana E. coli BL21(DE3) [208] 

FUK M. alpina E. coli [209] 

GFPP E. coli BL21(DE3) [210] 

Fucosyltransferases (FucTs) 

α 1,3-

fucosyltransferase 

 HpfucT H. pylori E. coli CSRDE3 [211] 

fucT (HP0379)  E. coli [212] 

human (1,3/4) (FUT3) Human FUT3 

cDNA 

Pichia pastoris [213] 

FucT Maize (Zea 

mays) 

Spodoptera frugiperda 

Sf21 cells by baculovirus 

mediated infection 

[214] 

fucT VI Human  Pichia pastoris [215] 

α 1,6-

fucosyltransferase 

nodZ  Rhizobium sp. 

NGR234 

E. coli XL1-Blue MRF' [216] 

α 1,2-

fucosyltransferase 

WbgL E. coli O126 E. coli BL21(DE3) 

 

[206] 

WbsJ E. coli O128 [217] 

wbnK and wbwK E. coli O86 [218] 

wbiQ E. coli O127 [219] 

fucT2 

 

H. pylori NCTC 

364 

E. coli JM 109 (DE3) [220] 

H. pylori UA802 E. coli CLM4 (pGP1-2) [221] 

futC  H. pylori 

NCTC11639 

E. coli BL21 (DE3) [222] 

wcfB Bacteroides 

fragilis 

E. coli BL21star (DE3) [223] 

Sulphotransferases (STs) 

Arylsulphate 

sulphotransferase 

(ASST) 

HAST1 and HAST3 Human cDNA E. coli DH5αF’IQ™ [224] 

astA Klebsiella K-36 E. coli BL21 (DE3) 

 

[225] 

Hoch_5094 Haliangium 

ochraceum 

[226] 
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Cont., Table 14: Examples of previous trials with heterologous expression to overexpress similar 

enzymes from different resources to that involved in fucoidan biosynthesis 

 

Name of the 

enzyme 

Name of gene Source Expression system Ref. 

Heparan sulfate 

O-

sulphotransferase 

(OST) 

A truncate version 

(human r-3-OST1) 

Human cDNA   [227] 

NST, 2-OST, 3-OST-1, 

6-OST-1 and 6-OST-3 

Yeast cells 

(Kluyveromyces lactis) 

[228] 

6-OST-1, 6-OST-2 and 

6-OST-3 

Mouse liver 

cDNA 

Human Embryonic 

Kidney 293 Cells (HEK 

293 cells) 

[229] 

dHS6ST Drosophila 

melanogaster 

cDNA 

COS-7 cells [230] 

Heparan sulphate 

N-

sulphotransferase 

(NST) 

A truncated version of 

Heparan sulfate/heparin 

N-deacetylase/N-

sulfotransferase-1 

(NDST-1) (rNDST-1) 

Rat liver cDNA S. cerevisiae [231] 

NDST-1 Mouse cDNA  HEK 293 cells [232,

233] 

NDST-2 Murine cDNA [234] 

Phenol 

sulphotransferase 

Hydroxyarylamine (or 

acetylaminofluorene) 

sulfotransferases 

(SULT1C) 

Human cDNA E. coli BL21 (DE3) [235] 

(rabSULT1C2) 

cDNA  

Rabbit stomach  E. coli HB101 and COS-7 

cells 

[236] 

Different human 

SULTs (SULT1A3, 

SULT1C4, and 

SULT1E1) 

Human  E. coli BL21 (DE3) [237] 

Dopa/Tyrosine-

Ester 

Sulphotransferase 

PST-1 cDNA 

 

Rat liver  E. coli BL21 (DE3) [238] 

cDNA Rat liver  COS-7 Cells [239] 

SULT1A3 cDNA Human  S. cerevisiae and E. coli 

BL21(DE3) 

[240] 
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This part of the work focused on heterologous expression of some algal fucosyltransferases (FucTs) 

and sulphotransferases (STs) from genes isolated from E. siliculosus in E. coli BL21 (DE3) as a trial 

to produce active and right-folded over-expressed enzymes. 

 

4.2. Heterologous expression of algal fucosyltransferases (FucTs) 

FucTs are a subfamily of the super family glycosyltransferases (GTs) according to Carbohydrate-

Active enZymes (CAZy) [241]. GTs catalyze different glycosidic bonds formation using mainly an 

active sugar containing a nucleoside phosphate or a lipid phosphate leaving group as donor substrates 

[242]. They are further classified into five classes according to the glycosidic linkages they 

synthesize; namely α-1,2-, α-1,3-, α-1,4-, α-1,6-, and O-fucosyltransferases [243]. They function L-

fucose transfer specifically from GDP-L-fucose to protein [244] and glycan forming fucosides or 

fucosylated glycoconjugates [245].  

FucTs are involved in a number of potential and versatile functions through synthesis of compounds 

that are involved in different physiological and pathological processes in prokaryotic or eukaryotic 

organisms. They include fertilization, neuronal development, immune responses, and cell adhesion 

[246], such as synthesis of Lewis (Le) antigens which are glycoproteins associated with the human 

ABO blood group system [247]. They are expressed on red blood cells, kidney and gastrointestinal 

epithelium by contribution from FUT3 (α-1,3) and FUT2 (α-1,2). Even in terrestrial plants, it was 

observed an increment in Fuc-T (α-1,4) in plant life cycle during flower development resulting in 

pollen maturation and pollen tube elongation [248]. On the other side, expression of FucTs is 

increased, especially FUT4 (α-1,3), in some cancer cell lines resulting in cancer promotion and 

metastasis [249]. Therefore, fucosylated molecules are considered as cancer biomarkers and 

beneficial in cancer diagnosis and potential targets in treatment [250]. Besides, different H. pylori 

FucTs such as α-1,2 and α-1,3/4 FucTs participate in the biosynthesis of its carbohydrate complex 

Lewis antigen which plays an important role in the bacterial pathogenesis including cell adaptation, 

adhesion and colonization [221,251].  

Few bacterial FucTs (e.g., α-1,3/4-FucTs from H. pylori) and human (H. sapiens) analogues were 

well identified and specified by expression in different cell lines [211,246], as previously 

demonstrated in Table 14. Since oceans and seas represent 70% of our planet surface, enzyme 

analogues from aquatic organisms could be also possible, if their genomic maps are well analyzed. 
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Recently, genome analysis of E. siliculosus revealed the presence of different kinds of FucTs 

including α-1,3-FucTs (GT10) such as Esi_0050_0098, α-1,6-FucTs (GT23) (e.g., Esi0135_0016 

and Esi0540_0004) as well as O-FucTs (GT65) like Esi0021_0026 [192]. Theses diversity in algal 

FucTs proved that marine life has still treasures which have not been discovered yet.  

Heterologous expression is a well-documented tool in verifying bioinformatics results and gene 

functions, this part aimed to over-express representatives from algal FucTs; FucTs_21 and FucTs_50 

in E. coli BL21 (DE3) via cloning of Esi0021_0026 and Esi0050_0098 genes, respectively.  
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4.2.1. Material and Methods 

4.2.1.1. In silico analysis of FucTs analogues, synthetic gene materials and bacterial 

transformation 

Amino acids sequences of human and bacterial FucTs analogues were aligned using DNASTAR® 

(Lasergene v7, MegAlign) software. Clustal W algorithm was applied to investigate the different 

homology studies, including percent identity and motifs in aligned sequences. H. pylori α-1,3-FucTs 

(HP0651 and HP0379) and human FUT (P51993) were aligned with algal putative FucTs_50 and 

FucTs_21. 

Synthetic Esi0050_0098 and Esi0021_0026 genes were supplied by Invitrogen GeneArt® as 

described by Michel, et al. [252,253] as lyophilized samples. They were inserted into pMK and 

pMA-T plasmid vectors, as shown in Fig. 48. E. coli JM83 competent cells hosted the foreign DNA 

inserts through a heat shock protocol to produce gene copies. The bacterial growth was performed 

at 37° C in LB medium containing their corresponding selection markers; ampicillin sodium and 

kanamycin sulphate. DNA constructs were afterwards extracted by NucleoSpin® Plasmid EasyPure 

kits (Macherey-Nagel GmbH & Co. KG, Düren, Germany) and concentrations were measured by 

Nanodrop Spectrophotometer 

 

 
 

Fig. 48: Synthetic and cloned Esi0050_0098 and Esi0021_0026 in pMA-T and pMK plasmid vectors, 

respectively  

Both DNA constructs were synthesized and provided by Invitrogen GeneArt®.   

  

4.2.1.2. Cloning by Gibson assembly  

As shown in Fig. 49, between EcoRI and BamHI sites of the vector plasmid pASK-IBA 45(+) (IBA 

GmbH, Germany), Esi0050_0098 and Esi0021_0026 were cloned to produce Strep®-tag fusion 

proteins. Steps were performed according to NEBuilder HiFi DNA® Assembly Master Mix and 

http://bioinformatics.psb.ugent.be/orcae/annotation/Ectsi/current/Esi0050_0098and%20Esi0021_26
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Gibson Assembly® Cloning Kit instruction manuals [254,255].  Primers were designed by the online 

service provided by New England Biolabs® (NEBuilder® Assembly Tool), as demonstrated in Table 

15, and PCR experiments were performed in a PCR thermocycler to amplify both inserts. 

 

 
 

Fig. 49: Features of pASK-IBA 45(+) plasmid vector as described by IBA GmbH [256] 

Esi0050_0098 and Esi0021_0026 were cloned between EcoRI and BamHI site of the plasmid 

multiple cloning site (MCS) using Gibson assembly.    

 

Table 15: Designed primers for cloning of Esi0050_0098 and Esi0021_0026 in pASK-IBA 45(+), 

according to NEBuilder® Assembly Tool 

The capital and small letters denoted for nucleotides from inserts and vector, respectively.  

 

DNA constructs Primer  Annealing 

temperature 

(°C) 

pASk-IBA 

45(+)_Esi0050_0098 

fwd 5՝-gcgccgagaccgcggtcccgATGGACAAGGAGGGCAGC-3՝ 61.3 

rev 5՝-cctgcaggtcgacctcgaggTCACCGCAGTGACTCTTG-3՝ 

pASk-IBA 

45(+)_Esi0021_0026 

fwd 5՝-gcgccgagaccgcggtcccgATGGCCTTCGAGACCGTGGTCGTG-3՝ 72.0 

rev 5՝-cctgcaggtcgacctcgaggTCACCCCCGGGGGCGGGG-3 

 

The molecular sizes of amplified inserts with overlapping ends were then confirmed by gel 

electrophoresis, detected using Gel iX20 Imager and then purified by NucleoSpin® Gel and PCR 

Clean-up kits (MACHEREY-NAGEL GmbH & Co. KG). 

In parallel, pASK-IBA 45(+) was opened by EcoRI and BamHI endonucleases. The purified doubly-

digested plasmid in addition to PCR products were incubated in a ratio of 1:2 with 10 µL NEBuilder® 
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HiFi DNA Assembly Master Mix in a total volume of 20 µL for 15 min at 50 °C following the 

protocol of the provider (New England BioLabs® Inc.) [254]. Chemically competent cells of the 

supplier hosted then the recombinant DNA constructs before growing on LB solid followed by liquid 

media supplemented with 100 µg mL-1 ampicillin sodium as a selection marker for 18 h at 37 °C. 

4.2.1.3. DNA sequencing of recombinant DNA constructs 

To check accuracy of molecular cloning experiments, recombinant DNA constructs were afterwards 

extracted by NucleoSpin® Plasmid EasyPure kits (Macherey-Nagel GmbH & Co. KG, Düren, 

Germany). Isolated pASK-IBA 45(+)_Esi0021_0026 (4458 bp) was doubly digested by StuI and 

XbaI, while pASK-IBA 45(+)_Esi0050_0098 (4566 bp) was only linearized by a single digestion 

with XbaI. All of digested constructs were checked by gel electrophoresis.  

Right constructs were sent for sequencing and compared their results with the designed templates 

by GATC Biotech AG (Konstanz, Germany), after preparing them for a light run sequencing in a 

1.5 mL reaction tube which consisted of 100 ng DNA, 5 µL fwd/rev plasmid primer (20 pmol) and 

sterile water up to 10 µL. Alignment analysis was performed then with the online service of Clustal 

Omega (EMBL-EBI). 

4.2.1.4. Transformation of E. coli BL21 (DE3) and gene expression 

Both sequenced DNA constructs and empty vector plasmid were applied to transform E. coli BL21 

(DE3) (Agilent Technologies, Inc.). In shaking flasks using a shaker incubator (Innova® 44), 

transformed E. coli were cultivated in 1 L LB culture medium supplemented with 100 µg mL-1 

ampicillin sodium at 37 °C as a pilot experiment. Proteins expression was induced by 150 µg L-1 

AHT, when bacterial growth log phase was reached (i.e., OD578nm between 0.6 – 0.8). The cultivation 

temperature was then decreased to 17 °C and held for overnight (18 h). Cells were harvested by 

superspeed centrifuge at 4 °C (10 min at 17600 x g) and stored at -20 °C until purification. Scaling-

up of FucTs_50 production was carried out in 44 L of cultivation medium applying the same 

conditions. 

4.2.1.5. Proteins purification by affinity chromatography 

Expressed Strep®-tag fusion proteins were purified according to the protocol described by IBA 

Lifesciences (Göttingen, Germany) [257] after some modifications. Cells were reconstituted in 

buffer W without EDTA (100 mM Tris, 150 mM NaCl, pH 8.0). Afterwards, cells were lysed with 

a microfluidizer adjusted at 15000 psi after incubation with of DNaseI and lysozyme for 30 min. 

The step of cell disruption was repeated for three times. To isolate cell debris from cell lysates, cell 
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suspensions were centrifuged again at 4° C for 1 h at 43000 x g. Clear lysates were then filtered by 

a 0.45 µm regenerated cellulose syringe filter and purified with a Strep-Tactin® Sepharose® affinity 

column. The column was pre-conditioned with buffer W and bound proteins were eluted with five 

column volume (CV) of buffer E (2.5 mM desthiobiotin in buffer W) before a step of washing with 

buffer W. 

4.2.1.6. Protein detection by SDS-PAGE and Western blot 

Column fractions were plotted on SDS-PAGE (12.5 %) using Vertical electrophoresis cell for SDS-

PAGE and proteins were stained by Coomassie brilliant blue solution. Moreover, recombinant 

Strep®-tag fusion proteins were detected by Western blot using monoclonal Strep®-Tactin® AP 

conjugate (IBA Lifesciences, Göttingen, Germany) according to manufacturer’s instructions[258]. 

4.2.1.7.  Activity assays 

a. Glycosyltransferase activity kit 

Activity assays were performed according to the protocol of Glycosyltransferase activity kit (Catalog 

# EA001) described by Bio-Techne GmbH [259]. Briefly, purified enzymes were dialyzed against 

the reaction buffer (25 mM Tris, 150 mM NaCl, 10 mM MnCl2, 10 mM CaCl2, pH 7.5) for overnight 

and concentrated using Vivaspin centrifugal concentrators (MWCO 10 kDa, VWR). The reaction 

was initiated by incubation of 25 µL a serial dilution of purified protein in a working solution 

consisting of 10 µL 8 mM GlucNAc, 10 µL 3 mM GDP-L-fucose (Carbosynth Limited, Berkshire, 

United Kingdom), 5 µL 20 ng µL-1 coupling phosphatase for 1 h at 37 °C. Afterwards, 30 µL 

malachite green A (ammonium molybdate in 3 M sulphuric acid), 100 µL water and 30 µL malachite 

green B (malachite green oxalate and polyvinyl alcohol) were added before another incubation at 

room temperature for 20 min. Finally the absorbance was measured at 620 nm with reaction buffer 

as a blank to measure the reaction background.  

b. Multiplexed Capillary Electrophoresis (MP-CE) 

MP-CE was carried out as described previously by Wahl, et al. [260]. Briefly, samples were diluted 

with a stock solution, containing 14 mM SDS, 2 mM para-amino benzoic acid (PABA) and 2 mM 

para-amino phtalic acid (PAPA), to a final concentration of 7 mM SDS, 1 mM PABA and 1 mM 

PAPA. SDS was used to denature the enzyme, while PABA and PAPA were internal standards. 

Precipitated enzyme was removed by centrifugation and the supernatants were applied with a 

vacuum injection at -0.7 psi for 10 s. Separation was carried out with a capillary electrophoresis 

(cePRO 9600TM) system with a 96 fused silica capillary array and a UV-detection at 254 nm. 
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Capillary tubes with a total length of 80 cm, i.d. of 50 µm and 55 cm as an effective length were 

used. Analytes were separated with an applied voltage of 12 kV and the used running buffer 

contained 1 mM EDTA and 50 mM ammonium acetate at pH 9.2. Integrated analytical areas were 

normalized to the internal standard peak area of PABA. 
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4.2.2. Results and Discussion 

According to Cumashi, et. al., α-1,3 linked L-fucopyranoside is principally found in fucoidan 

backbone among different studied molecular structures from brown macroalgae species. However, 

other linkages such as α-1,4 linkage might also alternate with α-1,3 [14]. Moreover, branched chain 

fucoidan contains further α-1,2 or even α-1,6 residues as branching sites. Genome analysis of E. 

siliculosus proved the presence of different genes encoded for different FucTs involved in different 

glyosidic linkages like α-1,3 and α-1,6 [192].  

  

4.2.2.1. Homology and phylogenetic relationships with relative FucTs  

Results from NCBI database showed that amino acid sequences of both algal FucTs are novel and 

different from other known glycosyltransferases [240,241]. As demonstrated in Fig. 50, homology 

studies of amino acids sequences of both algal FucTs; FucTs_50 (Esi0050_0098 (D7G396)) and 

FucTs_21 (Esi0021_0026 (D7FR32)) with the well specified H. pylori α-1,3/4-FucTs (HP0651 and 

HP0379) [211,263] in addition to the human analogue FUT6 (P51993), revealed that FucTs_50 was 

more related to bacterial α-1,3/4-analogues than FucTs_21, where identity (%) to HP0651 and 

HP0379 was 14.7% and 15.4%, respectively, however, it was only 9.8% and 9.7% with FucTs_21, 

respectively. This result was likely due to the fact that FucTs_21 is a O-FucTs rather than and a α-

1,3-FucTs. Furthermore, the comparison between algal FucTs_50, H. pylori and human α-1,3-FucTs 

demonstrated more relations of algal enzymes to the human analogue than the bacterial one.  
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a                                                            b 

 

 
                                   c                                                                          d 

 

Fig. 50: Homology and phylogenetic relationships of algal FucTs_21 and FucTs_50 with other bacterial 

and human FucTs  

(a) Phylogenetic tree shows more similarity of FucTs_50 (Esi0050_0098, D7G396) with H. pylori 

enzymes than FucTs_21 (Esi0021_0026, D7FR32). (b) Sequence distance matrix confirmed 

phylogenetic tree regarding identity (%). (c&d) Phylogenetic tree and sequence distance matrix of 

algal FucTs_50 (Esi0050_0098, D7G369) in comparison with bacterial H. pylori (HP0651) and 

human (P51993) analogues. DNASTAR® (Lasergene v7, MegAlign) software and Clustal W 

algorithm were applied to investigate the different homology studies, including percent identity, 

phylogenetic tree and motifs in aligned sequences 

 

These lower percentages of identity might indicate different enzymatic functions. However, different 

enzymes’ resources should be taken into consideration. Furthermore, amino acid sequence of 

FucTs_50 revealed the presence of the conserved stretch of 17 amino acids; 

FLLAFENNNQIRDYVTEK. This consensus sequence is referred as a α3-FucTs structural motif 

after alignment of several α3-FucTs from bacteria and human [264]. It is believed that this sequence 

is essential for enzyme activity and related to GDP-L-fucose binding site. In addition, alignment of 

FucTs_21 amino acid sequence with other protein-O-fucosyltransferases family 1 (POFUT1), 

revealed the presence of some conserved peptide motifs for example LxYIATD and SSFxA). These 

POFUT1 include enzymes present in H. sapines, S. scrofa, G. gallus …etc. genome [265].  

 

4.2.2.2. Molecular cloning by Gibson assembly 

Gibson assembly performed, as shown in Fig. 51, by three successive enzymatic activities in a 

single-tube reaction: 5' exonuclease, DNA polymerase and DNA ligase activities. The 5' exonuclease 

chews back the 5' end sequences resulting in exposed complementary sequence to be annealed. The 

polymerase activity then fills in the gaps on the annealed regions. A DNA ligase afterwards seals 
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the nick and connects the DNA fragments together. An advantage of Gibson assembly is that the 

overlapping sequence of the connecting fragments is longer than those used in previous assemblies 

(e.g., Golden Gate Assembly), which leads to a higher percentage of correct assemblies [266].  

 

 
 

Fig. 51: Gibson Assembly work flow; an example [266]  

 

As shown in Fig. 52, both inserts; Esi0021_0026 (1197 bp) and Esi0050_0098 (1305 bp) were 

amplified successfully with designed PCR primers. The ends of both amplicons included EcoRI and 

BamHI restriction site sequences from pASK-IBA 45(+) to facilitate ligation to the vector in 

subsequent steps. 
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Fig. 52: Agarose gel electrophoresis of amplified PCR products of Esi0021_0026 and Esi0050_0098 

Esi0021_0026 and Esi0050_0098 amplicons were detected at 1197 bp and 1305 bp, respectively with 

their overlapping ends.  

4.2.2.3. DNA extraction, digestion and sequencing 

Extracted DNA constructs were singly or doubly digested to confirm their right constructions. Fig. 

53 and 54 describe the comparison between designed constructs by pDRAW32 DNA analysis 

software and obtained results from gel electrophoresis. In pASK-IBA 45(+)_Esi0021_0026, only 

recombinant DNA from replicate 3 showed two fragments at 3129 and 1329 bp, upon digestion with 

StuI and XbaI, as predicted. However, in pASK-IBA 45(+)_Esi0050_0098, recombinant DNA from 

replicate 3 and 8 showed a typical gel electrophoresis profile with a single band at 4566 bp after a 

digestion with XbaI. 
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                                      a                                                b                                    c    

 

Fig. 53: Design of pASK-IBA 45(+)_Esi0021_0026 DNA construct showing some possible restriction 

sites and gel electrophoresis results after its digestion with StuI and XbaI 

 a) Designed construct by pDRAW32 DNA analysis software; b) Expected produced fragments after 

double digestion with StuI and XbaI at 3129 and 1329 bp, c) Gel electrophoresis of recombinant DNA 

digested by StuI and XbaI obtained from different replicates in comparison with undigested vector, 

undigested insert, digested vector and DNA marker. Only replicate 3 produced two fragments at 3129 

and 1329 bp. M= size marker, UV=undigested vector, UI=undigested insert, DV= digested vector. 

 
 

                                      a                                             b                                    c    

 

Fig. 54: Design of pASK-IBA 45(+)_Esi0050_0098 DNA construct showing some possible restriction 

enzymes and gel electrophoresis results after digestion XbaI 

a) Designed pASK-IBA 45(+)_Esi0050_0098 construct pDRAW32 DNA analysis software; b) 

Expected fragments after single digestion with XbaI at 4566 bp; c) Gel electrophoresis of recombinant 

DNA digested by XbaI obtained from different prep in comparison with undigested vector, 

undigested insert, digested vector and a DNA size marker. Digested DNA from replicates 3 and 8 

showed slower migration rates than digested vector, this refered to higher molecular weight of 
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recombinant DNA construct. M= size marker, UV=undigested vector, UI=undigested insert, DV= 

digested vector. 

 

Recombinant DNA constructs of replicate 3 from pASK-IBA 45(+)_Esi0021_0026 and pASK-IBA 

45(+)_Esi0050_0098 were sent to be sequenced. As demonstrated in Fig. 55 a and b, alignment with 

designed constructs revealed higher percentages of similarity with sequencing results. 

 

 

 
a 

 

 
b 

 

Fig. 55: Alignment of DNA templates (pASK_Esi0021 and pASK_0050) with the forward (fwd) 

sequence of the sequencing results 

a) Alignment of DNA sequencing result of pASK-IBA 45 (+)_Esi0021_0026; b) Alignment of DNA 

sequencing result of pASK-IBA 45 (+)_Esi0050_0098 in comparison with their DNA templates. 

They showed Strep®-tag (in grey) and the gene start sequence (in green, a and dark grey, b) and the 

right insertion of both genes in the cloning site of pASK-IBA 45(+) vector. 

 

4.2.2.4. Enzymes production (pilot experiment)  

As seen in Fig. 56 a and b, SDS-PAGE showed poor detections of recombinants proteins at predicted 

molecular sizes for both proteins. However, Western blot results demonstrated that enzymes were 

successfully produced in fermentation flasks, using empty plasmid vector as a control. Both proteins 

were detected in intact cells and cell pellets as inclusion bodies. Nevertheless, FucTs_50 was present 

only in bacterial cell lysate. 

pASK_Esi0050    GATAGAGAAAAGTGAAATGAATAGTTCGACA-AAAATCTAGAAATAATTTTGTTTAACTT 

Esi_50_3_fwd    -----GGGGTAGAGGTGATGATAGTTCGACAAAAATCTAGAAATTAATTTTGTTTAACTT 

                      *   ** *      *********** ***      ** **************** 

 

pASK_Esi0050    TAAGAAGGAGATATACAAATGGCTAGCTGGAGCCACCCGCAGTTCGAAAAAGGCGCCGAG 

Esi0050_fwd     TAAGAAGGAGATATACAAATGGCTAGCTGGAGCCACCCGCAGTTCGAAAAAGGCGCCGAG 

                ************************************************************ 

 

pASK_Esi0050    ACCGCGGTCCCGATGGACAAGGAGGGCAGCAGCACGAGGGACGAGGAAGTTCTAGTGGAG 

Esi_50_3_fwd    ACCGCGGTCCCGATGGACAAGGAGGGCAGCAGCACGAGGGACGAGGAAGTTCTAGTGGAG 

                ************************************************************ 

 

pASK_Esi0050    GGGGTTTCCGATGGAGGCGGCGTTAGCCTCGCAGGGGAAACCAAACACGCAGACAGTAGC 

Esi_50_3_fwd    GGGGTTTCCGATGGAGGCGGCGTTAGCCTCGCAGGGGAAACCAAACACGCAGACAGTAGC 

                ************************************************************ 

 

pASK_Esi0050    GGAGCGGCGACCGGAGCGATGGCTAGGGGACGGGGGAAGACAGAGGGGTCCAATGCGATG 

Esi_50_3_fwd    GGAGCGGCGACCGGAGCGATGGCTAGGGGACGGGGGAAGACAGAGGGGTCCAATGCGATG 

                ************************************************************ 
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a 

 

 

b 

 

Fig. 56: SDS-PAGE (a) and Western blot (b) of overexpressed recombinant proteins from pASK_IBA 

45(+)_Esi0021_0026 and pASK_IBA 45(+)_Esi0050_0098 DNA constructs, in comparison with 

an empty vector plasmid in a 2 L of LB medium of E. coli BL21(DE3)  

Proteins were detected in Western blot by Strep® antibodies, according to IBA[258]. M= size marker 

– PageRulerTM Prestained (Thermo Fisher); I= intact cells; P= cell pellets; L= cell lysate; R= external 

reference Strep®-tag protein of molecular size 100 kDa used to check the the detection procedure. 

 

4.2.2.5. FucTs_50 production and purification 

Based on preliminary results, scaling-up of FucTs_50 production and purification was only 

performed and its activity was evaluated, afterwards. Over-expressed FucTs_50 crude lysate, 

produced from a 44 L cultivation medium, was pooled and purified by affinity chromatography 

depending on interaction with the immobilized engineered streptavidin named Strep-Tactin®. After 
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a washing step, elution of recombinant protein was performed by adding 2.5 mM desthiobiotin in 

buffer W. Application of desthiobiotin depends on structural similarity to biotin which is the natural 

ligand of streptavidin. Finally after eluate dialysis and concentration, the experiment resulted in 

production of 175 µg of purified FucTs_50 protein, after its measurement by Bradford assay [267]. 

Fig. 57 shows the cascade of FucTs_50 protein purification and its detection in column elautes in 

comparison with expressed proteins at the same fermentation conditions from empty plasmid vector 

pASK-IBA 45(+). 

 

 
 

Fig. 57: Western blot of expressed recombinant FucTs_50 from the pASK-IBA 45(+)_Esi0050_0098 

construct in comparison with empty vector plasmid during purification cascade 

It showed that proteins were present in intact cells, cell pellets, lysate, and flow through, in addition 

to eluate fractions. All fractions of expressed empty vector at the same conditions did not show any 

presence of strep®-tag proteins. R= external reference Strep®-tag protein of molecular size 100 

kDa; I=Intact cells; P=cell pellets; L=cell lysate; F=flow through; 2, 4= eluate fractions. 

 

 

4.2.2.6. Activity assay 

Catalytic activity of purified FucTs_50 using GDP-L-fucose as a donor substrate form was 

investigated by Glycosyltransferase activity kit and MP-CE analytics. 

a. Glycosyltransferase activity kit  

As shown in Fig. 58, the principle of the reaction depends on a cascade of steps which initiated with 

hydrolysis of GDP-L-fucose with the FucTs and terminated with free phosphate detection. The step 

of GDP-L-fucose hydrolysis was accompanied by liberation of a free GDP moiety, which was further 

hydrolyzed by coupling phosphatase activity to give free phosphate and guanosine monophosphate. 

Malachite green reagents (malachite green A and malachite green B) reacted afterwards with these 

free phosphates and the products were quantified by measuring the absorbance at 620 nm, as 
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described by Wu, et al. [259]. Denser green colour means much liberated free phosphates and 

consequently higher fucosyl transfer enzymatic activity.  

 

  
 

Fig. 58: Glycosyltransferase activity kit principle, as described by the supplier (Bio-Techne®) 

Steps are initiated with hydrolysis of GDP-L-fucose with an active FucTs and terminated with free 

phosphate detection 

 

FucTs_50 was determined in comparison with empty plasmid expressed proteins. FucTs_50 showed 

an activity towards GDP-L-fucose of 0.47 pmol min-1 µg-1. It was determined according to the Eq. 

7 [259], where; S is the slope of Fig. 59 and CF is the conversion factor determined from phosphate 

concentration calibration curve (see Appendix). 

 

 ………………….  (Eq. 7)   

 

Specific activity of FucTs_50 =  
0.008 𝑋 3509.8

60
 = 0.47 pmol min-1 µg-1 

Specific activity = 
S (

OD

µg
) x CF (

pmol

OD
)

Time (min.)
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Fig. 59: Measurement of catalytic activity of FucTs_50 on the donor substrate GDP-L-fucose by 

Glycosyltransferase activity kit 

OD values were measured at 620 nm to determine free liberated phosphate from GDP moiety. All 

absorbance values were subtracted from background value.  

 

b. MP-CE analysis   

Another hydrolytic activity was performed to investigate the putative function of FucTs_50 toward 

its substrate GDP-L-fucose in the absence of a suitable fucose acceptor. It was investigated by 

measuring GDP-L-fucose concentration after incubation with FucTs at optimum conditions. After 

24 h incubation, as shown in Fig. 60, approx. 40% of GDP-L-fucose was hydrolyzed in the presence 

of the enzyme. However, GDP-L-fucose concentration remained intact in the absence of the enzyme 

confirming an enzymatic catalytic activity of FucTs_50. 
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Fig. 60: FucTs_50 hydrolytic activity toward GDP-L-fucose as determined by MP-CE  

Results showed that after 24 h, FucTs_50 could cleavage approx. 40% of GDP-L-fucose, in 

comparison with the enzyme-free condition. 
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4.3. Carbohydrate sulphotransferases (STs) 

Sulphotransferases (STs) catalyze the sulphonation reaction which is involved in many biological 

activities (e.g., detoxification and drug metabolism) [251]. They transfer sulphonate ester group 

(SO3
-) from the donor activated substrate 3՝-phosphoadenosine 5՝-phospho-sulphate (PAPS) to a 

hydroxyl group acceptor of specific compounds, such as phenolic and complex carbohydrates 

molecules in a regio- and stereo-selective reaction creating a sulphate ester (SO4
-). Their activity are 

often regulated by supply of  PAPS which acts as also a cofactor, as shown in Fig. 61 [268]. 

 

 
 

Fig. 61: Catalysis of sulphonate group (SO3
-) transfer to a hydroxyl group-containing compound by 

Sulphotransferases (STs) using PAPS as a donor substrate  

 

E. siliculosus genome has, in addition, a gene cluster of more than 10 genes encode for different 

classes of carbohydrate sulphotransferases (STs). Some of these enzymes are speculated to be 

involved in fucoidan biosynthesis in brown macroalgae [192]. Nevertheless, the others contribute in 

synthesis of other unknown compounds or detoxification of water pollutants. Exact specificity and 

functions of most of these enzymes are still uncertain. Therefore further characterizations are 

required regarding to confirm their ability to sulphonate sugar monomers and contribution to 

fucoidan synthesis. Table 16 summarizes the different algal STs regarding their encoded genes, 

amino acids and putative functions [192]. 
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Table 16: Overview of different algal STs, regarding their names, sizes of encoded genes, number of 

amino acids and putative functions 

  

STs 

name 

Encoded 

gene 

Size of gene 

(nucleotides) 

No. of amino acids Putative functions 

STs_28 Esi0028_0011 1026 342 Aryl sulphotransferase 

 STs_411 Esi0411_0021 837 279 

STs_442 Esi0442_0008 1026 342 

STs_197 Esi0197_0025 1002 334 

STs_289 Esi0289_0025 1044 348 Transfer of sulphate group to 

specific compounds (unclear 

specificity) 

STs_210 Esi0210_0041 1392 464 Related to Chondroitin 6-

sulphotransferase and keratan 

sulphate Gal-6 sulfotransferase 

(unclear specificity) 

STs_312 Esi0312_0029 1272 424 

STs_32 Esi0032_0064 1386 462 Related to Galactose-3-O-

sulphotransferase 2 (unclear 

specificity) 

STs_283 Esi0283_0018 1032 344 

STs_57 Esi0057_0043 939 313 

STs_118 Esi0118_0049 1029 343 

STs_37 Esi0037_0054 1458 486 Related to heparan sulfate 

glucosamine 3-O-

sulphotransferase (unclear 

specificity) 

STs_80 Esi0080_0060 1044 348 

STs_26 Esi0026_0167 1644 548 

STs_239 Esi0239_0035 1680 560 

 

Esi0032_0064 and Esi0283_0018 encode for STs_32 and STs_283 respectively are distantly related 

to Galactose-3-O-sulfotransferase 2 (EC 2.8.2.-) [269,270]. However, the other genes are more 

related to phenol, heparan and chondroitin sulphonation. As a pilot experiment, they were chosen to 

be cloned and expressed in E. coli after optimization of their nucleotides’ sequence to E. coli. This 

experiments aimed to reveal the role of this class in fucoidan biosynthesis. 
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4.3.1. Material and Methods 

4.3.1.1. Synthetic gene materials  

Both E. coli-opt. genes (Esi0032_0064 and Esi0283_0018) were synthesized by Invitrogen 

GeneArt®, as described by Michel, et al. [180,181]. These constructs were delivered as inserts in 

pMA-T plasmid, as shown in Fig. 62. As mentioned previously in FucTs section (section 4.2.1.1), 

E. coli JM83 competent cells were transformed and incubated with specified medium (LB 

supplemented with ampicillin) to produce several genes copies. 

 

 
 

Fig. 62: Cloned E. coli_opt. Esi0032_0064 and Esi0283_0018 in pMA-T plasmid vector  

Both DNA constructs were synthesized and delivered by Invitrogen GeneArt®, according to Michel, 

et. al [180,181].    

 

4.3.1.2. Cloning by Gibson assembly and sequencing 

As previously described in section 4.2.1.2, E. coli-adapted Esi0032_0064 and Esi0283_0018 genes 

were cloned inside its multiple cloning site (MCS) specifically between EcoRI and SacI restriction 

sites of the vector plasmid pASK-IBA 45(+). Primers were designed and optimized by the online 

service provided by New England Biolabs® so as to make genes translation in the same frame of 

Strep®-tag sequence present in the vector plasmid, as demonstrated in Table 17.  

 

 

 

 

 

 

http://bioinformatics.psb.ugent.be/orcae/annotation/Ectsi/current/Esi0050_0098and%20Esi0021_26
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Table 17: Designed primers for cloning of E- coli-adapted Esi0032_0064 and Esi0283_0018 in pASK-

IBA 45(+), according to NEBuilder® Assembly Tool 

 

DNA constructs Primer  Annealing 

temperature 

(°C) 

pASk-IBA 

45(+)_Esi0032_0064 

fwd 5՝- gcgccgagaccgcggtcccgATGCGTCGTGCACAGGGT -3՝ 60.0 

rev 5՝- ggatccccgggtaccgagctTTAAAAGGCCAGAATAGGCGGTG -3՝ 

pASk-IBA 

45(+)_Esi0283_0018 

fwd 5՝- gcgccgagaccgcggtcccgATGGCAGGTAATGCAATG -3՝ 60.0 

rev 5՝- ggatccccgggtaccgagctTTAAAACGGCTGAACCGG -3 

 

The amplified inserts were afterwards confirmed by gel electrophoresis and PCR products were 

purified by NucleoSpin® Gel and PCR Clean-up kits (Macherey-Nagel GmbH & Co. KG) and their 

concentrations were measured by Nanodrop spectrophotometer. 

EcoRI and SacI restriction endonucleases digestion products with PCR products were incubated in 

a ratio of 1:2 with 10 µL NEBuilder® HiFi DNA Assembly MasterMix in a total volume of 20 µL 

for 15 min at 50 °C following the protocol of the provider (New England BioLabs® Inc.) [254]. 

Recombinant DNA constructs were extracted from culture replicates by NucleoSpin® Plasmid 

EasyPure (Macherey-Nagel GmbH & Co. KG), and then digested by XbaI to give single linearized 

fragments of the original molecular sizes for verification. The constructs with a right gel 

electrophoresis profile was then sent for sequencing following protocol described in sections 4.2.1.3. 

 

4.3.1.3. Transformation of E. coli BL21 (DE3), enzymes expression and purification 

Both sequenced DNA constructs in addition to an empty vector plasmid were applied to transform 

E. coli BL21 (DE3) by heat shock. A pilot experiment with cultivation, protein expression, detection 

and purification were performed as previously mentioned in pASK-IBA 45(+)_Esi0021_0026 and 

Esi0050_0098 transformed E. coli (section 4.2.1.5 and 4.2.1.6). 

 

4.3.1.4. Activity assay (Universal sulphotransferase activity kit) 

According to the kit protocol (Catalog # EA003) described by Bio-Techne GmbH, enzymes’ activity 

was investigated [271,272]. Briefly, purified enzymes were dialyzed in a reaction buffer (50 mM 

Tris, 15 mM MgCl2, pH 7.5). Reaction was initiated by incubation of 25 µL of serial dilutions of the 

enzymes in a 25 µL working solution, which was consisted of 10 µL 5 mM GlucNac, 10 µL 1 mM 

PAPS (as triethylammonium salt) purchased from Sirius fine chemicals (SiChem GmbH) and 5 µL 

100 ng µL-1 coupling phosphatase 3 for 20 min at 37 °C. Afterwards, 30 µL of malachite green A, 
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100 µL deionized water and 30 µL malachite green B were added, before an incubation step at room 

temperature again for 20 min. Finally the absorbance was measured at 620 nm and reaction buffer 

was used as a blank. 
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4.3.2. Results and Discussion 

Fucan backbone shows different sulphation patterns (e.g., 2- and/or, 3- and/or, 4- sulphated fucan), 

which is confirmed by the presence of several encoding genes for algal STs [192]. Unlike to fucan 

synthesis formation site, it is still unclear whether the final fucan sulphonation step is performed in 

cell cytosol by cytosolic STs and then transported to macroalgal cell wall or inside the cell wall in 

situ by membrane STs.  

 

4.3.2.1. Homology with other STs  

Conserved peptide motifs were observed with alignment of STs_32 and STs_283 amino acids, such 

as NIAFxKTHKTASTTxAxxLYRYGxRHD and VTVxREPVAHYxSYYYYFLxP which may 

be related to the enzyme active sites. Moreover, a comparison of the two representatives with the 

human Galactose-3-O-sulfotransferase 2 (G3ST2) revealed 21.9 and 20.9 identity (%), respectively, 

as shown in Fig. 63. Lower percentages of homology may be problematic, but the prescene of these 

motifs proved their putative fucntions.      

 

 
                                 (a)                                                                              (b) 

 

Fig. 63: A homology study between algal STs_283, STs_32 and the human Galactose-3-O-

sulfotransferase 2 (G3ST2) 

(a) Phylogenetic tree; (b) percent identity of algal STs_32 and STs_283 with the human enzyme is 

of 21.9 and 20.9%, respectively. DNASTAR® (Lasergene v7, MegAlign) software and Clustal W 

algorithm were applied to investigate the different homology studies, including percent identity, 

phylogenetic tree and motifs in aligned sequences 

 

4.3.2.2. PCR of Esi0032_0064 and Esi0283_0018 with overlapping ends 

To design PCR primers with overlapping sequences between plasmid vector pASK-IBA 45(+) and 

the two DNA fragments for their assembly, the Web Tool of NEBuilder® was applied. Plasmid 

vector was opened by a double digestion step with EcoRI/SacI; therefore, PCR primers were 

designed to have an overlapping sequence from plasmid and a gene specific sequence for template 

priming. Amplified PCR products were verified by agarose gel electrophoresis. As shown in Fig. 

64, Esi0032_0064 and Esi0283_0064 were detected at 1386 and 1032 bp, respectively.  
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(a)                                                  (b) 

 

Fig. 64: Agarose gel electrophoresis of (a) amplified Esi0032_0064 (1386 bp) and (b) Esi0283_0018 

(1032 bp) with their overlapping ends from EcoRI/SacI restriction sites of the vector pASK-

IBA 45(+) 

 

4.3.2.3. Gibson assembly and constructs sequencing 

As shown in Fig. 65 and 66, DNA constructs were designed by pDRAW32 DNA analysis Software, 

as previously performed, and synthesized according to Gibson assembly protocol. Extracted 

recombinant pASK-IBA 45(+)_Esi0032_0064 construct from replicate 1 and 4 showed after a single 

digestion by XbaI a single fragment at 4758 bp. However, several replicates (1-4 and 6) from 

Esi0283_0018 were detected at 4404 bp. These results were confirmed by lower migration rates of 

linearized single bands compared with digested vector at 3286 bp.  
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(a) 

 

       

(b) 

Fig. 65: Designed pASK-IBA 45(+)_Esi0032_0064 (a) and pASK-IBA 45(+)_Esi0283_0018 (b) 

templates by pDRAW32 DNA analysis software  

Templates showed their sizes in bp and sites of some possible restriction enzymes. 
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Fig. 66: Agarose gel electrophoresis of extracted DNA constructs; pASK-IBA 

45(+)_Esi0032_0064_Opt. and pASK-IBA 45(+)_Esi0283_0018_Opt. after digestion with 

XbaI 

They were compared with undigested empty vector, digested vector and undigested inserts. 

Constructs 1 and 4 from Esi0032_0064 as a single fragment at 4758 bp and 1-4 and 6 from 

Esi0283_0018 at 4404 bp showed lower migration rates than digested vector at 3286 bp. M= 

size marker, UV= undigested empty vector, DV= digested vector, UI=undigested insert. 

 

Sequence results were aligned, afterwards, with the designed templates and showed identical 

sequence in addition to right cloning of synthetic genes in the plasmid vector. Moreover, Strep®-tag 

sequence was inserted correctly as N-terminal in front of the expressed proteins, as demonstrated in 

Fig. 67.  
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(a) 

 

 
(b) 

 

Fig. 67: Alignment of sequencing results of fwd DNA constructs; pASK-IBA 45(+)_Esi0032_0064_Opt. 

(a) and pASK-IBA 45(+)_Esi0283_0018_Opt. (b) with the designed templates  

The results showed great similarities and insertion of Strep-tag sequence (in grey) as N-terminals of 

expressed proteins. 

 

4.3.2.4. Gene expression and proteins detection by Western blot 

Induction of STs over-expression by AHT from cultivated genetically-engineered E. coli BL21 

(DE3) and further steps of proteins purification and detection in eluates were carried out as 

previously mentioned with FucTs. As demonstrated in Fig. 68 and 69, results confirmed that both 

STs were expressed as Strep®-tag proteins at the right expected molecular sizes with yield of 55.1 

µg and 60.5 µg from STs_32 and STs_283, respectively, as determined by UV spectrometry at 280 

nm. 

    

 
 

Fig. 68: Western blot of purified heterologusly expressed STs_32 by E. coli BL21 (DE3)  

Heterologusly-expressed STs_32 of a molecular size 55.28 kDa was detected in column fractions 2-

5, compared to the size marker. M=size marker – PageRulerTM Prestained (Thermo Fisher).  

 

pASK_Esi0283_Opt.  GTTTAACTTTAAGAAGGAGATATACAAATGGCTAGCTGGAGCCACCCGCAGTTCGAAAAA 

Esi0283_fwd        GTTTAACTTTAAGAAGGAGATATACAAATGGCTAGCTGGAGCCACCCGCAGTTCGAAAAA 

                   ************************************************************ 

 

pASK_Esi0283_Opt. GGCGCCGAGACCGCGGTCCCGCGAATTGGCGGAAGGCCGTCAAGGCCACGTGTCTTGTCC 

Esi0283_fwd       GGCGCCGAGACCGCGGTCCCGA-------------------------------------- 

                  *********************.                                       

 

pASK_Esi0283_Opt. AGAGCTCATGGCAGGTAATGCAATGCGCGAATATCTGAATCTGCTGGTTGATGAAAGCGT 

Esi0283_fwd       --------TGGCAGGTAATGCAATGCGCGAATATCTGAATCTGCTGGTTGATGAAAGCGT 

                          **************************************************** 
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Fig. 69: Western blot of purified heterologusly expressed STs_283 by E. coli BL21 (DE3)  

Protein of a molecular size 40.58 kDa was detected in column fractions (2-8). CL= cell lysate, FT= 

column flow through, W= wash. 

 

4.3.2.5. Activity assay 

Activity of expressed STs was assessed by their ability to transfer the sulphonate group from the 

activated sulphonate donor PAPS substrate, according to the protocol established by the kit’s 

provider [271,272]. The reaction principle could be summarized as followed in Fig. 70. As a result 

of sulphonate group removal from PAPS, PAP is produced which and further hydrolyzed by a 

phosphatase enzyme. The last step is accompanied with the liberation of free phosphate which could 

be measured colorimetry at 620 nm by malachite green reagents. 
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Fig. 70: Principle of the Universal sulphotransferase activity kit as described by the supplier (Bio-

Techne®) [271,272] 

 

Results, as shown in Fig. 71 a and b, proved that STs_32 and STs_283 had a catalytic activity which 

was directly related with the enzyme concentration. STs_32 and STs_283 recorded similar 

sulphotransferase activities of 2.38 and 2.29 pmol min-1 µg-1, using Eq. 7, respectively, where; S is 

the slope of Fig. 71a and b and CF is the conversion factor determined from phosphate concentration 

calibration curve (see Appendix E: Calibration curves). 
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Fig. 71 a: Relationship between purified STs_32 at different concentrations and liberated free 

phosphate from PAPS detected by malachite green and measured at 620 nm 

All absorbance values were subtracted from the background value (reaction buffer).   

 

Specific activity = 
S (

OD

µg
) x CF (

pmol

OD
)

Time (min.)
 …………. (Eq. 7) 

                                Specific activity of STs_32   = 
0.0171 x 2784.1

20
 = 2.38 pmol min-1 µg-1 

 

Fig. 71 b: Relationship between purified STs_283 at different concentrations and liberated free 

phosphate from PAPS detected by malachite green and measured at 620 nm 

All absorbance values were subtracted from the background value (reaction buffer).   

 

Specific activity of STs_283 =  
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4.4. Conclusion and Prospectives 

Algal FucTs and STs are involved in fucoidan biosynthesis and considered as potential enzyme 

classes from eukaryotic sources with better similarities with human than bacterial analogues. These 

enzymes have not been characterized yet and their exact specificity have not been verified. 

Therefore, heterologous expression of some FucTs and STs in E. coli was performed for the first 

time. 

Overexpressed algal FucTs_50, STS_32 and STs_283 showed a catalytic activity on their donor 

substrates GDP-L-fucose and PAPS, respectively, as determined by different techniques (e.g., 

Universal Glycosyltransferase and Sulphotransferase activity kits). These results provided a strong 

proof for active and correctly-folded enzymes. Nevertheless, overexpression experiments showed 

proteins with low water solubility and inclusion bodies formation, especially FucTs_21, which 

affected afterwards on extraction and further purification steps. It might be concluded that these 

enzymes still needed a post-translational modification which is not present in E. coli. This was 

confirmed by the presence of a number of serine, threonine and asparagine residues which are 

possible glycosylation sites. Therefore, lower water solubility might be due to lack of protein 

glycosylation, which was not possible by a glycosylation machinery-deficient E. coli.   

Further experiments should be performed to specify acceptor substrates including non-modified 

substrates (e.g., L-fucose, and GlucNAc) and modified analogues (e.g., N-acetyl lactosamine 

(LacNAc-t-Boc type I and II). As seen in Fig. 72, If GlucNAc is considered as an appropriate fucose 

acceptor, over-expressed putative FucTs_50 should be able to build up an α-1,3 glycosidic linkage 

and produce α-1,3 fucosyl N-acetyl glucosamine. Product could be detected by different hyphenated 

spectrometric techniques, such as HPLC-MS [273]. Enzyme kinetics should be addressed applying 

Michalis-Menten equation to determine Km and Vmax kinetic parameters that affect the enzymes’ 

activity in addition to their inhibitors for further characterization.    
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Fig. 72: Simulated fucosylation reaction of GlucNAc catalyzed by heterologously expressed FucTs_50 

  

Furthermore, rate of protein expression and protein water solubility could be increased by their 

production as GST-fusion proteins or application of eukaryotic expression system with a 

glycosylation machinery, such as P. pastoris.  

Moreover, polymer building activity of expressed FucTs should be investigated to be applied in the 

synthesis of structurally-consistent fucoidan after sulphonation at some positions of polymer 

backbone with the assist of expressed sulphotransferase (STs). This will help the enzymatic synthesis 

of a GMP-compliant and eco-friendly product instead of chemical [191] and classical extraction 

procedures [79].  
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5. Conclusion 

Increasing the global demands from marine-based products (e.g., fucoidan), heterogeneity, 

seasonality and negatively consequences on ecosystem showed that novel non-traditional eco-

friendly techniques for commercial production of a GMP-compliant product are required. Firstly, it 

was observed that classical extraction and purification of fucoidan from natural habitat have not been 

optimized yet which necessitate the emergence of new ideas and techniques for optimization to 

increase the yield and quality as well. Immobilization of PDD improved fucoidan purification from 

F. vesiculosus crude extract drastically, in comparison with the recently-established purification by 

immobilized thiazine dyes. The batch process was performed in only 16 h instead of 44 h with 

thiazine dyes and 3 h in case of automated process by FPLC. This confirmed that there is a direct 

relationship between the number of amino groups and reagent sensitivity resulting in a higher 

percentages of captured fucoidan. Furthermore, purified products demonstrated improved anti-

coagulant and anti-viral activities, compared with >95% pure fucoidan purchased from Sigma-

Aldrich®. 

Moreover, development of axenic callus-like and protoplast suspension cultures from marine 

macroalgae as well as cultivation in bioreactors were possible. However, maintenance of cultures 

growth and induction of fucoidan production were limited by susceptible contamination and 

undefined nutritional requirements. Induction of hairy root and callus-like growth in wave bag 

bioreactor were presented for the first time.  

In addition, possibility of enzymatic synthesis of marine compounds by heterologous expression of 

the responsible enzymes was also discussed in the present dissertation showing a novel technique 

for fucoidan production. Genetically transformed E. coli was able to overexpress some enzymes 

(e.g., FucTs_50, STs_32 and STs_283) which proved their catalytic activities on their substrates. 

Moreover, overexpression of algal FucTs and STs might give the opportunity to specify these new 

category of enzymes and verify bioinformatics predictions.  

All of these experiments were performed as potential solutions for production of a fucoidan with a 

high-quality and low heterogeneity without effects on the global ecosystem. This product can be at 

this stage investigated clinically to give reliable and consistent results with patients and obey the 

GMP guidelines.   
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6. Future Outlook 

Further work should continue the optimization trials of cultivation techniques for fast growing 

cultures of marine organisms at reproducible and controlled conditions (e.g., bioreactor cultivation 

of hairy root) to assure a constant and homogenous supply of marine-based products such as 

fucoidan. This field of research needs much work and experiments to follow the advances achieved 

in terrestrial plants and animals fields.  

Overexpression of algal enzymes with their more similarities to human analogues might be applied 

for synthesis of fucosides and sulphated polysaccharides. Algal enzymes could be seen as a source 

of enzyme biodiversity for more understanding of their roles in physiological and pathophysiological 

processes (after investigations of their acceptor substrate specificity) such as synthesis of sialyl 

LewisX antigens and bacterial pathogenicity. In addition, in vitro enzymatic synthesis of fucoidan 

could be possible with these active enzymes. Incorporation of fucoidan precursors to cultivation 

medium of a genetically-modified organisms (either E. coli or P. pastoris) might enable the 

organisms to synthesize fucoidan and incorporate it into its cell wall, secret to the medium or even 

maintained in site of biosynthesis in cell organelles.   

In parallel, traditional extraction and purification techniques should be furtherly optimized especially 

that there is no standardized procedure. Automated processes, such as developed FPLC purification 

technique might contribute obtaining a high-yield and pure product without negligible effect on its 

chemical structure in a time-saving and cheap protocol. Additionally, as a step toward fucoidan 

approval as a medicament, pharmacokinetic and pharmacodynamics studies should be initiated. For 

example, accurate and robust analytical techniques which are able to determine its concentrations 

and recovery (%) in different synthetic dosage forms should be addressed including TB and Heparin 

Red® assay. This study determines robustness of fucoidan measurment in the presence of 

interferences from drug excipients. 
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Appendix A 

Chemical structures of some marine-derived bioactive compounds 

 

               

 

            

 

 

   

 

Fig. 73: Chemical structures of some selected marine-derived compounds previously-mentioned in 

Table 1  

Different products could find great interest in medical fields and were able to be produced and 

marketed globally. 
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Cont., Fig. 73: Chemical structures of some selected marine-derived compounds which were mentioned 

in Table 1.  

Different products could find great interest in medical fields and were able to be produced and 

marketed globally. 



Appendix 

145 

 

 

        

         

 

 

Cont., Fig. 73: Chemical structures of some selected marine-derived compounds which were mentioned 

in Table 1.  

Different products could find great interest in medical fields and were able to be produced and 

marketed globally. 
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Cont., Fig. 73: Chemical structures of some selected marine-derived compounds which were mentioned 

in Table 1.  

Different products could find great interest in medical fields and were able to be produced and 

marketed globally. 
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Appendix B 

Reagents and buffers 

1. 20 mM Maleic acid buffer (MAB) (pH 1) 

 

Component Quantity Producer 

- Maleic acid                  2.32 g TU Kaiserslautern 

(Chemistry Department) 

- Deionized water 900 mL  

The solution was adjusted at pH 1 before the volume had been completed to 1 L. 

 

2. 0.06 mM Toluidine blue O 

 

Component Quantity Producer 

- Toluidine blue O 0.018 g Sigma-Aldrich® 

- Maleic acid buffer (pH 1) to 1 L  

 

 

3. 20 mM 2-(N-morpholino) ethanesulfonic acid (MES) (pH 6) 

 

Component Quantity Producer 

- MES monohydrate      2.32 g Carl-Roth® 

- Deionized water 900 mL  

The solution was adjusted at pH 6 before the volume had been completed to 1 L. 

 

4. Phosphate-buffered saline (1x) (PBS buffer) (pH 7.4) 

 

Component Molarity (mM) Quantity (g) Producer 

- Na2HPO4.2H2O                5.0 12.0  Sigma-Aldrich® 

- NaHPO4.H2O   1.5 0.21  

- KCl 2.7 0.2 Carl-Roth® 

- NaCl 137 8.01 Sigma-Aldrich® 

- Deionized water 900 mL  

The solution was adjusted at pH 7.4 before the volume had been completed with deionized water to 1 L. 
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5. Toluidine blue, thionin acetate and perylene diimide derivative (as TFA salt) (CF3CO2H)8 for 

immobilization 

 

Component Toluidine blue O Thionin acetate Perylene diimide derivative 

Molarity (mM) 2 4 6 2 4 2 

Quantity (g) 0.61 1.22 1.8 0.57 1.15 3.66 g 

Producer Sigma-Aldrich® University of Heidelberg 

(Institute of inorganic 

chemistry) 

The different powders had been dissolved with 1 L deionized water. 

 

6. 50 mM Na2HPO4 (eluent for molecular weight investigations) 

 

Component Quantity Producer 

- Na2HPO4 7.1 g Sigma-Aldrich® 

- Deionized water 1 L  

pH was only measured directly after powder dissolution and it was 9.1 at room temperature (23 °C). 

 

7. 0.9% (w/v) NaCl 

 

Component Quantity Producer 

- NaCl 9 g Sigma-Aldrich® 

- Deionized water 1 L  

 

 

8. 100 mM Na2S2O4 in 20 mM MES (pH 6) 

 

Component Quantity Producer 

- Na2S2O4   17.4 g TU Kaiserslautern (Chemistry 

Department) 

- MES (pH 6) 1 L  
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9. Enzyme solution for protoplast isolation 

According to Mussio and Rusig [177], protoplast from F. vesiculosus was isolated by the following 

solution. 

Component Molarity (M) or %w/v Quantity (g)/100 mL Producer 

- Mannitol 0.5 9.1 - Sigma-Aldrich® 

- Trisodium citrate 0.11 2.8 

- TU Kaiserslautern 

(Chemistry 

Department) 

- BSA 0.3 % 0.3 - Sigma-Aldrich® 

- Cellulase R-10 2% 2.0 - Duchefa Biochemie 

- Alginate lyase 0.05% 0.05 - Sigma-Aldrich® 

- Macerozyme 0.5% 0.5 - Duchefa Biochemie 

- MES 0.08% 0.08 - Carl-Roth® 

All constituents should be dissolved in autoclaved sea water and then filter sterilized and stored at 4 °C.   

  

10. Protoplast washing solution 

 

Component Molarity (M) Quantity (g) /L Producer 

- NaCl 0.4 23.38   

Sigma-Aldrich® 
- CaCl2.2H2O 0.005 0.74  

pH was adjusted at 7.0 before autoclaving.  

 

11. Antibiotic stock solutions (1000x) in LB cultivation medium 

   

Antibiotic Concentration (mg.mL-1) Producer 

- Ampicillin sodium 100.0 in water AppliChem GmbH 

- Kanamycin sulphate 50.0 in water Carl-Roth® 

- Chloramphenicol 34.0 in 70% v/v ethanol AppliChem GmbH 

Prepared stock antibiotic solutions should be sterile-filtered then stored at -20 °C.  

Other antibiotics used in surface sterilization protocol were purchased from AppliChem GmbH. 
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12. Agarose gel electrophoresis: 50x TAE buffer 

 

Component Molarity (M) Quantity (g)/L Producer 

- Tris-acetate (pH 8.5) 2 242.28 Carl-Roth® 

- Na2EDTA  0.05 18.61 

 

13. Stock solutions in protein expression, detection and purification 

13.1. General solutions 

 

Compound Concentration  

- Anhydrotetracycline (AHT) 2 mg.mL-1 in DMF or ethanol 

- Ammonium Persulphate (APS) 10 % (w/v) 1 g.10 mL-1 deionized water 

- Avidin 2 mg.mL-1 deionized water 

- 5-Bromo-4-chloro-3-indolyl phosphate (BCIP) 50 mg.mL-1 in DMF 

- Nitro blue tetrazolium (NBT) 100 mg.mL-1 in 70% (v/v) DMF 

Prepared and stored at – 20 °C. 

 

13.2. SDS-PAGE and Western blot solutions 

 

13.2.1. 10x SDS Running buffer 

 

Component Molarity (M) Quantity (g)/L Producer 

- Tris-HCl (pH 8.3) 0.25 30.28 Carl-Roth® 

- Glycine 1.92 144.0 Sigma-Aldrich® 

- SDS (1% w/v) 0.035 10.0 Carl-Roth® 

 

13.2.2. 4x Stacking gel buffer 

 

Component Molarity (M) Quantity (g)/200 mL 

- Tris-HCl (pH 6.8) 0.5 12.114 

- SDS (4% w/v) 0.138 8.0 
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13.2.3. 4x Separation gel buffer 

 

Component Molarity (M) Quantity (g)/200 mL 

- Tris-HCl (pH 8.8) 1.5 36.34 

- SDS (0.4% w/v) 0.0138 0.8 

 

13.2.4. 4x SDS sample buffer 

 

Component Molarity (M)/%w/v Quantity (g)/10 mL Producer  

- Tris-HCl (pH 6.8) 0.1 0.121 All products were 

purchased from 

Sigma-Aldrich® 

- SDS (8% w/v) 0.28 0.8 

- Glycerol  40% v/v 4 mL 

- β-Mercaptoethanol  10% v/v 1 mL 

- Bromophenol blue  0.015 (1% w/v) 0.1 

 

13.2.5. SDS-Gel plate (12.5%) 

In the beginning, the following reagents and gel should be prepared, as follows: 

 

Reagent Separation gel (12.5%) Stacking gel (5.25%)  Stop gel 

- Acrylamide 30% 6.7 mL 1.4 mL 420 µL 

- Buffer 4.0 mL 2.0 mL 250 µL 

- D.W 5.3 mL 4.6 mL 330 µL 

- 10% APS 80 µL 30 µL 13 µL 

- TEMED 8 µL 20 µL 2 µL 

 

As shown in Fig. 74, each plate consists of 500 µL of stop gel should be poured in between fitted glass plates 

in its casting chamber to form the basal guard layer of the gel. Afterwards, 3 mL of separation gel form the 

main part of gel then 1 mL of stacking buffer to be appeared as in the following figure. Prepared plates should 

be then stored in wet tissues at 4 °C till time of use. 
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Fig. 74: SDS-PAGE plate showing its building components 

 

13.2.6. Coommassie blue staining solution 

 

Component % v/v Volume mL/ L Producer 

- Acetic acid (P. A., 99.8%) 10 100 TU Kaiserslautern 

(Chemistry Department) - Ethanol (Analytical grade, ≥99.8%) 30 300 

- Coomassie Brilliant Blue G-250 

Dye 

0.5% w/v 5.0 g AppliChem GmbH 

 

13.2.7. Coommassie blue bleaching solution 

 

Component % v/v Volume mL/ L 

- Acetic acid (P. A., 99.8%)  10 100 

- Ethanol (Analytical grade, ≥99.8%) 30 300 

 

13.2.8. Western Blot 

 

i. Towbin buffer 

 

Component Molarity (M) Quantity (g)/L 

- Tris (pH 8.3) 0.025 3.028 

- Glycine 0.192 14.4 

pH should not be adjusted with acids or alkali. 
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ii. Alkaline phosphatase (AP buffer) pH 9.5 

 

Component Molarity (M) Quantity (g)/L Producer 

- Tris-HCl  0.1 3.028 Carl-Roth® 

- NaCl 0.1 5.85 Sigma-Aldrich® 

- MgCl2 0.005 1.02 Carl-Roth® 

 

iii. PBS-T buffer 

 

Component Volume (mL) Producer 

- PBS  999.0  

- Tween-20 (0.1% v/v) 1.0 Carl-Roth® 

 

iv. Blocking solution in PBS-T buffer 

 

Component Quantity (g)/ 100 mL Producer 

- Albumin fraction V from BSA  3.0 Carl-Roth® 

- Complete volume to 100 mL by PBS-T   

 

v. Purification buffer (Buffer W (pH 8.0)) 

  

Component Molarity (M) Quantity (g)/L 

- Tris-HCl 0.1 12.14 

- NaCl  0.15 8.76 

1 mM EDTA was excluded from IBA GmbH formula 

 

vi. Elution buffer (Buffer E)  

 

Component Molarity (M) Quantity (g)/L Producer 

- Desthiobiotin 0.0025 0.54 Sigma-Aldrich® 

- Buffer W was added to 1 L 
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vii. Regeneration buffer (Buffer R) 

  

Component Molarity (M) Quantity (g)/L 

- 2-[4-hydroxy-benzeneazo]benzoic acid 

(HABA) 

0.001 0.24 

- Buffer W was added to 1 L 

 

14. Description of Sepabeads® EC-EA [98]  

 

Item Description 

Grade S (small) 

Particle size range 100-300 µm 

Matrix Polymethacrylate 

Appearance Perfect spherical white opaque beads 

Functional group Ethylenediamino 

Functional group density Min. 600 µmol/g wet 

Median pore diameter 10 – 20 nm 

True density  >1.1 g/mL 

Water retention  55 – 65 % 

Temperature stability range 2 – 60° C 

pH stability 1 - 14 

Recommended storage temperature Room temperature 
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Appendix C  

Medium composition and preparations 

 

1. Lysogeny Broth-Miller (LB)-agar medium [Tissue culture chapter] 

 

Component Quantity (g/L) Producer 

- Tryptone 10.0 AppliChem GmbH 

- Yeast extract 5.0 

- NaCl 10.0 

- Agar  15.0 Carl-Roth® 

 

Medium components (without agar) had been dissolved in deionized water (pH 6.8 – 7.0, 24.0 °C), then it 

was autoclaved after the addition of agar. 

 

2. Marine Boullion (MB50)-Agar medium  

 

Component Quantity (g/L) Producer 

- Marine Broth (Carl Roth®)  20.0 Carl-Roth® 

- NaCl 9.7  

- Agar (1.5 % w/v) 15.0  

 

Medium components (without agar) had been dissolved in deionized water (pH 6.8 – 7.0, 24.0 °C), then it 

was autoclaved after the addition of agar. 

 

3. Murashige and Skoog (MS) medium (pH 5.8) supplemented with 3% (w/v) sucrose 

 

Component Quantity (g/L) Producer 

- Sucrose 30.0 Carl-Roth® 

- MS  4.4 AppliChem GmbH 

- Agar 5.5 Carl-Roth® 

 

 

4. Nutrient agar medium for cultivation of Rhizopium radiobacter DSM30147  

(as described by Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures) 

 

Component Quantity (g/L) Producer 

- Pepton (Soya) 5.0 Sigma-Aldrich® 

- Meat extract 3.0 AppliChem GmbH  

- Agar (for solid medium) 15.0 Carl-Roth® 

 

Constituents were dissolved in 900 mL deionized water and pH was adjusted to 7.0, before the addition of agar. 

Volume was then completed to 1 L before autoclaving. 
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5. LB Broth medium (Liquid and solid media) [Lennox] [for heterologous expression chapter] 

 

Component Quantity (g/L) Producer 

- Tryptone 10.0 Carl-Roth® 

- Yeast extract 5.0  

- NaCl 5.0  

- Agar (for solid medium) 15.0   

Complete volume to 1000                                                                                

 

Prepared medium was also purchased from Carl-Roth®. In this case, 20 g of the medium powder was dissolved 

in 1 L deionized water. 1000x Sterile-filtered antibiotic solution (1 mL) should be added to a cooled 

autoclaved medium. 

 

6. PES medium 

In a ratio of 1:50, 20 mL of Enrichment Stock Solution (ESS) was diluted to 1 L using 0.45 µm filtered 

seawater to produce PES medium. pH should be adjusted at 7.8 before autoclaving. In addition, vitamins 

should be added to cooled autoclaved medium. In washing steps, an alternative medium was used (PESA), in 

which PES medium was used without vitamins. 

 

6.1. Enrichment Stock Solution (ESS) (50x) 

 

Component Quantity (g) /L Producer 

- Tris base 5.0 Carl-Roth® 

- NaNO3 3.5 Merck 

- Na2 β-glycerophosphate.H2O 0.5 AppliChem GmbH 

- Iron-EDTA solution (see 14.2) 250 mL  

- Trace metal solution (see below) 25 mL  

- Vitamin B1 (Thiamine.HCl) 5x10-4 Carl-Roth® 

- Vitamin H (Biotin) 5x10-6 Sigma-Aldrich® 

- Vitamin B12 (Cyanocobalamin) 1x10-5 Carl-Roth® 

 

 

6.2. Iron-EDTA solution 

 

Component Quantity (g) /L Producer 

- Na2EDTA.2H2O 6.0 Carl-Roth® 

- Fe(NH4)2(SO4)2.6H2O 7.0 Merck 
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6.3. Trace metal solution 

 

Component Quantity (g/L) Producer 

- Na2EDTA.2H2O 2.54 Carl-Roth® 

- H3BO3 2.24 Merck 

- MgSO4.7H2O 0.24 Merck 

- ZnSO4.7H2O 0.044 TU Kaiserslauern 

(Chemistry 

Department) 

- CoSO4.7H2O 0.01 

 

 

7. ASP-12-NTA medium 

Medium constituents were completely dissolved in deionized water with aid of ultrasound. The medium pH 

was adjusted to 7.8 before autoclaved (20 min, 121° C, 2 bar). Sterile-filtered vitamin solutions were added 

to a room-temperature autoclaved medium.  

 

Component Quantity (g) /L Producer 

- NaCl 20 Sigma-Aldrich® 

- KCl 0.7 Sigma-Aldrich® 

- MgSO4.7H2O  7.0 Merck 

- MgCl2.6H2O 4.0 Sigma-Aldrich® 

- CaCl2.2H2O 0.4 Sigma-Aldrich® 

- NaNO3 0.1 Merck 

- K3PO4 0.01 Sigma-Aldrich® 

- Na2 β-glycerophosphate.H2O 0.01 AppliChem GmbH 

- Na2SiO3.9H2O 0.15 Sigma-Aldrich® 

- PII metal solution 10 mL  

- SII metal solution 10 mL  

- Nitrilotriacetic acid 0.1 TU Kaiserslauern 

(Chemistry Department) 

- Tris 1.0 Carl-Roth® 

- Vitamin B1 (Thiamine.HCl) 0.1 Carl-Roth® 

- Vitamin H (Biotin) 1x10-3 Sigma-Aldrich® 

- Vitamin B12 (Cyanocobalamin) 2x10-4 Carl-Roth® 
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7.1. PII metal solution 

 

Component Quantity (g) /100 mL Producer 

- Na2EDTA.2H2O 0.1 Carl-Roth® 

- FeCl3 0.001 TU Kaiserslauern 

(Chemistry Department) 

- H3BO3 0.02 Meck 

- MgCl2.2H2O 0.004 Carl-Roth® 

- ZnCl2.7H2O 0.0005 TU Kaiserslauern 

(Chemistry Department) 

- CoCl2 0.0001 TU Kaiserslauern 

(Chemistry Department) 

 

 

7.2. SII metal solution 

 

Component Quantity (g) /100 mL Producer 

- NaBr 0.1 TU Kaiserslauern 

(Chemistry Department) 

- SrCl2 0.02 Sigma-Aldrich® 

- RbCl 0.002 Sigma-Aldrich® 

- LiCl 0.002 TU Kaiserslauern 

(Chemistry Department) 

- Na2MoO4 0.005 Sigma-Aldrich® 

- KI 0.0001 TU Kaiserslauern 

(Chemistry Department) 

 

8. F/2 medium 

A sterile-filtered 50x Guillard’s (F/2) Marine Enrichment medium was purchased from Sigma-Aldrich®. For 

the production of a 1 L medium, 20 mL of medium was diluted by 980 mL 0.45 µm filtered and autoclaved 

sea water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

159 

 

9. Protoplast cultivation medium [177] 

 

Component Molarity / %w/v Quantity (g) 

/100 mL 

Producer 

- HEPES 2 mM 0.047  Carl-Roth® 

- PESA (3.8 % sea salt) 1% v/v 1.0 mL  

- Glucose 250 mM 4.5  Sigma-Aldrich® 

- Sucrose 150 mM 5.1  Carl-Roth® 

- Casein hydrolysate 0.025 % 0.025 Sigma-Aldrich® 

- Ornithine hydrochloride 20 µM 3.3x10-4  Duchefa 

Biochemie 

- CPPU 0.4 µM 9.9x10-3  Duchefa 

Biochemie 

- 2,4-D 0.45 µM 1 x 10-5  Duchefa 

Biochemie 
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Appendix D  

Protocols 

1. Heat shock bacterial transformation protocol 

i. E. coli JM83 and BL21 (DE3) competent cells were provided from Prof. Dr. Nicole Frankenberg-

Dinkel’s lab. (Institute of Microbiology, TU Kaiserslautern) in a 1.5 mL reaction vessel as 0.5 mL 

samples. The cells were preserved in a cryopreservation refrigerator Cells were thawed on ice, firstly for 

5 min. 1 µL of 100 ng µL-1 dissolved DNA constructs was added afterwards. 

ii. Cells were incubated with constructs on ice for 30 min.   

iii. The mixtures were then heat shocked at 42 °C for 120 s. 

iv. 700 µL of LB broth was added afterwards to the tube and the transformation reactions placed in a shaker 

incubator at 37 °C for 45-60 min. 

v. At the end of this incubation, centrifugation was carried out for 1 min. at 13200 rpm and/or spread 100 

µL of the cell suspension on LB agar plates supplemented with the suitable antibiotic. 

vi. Finally, plates were incubated overnight for approx. 16 h at 37 °C to get colonies of genetically 

transformed E. coli with corresponding required DNA. 

  

2. PCR protocol (Thermo Fisher Scientific®) 

Each reaction tube should be incubated in ice, while constituents were added:  

- 25 µL Dream-TagTM green PCR Master Mix (2x), 

- 2 µL fwd primer (20 µM), 

- 2 µL rev primer (20 µM), 

- 1 µL DNA template (50 ng), and  

- 20 µL sterile highly pure water. 

The PCR reaction afterwards was performed, according Table 18. 

 

Table 18: PCR steps used in amplification of synthetic Esi0021_0026, Esi0050_0098, Esi0283_0018 and 

Esi0032_0064 

  

Step Temperature ( °C) Time No. of cycles 

Initial denaturation 95 3 min 1 

Denaturation 95 30 s 30 

Annealing Depend on primer’s Tm 30 s 

Extension 72 1 min 

Final extension 72 10 min 1 

Storage 4 forever 

 

3. Gibson assembly transformation protocol, according to Gibson assembly cloning kit instruction 

manual [254] 

i. Thaw chemically competent cells on ice. 

ii. Add 2 µL of the chilled assembly product to the competent cells. Mix gently by pipetting up and down 

for 4–5 times. Do not vortex. 

iii. Place the mixture on ice for 30 min. Do not mix. 

iv. Heat shock at 42 °C for 30 s. Do not mix. 
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v. Transfer tubes to ice for 2 min. 

vi. Add 950 µL of room-temperature SOC media to the tube. 

vii. Incubate the tube at 37°C for 60 min. Shake vigorously (250 rpm) or rotate. 

viii. Spread 100 µl of the cells onto the selection plates.  

ix. Incubate overnight at 37 °C.  

 

4. Chromogenic detection of Strep-tag® fusion proteins with alkaline phosphatase (Western blot) 

According to the protocol described by IBA BioTAGnology [258] with some modifications, steps of 

protocols were performed as follow: 

i. After SDS-PAGE, electro-transfer of proteins via Semi Dry-Blot technique to a PVDF membrane 

(previously activated by incubation with MeOH for 5 min) was performed firstly. Membrane and 

Whatman filter papers were equilibrated with Towbin buffer, before protein transfer, which is carried 

out for 20 min at 15 V using an electrotansfer cell.   

ii. Block the membrane with 20 ml PBS-blocking buffer (3% w/v albumin Fraction V in PBS-T buffer) 

by incubation for 1 h (room temperature; with gentle shaking) or overnight (4°C). 

iii. Wash three times with 20 ml PBS-T buffer (each step: 5 min., room temperature, gentle shaking).  

iv. After the last washing step, add 10 ml 2 µg.mL-1 avidine in PBS-T buffer to the membrane (10 minutes, 

room temperature, gentle shaking). This blocks endogenously biotinylated proteins (e.g. the biotin 

carboxyl carrier protein (BCCP, 22 kDa) in case of E. coli) which will otherwise stain sensitively.  

v. Add 2.5 µL Strep-Tactin® labeled with alkaline phosphatase conjugate to 10 mL PBS-T buffer (1:4000). 

Incubate 60 min. at room temperature with gentle shaking.  

vi. Wash three times with PBS-T buffer (each step: 5 min, room temperature, gentle shaking).  

vii. Wash three times with PBS-buffer (each step: 5 min, room temperature, gentle shaking). 

viii. Equilibrate the membrane with 10 mL alkaline phosphatase buffer for 5 min with gentle shaking. Add 

33 µL nitrotetrazolium blue (NBT; 100 mg.mL-1) and 66 µL 5-bromo-4-chloro-3-indolyl-phosphate 

(BCIP; 50 mg mL-1) to a 10 mL fresh alkaline phosphatase buffer. 

ix. Proceed the chromogenic reaction under shaking until optimal signal:background ratio is achieved.  

x. Stop reaction by washing several times with deionized water.  

xi. Air dry the membrane and store it in the dark. 
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5. Production of adsorbent (immobilized TB, TA and PDD) [93] 

 

Step 1  Derivatization of the adsorbent i. 500 mg Sepabeads® EC-EA 

ii. 0.5 mL 50% Glutardialdehyd solution (Glutaraldehyd=1,5-Pentandial) 

iii. 4.5 Ml 20 mM MES (pH 6) 

i. 24 h incubation in an overhead shaker (F1 mode, 30 rpm) 

Step 2 Washing  ii. Three times with 6.6 mL H2O 

iii. 24 h incubation in an overhead shaker (F1 mode, 30 rpm) 

Step 3 Simultaneous reduction with 

Na2S2O4 and dyes immobilization  

i. Add 6.6 mL 100 mM Na2S2O4 in 20 mM MES (pH6), 0.5 mL 2 mM aqueous TB, TA 

or PDD solutions 

ii. 12 h incubation in an overhead shaker (F1 mode, 30 rpm) 

Step 4 Washing  

  

i. Three times 6.6 mL H2O  

ii. 24 h incubation in an overhead shaker (F1 mode, 30 rpm) 

Step 5  iii. Three times with 6.6 mL 5 M NaCl in 20 mM MAB, pH1  

iv. 24 h incubation in an overhead shaker (F1 mode, 30 rpm) 

Step 6 v. Three times with 6.6 mL H2O 

vi. 24 h incubation in an overhead shaker (F1 mode, 30 rpm) 

Step 7 Drying i. Dry at 50 °C until obtaining dried cyan or red-coloured beads 
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6. Application of particles for the purification of fucoidan from crude extract [93] 

 

Step 1 A stock solution of  crude extract with 2.5 mg.mL-1 fucoidan in 20 mM MAB (pH 1) or 20 mM  MES (pH 6) was prepared 

 

Step 2  Adsorption phase - To 50 or 75 mg derivatized beads (adsorbents) add 1.5 mL 2.5 mg mL-1 crude extract 

Incubation for 44 h room temperature for thiazine dyes or 16 h for perylene diimide 

derivatized beads (F1 mode, 30 rpm)  

- Centrifuge and remove the supernatant to be analyzed (calculation of adsorption rate 

and % of adsorbed fucoidan) 

Step 3 

 

 Washing phase - Washing the adsorbents for 3 h with 1 mL H2O at room temperature. 

- Centrifuge and take a sample from supernatant for analysis 

Step 4 

 

- Washing with 1 mL of 0.1 M NaCl prepared in 20 mM MAB (pH 2) for 5 h at room 

temperature (F1 mode, 30 rpm) 

- Centrifuge and remove the supernatant. 

Step 5 

 

 Elution phase - Incubation of 1.5 mL 3 M NaCl prepared in 30% (v/v) ethanol with loaded derivatized 

beads for 16 h in a thermoshaker (50°C, 800 rpm). 

- Centrifuge and collect the eluate  

Step 6  Washing and storage - Washing adsorbents with 1 mL 20% ethanol in 20 Mm MES pH 6 for 8 h (room 

temperature, 30 rpm) 

- Storage of the adsorbents in 20% ethanol in 20 Mm MES pH 6   

Step 7  Removal of ethanol and concentration 

of eluate 

- In a rotary evaporator (60 °C, 100 mbar) eluate was concentrated (1:0.3) 

 

Step 8  Dialysis and removal of NaCl - In a Dialysis membrane of MWCO (3.5 kDa) concentrated eluate was dialyzed against 

completely deionized water 

- The process should be stopped when conductivity of replaced water (every 2-3 h) had 

stable and similar to fresh deionized water for at least 2 h.     

Step 9  Lyophilization of dialyzed eluate - In a lyophilizer (- 20° C, 1.03 mbar), frozen eluate was transformed to fluffy powdered 

fucoidan. 
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Appendix E 

Calibration curves, instruments’ charts and analysis reports 

1. Calibration curves 

1.1. Total sugar content in crude fucoidan 

 

 

 

Fig. 75: Calibration curve of Dubois or phenol-sulphuric acid assay 

Glucose was used as a standard and absorbance was measured at 490 nm. 

 

1.2. Fucoidan content and purity of crude fucoidan 

a. TB assay  

  

 
 

Fig. 76: Calibration curve of TB assay 

Fucoidan (>95% pure, Sigma-Aldrich®) was used as a standard at different serial dilution and 

reacted with0.06 mM TB and absorbance was measured at 632 nm. 
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b. Heparin Red® assay 

 

 
 

Fig. 77: Calibration curve of Heparin Red® Ultra assay 

The figure shows replicates from crude fucoidan (Fucoidan_A) and alginate sodium salts to 

confirm that there selectivity of the assay to fucoidan. Fucoidan (F8190, >95% pure Sigma-

Aldrich®) was used as a standard. Excitation λ at 570 nm and emission was recorded at 605 nm.  

 

 

1.3. Fucose content in crude fucoidan 

 

 

Fig. 78: Calibration curve of Dische assay 

L-fucose was used as a standard. Absorbace was measured at two λ and the differences were plotted 

against fucose concentration. 
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1.4. Sulphate content in crude fucoidan 

 

 

Fig. 79: Calibration curve of BaSO4 test 

 Ammonium sulphate was used as a standard and absorbance was measured at 600 nm. 

 

 

1.5. Phosphate standard calibration curve for FucTs activity assay 

 

 

 

Fig. 80: Phosphate standard calibration curve for FucTs activity assay 

Detection was performed by malachite green assay using KH2PO4 as a standard, following the 

provider’s manual. The slope of the curve was used to determine the specific activity of FucTs_50 

as stated in the Glycosylation activity kit’s manual. 
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1.6. Phosphate standard calibration curve for STs activity assay 

 

 
 

Fig. 81: Phosphate standard calibration curve for STs activity assay  

Detection was performed by malachite green assay using KH2PO4 as a standard. The slope of the 

curve was used to determine the specific activity of FucTs_50 as stated in the Universal 

sulphotransferase activity kit’s manual. 

 

 

2. 3D structure of over-expressed algal FucTs and STs 

3D structure of both enzymes were traced by the online free service Phyre2 and PyMOL software, 

as shown in Fig. 82 and 83 to show their building units and folding. 
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a                                                                 b 

 

Fig. 82: 3D structures of FucTs_50 (a) and FucTs_21 (b) as traced by the free online Phyre2 server and 

PyMOL software 

 

   

a                                                              b 

 

Fig. 83: 3D-structures of STs_32 (a) and STs_283 (b) as traced by traced by the online service Phyre2 and 

PyMOL software 
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3. Instruments’ charts 

3.1. Automated purification of fucoidan by immobilized PDD  

 

 

a 

 

 

b 

Fig. 84: FPLC chromatograms for fucoidan purification by immobilized PDD  

a: 1st cycle of purification; b: 2nd cycle of purification. Blue line= UV absorbance at 280 nm; Red 

line= conductivity, Pink line= pH 
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3.2. 1H-NMR spectra of purified fucoidan  

 

 
a 

 

 
b 

 

Fig. 85: 1H-NMR spectra of fucoidan fractions in comparison with fucoidan purchased from Sigma-

Aldrich® 

Analysis resulted in poorly-translated spectra and revealed in complex nature of fucoidan. (400 

MHz, in D2O); a: Fucoidan_6; b: Fucoidan_1; c: Fucoidan_M; d: commercial fucoidan 
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c 

 

d 

 

Cont., Fig. 85: 1H-NMR spectra of fucoidan fractions in comparison with fucoidan purchased from 

Sigma-Aldrich®. 

Analysis resulted in poorly-translated spectra and revealed in complex nature of fucoidan. (400 MHz, 

in D2O); a: Fucoidan_6; b: Fucoidan_1; c: Fucoidan_M; d: commercial fucoidan 
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4. Others 

4.1. Anti-microbial activity of fucoidan 

4.1.1. Anti-fungal activity 

Fig. 86 demonstrated the results of the studied anti-fungal activity of fucoidan fractions and commercially-

available product against C. albicans in comparison with Ampho B. For C. troicalis and glabrata, fucoidan 

fractions showed a similar pattern and confirmed its inactivity. 

 

 
 

Fig. 86: Anti-fungal activity of different fucoidan fractions against C. albicans, in comparison with the 

reference commercial product following the protocol of Kleymann and Werling [115] 

The anti-fungal drug Ampho B was used as a positive control. The figure confirmed inactivity of 

fucoidan as anti-fungal agent. 
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4.1.2. Anti-bacterial activity 

As shown in Fig. 87, there were no anti-bacterial activity of fucoidan fractions against Gram +ve and G-ve 

bacteria. Interestingly, in anti-Gram +ve activity assay, with high fucoidan concentration, the viability, 

however, was increasing and might prove the nourishment of fucoidan for bacteria. 

 

 
a 

 

 
b 

 

Fig. 87: Anti-bacterial activity of different fucoidan fractions against E. coli (a) and S. aureus (b) in 

comparison with the reference commercial product and following the protocol of Kleymann 

and Werling [115] 

The anti-bacterial ciprofloxacin was used as a positive control. The figure confirmed inactivity of 

fucoidan as an anti-bacterial agent. 
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4.2. CHNS analysis of fucoidan fractions 
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4.3. Melting point analysis of fucoidan fractions 
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4.4. Specific optical rotation of fucoidan fractions 
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Appendix F  

Lists of Figures, Tables, Schemes and devices 

 

1. List of Figures 

 

Fig. No. Fig. Caption 

1.  Seaweed production in the year 2014 by Aquaculture 

2.  Global distribution of the major brown macroalgae species 

3.  Overview of the different strategies dealt in the present work 

4.  Cell wall model in a brown macroalgae showing various fucoidan physiological functions 

5.  Published articles on fucoidan since 1900 till July 2017, according to ISI web of knowledge 

(Clarivate Analytics) 

6.  a: Different chemical structures of fucoidan from some Fucales seaweeds 

b: Chemical structures of fucoidan from some Laminariales and Chordariales seaweeds 

7.  Steps of immobilization protocol of TB on amino derivatized Sepabeads® EC-EA 

8.  Habitat of F. vesiculosus or bladder wrack across the north Atlantic in more temperate zone 

9.  Morphology and anatomical parts of F. vesiculosus thallus 

10.  Growth of the brown macroalgae F. vesiculosus at the south beaches of Wilhelmshaven (North 

Sea, 53°31.236N, 8°13.849E, Germany) 

11.  Extraction set of fucoidan from dried pretreated F. vesiculosus 

12.  Overview of fucoidan extraction process from pre-treated F. vesiculosus biomass and obtained 

crude fucoidan 

13.  Overview for isolated fractions of purified fucoidan 

14.  Average composition of the dried biomass of F. vesiculosus 

15.  Representation of polyanionic polysachharide reaction with fluorescent Heparin Red® 

16.  Adsorption (%) of fucoidan by immobilized 2 mM TB, TA and mixed dyes at pH 1 and pH 6 

17.  Comparison between adsorption (%) of fucoidan by immobilized 2, 4 and 6 mM TB at pH 1 

18.  Adsorption (%) of fucoidan by 2 mM immobilized TB for 60 h of incubation at pH 1 and pH 

6 

19.  Adsorption (%) of fucoidan from Fucoidan_A by 75 mg of 2 mM immobilized TB at pH 1 and 

pH 6 
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Fig. No. Fig. Caption 

20.  Adsorbed fucoidan (%) by 75 mg of immobilized TB for two cycles at pH 1 and pH 6 

21.  Effect of NaCl molarity in eluent on eluted fucoidan (%) 

22.  Immobilized TB and TA on Sepabeads® EC-EA 

23.  Molecular structure of a) perylene diimide derivative (N,N′-Bis-(1-amino-4,9-diaza dodecyl)-

1,7-di bromo perylen-3,4:9,10-tetracarboxylic acid diimide, and b) Heparin Red® 

24.  Immobilized PDD on Sepabeads® EC-EA 

25.  Adsorption (%) of fucoidan from Fucoidan_A by immobilized PDD 

26.  Multiple use of PDD-derivatized beads for three cycles 

27.  Fucoidan elution pattern from FPLC column in two successive cycles 

28.  FT-IR spectra of fucoidan before (Fucoidan_crude) and after (Fucoidan_PDD) in comparison 

with the commercially-available reference fucoidan purchased from Sigma-Aldrich® (>95% 

pure) 

29.   Representation of an α-(1-3)-linked L-fucopyranoside repeating unit of fucoidan, as previously 

described by Cumashi, et al. 

30.  a: Effect of different fucoidan fractions on aPPT at a concentration of 0.01 mg mL-1 

b: A dose-dependent effect of Fucoidan_PDD on aPTT 

31.  Effect of different types of fucoidan on PT at a concentration of 0.01 mg mL-1  

32.  a: Effect of different fucoidan fractions on TT at a concentration of 0.01 mg mL-1 

b: A dose-dependent anti-thrombin effect of Fucoidan_PDD 

33.  Comparison between the anti-viral activities of fucoidan fractions against HSV-1 

34.  Antioxidant activity of different fucoidan fractions in comparison with ascorbic acid 

35.  Downstream process for fucoidan extraction and purification by either TB- or PDD-derivatized 

beads at pH 6 

36.  Determination of Fucoidan_PDD purity using Heparin Red® Ultra assay, in comparison with 

the commercial standard product (>95% pure) purchased from Sigma-Aldrich® 

37.  Callus and plantlet regeneration from an intact marine macroalgae thallus of Agardhiella 

subulata 

38.  Summary of previously-applied growth conditions and variables to develop marine macroalgal 

cultures 

39.  Applied growth conditions and variables to induce callus-like and protoplast cultures 

40.  Different explants of F. vesiculosus incubated on MB50 (a, b, c, d and e) and LB (f) media at 

17 °C and 26 °C, respectively, after different steps of Protocol 6 
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Fig. No. Fig. Caption 

41.  Enzymatic reduction of tetrazolium chloride (TTC) (Tetrazolium cation, colorless) to 

triphenylformazan (TPF) (Formazan, red color) 

42.  Protoplasts after 72 h heterotroph cultivation in the protoplast medium showing start of cell 

multiplication and aggregation 

43.  Development of a phototrophic callus-like growth from F. vesiculosus explant in ASP-12-

NTA medium 

44.  (a) Cultivation of F. vesiculosus explants in a wave bag bioreactor, (b) Filamentous callus-like 

growth from F. vesiculosus explant developed after four weeks of phototrophic cultivation in 

PES medium 

45.  Development of crown gall or hairy-root in F. vesiculosus explants after transfection with R. 

radiobacter or A. tumefaciens DSM 30147 

46.  The two different possible pathways for fucoidan biosynthesis in the brown algae Ectocarpus 

siliculosus (a) De novo pathway and b) salvage pathway 

47.  Detailed de novo (a) and salvage pathway (b) for GDP-L-fucose biosynthesis either from GDP-

mannose or cytosolic L-fucose, respectively 

48.  Synthetic and cloned Esi0050_0098 and Esi0021_0026 in pMA-T and pMK plasmid vectors, 

respectively 

49.  Features of pASK-IBA 45(+) plasmid vector as described by IBA GmbH 

50.  Homology and phylogenetic relationships of algal FucTs_21 and FucTs_50 with other 

bacterial and human FucTs 

51.  Gibson Assembly work flow; an example 

52.  Agarose gel electrophoresis of amplified PCR products of Esi0021_0026 and Esi0050_0098 

53.  Design of pASK-IBA 45(+)_Esi0021_0026 DNA construct showing some possible restriction 

sites and gel electrophoresis results after its digestion with StuI and XbaI 

54.  Design of pASK-IBA 45(+)_Esi0050_0098 DNA construct showing some possible restriction 

enzymes and gel electrophoresis results after digestion XbaI 

55.  Alignment of DNA templates (pASK_Esi0021 and pASK_0050) with the forward (fwd) 

sequence of the sequencing results 

56.  SDS-PAGE (a) and Western blot (b) of overexpressed recombinant proteins from pASK_IBA 

45(+)_Esi0021_0026 and pASK_IBA 45(+)_Esi0050_0098 DNA constructs, in comparison 

with an empty vector plasmid in a 2 L of LB medium of E. coli BL21(DE3) 

57.  Western blot of expressed recombinant FucTs_50 from the pASK-IBA 45(+)_Esi0050_0098 

construct in comparison with empty vector plasmid during purification cascade 

58.  Glycosyltransferase activity kit principle, as described by the supplier (Bio-Techne®) 
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Fig. No. Fig. Caption 

59.  Measurement of catalytic activity of FucTs_50 on the donor substrate GDP-L-fucose by 

Glycosyltransferase activity kit 

60.  FucTs_50 hydrolytic activity toward GDP-L-fucose as determined by MC-CE 

61.  Catalysis of sulphonate group (SO3-) transfer to a hydroxyl group-containing compound by 

Sulphotransferases (STs) using PAPS as a donor substrate 

62.  Cloned E. coli_opt. Esi0032_0064 and Esi0283_0018 in pMA-T plasmid vector 

63.  A homology study between algal STs_283, STs_32 and the human Galactose-3-O-

sulfotransferase 2 (G3ST2) 

64.  Agarose gel electrophoresis of (a) amplified Esi0032_0064 (1386 bp) and (b) Esi0283_0018 

(1032 bp) with their overlapping ends from EcoRI/SacI restriction sites of the vector pASK-

IBA 45(+) 

65.  Designed pASK-IBA 45(+)_Esi0032_0064 (a) and pASK-IBA 45(+)_Esi0283_0018 (b) 

templates by pDRAW32 DNA analysis software 

66.  Agarose gel electrophoresis of extracted DNA constructs; pASK-IBA 

45(+)_Esi0032_0064_Opt. and pASK-IBA 45(+)_Esi0283_0018_Opt. after digestion with 

XbaI 

67.  Alignment of sequencing results of fwd DNA constructs; pASK-IBA 

45(+)_Esi0032_0064_Opt. (a) and pASK-IBA 45(+)_Esi0283_0018_Opt. (b) with the 

designed templates 

68.  Western blot of purified heterologusly expressed STs_32 by E. coli BL21 (DE3) 

69.  Western blot of purified heterologusly expressed STs_283 by E. coli BL21 (DE3) 

70.  Principle of the Universal Sulphotransferase activity kit as described by the supplier (Bio-

Techne®) 

71.  a: Relationship between purified STs_32 at different concentrations and liberated free 

phosphate from PAPS detected by malachite green and measured at 620 nm 

b: Relationship between purified STs_283 at different concentrations and from PAPS detected 

by malachite green and measured at 620 nm 

72.  Simulated fucosylation reaction of GlucNAc catalyzed by heterologously expressed FucTs_50 

73.  Chemical structures of some selected marine-derived compounds previously-mentioned in 

Table 1 

74.  SDS-PAGE plate showing its building components 

75.  Calibration curve of Dubois or phenol-sulphuric acid assay 

76.  Calibration curve of TB assay 

77.  Calibration curve of Heparin Red® Ultra assay 
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Fig. No. Fig. Caption 

78.  Calibration curve of Dische assay 

79.  Calibration curve of BaSO4 assay 

80.  Phosphate standard calibration curve for FucTs activity assay 

81.  Phosphate standard calibration curve for STs activity assay 

82.  3D structures of FucTs_50 (a) and FucTs_21 (b) as traced by the free online Phyre2 server and 

PyMOL software 

83.  3D-structures of STs_32 (a) and STs_283 (b) as traced by traced by the online service Phyre2 

and PyMOL software 

84.  FPLC chromatograms for fucoidan purification by immobilized PDD 

85.  1H-NMR spectra of fucoidan fractions in comparison with fucoidan purchased from Sigma-

Aldrich® 

86.  Anti-fungal activity of different fucoidan fractions against C. albicans, in comparison with the 

reference commercial product following the protocol of Kleymann and Werling 

87.  Anti-bacterial activity of different fucoidan fractions against E. coli (a) and S. aureus (b) in 

comparison with the reference commercial product and following the protocol of Kleymann 

and Werling 
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2. List of Tables 

 

Table. No. Table title 

1.  Selected categories and examples of marine-derived products. 

2.  Taxonomy of F. vesiculosus 

3.  Description of an automated fucoidan purification process by immobilized PDD using FPLC 

4.  Sugar, fucoidan, fucose and sulphate contents in different crude extracted fucoidan fractions 

from F. vesiculosus by Procedure_A and C 

5.  Elemental analysis (CHNS) and degree of sulphation results of different fucoidan fractions 

6.  a: Molecular weight parameters and polydispersity index (PDI) of different purified fucoidan 

fractions. 

b: Molecular weight parameters of fractions obtained by different NaCl molarity 

7.  Comparison among the different fucoidan fractions purified by immobilized TB, regarding 

start, colour change and decomposition temperature points 

8.  Comparison among the different fractions of fucoidan regarding specific optical rotation 

9.  Monomeric composition (%) of different purified fucoidan fractions 

10.  IC50 (μg.mL-1) of different fucoidan fractions isolated and purified from F. vesiculosus 

against HSV-1 in comparison with aciclovir 

11.  Some selected trials with callus cultures and plant regeneration in marine macroalgae 

organisms 

12.  Antibiotic stock solution (30x) composition 

13.  Summary of processes performed in all surface sterilization protocols 

14.  Examples of previous trials with heterologous expression to overexpress similar enzymes 

from different resources to that involved in fucoidan biosynthesis 

15.  Designed primers for cloning of Esi0050_0098 and Esi0021_0026 in pASK-IBA 45(+), 

according to NEBuilder® Assembly Tool 

16.  Overview of different algal STs, regarding their names, sizes of encoded genes, number of 

amino acids and putative functions 

17.  Designed primers for cloning of E- coli-adapted Esi0032_0064 and Esi0283_0018 in pASK-

IBA 45(+), according to NEBuilder® Assembly Tool 

18.  PCR steps used in amplification of synthetic Esi0021_0026, Esi0050_0098, Esi0283_0018 

and Esi0032_0064 
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3. List of schemes 

 

 

Scheme No. Scheme caption 

1. Overview of pre-treatment steps of the dried algae biomass before fucoidan extraction 

2. Graphical summary for fucoidan purification process from F. vesiculosus 
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4. List of used devices and instruments 

 

Name of the device Company Country 

- A Glass column (XK 16/20) GE Healthcare Europe GmbH Germany 

- Analytical balance (KERN ABS) KERN & SOHN GmbH Germany  

- Autoclave (Systec V-150) SYSTEC GmbH Labor-

Systemtechnik 

Germany 

- Bench centrifuge for eppis 

(Centrifuge 5415 D) 

Eppendorf Germany 

- Blood coagulation system 

(BCS® System)  

Siemens Healthcare Diagnostics 

Products GmbH, 

Germany 

- Capillary electrophoresis 

(cePRO 9600™)system 

Advanced Analytical Technologies USA 

- Conductivity meter set (Qcond 

2200) 

VWR International GmbH Germany 

- Cryopreservation refrigerator 

(Ultra low temperature freezer 

AV039P)   

Labortect  Germany 

- Digital polarimeter (P-2000) JASCO Deutschland GmbH Germany 

- Drying oven Binder GmbH Germany 

- Electrotansfer cell (Trans-Blot® 

SD Semi-Dry Transfer Cell) 

Bio-Rad USA 

- Elemental Vario Micro cube 

apparatus (WLD Board, V 

2.0.11) 

Elementar Analysensysteme 

GmbH 

Germany 

- FPLC (BioLogic Duo-FlowTM) 

supplied 

Bio-Rad USA 

- Freeze dryer (Christ® LDC-1m, 

Alpha 2-4) 

Martin Christ 

Gefriertrocknungsanlagen GmbH 

Germany 

- FT-IR (Spectrum 100) Perkin Elmer USA 
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Name of the device Company Country 

- GEL iX20 Imager (windows 

version) 

Intas Science Imaging Instruments 

GmbH 

Germany 

- HPLC-GPC system is composed 

of: 

i. pump (L 7100), 

ii. auto sampler (AS-2000 A), 

iii. GPC_MCX column (8x30 mm), 

iv. Detector (Shodex® RI-10), and 

v. Clarity GPC Extension software 

for data analysis 

 

- Merck-Hitatchi 

 

- PSS 

- Shimadzu Corporation 

- Clarity 

 

- Germany 

 

- Japan 

- Czech Republic  

- HPLC-UV-ESI-MS system 

(Ultimate 3000RS) is  composed 

of: 

i. degasser (SRD 3400),  

ii. a pump module (HPG 3400RS),  

iii. an autosampler (WPS 

3000TRS), 

iv.  column compartment (TCC 

3000RS), 

v. column (Gravity C18, 100x2 

mm,1.8 μm particle size; 

Macherey-Nagel) 

vi.  diode array detector (DAD 

3000RS), 

vii.  an ESI-ion-trap unit (HCT; 

Bruker), 

viii. Accurate-Post-Column-Splitter, 

and 

ix. Bruker Hystar, QuantAnalysis 

and Dionex Chromelion 

software for data collection and 

analysis. 

Dionex, Thermo Fisher Scientific Germany 
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Name of the device Company Country 

- Magnetic stirrer with heating 

(MR Hei-Standard) 

Heidolph Instruments GmbH & Co. 

KG 

Germany 

- Melting point apparatus 

(DigiMelt-MPA 160) 

SRS Scientific Instruments GmbH Germany 

- Microfluidizer (Microfluidics)  Quadro Engineering Corp.,  Canada 

- Microplate reader (EL808) 

provided with Microplate Data 

Collection & Analysis Software 

BioTek Instrument USA 

- Microscope (ECLIPSE Ni-U) 

with NIS-Element software 

Nikon Japan 

- Nanodrop spectrophottometer, 

with NanoDrop 2000/2000c 

Software 

Thermo Scientific USA 

- NMR Spectrometer (400 MHz, 

Brucker® 600 Ultrashield) 

Brucker  Germany 

- Orbital shaker (unimax 1010) Heidolph Germany 

- Overhead shaker (Multi Bio RS-

24) 

Biosan Latvia 

- PCR thermocycler (T-Gradient 

thermoblock) 

Analytik Jena AG Germany 

- pH meter (pH211) Hanna® Instrument USA 

- Photoincubator (AlgaTron 

AG230 ECO) 

PSI Czech Republic 

- Rotary evaporator (Laborota 

4003) 

Heidolph Instruments GmbH & 

Co.KG 

Germany  

- Shaker incubator (Infors HT 

Ecotron) 

Infors AG Switzerland 

- Shaker incubator (Innova® 44 

incubator shaker series)  

New Brunswick 

Scientific/Eppendorf AG 

Germany 

- Spectrofluorometer (FP-8300) JASCO Deutschland GmbH Germany 
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Name of the device Company Country 

- Superspeed Centrifuge 

(SORVALL LYNX® 6000) 

ThermoFischer Scientific USA 

- Thermoshaker (TS-100) Biosan Latvia 

- Tissuelyzer (MM 200) Retsch Germany 

- Top shaker (Rocker 3D basic) IKA®-Werke GmbH & Co. KG Germany 

- Ultrasonic bath (Sonorex®  

Digital 10 P)  

Bandelin Germany  

- UV/Vis-spectrometer (Cary 60 

Uv-Vis) 

Agilent Technologies USA 

- Vertical electrophoresis cell for 

SDS-PAGE (Mini-PROTEAN® 

Tetra cell) with PowerPac™ 

Basic Power Supply 

Bio-Rad USA 

- Visible spectrophotometer 

(Amersham Biosciences 

Einstrahl-Spektralfotometer 

Novaspec III) 

Klüver & Schulz GmbH Germany 

- Water ultra-purification system 

(Ultra Clear TWF/ El-ION UV 

plusTM) 

Siemens/Evoqua water technologies Germany 

- Wave bag bioreactor 

(BIOSTAT® RM) 

Sartorious Stedim Biotech GmbH Germany 
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