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Notations

f grey value or binary image
εS erosion by a structuring element S
δS dilation by a structuring element S
γS opening by a structuring element S
φS closure by a structuring element S
V volume
S surface area
M integral of mean curvature
χ Euler number
vq quartile dispersion coefficient

cv coefficent of variation (= σ̂
µ̂)

Al Aluminium
SiC Silicon carbide
Cu Copper
Floc local adjacency system
F adjacency system
Bd
r (x) d-dimensional (closed) ball of radius r centered at x.

ωd Lebesgue measure of the d-dimensional unit ball Bd
1(0) in Rd

K compact (closed and bounded) subsets of Rd
K compact convex subsets of Rd, also called convex bodies
K′ = K \ ∅ non-empty convex bodies
K′0 non-empty convex bodies with centre 0
dH(A,B) Hausdorff distance between the sets A and B
Hkd k-dimensional Hausdorff measure in space of dimension d
νd d-dimensional Lebesgue measure
F closed subsets of Rd
O open subsets of Rd
Vk(K) intrinsic volumes for convex body K
AMC17 SiC-particle reinforced Al alloy with 17vol% reinforcement
1A characteristic function of set A, 1A(x) = 1 if x ∈ A, 1A(x) = 0 else
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Introduction

Overview

Multiphase materials combine properties of several materials, which makes them
interesting for high-performing components. This thesis considers a certain set of
multiphase materials, namely Silicon-carbide (SiC) particle-reinforced Aluminium
(Al) metal matrix composites and their modeling based on stochastic geometry
models.

Stochastic modeling is used for the generation of virtual material samples: Once
we have fitted a model to the material statistics, we can obtain independent three-
dimensional “samples” of the material under investigation without the need of any
actual imaging. Additionally, by changing the model parameters, we can easily
simulate a new material composition.

The materials under investigation have a rather complicated micro-structure, as
the system of particles has many degrees of freedom: Size, shape, orientation and
spatial distribution. Additionally, the metal matrix has its own grain micro-structure
with Aluminium-Copper (Al2Cu) precipitations occurring on the grain boundaries.
In order to identify an adequate model, we have to take into account the failure
behaviour of the material, since calculations based on our model should lead to the
same failure results as experiments on the material.

Material failures can occur via various ways: cracks can appear first on phase bound-
aries, specifically between the Al grains or at the boundary between SiC and Al.
Another mechanism of failure is the breaking of SiC grains under load. Usually, the
failure is a combination of these mechanisms, see [Kai03,BGS04,SS92,HWS94].

Due to the specific size of the SiC particles, which have an nominal average equiva-
lent spherical diameter of less than 3.0 µm, the materials under investigation cannot
be imaged by standard CT-imaging, which only allows for a resolution of 1− 2 µm,
in special cases of synchrotron radiation of 0.3 µm. Instead, most image data is
obtained by two-dimensional SEM imaging. Three-dimensional images can be ob-
tained by the FIB-SEM method, however, this method is very time-consuming and
cost-intensive and is additionally quite limited in the size of the obtained three-
dimensional image. This means that images obtained by FIB-SEM are too small to
adequately sample particles with an equivalent diameter of 3.0 µm. For these cases,
model parameters have to be estimated from two-dimensional sections alone. For
samples with particles of an equivalent diameter of 0.7 µm or 0.3 µm the FIB-SEM

3
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image size and resolution are however well-suited.

In this thesis, we present a stochastic micro-structure model aimed for particle-
reinforced metal-matrix composites, based on the specific examples of SiC-reinforced
Al alloys. Modeling engineering materials by stochastic geometry models is a wide-
spread approach to generate virtual samples for simulations: For example, in [Esc12]
grains in concrete are modelled using random polytopes, in [Lau07, LR12, Lie14]
foams are modelled by random tessellations, and in [AJ10] a model for densely
packed bending fibres was introduced. Models for the particle system of a SiC-
particle reinforced Al alloy were presented in [CC06, CSG06], where finite element
simulations on binarised FIB-SEM images were compared to modeling the particles
by ellipsoids and spheres.

We model the reinforcement particles in terms of size, shape and orientation distri-
bution. Additionally, we show how to incorporate matrix grains into the model and
propose a method to model precipitations that often occur on phase boundaries.
There are several ways to produce this type of material, in our case we investigate
a composite that was extruded, see [Kai03]. The extrusion process adds a small
anisotropy with regards to the particle orientation, which we incorporated into our
model. Also, our model is easily adapted to other metal-matrix composites. Since for
many materials it is not easy to obtain 3D images, we present methods to estimate
parameters from 2D section images.

In the following, we will introduce the materials under investigation in detail. In
Chapter 1 we will present the mathematical foundations needed to establish the
models. This includes basics in stochastic geometry, spatial statistics, and mor-
phological image analysis. In Chapter 2 we present an overview of already existing
methods to prepare image data for measurement in 3D and 2D. In Chapter 3 we
present our model for the matrix’ grain distribution, particle distribution and pre-
cipitations. In Chapter 4 we show methods how to estimate the model parameters
from 2D sections. Chapter 5 presents our results and conclusions. Parts of Chapter 2
and Chapter 3 are submitted to appear in [LSB+ed].

Materials under investigation

The subject of our investigations are particle reinforced metal matrix composites,
specifically SiC reinforced Aluminium alloys. These materials consist of an Al-Cu
wrought alloy with SiC particles embedded in the matrix. The material is produced
using powder metallurgy techniques: The components are mixed as fine powders at
high temperatures and compacted to billets isostatically, while staying below the
melting temperature of the Al alloy and the SiC particles. This ensures an even
distribution of the particles within the matrix. Finally, the billets are extruded,
which causes an anisotropic orientation of the SiC particles. Details of the techniques
mentioned can be found in [HK04,Mat,TGC02].

Due to the particle reinforcement, these materials have a higher yield strength than
Al that was not reinforced, while preserving the light weight of the Al. Usually, the
reinforcement phase of this type of material accounts for up to 25% of the total vol-
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(a) (b) (c)

(d) (e) (f)

Figure 1: Detail of SEM images of AMC17 (a),(d): AMC17xxfine, obtained within
an FIB-SEM. (b),(e): AMC17xfine. (c),(f): AMC17xe. Top: transverse section,
Bottom: Longitudinal Section. The extrusion axis is parallel to the red line section.

ume of the material. In the samples investigated for this thesis, the volume content
of the reinforcement phase was set to 17%. During the cooling of the material, the
Al alloy formed Al grains with Al2Cu precipitations on the grain boundaries.

There were three different types of materials under investigation, which differ by size
and potentially also by shape of the reinforcement particles. The nominal particle
size, measured on 2D sections as the diameter of the corresponding circle, and stated
by the manufacturer was 0.3, 0.7 and 3.0 µm. The technical names of the materials
are AMC17xxfine (at 0.3 µm equivalent diameter), AMC17xfine (at 0.7 µm equiv-
alent diameter), and AMC17xe (at 3.0 µm equivalent diameter). By AMC17 we
will refer to the general class to which these materials belong, namely the Al alloy
reinforced with 17vol% SiC particles.

Imaging methods and data

SEM images

The standard method to investigate samples of AMC17 is scanning electron micro-
scope (SEM) imaging, yielding 2D images at high resolutions. Due to the anisotropy
introduced by the extrusion, the SEM images are obtained on longitudinal as well
as on transverse sections of the material, where the longitudinal sections include
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the extrusion direction, while the transverse sections are perpendicular to it. In
Figure 1 the materials are displayed based on images of transverse and longitudinal
cuts. Note that the resolutions are different for each material, so that the particles
can be resolved well for each material composition.

FIB-SEM images

The method of imaging mentioned above, which results in 3D images, is using the
focused-ion-beam-SEM (FIB-SEM) set-up. In this set-up, the focused ion beam is
used to abrade the sample layer by layer. Between the abrasion processes, images of
the current layer are obtained via SEM. This yields a stack of SEM images that are
combined to a 3D image. Theoretically, the SEM image could have a resolution with
pixel edge length of 1 nm, but the focused ion beam’s resolution is about 50 nm.
At the same time, each milling and imaging takes some time, which puts a limit
on the number of slices that can be used before the ion beam becomes unstable
(personal communication with S. Schuff and T. H. Löber). Generally, about 400
slices are obtained. At a resolution of approximately 15 × 15 (nm)2 of the SEM
slice, and at a FIB resolution of 50 nm, the images obtained by FIB-SEM are of the
size 13.6 µm× 11 µm× 17.5 µm.

All three materials are depicted in Figure 2 with images obtained by FIB-SEM. Note
that the difference in resolutions along the image axes stems from the fact that the
layers abraded by the ion beam are thicker than the SEM resolution.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Visualisations of FIB-SEM images’ subvolumes of AMC17 (a),(d):
AMC17xxfine. (b),(e): AMC17xfine. (c),(f): AMC17xe. Top: SEM slices were of
the transverse section, Bottom: SEM slices were of the longitudinal section. The
extrusion axes are parallel to the red lines. The visualisation was done in
MAVI, [MAV05].
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Chapter 1

Theoretical foundations of
spatial statistics and stochastic
geometry

The following is cited from [SW08,CSKM13] (Random closed sets, point processes to
Laguerre tessellations), [OS09] (measures on convex sets), [Lau07] (random Laguerre
tessellations), [OM00] (stereology) and [TY09] (digital images and their analysis).
Another source on point processes is [BR04]. All figures in the chapter were gener-
ated using MAVI, [MAV05], unless explicitly stated otherwise.

1.1 Basic notions in Rd and set theory

In the following, we will introduce the relevant concepts of stochastic geometry in the
Euclidean vector space Rd of dimension d. Vectors and points in Rd are displayed in
bold font, while their coordinates are displayed non-bold. Note that in this space, the
scalar product 〈x,y〉 = x1y1 + . . .+xdyd induces the Euclidean norm ‖x‖ =

√
〈x,x〉

and the distance
d(x,y) = ‖x− y‖, x,y ∈ Rd.

We denote the origin by 0. Additionally, we can define the distance of a point x
and a set A by dist(x, A) = infy∈A d(x,y), so the distance between a point x and
a set A is the distance between the point x and the point y in A that is closest to
x. Then, we can also define the distance between two sets A and B by the so-called
Hausdorff distance:

dH(A,B) = max

{
sup
x∈B

dist(x, A), sup
y∈A

dist(y, B)

}
, see [BR04].

For a general set A, its interior Å is the union of all open sets in A. The closure Ā
of A is the intersection of all closed sets containing A. For a finite set A, by ]A we
denote the number of elements of that set.

9
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The Minkowski addition A⊕B is defined as

A⊕B =
⋃
b∈B
{a+ b|a ∈ A}

and the Minkowski subtraction A	B as

A	B =
⋂
b∈B
{a+ b|a ∈ A} ,

see [CSKM13].

1.2 Random Closed Sets

Random Closed Sets (RACS) provide the basis for many stochastic geometry models.
For example, if we want to model grains of sand, we would like to model the random
shape and size of a single grain as well. This cannot be easily achieved using standard
random variables in R. Although certain properties of this grain of sand might be
distributed like a random variable in R, they do not give a complete and general
description of all possible randomly shaped objects.

1.2.1 Basic definition

A random closed set is a set-valued random variable. These sets are chosen as closed
subsets of Rd. The proper definition requires a σ-algebra F for measurability of the
defining mapping Ξ : (Ω,A,P) → (F,F), from a probability space (Ω,A,P) to F,
denoting the family of all closed subsets of Rd. The σ-algebra F is taken as the
smallest σ-algebra generated by the Fell topology on F, see [CSKM13]. This means
F is the smallest σ-algebra that contains all the hitting sets FK ,

FK = {F ∈ F : F ∩K 6= ∅}, for K ∈ K

with K denoting the compact subsets of Rd. Then F is equipped with the above
mentioned Fell topology, also called the topology of closed convergence, see [SW08].
This topology is generated by the set system

{FK : K ∈ K} ∪ {FO : O ∈ O},

with the system of open subsets O in Rd. The hitting set system FO is generated
analogously to FK (see above) while FK = {F ∈ F : F ∩K = ∅} denotes the missing
set system.

1.2.2 Distribution function on F

If Ξ is an F-valued random variable, its distribution PΞ is the image measure of
P under Ξ. The equivalent to a distribution function of a random closed set Ξ is
defined in terms of the capacity functional TΞ(K) via

PΞ(FK) = TΞ(K) = Pr(Ξ ∩K 6= ∅)
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Figure 1.1: Realisations of (a): Random point process. (b): Random line process.
(c): Random polygon. The plots were generated using R, [R D08]

for a compact set K ⊂ Rd. This capacity functional is a Choquet capacity, this
means it has the following properties, see for exampe [OS09,SW08].

1. 0 ≤ TΞ ≤ 1, TΞ(∅) = 0

2. for compact sets Ki,K ∈ K with Ki+1 ⊂ Ki,
⋂
iKi = K, we have TΞ(Ki)→

TΞ(K) (continuity from the right)

3. for compact sets K,K0, . . . ,Kn ∈ K, n ∈ N we define

S0(K) := 1− TΞ(K)

Sn(K0;K1, . . . ,Kn) := Sn−1(K0;K1, . . .Kn−1)

− Sn−1(K0 ∪Kn;K1, . . . ,Kn−1).

Then it holds true that Sn(K0;K1, . . . ,Kn) ≥ 0 (monotonicity)

These three properties ensure that TΞ(K) behaves as we would expect it for a dis-
tribution function.

Additionally, the capacity functional TΞ characterizes the random closed set in dis-

tribution: For two random closed sets Ξ1 and Ξ2 with TΞ1 = TΞ2 , it follows Ξ1
d
= Ξ2,

see [SW08], Theorem 2.1.3.

1.2.3 Examples

One example for the application of random closed sets, the stochastic modeling of
the shape of sand grains, was introduced already as motivation for random closed
sets. However, there is a large variety of random closed sets. Typical examples
are random points, random lines and random polygons. Examples are depicted in
Figure 1.1. Among these, random points form a special case: They are not only
closed sets in Rd, but they can also be interpreted in a measure-theoretic sense as
random counting measures, which has many advantages, see Section 1.3. Therefore,
we will introduce them again in the following.
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Figure 1.2: (a): Isotropic and stationary point process. (b): Stationary but
anisotropic point process, the distances between points in x-direction are larger
than in y-direction. (c): Isotropic but not stationary point process (the intensity
depends only on the distance from 0). The plots were generated using R, [R D08].

1.2.4 Stationarity and isotropy

A random closed set Ξ is stationary if Ξ + x
d
= Ξ for any x ∈ Rd, which means,

if its capacity functional (and therefore its distribution) is translation-invariant.

It is isotropic if θΞ
d
= Ξ for any rotation θ ∈ SOd, which means, if its capacity

functional (and therefore its distribution) is invariant under rotation, see Figure 1.2
for examples. When Ξ is stationary and isotropic, it is called homogeneous.

1.3 Point processes

Point processes are the fundamental ingredient of stochastic geometry and the re-
spective models. They allow us to generate random locations in space and time that
can serve as model, for example for locations of trees in a forest, arrival times of
random events, scattered positrons in PET imaging and many more, see [MW04],
Chapter 1.

In order to be able to use these models it is necessary to first understand what a
point process actually is, in a stochastic sense. A typical viewpoint is to assume point
processes as a special form of random measures, namely random counting measures,
see [SW08], Chapter 3.1. Based on that chapter, we will give a short introduction
to point processes in the following.

1.3.1 Basic definition

In order to properly define point processes, we will assume that we have a locally
compact space E with a countable base, which is equipped with a Borel σ-algrebra,
B(E). An easy example of such a locally compact space is the Euclidean space Rd,
see [Rud87], page 42.
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We denote the set of locally finite Borel measures on E by M = M(E). A measure
µ is locally finite if µ(B) < ∞ for bounded sets B ∈ B(E). Then, we set N =
{µ ∈M : µ(B) ∈ N ∪ {0,∞} for B ∈ B}. Then N is the set of locally finite counting
measures. Looking at the evaluation maps defined by fB : µ 7→ µ(B), B ∈ B, we
defineM as the smallest σ-algebra such that the fB are measurable for B ∈ B. For
counting measures N , we denote the trace of this σ-algebra on N by N = {A ∩N :
A ∈M}.

Based on the σ-algebras M and N , we can now define random measures and point
processes: For a probability space (Ω,A,P), a measurable mapping Ψ : (Ω,A,P)→
(M,M) is called a random measure, and Φ : (Ω,A,P) → (N,N ) is called a point
process. This definition is analogous to the standard definition of a random variable,
with the difference that the random element is now measure-valued.

The reason why the Φ are called point processes is that for simple counting measures
(that is, measures with µ({x}) ≤ 1 for x ∈ E), the measure is usually identified with
its support, which consists of single points x for which µ({x}) = 1.

Based on this, PΦ is the distribution of the random point process (analogous for
random measures), and Λ(B) = EΦ(B), B ∈ B is called the intensity measure. For
a simple point process Λ(B) would denote the mean number of points in B.

1.3.2 Isotropy and stationarity

As in the case for general RACS, a point process is called stationary if its distri-
bution does not change under translations. Similarly, it is called isotropic if its
distribution does not change under rotations. If a point process is both isotropic
and stationary, the intensity measure is invariant under rigid motions. If the point
process is stationary, the intensity measure can be decomposed with respect to the
d-dimensional Lebesgue measure νd. We obtain Λ(B) = λνd(B) for λ ∈ R denoting
the mean number of points within a unit cube.

There are various ways to analyse point patterns. From Choquet’s theorem we know
that it is sufficient to know the void probabilities Pr(Φ ∩ B = ∅) for B ∈ B to
completely describe the point process Φ, see [CSKM13]. However, this approach
is not very practical for everyday applications. Instead, we aim to gain informa-
tion on point processes using suitable statistics. If we assume that we observe the
stationary random point process Φ on a bounded compact window W ⊂ Rd, then
(see [CSKM13], Chapter 4.7), an estimate of the intensity λ is

λ̂ =
Φ(W )

νd(W )
.

1.3.3 Poisson point process

Based on the concepts introduced above, we can define the Poisson point process
(ppp) Φ in the following way:
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1. Φ is a simple point process.

2. For B ∈ B with Λ(B) = E (Φ(B)) < ∞, Φ(B) is Poisson-distributed with

parameter Λ(B), which means P(Φ(B) = k) = Λ(B)k

k! exp (−Λ(B)) , with k ∈ N.

3. For pairwise disjoint sets B1, . . . , Bn ∈ B, Φ(B1), . . . ,Φ(Bn) are independent.
In particular, the points of the point process are independent.

The Poisson point process is often used for stochastic models, due to its flexibility
and good theoretical properties. It is also generally quite easy to generate and often
the starting point for more sophisticated models. For example, using dependent
thinning on a Poisson point process, we can obtain a Matern hardcore point process.

1.3.4 Marked point process

The idea of the marked point process is to generalize the point process to Rd ×W
for a locally compact space W with countable basis, see [OS09]. The elements of W
are then called marks. For example, when analysing the distribution of trees in a
forest, one might be interested in their species. Then, W is a finite set and the point
process under investigation consists of points (x, s), where x denotes the location in
space and s denotes the tree’s species.

Formally, a marked point process is defined as follows:

We call the mark space W and its corresponding σ-algebraW, see [CSKM13], Chap-
ter 7.1.4. Then, a marked point process Φ is a point process on E = Rd×W, satisfying
Λ(K ×W) <∞ for compact K ∈ K, see [SW08].

We define translations of the marked point process by translations of the underlying
unmarked process, defined by the projection (x,m) 7→ x. This means, when we
translate a marked point process Φ = {(x1,m1), . . .} by y, the translated process
Φy is given by Φy = {(x1 + y,m1), . . .}. For the rotation around the origin we
proceed analogously.

A popular example for marked point processes are the germ-grain model and various
kinds of hardcore packings, which will be presented in the following. In these cases,
W ⊂ K comprises compact sets.

1.3.5 Particle process and germ-grain models

In a germ-grain model we use random non-empty compact sets {Ξi}i∈N, taken from
the space of non-empty compact sets denoted as K′, with centres c(Ξi) = 0 for
i ∈ N, as marks for a point process Φ = {(xi)}i∈N, see [CSKM13], Chapter 6.5 for
an overview. There are various possible centre function c : K′ → Rd, for example the
centre of mass or the circumcentre (that is the centre of the smallest ball containing
Ξi), see [SW08]. In the following, the space of non-empty compact sets with centre
0 will be denoted by K′0.
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We denote the resulting marked point process by Ψ = {(xi,Ξi)}i∈N. Then the point
process Φ, which is the unmarked version of Ψ, constitutes the germs, while {Ξi}i∈N
are the grains.

The germ-grain model is then the union Ξ over all grains that are added to the
germs:

Ξ =
⋃
i∈N

(Ξi + xi)

The (Ξi + xi) constitute a point process, called a particle process, in F ′ = F \ ∅
with intensity measure Θ and Θ(F ′ \ K′) = 0, see [SW08], Chapter 4. Following
that chapter, we get the following result: When the particle process {(Ξi + xi)}i∈N
is stationary, Θ can be decomposed as

Θ = λf(νd ⊗Q)

with the homeomorphism

f : Rd ×K′0 → K′

(xi,Ξi) 7→ Ξi + xi.

Then the typical grain Ξ0 is defined as the random closed set in K′ with distribution
Q. The grains Ξi, i ∈ N are independently identically distributed as Ξ0, and λ is the
intensity of the underlying point process {(xi)}i∈N, see also [CSKM13].

The Boolean model

The Boolean model is a special case of the germ-grain model, where the underly-
ing point process Φ is a Poisson point process, and the marks are independently
identically distributed. The grains Ξi are additionally chosen independently from
Φ.

Under the condition that E(νd(Ξ0⊕K)) <∞,K ∈ K, we denote the resulting marked
point process by Ψ = {(xi,Ξi)}i∈N, see [CSKM13], Chapter 3 for an overview. As
stated there, the condition E(νd(Ξ0 ⊕K)) <∞ is necessary so that the union

Ξ =
⋃
i∈N

(Ξi + xi)

is closed as well.

This model is very well-known due to the many theoretical results on its properties,
which are rooted in the properties of the Poisson point process. Its Choquet capacity
is given by

TΞ(K) = 1− exp(−λE(νd(Ξ̌0 ⊕K)))

for stationary Φ and Ǎ = {−x|x ∈ A}. Similarly, the volume covering fraction, that
is the mean fraction of volume covered by Ξ is given by

p = 1− exp(−λE(νd(Ξ0))).
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Hardcore packings

Hardcore packings are also germ-grain models which have non-empty compact sets
{Ξi}i∈N as marks. However, the underlying point process Φ = {(xi)}i∈N is generated
in a way that the compact sets (Ξi + xi) do not intersect.

There are many different algorithms to achieve this, most notable are the global rear-
rangement algorithms and the sequential adsorption algorithms: Global rearrange-
ment algorithms start with configurations that allow the intersection of the particles,
and globally move the points in Φ until no more overlap occurs. The most famous
of these global rearrangement algorithms is the so-called force-biased algorithm for
balls and spheroids, see [BBS02,BS06]. Sequential adsorption algorithms start with
one marked point (x1,Ξ1) and accept additional particles (xi,Ξi) only when they
do not overlap with previously accepted points (xj ,Ξj)j<i. Examples are random
sequential adsorption and sedimentation algorithms, see for example [CSKM13],
Chapter 6.5.3.

1.3.6 Cox processes

In real-life applications the stationary and isotropic Poisson point process is rarely a
sufficient model: Often, the intensity λ of a Poisson point process is not a constant,
but rather a function of the location x. This leads to a local intensity function
λ(x) = lim|dx|→0

E(Φ(dx))
|dx| . If the support of the intensity function is also random,

we obtain another common generalisation of the Poisson point process, the doubly
stochastic Poisson process, also called Cox process, see [CSKM13], Chapter 5.2.

As the attribute doubly stochastic suggests, these are stochastic processes, for which
the intensity measure itself is random. The process is a Poisson process conditional
on the realisation of the random intensity. The formal definition of this process is
presented in the following:

The Cox process Φ with driving random measure Θ, which itself has a distribution
Q on (M,M), has the distribution

PΦ(Y ) =

∫
PΨΛ

(Y )Q(dΛ) for Y ∈ N

with a Poisson process ΨΛ with intensity measure Λ.

Examples of such a process are the mixed Poisson process, which is a Poisson point
process with randomised intensity parameter, for example λ ∼ Exp(µ); the π(x)-
thinning of a Poisson process Φb with driving random measure

Ψ(B) =

∫
B
π(x)Λb(dx) for Borel B and original intensity Λb

and a random field π; or the random-set-generated Cox process, for example, when
the Cox process is lying on the surface or inside a random set. For example, in
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Chapter 3 we use a Cox process lying on the facets of random polygons as a model
for Al2Cu precipitations.

All these examples where taken from [CSKM13] as well.

1.3.7 Spherical contact distribution and moment measures

In real-life applications, the points of a point process are often not independent: For
example, trees need a minimal amount of free space around them for their roots.
This means locations of trees in a forest cannot be independent of each other. There
are various approaches to analyze this kind of spatial dependence. When we denote
the closed d-dimensional unit ball of radius r centred in x by Bd

r (x), the spherical
contact distribution of a point process Φ is defined as

HS(r) = 1− P(Φ(Bd
r (0)) = 0), for r ≥ 0.

It gives the distribution function of the distance from 0 to the closest point of Φ, see
[CSKM13], Chapter 4.1.7. When Φ is stationary, the spherical contact distribution
is even the distribution from an arbitrary test point x ∈ Rd to its nearest neighbour
in Φ, since by stationarity, moving 0 to that point x does not change the distribution
of the point process.

The spherical contact distribution can be estimated using

ĤS(r) =
νd(W	r ∩

⋃
x∈ΦB

d
r (x))

νd(W	r)
.

Here, we investigate only the points lying in the smaller window W	r = W 	Bd
r (0).

For points lying closer to the edge of W , including them into the estimation would
introduce a bias, since their actual closest point might lie outside the observation
window. If we instead assume their closest point to lie in the window, the contact
distribution would get overestimated.

1.4 Hausdorff measure

In the analysis of random closed sets, not only the full-dimensional feature given
by the volume is interesting, but also lower dimensional features such as surface
area or curvature. For this reason, many formulas for Random Closed Sets are
based on the notion of the Hausdorff measure. This measure is used to determine
the k-dimensional volume of a k-dimensional set A embedded in the d-dimensional
Rd (meaning k < d). In the following, we will use the the definitions proposed
in [Ved98], Chapter 2:

Assuming ωk as the k-dimensional Lebesgue measure of the unit ball in Rk, we define
the sphere measure by

Hkd(A, ε) = inf

∑
j

ωk

(
diamAj

2

)k
: A ⊂

⋃
j

Aj , diamAj ≤ ε,∀j
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with A ⊂ Rd, ε > 0 and diamAj = sup{‖x− x′‖ : x ∈ Aj ,x′ ∈ Aj}. This means we
cover A by sets of diameter less than ε and take the infimum over the sums of the
ball volumes as measure for A. The Hausdorff measure Hkd is the limit of the sphere
measure when ε→ 0:

Hkd(A) = lim
ε→0
Hkd(A, ε)

The Hausdorff measure has the nice property that if A is a subset of a k-dimensional
affine subspace of Rd, the Hausdorff measure is equal to the k-dimensional Lebesgue
measure on this affine subspace, see also [Ved98]. An affine subspaces L of Rd is a
space that contains the whole line through x and y if x,y ∈ L.

1.5 Measures on convex sets

Often the random closed sets used for modeling particle structures are not only
closed, but also convex or polyconvex : A set K ⊂ Rd is called convex if for any x,
y in K it follows that cx + (1 − c)y ∈ K as well, with 0 ≤ c ≤ 1, see [CSKM13],
Chapter 1.6. We denote the space of compact convex sets by K. Polyconvex sets
are defined as the finite union of convex sets.

The convex hull of a set X, denoted by conv(X), is the smallest convex set Y , so
that X ⊂ Y . For convex sets X it obviously follows that X = conv(X). Typical
examples of convex sets are the unit ball Bd

1(0), polytopes and affine linear subspaces
of Rd, for example the flat

{
x ∈ R3 : x3 = 1

}
is an affine linear subspace of R3, when

x1, x2, x3 denote the coordinates of a vector x ∈ R3. The compact convex subsets
of Rd are generally called convex bodies.

Polytopes are defined as the convex hull of finitely many points {x1, . . .xN}. A
polytope P can be represented by a system of M linear inequalities with M < ∞
that are fulfilled for x ∈ P , which means that it is the intersection of the closed
halfspaces {H+

i }i=1,...,M that fulfill these equations, see [SW08], Chapter 10.1:

P =

M⋂
i=1

H+
i

The faces of the polytope P are the intersections of P with its supporting hyper-
planes, see [SW08], Chapter 10.1. The dimension of the face is the dimension of
the isomorphic Euclidean space. For example, for a three-dimensional polytope
P = conv({x1, . . . ,xN}) with minimal N , we have the faces:

∅ of dimension -1; x1, . . . ,xN , the vertices (of dimension 0); l1, . . . , lm, the edges (of
dimension 1); f1, . . . , fn, the facets (of dimension 2) and P , the polytope itself. In
the following, the sets of faces of dimension k are denoted by Fk(P ) for a polytope
P .
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1.5.1 Intrinsic volumes

Following [CSKM13], Chapter 1.6, a convex body functional h(K),K ∈ K′ is a
function from the set of convex bodies to the real numbers R. Examples are the
length l(K) if K is of dimension 1, the volume V (K) and the surface area S(K) if
K is of dimension 3, etc. These functionals are K-additive, monotone, continuous
and invariant under rigid motion, see [SW08], Chapter 14.

This means that they additionally have the property that

h(K1 ∪K2) = h(K1) + h(K2)− h(K1 ∩K2) (K-additivity for K1,K2 ∈ K)

h(K1) ≤ h(K2) if K1 ⊂ K2 (monotonicity)

h(Kn)→ h(K) for a sequence Kn ∈ K with Kn → K ∈ K
w.r.t. the Hausdorff distance (continuity)

h(θK + x) = h(K) (invariance under rotation by θ and translation by x)

These properties make them useful measures to characterize convex sets. In the
following, we will introduce the intrinsic volumes, following [SW08], Chapter 5, as
the functionals that fulfil these properties.

The intrinsic volumes are defined in terms of the Steiner formula. If Vd = νd is the
d-dimensional volume, then the volume of K ⊕Bd

r (0) is a polynomial in r and

Vd(K ⊕Bd
r (0)) =

d∑
k=0

rd−kωd−kVk(K), r ≥ 0,K ∈ K.

The set K ⊕ Bd
r (0) = {x ∈ Rd : d(x,K) ≤ r} is also called the parallel set of K.

Vk, k = {0, . . . , d}, are called the intrinsic volumes.

An important result regarding intrinsic volumes is the Hadwiger characterisation
theorem. It states that any K-additive, monotone, continuous and motion-invariant
convex body functional h(K) → R,K ∈ K′ is a linear combination of the intrinsic
volumes Vk(K) of K. This means that it does not make sense to consider other
functionals with these properties besides the intrinsic volumes when characterizing
convex bodies.

Following [OS09], for d = 3, the intrinsic volumes are:

V3 = V , the volume

2V2 = S, the surface area

πV1 = M , the integral of mean curvature

V0 = χ, the Euler characteristic

with
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V (X) = ν3(X)

S(X) =

∫
∂X

dH2
3(s)

M(X) =

∫
∂X

H1(s)dH2
3(s)

where ∂X = X̄ \ X̊ denotes the boundary of X and H1(x) = κ1(x)+κ2(x)
2 the mean

curvature at x ∈ ∂X, with κ1 and κ2 denoting the principal curvatures.

The Euler characteristic is constant χ(K) = 1 for K ∈ K′ and integer-valued for
other types of sets. For polytopes P with k-dimensional facets Fk(P ), the Euler-
Poincaré formula holds, see [OS09], Chapter 2:

χ(P ) =

d∑
k=0

(−1)k]Fk(P ).

Additionally, it holds that 1
2V1 = b̄, the mean breadth. The breadth bθ(K) is the

minimal distance between two (d−1)-dimensional hyperplanes with normal direction
θ ∈ Sd−1 that enclose K between them. The mean breadth is the mean of bθ(K) over
all directions. In the case of convex polytopes the mean breadth can be calculated
very easily:

b̄(P ) =
1

4π

n∑
i=1

liγi

with P being a convex polytope, li being the length of the i-th edge and γi the angle
between the surface normals of the polytope facets that form the edge, see [OM00].

Using the Crofton formula, we can determine the intrinsic volumes by integrating
over lower-dimensional intrinsic volumes on subspaces, see [OS09]. For L ∈ Lk,
the space of k-dimensional linear subspaces of Rd, and L’s orthogonal complement
⊥L ∈ Ld−k, this gives

Vd+j−k(X) =
Γ
(
j+1

2

)
Γ
(
d+1

2

)
Γ
(
k+1

2

)
Γ
(
d+j−k+1

2

) ∫
Lk

∫
⊥L

Vj(X ∩ (L+ x))ν⊥L(dx)µ(dL),

for k = 1, . . . , d− 1 and j ≤ k. Here, ν⊥L is the Lebesgue measure on ⊥L and µ the
rotation invariant probability measure on Lk. In Chapter 2, we will introduce how
this formula can be used to estimate intrinsic volumes based on digital image data,
following [OS09], Chapters 3 and 5.
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Intrinsic volume densities

When analysing random sets, it cannot be assumed that they are bounded. For

example, a stationary random closed set Ξ is unbounded due to Ξ + x
d
= Ξ. In

these cases, it is sensible to use the intrinsic volume densities. For a stationary,
locally polyconvex random closed set Ξ with E2N(Ξ∩[0,1]d) < ∞ observed in the d-
dimensional non-empty window W with Vd(W ) <∞ and
N(Ξ ∩ [0, 1]d) = min{m|Ξ ∩ [0, 1]d =

⋃
i=1,...,mKi,Ki ∈ K′}, they are defined as:

VV,d =
E(Vd(Ξ ∩W ))

Vd(W )

VV,k = lim
α→∞

E(Vk(Ξ ∩ αW ))

Vd(αW )
for k = 0, . . . , d− 1,

see [OS09], Chapter 2.3.2. In the case of d = 3 we obtain

VV,3 = VV , the volume density

2VV,2 = SV , the surface density

πVV,1 = MV , the density of the integral of mean curvature

VV,0 = χV , the density of the Euler number.

In the case that Ξ is a stationary germ-grain-model comprised of non-intersecting
convex sets, χV = NV = λ, the mean number of sets per unit volume is also the
intensity.

In Chapter 2, we will explain in detail how one can estimate the intrinsic volumes
based on digital image data.

1.6 Random Laguerre tessellations

A random Laguerre tessellation is a subdivision of Rd, based on a marked point
process Φ ∈ Rd ×W ⊂ Rd × R. In the following we denote the points of Φ by
{(xi, wi)}i∈N.

Then the cells of the Laguerre tessellation are defined by

C(xi, wi) =
⋂

(xj ,wj)∈Φ

{y ∈ Rd : ‖y − xi‖2 − wi ≤ ‖y − xj‖2 − wj}

It can be shown that every point in Rd lies almost surely within exactly one cell,
see [Lau07]. The special case when all weights are the same leads to the well-
known Voronoi tessellation. However, unlike the Voronoi tessellation, a Laguerre
tessellation does not uniquely define Φ: due to the definition of the cell system,
Φ′ = {(xi, wi + a)}i∈N generates exactly the same tessellation for any constant
a ∈ R. Note that this kind of translation is not the same as the translation of
a marked point process, which is only defined on the underlying point process.
Additionally, some cells C(xi, wi) of the tessellation might be empty or might not
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include their generating points xi. As a remedy, random Laguerre tessellations are
often generated based on very specific marked point processes Φ: To ensure that
there are no empty cells and each cell C(xi, wi) contains its generating point xi,
random Laguerre tessellations are often generated based on packed spheres. Then,
the centres of the spheres generate the process Φ0 = (xi)i∈N and the radii generate
the marks by setting wi = r2

i , for i ∈ N. As the packed spheres do not intersect
each other by definition, now each cell C(xi, r

2
i ) contains its generating point, which

allows to control the number of cells generated within a window. Additionally, due
to the power distance, each cell C(xi, r

2
i ) contains the ball Bd

ri(xi).

1.7 Digital images and their analysis

In the general sense, an image is simply a function f : X → Z from a closed set
X ⊂ Rd, the canvas, to a set Z, the gray value space. An example of this would
be a classical two-dimensional photograph, where X is a closed set in R2 and Z
is a subset of R. However, it is also possible to obtain more complicated images.
For example Z could also be vector- or matrix-valued, which is the case for colour
images or EBSD data, see [Hum04].

Nowadays, most imaging systems are computerized and generate digital images. In
digital images, the canvas is also called a grid and consists of discrete points in Rd.
Generally, the distances between the grid points are the same along the axes of the
image, so X can be considered as subset of

Ld =

{
x ∈ Rd|x =

d∑
i=1

aiui with ai ∈ Z

}

with u1, . . . ,ud forming a basis of Rd, see [OS09], Chapter 3.

Usually, the lattice Ld is a rectangular lattice, so Ld = u1Z× . . .×udZ ⊂ Rd, ui ∈ R.
The values u1, . . . , ud are denoted the grid sizes or resolution. A single grid point
is called a pixel for d = 2, or voxel in the case of d = 3. Similarly to the canvas,
the values at these pixels are often discretized as well. Typically, Z ⊂ Z, or even
Z ⊂ [0, . . . , 255]. If Z only attains the values 0 or 1, the image is a binary image.
The canvas of a digital image is a digitised window, X = L ∩ W , for a compact
W ⊂ Rd.

In the following, we will denote the space of images by P. The special cases of binary
images and gray value images are denoted by PB and PG, respectively. Usually, this
means Z = {0, . . . , 255} (8-bit image) or Z = {0, . . . , 65535} (16-bit image). In
the case that Z = R, the image is denoted as float image. Within each image, we
will start the coordinate system at 0 and denote pixels by (i, j) ∈ N2, voxels by
(i, j, k) ∈ N3. For an arbitrary image f , its value at (i, j, k) is denoted by fijk.

Operations on images are mappings from one domain in Pn = P × . . . × P to the
range G ⊂ P see [TY09]. Important special cases are the unary operations, for which
n = 1 and the binary operations with n = 2. For example, with input image f and
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(a) (b) (c)

Figure 1.3: (a): Original image f with set A = {x|f(x) = 1}. (b): εS(A) with
S = [−1, 1]× [−1, 1]. (c): δS(A) with S = [−1, 1]× [−1, 1].

output image h, a unary gray value thresholding Ot : PG → PB is given by

hij =

{
1 if fij > t

0 else.

Binary operations are often used as a means to combine the information of two
images. For example, a very common binary operation is the mask, which can
be defined for input images f ∈ PG, g ∈ PB and output image h ∈ PG via O :
PG × PB → PG by

hij =

{
fij if gij = 1

0 else.

1.8 Morphological operations

For binary images the values can often be directly associated with the presence or
absence of a material in a specimen: For a set Ξ ⊂ Rd, we can obtain a digital image
f by setting the foreground pixels to f(Ξ u Ld ∩W ) = 1 with observation window
W . By · u L we denote the discretisation based on an adequate adjacency system
F, which will be introduced in detail in Chapter 2. Based on the size and structure
of Ξ and the lattice Ld, measurements on Ξ u Ld ∩W are good approximations for
properties of Ξ. In the following, we will assume that the lattice has a sufficient
resolution to resolve the relevant structures of Ξ. A thorough introduction in the
sampling problem can be found for example in [Lyo04].

Morphological image analysis uses set operations on the voxels of an image with
canvas Rd, a d-dimensional Euclidean vector space. All morphological operations
are based on the Minkowski addition A ⊕ S and the Minkowski subtraction A 	 S
for the sets S,A ⊂ Rd, see [SW08, Soi99]. Using the notation Š = {−s|s ∈ S}, we
define the basic operations of morphological image analysis, erosion εS and dilation
δS as:
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(a) (b) (c)

Figure 1.4: (a): Original image f with set A = {x|f(x) = 1}. (b): γS(A) with
S = [−1, 1]× [−1, 1]. (c): φS(A) with S = [−1, 1]× [−1, 1].

εS(A) = A	 Š
δS(A) = A⊕ Š

Applying an erosion to a set A removes all structures that cannot contain the struc-
turing element S (see [Soi99], Chapter 4), but it also shrinks the other structures.
On the other hand, the dilation of the set A is the same as an erosion of the set
Ac, it removes structures in the complement, thereby increasing the size of A and
changing its shape. Examples of the effect of dilation and erosion can be seen in
Figure 1.3, where the square structuring element S = [−1, 1]× [−1, 1] has been used
and A is the set of all white pixels in the original image.

By combining erosion and dilation, we obtain new morphological operations:

γS = δS ◦ εS , the opening

φS = εS ◦ δS , the closure.

When applying an opening to a set A, first all structures that cannot contain the
structuring element S are removed, and the remaining structures of the set A are
shrunk. The following dilation by the same structuring element counters this effect
and recovers the remaining structures of the set A “as much as possible” [Soi99].
This means the opening erases structures smaller than S but changes the rest of the
eroded set only slightly. This is useful when small error structures are present in the
images, which can be removed. Another application of openings is the granulometry :
for this, openings are used to filter the structures by size - when applying openings
with increasing structuring elements S, combined with measurement regarding how
large the retained sets are (for example by counting the number of voxels), we can
obtain a size distribution of the structures in the image.

The closure φS is the complement of the opening, in the sense that φS(X) =
(γS(Xc))c, see [Soi99], with Xc = Rd \ X. First, all structures in the image are
slightly enlarged using the structuring element S. This process can fill little holes
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within or gaps between the structures. The following erosion partially reverses this
effect. The structures return roughly to the previous size, but the gap-closing and
hole-filling properties of the dilation are retained. This method is especially useful
when there is dark noise present or parts of the structures could not be recorded
completely. Examples of the effect of opening and closure can be seen in Figure 1.4,
where the square structuring element S = [−1, 1] × [−1, 1] has been used and A is
the set of all white pixels in the original image.
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Chapter 2

Image analysis

This chapter presents methods to prepare the images of the AMC17 samples in a way
that allows for a statistical analysis of these structures. Parts of it are submitted to
appear in [LSB+ed]. In the context of stochastic geometry, we assume that the SiC
particles, the Al grains and the Al2Cu precipitations are stationary random closed
sets generated by germ-grain models or random tessellations with typical grains or
typical cells X0,SiC, X0,Al and X0,Al2Cu.

As a first step, it is necessary to correctly identify the phases within the images.
Once this is obtained, we have to identify the grains (in the stochastic geometry
sense) within each phase. Once the grains are identified, the corresponding pixels
are given a label ni ∈ N in a way that the grain Xi can be analysed based on the
ni-set, with f(Xi u L ∩W ) = ni. Each phase XSiC, XAl and XAl2Cu consists of a
union of grains via

X· =
⋃

xi,·∈Φ·
(Xi,· + xi,·)

for a point process Φ· ∈ {ΦSiC,ΦAl,ΦAl2Cu}.

Given that the grains Xi,SiC, Xi,Al and Xi,Al2Cu forming the phases are indepen-
dently and identically distributed as the typical grains X0,SiC, X0,Al and X0,Al2Cu,

we estimate the distributions Q̂SiC, Q̂Al, Q̂Al2Cu of X0,SiC, X0,Al and X0,Al2Cu by
statistics on the Xi,SiC, Xi,Al and Xi,Al2Cu within each phase.

The separation of the different phases can be obtained by grey value clustering or
binarisation. The separation of the grains within each phase can be achieved by
using their mostly convex shapes or other local properties. For example, the Al
grains can be separated based on the assumption that Al2Cu precipitations occur
on the grain boundaries, while the SiC grains can be identified by their mostly
convex shapes.

In the following, we will first introduce the specificities of our image data and some
simple filters to account for noise within the images. Then, we will introduce various
binarisation methods which can be used to separate the phases from each other. As
a next step, we will present a method to identify the grains within a phase. Then,

27
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we will show how to estimate the intrinsic volumes based on digital image data.
Finally, we will show how these methods can be used to segment the phases and
grains within our data sets.

The methods presented in this chapter are well-known and taken from [TY09,OS09].
This chapter will only give a very short introduction to the methods used. For a
more in-depth background we refer to the cited books. All images processing steps
presented in this chapter and all figures were generated using MAVI, [MAV05], unless
stated otherwise.

2.1 Input Images

As introduced in the introduction, the data on AMC17 are available in the form of
2D SEM images and 3D FIB-SEM images. Several examples of data are displayed
in Figure 2.1.

The SEM samples were prepared and recorded by various people over the length of
five years. This means the available data are very heterogeneous in terms of lighting,
contrast and quality of the preparation. The largest difficulties in processing the
SEM images are posed by errors in the polishing of the surface: In preparation of
the SEM imaging, the surface area of the sample has to be polished manually. Due
to the higher hardness of the SiC particles compared to the Al, the Al is abraded
faster. This results in SiC particles partially sticking out of the surface or even
falling out of the matrix. In the images, this results in some very bright edges on
SiC particles or scratches on the surface. Apart from these errors, it is still possible
to obtain images with even illumination of the SiC particles.

In contrast, the FIB-SEM images were all prepared and recorded by one person over
the course of two years. Therefore, the data are very homogeneous in their quality.
In FIB-SEM imaging, the polishing is obtained by a focused ion beam, which is a
scratch-free procedure. However, the particles are often not evenly illuminated. In-
stead, the images contain certain typical FIB-SEM artefacts, namely the curtaining
effect and bright areas which stem from the accretion of abraded material. Even
when these effects have been corrected by a decurtaining algorithm, the resulting
images still have an uneven illumination and lack sharpness. There are not only SiC
particles and matrix visible in these data sets, but also Al grains and bright Al2Cu
precipitations on grain boundaries. Due to the uneven illumination it often becomes
very difficult to distinguish between Al grains and SiC particles. Both SEM and
FIB-SEM images contain a slight amount of noise.

2.2 Filtering

In order to eliminate image artefacts such as noise, which is often present in digital
images, as a first step the newly acquired images are filtered. A filtering is a function
from the space of grey value images to the space of grey value images. Usually, only
local functions are considered. This means the value at voxel (i, j, k) of the resulting
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(a) AMC17xe (b) AMC17xfine

(c) AMC17xxfine (d) AMC17xfine

(e) AMC17xxfine (f) AMC17xfine

Figure 2.1: (a), (b): SEM images. (c), (d): Slices of FIB-SEM images. (e), (f):
Slices of FIB-SEM images after removal of the curtaining effect. Displayed are
subsections of size 300× 300 of the images that were chosen so that the curtaining
effect is clearly visible.
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(a) Original (b) Mean (c) Median (d) Gauss

Figure 2.2: Smoothing filters, computed on a square mask of size 5× 5 pixels

image h depends only on grey values within a small set of voxels lying close to (i, j, k)
in the input image f . We will denote this set by M(i, j, k) and call it a mask. A
typical example for such a mask is M(i, j, k) = [i−n/2, i+n/2]× [j−n/2, j+n/2]×
[k − n/2, k + n/2] ∩ Ld for even n ∈ N, see [TY09], Chapter 3. In this example, the
size of the mask is n+ 1.

The most common filters are the mean filter, the median filter and the Gaussian
filter, which will be presented in the following.

2.2.1 Mean filter

For the input image f and the output image h, the mean filter is defined by:

hijk =
1

#M(i, j, k)

∑
(p,q,r)∈M(i,j,k)

fpqr

with M(i, j, k) denoting the mask centred at the pixel (i, j, k). Due to the linearity
of the filter the computation is very fast. However, this filter is not robust against
outliers and smoothens edges within the image.

2.2.2 Median filter

For the input image f and the output image h, the median filter is defined by:

hijk = median{fpqr|(p, q, r) ∈M(i, j, k)}

with M(i, j, k) denoting the mask centred at the pixel (i, j, k). For the computation
of the median the voxel values within the mask M(i, j, k) have to be sorted at each
voxel. This makes the calculation of the median filter computationally expensive,
especially for large masks. The advantage of the median filter are its robustness
against outliers and the preservation of edges within the image.
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(a) Original (b) Fillhole (c) Cuthill

Figure 2.3: Cuthill and fillhole, computed on an image of size 300× 300 pixels.

2.2.3 Gaussian filter

For the input image f and the output image h, the Gaussian filter is defined by:

hijk =
1∑

wi−p,j−q,k−r

∑
(p,q,r)∈M(i,j,k)

wi−p,j−q,k−rfpqr

with M(i, j, k) denoting the mask centred at the pixel (i, j, k) and Gaussian weights
wl,m,n taken from a 3-dimensional Gaussian probability density function with mean
µ = 0 and standard deviation σ > 0. In Matlab, version R2016b, the relationship
between σ and mask size N + 1 is implemented as σ = N

4 , for even N ∈ N, see
[mat17]. In order to restrict the weights to the bounded mask, they are usually
approximated by binomial coefficients, see [OS09], Chapter 4. The Gaussian filter
can be decomposed along the image dimensions. Due to this separability, the filtered
image is fast to compute.

Results of all three filters applied to a grey value image are depicted in Figure 2.2.

2.2.4 Cuthill and Fillhole

The fillhole is a morphological operation on images, which “fills” all minima in
the image that do not lie on the image border, see [Soi99]. This means local min-
ima are eliminated by this filter. For grey value images, the erosion is defined as
εS(fijk) = min(p,q,r)∈S fi−p,j−q,k−r with structuring element S. The fillhole is defined
for grey-valued images in terms of the geodesic erosion ε1g(fijk) = max{ε1(fijk), gijk}
for a marker image g of the same grid size and dimensions. Here, ε1 refers to the ele-
mentary erosion, that is an erosion by a 3 voxel wide structuring element, consisting
of its central voxel 0 and all adjacent voxels, depending on the chosen neighbour-
hood, see 2.2.5 for details on neighbourhoods and adjacency.

In order to fill the minima of an image f , we have to choose f as a marker image in
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the definition of the fillhole, and construct another image f ′:

f ′(i, j, k) =

{
fijk if (i, j, k) is on the image border

max f else.

The fillhole is then the repeated geodesic erosion of f ′ with the marker image f until
stability, see also [Soi99]. This means in this case, the geodesic erosion is taken as
ε1f (f ′ijk). Note that due to the maximisation within the geodesic erosion, repeated
geodesic erosions reach stability after a finite number of applications. The cuthill is
obtained by a fillhole on the complement f c = max(f)−f of the image, it is defined
as (fillhole(f c))c.

Since fillhole and cuthill eliminate local minima and maxima, respectively, they can
be used to eliminate noise within images or extract the local extrema. Examples of
the application of fillhole and cuthill can be seen in Figure 2.3.

2.2.5 Neighbourhoods and Adjacency

When segmenting particles, we would usually assume that voxels x = (i, j, k) and
x′ = (i′, j′, k′) with f(x) = f(x′) = 1 that lie next to each other in the binary
images should belong to the same particle. In order to determine which voxels
constitute a particle and for many image analysis algorithms, it is necessary to
choose the adjacency of the images. In 2-D, these adjacencies are defined by the
neighbourhoods of the pixels, see [OS09], Chapter 3.3. Typical neighbourhoods in
2D are the 8-neighbourhood N8(i, j) = {(i+ p, j + q), p, q ∈ {−1, 0, 1}} and the 4-
neighbourhood N4(i, j) = {(i + p, j + q), either p = 0 and q ∈ {−1, 0, 1} or q =
0 and p =∈ {−1, 0, 1}}.

For higher-dimensional images, the neighbourhood alone is not sufficient to charac-
terise the topology of voxel sets, see [OS09], Chapter 3.3.1. Therefore, adjacency is
usually defined in terms of an adjacency system consisting of subsets of the vertices
F0(C) of the unit cell C, see for example [OS09], Chapter 3.2.1: The unit cell C of
a lattice Ld is formed by the basis of the lattice by C = [0,u1]⊕ . . .⊕ [0,ud], where
[0,ui] is a segment between 0 and the lattice point ui. Assuming that d = 3, this
unit cell has 8 vertices, 12 edges and 6 facets and the topology of a scaled cube. A
local adjacency system Floc is generated by a subset of all the possible convex hulls
of vertex combinations within C, when it has the following properties:

1. ∅ ∈ Floc and C ∈ Floc

2. if F ∈ Floc then so are its faces F i(F )

3. for two sets Fi, Fj ∈ Floc, either the convex hull of their union is in Floc or Fi∩
Fj , Fi \ Fj and Fj \ Fi ∈ Floc

4. for Fi1 , . . . Fim ∈ Floc,
⋃m
j=1 Fij ∈ Floc if it is convex

The (global) adjacency system is then generated by F =
⋃
x∈Ld(Floc + x). Typical

adjacencies are the 6-adjacency, which is generated by the union of the faces of
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(a) Original (b) t = 50 (c) Otsu (t = 100) (d) t = 150

Figure 2.4: Results of global thresholding at different threshold levels t

the unit cell, and the 26-adjacency, which is generated by the power set of the set
containing all vertices of the unit cell.

Based on the adjacency system, the discretisation of a compact set X ⊂ Rd is given
by the elements of the adjacency system that have all their vertices lying in X:

X u F =
⋃
{F ∈ F|F0(F ) ⊂ X}.

As the connectivity of the discretised set is determined by the vertices and the edges
lying in the adjacency system, different adjacency systems might generate differently
connected discretisations. In order to have consistency of the Euler number, defined
by χ(X) = (−1)d+1χ(X̄c), in the discretised case, it is necessary to choose an
adequate adjacency system Fc on the background X̄c ∩Ld for the chosen adjacency
system F, see [OS09]. In [OS09] it is shown that adjacency systems fulfilling this
criterion for d = 3 are given by (F6,F26), (F26,F6), (F14.1,F14.1) and (F14.2,F14.2).
For information on F14.1 and F14.2 we refer to [OS09] as well.

In the following, we will always assume that adequate adjacency systems have been
chosen to generate the discretisations X u F and Xc u Fc.

2.3 Segmentation methods

Image segmentation or grey value segmentation is essentially a method to cluster
the pixels of an image by a certain set of rules. For our data, we want to cluster the
pixels according to the phase they represent. However, for other applications, the
notion of segmentation could have an entirely different meaning.

In the following, we will present several common methods to achieve a segmentation.
It has to be noted that there is no optimal method to segment an image, since the
effort and the effectiveness of the methods strongly depend on the image quality.

2.3.1 Thresholding

Thresholding is one of the simpler methods to segment an image. A global thresh-
olding assigns each voxel to a cluster solely based on its grey value, while the local
thresholding also takes the grey values of surrounding voxels into account. In the
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case that there are only two cluster centres taken into consideration, the resulting
image is a binary image and the segmentation is called a binarisation.

For cluster centres C = {c0, . . . , cn}, n ∈ N, input image f and output image h, a
global thresholding function can be defined as Ot0,...,tn−1 : PG → PC with

hijk =


c0 if fijk < t0

c1 if t0 ≤ fijk < t1
...

...

cn if tn−1 ≤ fijk

where PC refers to images of range C.

A local thresholding function can be defined by

hijk =


c0 if fijk < t0(fM(i,j,k))

c1 if t0(fM(i,j,k)) ≤ fijk < t1(fM(i,j,k))
...

...

cn if tn−1(fM(i,j,k)) ≤ fijk

with M(i, j, k) denoting a mask as introduced above, fM(i,j,k) the image values in the
sub-image defined by the mask M(i, j, k) and threshold functions ti : PG → G. This
means the thresholds t0, . . . tn−1 depend on the grey values near (i, j, k). Usually,
the cluster centres are identified with their index, so that c0 = 0 and c1 = 1.

A segmentation can be obtained by applying repeated binarisations. This means,
instead of directly clustering the voxels into n clusters, we first identify the set of
voxels in the canvas X belonging to c0, and denote this voxel set by Xc0 . As a next
step, the remaining voxels X \Xc0 are clustered to either belong to the cluster c1 or
not, resulting in the set Xc1 ⊂ (X \Xc0), and so on.

When using global binarisation, the necessary threshold t is often obtained using
Otsu’s method [Ots79]: t is set so that the intra-class variance is minimized. In
Figure 2.4, the results of global thresholding methods are presented for different
threshold levels t. It is obvious from this simple example that for most images global
thresholding does not provide good results: low and high thresholds overemphasise
grey value fluctuations, and also the seemingly optimal Otsu threshold cannot cor-
rectly segment regions with uneven grey values.

A common local thresholding method is Sauvola binarisation. This method sets the
local threshold according to the rule:

t(fM(i,j,k)) = mijk

[
1 + k

(sijk
R
− 1
)]

(in [SP00], Formula 5). Here, mijk = 1
]M(i,j,k)

∑
(p,q,r)∈M(i,j,k) fpqr refers to the mean

pixel value within a small mask around the pixel (i, j, k), sijk refers to the standard
deviation within this mask and R = max s

min s refers to the dynamic range of the standard
deviation. In many applications this dynamic range is set to the maximum possible
grey value (this means R = 255 for 8-bit images or R = 216 − 1 for 16-bit images),
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(a) Original (b) k = 0.1, w = 10 (c) k = 0.1, w = 50 (d) k = 0.5, w = 50

Figure 2.5: Local thresholds: Sauvola’s method applied for different values k,w for
square masks

(a) Original (b) tl = 50, tu = 220 (c) tl = 50, tu = 130 (d) tl = 20, tu = 190

Figure 2.6: Local thresholds: Hysteresis binarisation

(Katja Schladitz, personal communication, January 2017). The parameters of this
decision are k and the size and shape of the mask M(i, j, k) under consideration.
The result of this method is depicted in Figure 2.5 for different values of k ∈ R and
the side length w of a quadratic window. In comparison with the global threshold
method depicted in Figure 2.4, the method by Sauvola is able to capture regions
with grey value fluctuations. However, the parameters have to be well-tuned in order
to obtain a good binarisation.

2.3.2 Hysteresis Binarisation

Another local thresholding method is the so-called hysteresis binarisation. This
method uses two different thresholds, the upper threshold tu and the lower threshold
tl with tu > tl. Then, for input image f and output image h, in a first step, all pixels
(i, j, k) for which fijk is lying above the upper threshold tu are assigned to cluster
c0, while the pixels for which fijk is below the lower threshold tl are assigned to c1:

h1
ijk =


c0 if fijk > tu

c1 if fijk < tl

c2 else.

The pixels in cluster c2 are then recursively reassigned to the clusters c0 and c1,
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based on whether they lie adjacent to a pixel already lying in cluster c0:

hn+1
ijk =


c0 if fijk ≥ tl ∧ hnpqr = c0 for at least one (p, q, r) ∈ N(i, j, k)

c1 if fijk < tl

c2 else

until convergence, resulting in an image h∗. Here, N(i, j, k) is the neighbourhood of
the voxel (i, j, k) in terms of the chosen adjacency system F. The remaining voxels
in cluster c2, which are not connected to any voxels in h−1

∗ (c0), are then assigned
to cluster c1, resulting in the binary image h. This local binarisation often leads to
smoother regions than Otsu’s or Sauvola’s method. Examples for various values of
tl and tu are presented in Figure 2.6. It is clear from the image that a careful tuning
of the parameters is necessary.

2.3.3 Optimising functionals

Another way to obtain a segmentation of images is by minimising certain functions
J on the image. An example of this would be the K-means or the fuzzy-c-means
functional. By adding a regularisation term it is possible to enforce smooth edges
of the clusters. The classical K-means tries to find optimal cluster centres cl, l =
1, . . . ,m = K that minimize

J =
∑

(i,j,k)∈X

m∑
l=1

ul(i, j, k)|fijk − cl|2

with the label defining matrix ul(i, j, k) such that ul(i, j, k) = 1 if |fijk − cl|2 <
|fijk − cp|2 for p 6= l and the canvas X. The resulting image h is then obtained by

hijk =
m∑
l=1

1ul(i,j,k)cl

or

hijk =
m∑
l=1

1ul(i,j,k)(l − 1).

For m = 2 this is equivalent to Otsu’s method, see [LY09]. The k-means clustering
has the same problems as Otsu’s method, namely that local information of the voxels
is not taken into account.

In [SS12], a fuzzy-c-means functional is presented with a regularisation term λTV(u)
that enforces smooth edges of the clusters:

J =
∑

(i,j,k)∈X

m∑
l=1

(ul(i, j, k))b(fijk − cl)p + λTV(u)

with b > 1, p = 2 and TV(f) =
∑

ijk |∇fijk|, where ∇ denotes the gradient, see
[SS12]. Here, ul(i, j, k) is a label defining matrix that assigns each image point
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partially to a label cl, i. e.
∑m

l=1 ul(i, j, k) = 1, ul ≥ 0 for each voxel (i, j, k). The
resulting image h is then obtained by

hijk = {cl|l = arg max
l

ul(i, j, k)}.

Due to the local information that is used, “good” shapes of the clustered particles
are enforced.

2.3.4 Random forest classification

Often, it is very hard to find an automatic method to segment images. For example,
if the particles observed within an image vary greatly in their sizes, a regularization
might not yield good segmentations of both small and big particles. On the other
hand, it could also happen that there are huge grey value fluctuations within the
images or between the slices of a three-dimensional image set. In these cases, it is
often helpful to use a learning-based method to segment the data that uses example
regions selected manually by the user to automatically learn rules to separate the
different phases.

A program which uses such a segmentation method is ilastik, see [SSKH11], which
is based on a random forest classifier, [Bre01]. The random forest consists of several
decision trees that are randomly initialized with subsets of the manually marked
pixels and their local properties, such as variance, grey value, derivatives, etc. Based
on the informativeness of these features with regards to the labels, each tree learns
different ”rules” for the labels. By combining these random decision trees, overfitting
is suppressed.

2.4 Particle separation

In terms of stochastic geometry, the segmentation methods described so far are used
to identify the phases ΞSiC, ΞAl and ΞAl2Cu of the material, which themselves can
be modeled as germ-grain process, i.e.

ΞSiC =
⋃
i∈N

(Ξi,SiC + xi,SiC)

ΞAl2Cu =
⋃
i∈N

(Ξi,Al2Cu + xi,Al2Cu)

ΞAl =
⋃
i∈N

(Ξi,Al + xi,Al)

for suitable point processes {xi,SiC}i, {xi,Al2Cu}i and {xi,Al}i.

In order to estimate the distribution of the typical grains Ξ0,SiC, Ξ0,Al2Cu and Ξ0,Al

based on statistics on the observed sets XSiC, XAl and XAl2Cu, it is therefore neces-
sary to identify the single grains {Ξi,SiC}i, {Ξi,Al2Cu}i and {Ξi,Al}i within the phases.
This is obtained by particle separation, which is also often called labelling. This is
done on the segmented images h obtained by clustering.
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(a) (b) (c) (d)

Figure 2.7: The effect of Euclidean distance transform and spherical granulometry
on a binary image. (a): input binary image. (b) Euclidean distance transform on
the foreground. (c) Spherical granulometry on the foreground. (d) Colored levels
of the granulometry image for better visibility

When the particles do not touch each other, they can be identified by labelling the
connected components within the segmented image h. The standard method to
separate touching objects within a phase is the watershed algorithm: Local minima
in the image are considered as water sources, and the water level rises according to
the grey value gradient at each pixel and the applied adjacency system F. When two
water basins touch, they form a watershed at the contact. These watersheds are then
used as the separating curves within the particle phase to separate said particles.
The particle separation is obtained by assigning each minimum a unique label ln.
The labelled image is them hijk = ln if (i, j, k) lies within the basin belonging to
minimum n.

There are several methods available to generate the local minima needed for the
watershed algorithm, which will be presented in the following.

2.4.1 Euclidean distance transform

On a binary image fijk the Euclidean distance transform assigns each pixel of the
phase f−1(1) the shortest Euclidean distance to the other phase f−1(0). As our
image data is displaying non-intersecting particles that touch each other on a small
fraction of their surfaces, this results in local maxima lying at the centres of particles.
The transform can be defined as O : PB → PG with input image f and output image
h by:

hijk =

{
min(i′,j′,k′) st fi′j′k′=0 ||(i, j, k)− (i′, j′, k′)|| if fijk = 1

0 if fijk = 0

For example, if fijk displays a ball of radius r, its centre gets assigned the value
r, while the surrounding pixels get assigned lower values, decreasing linearly with
their distance from the center. By taking the complement hcijk = maxh−hijk, local
maxima become the local minima needed for the watershed algorithm. The result
of the Euclidean distance transform is depicted in Figure 2.7, (b).
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2.4.2 Spherical granulometry

The spherical granulometry image of a binary image assigns each foreground voxel
(i, j, k) with fijk = 1 the radius r of the largest ball lying completely inside the
foreground and covering that voxel. The maxima generated by this transform are
flat, while for voxel sets not conforming to a spherical shape, pixels lying at edges get
assigned smaller values. This means if fijk displays a ball of radius r, all circle pixels
get assigned the value r. Taking the complement image generates minima which
can be used for the watershed algorithm. The effect of the spherical granulometry
is depicted in Figure 2.7 (c).

When applying the watershed transform to any of these distance transform images,
one has to account for local minima. Often, these local minima were generated
by noise or smaller, unimportant structures within the particles and result in an
oversegmentation. There are several methods to deal with this:

• Smoothing the distance transform image by one of the filters presented above

• H-Minima transform on the distance transform image

• Manually joining labels after the watershed algorithm

• Preflooded watershed

Using the Euclidean distance transform (EDT) generates many of these lesser local
minima generated by small structures or noise. In order to obtain a good labelling,
a typical approach is to use a H-Minima transform on top of the complement of the
Euclidean distance transform. The spherical granulometry is more robust in that
matter, so it might be sufficient to manually correct some oversegmented labels.

2.4.3 H-Minima transform

The H-Minima transform removes local minima in an image with a method similar
to fillholes, see [OS09], Chapter 4. The transform is based on repeated geodesic
erosions while using the EDT image f as marker on an image defined by hijk =
fijk+d, d ∈ G until stability is reached. This fills all minima of dynamic less than d.
By the dynamic of a minimum we denote the difference between the value attained
at the closest local maximum, here denoted by fmax,l, and the value attained at the
minimum, here denoted by fmin,l. The affected minima are elevated by d, while the
related maxima are elevated by max{d− (fmax,l − fmin,l), 0}.

2.4.4 Preflooded watershed

In the standard watershed algorithm, all basins are filled simultaneously. The pre-
flooded watershed eliminates oversegmentation by only admitting watershed basins
in the d-dimensional image to be filled when they are above a certain ((d + 1)-
dimensional) volume threshold t. The basins that do not meet this criterion are
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only filled when a neighbouring water basin spills into them, see [OS09], Chapter 4.
As mentioned there, the difference between preflooded watershed and H-minima
transform lies in the fact that the preflooded watershed is a local operation, while
the H-minima transform elevates all minima in the image.

2.5 Estimating the distribution of the typical grain Ξ0

Based on the labelled images, it is possible to estimate properties such as local
Euler number or orientation within the labelled sets and use them as estimates
of the intrinsic volumes and orientations of the particles within the sample. The
distributions of these properties are then estimates of the related distributions of
the typical grain Ξ0. In the following, we will describe shortly how to arrive at these
estimates. The following sections are based on the books on 3D image analysis
by [OS09] and [TY09].

2.5.1 Volume V3

The estimation of the volume of a particle X labelled within the image f by the
value ci is straightforward: Following Cavalieri’s principle (see [RSVW14]) we get
V̂3(X) =

∑
1f=ci × Vvox, where

∑
1f=ci denotes the number of voxels within the

label ci and Vvox denotes the physical volume represented by one voxel.

2.5.2 Euler number

Following the Euler-Poincaré equality, the Euler number of a set X observed in an
image can be estimated based on the faces of the digitized set X u F:

χ̂(X) = χ(X u F) =

3∑
k=0

(−1)k]Fk(X u F),

see [OS09] (3.5).

2.5.3 Other intrinsic volumes

There are several methods on how to estimate the other intrinsic volumes based on
digital image data:

The naive approach consists in first generating a triangular mesh on the voxel data
and then measuring the surface area or mean breadth of this mesh. The problem
with this approach is that the generated mesh is not unique and the results would
depend on the mesh size.

In order to estimate the surface area and other intrinsic volumes directly from voxel
data, one uses the Crofton formula instead (see 1.5.1), which relates measurements
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of the Euler number in lower dimensions to other intrinsic volumes in higher di-
mensions. The following considerations are taken from [OS09]: For a polyconvex
compact set X ∈ Rd and a k-dimensional linear subspace of Rd, denoted by L ∈ Lk,
the space of k-dimensional linear subspaces, and its (d− k)-dimensional orthogonal
complement L⊥, we have

Vd−k(X) =
Γ
(

1
2

)
Γ
(
d+1

2

)
Γ
(
k+1

2

)
Γ
(
d−k+1

2

) ∫
Lk

∫
⊥L

χ(X ∩ (L+ y))νL⊥(dy)µ(dL)

By νL⊥ we denote the Lebesgue measure on L⊥. By µ we denote the rotational
invariant measure on Lk. On digitized images, the integration has to be calculated
on the discretised set X ∩ (L+y)uFk for discrete y and an adjacency system Fk on
the section lattice Lk, see [OS09], Chapter 5 and [RSVW14]. We will assume that
d = 3 and k = 1, 2, since the estimation of the volume was already outlined above and
the Euler number can be estimated based on the Euler-Poincaré formula. Following
the outline of [RSVW14], we replace the integrals by sums in the following way: The
directional integral is approximated by using the 13 discrete directions given by the
directions of the edges, the face diagonals and the space diagonals of the unit cell of
the lattice. The orthogonal complement is replaced by the translative complement
L3−k
T , which is not necessarily uniquely determined.

The translative integral, here denoted by pk(X,L), can be estimated in the following:

p̂k(X,L) =

mk∑
l=0

V (C)

V (Ck)
χk0(ζl u Fk)

∑
x∈Ld

1(ζmk−l + x ⊂ Xc),

where ζl are the mk + 1 vertex configurations of the k-dimensional unit cell of the
section lattice. In order to apply this estimation not only on configurations in Lk, but
on configurations in Ld, a reweighting has to be applied, see [RSVW14] and [OS09].
This results in the following estimation of the intrinsic volumes:

V̂3−k(X) = 2

13∑
i=1

γ
(k)
i p̂k(X,Li),

where the rotational integral is approximated as mentioned above by integrating over

the 13 section lattices, where each translative integral is weighted with γ
(k)
i > 0.

2.5.4 Orientation

The intrinsic volumes are invariant under rigid motion. Therefore, they are not
suited to estimate the orientation of structures depicted within an image. In the
following, we will describe various notions of orientation and how to estimate these
properties on digital image data. Based on the orientations of the grains {Ξi}i ob-
served within the images, it is then possible to estimate the orientation distribution
of the typical grain Ξ0.
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Surface orientation

One way to define the direction or orientation of an object is the indirect method
of analysing its surface orientations. For an elongated convex object, these orien-
tations concentrate around the plane orthogonal to the direction of elongation on
the equator. When the objects under investigation are distributed invariant under
rotations around the axis of elongation, this results in a so-called girdle distribution.
For isotropic convex sets, the surface orientations are distributed uniformly on the
sphere.

As [OJG90] have shown, this is not true for non-convex objects: Indeed, they present
an example of an elongated object having the same surface distribution as a non-
elongated object.

The estimation of object elongation via surface orientation is sensible for specific
cases, see for example [COH86] where surface orientation is used as a measure of
anisotropy of biological cells.

In practice, the surface orientations of a set XuF, which can be observed within the
digital image, are usually estimated by the gradients g on the voxel data calculated
using grey value differences within a small mask. Note that due to the fact that
f(X) = 1 and f(Xc) = 0, the gradients are equal to 0 for all voxels not on the
surface.

Chord length distribution

A more direct measure of the orientation or elongation of an object is obtained by
analysing the chord length distribution for lines in different directions.

Theoretically, the chord length distribution is the distribution of the typical chord
obtained by the intersection of a random closed set Ξ with a 1-dimensional linear
subspace L, see [OS09], Chapter 5. The mean chord length l̄(θ) is the expectation
of the length of the typical chord obtained when intersecting Ξ only with affine
subspaces of direction θ, denoted by Lθ. It is estimated by intersecting Ξ u F with
lines Lθ + x,x ∈ L⊥, which are usually taken from discrete section lattices L1.

Elongated objects have a larger mean chord length in direction of their elongation.

Inertia tensor

The moment of inertia Ix of a rigid body is physically defined as a resistance this
body has against a change in rotation around the x-axis. This relation is given by
the equation Erot = 1

2Ixω
2 with ω perpendicular to the x-axis, see [Dem06]. When

applied to rotations around all three axes of the cartesian system, centred at the
centre of mass of the object under investigation, one obtains a three-dimensional,
symmetric inertia tensor Ĩ. Its value depends on the rotation axis and on the shape
of the rigid body. It can be computed very easily on voxelated images. Note that
the centre of mass xm of an object X u F in a digital image is simply the average
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location over all its voxels:

xm =

xm,1xm,2
xm,3

 =
1

V (X u F)

∑
(i,j,k)∈XuF

 ij
k

 ,

where the voxels (i, j, k) are interpreted as vectors in R3.

For the symmetric inertia tensor Ĩ ∈ Mat(3× 3) with

Ĩ =

Ĩ11 Ĩ12 Ĩ13

Ĩ12 Ĩ22 Ĩ23

Ĩ13 Ĩ23 Ĩ33


we only have to compute 6 different values, which are given by

Ĩ11 =
∑

(i,j,k)∈XuF

(
(j − xm,2)2 + (k − xm,3)2

)
Ĩ22 =

∑
(i,j,k)∈XuF

(
(i− xm,1)2 + (k − xm,3)2

)
Ĩ33 =

∑
(i,j,k)∈XuF

(
(i− xm,1)2 + (j − xm,2)2

)
Ĩ12 = −

∑
(i,j,k)∈XuF

(i− xm,1)(j − xm,2)

Ĩ13 = −
∑

(i,j,k)∈XuF

(i− xm,1)(k − xm,3)

Ĩ23 = −
∑

(i,j,k)∈XuF

(j − xm,2)(k − xm,3).

Due to its symmetry, this tensor can be diagonalized. The eigenvectors of the inertia
tensor are the three main axes of rotation of the rigid body under investigation.
The lowest resistance against rotation is obtained when rotating the body around
its longest rotation axis, this axis is given by the eigenvector corresponding to the
smallest eigenvalue of the inertia tensor. The inertia tensor was used in [AJ09] for
estimating fibre orientations.

2.6 Applications to various data sets

In the following, we will use the methods presented above to analyse the data of
AMC17. As outlined in the introduction, our data consists of several types of
images: Images obtained using SEM and FIB-SEM. The FIB-SEM images are cor-
rupted by the so-called curtaining effect, which leads to striped artefacts paral-
lel to the focused ion beam and to bright laminar artefacts, as displayed in Fig-
ure 2.8 (c) and (d). These artefacts can be removed using a decurtaining algorithm,
see [FMS], the images displayed in Figure 2.8 (e) and (f) were kindly provided to
us by the author. The removal of the curtaining effect leads to a larger volume
available for labelling and analysis. However, the images get blurred slightly. Due
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(a) AMC17xe (b) AMC17xfine

(c) AMC17xxfine (d) AMC17xfine

(e) AMC17xxfine (f) AMC17xfine

Figure 2.8: (a), (b): SEM images. (c), (d): Slices of FIB-SEM images. (e), (f):
Slices of FIB-SEM images after removal of the curtaining effect. Displayed are
subsections of size 300× 300 of the images that were chosen so that the curtaining
effect is clearly visible.
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(a) Original (b) Binarisation by fuzzy
c-means

(c) Labelled SiC particles

Figure 2.9: Labelling of the SiC particles in AMC17xe based on an SEM slice.
Displayed is a subsection of size 300× 300 pixels of the images.

to the fact that for FIB-SEM imaging the resolution of the FB-SEM images is fixed
at approximately 15× 15× 50 (nm)3, the curtaining removal is only necessary only
for medium-sized particles that are still resolved well with a slight blur. For small
particles, the negative effects of the blurring outweigh the benefit of a larger sam-
ple volume. Indeed, at an average equivalent diameter of 0.3 µm, the particles in
AMC17xxfine are so small that a statistically sufficient number of them can be ob-
served on a small sub-volume of the original FIB-SEM data set. The SiC particles
within AMC17xe are too large to lie entirely within the observation window. For
this sample, we relied on SEM images for parameter estimation.

For the SEM images obtained using the scanning electron microscope (without FIB
sectioning), there is a wider range of resolutions available, which means that the
particles of different sizes are resolved well in the images. However, the images are
very different from each other due to the fact that they were obtained by different
people over the course of several years, see Figure 2.8. In the following, we will
describe methods to binarise these images and label individual particles in a fashion
that allows us to infer their distributions and then model the material (Chapter 3).

2.6.1 SEM images

In the SEM data sets, it is not possible to distinguish SiC particles and Al2Cu
precipitations. The Al grains cannot be observed on these images, either. Therefore,
in the following we will only show how to segment the SiC particles in these images.

AMC17xe

The SEM image of AMC17xe was binarised using the fuzzy-c-means with TV-
regularization mentioned above, see [SS12]. The algorithm to minimize this func-
tional is based on first performing some iterations of the fuzzy-c-means clustering
algorithm to learn a codebook and then using an ADMM to minimize the functional.
We used the implementation in ToolIP [ITW14]. We used 25 iterations of the FCM



46 CHAPTER 2. IMAGE ANALYSIS

(a) Original (b) Binarisation by Otsu (c) Labelled SiC particles

Figure 2.10: Labelling of the SiC particles in AMC17xfine based on an SEM slice.
Displayed is a subsection of size 300× 300 pixels of the images.

and 100 iterations of the ADMM, with λ = 0.1,m = p = 2 and β = 0.3, which is a
parameter used for the minimisation. The feature mode was set to length 100.

As a next step, we computed the Euclidean distance transform on the SiC label,
took the complement to obtain the minima, and computed a preflooded watershed
with area threshold t = 150 and an 8-neighbourhood on them. By masking the
resulting image with the binarised image, we obtained a labelling of the SiC phase.
Due to slight over- and undersegmentation of the particles, some particles had to be
relabelled manually. In Figure 2.9, the binarisation and label images are displayed.

AMC17xfine

For these images, we first applied a median filter with a square filter mask of size
3. Then, we binarised the image using Otsu’s method. We computed the Euclidean
distance transform on the foreground (corresponding to the SiC phase) and spread
the complement of the float image to 16-bit. On this image, we applied a H-minima
transform based on the 8-neighbourhood to eliminate irrelevant local minima. Based
on these minima, we computed the watershed image on an 8-neighbourhood. To
obtain the segmented SiC particles, we masked with the binary image obtained be-
fore. The dynamic d of the H-minima transform was adjusted manually so that
over-segmentation was minimized while under-segmentation was kept low. Usually,
the dynamic could be chosen between d = 1000 and d = 2500. Still, there were
some particles not segmented correctly, so the over- and undersegmentations were
corrected manually, based on the shape of the particles observable in the original
image. When large scratches were present in the images, we simply deleted the cor-
responding labels. An example of the binarisation and labelling results are displayed
in Figure 2.10.

2.6.2 FIB-SEM images

On the FIB-SEM images, there are not only SiC particles visible which are quite
dark, but also bright spots which are Al2Cu precipitations. The Al grains have a
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(a) Original (b) Binarisation of the SiC (c) Labelling of the SiC

Figure 2.11: Labelling of the SiC particles in AMC17xfine based on FIB-SEM.
Displayed is one slice of the image.

wide variety of grey values and are therefore not easily distinguishable from the SiC
particles, because of the grey value fluctuations.

AMC17xfine

The raw data is corrupted by the so-called curtaining effect which leads to dark and
light lines parallel to the focused ion beam, as well as to large bright or dark areas.
However, with the method described in [FMS], this effect can be eliminated. We were
provided with decurtained images by the authors. The images still have a brightness
gradient, so simple thresholding is not a feasible way to obtain a binarisation.

Segmenting the SiC particles In all FIB-SEM images not only the material, but
also some empty space around it is displayed. Therefore, as a first step we cropped
the image. This means we only worked on voxels in W = [130, 1306] × [91, 994] ×
[0, 421] of the original canvas.

As in this case, the SiC particles were darker than the other phases, we started
with complementing the image. Then we applied a mean filter with a cubic mask
of size 3. To binarise the image we used a Sauvola binarisation with coefficient
k = −0.1 and window size w = 180. As a next step, we rescaled the image to
a resolution of 16.5 × 16.5 × 50 (nm)3, to account for the different resolutions of
the focused ion beam cutting and the scanning electron microscope by setting the
spacing accordingly. Finally, we performed a morphological opening with a cubic
structuring element of size 3 to obtain a good binarisation.

On the binarised images, we then computed the Euclidean distance transform on
the foreground, spread the image to 16-bit and complemented the images. Then
we applied a H-Minima transform in the 26-adjacency with dynamic d = 3750 and
a watershed with 26-adjacency. The resulting watershed image was masked by the
binary image in order to obtain a labelling of the SiC particles. The intermediate
steps of the binarisation and the labelling are displayed in Figure 2.11.
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Figure 2.12: Binarisation of the SiC particles in AMC17xxfine based on FIB-SEM
slices. The blue frames indicate the input and the output image of this process.
The smaller images were created using ToolIp, [ITW14], the diagram was
generated using GIMP, [tea13].

AMC17xxfine

Segmenting the SiC particles In the case of AMC17xxfine, we first aligned
the stack using a SIFT alignment implemented in fiji, [SACF+12], restricting the
alignment to translational transforms. Then, we binarised each slice of the FIB-
SEM stack separately using ToolIp, [ITW14]. The reason for this is that we did
not use the decurtained images, to avoid the blurring effect of the decurtaining.
However, without the smoothing perpendicular to the SEM slices, which is provided
by the decurtaining program, each slice has a slightly different illumination. For each
slice, the relevant thresholds were adjusted manually to obtain a good binarisation.
Therefore, we chose a small sub-region of size W = [0, 199] × [0, 199] pixels within
each SEM slice.

First, we applied a cuthills and fillholes transform within a 8-neighbourhood to the
original slices f to extract the Al phase. Note that minima and maxima connected to
the image boundary are not eliminated in that process. These minima and maxima
are then binarised using a hysteresis binarisation. Then, the cuthills(f) is sub-
stracted from fillholes(f), and the resulting image h is thresholded. This threshold
is chosen in order to obtain good masks for large and small particles. Based on
the resulting binary image g, we extract a “large particles” image gL with gL = 1
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Figure 2.13: Labelling of the SiC particles in AMC17xxfine based on FIB-SEM
slices, blue frames indicate input and output images of the process.
a: Stack slices and smoothen jumps
b: Euclidean distance transform
c: Complement
d: Watershed
e: Mask watershed image
f: Correct labels.

only for large particles and a “small particles” image gS with gS = 1 only for small
particles. Then, the pixels g−1

L (1) and g−1
S (1) are used as masks for two more thresh-

oldings of h, where only pixels within the masks are thresholded and all other pixels
are assigned to the background (with value 0) automatically. This results in the
improved binarisations of large and small particles.

The resulting images of the hysteresis binarisation and the binarisations of the large
and small particles are combined by taking the pointwise maximum of these three
images. For each slice, the thresholds were adjusted manually. A schematic overview
of the binarisation process is depicted in Figure 2.12.

In order to label the SiC particles, we stacked the slices to form a 3D-image. As
mentioned above, the resolutions of the focused ion beam and the scanning electron
microscope are not the same. In this case, the resolution of the FIB was 50nm and
the resolution of the SEM 15.145 nm. Therefore, we resampled the resulting 3D
images to obtain isotropic voxel spacing, using fiji, [SACF+12]. The next steps were
all conducted in MAVI, [MAV05]. Since we obtained the binarisations on the slices,
we first smoothened the image in the stacking direction by first applying a median
filter with square mask of size w = 3, then a fillholes in 26-neighbourhood, then
a linear closure in stacking direction of length l = 5, and finally another median
filter with square mask of size w = 3. On the resulting image, we computed a
Euclidean distance transform image on the foreground. We spread the resulting
image to a 16-bit image, took its complement and computed the watershed on it
in a 26-neighbourhood. Finally, we masked the watershed image with the binarised
image to obtain the labels for the SiC particles.

Due to over- and undersegmetation, we had to correct some labels manually. The
labelling process and a volume rendering of the resulting 3D image are depicted in
Figure 2.13.



50 CHAPTER 2. IMAGE ANALYSIS

(a) Al phase (b) EDT image (c) Reconstructed grains

Figure 2.14: Labelling of the Al grains based on the assumption that Al2Cu
precipitations occur on grain boundaries. Displayed is one slice of the images.
Submitted to appear in [LSB+ed].

Segmenting the Al2Cu The Al2Cu precipitations can be easily segmented from
the stacked and aligned original images of the image by the application of a Sauvola
algorithm with parameter k = −0.5 and window size w = 10. On the resulting
image, we applied a linear opening perpendicular to the slices (i.e. in parallel to the
stacking) of width 2. Additionally, the local maxima were extracted from the im-
age stack using the Extract Hills algorithm implemented in MAVI [MAV05]. These
local maxima were then binarised by a global threshold and masked with the bi-
narisation obtained by the Sauvola method described above. The resulting image
was then spread to 8-bit and resampled to isotropy using the bilinear interpolation
implemented in fiji [SACF+12]. The resulting image was then binarised by global
thresholding. Due to the very small sizes of the precipitations in the images, we
abstain from trying to separate them even further and only labelled the connected
components.

Segmenting the Al grains As mentioned earlier, the Al2Cu can be assumed to
occur on Al grain boundaries. After obtaining a good segmentation of the SiC and
the Al2Cu phases, we automatically have also a segmentation of the Al phase as
XAl = X \ (XSiC ∪XAl2Cu) for the canvas X. The grains can be easily segmented
by first computing an Euclidean distance transform on the binary image f with
f(XAl) = 1 and f(X \ XAl) = 0, then taking the complement and spreading to
16-bit. Then we took a H-minima transform with dynamic d = 1000 and computed
the watershed on the remaining minima. By masking the remaining label image
with f−1(1), we obtained a label image of the Al grains. The reconstruction of the
Al grains is depicted in Figure 2.14.

2.7 Conclusion

We presented a wide variety of segmentation methods and some standard methods
for labelling. Due to the nature of the material under investigation and the dif-
ferent circumstances under which the data were imaged, the image data are very
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heterogeneous. Therefore, we had to use many different methods to obtain satisfying
labellings of the data. Especially in the FIB-SEM images with the fixed resolution,
large particles are very hard to segment automatically, small particles can be seg-
mented semi-automatically, while medium-sized particles are easy to segment and
label. The SEM images can be mostly segmented and labelled using standard meth-
ods, but only because of the gentle grinding applied beforehand. For these images,
the preparation before the image acquisition has the largest influence on the quality
and facility of the segmentation.
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Chapter 3

Statistics and Modeling of
Particle Reinforced Aluminium
Matrix Composites

In this chapter, we will analyse relevant statistics of the SiC grains, the Al grains
and the Al2Cu which we use to model the material. The analysis is based on the
FIB-SEM data set of the AMCxxfine and the reconstruction described in Chap-
ter 2. As the intended models are built on random polygons, we use statistics on
the convex hulls of the particles, and therefore only model the convex hulls of the
SiC particles. This introduces a small error, however, the SiC particles can be ex-
pected to be mostly convex. Note that we resampled the data set to obtain isotropy.
After the resampling, the size of the data set is 200 × 200 × 1178 voxels at a res-
olution of 15.145 nm. All figures and minimisations in this chapter were obtained
using Matlab [MAT16]. The particle features, namely b̄ and V were obtained using
the objectfeatures in MAVI, [MAV05]. The statistics of these objectfeatures were
obtained within Matlab. The Laguerre tessellations were generated based on a pro-
gram written by Claudia Redenbach. All other programs used to analyse 3D image
data were programmed using MAVIlib, [Fra11]. The statistical analysis and method
to model the SiC particles is submitted to appear in [LSB+ed].

3.1 Proposed Model

We propose to model the AMC17xxfine based on a random Laguerre tessellation
model for the Al grains, with SiC particles and Al2Cu precipitations lying on the
grain boundaries of the tessellation (and the latter also lying on the surface of the
SiC particles). This is an approximation of the real circumstances where the Al
grains were formed around the SiC particles. This approximation is necessary in
order to obtain a fast-to-compute model that can easily be adapted to other particle
sizes. In the following, we will introduce in detail how to model the phases based
on the digital image data obtained in FIB-SEM. Since our model is only able to
capture convex SiC particles, we analyse the SiC particles based on the convexified

53
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labels within an image fconv. This image was generated from the labelled image f
by convexifying the objects in a fashion that no other labels were overwritten.

3.2 Statistics of shapes and sizes of the SiC particles

3.2.1 Correct sampling of the SiC particles

Not all particles within our data set lie completely inside the observation window.
This is due to the fact that our data was obtained by FIB-SEM imaging of a small
volume of the material (instead of imaging a set of distinct particles). This means
we have to account for boundary effects:

If we included all particles that were sampled by the window, or if we excluded
particles that lie on the boundary of the window, we would introduce a bias into
the analysed distributions. This is due to the fact that large particles have a higher
probability to be intersected with the observation window’s boundary than small
particles.

Therefore, it is necessary to use another approach to account for these boundary
effects: We analyse only those SiC particles whose midpoints have a larger distance
from the boundary than the midpoints of the particles intersecting the boundary of
the window. This method is called reduced sampling, see [OS09], Chapter 5.2.6. This
allows for an unbiased estimation of the particles’ volume and shape distributions.

3.2.2 Anisotropy

As it has been shown in [GC05], we generally have to expect anisotropic orientations
of the grains due to the manufacturing process: Because of the extrusion process,
the particles align in extrusion direction. In Chapter 2 we have presented various
methods to investigate anisotropy. In this simple case, we analysed the lengths of the
particles’ bounding boxes in two directions lx and ly perpendicular to the extrusion
direction compared to the length lz parallel to the extrusion direction. Here, x, y
and z correspond to the coordinate axes in the analysed image. This yields a simple
measure of anisotropy as elongation el = 2lz

lx+ly
.

In general, bounding boxes are largest in the direction of the extrusion. However,
this elongation is not independent of particle size. Due to the fact that there are
considerably more smaller particles than larger particles, a simple regression fit of
the elongation as a function of size would over-emphasize smaller particles. There-
fore, we smoothen and resample the scatter of the observations at intervals of 1000
voxels to achieve equidistance of the independent variable particle size. As smooth-
ing, a local mean of width 2001 is chosen, so for each resampled volume vres, the
corresponding observation is the mean of elongations for the volume v (in voxels) in
[vres − 1000, vres + 1000].

The smoothed scatter is then used for a function fit, giving the approximate relation
between volume and elongation as
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Figure 3.1: Smoothing and function fit of the elongation depending on the volume.
On the abscissa the particle volume in voxels, on the ordinate the elongation.
Derived from a plot submitted to appear in [LSB+ed].

el(v) = 0.08837 ∗ ln(170.3v + 14280) + 236500v

with an adjusted R2 of 0.98861.

In order to obtain a more isotropic data set we then rescaled the particles based on
their volumes. For the volumes, this rescaling can be directly achieved by dividing
the volume of a particle by its elongation. In order to be able to analyse the other
intrinsic volumes, we generate a rescaled image fconv,resc. We generated this image
by the following method: For each label ni in the image fconv, we estimated the
volume V3(ni) based on the image data. Based on V3(ni), we then determined the
relevant rescaling factor rescV3(ni) = 1

el(V3(ni))
.

For the rescaling, we extracted the label’s bounding box bbx(ni) := [minxi,maxxi]×
[minyi,maxyi]× [minzi,maxzi]. Then, for the output image fconv,resc, we apply the
following mapping O : PG → PG:

fconv,resc(x, y, z) = fconv

(
x, y, rescV3(ni)

(
z − minzi + maxzi

2

)
+

minzi + maxzi
2

)
if
(
x, y, rescV3(ni)

(
z − minzi+maxzi

2

)
+ minzi+maxzi

2

)
∈W , the observation window. In

other cases, the voxel gets projected to the border of W . This rescaling ensures that
the centre of mass of the particles is not changed for particles lying inside of W and
that particles lying on the boundary of W are still connected to the boundary. The
further analysis is based on this image of rescaled particles.

The correction of these orientations and elongations is useful because it allows us to
analyse the underlying particle shapes in terms of sphericity. If we did not correct
for the elongation, we would confound deviations from the sphere due to elongation
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with deviations from the sphere due to sharp edges. Additionally, we would have to
generate anisotropic tessellations to fit the typical grain of the SiC.

3.2.3 Volume distribution of SiC particles

In order to obtain a model that is easy to handle and allows for straight-forward
stereological estimation, we strive to find a parametric model to fit to the volume
distribution of the SiC particles. It has been shown in previous works [FVF88]
that typical volume distributions for granular structures are the logarithmic normal
distribution and the gamma distribution, see [Wal] for an introduction on these
distributions, with the densities flogn and fΓ, respectively:

flogn(x) =

{
1√

2πσx
exp

(
− (ln(x)−µ)2

2σ2

)
if x > 0

0 else

fΓ(x) =

{
ab

Γ(b)x
b−1 exp(−ax) if x > 0

0 else,

with parameters µ ∈ R, σ > 0 and a, b > 0 and the gamma function Γ(p). Note
that by definition, the logarithm of a log-normally distributed random variable is
normally distributed with parameters µ and σ.

In order to find the distribution of the SiC volumes, we analysed the volume distri-
bution of SiC particles based on the convex hulls of the particles, fconv. Indeed, the
volume (measured in voxels) of the particles is best fit by a log-normal distribution
with µ = 4.5210 and σ = 2.2688. At a resolution (ru)3 per voxel, where u refers to
the unit of measurement (m, nm, etc), this transforms to µr = µ + 3 ln r, σr = σ.
At a resolution of (15.145 nm)3, we get µ15.145 = 12.674 for measurements in nm,
the mean particle volume is 4188017.6 (nm)3, which corresponds to an equivalent
spherical diameter of 200 nm. It has to be noted, however, that a Lilliefors test
on a subvolume of size 200 × 200 × 300 with 993 particles fails to reject the null
hypothesis of normal distribution of the log-volumes at p = 0.3771, while the same
test on a set of 3064 particles rejects the normal distribution at minimal p = 0.001.
Figure 3.2, left, shows the corresponding histogram of the log-volumes with a normal
fit. Note that the lack of negative values stems from the fact that each particle has
at least 1 pixel.

The coefficient of variation of the volume, measured directly on the image data, is
4.4892. This deviates largely from the theoretical coefficient of variation, obtained
when using the fitted parameters,√

exp(σ2)− 1 = 13.1.

This deviation is due to the fact that the coefficient of variation is a very sensitive
measure: Even for a sample of 10000 lognormally distributed random variables with
parameters µ = 4.521 and σ = 2.26882, we only measure a coefficient of variation of
6.9993.



3.2. STATISTICS OF SHAPES AND SIZES OF THE SIC PARTICLES 57

Figure 3.2: Histogram fits of the logarithm of the SiC volume distribution. Left:
Histogram fit of the original volume distribution. Right: Histogram fit after
rescaling the particles according to the elongation function. Submitted to appear
in [LSB+ed].

We therefore propose to use the quartile dispersion coefficient vQ, see [wik], as a
measure for the variability of the data and to check the fit of the parameters. It is
defined as

vQ =
q0.75 − q0.25

q0.5
,

where qx is the x-quantile of the data, this means for example the median is q0.5.
The quartile dispersion coefficient of the volumes of our data is 4.6897, the the-
oretical quartile dispersion coefficient of the fitted values is 4.4030. We conclude
that the quartile dispersion coefficient is an adequate measure for variability in our
data. When we rescale the particles to obtain isotropy as described above, the vol-
ume distribution preserves its overall log-normal shape, see Figure 3.2, right. The
parameters of the rescaled distribution are µresc = 4.4412 and σresc = 2.2252 .

3.2.4 Analysis of shape factors

In many applications the reinforcement particles have a certain, deterministic shape,
given by the manufacturer. In our material this is not the case: although SiC forms
many different crystal lattices, the particles reinforcing the Al within the material
under investigation do not have a crystal shape. Instead, the shapes of the particles
are randomly distributed. They have sharp edges and are mostly convex. In the
following, we will analyse the shape distribution of the SiC particles on the image
fconv,resc, that is after their anisotropy has been corrected.

When analysing the shapes, it is sensible to only consider labels that consist of at
least 400 voxels. This is due to the fact that it is impossible to get a notion of “shape”
for smaller voxel sets, see [Vec14], Chapter 2. A shape factor is highly dependent on
measurement of surfaces and mean curvature. When using too few voxels per label,
an error of one or two pixels could already largely change the perceived shape of a
particle.

We can now observe the so-called isoperimetric shapefactors. They describe the
deviation of the particle shapes from the ideal shape of a ball. This deviation is
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Figure 3.3: Histogram of various shapefactors for particles with more than 400
voxels. Derived from a plot submitted to appear in [LSB+ed].

measured in terms of relations of intrinsic volumes, which have known relationships
for balls. See Chapter 1 for the definition of the intrinsic volumes.

The intrinsic volumes can be combined to the following shape factors:

sf1 =
6
√
πV√
S3

sf2 =
48π2V

M3

sf3 =
4πS

M2

These shape factors are 1 for the ball, smaller than 1 for convex objects. For poly-
convex objects, sf2 and sf3 can be larger than 1, see [Vec14], Chapter 2.

3.2.5 Shapefactor distribution

The histograms of the shapefactors measured on fconv,resc, sf1, sf2 and sf3 are
displayed in Figure 3.3.

Some particles are not convex, but rather polyconvex, which can be seen easily by
the fact that they obtain shapefactors sf2, sf3 larger than 1. The reason for this is
that the image fconv was obtained under the condition that only the background was
overwritten, so that touching particles do not overwrite each other. When restricting
ourselves to the convex shapes, we get the following characteristic properties, as
displayed in Table 3.1.

We have to consider that we corrected for particle elongation before analysing the
shapes. Correcting an ellipsoid’s elongation would render a sphere. However, the
truncated histograms displayed in Figure 3.4 lack a shape factor clustering near the
value 1. We can conclude that the particles are definitely not spherical or ellipsoidal.
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mean stddev median vq
sf1 0.8260 0.0617 0.8373 0.0822
sf2 0.66612 0.0943 0.6696 0.1813
sf3 0.8573 0.0480 0.8630 0.0741

Table 3.1: Statistics of the shape factors, based on values in [0, 1] and with
vol > 400 voxels. Submitted to appear in [LSB+ed].

Figure 3.4: Histogram of various shapefactors for particles with more than 400
voxels, truncated at 1. Derived from a plot submitted to appear in [LSB+ed].
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3.3 Distribution of the typical grain of SiC particles

Based on the investigations in the previous sections, we propose to model the SiC
particles’ shape based on the typical cell of a random Laguerre tessellation that was
generated on densely packed balls. The Laguerre tessellation has been introduced
in Chapter 1.

The shapes and sizes of the tessellation’s cells can only be influenced indirectly by the
parameters of the underlying ball packing, as was shown in [Red09]. In this paper,
they fitted polynomials of degree 3 to model the relationship of the coefficients
of variation of the Laguerre tessellation, cvTess, and the coefficients of variation
of the underlying ball packing, cvBalls. Although the polynomial fit is well-suited
for their application, it fails to provide sensible extrapolations for our application,
especially if we consider generating a ball packing that is able to generate a Laguerre
tessellation of cv = 13.1. Therefore, based on the data in [Red09], we propose to fit
the relationship by:

cvTess,1 = a · cvbBalls
or

cvTess,2 =
p1 · cvBalls + p2

cvBalls + q1
.

In the exemplary case that the ball packing achieves the volume fraction VV = 0.6,
which results in the strongest correlation of cvTess and cvBalls, we obtain the param-
eters a = 0.7554, b = 0.9108 and p1 = 10.15, p2 = 0.04613, q1 = 12.41. These fitted
functions have the advantage that cvTess is monotonically increasing for increasing
cvBalls, which is not the case for the cubic polynomial fit provided in [Red09].

However, for cvBalls = 10 and VV = 0.6, based on a simulation on 1904 balls, we can
only attain cvTess = 3.691 as estimated on the simulated data, while the theoretical
values obtained with our fits would propose cvTess,1 = 6.15 or cvTess,2 = 4.53.

At this coefficient of variation and packing density, the resulting cell shapes differ
greatly from the shape factor distributions of the observed particles. This stems
from the fact that in order to obtain the largest coefficient of variation possible, it is
necessary to pack the balls very densely. However, the large coefficient of variation
means that the probability of extreme cell volumes is high. These large cells are
then much rounder than the particles observed in the images.

We conclude that it is not sensible to try to fit the volume distribution and the shape
distributions at the same time. Therefore, we only aim at modeling the shapes of
the particles by a Random Laguerre distribution. The correct volume distribution
has to be attained by isotropic rescaling of the polygons. In order to model the
typical SiC particle, we propose the following three-step approach:

• First, fit the empirical shape factor distributions of the rescaled particles by
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Figure 3.5: Data points for the statistics of sf1, sf2, sf3 for
cvBalls ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 4.0, 5.0} and
VV ∈ {0.3, 0.4, 0.5, 0.6} with function fits. To appear in [LSB+ed] (submitted).

the cells of a random Laguerre tessellation, neglecting the volume distribution

• Secondly, sample cells from the fitted Laguerre tessellation and isotropically
rescale them to obtain the desired volume distribution without changing the
isoperimetric shape factors of the cells.

• Rescale these polygons anisotropically according to the relationship of volume
and anisotropy to obtain elongated polygons with volume distribution param-
eters µ = 4.5210 and σ = 2.2688.

In the following we will describe this process in detail.

3.3.1 Fitting the SiC shapes by a random Laguerre tessellation

As described above, we will generate the random Laguerre tessellation based on
densely packed balls. Experience has shown that log-normally distributed ball vol-
umes give good fitting results for the resulting random Laguerre tessellation when
modeling engineering materials, especially when considering shapes, see [Red09].
This means the parameters to be fitted are the coefficient of variation of the ball
volumes, denoted by cvBalls and the ball packing fraction, denoted by VV . Since
we do not want to fit the SiC volume distribution at this point of the modeling,
the mean volume of the Laguerre cells is not important. In order to fit the shape
factors we proceed the same way as proposed in [Red09] for fitting characteristics of
aluminium foams:

Based on a grid for the parameters (cvBalls, VV ), we fit for each volume fraction VV
and for each of the parameters in Table 3.1 a rational function in the coefficient of
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variation cvBalls of the underlying ball packing. This means for each volume fraction
VV we obtain 12 different functions in cvBalls, denoted by f jx,y(cvBalls).

We start with a preliminary study to determine the relationships between cv, VV and
the shape factor parameters on a larger scale. Therefore, we generate tessellation
models for cvBalls = {1, 2, 5, 10} and VV = {0.3, 0.4, 0.5, 0.6}. These parameters
cover a wider range than [Red09]. We find that a rational function of the form

f jx,y(cvBalls) =
pj1,x,y · cvBalls + pj2,x,y

cvBalls + qj1,x,y

provides a good fit for the different values of VV , indexed in the function by j, and
all investigated parameters x of the shape distributions y, depending on the shape
factor cvBalls. For each shape factor y = {sf1, sf2, sf3} and each volume fraction j =
{0.3, 0.4, 0.5, 0.6} we get four different functions, namely f jmean,y,f

j
stddev,y,f

j
median,y

and f jinterq.,y, see Tables A.1 to A.4 in Annex A.1. To find the optimal parameters
VV
∗∗ and cv∗∗ for our random tessellation model, we minimize the relative differences

between the data and the fitted functions f jx,y(cvBalls).

So the optimal coefficient of variation cv∗∗j for each volume fraction j is obtained by

cv∗∗j = arg min
c

√√√√∑
x,y

(
f jx,y(c)−mx,y

mx,y

)2

,

where ·x,y refers to the x-statistic (mean, median, standard deviation or quartile
dispersion coefficient) of the y-shape factor (sf1, sf2 or sf3) estimated from simu-
lated realisations of the models. The statistics of the rescaled particles are referred
to by m. The optimal values cv∗∗ and VV

∗∗ are then obtained at the cv∗∗j with the
minimal value of the difference function.

By minimizing the sum of the squared relative differences between the fitted func-
tions and the moments of the data, we obtain a first approximate 1.4068 and
VV
∗ = 0.6.

In order to be able to generate statistics with a smaller variance for each Laguerre
tessellation, we sample 5 random Laguerre tessellations based on force-biased ball
packings, each consisting of 10000 balls. Additionally, we refine the values of cv to
investigate

cv = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 4.0, 5.0}

in order to increase the quality of the fits. Due to the fact that mean and median are
correlated with a correlation coefficient > 0.996 for all three shape factors, we only
use the mean, standard deviation and quartile dispersion coefficient for this refined
fit. The minimal value of the error function is 0.5017. It is attained at cv∗ = 1.4505
and VV

∗ = 0.6. The parameters of the fitted curves are displayed in Table 3.2.
The data points and the function fits are displayed in Figure 3.5. The statistics
for a realisation of the Laguerre tessellation on 10000 balls packed with parameters
cv = 1.4505 and VV = 0.6 are displayed in Table 3.3.



3.3. DISTRIBUTION OF THE TYPICAL GRAIN OF SIC PARTICLES 63

sf1 sf2 sf3

p1,mean,0.6 0.6983 0.5313 0.8242
p2,mean,0.6 2.305 2.043 2.778
q1,mean,0.6 2.634 2.586 2.964

adjR2
mean,0.6 0.9993 0.9993 0.9992

p1,median,0.6 0.6608 0.4756 0.8083
p2,median,0.6 3.636 3.012 4.206
q1,median,0.6 4.176 3.83 4.501

adjR2
median,0.6 0.9991 0.9991 0.9990

p1,stddev,0.6 0.1062 0.1467 0.06515
p2,stddev,0.6 -0.03574 -0.05112 -0.01823
q1,stddev,0.6 0.4445 0.3158 0.7238

adjR2
stddev,0.6 0.9983 0.9979 0.9988

p1,vQ,0.6 0.2151 0.3716 0.104
p2,vQ,0.6 -0.073025 -0.1189 -0.03168
q1,vQ,0.6 0.8084 0.8483 0.8471

adjR2
vQ,0.6

0.9974 0.9981 0.9980

Table 3.2: Parameters of the fitted curves for VV = 0.6 with their adjusted R2

goodness-of-fit statistic. Based on 5 random Laguerre tessellations based on
force-biased ball packings, each consisting of 10000 balls for VV = {0.3, 0.4, 0.5, 0.6}
and cv = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 4.0, 5.0}. To appear
in [LSB+ed] (submitted).

stat. on sim. stat.∗ error

mean(sf1) 0.8132 0.8260 -1.5519%
mean(sf2) 0.6984 0.6612 5.6246%
mean(sf3) 0.9007 0.8573 5.0582%
stddev(sf1) 0.0617 0.0608 1.3628%
stddev(sf2) 0.0907 0.0943 -3.8386%
stddev(sf3) 0.0348 0.0480 -27.5404%
vq(sf1) 0.1036 0.0822 26.11559%
vq(sf2) 0.1810 0.1813 -0.1325%
vq(sf3) 0.0514 0.0741 -30.5770%

Table 3.3: Comparison of statistics of the shape factor obtained by a realisation of
a Laguerre tessellation based on a ball packing with cv = 1.4505, VV = 0.6 with
the statistics stat.∗ obtained on the fconv,resc for sf2,3 ≤ 1 and vol > 400 voxels. To
appear in [LSB+ed] (submitted).
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3.3.2 Sampling of the cells and rescaling

By choosing a random cell ci of the fitted Laguerre tessellation uniformly, we sample
the typical cell of the tessellation, which has the desired shape distribution. However,
as was pointed out above, this cell does not have the same volume distribution as
the SiC particles. Therefore, we sample a log-normally distributed random variable
vi (for the fitted parameters µ̂ and σ̂). The sampled cell is then isotropically rescaled
so it has volume vi: Each vertex X = (x, y, z) can be identified with the vector ~X.
The isotropic rescaling is achieved by multiplication with a suitable scalar ν.

In order to achieve the correct anisotropy, for each cell the z-component (which is
parallel to the extrusion direction by definition) is multiplied by an anisotropy factor
based on an approximate inverse of the fitted elongation function. This factor fsc is
obtained based on an initial estimation

fsc ≈ 7.117× 10−6viso + 1.292

for the isotropic volume viso which is followed by a fixed-point search to find the
exact factor, see [LSB+ed] (submitted).

The rescaled cell c
′
i then has the same distribution as the particles we investigated

above with respect to the estimated statistics.

3.4 Statistics of the Al grains

We analyse the Al grains based on the reconstructed grain structure, see Chapter 2.
In contrast to the previous section where we analysed the typical grain of a germ-
grain model, the Al grain structure is a tessellation. Typical characteristics of such
granular structures, which we want to model by cells of a random Laguerre tessel-
lation, are the mean number of facets per cell, F̄C ; the standard deviation of the
number of facets per cell, stdFC ; the mean number of edges per facet, ĒF ; and its
standard deviation stdEF ; the mean cell volume V̄ and its standard deviation stdV ;
the mean surface area S̄ and its standard deviation stdS and the mean mean width
¯̄b and its standard deviation stdb̄. Due to the reconstruction of the grains, which was
based on the assumption that Al2Cu precipitations occur on grain boundaries, the
surface areas of the grains are very rough. The grains are often non-convex. Earlier
results for cellular structures have shown that the fit of the surface area does not
give good results even for labellings with smoother label boundaries, see [Red09].
Therefore, we exclude the surface area related statistics from the modeling. The
mean number of facets per cell is usually estimated by the average over the number
of neighbours of each cell, the number of edges per facet can be estimated under the
assumption of normality, see [Lau07]: Under this assumption, edges are contained
in the intersection of three facets.

However, in our data set, there are not only other grains that can be neighbours of a
cell, but the neighbour could also be a SiC grain. This means additionally that earlier
results for foams in [Red09] cannot be applied to our data set. For our analysis, we
included the SiC particles into the count of neighbours, but excluded grains that
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were intersected by the image border, this means we applied a minus-sampling. For
consistency, we also used minus-sampling for the other statistics of the Al phase.
The minus-sampling was implemented using the Miles-Lantejoul [CSKM13] weights
output by MAVI [MAV05]. For a space-filling tessellation, the mean cell volume is

inversely related to the number of cells per unit volume, NV = ν3(W )
V̄

, which can be
easily estimated on the images by

N̂V =
](particles ∩W )− ](particles∩∂W )

2

ν3(W )

based on the observation window W , see for example [BVJ05], Chapter 2. On the
window of size [0, 199] × [0, 199] × [0, 1177] voxels, we observe 8871 grains, cover-
ing a volume fraction of 87%. Using the Miles-Lantejoul sampling, we measure a
mean grain volume of 5278.1 voxels (18.34 × 106 (nm)3) and the standard devia-
tion of the grain volume is 10887 voxels (37.82 × 106 (nm)3), the mean diameter
is 23.0598 units (349.2412 nm), the standard deviation of the diameter is 22.2731
units (337.3263 nm). The average number of facets per cell is 17.5856, its standard
deviation is 10.9805. The average number of edges per facet is 5.7029, its standard
deviation is 3.5609.

3.5 Statistics of the Al2Cu precipitations

In an observation window of size [0, 199]× [0, 199]× [0, 1177] voxels there are 797675
connected components consisting of Al2Cu, using an unbiased sampling rule. The
average volume of a component is 59.0724 voxels, or 20521 (nm)3. The average
diameter of the corresponding ball of a precipitation is 3.4972 units. The volume
fraction of the Al2Cu phase is at 2.86%. The standard deviation of the volume is
388.5858 voxels (1349900 (nm)3). In general, the precipitations are too small to
analyse any other intrinsic volumes without introducing a big error.

3.6 Fitting a tessellation to the Al grains by modeling
the complete particle system

As before with the parameter-fitting of the SiC particles, we want to generate the
random Laguerre tessellation based on densely packed balls. The parameter-fitting
process is essentially the same as the fitting process for SiC, however, since our model
assumes that the SiC particles lie on the facet system of the tessellation modeling the
Al grains, and we can not observe the whole Al tessellation, we generate realisations
of the SiC phase on top of the Laguerre tessellations.

For various values of cv and VV we generate force-biased packed balls. The intensity
NV of the balls can be estimated from the number of Al grains within the observation
window W . Experiments show that under the model assumptions, only a small
percentage of the modeled grains are completely covered by the polygons modeling
the SiC particles. Therefore, we use the intensity estimate N̂V for the Al grains
without a correction.
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Based on these densely packed balls, a Laguerre tessellation is generated. Under
the model assumption, the SiC particles must lie on the facets of the Al tessellation.
We therefore generate a SiC model on this facet system as described in 3.6.1 below.
In order to fit the parameters of the Laguerre tessellation TAl used for modeling the
Al, we use only statistics on TAl \ PSiC, with PSiC denoting the polygons modeling
the SiC. Based on the statistics on this model, we can fit functions gjx(cv) in cv, as
it was done in [Red09], and minimize the mean error:

cv∗∗j = arg min
c

√√√√∑
x

(
gjx(c)−mx

mx

)2

,

for each volume fraction j ∈ {0.3, 0.4, 0.5, 0.6} and the x-statistic (F̄C , stdFC , ĒF ,
stdEF , ¯̄b, stdb̄ and stdV ) estimated for these parameters, and the x-statistics of
the analysed phases, mx. For the function fits, we used rational functions of the
form g = p1·cv+p2

cv+q or cubic polynomials. Again, the optimal values cv∗∗ and V ∗∗V are
obtained at the cv∗∗j with the minimal value of the difference function.

3.6.1 Modeling the SiC

In terms of the modeling of the SiC phase of the AMCxxfine material, we have so
far described how to fit the (anisotropic) grain distribution. The underlying point
process, constituting the germs of the germ-grain model, is assumed to be stationary
within the observation window generated by the FIB-SEM imaging.

Additionally, we can observe that the SiC particles are often lying very close to each
other. Based on these observations we propose the random sequential adsorption +
move algorithm, which is an adaptation of the algorithm used in [Esc12] to model
concrete.

The essential idea of this algorithm is that the polygons which model the SiC parti-
cles are added one by one, based on a Poisson point process on the Al grain facets.
As the Al tessellation is stationary, the Poisson point process of constant intensity λ
is, too. Whenever a newly added particle intersects with a previously added particle,
the newly added particle is moved until no more overlap occurs. Only then another
particle is added. The exact and complete algorithm is described in the following:

• Input: Library of 10000 grains based on a random Laguerre tessellation gen-
erated on densely packed balls with log-normal volume distribution and coeffi-
cient of variation cvBalls = 1.4505 and volume fraction VV,Balls = 0.6, window
W , volume fraction VV = 17% of the SiC phase.

• Based on the parameters µ and σ and the rescaling factors, calculate the mean
volume v of the grains.

• Set the intensity of the germ process to λ = VV
v .

• Determine the number of germs N to lie within the window W by N Pois(λ ∗
ν3(W )).
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• Sample N grains from the library, now denoted by (gi)i=1,...,N .

• Sort (gi) by descending size.

• For each i ∈ {1, . . . , N}, generate a point xi within the window W lying on
a facet of the tessellation modeling the Al, weighted by the facet area. This
means xi is uniformly distributed on the facet system.

• Starting with g1, insert the grains centred in xi into the window W :

– If gn overlaps with an already inserted gm, move gn into a random di-
rection within the chosen facet until no overlap occurs. If an edge of the
facet is reached, sample another possible location xi.

– Use periodic boundary conditions in case a grain cuts the window bound-
ary.

Note that there are several aspects as how to implement this algorithm efficiently:

Usually, the grains are considerably smaller than the observation window W . There-
fore, it is sufficient to check for intersection only in a small neighbourhood. Its size is
given by the largest diameter of the largest particle, ie, the particle with the widest
length in z-direction. Practically, we implement this the following way:

Assuming that the largest particle has a length of d, we subdivide the window W
into cubes of side length at least d; specifically, the side length l of the cube is chosen
as

l ≥ d

so that l is a factor of the side lengths of the (cuboid) window W . Usually, we chose
a cubic window with side length n ∗ 100 for n ∈ N. In case this largest particle is
longer than the window width, the particles are resampled.

For a particle to be inserted into a cube, possible intersections are only tested for
that cube and the 26 surrounding cubes. As in our case the particles are longest in
the z direction, we can also adapt the cubes to cuboid size in order to incorporate
this knowledge. In most of the cases this is, however, not necessary.

Additionally, since the grains are convex polygons, we can easily check for intersec-
tion by using the method described in [Ebe08]. Additionally, this check for intersec-
tion can be computed in parallel to increase the speed of the algorithm.

3.6.2 Parameter fit for Al grain tessellation

As described above, we used the statistics on TAl \ PSiC, with PSiC denoting the
polygons modeling the SiC particles, to fit the parameters of the random Laguerre
distribution. The simulations are based on Laguerre tessellations of 12539 cells,
modeling the Al grains within a window of size [400 × 400 × 400] voxels. For each
parameter set (cvBalls, VV ) we generated two realisations.

The data points and the function fits are displayed in Figure 3.6. It is clear from
the data that there are huge fluctuations in the statistics, making it hard to identify
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Figure 3.6: Data points for the statistics of FC , EF , b̄ and stdv for
cvBalls ∈ {1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75} and VV ∈ {0.3, 0.4, 0.5, 0.6} with
function fits.

actual relationships between the input parameters and the statistics. Therefore, we
excluded outlier observations obsi that deviate from the data median by more than
3 times the median distance to the median of all observations, 3 · median(|obsi −
median(obs)|). Additionally, we used the Matlab option for robust fitting, LAR
[MAT16].

When including all seven proposed statistics, the optimal values for the ball packing
are cv∗∗ = 2.2103, V ∗∗V = 0.6 at a value of the error function of 0.7073. Tables
containing the parameters of the fitted functions and their goodness-of-fit can be
found in Appendix A.2.

3.7 Modeling of the Al2Cu precipitations

Based on the observations, we suggest to model the Al2Cu precipitations as balls
of radius R, centred on a Cox process. We suggest to generate this Cox process as
stationary Poisson point process with parameter λ with respect to the surfaces of
the SiC phase as well as the surfaces of the Al phase.

Assuming the low volume fractions as stated above, we ignore intersections of balls
on the edges of two facets. Then the balls generate a two-dimensional Boolean
model on each facet. Within each facet, the surface fraction ss covered by this
two-dimensional Boolean model is given by

ss = 1− exp(−λπR2).

The total amount of surface area per volume covered by the two-dimensional Boolean
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model is given by SV × ss, where SV denotes the surface area per unit volume of
the entire surface system of the SiC phase and the Al phase combined. On a plane
parallel to the facet at distance t, the area fraction covered by the Boolean model is

ss = 1− exp(−λπ(R2 − t2)).

By integration, it follows that the volume fraction p of the balls centred at the Cox
process described above is given by

p = SV

∫ R

−R
(1− exp(−λπ(R2 − t2))dt

= SV

2R− exp(−λπR2)

√
π erfi(

√
πλx)√

πλ

∣∣∣∣∣
R

0



By erfi we denote the complex error function. For low values of p, it is often sufficient
to use the approximation

p ≈ SV
4

3
πR3λ.

This approximation assumes that the intensity λ of the balls on the facet system is
so low that the probability that two balls intersect at all is negligible.

3.8 Discussion and Conclusion

In this sections we will discuss alternatives to the chosen statistics and models and
analyse the quality of the proposed model.

3.8.1 Model fit

SiC particles

A comparison of the statistics of the random Laguerre tessellation used to model
the SiC particles and the statistics on the image fconv,resc is displayed in Table 3.3.
The statistics for the model were based on 10000 Laguerre cells. With the exception
of vq(sf1), the statistics of the fitted model had the smallest error for the statistics
of sf1. The shape factor sf3 is not reproduced well by the fitted parameters.

In order to get a notion of the quality of the model fit of the SiC particles that is
independent from the statistics used in the fit, we used the chord length distribu-
tion, which was introduced in Chapter 1, as a measure of the agreement between
model and data set. The input images were of the size [0, 199]× [0, 199]× [0, 1177]
voxels (data set) and [0, 299] × [0, 299] × [0, 299] voxels (model) with resolution
15.145 × 15.145 × 15.145 nm3. For this analysis, the SiC particles were not placed
conditionally on the Al grain boundaries. The results are depicted in Figure 3.7 and
show a good agreement between model and data set.
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Figure 3.7: Plots of the chord length distributions for the three main axes, based
on anisotropies modeled by elongation.

Al grains

The fit based on simulations does give clear relationships between the parameters of
the models used for simulation and the statistics obtained on the simulations only
when outliers have been excluded. Some earlier fits based on a simulation with 10000
Laguerre cells and the parameters cvBalls = 1.456, VV = 0.6 for the ball packings
used to generate the shapes of the SiC particles are displayed in Figure 3.8. In this
case, there are obvious relationships visible for the relationship between cvBalls and
the statistics. We conclude that the simulation based modeling should be repeated
for a large volume and that outlier treatment should be employed carefully. A
visual comparison between a model based on the fits and a volume rendering of an
FIB-SEM image of the AMC17xxfine is presented in Figure 3.9.

3.8.2 Orientation distribution for SiC anisotropy

We incorporated the anisotropy of the SiC grains by a simple elongation factor.
As introduced in Chapter 2, there are also other methods to analyse and model
anisotropic grain distributions. One of them is the analysis of the main axis of
orientation given by the moment of inertia tensor. For each normalized eigenvector,
we calculate its representation in spherical coordinates, (φ, θ). In Figure 3.10 (a),
we plotted the data points, together with a spherical density estimate of bandwidth
h = 0.1 and a Gaussian kernel.

A typical model for directional distributions is the Schladitz distribution, [FRZ16,
SPRB+06] with density

fSchlad(θ, φ) =
1

4π

β sin θ

(1 + (β2 − 1) cos2 θ)3/2
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(a) cv vs. std(b̄) (b) cv vs. FC (c) cv vs. std(FC)

(d) cv vs. mean(b̄) (e) cv vs. std(V )

Figure 3.8: Data points and function fits for
cv ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 3.5, 4.0} and VV ∈ {0.3, 0.4, 0.5, 0.6}.

for θ ∈ [0, π) and φ ∈ [0, 2π) and β ∈ R+. This distribution is symmetrical around
the direction (0, 0, 1). The parameter β indicates whether the density is concentrated
on the poles (for β < 1) or on the equator (for β > 1). For β = 1, the distribution
is isotropic. The Schladitz distribution can be generalized to other symmetry axes
(θ0, φ0) in spherical coordinates by

fSchlad,θ0,φ0(θ, φ) =
1

4π

β sin θ

(1 + (β2 − 1)(sin θ0 sin θ cos(φ0 − φ) + cos θ0 cos θ)3/2
,

see [Zha13], Chapter 2.3. As laid out in detail in [FRZ16], this distribution is an
angular central Gaussian distribution and can be further generalised to mixture
distributions, defined by

f(θ, φ) =
n∑
k=1

πkp(θ, φ, αk), πk > 0,
∑

πk = 1.

In order to estimate the parameters of the underlying distribution of the direction
under the assumption of symmetry around (0, 0, 1), we have to verify that φ is indeed
uniformly distributed in [0, 2π]. A Kolmogorov-Smirnoff test rejects this hypothesis
at p < 0.001. This means the observed directional distribution is not symmetric
around the direction (0, 0, 1). Based on the algorithms presented in [FRZ16], we
unmixed the distribution of the directions, using the R code kindly provided by the
authors. We identified two clusters:

30.48% of the directions lie in a cluster with β̂1 = 0.5227 and mean direction x̂1 =
(0.9838,−0.1691, 0.0594), 69.52% of directions are in the cluster with β̂2 = 0.37106
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(a) (b)

Figure 3.9: (a) Volume rendering of AMC17xxfine based on FIB-SEM images. (b)
Volume rendering of the model based on cvSiC,Balls = 1.4505, VVSiC,Balls

= 0.6 and
cvAl,Balls = 2.2103 , VVAl,Balls

= 0.6. The volume fraction of Al2Cu is 2.8%. The
visualisation was generated in MAVI, [MAV05].

(a) (b) (c)

Figure 3.10: (a) Distribution of (θ, φ) with kernel density estimate. (b) First
component. (c) Second component.

and mean direction x̂2 = (−0.0105,−0.0930, 0.9956). The clusters are depicted
in Figure 3.10 (b,c). For these figures, we assigned each data point to a cluster
according to its probability to lie in that cluster.

Based on the directional distribution, another possible model for the SiC phase
would consist in rotating polygons of adequate shape so that their main axes are
distributed according to the fitted distributions. This model is obtained by sampling
from a large library of polygons according to the distribution of the shapefactor sf1,
for which a β-distribution with parameters s1 = 46.7228, s2 = 9.7728 was fitted,
determining the main axis of the polygon and rotating it according to the fitted
directional distribution. However, as this model does not incorporate the elongation
of the particles, the model is too isotropic, as can be seen in the chord length
distributions, displayed in Figure 3.11.



3.8. DISCUSSION AND CONCLUSION 73

Figure 3.11: Plots of the chord length distributions for the three main axes, based
on anisotropies modeled by Schladitz-distributed orientations, based on images of
size [400× 400× 400] voxels.

3.8.3 Other models for Al grains

We modeled the Al grains by cells of a random Laguerre tessellation, with polygonal
SiC grains on the facets. This has the advantage that the model is fast to compute
while still being a good approximation of the underlying structure. Also, the mod-
eling of the Al2Cu grain becomes very easy when we can assume that the particles
lie on flats.

The disadvantage of the model is that it is physically not justified: The Al grains
form around the SiC grains, and their surfaces are not flat. A physically more
justified model might be achieved by a Johnson-Mehl tessellation, which is often
used to model such grain structures.
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Chapter 4

Stereology

In many cases, when investigating a structure embedded in the d-dimensional Eu-
clidean space, there are only lower-dimensional samples available. The method of
inferring higher or full-dimensional information from lower-dimensional samples is
called stereology. It has its roots in geology, where the composition of rocks is of
interest, which can often be investigated only on the surfaces or by drilling holes.
Similarly, the standard method to investigate biological samples is to image slices
of the sample under a light microscope and use stereological techniques to estimate
cell volumes.

In the case of the material AMC17xe, with nominal SiC particle diameter of 3.0 µm,
many SiC particles are too large to be included in a FIB-SEM sample. At the
same time, they are too small to be resolved by a CT scan. Therefore, we propose
to estimate the particle distribution based on 2-dimensional SEM slices. In the
following, we will give a short introduction into the basic principles of stereology
and show how the parameters µ and σ can be estimated when we assume that the
volumes of the SiC particles are log-normally distributed with parameters µ and σ.

4.1 Classical stereology

Classical stereology, as introduced in [BVJ05] is interested in estimating the intrinsic
volume densities of the form VV,kV , as introduced in Chapter 1 based on intrinsic
volume densities at lower dimensions, here denoted by AA,kA , LL,kL and PP,kP with

AA,2A =
E(V2(Ξ ∩W ))

V2(W )

AA,kA = lim
α→∞

E(Vk(Ξ ∩ αW ))

V2(αW )
for k = 0, 1

for a 2-dimensional observation window W . The LL,kL and PP,kP are defined ana-
logously.

The intrinsic volume densities have the advantage that they can be easily estimated

75



76 CHAPTER 4. STEREOLOGY

from lower-dimensional sections using Cavalieri’s principle, under the assumption
that either X is random and homogeneous or the method of sectioning is sufficiently
randomised, see [BVJ05], Chapter 3, using the relationships:

VV,3 = AA,2 = LL,1 = PP,0,

2VV,2 = SV =
4

π
BA = 2IL,

LV = 2QA,

where BA denotes the boundary length per unit area and IL denotes the number of
intersection points per unit length of a line probe, which is a 1-dimensional obser-
vation window. Similarly, QA is the number of intersections of a line per unit area
of a 2-dimensional observation window.

This means the volume fraction can be estimated on 2D sections by measuring the
area fraction AA of the phase X under investigation.

Note however that this classic method does not provide estimates one might be
interested in when observing particles. For example, one might be interested in
the mean number of particles per unit volume, NV . However, this fraction cannot
be easily estimated from sections alone: The probability of a particle to be hit by
an observing section is proportional to its breadth H vertical to the cutting plane,
see [BVJ05], Chapter 2. We obtain for the number of section profiles NA:

NA = NV E(H)

The breadth perpendicular to the cutting plane cannot be estimated within the
plane without further assumptions on the volume distribution of the particles and
their shapes.

4.2 Stereological estimation under a parametric model

When we model 3D particle systems, we can often assume that their volume distri-
bution follows a parametric distribution. In this case, it is often possible to estimate
the distribution parameters from 2D sections:

For example, on uniform and isotropic random sections, which are sections generated
by planes with uniformly distributed reference point and isotropically distributed
normals, see [BVJ05], Chapter 5, we can estimate the moments of the volume-
weighted distribution, see [GJ85]. These moments can then be used to estimate the
moments and the parameters of the (number-weighted) volume distribution, using
the relationships established in [YLS98].

On the other hand, it is also possible to estimate the parameters based on simulations
and a cost function based on two-dimensional section properties. An example of this
approach was presented in [Lie14], where random Laguerre tessellations were fitted
to sections with simulated annealing.
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4.2.1 Estimation of the moments of the volume-weighted distribu-
tion

One approach to estimate the moments of the volume-weighted volume distribution
was presented in [GJ85]. It works the following way:

A grid of sample points is overlayed with the observation window. When a sample
point lies within a particle, this particle is sampled with a line probe, which means
a line of random direction is laid through the sampling point. In case the particle
is not convex, it might happen that there are more than one intersection chords.
The length of the intersection with the particle, which contains the sampling point,
is then denoted by l0, all other intersection lengths are denoted by l1, l2, etc. For
convex particles, there is only one intersection length l0.

The volume-weighted mean volume is then µ1,v = π
3E(l30 +2

∑
i>0 l

3
i ). It is estimated

by the sample mean. The second moment of the volume-weighted distribution can be
estimated by randomly choosing two more points per sample point, which have to lie
uniformly distributed within the same particle. If ∆ denotes the area of the resulting
triangle and a denotes the total area of the particle section, the second moment of
the volume-weighted distribution is µ2,v = 2πE(a2∆). Again, it is estimated by the
sample mean. Under the assumption that the distribution of the particle volumes is
parametric and known, the parameters of the number-weighted volume distribution
can then be estimated based on the estimated parameters of the volume-weighted
distribution. Under the assumption that the number-weighted volume distribution
is a log-normal distribution with parameters µ and σ, the resulting estimates are

µ̂ = 4 ln µ̂1,v − 1.5 ln µ̂2,v

and

σ̂ =

√
ln

(
ˆµ2,v

µ̂1,v

)
,

see [YLS98].

4.2.2 Simulation-based parameter estimation

Another approach to estimate the parameters µ1 . . . , µn of the distribution of three-
dimensional particles based on two-dimensional samples is the direct optimisation
based on simulation, using a cost function

c(µ1, . . . µn) =
∑
j

(
m̂j(µ1, . . . µn)− m̂j

m̂j

)2

,

where the m̂j are statistics on the two-dimensional samples and m̂j(µ1, . . . µn) are
statistics on two-dimensional sections of the model generated with parameters µ1, . . . µn.
As mentioned above, in [Lie14] random Laguerre tessellations were fitted to sections
using simulated annealing, which is a stochastic optimisation method that accepts
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non-optimal solutions depending on the current “temperature” t, which decreases
over the course of the optimisation, see [KGV83]. The algorithm has the advantage
that local minima can be easily overcome, but it depends strongly on the tempera-
ture decrease. Additionally, due to the stochastic nature of the optimisation method,
it might take many iterations (and therefore also many simulations of the model) to
converge. In the following, we will present the Nelder-Mead algorithm, which has
the advantage that it also easily overcomes local minima, is easy to implement and
does not require a lot of parameter-tuning. The disadvantage of the Nelder-Mead
algorithm is its slow convergence.

Nelder-Mead algorithm

The Nelder-Mead algorithm is a direct search algorithm that does not need any
derivatives. It is based on reflecting, expanding and contracting a simplex of (N+1)
nodes in the parameter space (of dimension N). This is done in a fashion that for
each iteration step, the simplex node θi with the worst (that is, highest) cost function
value c(θi) is replaced by a better node. The original method has the parameters α,
β and γ. It works the following way, see [NM65]:

1. Generate the initial simplex in the parameter space, with vertices V = {θ0, . . . θN}.
This can be done by choosing one vertex θ0 ∈ RN and varying this initial vector
in each component independently. GoTo 2.

2. Now, the function values c(θi) at the vertices are evaluated and the vertices
are sorted in a fashion that c(θ0) ≤ c(θ1) ≤ . . . ≤ c(θN ). GoTo 3.

3. Among the N best values θ0, . . . , θN−1, the mean θm is generated. GoTo 4.

4. Based on this mean θm, the worst vertex θN is reflected using the reflection
parameter α, to generate the reflected vertex

θr = (1 + α)θm − αθN .

GoTo 5.

5. If the reflected vertex θr is even better than the best value of the former
simplex, θ0,

• we try to further improve the value by expanding the vertex even further,
generating the expanded vertex

θe = (1 + γ)θm − γθN .

The vertex set is then updated to

(V \ θN ) ∪ arg min {c(θe), c(θr)}.

GoTo 2.

• Else GoTo 6.

6. However, if the reflected vertex θr is only better than θN−1,
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• update the vertex set according to

(V \ θN ) ∪ θr

GoTo2.

• Else GoTo7.

7. If θr is not better than θN−1,

• generate the contracted vertex

θc = βθh + (1− β)θm,

with

θh = arg min {c(θN ), c(θr)}.

GoTo 8.

8. If c(θc) < c(θN ),

• update the vertex set to

(V \ θN ) ∪ θc.

GoTo 2.

• Else: contract the simplex by replacing all vertices θi ∈ V \ θ0 (that is,
all vertices apart from the best) by σθ0 + (1 − σ)θi. The new vertex set
is then

{θ0, σθ0 + (1− σ)θ1, . . . , σθ0 + (1− σ)θN} .

GoTo 2.

Convergence is reached when the pairwise distances between the vertices of the
parameter simplices are all smaller than a threshold ε. Following [NM65], the pa-
rameters are chosen as α = 1, β = 0.5 and γ = 2. Stereological estimation using the
Nelder-Mead algorithm was for example done by [RAB+12] for granular structures.

4.3 Stereological estimation in the non-parametric case

In case that it is not reasonable to assume a parametric model distribution of par-
ticles, stereological estimation can obtained by solving the stereological unfolding
problem, which relates the size distribution of particles in 3D to the size distribu-
tion observed in 2D, under the assumption that the particles are homogeneously
and isotropically distributed within the sample, see [OM00]. Typical “sizes” under
consideration are the (equivalent spherical) diameter or the mean breadth. The fol-
lowing introduction into this approach to stereology is based on the very detailed
Chapters 6 to 8 of [OM00]:

The easiest stereological problem is the so-called Wicksell problem, which considers
spherical particles and their diameter distribution FV (u). Then, the number of 2D
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section profiles NA and the distribution of the circle diameters FA(u) are related to
the number of spheres in 3D, NV and their size distribution via:

NA(1− FA(s)) = NV

∫ ∞
0

u(1−Gu(s))dFV (u)

with the section circle diameter distribution function Gu(s) = 1−
√

1− s2/u2 under
the condition that the random sphere diameter is u, see [OM00]. This equation can
be solved analytically, but for real-life applications, it is generally solved numerically.
This numerical solution is based on the approximation of the stereological integral
equation by a linear equation system

y = Pθ,

precisely

yk =

n∑
i=1

pkiθi, k = 1, . . . , n

under the assumption that the sizes U are discrete random variables with values
ui and FA(s) is approximated by a piecewise constant function with value ai for
(i − 1)∆ < u ≤ i∆, k = 1, . . . , n with interval width ∆. The kernel p = u(1 −
Gu(s)) =

√
u2 − s2 is approximated by pki = p(i∆, (k − 1)∆) − p(i∆, k∆), i ≤ k.

The approximation equation is then achieved using θi = NV (ai − ai−1) and yk =
NA(FA(sk)− FA(sk−1)).

For easy problems such as the Wicksell problem, pki can be determined analytically,
while for more complicated problems it has to be calculated based on simulations.

These more complicated problems include for example the analysis of spheroidal or
polygonal particles. In these cases, a single size parameter is usually not sufficient to
characterize the structure. Therefore, the size-shape distributions FV (u, v) = P(U ≤
u, V ≤ v) and FA(s, t) = P(S ≤ s, T ≤ t) are taken into consideration, with U and
S denoting the size in 3D or in 2D sections, respectively, and V and T denoting
the shapes in 3D and in 2D sections. Again, there are various notions of “shape”,
typical examples are the relation of longest to shortest diameter or the number of
vertices (in the case of polygons). The size s and shape t in 2D and size u and shape
v in 3D are related via

NA(1− FA(∞, t)− FA(s, 1) + FA(s, t)) = NV

∫ ∞
s

∫ 1

t
p(u, v, s, t)dFV (u, v),

with p(u, v, s, t) = uPr(S > s, T > t|U = u, V = v,X0 ↑ E), where X0 ↑ E
means that the structure was intersected by the observation plane. Again, when
assuming discrete sizes ui and shapes vj , the stereological integral equation can be
approximated by a linear equation system of the form

ykl =
m∑
i=k

n∑
j=l

pijklθij , k = 1, . . . ,m; l = 1, . . . , n.

This equation can be simplified by using a logarithmic discretisation, so that ui = ai

and sk = ak. Then, we obtain the equation

ykl =
∞∑
i=k

n∑
j=l

πj,(k−i),lΘij , k = . . . ,−1, 0, 1, . . . ; l = 1, . . . , n
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(a) (b) (c)

Figure 4.1: (a): Section of a model containing SiC particles. (b): Labelled SEM
image of AMC17xe, perpendicular to the extrusion direction, particles are
convexified. (c): Labelled SEM image of AMC17xfine, perpendicular to the
extrusion direction, particles are convexified. Displayed is a 300× 300 pixel region
of the images. The resolution of (a) is 15.145× 15.145 (nm)2, the resolution of (b)
and (c) is 25× 25 (nm)2. The images were generated with MAVI, [MAV05].

with Θij = aib̄jθij with the mean breath b̄j of particle j, and πjkl =
¯̄b
b̄j

Pr(sk−1 ≤
S < sk, tl−1 ≤ T < tl|U = 1, V = vj , X0 ↑ E).

In order to solve this linear equation system one usually uses the EM algorithm
proposed in [SJW90]. Under the assumption that the particle centres are Poisson
distributed with constant intensity, the algorithm is based on the following steps:

P̂j,k−i,l =
πj,k−i,l∑∞

i=k

∑n
j=1 πj,k−i,lΘ

λ
ij

Θλ
ijykl (expectation)

Θλ+1
ij =

∑n
l=1

∑i
k=−∞ P̂j,k−i,l∑0

k=−∞
∑n

k=1 πjkl
(maximisation)

with i = . . . ,−1, 0, 1, . . . and j = 1, . . . , n. The initial value Θ0
ij is chosen as Θ0

ij =
ykl. Both steps can be combined to one equation:

Θλ+1
ij =

Θλ
ij

qj

n∑
l=1

i∑
k=−∞

πj,k−i,lykl∑∞
i=k

∑n
j=1 πj,k−i,lΘ

λ
ij

4.4 Application: Stereological estimation for samples of
AMCxe and AMCxfine

In the following, we will present a method to estimate the parameters µ and σ
of the volume distribution of particles under the assumption that the volume is
log-normally distributed. The method is applied to labelled SEM images of the
materials AMC17xe and AMC17xfine with convexified labels, and to a random plane
sample from an SiC model generated using the parameters fitted in Chapter 3 of
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size [0, 400] × [0, 400] pixels of resolution 15.145 × 15.145 (nm)2. However, for this
test case, the SiC particles were not placed conditional on a Laguerre tessellation in
order to increase the speed of simulations.

4.4.1 Estimating the volume fraction using classic stereology

Based on the results of classic stereology, we can estimate the volume fraction VV
of the particle phase by the area fraction AA, the length fraction LL for a set of test
lines, or the point fraction PP for a set of test points.

This means the volume fraction of the SiC phase can be estimated on the images by
the fraction of pixels within the observation window that belong to the SiC phase.

The area fraction in the section is 0.1533. The volume fraction of the model is
0.1683. This sets the relative error at 8.9%.

4.4.2 Estimation of parameters based on volume-weighted moments

A preliminary study on N = 2500 balls with log-normally distributed volumes shows
that the estimation of the parameters µ and σ based on the estimation of volume-
weighted moments is not applicable in our case, as µ is overestimated and σ is
underestimated for cv > 1.0. The reason lies probably in the high coefficient of
variation and the relatively small observation window (Luis Cruz-Orive, personal
communication, September 2016). In case of AMC17xxfine, we fitted a volume
distribution with cv = 13.1 to the data. It is to be expected that the related
materials might have a similarly high coefficient of variation.

4.4.3 Estimation of parameters based on simulations

Since the direct estimation of the parameters via the moments of the volume-
weighted distribution is not feasible, we propose to estimate the parameters of the
volume distribution based on simulations.

This is done in the following way: Based on 2D images, we can get information on the
moments of the area distribution. Additionally, the area fraction AA is an unbiased
estimate of the volume fraction VV . We have shown above that the error introduced
by using this estimate of VV is only small. Based on the model for AMC17xxfine, we
assume the 3D volume distribution to be log-normal with parameters µ, σ. As a first
step, we will additionally assume the shapes of the SiC particles in AMC17xfine and
AMCxe to be similarly distributed as the SiC particles within the AMC17xxfine.
For the optimisation, we use the cost function

c(µi, σi) =

(
AA,i −AA

AA

)2

+

2∑
j=1

(
m̂j
i − m̂j

m̂j

)2

,
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where m̂j refers to the jth moment of the area distribution of the data set and m̂j
i is

the jth moment of a cut through the model generated by parameters µi, σi. By AA,i
we denote the area fraction of a section through the model generated by parameters
µi, σi, while AA is the area fraction of the 2-D sample. To evaluate the cost function
at µi, σi, we generate a model based on the Laguerre cells fitted in Chapter 3 with
Logn(µi, σi) distributed sizes. This model is then randomly cut and the generated
2D area distribution is evaluated.

There are two aspects of variance we have to account for:

1. Sample variance due to the sampling of a random model with the parameter
set µ, σ

2. Stereological variance due to randomisation in the location of the section plane.

The method to overcome these problems is to repeatedly sample the model, and to
use several independent stereological samples. Especially the latter is generally not
possible, as in many real-world applications there are only few sections available.
Studies done in [Dob10] regarding the use of the Nelder-Mead algorithm for pa-
rameter estimation of several spatial germ-grain processes suggest that the number
of samples generated in each update step of the Nelder-Mead algorithm should be
linear in the iteration number k. In [Dob10], the relationship

N(k) = round

(
17

49
k +

130

49

)
is used.

Due to the fact that the variance introduced due stereology is very large, this kind of
variance reduction becomes unnecessary: For example, for two random cuts through
the same model we observe a deviation in the average area of section profiles of 22.8%,
the standard deviations differ by 9.7%.

Minimisation based on grid search

Based on an initial estimate (µ̂0, σ̂0) using the volume-weighted moments of the
volume distribution, we generate a random grid within (0, a] × (0,

√
2a] with a =

µ̂0 + 0.5σ̂2
0, which is based on the fact that the mean volume exp(µ̂0 + 0.5σ̂2

0) is
generally overestimated by the volume-weighted estimation. Based on a grid with
100 grid nodes, we can identify the best parameters µ̂Grid, σ̂Grid by simulating within
a window chosen so that the expected number of particles lying in the window is at
least 5000.

The precision of the grid search method for stereological estimation of particle sizes
was evaluated by estimating the parameters on an artificially generated model. All
parameters of the log-normal distribution refer to volumes measured in voxels. The
spacing was 15.145×15.145 (nm2), respectively 15.145×15.145×15.145 (nm3). The
models for the function evaluation were the standard RSA. The results are displayed
in Table 4.1.
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Method µ σ µ̂Grid σ̂Grid c(µ̂Grid, σ̂Grid) d(µ̂Grid) d(σ̂Grid)

RSA 4.5210 2.2688 5.0849 2.1177 1.1691 12.47% −6.66%

Table 4.1: Estimation of the parameters µ and σ from one section through an
artificial model perpendicular to elongation direction, based on grid search, where
d denotes the deviation.

Method µ σ µ̂ σ̂ c(µ̂, σ̂) d(µ̂) d(σ̂)

RSA+move 4.5210 2.2688 5.13612 2.07294 0.0204991 13.61% −8.63%
RSA 4.5210 2.2688 5.03045 2.12206 1.08487 11.27% −6.47%

Table 4.2: Estimation of the parameters µ and σ from one section through an
artificial model perpendicular to elongation direction, based on the Nelder-Mead
simulation with approximately 1000 particles per model. The deviation is denoted
by d.

Minimisation based on Nelder-Mead

In order to improve the quality of the fit, we propose to use the minimum (µ̂Grid, σ̂Grid),
found by grid search as one vertex of the starting vertex of a Nelder-Mead algorithm.
The other vertices are chosen randomly as (µ̂Grid ± 1, σ̂Grid) and (µ̂Grid, σ̂Grid ± 1),
with equal probability for the positive and the negative sign. In order to increase
the speed of the estimation, we abstain from increasing the number of generated
samples. Instead, we chose the sampling window’s volume so that the expected
number of particles lying in the window is at least 1000.

The precision of the Nelder-Mead method for stereological estimation of particle sizes
was evaluated by estimating the parameters on an artificially generated model. The
models for the function evaluation were either the standard RSA or the RSA+move
used for generating the artificial sample. The results are displayed in Table 4.2.
After convergence at (µ∗, σ∗) we restarted the algorithm, one vertex of the starting
simplex was chosen as (µ∗, σ∗), the others randomly as (µ∗±1, σ∗) and (µ∗, σ∗±1) as
above. We stopped the algorithm if the element-wise difference between consecutive
optimal solutions was less than 0.05. We set ε = 0.001 as convergence criterion.

Parameters of AMC17xfine

Based on labelled images of a resolution 25× 25 (nm)2 with size 1024× 883 pixels,
taken perpendicular to the extrusion direction, we estimated the values of the pa-
rameters for AMC17xfine, using the convex hulls of the labels. The results based
on the three methods presented above are displayed in Table 4.3. The estimated
volume fraction is V̂V = 0.252387. Note that the displayed values refer to voxels of
volume 25× 25× 25 (nm3). The average values from the estimation are µ̂ = 1.9514
and σ̂ = 2.8222. At a voxel width of 25 nm, the equivalent spherical diameter of a
SiC particle within the sample is therefore 0.22 µm.
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Method µ̂ σ̂ c(µ̂, σ̂)

NM RSA+move 1.16303 3.31087 0.0891154
NM RSA 3.40018 2.38111 1.00008
Grid RSA 1.29099 2.7746 0.15305

Table 4.3: Estimation of the parameters µ and σ for AMC17xfine. “NM” refers to
estimations obtained by a Nelder-Mead algorithm based on 1000 simulated
particles per iteration.

Method µ̂ σ̂ c(µ̂, σ̂)

NM RSA+move* 7.89849 1.49918 0.000082
NM RSA 8.04534 1.43506 1.00006
Grid RSA 8.14647 1.35387 0.0158811

Table 4.4: Estimation of the parameters µ and σ for AMC17xe. “NM” refers to
estimations obtained by a Nelder-Mead algorithm based on 1000 simulated
particles per iteration.

Parameters of AMC17xe

The parameters for AMC17xe, using the three methods presented above, are dis-
played in Table 4.4. The estimated volume fraction is V̂V = 0.300435. Again, the
displayed values refer to voxels of volume 25×25×25 (nm3) estimated on an image
of size 1024 × 883 pixels of the convex hulls of the particles. The average values
from the estimation are µ̂ = 8.0301 and σ̂ = 1.42937. At a voxel width of 25 nm,
the equivalent spherical diameter of a SiC particle within the sample is therefore
0.63 µm.

4.5 Discussion

4.5.1 Quality of the estimation

The stereological estimation based on the moments of the area sections of the SiC
particles gives good results when the number of particles within the simulation is
chosen large enough. This is especially evident when comparing the results obtained
by a simple random grid search designed so that the expected number of particles in
the simulation is at least 5000 to the Nelder-Mead optimisation where the expected
number of particles per simulation was at least 1000. However, even in the latter
case the equivalent spherical diameter is estimated quite well with an error of 6.5%.

4.5.2 Comparison with estimates on images

The estimated equivalent spherical diameters deviate largely from the nominal di-
ameters (of 0.7 µm and 3.0 µm for AMC17xfine and AMC17xe) given by the manu-
facturer. For AMC17xfine it is possible to roughly estimate the equivalent spherical
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diameters based on labelled FIB-SEM images. For the labelled images, we obtain an
equivalent spherical diameter of 0.3355 µm, on the convexified labels the equivalent
spherical diameter is 0.4144 µm. Our values deviate by 34.4% from the latter.



Chapter 5

Results and Conclusions

5.1 Results

This thesis was preoccupied with the micro-structure of various SiC-particle rein-
forced Al-alloys. In the beginning, we presented various methods how to binarise
and label complicated data stemming from FIB-SEM and SEM imaging.

In the following chapter, we analysed the materials’ distributions based on three-
dimensional image data: For the sample taken from AMC17xxfine, the sample con-
taining the smallest SiC particles, we find that the particles’ elongation along the
extrusion direction depends on the particle volume. After rescaling to isotropy, we
find that the volume of the SiC particles is log-normally distributed. Based on the
shape distribution of the rescaled SiC particles, we can fit a Laguerre tessellation
to the data set. By isotropic and anisotropic rescaling we can obtain an adequate
model for the particles. We additionally showed how to arrange them spatially to
obtain a good model for the SiC phase of the material. Additionally, we propose a
Laguerre tessellation to model the Al grains and a Cox-process base to model the
centres of the Al2Cu precipitations. The Al2Cu precipitations were then modelled
by placing overlapping spheres on the Cox process. For each method we showed how
to estimate their parameters.

Additionally, we presented a method to estimate the parameters of the SiC parti-
cles’ volume distribution from two-dimensional sections. Under the assumption that
the particle shapes used to model AMC17xxfine pose a sufficient approximation of
the particle shapes of other samples, we estimated the parameters of the volume
distribution.

5.2 Comparison with manufacturer’s claims

The manufacturer denotes the nominal equivalent SiC particle diameters as 0.3 µm
(for AMC17xxfine), 0.7 µm (for AMC17xfine) and 3.0 µm (for AMC17xe). Our
estimates for the equivalent spherical diameter deviate largely from these values:

87
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Based on the analysis of FIB-SEM images of resolution 15.145×15.145×50 (nm)3, we
obtain the equivalent spherical diameters 0.20 µm (for AMC17xxfine) and 0.4144 µm
(for AMC17xfine, at resolution 16.5×16.5×50 (nm)3) for the convex hulls of the SiC
particles. Based on stereological estimation, we obtain 0.22 µm (for AMC17xfine)
and 0.63 µm (for AMC17xe) for the convex hulls of the SiC particles.

The manufacturer does not give any information on how the equivalent spherical
diameters were estimated. The observed difference could however stem from different
resolutions: The largest particles within the AMC17xe data set can be observed
at quite low resolutions, resulting in a large estimate of the equivalent spherical
diameter. When higher resolutions are used, there are many small particles within
the observation window, thereby reducing the mean of the volume distribution.

Another reason for the discrepancy could be caused if the manufacturer used a
sieving method. In this case the “nominal diameter” could refer to the mesh size of
the sieve.

5.3 Future Work

5.3.1 Improvements of the model

For this work, all analysis of the particles’ distributions were only conducted on
sub-volumes of homogeneous particle intensity. However, on a larger scale, there
are long, almost particle-free zones that are elongated along the extrusion direction
of the sample, see Figure 5.1. They can be observed on SEM images at a lower
resolution as bands or circular areas. As they are structures on a larger scale, these
longitudinal gaps are only well-observable in 3D for samples with large particles,
namely AMC17xe. Future works should integrate these changes of particle intensity
into the model.

Similarly, our modeling of the Al grains uses polygonal grains as a crude approxi-
mation. However, when observed in SEM images, often these grains are not convex
and have rough surfaces. This means that maybe a Johnson-Mehl tessellation would
be more appropriate to model the Al grains. Then, it would be advisable to first
model the SiC phase and then let the tessellation “grow” around it. Of course, this
process would highly increase computation time. As of now, we assume that the
Al2Cu inclusions are generated by a Cox process on the boundaries of the Al and
the SiC phases. However, conditional on lying on these surfaces, this Cox process
is a Poisson point process. It could be worthwhile to investigate correlations with
particle orientations.

Future investigation could also analyse correlations between grain orientation and
SiC particles. Additionally, the parameters of the Al grains are not part of the
stereological estimation yet. This estimation could be incorporated into future work.

We found that the shape factors we used to fit the AMCxxfine’s SiC particles’ shapes
are generally viable for the parameter estimation based on sections. However, it
would be good to incorporate an estimation of the particle’s shape distribution and
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elongation classes from 2D sections, as well. This might be obtained using the
stereological unfolding approach presented in Chapter 4.

5.3.2 Predicting material failure

The models presented in this work can be used as input for FEM simulations, similar
to the work presented in [CGW04]. The advantage of our model compared to using
binarised FIB-SEM images is its adaptability to other material parameters and the
fact that an arbitrary number of virtual samples can be generated instead of costly
FIB-SEM imaging.
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(a)

(b)

Figure 5.1: (a) Volume rendering of an synchrotron image of AMC17xe obtained
at ESRF, Grenoble. (b) Longitudinal gaps parallel to extrusion direction, labelled
on an synchrotron image of AMC17xe obtained at ESRF, Grenoble. The images
were generated with MAVI, [MAV05].



Appendix A

Tables

A.1 Parameters of the curves used to fit the rescaled
SiC particles’ shapes

In the following tables, we present the parameters for

f jx,y(cvBalls) =
pj1,x,y · cvBalls + pj2,x,y

cvBalls + qj1,x,y

used to fit the relationships between statistics of the shape factors sf1, sf2 and
sf3 and the parameters (cvBalls, VV ) used to generate force-biased ball packings for
generating random Laguerre tessellations.

sf1 sf2 sf3

p1,mean,0.3 0.69409 0.52256 0.81866
p2,mean,0.3 2.6205 2.1959 3.1681
q1,mean,0.3 3.0028 2.7784 3.385

adjR2
mean,0.3 0.99963 0.99971 0.99961

p1,median,0.3 0.69592 0.52424 0.83048
p2,median,0.3 2.1649 1.785 2.3341
q1,median,0.3 2.4437 2.1996 2.4736

adjR2
median,0.3 0.99966 0.9998 1

p1,stddev,0.3 0.089576 0.12291 0.066302
p2,stddev,0.3 0.00022901 -0.0039653 0.033104
q1,stddev,0.3 1.0434 0.8294 3.1288

adjR2
stddev,0.3 0.99234 0.99543 0.99472

p1,vQ,0.3 0.13989 0.24771 0.077552
p2,vQ,0.3 -0.066475 -0.10463 -0.0097686
q1,vQ,0.3 0.02393 0.16627 0.93184

adjR2
vQ,0.3

0.99836 0.99999 0.99

Table A.1: Parameters of the fitted curves for VV = 0.3 with their adjusted R2

goodness-of-fit statistic. Based on cvBalls = {1, 2, 5, 10}.
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sf1 sf2 sf3

p1,mean,0.4 0.71144 0.54804 0.83425
p2,mean,0.4 2.091 1.8171 2.4119
q1,mean,0.4 2.3834 2.286 2.5705

adjR2
mean,0.4 0.9998 0.99986 0.99992

p1,median,0.4 0.69828 0.52731 0.83333
p2,median,0.4 2.3332 1.9357 2.4599
q1,median,0.4 2.6472 2.4075 2.6131

adjR2
median,0.4 0.99754 0.99813 0.99884

p1,stddev,0.4 0.086306 0.11859 0.05253
p2,stddev,0.4 -0.033748 -0.050706 -0.010893
q1,stddev,0.4 0.1591 0.0067146 0.66642

adjR2
stddev,0.4 0.99919 0.99746 0.99998

p1,vQ,0.4 0.15095 0.25958 0.073919
p2,vQ,0.4 -0.087024 -0.14369 -0.035588
q1,vQ,0.4 -0.1307 -0.087387 0.062008

adjR2
vQ,0.4

0.97798 0.97991 0.99446

Table A.2: Parameters of the fitted curves for VV = 0.4 with their adjusted R2

goodness-of-fit statistic. Based on cvBalls = {1, 2, 5, 10}.

sf1 sf2 sf3

p1,mean,0.5 0.69968 0.53258 0.82628
p2,mean,0.5 2.4818 2.1686 2.9198
q1,mean,0.5 2.847 2.7609 3.1227

adjR2
mean,0.5 1 1 0.99999

p1,median,0.5 0.68036 0.50329 0.82087
p2,median,0.5 3.0058 2.5004 3.459
q1,median,0.5 3.4389 3.161 3.6971

adjR2
median,0.5 0.99933 0.99926 0.99916

p1,stddev,0.5 0.094543 0.13006 0.057691
p2,stddev,0.5 -0.037081 -0.053965 -0.014809
q1,stddev,0.5 0.21722 0.082579 0.63746

adjR2
stddev,0.5 0.998 0.99632 0.99912

p1,vQ,0.5 0.1764 0.31239 0.088685
p2,vQ,0.5 -0.081912 -0.1227 -0.030251
q1,vQ,0.5 0.2362 0.42817 0.54634

adjR2
vQ,0.5

0.98488 0.99697 0.99989

Table A.3: Parameters of the fitted curves for VV = 0.5 with their adjusted R2

goodness-of-fit statistic. Based on cvBalls = {1, 2, 5, 10}.
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sf1 sf2 sf3

p1,mean,0.6 0.6911 0.5194 0.81774
p2,mean,0.6 2.6659 2.392 3.3245
q1,mean,0.6 3.0656 3.0616 3.5605

adjR2
mean,0.6 0.99992 0.9999 0.99991

p1,median,0.6 0.66983 0.48676 0.81398
p2,median,0.6 3.3592 2.8169 3.8414
q1,median,0.6 3.8565 3.5804 4.1087

adjR2
median,0.6 0.99933 0.9992 0.99915

p1,stddev,0.6 0.10211 0.14025 0.064515
p2,stddev,0.6 -0.039587 -0.059232 -0.016738
q1,stddev,0.6 0.26738 0.10266 0.73387

adjR2
stddev,0.6 0.99768 0.99561 0.99991

p1,vQ,0.6 0.19744 0.34071 0.096813
p2,vQ,0.6 -0.084046 -0.14535 -0.037179
q1,vQ,0.6 0.41673 0.40797 0.50076

adjR2
vQ,0.6

0.98934 0.98884 0.99348

Table A.4: Parameters of the fitted curves for VV = 0.6 with their adjusted R2

goodness-of-fit statistic. Based on cvBalls = {1, 2, 5, 10}.

sf1 sf2 sf3

p1,mean,0.3 0.7042 0.5356 0.826
p2,mean,0.3 2.245 1.937 2.761
q1,mean,0.3 2.562 2.437 2.946

adjR2
mean,0.3 0.9989 0.9986 0.9980

p1,median,0.3 0.69158 0.51969 0.83186
p2,median,0.3 2.3699 1.9069 2.2876
q1,median,0.3 2.6858 2.3619 2.4238

adjR2
median,0.3 0.99939 0.99925 0.99891

p1,stddev,0.3 0.08296 0.1158 0.05732
p2,stddev,0.3 -0.01851 -0.02366 0.01544
q1,stddev,0.3 0.4733 0.4176 1.988

adjR2
stddev,0.3 0.9983 0.9974 0.9897

p1,vQ,0.3 0.1441 0.2485 0.07154
p2,vQ,0.3 -0.06394 -0.1061 -0.023
q1,vQ,0.3 0.1381 0.1758 0.3978

adjR2
vQ,0.3

0.9970 0.9983 0.9979

Table A.5: Parameters of the fitted curves for VV = 0.3 with their adjusted R2

goodness-of-fit statistic. Based on
cvBalls = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 4.0, 5.0}.
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sf1 sf2 sf3

p1,mean,0.4 0.7085 0.5446 0.8332
p2,mean,0.4 2.171 1.867 2.44
q1,mean,0.4 2.475 2.348 2.6

adjR2
mean,0.4 0.9984 0.9983 0.9984

p1,median,0.4 0.68131 0.50734 0.82719
p2,median,0.4 2.9232 2.3164 2.8131
q1,median,0.4 3.3345 2.9032 2.993

adjR2
median,0.4 0.99762 0.99762 0.99816

p1,stddev,0.4 0.08814 0.122 0.05281
p2,stddev,0.4 -0.0312 -0.04419 -0.01078
q1,stddev,0.4 0.2642 0.1603 0.6862

adjR2
stddev,0.4 0.9991 0.9991 0.9993

p1,vQ,0.4 0.1652 0.2826 0.07808
p2,vQ,0.4 -0.07338 -0.1216 -0.03125
q1,vQ,0.4 0.269 0.2841 0.3071

adjR2
vQ,0.4

0.9971 0.9972 0.9979

Table A.6: Parameters of the fitted curves for VV = 0.4 with their adjusted R2

goodness-of-fit statistic. Based on
cvBalls = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 4.0, 5.0}.

sf1 sf2 sf3

p1,mean,0.5 0.7052 0.5407 0.8303
p2,mean,0.5 2.221 1.938 2.579
q1,mean,0.5 2.536 2.448 2.752

adjR2
mean,0.5 0.9989 0.9989 0.9989

p1,median,0.5 0.67496 0.49905 0.82054
p2,median,0.5 3.2059 2.5493 3.3732
q1,median,0.5 3.6723 3.2202 3.6016

adjR2
median,0.5 0.99866 0.99866 0.99868

p1,stddev,0.5 0.09737 0.1346 0.05843
p2,stddev,0.5 -0.03388 -0.04777 -0.01483
q1,stddev,0.5 0.356 0.2451 0.6743

adjR2
stddev,0.5 0.9989 0.9986 0.9992

p1,vQ,0.5 0.1904 0.3258 0.08974
p2,vQ,0.5 -0.07354 -0.12135 -0.03297
q1,vQ,0.5 0.5503 0.5604 0.5168

adjR2
vQ,0.5

0.9969 0.9968 0.9968

Table A.7: Parameters of the fitted curves for VV = 0.5 with their adjusted R2

goodness-of-fit statistic. Based on
cvBalls = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 4.0, 5.0}.
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sf1 sf2 sf3

p1,mean,0.6 0.6983 0.5313 0.8242
p2,mean,0.6 2.305 2.043 2.778
q1,mean,0.6 2.634 2.586 2.964

adjR2
mean,0.6 0.9993 0.9993 0.9992

p1,median,0.6 0.66079 0.47558 0.80829
p2,median,0.6 3.6361 3.0122 4.2058
q1,median,0.6 4.1758 3.8303 4.501

adjR2
median,0.6 0.99906 0.99911 0.999

p1,stddev,0.6 0.1062 0.1467 0.06515
p2,stddev,0.6 -0.03574 -0.05112 -0.01823
q1,stddev,0.6 0.4445 0.31584 0.7238

adjR2
stddev,0.6 0.9983 0.9979 0.9988

p1,vQ,0.6 0.2151 0.3716 0.104
p2,vQ,0.6 -0.073025 -0.1189 -0.03168
q1,vQ,0.6 0.8084 0.8483 0.8471

adjR2
vQ,0.6

0.9974 0.9981 0.9980

Table A.8: Parameters of the fitted curves for VV = 0.6 with their adjusted R2

goodness-of-fit statistic. Based on
cvBalls = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 4.0, 5.0}.
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A.2 Parameters of the curves used to fit the Al grains’
statistics

In the following tables, we present the parameters for

f jx(cvBalls) = p1,x,j · cv3
Balls + p2,x,j · cv2

Balls + p3,x,j · cvBalls + p4,x,j

used to fit the relationships between statistics FC , stdFC , stdEF , ¯̄b, stdb̄ and stdV
of the Al grains and the parameters (cvBalls, VV ) used to generate force-biased ball
packings for generating random Laguerre tessellations. For the relationship between
EF and (cvBalls, VV ) we fitted rational curves, namely

f jx(cvBalls) =
p1,x,j · cvBalls + p2,x,j

cvBalls + q1,x,j
.

statistic p1,·,0.3 p2,·,0.3 p3,·,0.3 p4,·,0.3 adjR2
f0.3
·

stdEF -0.0092943 -0.026754 0.18249 2.2265 0.037935
meanFC -0.53563 3.0508 -5.4675 18.686 -0.66603
stdFC 0.01196 -0.25485 0.7079 6.4506 -0.39023

mean¯̄b -0.096301 0.5567 -1.2587 22.832 0.8863

std¯̄b -0.34098 1.3188 -0.68333 10.572 0.93344
stdV -2108.4 10401 -13577 9108.6 0.24282

statistic p1,·,0.3 p2,·,0.3 q1,·,0.3 adjR2
f0.3
·

meanEF 5.5271 19.321 3.6178 -0.12366

Table A.9: Parameters of the fitted curves for VV = 0.3 with their adjusted R2

goodness-of-fit statistic.

statistic p1,·,0.4 p2,·,0.4 p3,·,0.4 p4,·,0.4 adjR2
f0.4
·

stdEF -0.033547 0.10721 -0.08493 2.3744 0.61393
meanFC -0.40799 1.9603 -2.9647 17.021 0.22213
stdFC -0.12755 0.36888 -0.21701 6.8674 0.56104

mean¯̄b -0.13575 0.70316 -1.5422 22.843 0.91934

std¯̄b -0.016655 -0.42289 2.131 9.2853 0.92002
stdV -1194.7 5718.5 -6268.4 5886.4 0.95692

statistic p1,·,0.4 p2,·,0.4 q1,·,0.4 adjR2
f0.4
·

meanEF 3.8661 3621.5 673.51 -0.21315

Table A.10: Parameters of the fitted curves for VV = 0.4 with their adjusted R2

goodness-of-fit statistic.
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statistic p1,·,0.5 p2,·,0.5 p3,·,0.5 p4,·,0.5 adjR2
f0.5
·

stdEF 0.0090559 -0.053084 0.080924 2.3144 -0.11133
meanFC 0.13044 -0.61147 0.6586 15.45 0.27167
stdFC 0.25305 -1.4191 2.3889 5.5669 0.041527

mean¯̄b 0.003746 0.079527 -0.89137 22.555 0.98699

std¯̄b -0.065567 0.060254 1.1813 9.8628 0.91091
stdV 1302 -6336.6 12879 -3666.9 0.93035

statistic p1,·,0.5 p2,·,0.5 q1,·,0.5 adjR2
f0.5
·

meanEF -33.628 10258 1900.8 0.23656

Table A.11: Parameters of the fitted curves for VV = 0.5 with their adjusted R2

goodness-of-fit statistic.

statistic p1,·,0.6 p2,·,0.6 p3,·,0.6 p4,·,0.6 adjR2
f0.6
·

stdEF -0.32096 1.6663 -2.7579 3.8053 -1.0689
meanFC -1.4708 7.5747 -12.533 22.162 0.12016
stdFC -1.6887 8.7371 -14.403 14.386 0.20768

mean¯̄b -0.85187 4.6311 -8.7444 26.687 0.94711

std¯̄b -0.57902 2.3584 -1.8273 11.181 0.9779
stdV -1310.3 5710 -4243.2 4437.4 0.97803

statistic p1,·,0.6 p2,·,0.6 q1,·,0.6 adjR2
f0.6
·

meanEF 5.271 0.36214 0.047311 0.42055

Table A.12: Parameters of the fitted curves for VV = 0.6 with their adjusted R2

goodness-of-fit statistic.
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