European Consortium for Mathematics and Industry

Lifetime estimation in the car
industry

Sixth ECMI Modelling Week
September 4-13, 1993
Grenoble (France)

Supervisor :
Michael HACK (University of Kaiserslautern, Germany)

Students :
Krister BOMAN (Chalmers University of Technology, Géteborg, Sweden)
Pim MELJ (Eindhoven University of Technology, Netherlands)
Philippe MONTARNAL (University Joseph Fourier, Grenoble, France)
Kerstin SCHUSTER (University of Dresden, Germany)
Darren WALL (University of Strathclyde, Glasgow, Scotland)

Contents

1 Introduction
1.1 Problem description,
1.2 Dataavailable oo o
1.3 Masing and Memory L oo
1.4 Goal o e

1.5 Plan of presentation Lo

2 Simple model - Mechanical play
2.1 Description of the mechanical play
2.2 Connection between memory, memory laws and deletion rules
2.3 Deletion tuleso

2.4 Memory laws e

3 Multi-slot model - Mechanical play
3.1 Ome-Slot Model

3.2 Infinitely Many Slots L o

4 Relating the multi-slot model to the original model

5 Algorithm and results

A Appendix: Computer program

B Appendix: Test results

12

14
14

15

16

17

20

23

1 Introduction

1.1 Problem description

Whenever new parts of a car have been developed, the manufacturer needs an es-
timation of the lifetime of this new part. On one hand the construction must not
be too weak, so that the part holds long enough to satisfy the customer, but on the
other hand, if the construction is too excessive, the part gets too heavy.

One is interested in methods that only need few measured data from the specimen
itself, but use data about the material, because constructing and testing of specimen
is expensive.

1.2 Data available

A specimen of the developed part is built in a car in its specific position and the
car is driven along a test track. In the critical points of the specimen (e.g. notches,
edges, etc.) one places strain-measure-stripes (SMS) which are able to measure local
strains and record them.

A change in the local strain causes an elastic deformation of the specimen. If the
change gets to large then a plastic deformation takes place. After the direction of
the change has reversed, then again we have the same process: first elastic then
plastic deformation. Hence, if one follows the trajectory in the stress-strain-plane,
the unloading does not follow the loading path, but a hysteresis loop will be built

up.

One knows, that for the fatigue damage of metals, these closed hysteresis loops in
the stress-strain-plane play a major rule. One has performed strain-controlled tests
: How many closed hysteresis loops of a given strain-amplitude a given material can
sustain. The influence of loops with a different amplitude is accumulated.

1.3 Masing and Memory

We have the following information about the characteristics of the trajectory in the
stress-strain-plane (o — e—plane).

There are two type of curves : the cyclic curve and the doubled curve.

Metals and alloys obey the following Masing and Memory laws :

Masing :

o Initially — during the first loading step — the o — e—path follows the so called
cyclic 0 — e—curve : € = g(o). This means, if we change ¢ in the time interval
[0, ¢1] monotonically from ¢(0) = 0 to o(¢1), the strain at an intermediate time
t €(0,¢1) is given as €(t) = g(o(1))

o After a turning-point, i.e. the derivative of ¢ with respect to ¢ changes the
o — e—path follows the doubled o — e—curve : A¢/2 = g(Ao/2):

We get the value of €(t) as follows: Get the time of the last turning-point ¢,.
We know that ¢() is monotonic on (4,,¢). Now following the Masing law, we

= (-t

(1) = e(ty) + 2 sign(o(t) — o(tn)) g < _

But these rules do not completely describe the behaviour. Not only the turning—
points are important, but the closure of loops in the stress—strain—plane and a certain
symmetry—condition have influence, too:

Memory :

e M1 : After closing a hysteresis loop, which started on the cyclic ¢ — e—curve,
the 0 — e—path again follows the cyclic o — e—curve. See figure 1.

Figure 1: M1

cyclic curve

hysteresis loop

e M2 : After closing a hysteresis loop, which started on a hysteresis branch, the
o0 — e—path again follows this hysteresis branch. See figure 2.

e M3 : A hysteresis branch, that started on the cyclic ¢ — e—curve ends, if the
modulus of strain of its starting point is reached in the opposite quadrand.
After that the 0 — e—path again follows the cyclic o — e—curve. See figure 3.

Figure 2: M2

cyclic curve

o

hysteresis loop,

ysteresis branch
€
Figure 3: M3
01
cyclic cuyrve

o

hysteresis branch

cych

1.4 Goal

We want to transform the stream of measured strain values into the corresponding
set of hysteresis loops in the stress-strain-plane. In particular we must determine the
turning points corresponding to the starting point and end point of each hysteresis
loop.

We must consider all the masing and memory laws to minimize the data.

1.5 Plan of presentation

At first we will study a simple model which will help us for the comprehension of
the global model (memory laws, turning points). Then we will start with the real
problem which can be considered as a generalization of the first one. Finally we will
present a computer program (which is written in MATLAB) and some test results.

2 Simple model - Mechanical play

2.1 Description of the mechanical play

First we examine the mechanical play, a simple model were we can find all the rules
and a similar behavior to the original problem.

The mechanical play consists of a stick and a slot with an inside radius r. The stick
will be moved to the left or to the right and if the movement of the stick is large
enough the slot will move. To describe the position of the slot we use the midpoint.
See figure 4 for a sketch.

S(t)

.

n(lt)

Figure 4:

Now we ask for the new position of the slot after a change in stick position. There
are 3 cases possible : the slot will move to the left or to the right or it will stay in
the old position. So we get :
S(tgpr) —r i s(lggr) —nlty) > 7
n(try1) = { s(tee1) +r i n(ty) — s(tegr) > 7
n(ty) otherwise.

This is equivalent to :

n(tg41) = min[max[s(tx41) — 7, n(tx)], s(tet1) + 7]
If we only have monotone input, we find a simpler formula :

e increasing : n(tg4+1) = max[s(tg41) — 7, n(ly)]

o decreasing : n(lry1) = min[s(tr41) + 7, n(tx)]

In the original problem we can find elastical and plastical behavior. How is it in
the mechanical play? If we consider the case when the slot stays in the old position
after a change in the stick position, we can say, this is an elastical behavior. In the
case where the slot has moved, we can speak of plastical behavior.

2.2 Connection between memory, memory laws and deletion rules

The memory of a material for a time #; describes the condition of this material in
terms of the history of the strain (¢ < {p), such that we are able to calculate the
condition at the time ¢; with the help of the future strain ({p < ¢ < ¢1).

In our mechanical play, the input is the position of the stick s(¢) and the output
is the position of the slot n(t). In chapter 2.1 we found that we can calculate the
new slot position n(ty) using n(fp) and s(¢1), i.e. the memory at the time ¢y can be

described by n(tp).

This also means, that for the time ¢ > {p one can not distinguish between input
functions which caused the same value n({p). They yield the same memory and one
can use the simplest input function. It is the task of the deletion rules to find these
functions (i.e. a finite number of values).

In general, the deletion rules transform the given input data to a minimal string
only containing the relevant input data for the current memory at ¢q.

The deleted data can however be important for the damage calculation. During the
run through the hysteresis loops energy will be dissipated so we are interested in the
number and size of the hysteresis loops.

The memory laws M1 - M3 describe the behavior of the material phenomenologically
(What happens, if ...). Using the deletion rules it is possible to show, that the
material has the same phenomenological properties as described by M1 - M3.

2.3 Deletion rules

We can find the following three deletion rules.

Lemma
If we set n_y = 0, i.e. initially not disturbed system, then

o D1 : delete ty if s(tx) € [s(tk—1), s(tx+1)] (monotone deletion, see figure 5.)
o D2 : delete ¢y if s(tx) € [$(tk+1), s(tg+2)] (Preisach deletion, see figure 6.)

e D3 : delete i if |s(lo)| < |s(t1)] (see figure 7.)

Ly
s,)
st,,)
Figure 5:
stt,,,)
k+2
st)
S(tk+1)
=
t
s k-1) n
Figure 6:
Explanation

e D1:

If the stick will be moved to the right/left until ¢, and after that until ¢544
still to the right/left, for the new position of the slot only s({x41) and s(tx_1)
are important.

+r 4+

b

Figure 7:

The memory of s({x41) does not depend on {; and we can delete .

(This means, that only the local minima and maxima of the input function
s(t) are important for the description of the behavior of the slot.)

e D2:
The memory of s({x+2) does not depend on #; and we can delete .

This means, that the opening point of a loop can be deleted.

e D3:

This rule is equivalent to memory 3. The proof will explain this rule.

Proofs

e DI:
The proofs are given in figure 8 and figure 9, for the increasing case and the
decreasing case respectively.

10

1. increasing :
S[k-1] <= SK]<= S[k+1]
n
K+l oW e n[k+1] = max(S[k+1] - r, n[k])
= max(S[k+1] - r, max(§K] - r, n[k-1]))
=max(Sk+1] - r, K] - r, n[k-1])
= max(S[k+1] - r, n[k-1])

Figure 8:

Sk-1] >= S[k] >= S[k+1]

n[k+1] = min(S[k+1] + r, n[k])
=min(§k+1] +r, min(§k] +r, n[k-1]))
=min(§k+1] +r, k] +r, n[k-1])
=min(Sk+1] +r, n[k-1])

k+1’ n k+1

Figure 9:

e D2 : Without loss of generality assume that & = 1, we have to show that ng
does not depend on 57, see also figure 10. We consider the case 53 < 57 < 53.

= ng = max(Ss — r,min(S; + r, max(.S7 — r,ng)))

— if 54 — r > ng then ng = max(S95 — r,min(Sz2 + r, 51 — r))
« if 3 + r < 51 — r then ng = max(Ss — r, 52+)
« if S+ r > 51 — r then ng = max(Ss —r,51—7r)=S3 —r

— if §1 —r < ng then ng = max(Ss — 7, min(S3 4+ r,ng)). So for this case
we have found that the position ng is independent of §7. The proof is
analogously for the case S35 < 57 < 95.

11

S
S3
nl=max(Sl-r, n0)
n2=min(S2 +r, nl)
S1
n3=max(S3-r, n2)
S2<=8S1<=S3
S2
A
A\ %4
SO t
Figure 10:
e D3:

1. |S1] < r = |So| < r = nothing happens

2. 51 < —r = ng = min(S; + r,max(So —7,0)) = S1 +r

and nqy = 57 — r if §1 > r and since we can use D1 when Sy and 57 both have
the same sign we are done.

2.4 Memory laws

Using the three deletion rules, it’s possible to show that all three kinds of memory
laws can be found in the mechanical play.

e M1 : After closing a hysteresis loop, which started on the cyclic s-n-curve the
s-n-path again follows the cyclic s-n-curve.

Proof :

See figure 11 for an explanation of the symbols. In ¢y the path followed the
cyclic curve and therefore the memory is (s(%p)).

In ¢; the memory is (s(to), s(t1), s(ts)).
With rule D2, we delete {5 and with D3 the point {; and the memory in ¢; is
(s(ts)), which is what M1 says.

o M2 : After closing a hysteresis loop, which started on a hysteresis branch, the
s-n-path again follows this hysteresis branch.

12

to : begin of theloop
t; : turning point of the loop

inft_, , t,]theloop will be closed

s1

Figure 11:

Proof : We consider a hysteresis loop inside another hysteresis loop. We only
have to consider two loops. The other cases can be found using recursion.

Now two cases can occur: The inside loop can begin on the opening curve or
in the closing cur ve of the outside hysteresis branch.

15, 19, 15 are the opening, turning and closing point of the outside loop. &}, ¢%,
1% are the opening, turning and closing point of the inside loop.

— First case :
We have to show that the memory in ¢ is (..., s(13), s(£7)).
In this case the memory in 3 is (..., s(23), s(1), s(t1), s(t%), s(t3)) .
With rule D1 we delete ¢4, with rule D2 ¢}, and with rule D1 #}, and we
get the correct result.
— Second case :
In the same way as in the fist case, we show that the memory in ¢ is

(cees 8(28), 5(15), (1), 5(41), 5(15), 5(13)) = (-or; s(£3), 5(15), 5(13))

M3 : A hysteresis branch, that started on the cyclic curve ends if the modulus
n of i ts starting points is reached in the opposite quadrand. after that the
s-n-path again follows the cyclic curve.

This is equal to deletion rule D3.

13

3 Multi-slot model - Mechanical play

Now we seek to model the stress-strain Masing behaviour of car parts by using several
mechanical play operators. Let us first consider again the example of a single stick
operating in a single slot.

3.1 Omne-Slot Model

We consider the movement of the midpoint, n(), of a block with a single slot with
time, {. We will assume the movement of the stick is piecewise linear between known
positions at ¢t = tg, {1, lg, We wish to find an operator which yields the position
of the midpoint of the slot given a change in stick position, 5(¢;), and the former
position of the midpoint of the slot n({;_1). We have seen that the former stick
position S(¢;_1)is not required in this calculation. For example, for a given radius
r > 0 of the slot, movement of the block to the right (increasing n) will occur if and
only if the change in stick position is greater than the amount of ‘play’ in the slot,
that is if and only if

S(4) — (i) > n(tizy) + 1 — S(ticy)- (1)

Given that condition (1) holds, then the change in position of the midpoint of the
block, An, is given by the change in stick position less the amount of ‘play’ in the
block, that is

An = S(tz) — S(ti_l) — [n(ti_l) +r— S(ti_l)] = S(tz) — n(ti_l) -,
thus the new position of the block is given by
n(t;) =n(tiz1) + An = S(t;) —r.

The other cases of movement of the block to the left and no movement may be
similarly calculated to yield

S(tz) —r if S(tz) — n(ti_l) >r
n(t;) =< S(t)+r if n(tiog)— S(t;) >r (2)
n(ti—1) otherwise.
The expression (2) is equivalent to

n(t;) = min[max(S(¢;) — r,n(t;—1)), S(t:) + r] (3)

A natural progression from this model is to consider the case of two slots, three slots
and so on until the case of a distribution of infinitely many slots may be considered.

14

3.2 Infinitely Many Slots

Considering W (¢) as a mean position of all the slots, and if we split up this position
into a plastical part, h(¢), and an elastical part f(¢), then

W(t) = h(t)+ f(1).
The elastical part corresponds to slots of radius zero, and these slots obviously
follow the movement of the stick precisely, summing over all such slots we have
f(t) = 75(t), where v is a constant. For the plastical part of the movement we sum

over all operators n(¢,r) where r denotes the radius of slot that the operator n(t,r)
relates to. In the Riemann limit, this sum becomes

h(t) = / o) n(t. i

where a(r) denotes the continuous spectrum of radius sizes, which must be nonneg-
ative to make physical sense. Thus we have

W(1) = / _ alr)n(t.r)dr £ 35(0) (4)

In order to obtain any conditions which must be satisfied on the cyclic curve we
consider a simple loading with S(0) = W(0) = 0 and assume that the stick moves to
a position S(t1) = a where a > r for movement. For ease we will consider W here
as a function of stick position rather than time (of course the two are proportional
in this simple loading). Now

n(t1,r) = min {max(a — r,0),a+r} = a —r,
W) = g(a) = [alr)(a=r)dr +a. 5)

thus we have

g(a)= [atrdr+s

+
SO

g"(a) = a(a). (6)

Substituting equation (6) into (5) we have
g(@)= [, g"()a=r)dr+7a, ™)
using integration by parts twice we have
g(a) = g(a) - g(07) — ag'(07) + 74, (8)

Given that g(0") = 0, then we have ¢’(07) = v > 0. So in summary, we have the
following conditions on a cyclic curve

(1) a(r)=g"(r)
(2) g(0T)=0,4(0") =720
(3) 4¢"(r), ¢'(r) > 0.

15

4 Relating the multi-slot model to the original model

Let us assume the following: S({g) = ¢ < S(t2) =b < 5(t1) = @ and a — b > 2r (for

movement), see Figure 12.

Figure 12: The graph of the load when we have a turning-point.

We get
AW = / n(b,r)— n(a,r))dr.

So using (3) we have

n(b,r) —n(a,r) =2r + b — a.

Hence, using the condition a — b > 2r,
a—b)/
:—2/)(a = b)/2 = r)dr

Thus, using (5)
) AW/2 = —g((a - b)/2),

which is precisely Masing’s rule for a turning point.

So we see that the multi-slot model shows the same kind of Masing behavior as
the original function in the o — e—plane. Of course, also all deleting and therefore
memory rules will hold for the multi-slot model, because they were already proven
for the model with one slot, and the multi-slot model is just an infinite summation
of one slot models. Thus we can conclude that the Masing and Memory behavior in
the 0 — e—plane can be completely described and proved using the one slot model.

16

5 Algorithm and results

In the previous sections we have described the memory laws and deletion rules
and given some theoretical prove. Now, with these memory laws M1 - M3 we saw
that hysteresis loops, once finished, do not contribute anymore to the memory.
Hence, they can be deleted from the original stream of strain data and written to a
seperate file containing all these loops. This is exactly what the computer program,
presented in Appendix A, does. The program is written in MATLAB and consists of
a main program and three subroutines. For details, check the computer code. A
comprehensive description of the algorithm will now be given. The flowchart and
file description in figure 13 are used as a guideline.

INPUT FILE OF
START
STRAIN DATA

INITIALIZATION PROGRAM

READ NEXT FILE1: FILE2:
REDUCED LOOP
DATA FILE DATA FILE

yes STORE T.P.
TR? >
IN MEMORY
no

yes WRITET.P.
M3?
TOFILE1

no

yes WRITE2T.P.!
M1ORM2?
TOFILE2

no

no

E.O.F.?
T.P.=TURNING POINT

yes E.O.F. = END OF FILE

WRITE
REMAINING
TP'STOFILE

Figure 13: The flowchart and file description of the algorithm

The input file contains the measured stream of strain data or e-values. The program
converts this file into two files:

1. File 1 contains the data stream without all the loop data. Also, all intermediate

17

The

points which can be deleted with deletion rule D1 are left out. So the points
we are left with mark the turning points at which an M3 condition occured.
Looking at this condition, we see immediately that this sequence of M3 points
must be increasing. The tail of file 1 also contains the turning points of the
loops which were not finished at the end of the data stream. This sequence
has to be decreasing because we get a loop in a loop in a loop, etc.

. File 2 contains all the loop data. Again, all intermediate points are left out.

This leaves us with two data points for each loop. These are the opening and
the turning-point of the loop. This file 2 can afterwards be used for some
post-processing. E.g.: how many loops occur, how big are they in size? All
such information can be of interest to calculate the energy released by the car
part and so estimate the damage.

algorithm is as follows:

. Initialization: The file with strain values is read and some program variables

are set.

. Loop: Read the next strain value, say, e;.

. We can easily check if a turning-point has occured. This is the case if sign(e; —

€i—1) # sign(€;—1 — €;—3). Then €,_1 is a turning-point and is stored in internal
memory. Otherwise, we can forget ¢;_1, using deletion rule D1.

. We check if the M3 condition is satisfied. We only need to check for this

condition if there is only one turning-point left (otherwise we have not yet
encountered a turning-point or there are still some unfinished loops). If M3 is
satisfied, the turning-point can be deleted from internal memory and written
to file 1.

. If M3 is not satisfied, we can check for the M1 or M2 condition. One of these

conditions is satisfied if ¢; > tp; > ipy or ¢; < tpy < ipy where tp; and tpy are
the opening point and turning-point of the last encountered loop. They are
stored in internal memory. If either M1 or M2 is satisfied, then tp; and ipy
are deleted from internal memory and written to file 2. We should now again
check if ¢; satisfies the M3 condition or perhaps is the closure of other loops.

. When the end of the input file with strain values is reached, we write the

remaining turning-points in internal memory to file 1 and finish the program.

Appendix B contains some test data.
On the first page we see the input file containing a stream of strain data ¢;,1 <7 <

250.
The

second page shows the points in file 1 after running the program. We see that

18

the data with the loops “stripped off” consists of an increasing sequence of M3
points. At the end of the file some remaining turning-points of unfinished loops
were left in memory. This decreasing sequence is also shown.

The third page contains the loop data in file 2. We see pairs of crosses and circles
connected with eachother. Every cross marks the opening (and closing) point of the
loop while every circle marks the turning-point of the loop. There are 39 loops in
total.

For the loop data we can make a so-called rainflow matriz. For this end, the in-
terval (—1.0,1.0) is divided in 20 parts: 1 : (—1.0,-0.9),2 :(-0.9,-0.8),...,18 :
(0.7,0.8),19 : (0.8,0.9),20 : (0.9,1.0). Let A be a 20 by 20 matrix. For every
loop the opening point falls in one of these 20 intervals, say, in interval ¢. Also
the turning-point of the loop falls in one of them, say, in interval j. Now let the
elements a;; of A be the number of such loops with opening point in interval ¢ and
turning-point in interval j. The result for the test-data is shown graphically on the
fourth page. The height of each peak on position (7, j) denotes the value of a;;.
We see that most loops are along the main diagonal {a;;;7 = j} of A. These are
the loops for which the opening point and turning-point are fairly close, so they are
small loops i.e. not inflicting too much damage.

19

A Appendix: Computer program

Main program:

clear

load testp;
epsold=0;
delold=0;
lenarr=0;
loopnr=0;
outputl=0;
output2=0;
flag2=1;
epsnew=testp(2);
delnew=spsign(epsnew-epsold,delold);

for i=3:length(testp)

epsold=epsnew;

delold=delnew;

epsnew=testp(i);

delnew=spsign(epsnew-epsold,delold);

if delnew”=delold
lenarr=lenarr+i;
array(lenarr)=epsold;

end

if lenarr==
if abs(epsnew)>abs(array(1))
outputl(length(outputl)+1)=array(1);
epsold=0;
delold=0;
lenarr=0;
delnew=spsign(epsnew-epsold,delold);
end
end

if delnew==
while controll(lenarr,epsnew,array)==
output2(length(output2)+1i-flag2)=array(lenarr-1);
output2(length(output2)+1)=array(lenarr);

20

lenarr=lenarr-2;
flag2=0;
end
else
while control2(lenarr,epsnew,array)==
output2(length(output2)+1-flag2)=array(lenarr-1);
output2(length(output2)+1)=array(lenarr);
lenarr=lenarr-2;
flag2=0;
end
end

end

if lenarr>0
N=length(outputl)+1;
outputl(N:N+lenarr-1)=array(1l:lenarr);
end}

Subroutines:

controll.m:

function val=controll(lenarr,epsnew,array)
val=0;
if lenarr>=2
if epsnew>=array(lenarr-1) val=1;
end
end

control2.m:

function val=control2(lenarr,epsnew,array)
val=0;
if lenarr>=2
if epsnew<=array(lenarr-1) val=1;
end
end

21

spsign.m:

function val=spsign(x,delold)
if x==
val=delold;
elseif x>0
val=1;
else
val=-1;
end
end

22

B Appendix: Test results

23

