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1 Introduction

Composite materials are designed for specific elastic behavior, durability, or a high
strength at low weight. Such materials consist of multiple pure phases that are intermixed.
They can take the form of laminate structures, fiber reinforced structures, or woven or
non-woven filaments embedded in a surrounding matrix material. Polycrystals consist of
the same material everywhere, but different grains have different orientations. Therefore,
polycrystals can also be considered as composites.

A simulation of the elastic properties of such composites often precedes experimental
measurements or even replaces them. Especially for large geometries, where the changes
in material occur on a much smaller scale, simulations get very large and costly. Ho-
mogenization simplifies such simulations by replacing the small-scale composite by a
homogeneous material that has — viewed from a macroscopic point of view — the same
elastic properties.

In this thesis we solve the homogenization problem numerically, introduce a new
discretization approach and test the method on examples.

We assume that the typical scale of microstructure features, like fiber lengths, is
much smaller than the macroscopic problem. Mathematically, this introduces a scale
separation variable which is very small and requires a periodic microstructure [25]. This
periodicity means that the microscopic behavior of the composite can be represented by
a single reference volume element that is repeated throughout the macroscopic geome-
try. Homogenization problems lead then to partial differential equations with periodic
boundary conditions. In this thesis, we omit the boundary by searching solutions on the
multidimensional torus instead. These equations can be discretized and subsequently
solved among others by finite element or finite difference methods. For an overview see
for example [84].

Given stiffness data on a regular tensor product grid, Moulinec and Suquet [73, 74]
introduce an algorithm based on the fast Fourier transform, the so-called basic-scheme.
They reformulate the partial differential equation into a Fredholm integral equation of the
second kind, where the kernel is the Green operator. Compared to other solution methods,
their algorithm can be implemented easily such that the program works efficiently. The
only non-local operation is the discrete Fourier transform, for which highly optimized
implementations are available [31]. All other operators are pointwise multiplications,
which make parallelization simple. A comparison between fast Fourier transform methods,
finite element methods, and other approaches is found in [2, 84, 104].

This discretization method using truncated trigonometric polynomials is analyzed in
detail: a convergence proof exists for regular coefficients [102, 105] and for Riemann
integrable coefficients [89]. The method can also be interpreted and analyzed as an
asymptotically consistent Galerkin discretization [22] and is linked to finite element
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1 Introduction

methods for general history and time-dependent material models [111].

Moulinec and Suquet solve the partial differential equation using a Neumann-series
approach. Other solution techniques for the linear system include grid refinement [30],
augmented Lagrangians [67], and other methods suited for arbitrarily high contrasts
between the material coefficients [68]. The conjugate gradient method [106, 112] and
the fast gradient method of Nesterov [88] can solve the resulting linear system, for an
overview and comparison of methods see [70, 75].

Nonlinear elasticity and nonlinear material laws are implemented in polarization
based methods [72] and solved using conjugate gradients based on the Newton-Raphson
method [34]. Homogenization of higher order that give arbitrary derivatives of the strains
and the macroscopic elastic coefficients can also be solved by fast Fourier transform based
algorithms [14, 26, 98].

For Galerkin-type discretizations [19], bounds on the homogenized coefficients can be
computed [71, 103, 107]. Postprocessing of the solution includes the reconstruction of
displacements from strain solutions [20] and smoothing techniques to remove artifacts in
the solution fields [35].

The established theory for fast Fourier transform based solutions of the elastic ho-
mogenization problem is backed by validations and experiments. This includes other
material laws like hyperelasticity and large deformation [27, 43, 52], thermoelasticity and
non-linear composites [100], piezoelectricity [17], and elastoviscoplasticity in polycrys-
tals [50, 54–59, 63, 76, 81, 85]. FFT-based homogenization methods are applied to metal
foams [60, 61] and to complex large-scale problems like transient creeping of ice [38].

Goals of this thesis

For this thesis we have three goals that aim at the discretization of the equations of
homogenization. The first goal deals with resolving dominant directions in the geometry
and discretizing the partial differential equation on anisotropic grids. The second goal
is to unify and generalize several ansatz spaces that have been used to discretize the
equation. For the third goal we deal with high-resolution data and reduce the amount of
degrees of freedom to a more manageable size. Those three goals are motivated in the
following paragraphs and explained in detail.

Geometries, which have a strong dominant direction that is not aligned with a coordinate
axis of the reference volume element, are of special interest in this thesis. Such composites
can be found in elastomeres with embedded magnetic particles [32, 33] and grids which
evolve in the direction of Newtonian fluids to solve multiparticle problems [52]. Such
problems suggest that a tensor product grid, where the coordinate axes are the dominant
directions of grid refinement, may not always be the best choice. The setting for the
discrete Fourier transform is given by an Abelian group structure [1], also called the
generalized Fourier transform. On the torus, the tensor product grid structure is relaxed
to an arbitrary anisotropic sampling lattice in order to derive periodic wavelets [10, 53].
A corresponding fast Fourier and fast wavelet transform are developed in [4].

The first goal of this thesis is to generalize the basic-scheme introduced by Moulinec
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and Suquet to anisotropic periodic lattices. These lattices can be adapted to dominant
directions other than the coordinate axes. The number of sampling points in these
directions can then be chosen according to the underlying geometry of the problem [6].
We use general anisotropic lattices that require no additional computational effort over
tensor product grids. That is because the anisotropic fast Fourier transform algorithm
has the same complexity and leading factor as the transform on tensor product grids [4].

The method of Moulinec and Suquet can be applied to other discretization techniques,
which adapt the Green operator to the underlying discretization. These approaches
can be divided into three groups. The first group replaces the derivative operator by a
discretization using rotated finite differences [108], an operator working on a staggered
grid [91], and finite elements with full integration [90]. The latter publication also
introduces a unified framework for such discretization methods in the context of the basic-
scheme. The second group of discretization techniques uses a Fourier-Galerkin approach
to compute guaranteed bounds on the macroscopic elastic properties [11, 103, 104, 107].
The third group uses different discrete ansatz spaces and evaluates the derivative operator
there. Such an approach uses the Green operator introduced by Moulinec and Suquet and
convolves it in frequency domain with the Fourier coefficients of the ansatz function. The
approach by Moulinec and Suquet corresponds to truncated trigonometric polynomials
as ansatz functions [102, 105]. Piecewise constant finite elements are implemented in [18,
21] using an exact expression of their Fourier coefficients. Periodic translation invariant
spaces, meaning spaces generated by translating a single function, are introduced in [78]
and their approximation properties are analyzed in the one-dimensional case. In the
multivariate case, approximation estimates can be found in [95] for tensor product grids.
A generalization of translation invariant spaces to anisotropic lattices was done in [23].
An approximation theory for anisotropic periodic spaces of translates is developed in [5,
9], which makes use of periodic Strang-Fix conditions.

The second goal of this thesis is to generalize the discretization of the partial differential
equation for homogenization to anisotropic periodic spaces of translates [7, 8]. Such
spaces include truncated trigonometric polynomials in form of the Dirichlet kernel.
Piecewise constant finite elements, and more general periodic Box splines [13] of arbitrary
smoothness are also contained, unifying the approaches of [74], of [105] and [18, 21].
The framework can be used to adapt the underlying space of translates to enhance the
solution fields, for example by using de la Vallée-Poussin means [10], a generalization
of the Dirichlet and the Fejér kernel. The de la Vallée-Poussin means provide good
localization in space and compact support in frequency domain [37]. Further, they reduce
the Gibbs phenomenon in the solution. The Green operator on spaces of translates
emerges as a Fourier-space convolution of the Green operator of Moulinec and Suquet
with a function of the Fourier coefficients of the function generating the space of translates.
We classify the properties of this periodized Green operator and show that it constitutes
a projection operator if and only if the space of translates is generated by the Dirichlet
kernel. This projection property is crucial to understand the connection between the
variational formulation and the Lippmann-Schwinger equation. A convergence analysis
yields that the smoothness of the ansatz function drives and limits the convergence of
the discretization for regular coefficients. There, a balance between the regularity of the

3



1 Introduction

ansatz function, its localization in space, and the size of its support in frequency domain
has to be found.

Homogenization problems from engineering applications often come with large numbers
of measurements for the elastic coefficients. Solutions based on data from computer
tomography images can be too large to fit into memory or can lead to undesirably long
computation times. Using the methods from anisotropic lattices, the data given on a
large lattice can be reduced to a smaller sampling set by subsampling. Restricting the
computations to a subset of the original set of sampling points, however, leaves large
amounts of information on the coefficients and thus the geometry unused. A formula for
the elasticity coefficients, that includes data on the sub-voxel level and uses estimated
directions of interfaces inside the voxels is introduced in [64–66] for the heat equation
and in [46] for tensor product grids based on [18]. Subsequently, this approach, called
composite voxel technique, is applied to nonlinear incremental problems [44], adapted to
hyperelastic laminates at finite strains [47], and used for inelastic problems [45].

The third and final goal of this thesis is to generalize the composite voxels in [46] to
anisotropic sampling lattices.

We demonstrate the effects of the choice of the sampling lattice, the space of trans-
lates, and the effectivity of composite voxels on several numerical examples. Those
examples are in two and three dimensions, where we use the two-dimensional problems
to demonstrate mathematical properties and convergence of the method. The three-
dimensional geometries show the applicability of the methods we develop for more realistic
applications.

A simple example geometry is the generalized Hashin structure, a two-dimensional
problem where the solution is known and the macroscopic elastic properties can be
computed explicitly. The approximation results are studied on a problem with piecewise
polynomial coefficients and a specific smoothness. In three dimensions, a single fiber
geometry serves to study the effects of the lattice and the space of translates. The effect
of composite voxels is strongest in the presence of many interfaces. We demonstrate
them on a polycrystalline structure.

Structure of this thesis

The thesis is divided into three parts and organized as follows: the first part, found in
Chapter 2, contains the preliminaries. They introduce the periodic and non-periodic
function spaces, followed by lattices and the discrete Fourier transform on them. We then
explain translation invariant spaces and their approximation estimates. We derive the
partial differential equation of elasticity in homogenization and explain the Lippmann-
Schwinger equation and the variational formulation. Finally, we collect some theoretical
results and error estimates for elliptic partial differential equations.

The Chapter 3 starts by defining the periodized Green operator derived by a convolution
in Fourier space with the Fourier coefficients of the ansatz function. This operator is
subsequently used to discretize the Lippmann-Schwinger equation and the variational
equation. We characterize their solution spaces and embed them into the existing methods.
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The convergence analysis of this discretization starts with showing the boundedness
and ellipticity of several bilinear and linear forms, followed by the convergence result.
Afterwards, we prove the convergence of the basic-scheme and the conjugate gradient
algorithm.

Finally, in Chapter 4, we comment on the software used for the numerical simulations
and explain the example problems used in this thesis. We investigate the effects of the
choice of the lattice numerically and study the effects, the underlying space of translates
has on the solution. These investigations are both done in two and in three dimensions.
We introduce the composite voxel technique as a preprocessor on the stiffness data
that reduces a high-dimensional problem to a lower-dimensional system of equations.
This is followed by a demonstration of the effectiveness of the composite voxels for a
polycrystalline structure.
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This thesis centers around and connects two separate topics: approximation on pe-
riodic anisotropic spaces of translates and periodic homogenization in linear elasticity.
Introducing both of them is the aim of this chapter, which summarizes and states relevant
concepts and scientific results.

The first part starts with the notation used throughout the remainder of this thesis,
which is explained in Section 2.1. The Sections 2.2, 2.3, and 2.4 then deal with the
discrete Fourier transform on periodic lattices, translation invariant spaces, and their
approximation theory.

Section 2.2 establishes the infinite-dimensional function spaces like Lebesgue and
Sobolev spaces, both on subsets of Rd and on the d-dimensional torus. In the latter case,
we draw the connection to Fourier series and anisotropic function spaces.

Those Fourier series are discretized in Section 2.3. To that aim, this section reviews
anisotropic lattices and the construction of appropriate point sets in the space and in the
frequency domain and provides a discrete Fourier transform on such patterns.
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2 Preliminaries

Based on these lattices and the discrete Fourier transform, Section 2.4 describes
translation invariant spaces which are a finite dimensional subspace of the periodic
Lebesgue space of square integrable functions. As such, they can be used for interpolation
and approximation in periodic Sobolev spaces and thus constitute the foundation for the
numerical analysis in the following chapters.

The second part of the preliminaries is divided into two sections. In Section 2.5, we
explain the mathematical idea of periodic homogenization as a limit process of a scale
separation between the macro and the micro scale of a material. This leads to the
equation of linear elasticity in periodic homogenization — the focus of the discretization
approach in Chapter 3. To aid the discretization, we introduce equivalent formulations
of this partial differential equation.

On a more general level, Section 2.6 states results from the theory and numerical
analysis of partial differential equations. This includes results dealing with the existence,
uniqueness, and smoothness of solutions, followed by a convergence theorem for very
general discretization methods by Strang.

2.1 Notation

To ease the journey of the reader through the — sometimes quite involved — notation
used in this thesis, the following conventions apply throughout this document, unless
stated explicitly otherwise.

With the symbols a ∈ C, bold a ∈ Cd, bold capitals A ∈ Cd×d, and calligraphic capitals
A ∈ Cd×d×d×d we denote (complex-valued) scalars, vectors, matrices, and fourth-order
tensors, respectively. Vectors are through this thesis understood as column vectors.
For scalar functions, symbols f are reserved. Vector valued functions, and functions
mapping onto second-order tensors, i.e. matrices, have bold symbols f and Greek letters
ε, respectively. The capital calligraphic letter C is reserved for the stiffness distribution
and F denotes the discrete Fourier transform. In general, capital calligraphic letters S
are used for sets. The letter d ∈ N is exclusively used for the dimension, in applications
we usually have d = 2 or d = 3.

Vectors, second-order tensors, and fourth-order tensors are indexed by ai, Aij , and
Aijkl with i, j, k, l = 1, . . . , d. The product between a fourth-order tensor A ∈ Cd×d×d×d
and a second-order tensor A ∈ Cd×d is written as

(
A : A

)
ij

:=
d∑

k,l=1

AijklAkl.

The inner product between two vectors is denoted by aTb :=
∑

i aibi, and 〈·, ·〉 is reserved
for the inner product of two functions.

The induced Euclidean norm of a regular matrix M ∈ Rd×d is written as ‖M‖, without
subscript on the norm, and the condition number of a regular matrix M is given as
κM := ‖M‖‖M−1‖.

The complex conjugate of a complex number a = b + ic with b, c ∈ R is written as
a := b− ic. The imaginary unit i and constants like Euler’s number e are set upright.
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2.2 Function spaces and Fourier series

The Kronecker delta is denoted by δij := 1, if i = j, and δij := 0 otherwise. With | · | we
denote the absolute value of a scalar.

Let S be an arbitrary set. Then we use the notation

Symd(S) :=
{
s ∈ Sd×d : sij = sji ∈ S for all i, j = 1, . . . , d

}
for the set of symmetric matrices that are componentwise elements of S. If we take the
symmetric linear operators between symmetric matrices Symd(S) we get the set

SSymd(S) :=
{
s ∈ Symd(S)× Symd(S) : sijkl = sklij ∈ S for all i, j, k, l = 1, . . . , d

}
.

This set consists of fourth-order tensors with minor and major symmetries, i.e. tensors
satisfying sijkl = sjikl = sijlk = sklij for all i, j, k, l = 1, . . . , d.

Further, Idd ∈ Rd×d denotes the identity matrix, and for a set S the operator Id : S → S
is the identity. Let g be a function. Then O(g) defines the Landau symbol in the limit
a ∈ R by

O(g) :=

{
f : lim sup

x→a

|f(x)|
|g(x)| <∞

}
.

For a multi-index a = (a1, a2, . . . , ab) with b > 0 and ai ∈ N, we denote the sum of a
by

|a| :=
b∑
i=1

ai.

2.2 Function spaces and Fourier series

The aim of this section is to introduce the necessary function spaces for the analysis in
the following chapters. We do this in two steps: first, function spaces on subsets of the
Rd are defined in detail. With these at hand, we can proceed to periodic function spaces
and Fourier series.

Function spaces on subsets of Rd

The definition of the function spaces on subsets of Rd in this section is done from scratch.
Beginning with Lebesgue spaces, we proceed from partial derivatives to weakly partially
differentiable functions. These provide the basis to subsequently define Sobolev spaces
with their according norm and inner product.

Let R ⊂ Rd be a non-empty and open set, then the Lebesgue space Lp(R) of order
1 ≤ p ≤ ∞ is defined by

Lp(R) :=
{
f : R → C : ‖f‖p <∞

}
,

where

‖f‖p :=

(∫
R
|f(x)|p dx

) 1
p

9



2 Preliminaries

for 1 ≤ p <∞ and
‖f‖∞ := ess sup

x∈R
|f(x)|,

with ess sup being the essential supremum. For the Lebesgue norms, a single subscript is
used. The norm ‖ · ‖2 is induced by the inner product

〈f, g〉2 :=

∫
R
f(x)g(x) dx, f, g ∈ L2(R)

and thus L2(R) is a Hilbert space. If the functions f and g are vector-valued or tensor-
valued, e.g. f, g ∈ Lp(R)d×d, the above definitions are applied using the inner product
on vectors and the Frobenius inner product. For matrices A,B ∈ Cd×d with entries aij
and bij for i, j = 1, . . . , d, respectively, we use the Frobenius inner product

〈A,B〉 :=
d∑

i,j=1

aijbij .

For higher order tensors, the Frobenius inner product is applied similarly.
The partial derivative ∂f

∂xi
of a function f : R → Cd̃ with d̃ ∈ N at point x =

(x1, . . . , xd)
T ∈ R with respect to the component xi is given as

∂f

∂xi
(x) := lim

h→0

f(x1, . . . , xi + h, . . . , xd)− f(x1, . . . , xi, . . . , xd)

h
.

For a multi-index a = (a1, a2, . . . , ad) we define

∂af :=
∂a1f

∂a1
x1

· · · ∂
adf

∂adxd
,

using Schwarz’s theorem, assuming all partial derivatives are continuous.
Further, a function f : R → Cd̃ is differentiable in a point x ∈ R if and only if there

exists a linear mapping J : R → Cd̃ with

lim
h→0

‖f(x + h)− f(x)− J(h)‖
‖h‖ = 0.

If this mapping J exists, then all partial derivatives of f exist as well and(
∂f

∂xi

)
j

= Jji

for i = 1, . . . , d and j = 1, . . . , d̃.
Let Cp(R) for p ∈ N ∪ {∞} with 0 ≤ p ≤ ∞ denote the space of p-times continuously

differentiable functions in the above sense.
For a function f ∈ L1(R), where R ⊂ Rd is open and bounded, the weak partial

derivative with respect to the multi-index a is defined as follows. We call g ∈ L1(R) the
weak a-derivative of f if and only if∫

R
f∂aϕdx = (−1)|a|

∫
R
gϕdx
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2.2 Function spaces and Fourier series

for all ϕ ∈ C∞(R) which have compact support in R. We further collect the weak partial
derivatives of f in the Jacobi matrix

∇ f :=

(
∂f

∂xi

)
i=1,...,d

.

The Sobolev space Wb,p(R) with Sobolev index b ∈ N and Lebesgue index 1 ≤ p ≤ ∞
is given by

Wb,p(R) :=
{
f ∈ Lp(R) : ‖f‖b,p <∞

}
using the multi-index a with

‖f‖b,p :=

( ∑
a: |a|≤b

∥∥∂af∥∥p
p

) 1
p

for 1 ≤ p <∞ and

‖f‖b,∞ := max
a: |a|≤b

∥∥∂af∥∥∞.
Here, the Sobolev norm has two indices.

For p = 2 we also write Hb(R) := Wb,2(R) and the Sobolev spaces Hb(R) endowed
with the inner product

〈f, g〉b,2 :=
∑

a: |a|≤b
〈∂af, ∂ag〉2, f, g ∈ Hb(R)

are Hilbert spaces.

The space Hb0(R) ⊂ Hb(R) denotes the set of functions in the Sobolev space that have
compact support in R. The space H−b(R) is the dual space to Hb0(R), i.e. the space of
bounded linear functionals from Hb0(R) to C.

The interested reader can find a more detailed introduction of the function spaces on
subsets of Rd in [3, Section 1.5 and Section 7], or [99, Section 1 and Section 2].

Periodic function spaces on Td

Fourier series provide the basis for the function spaces used in this thesis. Their theoretical
requisite are spaces of p-summable sequences which are introduced at the beginning
of this section. These allow for the definition of Fourier coefficients as weights of the
Schauder basis of L2(Td) given by the trigonometric monomials. Among the sequence
spaces, the Wiener algebra and the square summable sequences are special in the way,
that they have isomorphic counterparts in the Lebesgue spaces.

Similar to the Sobolev spaces, we define next the anisotropic function spaces. They
are introduced in [5, 9] and require a certain order of decay of the Fourier coefficients
weighted with an elliptic weight function. In the case of square integrable functions and
isotropic decay of the Fourier coefficients, they are equivalent to certain Sobolev spaces.
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2 Preliminaries

We identify the d-dimensional torus Td := Rd/(2πZ)d with the interval Td ∼= [−π, π)d.
With this identification, the definitions for the Lebesgue spaces and Sobolev spaces carry
over to the periodic case.

In addition to the Lebesgue spaces Lp(Td) we define the spaces of p-summable sequences
using the counting measure instead of the Lebesgue measure. For a set Z ⊆ Zd and
1 ≤ p ≤ ∞ we define

`p(Z) :=
{
{ck}k∈Z ⊂ C :

∥∥{ck}k∈Z∥∥p <∞}
with the norms ∥∥{ck}k∈Z∥∥p :=

(∑
k∈Z
|ck|p

) 1
p

for 1 ≤ p <∞ and ∥∥{ck}k∈Z∥∥∞ := sup
k∈Z
|ck|.

The space `2(Z) is a Hilbert space endowed with the inner product〈{
ck
}
k∈Z ,

{
bk
}
k∈Z

〉
2

:=
∑
k∈Z

ckbk,
{
ck
}
k∈Z ,

{
bk
}
k∈Z ∈ `

2(Z).

For a function f ∈ L1(Td) we define the Fourier coefficients

ck(f) :=
1

(2π)d

∫
Td

f(x) e−ikTx dx, k ∈ Zd.

For vector-valued or tensor-valued functions this definition applies componentwise. In

case of f ∈ L2(Td) these Fourier coefficients can be written as ck(f) =
〈
f, eikT·

〉
2

and

the functions eikT· constitute a Schauder basis of L2(Td). For f ∈ L2(Td) the Fourier
series

f =
∑
k∈Zd

ck(f) eikT·

converges with equality in L2(Td)-sense, i.e. with equality up to sets of Lebesgue measure
zero.

The spaces L2(Td) and `2(Zd) are isomorphic via the Parseval equation, i.e. for functions
f, g ∈ L2(Td) with Fourier coefficients

{
ck(f)

}
k∈Zd and

{
ck(g)

}
k∈Zd , respectively, it holds

that
〈f, g〉2 =

〈{
ck(f)

}
k∈Zd ,

{
ck(g)

}
k∈Zd

〉
2
. (2.1)

For the Banach space `1(Zd) an isomorphic space is given by the Wiener algebra

A(Td) :=
{
f ∈ L1(Td) : ‖f‖A <∞

}
with

‖f‖A :=
∥∥{ck(f)}k∈Zd

∥∥
1
,

12



2.2 Function spaces and Fourier series

i.e. the space of functions with an absolute convergent sequence of Fourier coefficients.

For a function f ∈ A(Td) that fulfills

f =
∑
k∈Zd

ck(f) eikT·

in L2-sense and that is weakly partial differentiable with respect to xj with ∂f
∂xj
∈ A(Td)

for j = 1, . . . , d, the derivative can be characterized via its Fourier series with

∂f

∂xj
:=
∑
k∈Zd

ikjck(f) eikT·,

where k = (k1, . . . , kd)
T.

We define for a function u ∈ H1(Td)d the symmetric gradient operator

∇Sym u :=
1

2

(
∇u + (∇u)T

)
(2.2)

with ∇Sym u ∈ Symd

(
L2(Td)

)
. In terms of Fourier coefficients, this operator — acting as

a Fourier multiplier — is given as

ck
(
∇Sym u

)
:= ∇Symk ck(u) :=

i

2

(
kck(u)T + ck(u)kT

)
, k ∈ Zd.

The divergence operator div is defined as the negative L2-adjoint of the symmetric
gradient operator via

〈u,div γ〉2 := −〈∇Sym u, γ〉2,
for all u ∈ H1(Td)d and γ ∈ Symd

(
L2(Td)

)
.

With these differential operators the space L2(Td) can be decomposed into a direct
sum of constants, divergence-free fields and gradient fields with the help of the Helmholtz
decomposition [69, Section 12.1], stated in the following theorem.

Theorem 2.1. It holds that

Symd

(
L2(Td)

)
= Symd

(
U(Td)

)
+ E(Td) +D(Td),

where

U(Td) :=
{
f ∈ L2(Td) : f is constant almost everywhere

}
,

E(Td) :=
{
ε ∈ Symd

(
L2(Td)

)
: ∃u ∈ H1(Td)d, ε = ∇Sym u

}
, (2.3)

D(Td) :=
{
σ ∈ Symd

(
L2(Td)

)
:

∫
Td

σ(x) dx = 0 and 〈ε, σ〉2 = 0 for all ε ∈ E(Td)
}
.

The set U consists of all constant functions, E(Td) collects all gradient fields, and D(Td)
all divergence-free functions.

13



2 Preliminaries

2
0

20

20

20

20

15

15

15

15

15

10

1
0

10

10

5

5

5

−4 −2 0 2 4

−4

−2

0

2

4

k1

k
2

2
0

20

2
0

20

15

15

15

15

10

10

1
0

5

5

−4 −2 0 2 4

−4

−2

0

2

4

k1

k
2

Figure 2.1. Level set plot of the elliptic weight function σM
b (k) for b = 2 and k ∈ R2 with

matrix M1 (left) and matrix M2 (right) for levels 5, 10, 15, and 20.

Connected to the Sobolev spaces Wa,p(Td) are spaces that are characterized by the
decline of the Fourier coefficients of their functions. The so-called isotropic function
spaces [95, Section 1.1], for example, require a certain decline of the Fourier coefficients in
all directions. For the analysis in the following sections, however, we require anisotropic
function spaces. These spaces allow for different declines of the Fourier coefficients in
directions which are not necessarily aligned with the coordinate axes.

These directions are parametrized by regular matrices M ∈ Zd×d. The directions in
frequency domain are then described by ellipsoids via an elliptic weight function. Let
b ∈ R, then the elliptic weight function σMb is given by

σMb (k) :=
(

1 +
∥∥M∥∥2∥∥M−Tk

∥∥2
) b

2
, k ∈ Zd. (2.4)

When inserting the identity matrix as M = Idd into the definition of the weight
function, it reduces to

σIdd
b (k) =

(
1 + ‖k‖2

) b
2
.

This function is well known from a characterization of the Sobolev spaces Hb(Td) via
their Fourier coefficients [95, Definition 1.1].

In Figure 2.1, level set plots of the elliptic weight function σMb for b = 2 and matrices

M1 :=
(

8 0
0 8

)
and M2 :=

(
8 8
0 8

)
are shown. The function σM1

2 has an isotropic behavior,

i.e. the level sets are circles. For σM2
2 , the function increases anisotropically, where the

function grows much quicker in the direction of (1,−1)T than in the direction of (1, 1)T.

The elliptic weight function allows the definition of the anisotropic function spaces.
Let M ∈ Zd×d be regular, b ∈ R, and let q ≥ 1. Then the anisotropic function space

14



2.2 Function spaces and Fourier series

AbM,q is defined as

AbM,q(Td) :=
{
f ∈ L1(Td) : ‖f‖b,M,q <∞

}
with the norm

‖f‖b,M,q :=
∥∥{σMb (k)ck(f)}k∈Zd

∥∥
q
,

sporting three indices.
Due to [9, Page 4], the anisotropic function spaces are equivalent to their isotropic

counterparts with M = Idd. This can be seen via the inequalities(
1 +

∥∥M∥∥2∥∥M−Tk
∥∥2
) b

2 ≤ κbM
(

1 + ‖k‖2
) b

2

and (
1 + ‖k‖2

) b
2 ≤

(
1 +

∥∥MTM−Tk
∥∥2
) b

2 ≤
(

1 +
∥∥M∥∥2∥∥M−Tk

∥∥2
) b

2
.

These inequalities directly yield

‖f‖b,M,q ≤ κbM‖f‖b,Idd,q (2.5)

and
‖f‖b,Idd,q ≤ ‖f‖b,M,q, (2.6)

and thus the spaces AbM,q(Td) and AbIdd,q
(Td) are isomorphic. This definition of the

anisotropic function spaces incorporates the Wiener algebra as a special case with
A(Td) = A0

Idd,1
.

Between the Lebesgue space, the isotropic function spaces, and the Sobolev spaces the
following embeddings and equivalences are given, see [95, Section 1.1] and [94].

Lemma 2.2. The following embeddings hold:

a) W0,p(Td) = Lp(Td) for all 1 ≤ p ≤ ∞,

b) Hb(Td) =Wb,2(Td) = AbIdd,2
for all b ∈ R,

c) AbIdd,q
(Td) ⊂ Ab′Idd,q

(Td) for b ≥ b′ and 1 ≤ q ≤ ∞,

d) AbIdd,q
(Td) ⊂ AbIdd,q′

(Td) for b ∈ R and q ≤ q′,

e) Wb,q(Td) ⊂ Wb,q′(Td) for b ∈ R and q ≥ q′.
Further information about periodic function spaces can be found for example in [99,

Chapter 9] and [3, Section 7.5].
This section has introduced Lebesgue spaces and Sobolev spaces over subsets of Rd and

over the torus Td together with their respective norms. On periodic function spaces, the
spaces of p-summable sequences are used in conjunction with Fourier series. These series
stem from the Schauder basis consisting of complex exponentials. The measurement of
the p-th moments of a function to obtain the Lebesgue spaces Lp(Td) stands in contrast to
measuring the p-th moments of the Fourier coefficients. Together with anisotropic weights,
this leads to the anisotropic function spaces. In case of p = 2, these two approaches to
define spaces are connected via the Parseval equation.
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2 Preliminaries

2.3 Lattices and the discrete Fourier transform

A discretization using the infinite trigonometric Schauder basis introduced in the last
section requires the definition of a suitable grid. The classical choice when using Fourier-
based methods is a tensor product grid. More general, we introduce regular anisotropic
lattices where the vectors that generate the sampling points are not necessarily aligned
with the coordinate axes. On such grids a discrete Fourier transform is introduced in [23].
More general, the required algebraic structure to define a discrete Fourier transform is
an Abelian group [1].

Anisotropic lattices are used in [10, 53] to develop periodic anisotropic wavelets.
The algebraic structure of the lattice parametrization is used for the scaling in the
multiresolution analysis. Subsequently, a fast Fourier transform and fast wavelet transform
is derived in [4]. The fast Fourier transform algorithm for tensor product grids is adapted
to anisotropic lattices using an certain enumeration of the sampling points and frequencies.
With this enumeration, the algorithm for tensor product grids can be applied directly
without increasing the computational costs.

Of special interest are lattices which can be generated by sampling a single direction,
by using the periodicity of the torus. Such lattices are called rank-1-lattices and are
studied in detail in [48, 49] and [80]. The authors derive several adaptive schemes to
approximate sets of sampling points and frequencies, and give approximation errors for
functions of given smoothness. For such lattices, the discrete Fourier transform reduces
to a single one-dimensional transform, independent of the dimension of the problem. This
simplifies the organization of the data and reduces the costs to compute the transform.
A summary and introduction to anisotropic lattices in German can also be found in [5].

This section first introduces the concept of regular lattices and states their properties. It
then proceeds to define a discrete Fourier transform on them and concludes by constructing
a suitable enumeration of the lattice points, leading to a fast Fourier transform algorithm.

Periodic Lattices

Periodic lattices are parametrized by a regular integer matrix, resulting in a congruence
relation which generalizes the notion of periodicity to the anisotropic case. A suitable set
of congruence representants then yields a pattern on the torus and, similarly, a generating
set of integer frequencies. After introducing these concepts, this section proceeds to
state results that identify set inclusions and equalities of such lattices by purely algebraic
properties of their parametrizing matrices. Finally, examples for these properties, the
resulting lattices, and generating sets are given.

Lattices on the torus are parametrized by a regular integer matrix M ∈ Zd×d, see
also the definition of the elliptic weight function (2.4). This matrix defines a congruence
relation ∼= for vectors h,k ∈ Zd via

h ∼= k mod M :⇔ there exists z ∈ Zd such that k = h + Mz. (2.7)
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2.3 Lattices and the discrete Fourier transform

The resulting lattice is then given as

Λ(M) := M−1Zd =
{
y ∈ Rd : My ∈ Zd

}
.

The necessary algebraic structure for a discrete Fourier transform is an Abelian

group [1]. Consider set of points P(M) ⊂
[
−1

2 ,
1
2

)d
constructed by points in the lattice

Λ(M) modulo the unit cube
[
−1

2 ,
1
2

)d
by Equation (2.7). We call this set the pattern

belonging to the pattern matrix M. For an element y ∈ Λ(M) we denote the mapping
onto its representant in P(M) by y

∣∣
P(M)

. The set P(M) endowed with the addition of

points constitutes such an Abelian group [23] and is therefore suited for the definition of
a discrete Fourier transform. The generating set is given by G(M) := MP(M) and is,
together with the addition of points, an Abelian group.

The number of elements in both the pattern and the generating set is given by
|P(M)| = |G(M)| = |det(M)| =: m, following [13, Lemma II.7]. The special case of
a tensor product grid with m = m1m2m3 · · ·md points is covered by diagonal pattern
matrices M = diag(m1,m2, . . . ,md).

Sublattices, i.e. subsets of a lattice Λ(M) that are again lattices can be characterized
via properties of the pattern matrix [53] as follows.

Lemma 2.3. Let M,N ∈ Zd×d be regular pattern matrices. Then it holds that:

a) Λ(N) ⊂ Λ(M), P(N) ⊂ P(M), and G(N) ⊂ G(M) if and only if there exist a
regular matrix J ∈ Zd×d such that M = JN, and

b) Λ(M) = Λ(N), P(M) = P(N), and G(M) = G(N) if and only if there exists a
matrix J ∈ Zd×d as in a) that furthermore fulfills |det(J)| = 1.

The inclusion property in Lemma 2.3 a) given by the splitting M = JN also results in
a unique splitting of points x ∈ P(M) into components in P(N) and P(J) [4, Proof of
Theorem 3].

Lemma 2.4. Let M,N,J ∈ Zd×d be regular matrices with M = JN. Then a point
x ∈ P(M) can be uniquely decomposed into

x = y +
(
N−1z

)∣∣
P(M)

for y ∈ P(N) and z ∈ P(J).

The discrete Fourier transform connects the pattern P(M), serving as the sampling
points in space, with the generating set G(MT) of frequencies in Fourier space. The
connection between the two sets can be seen for the complex exponential function in the
following lemma.

Lemma 2.5. Let M ∈ Zd×d be a regular matrix, let h ∈ G(MT), let y ∈ P(M), and let
z ∈ Zd. Then it holds that

e2πihTy = e2πi
(
h+MTz

)T
y.
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2 Preliminaries

Proof. As y ∈ P(M), by definition we have zTMy ∈ Z and therefore e2πizTMy = 1,
see [5, p. 25].

Example 2.6. Figure 2.2 shows the patterns P(M) and generating sets G(MT) for the
matrices

M1 :=

(
4 4
−4 4

)
,

M2 :=

(
1 −1
1 1

)(
4 4
−4 4

)
=

(
8 0
0 8

)
,

M3 :=

(
1 1
0 1

)(
8 0
0 8

)
=

(
8 8
0 8

)
,

M4 :=

(
8 1
0 8

)
.

By Lemma 2.3 a), the inclusion P(M1) ⊂ P(M2) holds, i.e. the pattern generated by M1

is a subsampling of the pattern generated by M2, see the top row of Figure 2.2. Also, the
generating sets show the inclusion G(MT

1 ) ⊂ G(MT
2 ).

From Lemma 2.3 b) follows further, that P(M2) = P(M3). However, G(MT
2 ) 6=

G(MT
3 ), as can be seen in the middle row of Figure 2.2.

The pattern P(M4) and the generating set G(MT
4 ) are generated by a single sampling

direction. The representants of the lattice Λ(M4) in the unit cube
[
−1

2 ,
1
2

)2
then yield a

sampling set.

The discrete Fourier transform on periodic lattices

Classically, the multivariate discrete Fourier transform is defined on tensor product grids.
The patterns introduced in the last section have the structure of a finite group when
the group operation is chosen as the addition of points. Such a structure permits the
definition of a discrete Fourier transform [86], which is introduced in the following. Due
to a decomposition of the pattern into a linearly transformed tensor product of one-
dimensional periodic point sets, we can define a pattern basis. This linear transformation
hinges on the Smith normal form of the pattern matrix. With this special basis, the fast
Fourier transform algorithm known for tensor product grids can be applied directly, see [4],
which is detailed in this section. This is followed by the aliasing formula, describing the
quality of the approximation on such a pattern.

Definition 2.7. Let P(M) be a pattern generated by the regular pattern matrix M ∈ Zd×d.
Further, assume that the points in P(M) and G(MT) have an arbitrary but fixed order
and let m = |det(M)|. Then the discrete Fourier transform F(M) on P(M) is defined by

F(M) :=
1

m

(
e−2πihTy

)
h∈G(MT), y∈P(M)

with h ∈ G(MT) indicating the rows and y ∈ P(M) indicating the columns of the matrix
F(M) [23].
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Figure 2.2. Examples for patterns (left column), generating sets (right column) and their
respective bases for the matrices M1 (top row, large dots only, dark arrows), M2 (top
row, small and large dots, light arrows), M3 (middle row), and M4 (bottom row).
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The discrete Fourier transform of a vector a = (ay)y∈P(M) ∈ Cm is then given as

â = (âh)h∈G(MT) := F(M)a ∈ Cm. (2.8)

This discrete Fourier transform on anisotropic lattices equals the classic discrete Fourier
transform on a tensor product grid in case of M being a diagonal matrix. In order to
derive the fast Fourier transform (FFT) algorithm in this setting, a special ordering
of the elements of P(M) and G(MT) is required. This ordering is based on the Smith
normal form of M.

Lemma 2.8. Let M ∈ Zd×d be regular. Then M can be decomposed into

M = QER

with matrices Q,E,R ∈ Zd×d. If those matrices fulfill |det(R)| = |det(Q)| = 1 and
E = diag(e1, . . . , ed) where ej ∈ N and ej |ej+1 for j = 1, . . . , d− 1, i.e. ej divides ej+1,
then this decomposition is called Smith normal form (SNF) of M.

With help of the Smith normal form the dimension of a pattern is given by

dM := |{j : ej > 1}|,

counting the non-trivial directions required to span the pattern P(M).
The elementary divisors ej with j = 1, . . . , d of the Smith normal form motivate the

definition of a basis of the pattern P(M) [4, Section 3]

Definition 2.9. Let M ∈ Zd×d be a regular pattern matrix with Smith normal form
M = QER, let ej be the elementary divisors of M, and let dM be the dimension of M.
A set {y1, . . . ,ydM} ⊂ P(M) is called pattern basis of the pattern P(M) if and only if

a) for all j = 1, . . . , dM holds that

min
a∈N

{
a : ayj ∈ Zd

}
= ed−dM+j ,

b) and if the vectors y1, . . . ,ydM are linearly independent.

If the set {ỹ1, . . . , ỹdM} ⊂ P(MT) is a pattern basis for the pattern P(MT), then by
the definition of the sets,

{
Mỹ1, . . . ,MỹdM

}
⊂ G(MT) is a basis of the generating set

G(MT).

A lexicographic ordering of the elements of the pattern P(M) with respect to the
coefficients of the vectors y1, . . . ,ydM yields a way to enumerate the points. This amounts
to

P(M) =

(( dM∑
j=1

ajyj

)∣∣∣∣
P(M)

)(a1,...,adM )=(ed−dM+1−1,...,ed−1)

(a1,...,adM )=0

and bases for the pattern and the generating set are given as follows [4, Section 3]:
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2.3 Lattices and the discrete Fourier transform

Lemma 2.10. Let M ∈ Zd×d be regular with Smith normal form M = QER and
E = diag(e1, . . . , ed). Let further ej denote the j-th unit vector in Zd. Then basis vectors
yj for the pattern P(M) are given for j = 1, . . . , dM by

yj := R−1 1

ed−dM+j
ed−dM+j .

The basis vectors ỹj for the generating set G(MT) are

ỹj := RT 1

ed−dM+j
ed−dM+j

for j = 1, . . . , dM.

These special bases give a ordering of P(M) and G(MT) that allows the use of the
(standard) multidimensional fast Fourier transform algorithm on these vectors. The
resulting FFT on anisotropic patterns thus retains the complexity of the tensor product
case, i.e. O(m logm) with the same leading constant [4, Theorem 2].

Patterns with dimension dM = 1, which are also called rank-1-lattices, are of special
interest. For these, only a single one-dimensional discrete Fourier transform is required
to switch between the space domain and the frequency domain. Such lattices are very
easy to handle and are studied in detail for example in [48, 49, 80].

The pattern bases and the bases of the generating sets are displayed in Figure 2.2 as
arrows. An example for a pattern of rank 1, i.e. a pattern that is generated by only one
basis vector, is depicted in the bottom row of Figure 2.2.

Having defined the discrete Fourier transform on vectors, we take a look at the difference
between a function in L2(Td) and its approximation by points on the pattern P(M).
Assume that f ∈ L2(Td) ∩ A(Td) is sampled on a pattern at the points y ∈ P(M) with
ay := f(2πy). The discrete Fourier coefficients of f are defined as cMh (f) := âh with
h ∈ G(MT), and âh according to (2.8).

The aliasing formula [5, Lemma 2.1] then states that

cMh (f) =
∑
z∈Zd

ch+MTz(f), h ∈ G(MT). (2.9)

This means that slowly decaying Fourier coefficients cz(f) with z ∈ Zd result in a bad
approximation cMh (f) ≈ ch(f) for h ∈ G(MT) if the number of points in the according
direction — given by the basis vectors of G(MT) and the according elementary divisors ej
of E — is not sufficiently large. If the number of points is large enough and the spectrum
is bounded in that direction, then the difference between cMh (f) and ch(f) is small and f
is approximated well by the ah.

The sum on the right-hand side of (2.9) is also called bracket sum given for a = {ak}k∈Zd

via

[a]Mk :=
∑
z∈Zd

ak+MTz, k ∈ Zd. (2.10)
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This section has introduced periodic anisotropic lattices as a scaling of the integers
by a regular integer matrix. Selecting suitable congruence representants in the unit
cube motivates the definition of the pattern and the generating set. The pattern P(M)
constitutes a suitable point set for the definition of a discrete Fourier transform which
maps points on the pattern to elements of the generating set G(MT). By a suitable
enumeration of these point sets, using bases stemming from the Smith normal form, the
application of the fast Fourier transform algorithm is possible without losing performance
when compared to tensor product grids.

A construction of subsets of the pattern and the generating set is possible via decompo-
sitions of the pattern matrix M. With these, the computational effort for the fast Fourier
transform can be reduced while adapting the point sets to certain directions, given by
the pattern bases. The approximation of a function by the discrete Fourier coefficients is
characterized by the aliasing formula. There, a faster decline of the Fourier coefficients —
coinciding with a higher smoothness of the function, see also the anisotropic function
spaces in the previous section — reduces the approximation error.

2.4 Translation invariant spaces and approximation

Based on the anisotropic patterns introduced above, this section acquaints the reader
with the concept of translation invariant spaces, i.e. spaces generated by taking a single
function and shifting it to the points on a regular pattern. This endeavor is divided into
four steps.

First, the idea of spaces of translates and their properties are presented, including an
appropriate interpolation and approximation operator. This is followed by examples for
such spaces and plots of the functions generating the space. Third, theoretical results for
estimates on the approximation error, depending on properties of the space of translates,
are introduced. The speed of convergence of the approximation depends on parameters
derived from the spaces of translates. These parameters are exemplified for several ansatz
functions.

Translation invariant spaces

The idea behind translation invariant spaces is similar to the idea of finite elements on an
equidistant grid. For example, in case of linear finite elements, the hat functions forming
a nodal basis can be generated by taking a single hat function and translating it to each
grid point, see Figure 2.3. In case of a tensor product grid, such spaces are extensively
investigated in [79, 93–95]. A generalization to anisotropic lattices is done in [10, 53], the
latter of which serves as the source for this section.

We define translation invariant spaces and characterize their elements by their Fourier
coefficients. A special function generating a translation invariant space is the fundamental
interpolant, which generates a nodal basis when translated, similar to the hat function in
Figure 2.3. Further, orthogonality and orthonormality of such a basis is described via its
Fourier coefficients. Finally, we introduce an interpolation and approximation operator
on spaces of translates.
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Figure 2.3. Linear finite element ansatz space as a space of translates of a single hat
function.

The translate of a function f ∈ L2(Td) is denoted by T (y)f := f(·−2πy) for y ∈ P(M).
In terms of Fourier coefficients this is equivalent to

ck(T (y)f) = e−2πikTyck(f), k ∈ Zd, y ∈ P(M).

Spaces invariant under translation are of special interest for the following analysis as
they can be characterized by the Fourier coefficients of their functions.

Definition 2.11. Let V ⊂ L2(Td) be a set, then V is called a M-invariant space if for
all functions f ∈ V and points y ∈ P(M), also T (y)f ∈ V, i.e. the space is closed under
translation. Further, define the M-invariant space

VfM := span{T (y)f : y ∈ P(M)}

generated by the translates of a single function f ∈ VfM.

A function g ∈ VfM can be decomposed into linear combinations of the translates of f
via

g =
∑

y∈P(M)

ay T (y)f.

Such a decomposition also holds on the Fourier coefficients of g and makes use of the
description of the translation operator T (y) for y ∈ P(M) in Fourier space [53, Theorem
3.3].

Lemma 2.12. Let f ∈ L2(Td) and h ∈ G(MT). Consider the unique decomposition of

k ∈ Zd into k = h + MTz for z ∈ Zd. Then g ∈ VfM holds if and only if

ck(g) = ch+MTz(g) = âhch+MTz(f) (2.11)

for all z ∈ Zd where
(
âh
)
h∈G(MT)

= F(M)
(
ay
)
y∈P(M)

.

Due to this characterization, the space VfM is finite dimensional. We can do calculations
and computations using only the coefficients ay or their discrete Fourier coefficients âh.

A translation invariant space VfM can be easiest characterized by looking at the
translates of a fundamental interpolant. These translates act like a nodal basis.
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Definition 2.13. Let M ∈ Zd×d be regular. A function IM ∈ VfM is called fundamental

interpolant of VfM if

IM(2πy) := δIdd
0,y , y ∈ P(M)

where

δMx,y :=

{
1, if y ≡ x mod M,

0, else.

The existence of such a fundamental interpolant is a priori not clear. The follow-
ing lemma states conditions on the existence of this special function and explains its
properties [5, Lemmas 1.23 and 2.2].

Lemma 2.14. Let M ∈ Zd×d be regular and let f ∈ A(Td). Then the following statements
hold:

a) The fundamental interpolant IM ∈ VfM exists if and only if∑
z∈Zd

ch+MTz(f) 6= 0

for all h ∈ G(MT). If the fundamental interpolant IM ∈ VfM exists, it is uniquely
determined.

b) The set of translates {T (y)f : y ∈ P(M)} is linear independent if and only if∑
z∈Zd

|ch+MTz(f)|2 > 0

for all h ∈ G(MT).

c) The set of translates {T (y)f : y ∈ P(M)} is an orthonormal basis of VfM if and
only if ∑

z∈Zd

|ch+MTz(f)|2 =
1

m

with m = |det(M)| for all h ∈ G(MT).

d) Let the fundamental interpolant on VfM exist. Given a function g̃ ∈ A(Td) we can

obtain a function g ∈ VfM fulfilling

g̃(2πy) = g(2πy)

for all y ∈ P(M) by

âh =

∑
z∈Zd ch+MTz(g̃)∑
z∈Zd ch+MTz(f)

, h ∈ G(MT),

where the coefficients âh yield g in Fourier coefficients by the characterization (2.11).
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2.4 Translation invariant spaces and approximation

Interpolation — and simultaneously best approximation — using the fundamental
interpolant IM is then defined as follows:

Definition 2.15. Let M ∈ Zd×d be regular, let f ∈ A(Td), and let the fundamental

interpolant IM on VfM exist. Further, let g be a function that can be evaluated in the

pattern points 2πy with y ∈ P(M). The interpolation operator LM on VfM is then given
via

LM g :=
∑

y∈P(M)

g(2πy) T (y) IM .

If further g ∈ A(Td), then a characterization in terms of Fourier coefficients reads

ck(LM g) = m
[
{ck′(g)}k′∈Zd

]M
k
ck(IM), k ∈ Zd

for m = |det(M)| and the Bracket sum as defined in Equation (2.10). Therefore, the

operator LM is also an approximation operator on the space of translates VfM.

Examples of translation invariant spaces

The translation invariant spaces we consider in this thesis can be divided into two classes:
functions, which have compact support in space, and functions, that have compact
support in frequency domain. This is due to the Breitenberger principle [16], the periodic
equivalent of the Heisenberg uncertainty principle [40].

Periodized pattern Box splines belong to the first category and include for example hat
functions, but also functions of higher degrees of differentiability. The resulting spaces of
translates yield the more intuitive ansatz spaces from the point of classical numerical
methods for partial differential equations, like finite elements. They, however, can not
be represented by a finite number of Fourier coefficients and thus spectral methods will
inherently produce additional approximation errors when computing in Fourier space,
e.g. aliasing effects.

Translation invariant spaces with compact support in frequency domain allow for
an exact representation by a — possibly large — finite number of Fourier coefficients
and thus are suited better for spectral methods. Such functions have global support in
space, however, they can be localized well [16, 28]. Among them is the Dirichlet kernel
which leads to a translation invariant space that is equivalent to the space of truncated
Fourier series and exhibits the Gibbs phenomenon [36, 41]. More general, Box splines in
frequency domain allow to dampen the Gibbs phenomenon by smoothing high frequency
behavior [15]. Especially de la Vallée Poussin means are an easy representative of this
class.

We construct the Box splines in space by periodization:

Definition 2.16. Let g̃ : Rd → C be a function, then the periodization g : Td → C of g̃
is given by

g(y) :=
∑
z∈Zd

g̃
( y

2π
− z
)
, y ∈ Td. (2.12)
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In terms of Fourier coefficients this amounts to taking the continuous Fourier transform
of g̃, and evaluating it on a grid [9, Page 41], i.e.

ck(g) =
1

(2π)d

∫
y∈Rd

g̃(y) e−ikTy, k ∈ Zd.

With this, the periodised pattern Box splines are defined as follows:

Definition 2.17. For s ≥ d denote a set of s column vectors that span the entire Rd
by X = {x1, . . . ,xs} ∈ Rd×s, abusing notation to interpret the set X as a matrix with
columns xi. Then the Fourier coefficients [13, p. 11] of the periodized Box spline
BX : Td → R of order s− 1 are

ck(BX ) :=
∏
x∈X

sinc
(
πxTk

)
, k ∈ Zd, (2.13)

where

sinc(t) :=
sin(t)

t
.

The periodized pattern Box spline [9, Section 5] is then obtained by scaling with the
regular matrix M ∈ Zd×d:

fM,X (y) := BX (M−1y), y ∈ Td. (2.14)

The definition of the periodized pattern Box spline (2.14) leads to a periodization as
in Equation (2.12) by evaluating the inverse discrete Fourier transformation (2.13).

Example 2.18. Not all sets of column vectors X result in linearly independent translates
of periodized pattern Box splines [78]. The sets X ∈ R2×(p+q+r) with vectors

x1 = · · · = xp = (1, 0)T,

xp+1 = · · · = xp+q = (0, 1)T,

xp+q+1 = · · · = xp+q+r = (1, 1)T,

where at least two of the values p, q, r are larger than 0 yield a periodized pattern Box
spline fM,X with linear independent translates, see [9] and [12, Section 4].

For the definition of de la Vallée Poussin means we proceed in two steps, following [10].

Definition 2.19. A function g : Rd → R is called admissible if it fulfills

a) g(y) ≥ 0 for all y ∈ Rd,

b) g(y) > 0 for all y ∈
[
−1

2 ,
1
2

)d
, and

c)
∑
z∈Zd

g(y + z) = 1 for all y ∈ Rd.

26



2.4 Translation invariant spaces and approximation

An example for admissible functions are Box splines BX with

X =
{

xi :
(
xi
)
j

:= δijbi, i = 1, . . . , d
}
∪
{

xi :
(
xi
)
j

:= δij , i = 1, . . . , d
}

(2.15)

with X ∈ Rd×2d and bi ∈ [0, 1] for i = 1, . . . , d, see [10, Definition 4.2 for l = 0].

Definition 2.20. Let M ∈ Zd×d be regular, let m = |det(M)|, and let g be an admissible
function. The function fM,g, which is defined by its Fourier coefficients via

ck
(
fM,g

)
:=

1

m
g
(
M−Tk

)
, k ∈ Zd (2.16)

is called generalized de la Vallée Poussin mean.

For generalized de la Vallée Poussin means with g being a periodized Box spline of
the form (2.15) we also write fM,b if it is clear from the context. These functions fM,b

generalize the one-dimensional setting of [82, 92] to the anisotropic multi-dimensional
setting. The functions fM,b are called de la Vallée Poussin means.

The modified Dirichlet kernel, as a special case of fM,b with b = 0 ∈ Rd, has for
dimension d = 1 the value 1 in the inner of G(MT) and 1

2 at the boundary. The Dirichlet
kernel, in contrast, has different behavior at the boundary:

Definition 2.21. The Dirichlet kernel fDM
is defined via (2.16) for the admissible

function

g(y) :=

{
1, y ∈

[
−1

2 ,
1
2

)d
,

0, otherwise

and (2.16) for y ∈ Rd.

In Figure 2.4, the Dirichlet kernel fDM
, the de la Vallée Poussin mean fM,g with

g = 0.25, and the Box spline kernel fM,X for X = (1, 1, 1) are depicted on the pattern
matrix M = (20) ∈ Z1×1 together with their Fourier coefficients. In comparison to the
Dirichlet kernel, the de la Vallée Poussin mean decays faster in space, however, the values
in the central peak are almost identical. These milder oscillations lead to a reduction of
the Gibbs phenomenon when using the de la Vallée Poussin means as ansatz functions [15].
The Box spline of second order, i.e. a twice differentiable function, has compact support
in space, but infinite support in frequency domain. Still, its Fourier coefficients decay
with O

(
|k|3
)
.

Approximation error

An approximation estimate on the anisotropic space of translates VfM requires additional

properties of the fundamental interpolant IM ∈ VfM. These properties describe how well

trigonometric polynomials are approximated using functions in VfM, which in turn can
be reduced to the approximation quality of the fundamental interpolant. This section
first introduces such conditions, which describe the degree of trigonometric polynomials

27



2 Preliminaries

−π −π
2

0 π
2

π
−0.2

0

0.4

0.8

x

fDM

fM,g

fM,X

−20 −10 0 10 20
0

0.5

1

k

ck(fDM
)

ck(fM,g)

ck(fM,X )

Figure 2.4. The Dirichlet kernel fDM
, the de la Vallée Poussin mean fM,g with g = 0.25, and

the Box spline kernel fM,X with X = (1, 1, 1). The pattern matrix is M = (20) ∈ Z1×1

and the kernels are shown in space (left) and in terms of their Fourier coefficients
(right).

that can be reproduced exactly, and the locality of a function in frequency domain. This
is followed by an approximation estimate taking into account the smoothness of the
function to interpolate and the smoothness of the interpolating function, thus yielding a
convergence rate in terms of the pattern matrix M.

Strang and Fix introduced conditions for the order of approximation for polynomials [97].
For trigonometric polynomials in the periodic setting on isotropic grids, such conditions
were derived in [79, (1.22)] and generalized to the anisotropic case in [9, Definition 2].

Definition 2.22. Let M ∈ Zd×d be regular, let m = |det(M)|, let a, s ∈ N∪ {0}, and let
q ≥ 1. A function f ∈ L1(Td) fulfills the elliptic Strang-Fix conditions with order s and
constant a if and only if there exists a sequence b = {bz}z∈Zd ⊂ R with bz ≥ 0 for all
z ∈ Zd, such that for all h ∈ G(MT) and z ∈ Zd with z 6= 0 the following statements are
fulfilled:

a) |1−mch(f)| ≤ b0κ−sM

∥∥M−Th
∥∥s,

b) |mch+MTz(f)| ≤ bhκ−sM

∥∥M∥∥−a∥∥M−Th
∥∥s, and

c) cSF :=
∥∥∥{σMa (z)bz

}
z∈Zd

∥∥∥
q
<∞, where σMa is the elliptic weight function (2.4).

Remark 2.23. If a function f fulfills the Strang-Fix conditions for a,s, and q, it also
fulfills the Strang-Fix conditions for ã, s, and q, where 0 ≤ ã ≤ a.

Proof. This property follows directly from Definition 2.22, where the ã ≤ a makes the
conditions in Definition 2.22 b) and c) weaker.

The number s in the elliptic Strang-Fix conditions signifies the order of the trigonometric
polynomials that can be reproduced exactly by the function f . From the definition

of the generating set h ∈ G(MT) = MT P(MT) = Zd ∩MT
[
−1

2 ,
1
2

)d
follows that
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2.4 Translation invariant spaces and approximation

M−Th ∈
[
−1

2 ,
1
2

)d
. Therefore, the bound with ‖M−Th‖s in Definition 2.22 a) requires a

decay of the Fourier coefficients of f with degree s.
Likewise, in Definition 2.22 b) the Fourier coefficients outside of G(MT) have to decay

even stronger, as the bz have to converge to 0 in the weighted `q-norm of Definition 2.22 c).
Here, a dependency on the number m of pattern points comes into play.

For example, assume that M = diag(n, . . . , n) is a diagonal matrix with n ∈ N. This
results in a matrix condition number κM = 1 and ‖M‖ = n. Therefore, the condition in
Definition 2.22 b) becomes

|mch+MTz(f)| ≤ bhn−a‖M−Th‖s,
i.e. with an increasing number of pattern points n in each direction, the Fourier coefficients
of f have to decay with n−a. This is equivalent to f being at least a-times differentiable.

The elliptic Strang-Fix conditions allow for the formulation of an approximation
estimate depending on smoothness properties of the function g to be approximated and
properties of the fundamental interpolant [9, Theorem 4]:

Lemma 2.24. Let M ∈ Rd×d be regular with m = |det(M)| and ‖M‖ ≥ 2, let q ≥ 1
and a ∈ N.Let further g ∈ AbM,q(Td) with b > d

(
1 − q−1

)
and let the fundamental

interpolant IM fulfill the elliptic Strang-Fix conditions for a,s, and q for b ≥ a ≥ 0, and
set r := min{s, b− a}.

In addition define a constant cIP depending solely on the fundamental interpolant for
q <∞ as

cIP := m max
h∈G(MT)

(
|ch(IM)|q + ‖M‖aq

∑
z∈Zd\{0}

∣∣σMa (z)ch+MTz(IM)
∣∣q) 1

q

and for q =∞ as

cIP := m max
h∈G(MT)

max

{
|ch(IM)|, sup

z∈Zd\{0}
‖M‖a

∣∣σMa (z)ch+MTz(IM)
∣∣}.

Further, define a constant cSm describing smoothness properties of the function g for
q > 1 and p ∈ R with 1

p + 1
q = 1 as

cSm := (1 + d)
a
2 2−b

( ∑
z∈Zd\{0}

∣∣2‖z‖ − 1
∣∣−pb) 1

p

and for q = 1 as

cSm := (1 + d)
a
2 2−b sup

z∈Zd\{0}

∣∣2‖z‖ − 1
∣∣−b.

Let

c :=

{
cSF + 2b−a + cIPcSm, if r = s,

(1 + d)s+a−bcSF + 2b−a + cIPcSm, if r = b− a.
be defined, then it holds true that

‖g − LM g‖a,M,q ≤ c‖M‖−r‖g‖b,M,q.

29



2 Preliminaries

With the equivalence of the anisotropic and the isotropic function spaces and, for q = 2,
the Sobolev spaces, we further get an estimate in Ha(Td).

Corollary 2.25. Let the assumptions of Lemma 2.24 hold and let q = 2. Then the
estimate

‖g − LM g‖a,2 ≤ cκbM‖M‖−r‖g‖b,2
holds true with the constants from above.

Proof. The statement follows directly from Lemma 2.24 and the norm estimates (2.5)
and (2.6).

Lemma 2.26. The constants cSF, cIP, and cSm can be bounded from above, independent
of M, assuming that the condition number κM can be uniformly bounded from above for
regular M ∈ Zd×d.

Proof. The constant cSF form the Strang-Fix conditions depends, with regards to M,
on the elliptic weight function σMa (k) for k ∈ Zd. With the norm estimate (2.5), the
constant is then bounded, using the boundedness of κM.

For the tensor product case, i.e. for M̃ = diag(n, n, . . . , n) ∈ Zd×d for n ∈ Z, a bound
on cIP is proven in [94, Remark after Theorem 4]. There, a bound is established with

cIP ≤ πsd
s
2

(
cqSF − b

q
0 +

(
b0 + π−sd−

s
2
)q) 1

q

for 1 ≤ q <∞ and

cIP ≤ πsd
s
2 max

{
cSF, b0 + π−sd−

s
2

}
for q = ∞. Here, s is the order, q the Lebesgue index, and b0 the constant from the
Strang-Fix conditions, and d is the dimension.

To get to general integer matrices M ∈ Zd×d, consider the largest eigenvalue nmax of M.
Then the estimates can be applied to the isotropic case with the matrix M̃ := nmax Idd

and yield an upper bound on cIP.

The constant cSm is independent of M and therefore the proof is finished.

Examples for approximation orders

We have seen above, that the order of convergence of the approximation depends not only
on the smoothness of the approximated function g, but also on smoothness properties of
the fundamental interpolant IM. Here, we compute the parameters of the Strang-Fix
conditions for the Dirichlet kernel, de la Vallée Poussin means and the ones belonging to
3-directional 2-dimensional periodized pattern Box spline.

The Dirichlet kernel fDM
given in Definition 2.21 results in a zero left-hand side in the

conditions in Definition 2.22 a) and b) of the elliptic Strang-Fix conditions. Therefore,
the parameters s and a in the elliptic Strang-Fix conditions can be chosen arbitrarily
large.
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2.5 Periodic homogenization

The de la Vallée Poussin means with kernel f = fM,b have compact support, because
their Fourier coefficients are given by sampling Box splines on Zd, see Definition 2.20
and thereafter. Hence, there is always a q-summable sequence bz such that |mch+MTz|
is bounded for all z ∈ Zd and h ∈ G(MT). Definition 2.22 a) is easily fulfilled, as the
kernels fM,b are bounded from below on G(MT). Thus, the de la Vallée Poussin means
also fulfill the elliptic Strang-Fix conditions with arbitrarily high coefficicients s and a
and for all q.

For the periodic pattern Box spline with kernel fM,X defined in Definition 2.17 we
consider here the case of dimension d = 2 and the 3-directional Box splines described in
Example 2.18. Then, the Box splines fulfill the elliptic Strang-Fix conditions with the
following constants [9, Theorem 5]:

Lemma 2.27. Let M ∈ Z2×2 be regular and let BX be a periodized pattern box spline
defined by the set X ∈ R2×(p1+p2+p3) with X := {x1, . . . ,xp1+p2+p3}. Let further

x1 = · · · = xp1 = (1, 0)T,

xp1+1 = · · · = xp1+p2 = (0, 1)T,

xp1+p2+1 = · · · = xp1+p2+p3 = (1, 1)T,

let s̃ := min{p1 + p2, p1 + p3, p2 + p3}, let a ≥ 0 with s̃− a > 2, and let q ≥ 2.

Then the fundamental interpolant IM ∈ VfM with f = fM,X fulfills the elliptic Strang-Fix
conditions with order s = s̃− a and constants a and q.

This section introduced translation invariant spaces. These spaces are constructed
by taking a single function in L2(Td) and translating it to the points of a pattern. The
functions in such a space can also be characterized by their Fourier coefficients. Of
special interest is the Dirichlet kernel fDM

as a generator, as the resulting function space
coincides with the space of truncated trigonometric polynomials belonging to a pattern
P(M). A generalization of this space is given by the de la Vallée Poussin means fM,a

which result in a reduced Gibbs phenomenon. Moreover, functions which have infinite
support in frequency domain can be used with this ansatz. In this thesis, Box splines in
space are used as an example for such functions.

A special function in the space of translates is the fundamental interpolant IM which
generates a nodal basis by translation. Such a fundamental interpolant can then be
used to define an interpolation and approximation operator. Assuming the Strang-Fix
conditions — measuring the degree of exactly reproduced trigonometric polynomials —
are met, a convergence rate for the approximation is be given.

2.5 Periodic homogenization

In applications one often deals with the simulation of structures that have complicated
microstructures. The computation of the elastic behavior of a composite material, i.e. a
geometry consisting of more than one material, with small-scale variations involves a
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large number of degrees of freedom. A remedy is provided by periodic homogenization,
which computes the homogeneous elastic properties of a composite.

This section is divided into two parts. The first one derives the equation of linear
elasticity in homogenization as a limit process of a scale separation. Further, it introduces
stiffness distributions as fields of coefficients for the elliptic partial differential equation.
We analyze the resulting equation further in the second part. This includes deriving two
equivalent formulations based on a projection operator onto the space of test functions.

Periodic homogenization as a limit process

The aim of homogenization is to replace a composite of different materials by a ho-
mogeneous one which exhibits the same — restricted here to linear material laws —
elastic behavior. It is necessary, that the geometry of the composite can be divided
into two parts, a macroscopic and a microscopic one. The macroscopic part is assumed
to change slowly over the domain and, in contrast, the microscopic part describes the
quickly changing local material properties. The latter is further assumed to be periodic,
thus making computations on a single reference volume element sufficient to determine
the overall elastic stiffness — also called effective stiffness — of the microscopic scale.
Mathematically, this separation is achieved by making an outer expansion of the so-
lution in terms of the parameter describing the scale separation. If this parameter is
sufficiently small — which we assume here — the homogenization process is successful
and mathematically sound. If higher order terms of the outer expansion are required
for computations, e.g. for certain nonlinear material laws on the macroscopic scale, a
derivation is found in [14, 98].

This section first defines stiffness distributions with the conditions to ensure the
existence and uniqueness of a solution as required by the theorem of Lax-Milgram. Then
follows a description of the homogenization process and convergence results for it.

The elastic behavior of the materials is described by a stiffness distibution C ∈
SSymd

(
L∞(R)

)
for an open set R ⊂ Rd. In the context of homogenization, this leads to

a piecewise constant function describing the geometry and the material properties.

Definition 2.28. Let R ⊂ Rd be an open set. A function C ∈ SSymd

(
L∞(R)

)
is called

stiffness distribution if it is

a) bounded, i.e. there exists cb > 0 such that

‖Cγ‖2 ≤ cb‖γ‖2

for all γ ∈ Symd

(
L2(R)

)
, and

b) elliptic, i.e. there exists ce > 0 such that

〈C : γ, γ〉2 ≥ ce‖γ‖22

for all γ ∈ Symd

(
L2(R)

)
.
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We call a fourth-order tensor C0 ∈ SSymd(R) a stiffness tensor if it fulfills the above
conditions when considered as a constant function.

As a special case an isotropic stiffness tensor is parametrized by two parameters, the
first and second Lamé parameters λ, µ ∈ R with µ ≥ 0, respectively. Such a stiffness
tensor then has the form Cijkl = λδijδkl + µ(δikδjl + δilδjk) ∈ SSymd(R) for d = 3 and
i, j, k, l = 1, . . . , 3.

When applying a load to the geometry described by the stiffness distribution C, the
material deforms. This deformation is given by the displacement ũ ∈ H1(R)d with
respect to the unloaded configuration. Due to the deformation, the strain ε ∈ E(R) and
the stress σ ∈ Symd

(
L2(R)

)
increase in the material.

We assume that the displacements ũ are small, i.e. that the load applied to the material
is small. Thus, the strain and displacement are connected via

ε = ∇Sym u,

where ∇Sym is the symmetric gradient operator from (2.2). Hooke’s law yields the formula

σ = C : ε

for the stress σ.
With these components, the equation of linear elasticity then states:

find a displacement ũ ∈ H1(R)d such that{
div C :∇Sym ũ = 0 in R,

ũ = 0 on ∂R,
in weak sense.

The main assumption of homogenization is that the stiffness distribution can be
decomposed into a macroscopic and a microscopic part, where the microscopic structure
is assumed to be periodic. This division into scales presumes that the characteristic
length scales of the microscopic and macroscopic structures are separated well with a
factor a� 1. This allows to — artificially — write the stiffness distribution C as Ca(x,y)
with x = a−1y. The vector y ∈ R denotes the macroscopic change and the periodic
microscopic variable is x ∈ Td.

We split the displacement into two scales and expand it as a power series in a, i.e.

ua(x,y) =
∞∑
i=0

aiui(x,y)

with vector fields ui ∈ H1(Td ×R)d. This means that the equation

div Ca :∇Sym ua = 0 on Td × R (2.17)

has to be fulfilled in weak sense. The macroscopic behavior with a homogeneous stiffness
is then attained for a→ 0.

The transition from the global problem to the macroscopic problem with homogenized
coefficients is described in the following lemma [25, Theorem 10.11]:
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Lemma 2.29. Let ua ∈ H1(Td ×R)d fulfill (2.17) with homogeneous Dirichlet boundary
conditions. Let further u0 ∈ H1(R)d, depending only on the macroscopic variable y,
fulfill the equation

div Ceff :∇Sym u0 = 0 on R
in weak sense with homogeneous boundary conditions and constant stiffness Ceff ∈
SSymd(R). Then for a→ 0

a) ua → u0 weakly in H1(Td ×R)d, and

b) Ca :∇Sym ua → Ceff :∇Sym u0 weakly in Symd

(
L2(Td ×R)

)
.

Further, the homogenized stiffness tensor Ceff is given for any ε0 ∈ Symd(R) by

Ceff : ε0 :=

∫
Td

C(x) :∇Sym u(x) dx

where C ∈ SSymd

(
L∞(Td)

)
is the periodic part of the stiffness distribution, and u(x) is

the solution of the partial differential equation:
find u ∈ H1(Td)d such that

div C :
(
ε0 +∇Sym u

)
= 0 in Td (2.18)

in the weak sense.

In the context of homogenization, the d-torus is also called representative volume
element. The macroscopic strain ε0 can be interpreted as pulling at this representative
volume element in certain directions.

The homogenized — or effective — stiffness tensor Ceff then describes the macroscopic
elastic behavior of the microstructure characterized by the materials in the representative
volume element.

We rearrange the equation solving the homogenization problem (2.18) to read: find
u ∈ H1(Td)d such that

〈C :∇Sym u,∇Sym γ̃〉2 = −〈C : ε0,∇Sym γ̃〉2 (2.19)

holds true for all γ̃ ∈ H1(Td)d. In this thesis we do not solve (2.19) in terms of the
displacements u but solve for the strain ε directly. This necessitates the use of the space
of symmetric gradient fields with zero mean E(Td) introduced in (2.3).

Definition 2.30. Let C ∈ SSymd

(
L∞(Td)

)
be a stiffness distribution and let ε0 ∈

Symd(R). Then the equation of linear elasticity in periodic homogenization reads: find
ε ∈ E(Td) such that

〈C : ε, γ〉2 = −〈C : ε0, γ〉2 (LE)

for all γ ∈ E(Td).

Further information about mathematical homogenization can be found for example
in [25].

34



2.5 Periodic homogenization

Alternative formulations of the homogenization equation

The equation of linear elasticity in periodic homogenization shown in Definition 2.30 is
the basis for the numerical approach of [73, 74], this thesis builds on using the formulation
in [105]. They do not solve the equation directly, but rearrange it into an equation with
the strain ε as a fixed-point.

We start this section by defining a projection operator — the Green operator — that
maps functions from Symd

(
L2(Td)

)
onto the space E(Td) and list its crucial properties. An

application of this operator then replaces the test functions in (LE) by more simple ones,
dropping the requirement to be gradient fields. This leads to an equivalent formulation,
here called variational equation. The equation considered by Moulinec and Suquet is
then obtained by rearranging the terms and leads to the Lippmann-Schwinger equation,
which also appeares in the quantum theory of scattering [62].

The space E(Td) is numerically difficult to handle and [105] derives a projection
operator that maps the Lebesgue space Symd

(
L2(Td)

)
onto the space of gradient fields

E(Td) . This projection operator Γ0C0 originates from the Green operator of an equation
of linear elasticity with constant coefficients C0 ∈ SSymd(R), see [51, 110]. This stiffness
tensor C0 is also called reference stiffness. The idea to use this Green operator originates
from [73, 74] and the operator acts as the second order derivative of a preconditioner.

Consider the constant reference stiffness tensor C0 ∈ SSymd(R) and the weak partial
differential equation

div C0 :∇Sym u = f

for the displacement u with some right-hand side f ∈ L2(Td). Transforming this partial
differential equation to Fourier coefficients yields

∇Sym
T

k : C0 :∇Symk ck(u) = ck(f)

for all k ∈ Zd. The stiffness tensor C0 is by definition positive definite and therefore the
equation can be solved for ck(u) and we obtain

ck(u) =
(
∇Sym

T

k : C0 :∇Symk

)−1
ck(f), k ∈ Zd.

We replace the right-hand side by f = div σ for a stress field σ ∈ Symd

(
L2(Td)

)
, i.e.

ck(f) = ∇Sym
T

k ck(σ), k ∈ Zd.

Further, to result in a strain ε, we apply the symmetric gradient operator from the left.
This motivates the definition of the Green operator.

Definition 2.31. Let C0 ∈ SSymd(R) be a stiffness tensor and let σ ∈ Symd

(
L2(Td)

)
.

The Green operator Γ0 : Symd

(
L2(Td)

)
→ E(Td) acts as a Fourier multiplier via

Γ0 :σ :=
∑
k∈Zd

Γ̂0
k : ck(σ) eikT·. (2.20)

The Fourier coefficients of the Green operator are given by

Γ̂0
k : ck(σ) := ∇Symk

(
∇Symk

T
: C0 :∇Symk

)−1
∇Symk

T
ck(σ), k ∈ Zd. (2.21)
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With the Green operator we define a projection operator Γ0C0 that maps the Symd

(
L2(Td)

)
onto E(Td). The main properties of this projection operator are given by the following
lemma [105, Lemma 2]:

Lemma 2.32. Let C0 ∈ SSymd(R) be a stiffness tensor with cb and ce the constants for
boundedness and ellipticity from Definition 2.28. Then it holds true that:

a) Γ0C0 is a bounded operator with ‖Γ0C0 :σ‖2 ≤ cb
ce
‖σ‖2 for all σ ∈ Symd

(
L2(Td)

)
.

b) The adjoint operator to Γ0C0 is given by 〈Γ0C0 :σ, ν〉2 = 〈σ, C0Γ0 : ν〉2 for all
σ, ν ∈ Symd

(
L2(Td)

)
.

c) Γ0C0 is a projection onto E(Td).

d) Γ0C0 :σ = 0 for all σ ∈ Symd

(
L2(Td)

)
that are constant almost everywhere.

An important requisite for the above properties of the Green operator Γ0 is the
invariance of its Fourier coefficients under complex conjugation.

Lemma 2.33. It holds
Γ̂0
k = Γ̂0

k,

i.e. , the Fourier coefficients of Γ0 are real-valued tensors.

Proof. This property follows directly from the definition of Γ̂0
k, k ∈ Zd and the symmetry

of the reference stiffness C0.

With help of the projection operator Γ0C0 the equation of linear elasticity in periodic
homogenization (LE) can be rewritten. Instead of testing with functions γ ∈ E(Td) the
projection allows to test with functions in the simpler space Symd

(
L2(Td)

)
, projecting

them onto E(Td) [105, Proposition 3].

Lemma 2.34. The strain ε ∈ E(Td) is a solution of

〈C : ε, γ〉2 = −〈C : ε0, γ〉2
for all γ ∈ E(Td) if and only if ε is a solution of the variational equation

〈C0Γ0C : ε, ν〉2 = −〈C0Γ0C : ε0, ν〉2 (VE)

for all ν ∈ Symd

(
L2(Td)

)
.

Proof. The proof is a direct application of Lemma 2.32 c) and b).

The publication [74] does not deal use the above equation for the discretization. They
instead derive a partial differential equation with strain ε as a fixed-point using calculation
on the Fourier coefficients of strain ε and displacement u. All those formulations
are equaivalent [105, Proposition 3]. The (short) proof of the following lemma is of
special interest because the equivalence between the variational equation and the so-
called Lippmann-Schwinger equation of Moulinec and Suquet depends crucially on
Lemma 2.32 d).
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Lemma 2.35. The strain ε ∈ E(Td) is a solution of

〈C0Γ0C : ε, ν〉2 = −〈C0Γ0C : ε0, ν〉2

for all ν ∈ Symd

(
L2(Td)

)
if and only if ε is a solution of the Lippmann-Schwinger

equation

〈ε+ Γ0
(
C − C0

)
:
(
ε+ ε0

)
, γ〉2 = 0 (LS)

for all γ ∈ Symd

(
L2(Td)

)
.

Proof. Consider the equation

(ε0 + ε)− Γ0C0 :(ε0 + ε) = (ε0 + ε)− Γ0C0 : ε

which holds true because of Lemma 2.32 d). Further, as ε ∈ E(Td) and Γ0C0 is a
projection onto E(Td) via Lemma 2.32 c) this yields

(ε0 + ε)− Γ0C0 :(ε0 + ε) = ε0. (2.22)

A multiplication of (VE) from the left with
(
C0
)−1

results in

〈Γ0C :
(
ε0 + ε

)
, ν〉2 = 0

and inserting (2.22) yields the Lippmann-Schwinger equation

〈ε+ Γ0
(
C − C0

)
:
(
ε+ ε0

)
, ν〉2 = 0

for all ν ∈ Symd(L2(Td)), concluding the proof.

This thesis deals with the equation of linear elasticity in homogenization. This equation
is derived from a limit process, where a macroscopic structure is assumed to contain a
much smaller periodic substructure. The resulting solution of the macroscopic problem
is decomposed into large changes and changes happening on the microscale. In the limit,
the elastic behavior of the microstructure is replaced by a single stiffness tensor, that has
the same elastic behavior — considering only the first term of the expansion.

This equation, an elliptic partial differential equation studied in detail in literature,
can then be rearranged to a fixed-point equation in terms of the strain ε. This is done
by using the projection property of the Green operator Γ0C0 that maps onto the solution
space of the equation. The Green operator can be understood as a preconditioner
derived from a constant coefficient equation, differentiated twice. This reformulation then
leads to the Lippmann-Schwinger equation, the starting point of the field of FFT-based
homogenization created by Moulinec and Suquet 20 years ago.
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2.6 Solution theory for partial differential equations

The analysis of the equation of linear elasticity in periodic homogenization requires mainly
the use of the Lemma of Lax-Milgram, providing an existence and uniqueness result.
For that, the mildest assumption on the coefficients of the partial differential equation —
namely the stiffness distribution C — is a boundedness almost everywhere. Naturally, the
question arises, how a higher regularity of the coefficients carries over to the solution and
a respective result is stated in this section. Further, preparing the convergence analysis
of discretizations of the equations, we state the first Strang lemma, giving a result on the
error between a continuous and a discrete solution to certain variational problems.

The existence and uniqueness of solutions of partial differential equations and their
discretizations is inevitably tied to the Theorem of Lax-Milgram [29, Section 6.2, Theorem
1]. There, a bounded and elliptic bilinear form on a Hilbert space is required to proof
the unique solvability of a variational problem.

Theorem 2.36. Let V be a Hilbert space and let B : V × V → R be a bilinear form. Let
B be bounded, i.e. there exist a constant cb > 0 such that for all γ, ϕ ∈ V holds

|B(γ, ϕ)| ≤ cb‖γ‖2‖ϕ‖2,

and let B be elliptic, i.e. there exists a constant ce > 0 such that for all γ ∈ V holds

ce‖γ‖22 ≤ B(γ, γ).

Further, let F ∈ V ′ be an element of the dual space of V. Then there exists a unique
element ε ∈ V such that

B(ε, γ) = 〈F, γ〉2,
where 〈F, γ〉2 is provided by the Riesz representation theorem, see [29, Section D.2,
Theorem 2].

The definition carries over to the stiffness distribution C [3, Section 8.3].

Remark 2.37. Define a bilinear form B : Symd

(
L2(Td)

)
× Symd

(
L2(Td)

)
→ R with

B(ε, γ) := 〈C : ε, γ〉2, ε, γ ∈ Symd

(
L2(Td)

)
.

Then the definitions of boundedness and ellipticity from Definition 2.28 are equivalent to
those required in Theorem 2.36.

Applied to the equation of linear elasticity in periodic homogenization (LE), this yields
the following result.

Theorem 2.38. The equation of linear elasticity in homogenization searching for a
strain ε ∈ E(Td) such that

〈C : ε, γ〉2 = −〈C : ε0, γ〉2
for all γ ∈ E(Td) has a solution that is unique.
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Proof. The space of curl-free functions E(Td) is a Hilbert space. By Definition 2.28 and
Remark 2.37 the bilinear form is elliptic and bounded, and the linear form is bounded.
Therefore, Theorem 2.36 is applicable and the proof finished.

The coefficients C of the equation of linear elasticity (LE) are at least assumed to be
in SSymd

(
L∞(Td)

)
and are thus in general not even continuous. The effect of higher

regularity in the stiffness distribution C onto the regularity of the strain ε is explained by
the following theorem [29, Section 6.3.1, Theorem 2]:

Lemma 2.39. Let C ∈ SSymd

(
Wb,∞(Td)

)
for b ∈ N and let ε ∈ E(Td) be a solution

of the continuous equation of linear elasticity in periodic homogenization (LE) with
macroscopic strain ε0. Then it holds that

ε ∈ Symd

(
Hb(Td)

)
with

‖ε‖b,2 ≤ c‖C‖b,∞‖ε0‖2.
The constant c ∈ R depends only on ε0.

An important result when analyzing the convergence of discretizations of partial
differential equations is the first Strang lemma. Provided a Hilbert space V , the continuous
equation searches for a solution ε ∈ V such that

B(ε, γ) = F (γ)

holds true for all γ ∈ V. The bilinear form B is assumed to be elliptic and bounded and
F is a linear operator.

For the discretization, the infinite-dimensional function space V is replaced by a finite-
dimensional space VM ⊂ V. The bilinear form B and the linear form F are replaced by
approximations BM and FM, respectively, called a “variational crime” [96]. This yields a
family of variational problems to find solutions εM ∈ VM such that

BM(εM, γM) = FM(γM)

holds for all γM ∈ VM. The first Strang lemma [24, p. 192, Theorem 26.1] then gives an
error estimate:

Lemma 2.40. For a Hilbert space V consider the variational problem: find ε ∈ V such
that

B(ε, γ) = F (γ)

for all γ ∈ V, where B : V × V → R is bounded with constant cb and an elliptic bilinear
form, and F : V → R is a bounded linear form.

Further, let VM ⊂ V be a finite-dimensional subspace and let

BM(εM, γM) = FM(γM)
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be a family of equations indexed by M, solved by εM ∈ VM for all γM ∈ VM. Further,
assume that the biliner forms BM : VM × VM → R are bounded and uniformly elliptic
with a common constant ce > 0 from Definition 2.28 b), independent of VM. Further, let
FM : VM → R be a linear form.

Then the estimate

‖ε− εM‖ ≤
(

1 +
cb
ce

)
inf

ϕM∈VM
‖ε− ϕM‖

+
1

ce
inf

ϕM∈VM
sup

ηM∈VM

|B(ϕM, ηM)−BM(ϕM, ηM)|
‖ηM‖

+
1

ce
sup

ηM∈VM

|F (ηM)− FM(ηM)|
‖ηM‖

holds. The norm ‖ · ‖ is the induced norm in the Hilbert space V.
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The discretization of the Lippmann-Schwinger equation (LS) in [74] uses a Fourier collo-
cation scheme and results in an algorithm with the strain ε as a fixed point. In et al. [105]
the authors solve the variational equation (VE) by a Galerkin projection onto the space
of truncated Fourier series, i.e. Fourier polynomials, and obtain the same discretization
and solutions.

In this chapter we derive discretized equations for both (LS) and (VE) with translation
invariant spaces as ansatz spaces. First, we introduce and analyze the periodized Green
operator on translation invariant spaces. With this new operator we discretize both
partial differential equations and, similar to [105], characterize the connection between
the two solutions. Afterwards, we explain the convergence of the discretization scheme
and the resulting numerical algorithms.

The content of Sections 3.1, 3.2, and 3.3 are based on [8].
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3.1 The periodized Green operator

When discretizing the Lippmann-Schwinger equation and the variational equation, [74]
and [105] arrive at a discretized Green operator which stems from the Green operator Γ0

in Definition 2.31 by truncating its Fourier series. In [18, 21] an energy-based formulation
using constant finite elements is discretized. This approach leads to an operator that
derives from a convolution of the Green operator Γ0 with the basis function, i.e. a constant
finite element, which is then periodized in frequency domain. In this section we generalize
the Green operator to anisotropic spaces of translates and prove the properties of the
operator.

A Galerkin projection of the partial differential equations (LS) and (VE) requires the
definition of a discretized version of the Green operator Γ0 from Equation (2.20). The
Green operator Γp we propose here results from a periodization of Γ0. It uses the function
f that generates the finite dimensional ansatz space VfM of translates. This approach is
a generalization of the Green operators of [74] and [18], as both of them can be found as

special cases for a suitable choice of the space VfM.

This section proceeds by first defining the new Green operator and then stating these
special cases.

Let M ∈ Zd×d denote a regular pattern matrix and let VfM be the according translation
invariant space spanned by the translates T (y)f , y ∈ P(M) of a function f ∈ A(Td).
We assume that a fundamental interpolant IM ∈ VfM exists according to Lemma 2.14 a),
which also implies the linear independence of the translates T (y)f , see Lemma 2.14 b).

The coefficients âh, h ∈ G(MT) belonging to IM from Lemma 2.12 are

ch+MTz(IM) = âhch+MTz(f), h ∈ G(MT), z ∈ Zd. (3.1)

We assume from now on that functions γ, ν ∈ Symd

(
VfM
)

have the decompositions

γ =
∑

y∈P(M)

Gy T (y)f (3.2)

and

ν =
∑

y∈P(M)

Vy T (y)f, (3.3)

respectively. The discrete Fourier transform of
(
Gy

)
y∈P(M)

is denoted by
(
Ĝh

)
h∈G(MT)

=

F(M)
(
Gy

)
y∈P(M)

and for ν similarly
(
V̂h

)
h∈G(MT)

= F(M)
(
Vy

)
y∈P(M)

.

The discretized version of the space of curlfree fields E(Td) is given by

EfM(Td) := E(Td) ∩ Symd

(
VfM
)
. (3.4)

With these definitions at hand, we can now define the periodic Green operator, first
introduced in [8, Definition 3.6].
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Definition 3.1. We call the Fourier multiplier Γp : Symd

(
VfM
)
→ Symd

(
VfM
)

the

periodized Green operator on VfM and define its action on a field γ ∈ Symd

(
VfM
)

by

Γp : γ :=
∑

y∈P(M)

Γp
y : Gy T (y)f. (3.5)

In terms of Fourier coefficients this is equal to

Γp : γ :=
∑

h∈G(MT)

Γ̂p
h : Ĝhc

M
h (f)e2πihT·

with

Γ̂p
h : Ĝh := m

[{
Γ̂0
k|ck(f)|2

}
k∈Zd

]M
h

: Ĝh, h ∈ G(MT). (3.6)

The operator stemming from the truncated Fourier series approach [74, 105] is included
in this definition via the Dirichlet kernel f = DM for diagonal matrices M. This space of
translates results in

Γ̂p
h : Ĝh = Γ̂0

h : Ĝh.

In [18, 21] the authors introduce a Green operator stemming from a energy-based
formulation using elementwise constant finite elements, which are also part of this
framework for translation invariant spaces. These special cases are summarized in the
following theorem.

Theorem 3.2. a) Let VfM = VfDM
M be generated by the translates of the Dirichlet

kernel, then the periodized Green operator Γp coincides with the Green operator Γ0

on anisotropic lattices of [6].

Let further M be a diagonal matrix, then Γp coincides with the operator Γ0 from
the truncated Fourier series approach from e.g. [105] and [74].

b) Let VfM = VBXM for dimension d = 2 be generated by the translates of the periodized

Box spline BX with X =
{

xj :
(
xj
)
i

= δij , i, j = 1, 2
}

. Then the Green operator

Γp coincides with the operator from [18, 21].

Proof. a) Inserting the definition of the Dirichlet kernel fDM
into the definition of

Γ̂p in (3.6) reduces the bracket sum to one single term Γ̂0
k and thus the proof is

completed.

b) With the formula for the Fourier coefficients of the periodized Box spline (2.13)
inserted into (3.6) one directly obtains the operator from [18, (14)].

For functions f which have compact support in the frequency domain, the bracket sum
in (3.6) can be evaluated exactly, because only finitely many terms are non-zero. If this
is not the case, computations require a suitable approximation of the infinite sum.

If the ansatz function f is of high smoothness, which directly translates into a faster
decay of the Fourier coefficients ck(f), the approximation of the bracket sum converges
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faster. Therefore, approximations of Γp using a finite number of terms in the sum in (3.6)
get more accurate for smoother functions f .

The properties of the Green operator Γ0 and a resulting projection operator Γ0C0

are analyzed in [105, Lemma 2] for the continuous case and in [105, Lemma 10] for the
discrete case. These properties are shown via calculations on the Fourier coefficients and
lead both in the continuous case, see Lemma 2.32, and the discrete case to similar results.

For the periodized Green operator Γp, the properties are collected in the following and
split into three separate theorems. First, we show the well-definedness of the operator
ΓpC0 and characterize the image space and boundedness, independent of the function f .
The second theorem collects further results which hold universally independent of the
choice of VfM. These are the ellipticity of ΓpC0, a formula for its adjoint operator, and
that the Fourier coefficients are real-valued.

The similarity between the continuous operator Γ0C0 and the discretized operator ΓpC0

is no longer the case for the properties stated in the third theorem. There, the underlying
space of translates plays a crucial role. This means that ΓpC0 is a projection operator and

maps constants to zero if and only if VfM = VfDM
M is generated by the Dirichlet kernel.

Theorem 3.3. Let C0 ∈ SSymd(R) be a stiffness tensor and let the translates of f be

orthonormal, then ΓpC0 is a well-defined bounded operator Symd

(
VfM
)
→ EfM(Td) with

the following properties.

a) The operator ΓpC0 maps onto Symd

(
VfM
)
.

b) The operator ΓpC0 maps onto E(Td).

c) The operator ΓpC0 is bounded with

‖ΓpC0 : γ‖2 ≤
cb,0
ce,0
‖γ‖2

for all γ ∈ Symd

(
VfM
)
. The constants cb,0 > 0 and ce,0 > 0 are the constants of

boundedness and ellipticity for C0, respectively, from Definition 2.28.

Proof. a) For all y ∈ P(M) we have for γ ∈ Symd

(
VfM
)

with (3.2) and (3.6) that(
ΓpC0 : γ

)
(y) =

∑
h∈G(MT)

Γ̂p
hC0 : Ĝhc

M
h (f)e2πihTy

=
∑

h∈G(MT)

m
[{

Γ̂0
k|ck(f)|2

}
k∈Zd

]M
h
C0 : Ĝhc

M
h (f)e2πihTy.

We introduce new Fourier coefficients

G̃h := m
[{

Γ̂0
k|ck(f)|2

}
k∈Zd

]M
h
C0 : Ĝh, h ∈ G(MT)

and thus obtain (
ΓpC0 : γ

)
(y) =

∑
h∈G(MT)

G̃hc
M
h (f)e2πihTy.
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With Lemma 2.12 then ΓpC0 : γ ∈ Symd

(
VfM
)

and the first part of the proof is
completed.

b) Let γ ∈ Symd

(
VfM
)

and y ∈ P(M), then by Definition 3.1 and (3.2) it holds that(
ΓpC0 : γ

)
(y) =

∑
h∈G(MT)

∑
z∈Zd

mΓ̂0
h+MTz|ch+MTz(f)|2C0 : Ĝhc

M
h (f) e2πihTy.

Define Fourier coefficients

F̂h+MTz := m|ch+MTz(f)|2C0 : Ĝhc
M
h (f)

and thus with Lemma 2.5 and the unique splitting k = h + MTz for k, z ∈ Zd, and
h ∈ G(MT) this results in(

ΓpC0 : γ
)
(y) =

∑
h∈G(MT)

∑
z∈Zd

Γ̂0
h+MTzF̂h+MTz e2πihTy

=
∑

h∈G(MT)

∑
z∈Zd

Γ̂0
h+MTzF̂h+MTz e2πi(h+MTz)Ty

=
∑
k∈Zd

Γ̂0
kF̂k e2πikTy.

With the projection property of Γ0 from Lemma 2.32 c) the resulting function is in
E(Td) and the claim is proven.

c) For the boundedness assume that the reference stiffness C0 is bounded and elliptic

as in Definition 2.28 with constants cb and ce, respectively. Then for γ ∈ Symd

(
VfM
)

the Parseval equation (2.1) with the unique splitting k = h + MTz for h ∈ G(MT)
and k, z ∈ Zd gives∥∥ΓpC0 : γ

∥∥2

2
=

∑
h∈G(MT)

∑
z∈Zd

∥∥∥Γ̂p
hC0 : Ĝhch+MTz(f)

∥∥∥2

2

=
∑

h∈G(MT)

∑
z∈Zd

∥∥∥∥m[{Γ̂0
k|ck(f)|2

}
k∈Zd

]M
h
C0 : Ĝhch+MTz(f)

∥∥∥∥2

2

.

Writing the bracket sum in the unabbreviated form (2.10) and an application of
the theorem of Cauchy-Schwarz gives the upper bound∥∥ΓpC0 : γ

∥∥2

2
≤

∑
h∈G(MT)

∑
z∈Zd

m2
∑
z′∈Zd

∥∥Γ̂0
h+MTz′C0 : Ĝhch+MTz(f)

∥∥
2
|ch+MTz′(f)|4.

With (2.21) we obtain
∥∥Γ̂0

k

∥∥ ≤ 1
ce,0

and this leads to

∥∥ΓpC0 : γ
∥∥2

2
≤

∑
h∈G(MT)

∑
z∈Zd

m2
c2

b,0

c2
e,0

∥∥Ĝhch+MTz(f)
∥∥2
∑
z′∈Zd

|ch+MTz′(f)|4.
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3 Periodic homogenization on spaces of translates

Jensens’s inequality together with Lemma 2.14 c) results in

∥∥ΓpC0 : γ
∥∥2

2
≤

∑
h∈G(MT)

∑
z∈Zd

m2
c2

b,0

c2
e,0

∥∥Ĝhch+MTz(f)
∥∥2
( ∑

z′∈Zd

|ch+MTz′(f)|2
)2

=
∑

h∈G(MT)

∑
z∈Zd

m2
c2

b,0

c2
e,0

∥∥Ĝhch+MTz(f)
∥∥2
m−2.

Another application of the Parseval equation gives the estimate

∥∥ΓpC0 : γ
∥∥2

2
≤

∑
h∈G(MT)

∑
z∈Zd

c2
b,0

c2
e,0

∥∥Ĝhch+MTz(f)
∥∥2

=
c2

b,0

c2
e,0

‖γ‖22

and the proof is finished.

After showing that the operator Γ0C0 is a well-defined operator, we now proceed to
the other properties that are valid for all spaces of translates VfM.

Theorem 3.4. Let C0 ∈ SSymd(R) be a stiffness tensor and let the translates of f be
orthonormal. Then the following statements hold.

a) Let cb,0 and ce,0 be the constants of boundedness and ellipticity for C0 from Defini-
tion 2.28. Then the operator ΓpC0 is elliptic with〈

ΓpC0 : γ, γ
〉

2
≥ ce,0
cb,0
‖γ‖22

for all γ ∈ Symd

(
VfM
)
.

b) The operator ΓpC0 has the L2-adjoint C0Γp.

c) Let γ ∈ Symd

(
VfM
)
, then it holds that

Γ̂p
h : Gh = Γ̂p

h : Gh, h ∈ G(MT),

i.e. the Fourier coefficients of Γp are real-valued tensors.

Proof. a) By the Definition 3.1 of Γp, the decomposition (3.2), and the Parseval
equation (2.1) it holds that

〈
ΓpC0 : γ, γ

〉
2

=

〈 ∑
h∈G(MT)

Γ̂p
hC0 : Ĝhc

M
h (f) e2πihT·,

∑
h∈G(MT)

Ĝhc
M
h (f) e2πihT·

〉
2

=
∑

h∈G(MT)

〈
Γ̂p
hC0 : Ĝhc

M
h (f), Ĝhc

M
h (f)

〉
2

=
∑

h∈G(MT)

∑
z∈Zd

〈
mΓ̂0

h+MTz|ch+MTz(f)|2C0 : Ĝhc
M
h (f), Ĝhc

M
h (f)

〉
2
.
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3.1 The periodized Green operator

Rewriting and applying the estimate

‖Γ̂0
kC0‖2 ≥

ce,0

cc,0
,

see also the proof of Theorem 3.3 c), yields

〈ΓpC0 : γ, γ〉2 =
∑

h∈G(MT)

∑
z∈Zd

m|ch+MTz(f)|2
〈
Γ̂0
h+MTzC0 : Ĝhc

M
h (f), Ĝhc

M
h (f)

〉
2

≥ ce,0

cb,0

∑
h∈G(MT)

∑
z∈Zd

m|ch+MTz(f)|2
〈
Ĝhc

M
h (f), Ĝhc

M
h (f)

〉
2
.

The translates of f were assumed to be orthonormal and thus by Lemma 2.14 c) we
have

∑
z∈Zd |ch+MTz(f)|2 = m−1 for all h ∈ G(MT). Together with the Parseval

equation this results in

〈ΓpC0 : γ, γ〉2 ≥
ce,0

cb,0

∑
h∈G(MT)

〈
Ĝhc

M
h (f), Ĝhc

M
h (f)

〉
2

=
ce,0

cb,0
‖γ‖22

and the proof is complete.

b) For the adjointness of ΓpC0 and C0Γp the equation〈
ΓpC0 : γ, ν

〉
2

=
〈
γ, C0Γp : ν

〉
2

has to hold for all γ, ν ∈ Symd

(
VfM
)
. The Parseval equation transforms the left-hand

side to Fourier coefficients yielding with (3.3) that〈
ΓpC0 : γ, ν

〉
2

=
∑

h∈G(MT)

〈
Γ̂p
hC0 : Ĝhc

M
h (f), V̂hc

M
h (f)

〉
2

which is equivalent to〈
ΓpC0 : γ, ν

〉
2

=
∑

h∈G(MT)

(
Γ̂p
hC0 : Ĝhc

M
h (f)

)T
V̂hc

M
h (f).

Rewriting gives〈
ΓpC0 : γ, ν

〉
2

=
∑

h∈G(MT)

cMh (f)ĜT
h :
(
C0
)T(

Γ̂p
h

)T
: V̂hc

M
h (f).

The reference stiffness C0 and the Green operator Γp are symmetric and an appli-
cation of Theorem 3.4 c) results in〈

ΓpC0 : γ, ν
〉

2
=

∑
h∈G(MT)

cMh (f)ĜT
h : C0Γ̂p

h : V̂hc
M
h (f).

A further application of the Parseval equation then leads to〈
ΓpC0 : γ, ν

〉
2

=
〈
γ, C0Γp : ν

〉
2

and the proof is finished.
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3 Periodic homogenization on spaces of translates

c) We insert the Definition of Γ̂p
h and obtain

Γ̂p
h : Gh = m

∑
z∈G(MT)

Γ̂0
h+MTz

|ch+MTz(f)|2 : Gh

Pulling the complex conjugate into the sum and Proposition 2.33 together with
|ch+MTz(f)|2 ∈ R for all h ∈ G(MT) and z ∈ Zd yields

Γ̂p
h : Gh = m

∑
z∈G(MT)

Γ̂0
h+MTz

|ch+MTz(f)|2 : Gh

= m
∑

z∈G(MT)

Γ̂0
h+MTz|ch+MTz(f)|2 : Gh = Γ̂p

h : Gh

and the proof is done.

The space generated by translates of the Dirichlet kernel fDM
plays a special role, as

shown in the following theorem. This is in accordance with the properties shown in [105,
Lemma 10].

Theorem 3.5. Let C0 ∈ SSymd(R) be a stiffness tensor. Then the following holds:

a) The operator ΓpC0 is a projection operator if and only if VfM = VfDM
M , i.e. if and

only if either f or one of its orthonormalized translates is the Dirichlet kernel fDM
.

b) Let σ ∈ Symd

(
VfM
)

interpolate a constant and non-zero function. Then ΓpC0 :σ = 0

if and only if VfM = VfDM
M .

Proof. a) For ΓpC0 to be a projection operator, the equation

ΓpC0ΓpC0 : γ = ΓpC0 : γ

has to hold for all γ ∈ Symd

(
VfM
)
. The left-hand side of this equation reads in

terms of Fourier coefficients∑
h∈G(MT)

Γ̂p
hC0Γ̂p

hC0Ĝhc
M
h (f)e2πihTy

for y ∈ P(M). Insert the definition of the periodized Green operator (3.6) to get∑
h∈G(MT)

∑
z,z′∈Zd

m2|ch+MTz(f)|2|ch+MTz′(f)|2Γ̂0
h+MTzC0Γ̂0

h+MTz′C0Ĝhc
M
h (f)e2πihTy.

(3.7)
From Lemma 2.32 c) we know that Γ0C0 is a projection operator, i.e. that for
k ∈ Zd it holds that Γ̂0

kC0Γ̂0
kC0 = Γ̂0

kC0. This does not hold true for the mixed terms
in (3.7), i.e. summands with z 6= z′. These vanish if and only if ch+MTz(f) = 0 for

z 6= 0, i.e. for f ∈ VfDM
M , cf. Theorem 3.2 a). This concludes the proof.
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3.2 Discretization on spaces of translates

b) In case of VfM = VfDM
M constant functions are characterized by the Fourier coefficient

c0(σ) and thus

Γ0C0 :σ(y) =
∑

h∈G(MT)

Γ̂0
hC0 : c0(σ) e2πihTy = Γ̂0

0C0 : c0(σ)

holds for all y ∈ P(M). This evaluates to 0 by the definition of Γ̂0
h in (2.21),

i.e. because of
(
Γ̂0
0

)
ijkl

= 0 for i, j, k, l = 1, . . . , d.

In general, however,
(
Γ̂p
0

)
ijkl
6= 0 for i, j, k, l = 1, . . . , d due to the non-trivial

summation in the bracket sum of (3.6). Further, after interpolating the constant

function γ in VfM 6= VfDM
M with coefficients Gy with y ∈ P(M), the value of

the function is no longer characterized solely by the value of the zeroth Fourier
coefficient Ĝ0.

Summarizing, the periodized Green operator Γp has the same properties as the operator
Γ0 in case of the Dirichlet kernel fDM

. For general spaces of translates VfM, the operator
is well-defined, bounded, elliptic, and the adjoint operator is known. The proofs use the
same techniques as [105], the technical steps involving the bracket sum in Γp, however,

are more involved. For VfM 6= V
fDM
M , the operator ΓpC0 is not a projection and does not

map constants to zero.

3.2 Discretization on spaces of translates

With the definition of the periodized Green operator Γp and its properties detailed
in the previous section at hand, we proceed with the discretization of the variational
equation (VE) and the Lippmann-Schwinger equation (LS) on spaces of translates VfM.

These discretizations are equivalent to the ones obtained in [74] and [105] in case of
the Dirichlet kernel fDM

and equivalent to the one derived in [18] in case of constant
Box splines, see also Theorem 3.2. This section is split into the discretization of the
Lippmann-Schwinger equation and the variational equation, detailing the steps for the
former and explaining the crucial differences in the derivation of the latter.

The discretized Lippmann-Schwinger equation

In addition to the functions γ and ν defined in Equations (3.2) and (3.3), respectively,

let the discrete strain εM ∈ EfM(Td) be a function on the discretized space of gradient
fields. In terms of coefficients of translates of the function f , we write

εM := LM ε =
∑

y∈P(M)

Ey T (y) IM (3.8)

from here on. We understand εM as the approximation of the strain ε in VfM, in accordance

with the definition of the space EfM(Td) in Equation (3.4). The discrete Fourier transform

of the coefficient vector is denoted by
(
Êh

)
h∈G(MT)

= F(M)
(
Ey

)
y∈P(M)

.
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3 Periodic homogenization on spaces of translates

Theorem 3.6. Let the translates of f be orthonormal, let C ∈ SSymd

(
A(Td)

)
, and let

εM ∈ EfM(Td). Then εM fulfills the weak form〈
εM + Γ0 LM

(
C − C0

)
:
(
εM + ε0

)
, γ
〉

2
= 0 (3.9)

for all γ ∈ Symd

(
VfM
)

if and only if∑
y∈P(M)

(
Ey + Γp

y

(
C(y)− C0

)
:
(
Ey + ε0

))(
T (y) IM

)
(x) = 0 (3.10)

for all x ∈ P(M).

Proof. For the proof of this theorem we proceed in two steps. First, we derive an equivalent
formulation of the Lippmann-Schwinger equation in terms of Fourier coefficients. There,
it will also become apparent where the form of the Green operator Γp results from.
The second step makes the transition to coefficients of the translates, thus reducing the
problem to solving for the finite set of degrees of freedom Ey with y ∈ P(M).

Step 1: First, we show that the equation〈
εM + Γ0 LM

((
C − C0

)
:
(
εM + ε0

))
, γ
〉

2
=

1

m

∑
h∈G(MT)

〈
Êhâh, Ĝh

〉
2

+
〈
âhΓ̂p

h : B̂h, Ĝh

〉
2

(3.11)

holds, where the âh stem from Equation (3.1), and we define

LM

((
C − C0

)
:
(
ε+ ε0

))
=:

∑
y∈P(M)

By T (y) IM (3.12)

together with
(
B̂h

)
h∈G(MT)

= F(M)
(
By

)
y∈P(M)

.

The coefficients By in Equation (3.12) are well-defined, because with εM ∈
EM(Td) ⊂ Symd

(
VfM
)
⊂ Symd

(
A(Td)

)
and C ∈ SSymd

(
A(Td)

)
it follows that(

C−C0
)

:(εM+ε0) ∈ Symd

(
A(Td)

)
and thus an interpolation with LM on Symd

(
VfM
)

is possible.

We apply the Parseval equation (2.1) to the left-hand side of Equation (3.11) and
get ∑

k∈Zd

〈
ck(εM) + Γ̂0

kck LM

((
C − C0

)
:
(
εM + ε0

))
, ck(γ)

〉
2

. (3.13)

Next, we apply the splitting k = h + MTz with k, z ∈ Zd and h ∈ G(MT) to
express the Fourier coefficients in terms of coefficients of translates. Lemma 2.12
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3.2 Discretization on spaces of translates

together with the coefficients of the fundamental interpolant (3.1) results in the
expressions

ck

(
LM

((
C − C0

)
:
(
εM + ε0

)))
= B̂hâhch+MTz(f),

ck(γ) = Ĝhch+MTz(f),

ck(εM) = Êhâhch+MTz(f).

Inserting these equations into the expression (3.13) above yields∑
h∈G(MT)

∑
z∈Zd

〈
Êhâhch+MTz(f), Ĝhch+MTz(f)

〉
2

+

〈
Γ̂0
h+MTz : B̂hâhch+MTz(f), Ĝhch+MTz(f)

〉
2
.

Bracket sums simplify this expression by collecting all terms depending on z ∈ Zd
to the result of∑
h∈G(MT)

〈
Êhâh

[{
|ck(f)|2

}
k∈Zd

]M
h
, Ĝh

〉
2

+

〈
âh

[{
Γ̂0
k|ck(f)|2

}
k∈Zd

]M
h

: B̂h, Ĝh

〉
2

.

By assumption, the translates of f are orthonormal and thus by Lemma 2.14 c)
they fulfill [{

|ck(f)|2
}
k∈Zd

]M
h

=
1

m
.

We insert the definition of the periodized Green operator, which gives immediately
the desired result

1

m

∑
h∈G(MT)

〈
Êhâh, Ĝh

〉
2

+
〈
âhΓ̂p

h : B̂h, Ĝh

〉
2
.

Step 2: Next, we translate the Lippmann-Schwinger equation to an equation on the coeffi-
cients of the translates of the fundamental interpolant IM. This results in a purely
algebraic problem, i.e. an equation in the coefficients Ey with y ∈ P(M) of εM.

By Step 1, we have that〈
εM + Γ0 LM

((
C − C0

)
:
(
εM + ε0

))
, γ

〉
2

= 0

for all γ ∈ Symd

(
VfM
)

is equivalent to

1

m

∑
h∈G(MT)

〈
Êhâh, Ĝh

〉
2

+
〈
âhΓ̂p

h : B̂h, Ĝh

〉
2

= 0 (3.14)

for all Ĝh ∈ Symd

(
R
)

and all h ∈ G(MT).
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3 Periodic homogenization on spaces of translates

It is sufficient to look at Equation (3.14) componentwise. We replace Ĝh by

Ĝh,y,i,j := Qij

(
qiq

T
j + qjq

T
i

)
e−2πihTy

for all h ∈ G(MT) and y ∈ P(M) and i, j = 1, . . . , d. The vector qi ∈ Rd denotes
the i-th unit vector and Qij := 1 − 1

2δij normalizes the resulting matrix. This

parametrization is the trigonometric basis of Symd

(
VfM
)

on the pattern P(M).

Hence, the equation

1

m

∑
h∈G(MT)

Êhâhe
2πihTy + âhΓ̂p

h : B̂h e2πihTy = 0,

for all y ∈ P(M), is equivalent to Equation (3.14), bearing in mind the necessary
complex conjugate.

This, however, is an inverse discrete Fourier transform on the pattern P(M), see

Definition 2.7, and setting ˆ̃Bh := Γ̂p
hB̂h yields

1

m

∑
h∈G(MT)

(
Êhâh + âhΓ̂p

h : B̂h

)
e2πihTy =

1

m

∑
h∈G(MT)

(
Êh + ˆ̃Bh

)
âh e2πihTy = 0.

The coefficients
(
B̃y

)
y∈P(M)

:= F(M)T
( ˆ̃Bh

)
h∈G(MT)

can be interpreted as coeffi-

cients of translates of the fundamental interpolant with Lemma 2.14 c) and d), i.e.
it holds that

1

m

∑
h∈G(MT)

(
Êh + ˆ̃Bh

)
âh e2πihTy =

∑
y∈P(M)

(
Ey + B̃y

)(
T (y) IM

)
(x) = 0

for all x ∈ Td. By Definition 3.1, the operator Γp acts as a Fourier multiplier with
Fourier coefficients (3.6). This transforms the above equation to∑

y∈P(M)

(
Ey + Γp

y : By

)(
T (y) IM

)
(x) = 0.

The coefficients By were chosen such that they coincide with the function values
of
(
C(y) − C0

)
:
(
εM(y) + ε0

)
at points y ∈ P(M), see Equation (3.12), by the

interpolation property of IM in Definition 2.13. Likewise, εM coincides on the
points y ∈ P(M) with the coefficients Ey. Inserting these relations, we obtain∑

y∈P(M)

(
Ey + Γp

y

(
C(y)− C0

)
:
(
Ey + ε0

))(
T (y) IM

)
(x) = 0

for all x ∈ P(M), which yields the desired result.
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3.3 Characterization of solutions

The discretized variational equation

The discretization approach on spaces of translates in Theorem 3.6 can also be applied
on the variational equation (VE) and is given as follows:

Theorem 3.7. Let the translates of f be orthonormal, let C ∈ SSymd

(
A(Td)

)
, and let

εM ∈ EfM(Td). Then εM fulfills the weak form〈
C0Γ0 LM

(
C :
(
εM + ε0

))
, γ

〉
2

= 0 (3.15)

for all γ ∈ Symd

(
VfM
)

if and only if∑
y∈P(M)

C0Γp
yC(y) :

(
Ey + ε0

)(
T (y) IM

)
(x) = 0 (3.16)

for all x ∈ P(M).

Proof. The proof of this theorem proceeds in the same way as the proof of Theorem 3.6
and is thus only sketched. First, it is shown that〈

C0Γ0 LM

(
C :
(
εM + ε0

))
, γ

〉
2

=
1

m

∑
h∈G(MT)

〈
C0Γ̂p

h : B̂h, Ĝh

〉
2
,

where
LM

(
C :
(
ε+ ε0

))
=

∑
y∈P(M)

By T (y) IM

and
(
B̂h

)
h∈G(MT)

= F(M)
(
By

)
y∈P(M)

. From there on, the proof goes analogously to

the proof of Theorem 3.6, mutatis mutandis.

When replacing the strain ε ∈ E(Td) by its interpolant on the space of translates

εM ∈ EfM(Td), the Lippmann-Schwinger equation and the variational equation can be

discretized on VfM. The infinite dimensional problems and their discretizations have
the same structure, where the Green operator Γ0 is replaced by the periodized Green
operator Γp. Then, we can state the equations in terms of the coefficients Ey of the
strain εM. These coefficients represent the value of εM at the points y ∈ P(M), i.e. they
are the factors for the linear combination of the translates T (y) IM of the fundamental
interpolant.

3.3 Characterization of solutions

The solutions of the Lippmann-Schwinger equation (LS) and the variational equation (VE)
coincide in the continuous case, see Theorem 2.35. After discretization with truncated
trigonometric polynomials, i.e. on VfM with the Dirichlet kernel f = fDM

, and assuming a
tensor product grid, the solutions of the two equations coincide as well [105, Proposition
3].
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3 Periodic homogenization on spaces of translates

The following theorem identifies the Dirichlet kernel as a special case in this regard,
i.e. it produces the only translation invariant space where the solutions of the two
partial differential equations are equal. This result is then followed by an overview of the
connections between the solutions of the Lippmann-Schwinger equation and the variational
formulation, for both the continuous case and various discretizations, i.e. choices of VfM.

We extend the results in [105] to anisotropic patterns using the Dirichlet kernel. We
then generalize the connection between the solutions of the Lippmann-Schwinger equation
and the variational formulation of spaces of translates.

Theorem 3.8. Let the translates of f be orthonormal and let C ∈ SSymd

(
A(Td)

)
be a stiffness distribution. Let Ey with y ∈ P(M) solve the Lippmann-Schwinger

equation (3.10) and let further Ẽy solve the variational equation (3.16) on the space VfM.

Then Ey = Ẽy for all y ∈ P(M) if and only if VfM = VfDM
M .

Proof. Let first VfM = VfDM
M , then the Lippmann-Schwinger equation (3.10) can be

rewritten as

0 =
∑

y∈P(M)

(
Ey + Γp

y

(
C(y)− C0

)
:
(
Ey + ε0

))(
T (y) IM

)
(x)

=
∑

y∈P(M)

Ey

(
T (y) IM

)
(x) +

∑
y∈P(M)

Γp
yC(y) :

(
Ey + ε0

)(
T (y) IM

)
(x)

−
∑

y∈P(M)

Γp
yC0 : Ey

(
T (y) IM

)
(x)−

∑
y∈P(M)

Γp
yC0 : ε0

(
T (y) IM

)
(x)

for x ∈ Td. With Equations (3.8) and (3.5) this is the same as

0 = εM(x) +
(

ΓpC :
(
εM + ε0

))
(x)−

(
ΓpC0 : εM

)
(x)−

(
ΓpC0 : ε0

)
(x). (3.17)

We are in the case of the Dirichlet kernel, so due to Theorem 3.5 the operator ΓpC0 is a
projection operator and maps constants to zero and thus ΓpC0εM = εM and ΓpC0ε0 = 0.
Therefore, the above equation reduces to

0 =
(

ΓpC :
(
εM − ε0

))
(x) (3.18)

which, after multiplication with C0 from the left, is the variational equation (3.16),
using the representation of εM in coefficients Ey with y ∈ P(M). Now, assume that

VfM 6= V
fDM
M , i.e. that we are not in the case of the Dirichlet kernel. Then, applying

again Theorem 3.5, the operator ΓpC0 is not a projection and does not map constants to
zero. Therefore, the last term in (3.17) does not vanish and the equation is not reduced
to (3.18). This results in different solutions for the Lippmann-Schwinger equation and
the variational equation. Hence, the proof is finished.

The connections between various discretizations are summarized in Figure 3.1. The
equivalence between the variational equation (VE) and the Lippmann-Schwinger equa-
tion (LS) in the continuous case and in case of truncated trigonometric polynomials on
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3.3 Characterization of solutions

LS

VE

LS in VfM (3.10)

VE in VfM (3.16)

LS with FE

VE with FE

LS with Γ0

VE with Γ0

LS with const. FE [18]

Discretization: Γp on VfM Specialization: f = fM,X

iff
V
fM

=
V
f
D
M

M
,

T
h

eo
rem

3.8

Theorem 3.7

Theorem 3.6

fBX

fBX

f = fDdiag(m)

f = fDdiag(m)

f = BIdd

[10
5]

Figure 3.1. A diagram of connections between the Lippmann-Schwinger equation (LS) and
the variational equation (VE) for different discretizations. The term diag(m) with
m ∈ Nd denotes a diagonal matrix and thus fDdiag(m)

is the Dirichlet kernel on a tensor
product grid.

tensor product grids, i.e. for diagonal pattern matrices M, called (VE with Γ0), and (LS
with Γ0), respectively, is established in [105]. The discretizations detailed in Section 3.2

lead in the special case of VfM = VfDM
M generated by the Dirichlet kernel back to the

discretization in [105]. This case is also the only one where the solutions of the two
equations coincide.

When choosing periodized pattern Box splines of order 0, i.e. piecewise constant
functions, as generators for the translation invariant space one arrives at the discretization
of [18] denoted by (LS with const. FE). This approach is based on a energy formulation
of the partial differential equation and it uses constant finite elements as ansatz space.
This is a special case of (LS with FE), which uses general Box-splines. These ansatz
functions can be considered as finite elements with reduced integration. The resulting
operator Γp here coincides with the Green operator in [18].
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3 Periodic homogenization on spaces of translates

3.4 Convergence of the discretization

Convergence proofs for discretizations of the equation of elasticity in periodic homog-
enization exist in the case of truncated trigonometric polynomials. There, two kinds
of results have to be distinguished. First, a convergence proof requiring only Riemann
integrability and convexity of the stiffness distribution C is established in [89]. These
assumptions on the coefficients, however, do not allow to compute a convergence rate.
Second, convergence proofs assuming higher regularity of the stiffness distribution are
shown in [102, Paper 5] and [105]. There, the regularity of the coefficients yields a smooth
solution, which in turn gives rise to a higher convergence rate.

This section introduces a convergence proof and a convergence rate in case of smooth
coefficients. The order of convergence not only depends on the smoothness of the
continuous solution, but also on the regularity of the function f generating the ansatz
space VfM.

The setting in [105] is on a tensor product grid and the convergence analysis corresponds
to the results for translation invariant spaces in [95] in case of the Dirichlet kernel. We
generalize these results to anisotropic patterns in the sense of [23]. Further, we generalize
the Dirichlet kernel to spaces of translates and use the convergence analysis on anisotropic
patterns [5, 9].

This section is divided into two parts. First, we reformulate the Lippmann-Schwinger
equation in terms of a variational equation with bilinear and linear form to fit the first
Strang lemma in Lemma 2.40. The same is done for the discretized equation. We show
in the following section that these discrete bilinear and linear forms are be bounded and
elliptic. This is followed by the convergence proof, making use of various upper and lower
bounds on the operators and the approximation results from Lemma 2.24.

Boundedness and ellipticity results

The convergence theorem requires three ingredients: the first transfers the smoothness
in the stiffness distribution C to the strain ε solving the equation, see Lemma 2.39.
The second result is the first Strang lemma that provides estimates on the difference
between the analytical solution and numerical discretizations, see Lemma 2.40. These
are combined with the approximation estimates for spaces of translates in Lemma 2.24.
The convergence proof then follows the idea in [102, Paper 5, Section 3.4] and generalizes
it to anisotropic spaces of translates.

To prepare the proof, we first show that the discretized Lippmann-Schwinger equa-
tion (3.9) can be rewritten in terms of a bilinear form and a linear form such that they
fulfill the conditions on boundedness and uniform ellipticity required by the first Strang
lemma in Lemma 2.40.

The discretized Lippmann-Schwinger equation〈
εM + Γ0 LM

((
C − C0

)
:
(
εM + ε0

))
, γM

〉
2

= 0
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3.4 Convergence of the discretization

is equivalent to an equation of the form

BM(εM, γM) = FM(γM)

for all γM ∈ Symd

(
VfM
)
. The bilinear form BM and the linear form FM are given via

BM(εM, γM) :=

〈
εM + Γ0 LM

((
C − C0

)
: εM

)
, γM

〉
2

, (3.19)

FM(γM) :=

〈
Γ0 LM

((
C − C0

)
: ε0
)
, γM

〉
2

(3.20)

for εM ∈ EfM(Td) and γM ∈ Symd

(
VfM
)
, respectively. They can be bounded from above

and below as follows:

Lemma 3.9. Let f = IM be the fundamental interpolant generating the space VfM and
let the translates T (y) IM for y ∈ P(M) be orthonormal, and let C ∈ SSymd

(
A(Td)

)
.

Let further cb,C > 0 and ce,C > 0 be the constants of boundedness and ellipticity for C,
and the constants cb,C0 and ce,C0 be likewise defined for C0, see Definition 2.28.

Further, assume that ce,C ≤ ce,C0 and cb,C0 ≤ ce,C. Then the following statements hold:

a) The bilinear form (3.19) is bounded with

∣∣BM(εM, γM)
∣∣ ≤ (1 +

cb,C0

c2
e,C0

(cb,C − cb,C0)

)
‖εM‖2‖γM‖2

for all εM ∈ EfM(Td) and γM ∈ Symd

(
VfM
)
.

b) The bilinear form (3.19) is uniformly elliptic with

BM(γM, γM) ≥
(

1 +
ce,C0

c2
b,C0

(ce,C − ce,C0)

)
‖γM‖22

for all γM ∈ Symd

(
VfM
)
.

c) The linear form (3.20) is bounded with

∣∣FM(γM)
∣∣ ≤ (1 +

cb,C0

c2
e,C0

(cb,C − cb,C0)

)
‖ε0‖2‖γM‖2

for all γM ∈ Symd

(
VfM
)
.

Proof. Consider the bilinear form

BM(εM, γM) :=

〈
εM + Γ0 LM

((
C − C0

)
: εM

)
, γM

〉
2
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3 Periodic homogenization on spaces of translates

for εM, γM ∈ Symd

(
VfM
)

which is, using Theorem 3.6, equivalent to

BM(εM, γM) =〈 ∑
y∈P(M)

(
Ey + Γp

y

(
C(y)− C0

)
: Ey

)
T (y) IM,

∑
y∈P(M)

Gy T (y) IM

〉
2

,

where

εM =
∑

y∈P(M)

Ey T (y) IM,

γ =
∑

y∈P(M)

Gy T (y) IM .

The translates of the fundamental interpolant IM are orthonormal by assumption, which
reduces the above expression to

BM(εM, γM) =
∑

y∈P(M)

〈
Ey + Γp

y

(
C(y)− C0

)
: Ey,Gy

〉
2

=
∑

y∈P(M)

〈Ey,Gy〉2 +
〈

Γp
yC0
(
C0
)−1(C(y)− C0

)
: Ey,Gy

〉
2
. (3.21)

From Theorem 3.3 c), Theorem 3.4 a), the boundedness and ellipticity assumption on
C, and — via its smallest and largest eigenvalue — on C0, we have∥∥C : γM

∥∥
2
≤ cb,C‖γM‖2,∥∥C0 : γM

∥∥
2
≤ cb,C0‖γM‖2,∥∥ΓpC0 : γM

∥∥
2
≤ cb,C0

ce,C0

‖γM‖2,

and 〈
C : γM, γM

〉
≥ ce,C‖γM‖22,〈

C0 : γM, γM
〉
≥ ce,C0‖γM‖22,〈

ΓpC0 : γM, γM
〉
≥ ce,C0

cb,C0

‖γM‖22.

a) We apply the above estimates to the expression (3.21) and get with the Cauchy-
Schwarz inequality and ∥∥∥(C0

)−1
: γM

∥∥∥
2
≤ 1

ce,C0

‖γM‖2

the estimate∣∣BM(εM, γM)
∣∣ ≤ (1 +

cb,C0

ce,C0

1

ce,C0

(cb,C − cb,C0)

)
‖εM‖2‖γM‖2.

If the inequality if fulfilled, the bounding constant has to be positive. This is
guaranteed by the assumption cb,C0 ≤ cb,C .
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3.4 Convergence of the discretization

b) Further, it holds with 〈(
C0
)−1

: γM, γM

〉
2
≥ 1

cb,C0

‖γM‖22

that

BM(γM, γM) ≥
(

1 +
ce,C0

cb,C0

1

cb,C0

(ce,C − ce,C0)

)
‖γM‖22.

If the inequality if fulfilled, the constant of ellipticity has to be positive. The
assumption ce,C ≤ ce,C0 assures this. Further, the constant is independent of M
and thus BM is uniformly elliptic.

c) With the same arguments as above, the linear form

FM(γM) =

〈
Γ0 LM

((
C − C0

)
: ε0
)
, γM

〉
2

is equivalent to

FM(γM) =
∑

y∈P(M)

〈
Γp
yC0
(
C0
)−1(C(y)− C0

)
: ε0,Gy

〉
2
.

Therefore, FM is bounded with

FM(γM) ≤
(

1 +
cb,C0

ce,C0

1

ce,C0

(cb,C − cb,C0)

)
‖ε0‖2‖γM‖2.

As above, cb,C0 ≤ cb,C ensures the positivity of the constant and the proof is
complete.

Convergence estimates

The convergence theorem presented in this section makes use of two main ideas, following
the proof for truncated trigonometric polynomials in [102, Paper 5]. One is the first
Strang lemma in Lemma 2.40, giving a connection between the error made by discretizing
the partial differential equation and the errors produced by changing the bilinear form
and linear form. The second is the approximation error in the ansatz space, handled
by Lemma 2.24. We concentrate on the Lippmann-Schwinger equation (LS) and give a
sketch for the proof in case of the variational formulation (VE). The following theorem
generalizes the results in [102] to anisotropic patterns and extends it to spaces of translates.

Theorem 3.10. Let C ∈ SSymd

(
Wb,∞(Td)

)
∩ SSymd

(
A(Td)

)
for b ∈ N with b > d

2 , let
C0 ∈ SSymd

(
R
)

such that the conditions on boundedness and ellipticity in Lemma 3.9

are fulfilled. Further, let VfM be a space of translates of the function f , where f = IM is a
fundamental interpolant where the translates T (M)f are orthonormal. Let IM fulfill the
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3 Periodic homogenization on spaces of translates

Strang-Fix conditions of Definition 2.22 for a regular matrix M ∈ Zd×d with ‖M‖ ≥ 2,
Lebesgue index q = 2, order s ≥ 0, and parameter a = b. Let in addition r := min{s, b}.

Let ε ∈ E(Td) solve the continuous formulation of the Lippmann-Schwinger equa-
tion (LS) given by 〈

ε+ Γ0
(
C − C0

)
:
(
ε+ ε0

)
, γ
〉

2
= 0

for all γ ∈ Symd

(
L2(Td)

)
.

Let εM ∈ EfM(Td) solve the discretized formulation of the Lippmann-Schwinger equa-
tion (3.9) given via 〈

εM + Γ0 LM

((
C − C0

)
:
(
εM + ε0

))
, γM

〉
2

= 0

for all γM ∈ Symd

(
VfM
)
.

Then, the solution εM of the discretized problem, compared to the solution ε of the
continuous problem, behaves like

‖ε− εM‖2 ≤ ‖M‖−rκbM
(
c1 + c2κ

b
M

)
‖ε0‖2,

where the constants c1 and c2 are independent of M.

Proof. Consider the Lippmann-Schwinger equation (LS), which is equivalent to a varia-
tional problem of the form: find ε ∈ E(Td) ⊂ Symd

(
L2(Td)

)
such that

B(ε, γ) = F (γ)

for all γ ∈ Symd

(
L2(Td)

)
. The bilinear form B : Symd

(
L2(Td)

)
× Symd

(
L2(Td)

)
→ R is

given by

B(ε, γ) :=
〈
ε+ Γ0

(
C − C0

)
: ε, γ

〉
2
, ε, γ ∈ Symd

(
L2(Td)

)
and the linear form F : Symd

(
L2(Td)

)
→ R is defined via

F (γ) :=
〈
−Γ0

(
C − C0

)
ε0, γ

〉
2
, γ ∈ Symd

(
L2(Td)

)
.

The discretized Lippmann-Schwinger equation from (3.10) can be written as follows: find

a strain εM ∈ EfM(Td) such that

BM(εM, γM) = FM(γM)

for all γM ∈ Symd

(
VfM
)
. The discretized bilinear formBM : Symd

(
VfM
)
×Symd

(
VfM
)
→ R

and the linear form FM : Symd

(
VfM
)
→ R are given by

BM(εM, γM) =

〈
εM + Γ0 LM

((
C − C0

)
: εM

)
, γM

〉
2

, εM, γM ∈ Symd

(
VfM
)
,

and

FM(γM) =

〈
Γ0 LM

((
C − C0

)
: ε0
)
, γM

〉
2

, γM ∈ Symd

(
VfM
)
,
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3.4 Convergence of the discretization

respectively.
Let C be bounded with constant cb,C and elliptic with constant ce,C . Let further C0 be

bounded with constant cb,C0 and elliptic with constant ce,C0 .
By Theorem 2.38, the bilinear form B is elliptic and bounded with bound cb,B , and the

linear form F is bounded. By Lemma 3.9, the bilinear form BM is bounded and uniformly
elliptic with the constant of ellipticity ce,BM

, and the linear form FM is bounded. The
constants are given as

cb,B := 1 +
cb,C0

c2
e,C0

(cb,C − cb,C0),

ce,BM
:= 1 +

ce,C0

c2
b,C0

(ce,C − ce,C0).

Further, the inclusion Symd

(
VfM
)
⊂ Symd

(
L2(Td)

)
holds and therefore the first Strang

lemma from Lemma 2.40 is applicable. This lemma yields the estimate

‖ε− εM‖2 ≤
(

1 +
cb,B

ce,BM

)
inf

ϕM∈Symd(Vf
M)
‖ε− ϕM‖2

+
1

ce,BM

inf
ϕM∈Symd(Vf

M)
sup

ηM∈Symd(Vf
M)

|B(ϕM, ηM)−BM(ϕM, ηM)|
‖ηM‖2

+
1

ce,BM

sup
ηM∈Symd(Vf

M)

|F (ηM)− FM(ηM)|
‖ηM‖2

.

We insert the definitions of the bilinear forms B and BM and the linear forms F and
FM into the above estimate and apply the Cauchy-Schwarz theorem. This results in

‖ε− εM‖2 ≤
(

1 +
cb,B

ce,BM

)
inf

ϕM∈Symd(Vf
M)
‖ε− ϕM‖2

+
1

ce,BM

inf
ϕM∈Symd(Vf

M)

∥∥∥∥Γ0C0
(
C0
)−1
(
C :ϕM − LM

(
C :ϕM

))∥∥∥∥
2

+
1

ce,BM

∥∥∥∥Γ0C0
(
C0
)−1
(
C : ε0 − LM

(
C : ε0

))∥∥∥∥
2

.

The expressions with C0 vanish, because the functions ϕM are elements of Symd

(
VfM
)
,

the reference stiffness C0 is constant, and thus approximation with LM has no effect.
The infima are bounded from above by inserting approximations ϕM = LM ε into the

respective expressions. This leads to

‖ε− εM‖2 ≤
(

1 +
cb,B

ce,BM

)
‖ε− LM ε‖2

+
1

ce,BM

∥∥∥∥Γ0C0
(
C0
)−1
(
C : LM ε− LM

(
C : LM ε

))∥∥∥∥
2

+
1

ce,BM

∥∥∥∥Γ0C0
(
C0
)−1
(
C : ε0 − LM

(
C : ε0

))∥∥∥∥
2

.
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3 Periodic homogenization on spaces of translates

Bounds on Γ0C0
(
C0
)−1

established in Lemma 3.9 give

‖ε− εM‖2 ≤
(

1 +
cb,B

ce,BM

)
‖ε− LM ε‖2

+
cb,C0

ce,C0ce,BM

∥∥∥C : LM ε− LM

(
C : LM ε

)∥∥∥
2

+
cb,C0

ce,C0ce,BM

∥∥∥C : ε0 − LM

(
C : ε0

)∥∥∥
2
.

By assumption, the stiffness distribution has smoothness b with C ∈ SSymd

(
Wb,∞(Td)

)
.

By Lemma 2.39, the strain ε also has smoothness b with ε ∈ Symd

(
Wb,2(Td)

)
and there

exists a constant csmooth such that

‖ε‖b,2 ≤ csmooth‖C‖b,∞‖ε0‖2. (3.22)

With Wb,∞(Td) ⊂ Wb,2(Td) by Lemma 2.2 e), the approximation estimate from
Lemma 2.24 in the form for the Lebesgue space L2(Td) in Corollary 2.25 is applicable.
We denote the constant with respect to the approximation by capprox and obtain the
estimate

‖ε− εM‖2 ≤
(

1 +
cb,B

ce,BM

)
capproxκ

b
M‖M‖−r‖ε‖b,2

+
cb,C0

c2
e,C0ce,BM

capproxκ
b
M‖M‖−r‖C : LM ε‖b,2

+
cb,C0

c2
e,C0ce,BM

capproxκ
b
M‖M‖−r‖C : ε0‖b,2

≤
(

1 +
cb,B

ce,BM

)
capproxκ

b
M‖M‖−r‖ε‖b,2

+
cb,C0

c2
e,C0ce,BM

capproxκ
b
M‖M‖−rcb,C‖LM ε‖b,2

+
cb,C0

c2
e,C0ce,BM

capproxκ
b
M‖M‖−rcb,C‖ε0‖b,2,

using the boundedness of C. A special case of the approximation result in Corollary 2.25
is if the interpolated function is measured in the same norm as the original function, i.e. if
in the corollary a = b. Together with the triangle inequality, a bound on the operator
LM in Wb,2(Td) is given by

‖LM ε‖b,2 ≤ ‖LM ε− ε‖b,2 + ‖ε‖b,2
≤ c̃approxκ

b
M‖M‖b−b‖ε‖b,2 + ‖ε‖b,2

≤
(
1 + c̃approxκ

b
M

)
‖ε‖b,2.

Here, c̃approx is the constant from Corollary 2.25, depending on the smoothness b of ε
and the smoothness of the space in which we are measuring the error, which is also
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3.4 Convergence of the discretization

b. Thus, c̃approx differs from capprox. Further, considering ε0 as a constant function,
‖ε0‖b,2 = ‖ε0‖2.

Then, the error ‖ε− εM‖2 is bounded, using Equation (3.22) and Remark 2.23, by

‖ε− εM‖2 ≤
(

1 +
cb,B

ce,BM

)
capproxκ

b
M‖M‖−rcsmooth‖C‖b,∞‖ε0‖2

+
cb,C0

c2
e,C0ce,BM

capproxκ
b
M‖M‖−rcb,C

(
1 + c̃approxκ

b
M

)
csmooth‖C‖b,∞‖ε0‖2

+
cb,C0

c2
e,C0ce,BM

capproxκ
b
M‖M‖−rcb,C‖ε0‖2.

The constants capprox and c̃approx are independent of M by Lemma 2.26. The constant
csmooth is also independent of M by definition.

We collect the parts independent of M and ε0 in

c1 := capprox

((
1 +

cb,B

ce,BM

)
csmooth‖C‖b,∞+

cb,C0

c2
e,C0ce,BM

csmoothcb,C‖C‖b,∞ +
cb,C0

c2
e,C0ce,BM

cb,C

)
,

c2 := capprox
cb,C0

c2
e,C0ce,BM

cb,C c̃approxcsmooth‖C‖b,∞.

This yields

‖ε− εM‖2 ≤ ‖M‖−rκbM
(
c1 + c2κ

b
M

)
‖ε0‖2

and completes the proof.

In the following, we state the respective convergence result for the variational equation.
It uses the same technical assumptions as the result for the Lippmann-Schwinger equation
and results in an estimate with the same order of convergence, yet slightly different
expressions for the constants. We give here only an outline of the proof and state the
differences to the proof of Theorem 3.10.
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3 Periodic homogenization on spaces of translates

Theorem 3.11. Let C ∈ SSymd

(
Wb,∞(Td)

)
∩ SSymd

(
A(Td)

)
for b ∈ N with b > d

2 , let
C0 ∈ SSymd

(
R
)

such that the conditions on boundedness and ellipticity in Lemma 3.9

are fulfilled. Further, let VfM be a space of translates of the function f , where f = IM is a
fundamental interpolant where the translates T (M)f are orthonormal. Let IM fulfill the
Strang-Fix conditions of Definition 2.22 for a regular matrix M ∈ Zd×d with ‖M‖ ≥ 2,
Lebesgue index q = 2, order s ≥ 0, and parameter a = b. Let in addition r := min{s, b}.

Let ε ∈ E(Td) solve the continuous formulation of the variational equation (VE) given
by 〈

C0Γ0C :
(
ε+ ε0

)
, γ
〉

2
= 0

for all γ ∈ Symd

(
L2(Td)

)
.

Let εM ∈ EfM(Td) solve the discretized formulation of the variational equation (3.15)
given via 〈

C0Γ0 LM

(
C :
(
εM + ε0

))
, γM

〉
2

= 0

for all γM ∈ Symd

(
VfM
)
.

Then, the solution εM of the discretized problem, compared to the solution ε of the
continuous problem, behaves like

‖ε− εM‖2 ≤ ‖M‖−rκbM
(
c1 + c2κ

b
M

)
‖ε0‖2,

where the constants c1 and c2 are independent of M.

Proof. With the same reasoning as in Lemma 3.9, the bilinear forms and linear forms for
the variational equation are bounded and elliptic. The functions are given via

B(ε, γ) :=
〈
C0Γ0C : ε, γ

〉
2
, ε, γ ∈ Symd

(
L2(Td)

)
,

F (γ) :=
〈
−C0Γ0C : ε0, γ

〉
2
, γ ∈ Symd

(
L2(Td)

)
,

BM(εM, γM) :=
〈
C0Γ0 LM

(
C : εM

)
, γM

〉
2
, εM, γM ∈ Symd

(
VfM
)
,

FM(γM) :=
〈
C0Γ0 LM

(
C : ε0

)
, γM

〉
2
, γM ∈ Symd

(
VfM
)
.

The upper and lower bounds are then given by

|B(ε, γ)| ≤ cb,C0cb,C
ce,C0

‖ε‖2‖γ‖2, ε, γ ∈ Symd

(
L2(Td)

)
,

|B(γ, γ)| ≥ ce,C0ce,C
cb,C0

‖γ‖22, γ ∈ Symd

(
L2(Td)

)
,

|F (γ)| ≤ cb,C0cb,C
ce,C0

‖ε0‖2‖γ‖2, γ ∈ Symd

(
L2(Td)

)
.
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3.5 Numerical solution algorithms

The same bounds with the same constants also hold for the discrete bilinear and linear
forms BM and FM. We further define the constants

cb,B :=
cb,C0cb,C
ce,C0

,

ce,BM
:=

ce,C0ce,C
cb,C0

.

The above bounds make the first Strang lemma in Lemma 2.40 applicable and similarly
to the proof of Theorem 3.10 this gives after we insert LM ε the estimate

‖ε− εM‖2 ≤
(

1 +
cb,B

ce,BM

)
‖ε− LM ε‖2

+
1

ce,BM

∥∥∥∥C0Γ0
(
C : LM ε− LM

(
C : LM ε

))∥∥∥∥
2

+
1

ce,BM

∥∥∥∥C0Γ0
(
C : ε0 − LM

(
C : ε0

))∥∥∥∥
2

.

We apply the above bounds on the operators and get

‖ε− εM‖2 ≤
(

1 +
cb,B

ce,BM

)
‖ε− LM ε‖2

+
cb,C0

c2
e,C0ce,BM

∥∥∥C : LM ε− LM

(
C : LM ε

)∥∥∥
2

+
cb,C0

c2
e,C0ce,BM

∥∥∥C : ε0 − LM

(
C : ε0

)∥∥∥
2
.

The remainder of the proof is identical to the proof of Theorem 3.10 and is thus
omitted.

The convergence estimates in this section show that the smoothness of the coefficients
and the regularity of the functions in the space of translates carry over to the order of
convergence of the discretizations. Further, the regularities of the solution and the ansatz
space have to “fit together”, i.e. increasing the regularity in one does not yield any gain
on the quality of the approximation without also increasing the other.

3.5 Numerical solution algorithms

In [74], the authors solve the Lippmann-Schwinger equation (3.10) in case of d = 3 and
a diagonal pattern matrix M using the Dirichlet kernel fDM

by means of a fixed-point
iteration. This is equivalent to solving an according Neumann series. We transfer this
approach to solve the Lippmann-Schwinger equation to the setting of Equation (3.10)
with anisotropic spaces of translates in arbitrary dimensions.

A second possibility to solve the quasi-static equation of linear elasticity in homoge-
nization is to solve the variational equation (3.16) using a Krylov subspace method like
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the conjugate gradient method. The convergence proof for this solver goes back to [112]
and is generalized to anisotropic patterns with translation invariant spaces generated by
the Dirichlet kernel in the second part of this section.

A solution using a Neumann-Series approach has the advantage of a small memory
footprint: it iterates purely on the discretized strain εM, requiring no additional variables
to be stored. The disadvantage of the fixed-point iteration method is its linear convergence.
In contrast, the conjugate gradients method converges quadratically, however, it internally
stores three times as much data as the Neumann-Series approach. Especially with very
large numbers of data points, like obtained from computer tomography images, this is an
issue.

Solution by a fixed-point iteration

The Lippmann-Schwinger equation can be solved by a fixed-point iteration on the
coefficients Ey with y ∈ P(M) of the discretized Lippmann-Schwinger equation (3.10),
see [74] for tensor product grids. This is equivalent to solving the equation using a
Neumann series approach. This section first shows that the appropriate operator is
invertible and then lists the iterative algorithm and states convergence criteria.

Consider the Lippmann-Schwinger equation (3.9)〈
εM + Γ0 LM

((
C − C0

)
:
(
εM + ε0

))
, γ

〉
2

= 0, γ ∈ Symd

(
VfM
)
,

and define a new discretized strain ε̃M := εM + ε0. Then, the Lippmann-Schwinger
equation can be rearranged to read〈

ε̃M + Γ0 LM

((
C − C0

)
: ε̃M

)
, γ

〉
2

=
〈
ε0, γ

〉
2
, γ ∈ Symd

(
VfM
)
.

In terms of linear operators, this is equal to〈(
Id−Q

)
: ε̃M, γ

〉
2

=
〈
ε0, γ

〉
2
, γ ∈ Symd

(
VfM
)

with
Q : ε̃M := −Γ0 LM

((
C − C0

)
: ε̃M

)
.

For the operator Id−Q to be invertible, ‖Q‖ < 1 has to hold in operator norm, for which
the conditions are shown in the following. For the continuous case, see a similar proof
in [69, Section 14.6].

Theorem 3.12. Let the translates of the fundamental interpolant IM be orthonormal,
and let C0 ∈ SSymd

(
R
)

be a constant reference stiffness constant. Let C0 be elliptic with
constant ce,C0 and bounded with constant cb,C0 . Let further the stiffness distribution C be
elliptic and bounded with constants cb,C and ce,C, respectively.

Then, the operator

Q : ε̃M := −Γ0 LM

((
C − C0

)
: ε̃M

)
, ε̃M ∈ Symd

(
VfM
)
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fulfills ‖Q‖2 < 1 if ce,C0 >
cb,C

2 . If, in addition, ce,C0 = cb,C0 =
ce,C+cb,C

2 , then the norm
‖Q‖2 is minimal.

Proof. First, observe that the operator C0 is constant and that the interpolation operator
LM acts componentwise and is linear. Therefore, C0 and LM commute. This equates the
expressions

Q = −Γ0 LM

(
C − C0

)
= Γ0C0 LM

(
Id−

(
C0
)−1C

)
.

The operator Γ0C0 is a projection operator, see Lemma 2.32 c), and by [89, Lemma
3.2] even an orthogonal one, implying that

∥∥Γ0C0
∥∥

2
= 1. Further, the interpolation

operator LM is also an orthogonal projection, provided the translates of the fundamental
interpolant IM are orthonormal, which we assume here. Therefore,

∥∥LM

∥∥
2

= 1 holds.
This leads together with the submultiplicativity of the norm to

‖Q‖2 =

∥∥∥∥Γ0C0 LM

(
Id−

(
C0
)−1C

)∥∥∥∥
2

≤
∥∥∥Id−

(
C0
)−1C

∥∥∥
2
.

By [109, Section VII.3], the operators C, C0, and
(
C0
)−1

are self-adjoint. Further, for a
bounded self-adjoint operator O, its norm is written as

‖O‖2 = sup
‖x‖≤1

∣∣〈Ox,x〉2
∣∣.

For the operator Id−
(
C0
)−1C this amounts to checking its eigenvalues with∥∥∥Id−

(
C0
)−1C

∥∥∥ = max
{
|l| : l is an eigenvalue of Id−

(
C0
)−1C

}
.

Considering the upper and lower bounds of C0 and C, this expression can be bounded
from above by∥∥∥Id−

(
C0
)−1C

∥∥∥ ≤ max

{∣∣∣∣ cb,C
cb,C0

− 1

∣∣∣∣, ∣∣∣∣ ce,C
ce,C0

− 1

∣∣∣∣, ∣∣∣∣ cb,C
ce,C0

− 1

∣∣∣∣, ∣∣∣∣ ce,C
cb,C0

− 1

∣∣∣∣
}
.

For
∥∥∥Id−

(
C0
)−1C

∥∥∥ < 1 to hold, and considering ce,C0 ≤ cb,C0 and ce,C ≤ cb,C, the

condition 2ce,C0 < cb,C has to be fulfilled and thus the first part of the theorem is proven.
For the second part, [69, Section 14.6] shows that the estimate above is minimized by

ce,C0 = cb,C0 =
ce,C+cb,C

2 , resulting in an upper bound∥∥∥Id−
(
C0
)−1C

∥∥∥ ≤ (cb,C
ce,C
− 1

)(
cb,C
ce,C

+ 1

)
< 1 (3.23)

and the proof is finished.

With the convergence proof at hand, the algorithm solving the Lippmann-Schwinger
equation via a fixed-point iteration is described in Algorithm 1. This algorithm is also
called basic-scheme. It starts in space domain and applies the term Cy−C0 as a pointwise
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operation on the coefficients Ey. Then, it switches to frequency domain by means of the
discrete Fourier transform. There, the operator Γp is a multiplicative operator and can
be applied pointwise. After setting the average of the function, a switch back to the space
domain completes an iteration. Therefore, the algorithm is dominated by the discrete
Fourier transformation, which amounts to O(m logm) computations with m = |det(M)|.
The operators C −C0 and Γp can be applied with O(m) operations and do not contribute
to the asymptotic complexity of the basic-scheme.

An optimal choice of the reference stiffness C0 according to Theorem 3.12 guarantees a
convergence rate given by∥∥∥∥(E

(n+1)
y −E

(n)
y

)
y∈P(M)

∥∥∥∥
2

≤ cn+1‖ε0‖2,

where c is the upper bound from Equation (3.23). It follows that a Cauchy criterion is a
sensible choice to detect convergence and is therefore used in this thesis.

The stopping criterion suggested in [73, 74] is based on the residuum∥∥∇Sym
T C : ε(n+1)

∥∥
2
.

In contrast to the Cauchy criterion, a simplified stopping criterion is suggested in [42].

Instead of having to keep the strain E
(n)
y in memory, the authors use the expression∣∣∣∣∣

∥∥∥∥(E
(n+1)
y

)
y∈P(M)

∥∥∥∥2

2

−
∥∥∥∥(E

(n)
y

)
y∈P(M)

∥∥∥∥2

2

∣∣∣∣∣
1
2

‖ε0‖ (3.24)

for testing convergence. Convergence with regards to the criterion (3.24), however, does
not imply convergence of the Cauchy sequence. This can be immediately seen by the
reverse triangle inequality which gives∣∣∣∣∣

∥∥∥∥(E
(n+1)
y

)
y∈P(M)

∥∥∥∥2

2

−
∥∥∥∥(E

(n)
y

)
y∈P(M)

∥∥∥∥2

2

∣∣∣∣∣
1
2

‖ε0‖ ≤
∥∥∥∥(E

(n+1)
y −E

(n)
y

)
y∈P(M)

∥∥∥∥
2

.

Solution by the conjugate gradients method

The solution of the variational formulation via the conjugate gradient method for truncated
trigonometric polynomials was first investigated numerically in [112] and then theoretically
in [105]. It is not immediately clear, however, that the resulting linear system fulfills the
assumptions for the conjugate gradient method to converge, i.e. that the system matrix
is symmetric and positive definite. The convergence is proven by using that the operator
Γ0C0 is a projection operator, thus generating a suitable Krylov subspace [87, Section
6.7]. This projection property is the reason, why the conjugate gradient method is not
applicable to general spaces of translates. There, the operator ΓpC0 is in general not a
projection operator and thus the proof of [105] fails in these cases.
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Algorithm 1 Fixed-point algorithm on patterns.

1: E
(0)
y ← ε0, y ∈ P(M)

2: n← 0
3: repeat

4: E
(n+1)
y ←

(
C(y)− C0

)
: E

(n)
y , y ∈ P(M)

5:

(
Ê

(n+1)
h

)
h∈G(MT)

← F(M)
(
E

(n+1)
y

)
y∈P(M)

6: Ê
(n+1)
h ← Γ̂p

hÊ
(n+1)
h , h ∈ G(MT)

7: Ê
(n+1)
0 ← ε0

8:

(
E

(n+1)
y

)
y∈P(M)

← F(M)−1
(
Ê

(n+1)
h

)
h∈G(MT)

9: n← n+ 1
10: until a convergence criterion is reached

Theorem 3.13. Let VfM = VfDM
M be the space generated by translates of the Dirichlet

kernel fDM
. Then the variational equation (3.16) can be solved by the conjugate gradient

method for any initial solution E
(0)
y ∈ Symd(R) with y ∈ P(M).

Proof. The proof in case of a diagonal matrix M can be found in [105, Lemma 13] and
can be applied directly to the anisotropic pattern case.

The iterative algorithm known as the basic-scheme which is introduced in [74] is
applicable to the discretizations introduced in the chapter, as well. The optimal choice
for the reference stiffness C0 is the same for all admissible spaces of translates VfM,
i.e. where the translates of the fundamental interpolant are orthonormal. A solution by
the conjugate gradient method introduced for this kind of equation in [112] is not feasible
for spaces which are not generated by the Dirichlet kernel fDM

. There, the Krylov space
cannot be generated by the Green operator ΓpC0 for it is not a projection operator.
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In this chapter we study the influence of the pattern and the space of translates
separately on example geometries. We verify the convergence theory and introduce
composite voxels and their effect on high-resolution voxel images.

The geometries we use are described in the first section of this chapter. They consist
each of two structures in two and in three dimensions. Section 4.2 introduces the
implementations used to compute the numerical results, followed by a study of the
influence of the pattern matrix for the Dirichlet kernel in Section 4.3. Then, we compute
the equations of elasticity using different ansatz functions for the space of translates. We
validate the convergence theory on the spline geometry. Finally, the composite voxel
technique is introduced and demonstrated on the polycrystalline geometry.

The contents of Sections 4.3 and 4.4 are based on [6] and [8], respectively. The contents
of Sections 4.6 and 4.7 are based on [46].

4.1 Example problem geometries

The example geometries we use in this thesis consist of two- and three-dimensional
structures. The two-dimensional structures are the generalized Hashin structure, where
the strain ε and the effective stiffness matrix Ceff can be expressed analytically. We use
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analytic descriptions to study effects in the strain field and errors in the effective stiffness.
The spline geometry — also a two-dimensional example — has coefficients with a defined
smoothness and is suited best for the verification of the convergence analysis.

The three-dimensional geometries consist of a single fiber geometry and a polycrystalline
structure. We use the single fiber geometry with its dominant fiber direction to determine
the effects of different patterns. The polycrystalline structure has many material interfaces
where the anisotropic materials differ only in orientation. We use the geometry to
demonstrate the composite voxel technique.

The generalized Hashin structure

The generalized Hashin structure is based on the idea to construct an inclusion embedded
in a matrix material that behaves neutrally with respect to a specific macroscopic
strain [39]. Such an inclusion does not disturb the surrounding stress field. In its simpler
form, such a structure that behaves neutrally is given by a circular core surrounded by a
concentric ring embedded in a surrounding matrix material. All stiffnesses are isotropic,
see [69, Section 7] and [46, Section 4.1].

In this section, we detail a more general structure exhibiting an anisotropic behavior.
It is built from an ellipsoid with a confocal ellipsoidal coating embedded in a matrix
material. The ellipsoid can be oriented in arbitrary directions, thus allowing studies
depending on the principal directions of the pattern [6]. The structure aligned with the
coordinate axes is described in [69, Section 7.7 ff] and the rotation can be achieved by
an application of [69, Section 8.3]. In this form, the generalized Hashin structure is also
explained in [6, Section 4.2]. Given a specific macroscopic strain ε0, the strain field ε
and the average stress Ceffε0 are known and described in the following. In Figure 4.1, a
schematic of the generalized Hashin structure is shown.

Consider confocal ellipsoidal coordinates which are given for x = (x1, x2, x3)T ∈ Rd by

3∑
i=1

x2
i

c2
i + a

= 1. (4.1)

The constants c1, c2, c3 ∈ R with 0 ≤ c1 ≤ c2 ≤ c3 ≤ ∞ determine the relative lengths of
the semi-axes of the ellipsoid whose shortest semi-axis l1(a) is aligned with the x1-axis.
The number a ∈ R with a ≥ −c2

1 is the generalized radius of the ellipsoid and the above
equation ensures confocality of the ellipsoids for all a. The lengths of the semi-axes

are then given by li(a) :=
√
c2
i + a for i = 1, 2, 3. Given a point on the ellipsoid, the

according ellipsoidal radius a is uniquely determined by the largest solution of (4.1) and
a ≥ −c2

1 follows. In this thesis, we only consider the special case of an elliptic cylinder
with c3 =∞. The so-called depolarization factors are given by

d1(a) :=
(
l1(a) + l2(a)

)−1
l2(a)

d2(a) :=
(
l1(a) + l2(a)

)−1
l1(a)

d3(a) := 0
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Figure 4.1. A schematic of the generalized Hashin structure (left) and the analytic solution
for 11-component of the strain ε (right).

and are collected in a matrix

D(a) := diag
(
di(a)

)
i=1,2,3

.

Choose radii ainner for the inner ellipsoid and aouter for the outer one. The resulting
ellipsoids have to be completely contained in the unit cube [−π, π)3 which is guaranteed
by the choice −c1 < ainner < aouter with l2(aouter) < π. The direction the ellipsoid faces is
parametrized by a normalized vector n = (n1, n2, n3)T ∈ R3 with ‖n‖ = 1, which signifies
the direction of the shortest semi-axis. The according rotation matrix R transforming
the vector (1, 0, 0)T into n is defined by

R :=

 1 −n2 −n3

n2 1 0
n3 0 1

+
1− n1

‖(n2, n3)T‖

−n2
2 − n2

3 0 0
0 −n2

2 −n2n3

0 −n2n3 −n2
3

 .

With this at hand, we define the core, coating, and the surrounding material on the
sets

Yinner :=
{
x ∈ Rd : a(R−1x) ≤ ainner

}
Youter :=

{
x ∈ Rd : ainner < a(R−1x) ≤ aouter

}
Ymatrix := [−π, π)3 \

(
Yinner ∪ Youter

)
,

respectively. The volume of an ellipsoid with radius a is given by the formula v(a) :=√
(c2

1 + a)(c2
2 + a) and therefore the volume fraction of the core Yinner in the coated

ellipsoid is f(aouter) with f(a) := v(ainner)v(a)−1.
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In this thesis, we further assume that the core and coating ellipsoids have isotropic
stiffnesses. The matrix material is an anisotropic stiffness tensor. To lighten the burden
on the reader, we break here with the convention regarding the use of greek letters and
use instead the traditional symbols for the stiffness parameters. Thus, assume that the
stiffness tensors have the form Cijkl = λδijδkl + µ(δikδjl + δilδjk) for i, j, k, l = 1, . . . , 3,
where λ is Lamé’s first parameter and µ ≥ 0 is the shear modulus. For the core and coating
we then denote their respective parameters by λinner, λouter, and µinner, µouter, respectively.
Further, let the bulk moduli of the core and coating be given by κinner := λinner + 2

3µinner

and κouter := λouter + 2
3µouter, respectively.

Prescribe a macroscopic strain ε0 ∈ Symd(R) with

ε0 := R

(
3κouter + 4µouter

9
(
κinner − κouter

)Id3 +
(
1− f(aouter)

)
S

)
RT,

where
S :=

(
1− f(aouter)

)−1(
D(ainner)− f(aouter)D(aouter)

)
.

The coated ellipsoid is constructed in such a way, that it is neutral, i.e. that it does not
affect the stress field C : ε. Therefore, the action Ceff : ε0 of the effective stiffness matrix on
the macroscopic strain coincides with the actions of the stiffness of the matrix material
to ε0. This results in a tensor

Ceff : ε0 :=R

(
κouter

κinner − κouter

(
κinner +

4

3
µouter

)
+

4

3
µouterf(aouter)

)
Id3,SymRT

+R
2

3
µouter

(
1− f(aouter)

)(
3S− Id3,Sym

)
RT.

The resulting strain field ε is constant in the core Yinner and in the matrix Ymatrix. In the
coating Youter the behavior of the strain is nonlinear. Thus, the strain field is given by

ε(x) := R
3κouter + 4µouter

9(κinner − κouter)
,

for x ∈ Yinner,

ε(x) :=R
(

3κouter+4µouter

9(κinner−κouter)
Id3,Sym +D(ainner)− f

(
a(R−1x)

)
D
(
a(R−1x)

))
RT

+ R
(
v(ainner)

2 q(R−1x)∇T
R−1x a(R−1x)

)
RT

for x ∈ Youter, and
ε(x) := ε0

for x ∈ Ymatrix. We set (
q(x)

)
i

:=
xi(

c2
i + a(x)

)
v
(
a(x)

) ,
(
∇x a(x)

)
i

:=
2xi

c2
i + a(x)

( 2∑
j=1

xj
c2
j + a(x)

)−1
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Figure 4.2. A single fiber geometry.

for x = (x1, x2, x3)T ∈ Td and i = 1, 2, and
(
q(x)

)
3

=
(
∇x a(x)

)
3

:= 0. With a(x) we
denote the unique solution of (4.1) for a.

In this thesis we use the geometry parametrized by the parameters n := (0.5, 1, 0)T,
c1 := 0.1π, c2 := 0.7π, c3 := ∞, ainner := 0, aouter := 0.36π2, Einner := 10, Eouter := 1,
νinner := 0.3, and νouter := 0.3, with λ = Eν

(1+ν)(1−2ν) and µ = E
2(1+ν) . The analytic solution

for the 11-component of the strain ε is shown in Figure 4.1 (right).

A single fiber geometry

In addition to the two-dimensional generalized Hashin structure, we investigate a more
realistic geometry, consisting of a single short fiber that is rotated in space [8]. Let a > 0
be the radius, let l > 0 be the length, and let n ∈ R3 with ‖n‖ = 1 be the direction
the fiber is pointing to. Let further Cfiber and Cmatrix be isotropic materials. Then the
stiffness distribution of the single fiber geometry is given by

C(x) :=

{
Cfiber, for R−1x ∈ Yfiber,

Cmatrix, else,

for x = (x1, x2, x3)T ∈ T3, where

Yfiber :=
{

x ∈ T3 :
∥∥(0, x2, x3)T

∥∥ ≤ a, |x1| ≤ l
}
.

In this thesis, we use the geometry parametrized by the parameters n := (0.5, 1, 0)T,
ε0 := diag(1, 0, 0), a := 0.2π, l := π, Efiber := 10, Ematrix := 1, νfiber := 0.3, and
νmatrix := 0.3, with λ = Eν

(1+ν)(1−2ν) and µ = E
2(1+ν) . This geometry is depicted in

Figure 4.2.
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The spline geometry

The third example geometry has a stiffness distribution with isotropic materials. This
stiffness distribution, however, is not build using piecewise constant materials, but changes
according to a given smoothness. This makes it ideal to verify the convergence result of
Theorem 3.10.

Therefore, we assume that the stiffness distribution C(x) has for x ∈ Td the form

Cijkl(x) :=
E(x)ν

(1 + ν)(1− 2ν)
δijδkl +

E(x)

2(1 + ν)
(δikδjl + δilδjk),

where ν := 0.3 is Poisson’s ratio and E(x) is the Youngs modulus.

The Youngs modulus E(x) is given as a spline with compact support in the set
[
−π, π

)3
defined as a tensor product function

E
( x

2π

)
:=

3∏
i=1

f(xi)

for x = (x1, x2, x3)T.
The function f(x) is composed of two polynomials f1(x) and f2(x) with

f(x) := 5.0 + 5.0


1, for x < −1

4 ,

f1(x), for − 1
4 ≤ x < 0,

f2(x), for 0 ≤ x < 1
4 ,

1, for 1
4 ≤ x.

The polynomials f1(x) and f2(x) are chosen as

f1(x) := −768x4 − 512x3 − 96x2 + 1,

f2(x) := −768x4 + 512x3 − 96x2 + 1,

and the function satisfies f(x) ∈ C2(Td) \ C3(Td).

Polycrystalline structure

The final example geometry we study is a three-dimensional polycrystalline structure [46,
Section 4.4], see Figure 4.3. Its stiffness distribution consists of a single transversal
isotropic material, i.e. a material that is directional and behaves isotropically orthogonal to
this direction. The grains of the polycrystal differ only in the orientation of this material.
The example was created with the software GeoDict1 and has 16 different material
orientations. The data is given on a tensor product grid with a diagonal pattern matrix
M = diag(2048, 2048, 2048). The material of the crystal is magnesium at 300 Kelvin
and the components of the stiffness tensor are given as C1111 = C2222 = 59.3 GPa,

1 Math2Market GmbH http://www.geodict.de, Accessed: 2017-12-20.
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Figure 4.3. The polycrystalline geometry. Different colors signify areas of different orienta-
tion.

C1122 = 25.7 GPa, C1133 = 21.4 GPa, C3333 = 61.5 GPa, C2323 = C3131 = 16.4 GPa, and
C1212 = 16.8 GPa, see [77]. The rest of the entries are given by the symmetry of C or are
set to zero otherwise.

The reference solution for this geometry is computed using the diagonal pattern matrix
M = diag(1024, 1024, 1024) using laminate mixing.

4.2 Implementations

We use two implementations that handle different parts of the discretization techniques
introduced throughout this thesis. Basis for the code on patterns and spaces of translates
is the MPAWL library2. We adapted this code to Julia and built upon it a library to
solve the equations of elasticity in homogenization. This code is written in a modular
way such that the discretization pattern, the ansatz space, and the Green operator can
be exchanged independently. This software is used to compute the solutions for the
generalized Hashin structure, the spline geometry, and the single fiber geometry.

The other software used is FeelMath3 by Fraunhofer ITWM. This product has a
monolithic structure and is heavily parallelized and able to perform on clusters. It is
used to compute the polycrystalline example and includes the code for composite voxels.

2 Wolfram Library Archive: The multivariate periodic anisotropic wavelet Library (MPAWL)
http://library.wolfram.com/infocenter/MathSource/8761/, Accessed: 2017-12-20.

3 Fraunhofer ITWM: FeelMath
https://www.itwm.fraunhofer.de/de/abteilungen/sms/produkte-und-leistungen/feelmath.

html, Accessed: 2017-12-20
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4 Numerics

Pattern basis e1 e2 eeff(M)

M7,0,0 (1, 0, 0)T, (0, 1, 0)T 128 128 8 · 10−4

M6,64,1 (1, 0, 0)T,
(

1, 1
3 , 0
)T

64 256 1.9 · 10−4

M7,32,0 (1, 0, 0)T, (1,−0.05, 0)T 32 512 2.1 · 10−4

M7,80,0 (1, 0, 0)T, (1, 0.011, 0)T 16 1024 1.9 · 10−4

M7,160,1 (1,−1, 0)T, (1,−0.95, 0)T 32 512 2.0 · 10−4

Table 4.1. Errors in the effective matrix eeff for different matrices. For the pattern matrices,
their rescaled pattern basis vectors with the respective elementary divisors are given.

4.3 The influence of the pattern matrix for the Dirichlet
kernel

In this section we investigate the influence of the pattern matrix on the solution of
the Lippmann-Schwinger equation. To this avail we take a step back and do not use
nontrivial spaces of translates and restrict ourselves to the Dirichlet kernel fDM

, i.e. to
the standard discrete Fourier transform and spaces of truncated trigonometric series.

For the anisotropic Hashin structure we study matrices of the form

Mj,k,a :=

 2j ak 0
(1− a)k 214−j 0

0 0 1

 , (4.2)

where j = 5, . . . , 9 with a = 0, 1 and k = −512,−496, . . . , 512. The patterns generated
by these matrices have 214 points. Changing k leads to a shearing of the pattern, which
for a = 1 shears the x-coordinate and for a = 0 the y-coordinate.

In the following we look at the relative `2-error e`2 between the computed strain ε and
the analytic solution ε̃ with

e`2 := ‖ε− ε̃‖2‖ε̃‖−1
2 .

We measure the relative error eeff in the effective stiffness Ceff with respect to the analytic
effective stiffness tensor C̃eff for a given macroscopic strain ε0 by

eeff := ‖Ceffε0 − C̃effε0‖‖C̃effε0‖−1.

In Figure 4.4 the effective error eeff depending on k for different values of j and a
is shown. There, we omit those curves, which give very large errors and only the ones
resulting in small error remain. The errors belonging to the parameter k = 0, i.e. those
based on a tensor product grid, are marked with crosses.

The error for the tensor product case is around 8 · 10−4. This can be improved upon
by shearing the pattern matrix, up to an error of about 2 · 10−4. This error is reached for
the pattern matrices M6,64,1, M7,32,0, M7,80,0, and M7,160,1. The rescaled pattern basis
vectors for these matrices, via Definition 2.9, and their respective elementary divisors ej
from Lemma 2.8 are listed in Table 4.1.
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Figure 4.4. Effective error eeff for the anisotropic Hashin structure with pattern matrices
Mj,k,a from (4.2). The values belonging to k = 0 are marked with a cross.

These matrices, especially for j = 7 have in common, that their pattern basis vectors
have a small angle between them. When looking at the elementary divisors, they are much
larger for the second slightly sheared vector. This means that this vector is repeated
much more often to produce the pattern P(M) than the first vector. The resulting
pattern for M7,80,0, where only every 16-th point is shown, is displayed in Figure 4.5.
The interferences between the points generated by the two pattern basis vectors, together
with the modulo operation on the torus, produces a pattern that is almost aligned with
the generalized Hashin structure.

We formalize this alignment by inserting lines into the pattern which intersect at least
two points. These lines which intersect the most points are the “visually dominant”
directions of the pattern and are in included in the picture.

In Figure 4.6 we show the `2-error and mark the error for k = 0 with a cross. The errors
when using tensor product grids are around 0.04 and can be reduced to approximately
0.02. Such errors are achieved for the pattern matrices M7,k,1 for 192 ≤ k ≤ 384 and —
to a lesser extend — for the matrix M6,128,0. The pattern bases are given in Table 4.2
together with their respective elementary divisors and the `2-error. The error for the
matrix M7,256,1 is with a value of 0.019 the lowest error displayed. There the pattern basis
vector (1,−0.5, 0)T is orthogonal to the direction of the smallest semi-axis of the ellipsoid
given by n = (0.5, 1, 0)T. This results in a good resolution of the high strains at the tips
of the inner ellipsoid. Investing many sampling points and thus Fourier coefficients in
this direction reduces the Gibbs phenomenon which yields smaller `2-errors.
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Figure 4.5. The generalized Hashin structure overlayed with the sampling points of the
pattern P(M7,80,0), where every 16-th point is drawn. The lines are the “visually
dominant” directions of the pattern.
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Figure 4.6. `2-error e`2 for the anisotropic Hashin structure with matrices Mj,k,a from (4.2).
The values belonging to k = 0 are marked with a cross.
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Pattern basis e1 e2 e`2(M)

M7,0,0 (1, 0, 0)T, (0, 1, 0)T 128 128 0.041
M7,192,1 (1,−1, 0)T, (1,−0.86, 0)T 64 256 0.020
M7,256,1 (1, 0, 0)T, (1,−0.5, 0)T 128 128 0.019

M7,384,1 (1, 0, 0)T,
(

1,−1
3 , 0
)T

128 128 0.020

M6,128,0 (1, 0, 0)T, (1, 0.25, 0)T 64 256 0.021

Table 4.2. The errors e`2 for different matrices. For the pattern matrices, their rescaled
pattern basis vectors with the respective elementary divisors are given.

For the single fiber structure we study matrices of the form

M :=

32 p1 p2

p3 32 p4

p5 p6 32


with the parameters pi ∈ {−32,−24, . . . , 32} for i = 1, . . . , 6. The parameters fulfill the
equations p1p3 = p2p5 = p4p6 = 0 and we ensured that only matrices where the number
of points is m = |det(M)| = 323 are taken into account. Of these matrices, we want to
take a look at the following ones:

M1 :=

32 0 0
0 32 0
0 0 32

 ,

M2 :=

32 0 0
0 32 0
0 −16 32

 ,

M3 :=

 32 0 32
−32 32 0

0 −32 32

 ,

M4 :=

32 0 0
−8 32 32
24 0 32

 .

The matrix M1 corresponds to a tensor product grid with 32 points in each direction.
Matrix M2 is chosen in such a way that one pattern basis vector points in the direction of
the fiber. The lowest `2-error is achieved for M3 and the error in the effective properties
is lowest for M4. The errors together with the rescaled pattern bases can be found in
Table 4.3.

Aligning the pattern for M2 with the direction of the fiber reduces the error in the
effective properties slightly. This results in a reduction of the effective error by 5 percent,
while the `2-error stays the same. The best `2-error is achieved for M3 with 4.5 · 10−2,
which is 15 percent smaller than computing on a tensor product grid. The effective error
is reduced by M4 from 3.7 · 10−4 to 1.3 · 10−4.
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Pattern basis eeff(M) e`2(M)

M1 (1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T 3.7 · 10−4 5.3 · 10−2

M2 (0, 1, 0)T, (1, 2, 0)T, (0, 2, 1)T 3.5 · 10−4 5.3 · 10−2

M3 (1, 0, 0)T, (0, 1, 0)T, (1, 1,−1)T 4.7 · 10−4 4.5 · 10−2

M4 (1, 0, 0)T, (4, 1, 0)T, (4, 0, 1)T 1.3 · 10−4 5.7 · 10−2

Table 4.3. Effective errors eeff and `2-errors for the single fiber geometry. M1 corresponds
to a tensor product grid, M2 has a pattern basis vector aligned with the fiber, M3

gives the smallest `2-error and M4 the smallest effective error found. Together with the
matrices, their respective rescaled pattern basis vectors are stated. The smallest errors
in their respecive category are in boldface.

4.4 The influence of the space of translates

In this section we study the influence of the space of translates on the solution of the
equation of elasticity in homogenization. For the Hashin structure we use the pattern
matrices M1 := M7,0,0, M2 := M7,80,0,and M3 := M7,256,1, using (4.2). The matrix M1

corresponds to the tensor product grid, M2 is the matrix with the smallest effective error
eeff , and M3 produces the smallest `2-error in the study in Section 4.3.

In Figure 4.7, the logarithmic error in the 11-component of the strain ε is displayed.
If ε̃ is the analytic strain, then we compute the error by log(1 + |ε11 − ε̃11|) for the
purposes of visualization. We solve the generalized Hashin structure for the matrices M1,
M2, and M3. These pattern matrices are combined with the Dirichlet kernel fDM

, the
de la Vallée Poussin kernel fM,a with a = 0.25, and a Box spline kernel fM,X with

X := {p1,p1,p1,p1,p2,p2,p2,p2}

with p1 := (1, 0, 0)T and p2 := (0, 1, 0)T. This constructs a Box spline that is three times
differentiable.

The solutions for the Dirichlet kernel show the Gibbs phenomenon radiating from the
interfaces. The de la Vallée Poussin kernel is better localized in space which leads to a
fast decay of the Gibbs phenomenon. The solution is thus visually smoother and the
effective stiffness can be reproduced better. The `2-error gets slightly larger. The solution
for the Box spline shows a strong aliasing effect. The Box spline has an infinite support
in Fourier space and the periodized Green operator Γp is approximated, leading to the
visible artifacts. While having no compact support in frequency domain, the Box spline
has compact support in space and is regular. This leads to a good reproduction of the
effective stiffness. The aliasing effects, however, have a negative impact on the `2-error.

For the single fiber geometry, the relative `2-errors e`2 and the relative errors in the
effective properties eeff are listed in Table 4.4. There, we use the Dirichlet kernel fDM

and the de la Vallée Poussin kernel fM,a for a = 0.1, 0.25, 0.4. The pattern matrices are
the same as in the previous section, where M1 gives a tensor product grid, P(M2) is
aligned with the fiber, M3 gives the smallest `2-error, and M4 yields the smallest error
in the effective stiffness.
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a = 0.25,
eeff = 2.3 · 10−3,
e`2 = 4.5 · 10−2.

f = fM2,a,
a = 0.25,
eeff = 2.3 · 10−3,
e`2 = 3.8 · 10−2.

f = fM3,a,
a = 0.25,
eeff = 1.4 · 10−3,
e`2 = 3.9 · 10−2.

f = fDM1
,

eeff = 3.8 · 10−3,
e`2 = 4.3 · 10−2.
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eeff = 3.4 · 10−3,
e`2 = 3.5 · 10−2.

f = fDM3
,

eeff = 3.4 · 10−3,
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eeff = 2.5 · 10−3,
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e`2 = 4.7 · 10−2.

Figure 4.7. The logarithmic error of the 11-component of the strain field ε using the color
bar at the top. We use the pattern matrices M1 (left column), M2 (middle column),
and M3 (right column) combined with the de la Vallée Poussin kernel fM,a with
a = 0.25 (top row), the Dirichlet kernel fDM

(middle row), and the Box spline fM,X
(bottom row).
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M1 M2 M3 M4

fDM

eeff(M) 3.7 · 10−4 3.5 · 10−4 4.4 · 10−4 1.3 · 10−4

e`2(M) 5.3 · 10−2 5.3 · 10−2 5.9 · 10−2 5.7 · 10−2

fM,0.1
eeff(M) 4.6 · 10−4 4.4 · 10−4 5.4 · 10−4 2.5 · 10−4

e`2(M) 5.2 · 10−2 5.2 · 10−2 5.8 · 10−2 5.6 · 10−2

fM,0.25
eeff(M) 6.0 · 10−4 6.6 · 10−4 7.5 · 10−4 4.6 · 10−4

e`2(M) 5.0 · 10−2 5.1 · 10−2 5.6 · 10−2 5.4 · 10−2

fM,0.4
eeff(M) 8.3 · 10−4 1.0 · 10−3 1.0 · 10−3 7.2 · 10−4

e`2(M) 5.0 · 10−2 5.0 · 10−2 5.5 · 10−2 5.3 · 10−2

Table 4.4. Error in the effective properties and in `2 for the single fiber geometry on a 323

lattice using different ansatz functions compared to a solution on a 2563 lattice using
the Dirichlet kernel. The bold numbers are the lowest errors in the respective category.

The smallest effective errors eeff are achieved for the Dirichlet kernel. These errors
increase for the de la Vallée Poussin kernel with increasing support and go from 3.7 · 10−4

to 8.3 · 10−4 for the tensor product grid M1 and increase by a factor of 5 for the pattern
matrix M4.

The relative `2-errors are smallest for the de la Vallée Poussin means fM,0.4 when the
support of the kernel is largest. The error drops by 6 to 8 percent compared to the
Dirichlet kernel solution.

4.5 Convergence study

The convergence result in Theorem 3.10 predicts that the discretization of the Lippmann-
Schwinger equation has a speed of convergence in M which is the minimum of the
smoothness of the coefficients and the ansatz functions. In this section we verify this
result numerically using the spline geometry. There, the stiffness distribution fulfills
C ∈ SSymd

(
C2(Td) \ C3(Td)

)
. We solve the spline geometry on tensor product grids

M = diag(n, n, 1) for n = 16, 32, . . . , 128 and compare the strain field with a solution on
a tensor product grid with n = 256.

The convergence theorem requires for d = 3 that the smoothness b of the coefficients
fullfills b > d

2 . Therefore, the spline geometry has with b = 2 the lowest smoothness
for which the theorem is applicable. Further, by Lemma 2.27, the Box splines of orders
4 and 5 fulfill the periodic Strang-Fix conditions with parameters s = 3, a = 2, and
s = 4, a = 2, respectively. For them, the assumption b = a in the convergence theorem is
satisfied.

The error curves for these Box splines are shown in Figure 4.8 together with the line
for quadratic convergence. By Theorem 3.10, the `2-error converges with ‖M‖−2 for
the Box spline of order 4, which is verified by the plot. The higher smoothness of the
fifth-order Box spline does not increase the speed of convergence, because the regularity
of the coefficients saturates the parameter r in the theorem.
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Figure 4.8. The `2-errors for Box splines of order 4 and 5 for coefficients which are twice
continuously differentiable, but not three times. The black line corresponds to quadratic
convergence.

4.6 Anisotropic subsampling with composite voxels

High-resolution voxel images are often found as the result of a computer tomography of
composite materials. Such images, while catching the features of the geometry in great
detail, are difficult to handle numerically due to the enormous amount of data. Methods
of data reduction based on using the coefficients on a sublattice are not optimal as they
leave the additional information unused. The same problem arises when we are given an
analytic description of a geometry. Sampling does evaluate geometry at certain points
and does not take into account features on a subvoxel scale. We call voxels, which consist
of more than one material on a finer level, composite voxels.

This section introduces methods to incorporate information on a finer sampling grid
into the computation of the equation of elasticity in homogenization. The method
we show here does not increase the required memory and can be implemented as a
preprocessing step. In case of a tensor product grid, this method is introduced for
the heat equation in [64–66] and for elasticity in [46]. In this thesis, we generalize the
approach to anisotropic patterns. Extensions to nonlinear problems [44], hyperelasticity
at finite strains [47], and inelastic problems [45] are available.

In case of tensor product grids, [18] suggest a formula to treat interface voxels, i.e. voxels
which contain a discontinuity in the stiffness distribution C. Let Wy ⊂ Td be such an
interface voxel with volume |Wy| belonging to the sampling point y ∈ P(M). The
authors choose the sampled stiffness Cy by the formula(

Cy − C0
)−1

=
1

|W|

∫
W

(
C(x)− C0

)−1
dx.

This formula ensures that the discretization approach derived from on an energy-based
formulation using constant finite elements allows to compute bounds on the effective
properties.
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General mixing rules for the sampling of the stiffness distribution have to be bounded
and be consistent with the discretization, as explained in the following definition.

Definition 4.1. Let C be a stiffness distribution that is bounded and elliptic with constants
cb and ce, respectively, according to Definition 2.28. Let M ∈ Zd×d be regular and let
nmin be its smallest eigenvalue. To a point y ∈ P(M) assign the surrounding voxel(
WM

)
y

by (
WM

)
y

:=

{
y + x : x ∈M−1

[
−1

2
,
1

2

)d}
with volume |WM

)
y
|. Consider a mixing rule that leads to a stiffness

(
CM
)
y

for all

y ∈ P(M) and define the voxelwise constant stiffness distribution

Cmix
M (x) :=

(
CM
)
y

if x ∈
(
WM

)
y

. A mixing rule is consistent if

a) the stiffness Cmix is bounded and elliptic with the same constants cb and ce as C,
and if

b) the stiffness Cmix(x)→ C(x) for almost all x ∈ Td and nmin →∞.

The first condition ensures that the mixing does not influence the speed of convergence
of the basic scheme, see Theorem 3.12. The second one ensures convergence of the
discrete mixing rule as the maximal distance between adjacent grid points goes to zero.

We consider three mixing rules in this section. The first two are motivated by the
Voigt [101] and Reuss [83] bounds giving an upper and lower bound, respectively, for the
elasticity of the composite voxel.

Definition 4.2. Let the voxel
(
WM

)
y

surrounding the point y ∈ P(M) be defined as in
Definition 4.1. The mixing rule that assigns the stiffness

(
CVoigtM

)
y

:=
1

|
(
WM

)
y
|

∫(
WM

)
y

C(x) dx (4.3)

to the voxel
(
WM

)
y

for y ∈ P(M) is called Voigt mixing. The mixing rule

(
CReussM

)
y

:=

(
1

|
(
WM

)
y
|

∫(
WM

)
y

C(x)−1 dx

)−1

(4.4)

is called Reuss mixing.

These mixing rules are consistent due to the continuity of the integral operator.

Such mixing rules are very simple as they take into account the volume fractions
of the different stiffnesses in the composite voxels. They, however, ignore any spacial
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information about the coefficients. Consider a stiffness distribution with a laminate
structure given by

C(x) :=

{
Cleft, for x1 < 0,

Cright, for x1 ≥ 0,

for x = (x1, x2)T ∈ T2. Such a structure can be seen in Figure 4.9. We sample the
geometry by a pattern P(M) with M :=

(
5 0
0 5

)
and get a layer of composite voxels in the

middle. We choose a mixing rule of the form

(
Claminate
M

)
y

:=


Cleft, for y1 < −π

5 ,

Cright, for y1 ≥ π
5 ,

Claminate, else,

for y = (y1, y2)T ∈ P(M) with an unknown stiffness tensor Claminate.
The question arises how to choose the stiffness matrix Claminate such that the effective

matrix Ceff of the continuous problem is the same as the stiffness matrix of the numerical

problem
(
Claminate
M

)eff
. For the heat equation this problem is solved in [64].

Theorem 4.3. The effective stiffnesses Ceff =
(
Claminate
M

)eff
coincide if and only if the

stiffness in the laminate is chosen as the effective stiffness with Claminate = Ceff .

Proof. The effective properties for a laminate are given analytically in [69, Section 9.5].
The proof is performed by considering the voxelized structure including the composite
voxel layer as a laminate with three constituents. Then, we equate the formulas for the
effective stiffness of the three-layer and the two-layer laminate and solve for the composite
layer.

This simple example is our motivation for laminate voxels: we assume, that internally
the subvoxel geometry is given by a laminate, where the direction of lamination n is

arbitrary. For such a laminate, the effective stiffness matrix
(
Claminate
M

)eff

y
for a voxel

associated with the point y ∈ P(M) is in three dimensions given by the equation(
H+ a

((
Claminate
M

)eff

y
− a Id

)−1
)−1

=

1

|
(
WM

)
y
|

∫(
WM

)
y

(
H+ a

(
C(x)− a Id

)−1
)−1

dx

(4.5)

for a ∈ R. The fourth-order tensor H is given by

Hijkl :=
1

2

(
niδjknl + niδjlnk + njδiknl + njδilnk

)
+ ninjnknl

for i, j, k, l = 1, . . . , 3 and n = (n1, n2, n3) ∈ R3 is the normal of the laminate interface.
The operator Id is the symmetric fourth-order identity tensor. Let cb be the upper bound
on C, then [46, Appendix] proves that a > cb ensures that the equation (4.5) can be
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Figure 4.9. An example of a structure that consists of two materials in form of a laminate.
This structure is divided into voxels for a tensor product grid with 5× 5 voxels.

solved. The formula is directly applicable to anisotropic lattices, because the necessary
transformations of the coordinate system [69, Section 8.3] cancel out. The stiffness chosen
by the laminate formula is anisotropic, even if the constituing materials are isotropic
themselves. This mixing rule is consistent.

For the laminate mixing rule we assume that the interface in the composite voxel is
linear. This assumption is justified, if the material boundary is smooth and the grid is
fine enough that a voxelwise linearization is possible.

An application of the laminate mixing rule requires an estimate for the normal of the
interface in a composite voxel

(
WM

)
y
. We compute the unweighted center of mass of

the composite voxel and the unweighted center of mass of the material Cdominant, which
has the largest volume s in the voxel. Then an estimate for the normal n is given by

n :=

∫(
WM

)
y

x1Cdominant

(
C(x)

)
s

− x

|
(
WM

)
y
| dx (4.6)

and 1Cdominant is the characteristic function of the dominant material.
In the discrete case we assume, that we have stiffness data on a very fine pattern
P(M) and we compute on a subpattern P(N) in the sense of Lemma 2.3. Then there
is a regular matrix J ∈ Zd×d such that M = JN. An enumeration of the points of the
fine pattern P(M) in a voxel associated to y ∈ P(N) is given by the decomposition in
Lemma 2.4. The same decomposition can also be used to compute the volume fractions
of each material. The integrals in Equations (4.3), (4.4), (4.5), and (4.6) can be replaced
by finite sums over the points of the fine pattern P(M). For analytic descriptions of the
geometry, we can either compute the integrals exactly or we sample first on a fine grid
and then follow the above procedure.
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Figure 4.10. A convergence study for the polycrystalline structure using different mixing
rules on a tensor product grid. The effective properties are compared to a solution
on 10243 voxels using laminate mixing.

4.7 The effect of composite voxels

Composite voxels work best on structures, which have many linear interfaces. Such a
structure is the polycrystalline geometry on which we compare the different mixing rules
using the software FeelMath.

In Figure 4.10, the effective error is plotted for different resolutions. The effective
property is compared to a solution on 10243 voxels computed using laminate mixing.
The error when using the Voigt and Reuss mixing — their errors coincide — is around
10−4 for all resolutions and decays linearly. Using no composite voxels gives an error
of 5 · 10−5 for a resolution of m = 323 voxels and is reduced to 2 · 10−5 for m = 2563.
Laminate mixing gives the smallest error throughout all resolutions. This error is smaller
by a factor of 10 compared to using no composite voxels. When we use laminate mixing,
we can therefore reduce the number of voxels by a factor of 64 and get the same quality
of the effective stiffness as when using no composite voxels.

We use the solution with laminate voxels as the reference solution because it gives the
most accurate effective stiffness. This can be seen when comparing to the solution using
no composite voxels on m = 10243. There, the error using laminate mixing gets constant
as it surpasses the reference solution in its accuracy.

A computation using the software FeelMath consists of subsampling the high-resolution
stiffness image. During the downsampling, the volume fractions of the materials and
the estimated normal on the interface are computed. During the computation, every
time the stiffness of a composite voxel is to be evaluated, the laminate formula (4.5) is
solved. This approach yields an efficient solution of the Lippmann-Schwinger equation.
The bottleneck when computing large-scale problems is not the workload of the CPU,
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Figure 4.11. A comparison of the ratio between the time required to downsample and
compute the solution for the polycrystalline structure using different mixing rules on
a tensor product grid. The effective properties are compared to a solution on 10243

voxels using laminate mixing.

but the access times for the RAM. Therefore, the inversions in the laminate formula do
not increase the computing time.

Figure 4.11 plots the error eeff in the effective properties against the computing time
in seconds. This time includes the downsampling and the time to solve the linear system.
Voigt and Reuss mixing give the worst ratio between the error and the computing time.
Reuss mixing (4.4) fares a little bit worse than Voigt mixing (4.3) because of the inversions
necessary to compute the stiffness.

Using no composite voxels does not require the computation of volume fractions and
normal vectors and the evaluation of the stiffness matrix is trivial. It yields for the same
computing time an error which is 10 to 15 times smaller than using Voigt and Reuss
mixing.

The laminate mixing gives the best error to computing time ratio. Even for very
small resolutions it requires a lot computations for downsampling and for evaluating the
stiffness matrix. For m = 323 voxels this time is 10 times larger than using no composite
voxels. This is counterbalanced by a very low error in the effective stiffness matrix.
Computing on 323 voxels using laminate mixing is therefore comparable to computing
on 1283 voxels without using the composite voxel technique.
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5 Summary

In this thesis we generalize the discretization of the Lippmann-Schwinger equation and
the variational formulation [105] to anisotropic lattices [6]. Anisotropic patterns are used
to adjust the sampling grid to the geometry and invest more sampling points in the
direction of interfaces. For a proper choice of the sampling lattice, this leads to much
smaller errors for the effective stiffness tensor and can reduce the `2-error. Alignment of
the Sine functions with material interfaces reduces the Gibbs phenomenon and regions of
high stresses are resolved with more accuracy. Subsampling of data on tensor product
grids combined with composite voxels [46] makes this approach also available to tensor
product grids with a high resolution.

We extend and unify the Dirichlet kernel approach with constant finite elements as
ansatz functions to periodic anisotropic spaces of translates [5, 9]. These ansatz spaces
motivate the periodized Green operator Γp, see [8]. The truncated Fourier series emerge
as a special case as they produce a Green operator which is a projection and coincides
with the Green operator of Moulinec and Suquet. For truncated Fourier series, the
solutions of the Lippmann-Schwinger equation and the variational formulation are the
same. This is not the case for general spaces of translates, where the Green operator is not
a projection operator. We use approximation results on spaces of translates to establish
a convergence rate for the discretization. The speed of convergence depends not only
on the smoothness of the coefficients, but also on the regularity of the ansatz function
generating the space of translates. The periodic Strang-Fix conditions [9] measure the
degree of trigonometric polynomials which can be reproduced exactly by the functions in
the ansatz space and control the speed of convergence, which we demonstrate numerically.
The periodized Green operator can be used with de la Vallée Poussin means and Box
splines. The former reduce the Gibbs phenomenon in the solution giving more exact
strain fields. The latter have compact support in space and can reproduce the effective
stiffness well. However, the solution suffers from aliasing effects, caused by approximating
the periodized Green operator Γp, which has noncompact support.

Stiffness fields which are given on a fine voxel grid can be subsampled on anisotropic
sampling lattices [4]. The loss of information from subsampling may be greatly reduced
by using mixing rules that compute a new stiffness tensor from subvoxel data [46]. Such
mixing rules take into account the volume fractions of the materials contained in an
interface voxels, which leads to Voigt [101] and Reuss mixing [83]. In addition, laminate
mixing uses an estimate for the direction of a linear interface present in the voxel. For
smooth material boundaries and sufficiently small voxels such an approach is reasonable.
With laminate mixing, the number of voxels for a polycrystal structure can be reduced by
a factor of 64 giving the same error for the effective stiffness as when using no composite
voxels. The advantage of the reduced error exceeds the additional computing time,
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5 Summary

including the downsampling as a preprocessing step.
An open problem regarding the anisotropic lattices is an automated choice of the

sampling matrix depending on the geometry of the problem. This choice may be sensitive
to errors.

Finite elements with nontrivial quadrature rules can also be incorporated in this
framework. For them, the evaluation of the periodized Green operator is costly and the
performance of the algorithm has to be investigated in detail.

Translation invariant spaces are used as the basis for a periodic multiresolution analysis.
The framework presented in this thesis can be extended to wavelet spaces in order to
exploit sparsity properties of given data. This is also a point of future research.
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