Generation of Random Variates using
Asymptotic Expansions

Jens Struckmeier
Department of Mathematics
University of Kaiserslautern

P.O Box 3049
67653 Kaiserslautern, Germany

AMS Subject Classfication: 65C10; 41A60.

Keywords: Random Number Generation; Aymptotic Expansions.

Abstract

Monte-Carlo methods are widely used numerical tools in various fields of application, like
rarefied gas dynamics, vacuum technology, stellar dynamics or nuclear physics. A central part is
the generation of random variates according to a given probability law. Fundamental techniques
are the inversion principle or the acceptance-rejection method — both may be quite time—consuming
if the given probability law has a complicated structure.

In this paper probability laws depending on a small parameter are considered and the use of
asymptotic expansions to generate random variates is investigated.

The results given in the paper are restricted to first order expansions. Error estimates for the
discrepancy as well as for the bounded Lipschitz distance of the asymptotic expansion are derived.
Furthermore the integration error for some special classes of functions is given. The efficiency of
the method is proofed by a numerical example from rarefied gas flows.

Zusammenfassung

Monte-Carlo Methoden sind weitverbreitete numerische Werkzeuge in verschiedenen Anwen-
dungsbereichen, wie etwa der Theorie verdunnter Gase, Vakuumtechnologie, Stellardynamik oder
Nuklearphysik. Ein zentraler Teil ist die Generierung von Zufallsvariablen nach einem vorgegebe-
nen Wahrscheinlichkeitsgesetz. Grundlegende Methoden sind etwa die Umkehrmethode oder die
Verwerfungsmethode, die beide sehr zeitaufwendig werden konnen, sofern das vorgebene Wahr-
scheinlichkeitsgesetz eine komplizierte Struktur besitzt.

In der vorliegenden Arbeit werden Wahrscheinlichkeitsgesetze studiert, die von einem kleinen
Parameter abhangig sind, und es wird untersucht wie mit Hilfe asymptotischer Entwicklungen
Zufallsvariablen erzeugt werden konnen.

Die Ergebnisse beschranken sich aus asymptotische Entwicklungen erster Ordnung. Es werden
Fehlerabschatzungen sowohl fir die Diskrepanz als auch den beschrankten Lipschitz Abstand der
asymptotischen Entwicklungen gezeigt. Zusatzlich werden die Integrationsfehler fur eine spezielle
Klasse von Funktionen angegeben. Die Effizienz der Methode wird anhand eines numerischen
Beispiels aus der Theorie verdunnter Gase bestatigt.



1 Introduction

The generation of random variates according to a given density function f, the so—called f-
distributed pointsets, is a crucial part in Monte-Carlo methods. General techniques — like the
inversion principle or the rejection method — are given in the book of Devroye [2] together with a
lot of concrete algorithms for special density functions.
In this paper we consider a density f(z;¢) which depends on a small parameter ¢ > 0 and in-
vestigate the use of asymptotic expansions to generate f-distributed pointsets. We start our
investigation with the following simple example:
Let 3
o) — 22

f(r:6) = 5ol o) 8
be the density of a probability law on [0, 1] and £ > 0 a small parameter.
We try to generate a sequence of random variables {z% } ven which are f-distributed using the
inversion principle.
Denote by F' the distribution function of f, i.e.

T
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Because f(z;¢) > 0 for all # € [0,1], F' is strictly increasing and we are able to transform a
uniformly distributed sequence {t’}yen C [0,1] in a f-distributed sequence via the equation

= F7(te) (3)
We compute
1
F(z;e)= 3+€1‘(3+61‘2) (4)

hence one has to compute the roots of a cubic equation to solve equation (3).
If ¢ < 1, one may consider F'(z;¢) as a small perturbation of F'(z;0), with

F(z;0) =« (5)
If we take the asymptotic expansion
Fz;e)~ 2z + %JJ(CL‘2 -1) (6)
and assume _
2t ~ 20 4 ez (7
we get
20 = ¢ (8)
1
AR e St - t?) (9)

as second order approximation of the solution ¢ of F(2%;¢) = 1.
Hence, instead of computing the roots of the cubic equation, we can take

*=t+ %Et(l —1%) (10)



and may expect that

z® — z°| = o(e) (11)
The expectation value of z° is
; 1
E(z®) = P /a:(l + 6$2)d1’ (12)
0
3(2+e¢)
= 13
4(3+¢) (13)
and, if £ — 0,
€ 1 2
E(zf) 5 T 126—1—0(6 ) (14)
On the other hand we have
E@®) = E@")+eB@Y) (15)
1 1
= 5 + EE (16)

Remark 1

Throughout the paper we will work with the measure theoretical aspect of f-distributed sequences
on R:

We interpret the density f of a probability law on R as the density of an absolutely continuous
measure g on IR and consider a sequence of f—distributed pointsets {z, ..., 2N} nen as a sequence
of discrete measures puy with

1
HN = NZéwN (17)

Using this notation we study the weak* convergence of py to p. Furthermore we introduce
distances between measures based on the fact that measures spaces are equiped with a metric
structure.

In the next section we give some basic notations concerning asymptotic expansions and measure
theory. In section 3 we will investigate first order expansions to generate f-distributed pointsets.
Finally we present a numerical example.

2 Basic Notations

Order Relations

Definition 1 Suppose that f(x) and g(x) are two continuous functions on R.

1) If there ezists a constant M and a neighborhood No of x = 0 such that
f2) <M g(z) VeeNgNR (18)

we say that, as x — 0,

f(z) = O(g(2)) (19)



2) Suppose that for any ¢ > 0 there exists a neighborhood N of x = 0 such that
flz)<e-g(z) YeeN.NR (20)

we say that, as © — 0

f(z) = o(g()) (21)

Asymptotic expansion of f(z;¢)

Definition 2 Let f(z;¢) : R — R be a continuous function. The formal series

i: an(z)e” (22)

15 called asymptotic sequence of f with N terms for e — 0, if

M
flz,e) = > an(x)e”
: n=0
}1_1»1% 7 =0 (23)
holds for all M < N and z € R.
Remark 2
1) Together with Definition 1 we have
N-1
flz;e) = an(z)e™ + o(eN 1) (24)

n=0

2) If the convergence in Definition 2 is uniformly with respect to x, we call the asymptotic
expansion uniform.

3) If f(-;¢) is differentiable up to order N — 1 with respect to the parameter ¢ at £ = 0 then
the asymptotic expansion (22) coincides with the Taylor expansion of order N — 1, i.e.

an(z) = f)(2;0)  ¥Yn=0,..,N—-1 (25)
In the following we consider probability measures p on (R, B) where B denotes the o-algebra of
Borel sets on R and pu(R) = 1. We denote the space of such measures by M.

Definition 3 A sequence (pn)neny C M is called weakly convergent to n € M, if

lim [ ®(z)dp, = /@(x)dﬂ (26)

n—oo

for all ® € Cy(R).

Measure spaces are metric spaces hence one may introduce metrices on the space M. We will use
the following two metrices

1) the discrancy D(u,v) and
2) the bounded Lipschitz distance p(u, v).



Discrepancy

Definition 4 Let y,v € M. Then the discrepancy D(u,v) is given by

T

D) = sup / d(u — v) (27)

— 00

Remark 3 The notion ’discrepancy’ was introduced by H. Weyl in connection with the uniform

distribution modulo 1 [5]. We denote the discrepancy of a uniformly distributed sequence wy =
{tV, .. t¥} on [0,1] by D(wn).

The weak convergence of sequences is equivalent to the convergence of the discrepancy if the limit
measure is absolutely continuous (a.c.).

Definition 5 pu € M is called a.c., if their exists a non—negative function f such that

/dy = /f(x)d:z: VBeB (28)

B

We call the function f a probability density on R.

Remark 4 If the limit measure p is a.c., we use the notation D(f,v) instead of D(y,v).

Theorem 1 [4]
Assume that € M is a.c., then the sequence (fin)nen C M converges weakly to p € M iff

lim D(p, pn) =0 (29)
n—00
The main advantage using the discrepancy is the Koksma inequality [5] which gives an error
estimates for the integration of functions.

Theorem 2 Suppose f is a probability density on R and (un)nven C M a sequence of discrete
measures. Then

N
1
[e@is@as - Y06 | < Vi) D) (30)
R i=1
for all functions ® : R — R which have a bounded variation V[®] on R.

Proof
Using the proof of Niederreiter [5] for the unit intervall [0, 1] the generalization to measures on R
is straightforward. [ ]

Bounded Lipschitz distance

Definition 6 Let y,v € M. Then the bounded Lipschitz distance p(p,v) is defined as

ploev) = sup | [ @) (31)

where D ={®: R— R,0<® <1, |®(2)—P(y)| < |z—y|}



Remark 5 If the limit measure p is a.c., we use the notation p(f, v) instead of p(u, v).

Theorem 3 [3]
The sequence (pin)nen C M converges weakly to u € M iff

JLim p(p, pn) = 0 (32)

Concerning the integration error we have

Theorem 4 Let yu,v € M. Then

[e@dt-)| < 2max(z,M)p0) (33)

for all functions ® : R — R which are bounded by M < oo and Lipschitz—continuous with
Lipschitz constant L.

Proof
Consider

Jedw-v)| <2| [1ol-») (34)

1

and notice that = ———
max{L, M}

|®| € D. Hence

[ #du=v)| <o) (35)

R

3 First Order Expansions

In this section we investigate asymptotic expansions of probability densities f(z;¢) with respect to
the small parameter € > 0. We restrict ourselves to asymptotic expansions containing two terms,
ie.
f(z;€) ~ag(z) +ear(z) ife—0 (36)
Furthermore we assume
f(z;e) >0 ae. (37)

The first problem is to derive an asymptotic expansion for the distribution function F(z;e). If
f(z;€) can not be integrated explicitly we try to find the asymptotic expansion by integrating
ap(z) and a;(z):

Theorem 5 Assume
f(z,e) ~ao(z) + cai(z), (38)
if e — 0, together with the properties

1) the functions ag and ay are a.e. continuous as well as f(x;e) with respect to « for all e > 0.



2) there exists Fy € L1(R, Ry), such that
flz;e) < Fy(x) VaeR,e>0 (39)

3) there exists Iy € L1(R, Ry), such that

‘M <Fi(z) YzER, >0 (40)
Define the distribution function of f(x;e) by
F(x,e) = / fly,e)dy (41)
Then
ag, a1 € L1(R) (42)
and
F(x,e) ~ Ag(x) + A1 () (43)
with .
An(z) = / a,(y)dy n=0,1 (44)
Proof
From Definition 2 we have
lir% f(z;e) = ag(z) Yz eR (45)
and
lim w —a(z) VeER (46)

Using property 2) together with Lebesgue’s Dominated Convergence Theorem yields

ao(éL‘) S El(R, R+) (47)
and . .
lim / fly;e)dy = / ao(y)dy (48)
Hence we have
F(z;e) ~ Ag(z) VzeR (49)

Using property 3) we get with the same argument

F(a;e) ~ Ag(x) + 41 () (50)

In order to explain how to use asymptotic expansions to generate f-distributed pointsets we
consider again the inversion principle:



If {tf\f}i:L“qN C [0,1] is an uniformly distributed pointset one may determine a f—distributed

pointset {‘Jffv}z':l,,,,,N via the relation
F(a} ;o) =t
Suppose € < % then we may consider the asymptotic expansion
F(a;e) ~ Ag(x) + 41 ()
and try to construct a asymptotic expansion of the solution z° of

F(z;e) =1t

Taking the ansatz
2t~ 20 4 ez

together with (52) yields
Ag(2® 4 eaM) 424, (2O 4 exV) =1

and

Ag(20) + e2Wag (2(0) + e4; () + O(e?) = ¢

Comparing powers in € we get

Ap(2(?) = ¢

A (m(o)) ) .
n - 2= (0)
x = 20(2) ifag(z'™) #0

Using this procedure we may expect that
2t ~ 20 4 ez

Theorem 6 Suppose
F(z;e) ~ Ag(z) +eAi(z) ife—0

uniformly with respect to x and let x° be the solution of

F(ze)=t€[0,1]

Define
20 = A5 (1),
Then .
25~ 20 _ 5A1(I( ))
ap(z()
Proof

First we have to show that z¢ ~ z(0):

Because of F(z;¢) =0 Ao(z) uniformly on R we have

| F(z%;¢) — Ag(2°) | =0 9

(51)

(52)

(53)

(54)

(64)



Now

| F(2%3e) = Ao(z®) | = |t = (Ao o FH)(t;¢) |

Ag is continuous and strictly monotone hence Agl is a continuous function and

|AFY(t) — (A7 o Ago F ) (t;e)| =2 0

respectively
lim | 2(® — 25| =0
e—0
This completes the first part.
For the second part, i.e.
¢ _ 200
lim =2 —
e—0 &

we use the following lemma.

Lemma 1 Let (y.) be a sequence in R with y. =0 y and

Y—Ye e—0
I e

€
and f € C*(R). Then
ife — 0.
Proof

Because of (69) there exists a function h(e) such that

Y=y +ec+ h(e)

with
t @ — 0 ife—0
Consider the term
‘f(y)_f(yE) Cfl(y)‘
Using (71) yields
‘ f(y) _Ef(yé) cf’(y) ‘ — ‘ f(y) - f(yg_gc_ h(E)) _ cf’(y) ‘
[ H0 100 _ | a1 40y SO = S0t

Because of ec + h(e) =20 and (72)

(=50 _ | =g

(66)

(67)

(71)

(72)

(73)



In order to apply Lemma 1 we first notice that

‘F(IS;E)E—AO(Z‘E) _Al(mw))‘ =0, (")
(because
w — Ay () ‘ < ‘ M — Ay (2°) | + ‘fh(:pf) — Ay (z\9) (78)

and both terms on the left side converge to 0).
Now introducing

15 = Ao(af) (79)

we may write equation (77) in the form

‘t—tf

- —(AloAgl)(t)‘ =0 9 (80)

Aal is strictly increasing and differentiable hence using Lemma 1 we get

2¢ — 2(0) e (0))
x xr 1\r e—0
0 81
=t aeoy | (51
which completes the proof of the theorem. [ |
Remark 6 Because 2° ~ 2(9) + c2(1) we have
2t =20 4 2P 4 o(e) (82)

Example 1 Let us consider the simple example given in the introduction. The asymptotic ex-
pansion of the distribution function F(x;¢) with z € [0, 1] is given by

Fz;e) ~a+ %.Z‘(.Z‘2 -1) (83)

Hence we directly get
25 ~t— %t(tz —1) (84)

The result of theorem 6 can be used to construct an ’asymptotic expansion’ of an f-distributed
pointset:
Suppose {t,...,tN} is an uniformly distributed pointset on [0, 1], i.e.

D(wy) — 0 if N —0 (85)
with
1 N
Wy = Z_; Byw (86)

Then we may consider the discrete measure
L X
N = z_; Bye (87)

10



with
F(xf;e) =t Yi=1,..,N

and the ’asymptotic expansion’ py of pn

L X
ﬂN:N;‘Sf,

with
z; = JJZ(-O) + E:L‘El)

and
5 = A7)
o AE)
o= oy
ao(@; )

Furthermore we denote by ,ug\(,)) the discrete measure

1 N
0) — E
/,t( ) = ﬁ £ (ngﬂ)

With the notations given above we have the following theorems.

Theorem 7

D(f, pn) = D(wn)

Proof
Because the points { are the solutions of

F(z;e) =t

the theorem follows directly from the definition of the discrepancy.

Corollary 1
D(f:)uN) = D(GO:NE\?))

Concerning the discrepancy D(f, iy ) we get
Theorem 8 Assume N € IN fized. Then there exists h. with
he

— —0 ife—0
€

such that

11



Proof

From [5] we know that
Dlwy) = =+ max_ |21y
NTON TN TN T

if wy is a discrete measure on [0, 1] and 0 < ¥ <V < .. <#¥ < 1.
Hence, using Theorem 7,

1
D(f,nn) = g+, max [ =%

if —co <z <25 <. <afy < oo and

D(f,in) < D(f, pn) + max 11N — Pl + iV e) |

Now
tf\f = AO(JJ(-O)) 1=1

(3

N

goeeey

and with (101) we get

D(f, pn) < D(f, pux) + _max | Ao(a”) = " +exf!);e)|

Because F'(z;¢) ~ Ag(x) 4+ €A1 (z) (uniformly with respect to z) we have

D(f,in) < D(f, pn)
+ max [ Ao(el”) = Ao(al” + eal)) — ey (ol + 2all)|
+ kg
and
ke )
- —0 ife—0
Both Ag and A; are differentiable and
Ap(2{?) = Ap(@\” + exM) = calWay(2l”) + hi(e)
A @) = A4 @ + ey = ceMay (@) + gie)
with
}”ig) 0 ife—0
56 o ife—o
€
foralli=1,...,N.
Defining
he = Z’:I?fl,.},(N (hl(e) + 623351)&1(.1‘2(-0)) + egi(s)) + k.
we have
and
he )
- —0 ife—0

which completes the proof.

12

(100)

(101)

(102)

(103)

(104)

(105)
(106)

(107)

(108)

(109)

(110)

(111)



Corollary 2 Assume N € IN fized. Then there exists h. with

h
= =0 ife—0 (112)
€
such that
/@f@-—Z@ < V[®]D(f, un) + he (113)
R
for all functions ® : R — R which have bounded variation V[®] on R.
Proof
The Corollary follows directly from Theorems 2 and 8. [ ]

Furthermore we have the following result for the bounded Lipschitz distance between f and py:

Theorem 9 Assume N € IN fized. There exists h, with

he )
— —0 ife—0 (114)
€
such that
Proof
We first notice that, because z{ ~ rgo) + 61‘51), there exists functions h;(¢),¢ = 1,..., N with
@_m ife—0 (116)
such that
25 =29 + el + hy(e) (117)
Suppose e D={P: R— R,0<® < 1,|®(z)— D(y)| < |z —y|}. Then
| XN
/@fdm— VZCD(@) < p(f un) + Z|<1>(z Z)| (118)
B ’ =1
< p(f pn) + he (119)
with
he = z':ql,%i(N hi(e) (120)
|

Corollary 3 Assume N € IN fized. There exists h. with

hg_f_>0 ife—0 (121)
such that
1 Y _
[erae— D00z | < 2max{L Mol ) + b (122)

R
for all functions ® : R — R which are bounded by M < oo and Lipschitz—continuous with
Lipschitz constant L.

Proof
The Corollary follows directly from Theorems 4 and 9. [ ]

13



4 A Numerical Example

We use the results of the previous section together with the following test problem:

Lo — 1 € 3v2 —g?
The density f(z;e) given by (123) is a simplification of the so—called modified Chapman-Enskog
density [7]. This type of probability function is used in Computational Fluid Dynamics for the
numerical coupling of the Navier—Stokes equations for continuum flows and the Boltzmann equation
for rarefied gas flows.
One computes that

1 .2 z° e
flz;e) ~ ﬁe + eﬁe (124)
F(z;e) = E erf(z) + L L (16 + 15ea + 162 + 10e2® + 4ea®) (125)
’ 2 2 (14 L2e?)
and
F(a;e) ~ Ag(x) + 41 () (126)
with
11
Ao(z) = 3 + §erf(x) (127)
Az) = _%(1 +2%)e " (128)

Using the result of section 3 we get for the asymptotic expansion of the solution z° of F(z;¢) =1¢

= % + %erf(ax(o)) (129)

1
A= E (130)

and .
2 ~ 20 4 gz (131)

Table I shows the discrepancy errors using the optimal finite pointset wf{,’t on [0,1] given by

N 2i—1
b ==5 (132)
with discrepancy D(wf\ft) = %
Notation:
E(un) = |DwF") = D(f,pn)[=0 (133)
) = |D(f,un) — DU, u)| (134)
(136)

14



TAB. 1. Discrepancy errors of uy and py” .

(0)

N | DR | B BE(uY) E(uY) E(uY)
10 [5.0-1072 | 2.8704-10-2 | 2.8230-10~3 | 2.8211-10~% | 2.8209 - 10—5
100 | 5.0-1073 | 2.8770- 1072 | 2.8241 - 1073 | 2.8211-10~* | 2.8210-10~°
1000 | 5.0-10=% | 2.8770- 1072 | 2.8241-1073 | 2.8211-10~* | 2.8210-10~5
e=1-107" | e=1-10"2 | e=1-10"3 | e=1-10"%

N | D(wy") E(pn) E(pn) E(pn) E(pn)
10 | 5.0-1072 | 2.1546 - 1073 | 2.0662- 10> | 2.0581-10~7 | 2.0944 - 10~°
100 | 5.0-1073 | 2.1957-10~3 | 2.0787-10~% | 2.0677-10~7 | 2.0980 - 10—°
1000 | 5.0-10~* | 2.1964 - 103 | 2.0790 - 10~° | 2.0677 - 10~7 | 2.0991 - 10~°

One may recognize that

and

Now we take instead of wiyy

opt

lim E@®) =0
lim 20 _ g
e—0 I

(137)

(138)

a discrete measure wy generated via pseudo-random numbers on

[0,1]. The random number generator is a linear—congruential method with parameters from the
UNIX rand-subroutine.

TAB. II. Discrepancy of pun, iy

(0)

and [y using pseudo—random numbers.

N | Dey) | DY) | DN | DAY
10 | 2.55126-10~1 | 2.57716 - 10~ | 2.55123- 10~ | 2.55124 - 101
100 | 8.48946- 1072 | 9.34267 - 102 | 8.49941- 102 | 8.48953 - 10~2
1000 | 2.67922-10~2 | 4.56819-10~2 | 2.70012-10~2 | 2.67883 - 1072
e=1-10"1 e=1-10"2 e=1-10"3
N | D(f,p) D(f,in) | D(f.fin) D(f, fin)
10 | 2.55126- 1071 | 2.54742 - 10~ | 2.55122- 10~ | 2.55126 - 101
100 | 8.48946- 1072 | 8.48618 - 102 | 8.48939- 102 | 8.48946 - 10~2
1000 | 2.67922-10~2 | 2.68315-10~2 | 2.67914-10~2 | 2.67922- 1072

Remark 7 The convergence speed for the discrepancy using pseudo-random numbers is approx-

imately ——.

VN

Finally we investigate the integration error using the pointsets py, gy and ,u(o):

We take

E(z?)

= /:L“?f(:v;e)dx =
R

15

324 10562
64 + 30¢?

N

(139)



and denote by E(un), E*(fin) and E* (,ug\e)) the following quantities

N

Bluw) = |E<x2>—§z<x§>2| (140)
B = 15[ (141)
PO = 1y 3 [P - @0 (142)

The function ®(z) = 2?2 is not Lipschitz—continuous and has unbounded variation on IR — hence
one can not apply Theorem 9 or Corollary 4 to estimate the integration error.

(0)

We again take first the pointset wN to compute ppy respectively py’. The results are shown in

table 3.

TAB. IIL Integration error for F(z?) using the optimal pointset w Opt.

N | e E(ux) E*(in) | BT ()
10 0.1 |6.0721-10~2 | 7.5954-1073 | 1.3383-102
10 0.01 | 6.0112-10=2 | 7.7206- 107> | 1.3508 - 10*
100 0.1 |6.0979-10~3 | 7.5492-1073 | 1.4244 - 102
100 0.01 | 6.3409-1073 | 7.7921-107% | 1.4487-10*
100 | 0.001 | 6.3451-1073 | 7.7947 - 10~7 | 1.4490- 106
1000 0.1 |6.0226-10~% | 7.1951-1073 | 1.4045- 102
1000 | 0.01 | 6.4869-10=* | 7.3504 - 107> | 1.4200-10~*
1000 | 0.001 | 6.5006 - 10~* | 7.3519-10~7 | 1.4202-10~°
10000 | 0.1 |7.7054-10-5 | 7.1137-10~3 | 1.3985- 102
10000 | 0.01 | 6.5300-10-5 | 7.2185-10~5 | 1.4090-10~*
10000 | 0.001 | 6.5581-10=% | 7.2193-10~7 | 1.4091-10-°

With the same notation we have the following results using pseudo-random numbers.

16



TAB. IV. Integration error for F(z?) using pseudo-random numbers.

N | e E(uy) E(uy) | B ()
10 0.1 |1.8532-1071 | 7.7183-1073 | 4.4908 - 10~2
100 | 0.1 |[5.7927-1072 | 7.1100- 1073 | 1.9255-10~2
100 | 0.01 |5.4788-10~2 | 7.2687 1075 | 1.5441-10~3
1000 | 0.1 | 1.8476-10~2 | 7.1336-1073 | 1.4041 - 102
1000 | 0.01 | 1.7312-10=2 | 7.1719- 1075 | 5.0428 - 10~*
10000 | 0.1 | 5.5549-1073 | 7.1181- 1073 | 1.4049 - 102
10000 | 0.01 | 5.3119-1073 | 7.1778 - 107> | 2.0086 - 10~*
10000 | 0.001 | 5.3150 - 103 | 7.1786 - 10~7 | 1.5753 - 1075
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