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Preface

This text summarizes parts of the exercises of the tutorial on ’Asymptotic Analysis’
held in the winter term 1993/94 at the University of Kaiserslautern. The lecture was
designed and held by Prof. Dr. H. Neunzert.

The main aspect of the lecture and the tutorial was to investigate the basic techniques
used in Asymptotic Analysis. This first part covers the following topics

1) Simple Operators in IR
2) Asymptotic Expansions
3) Asymptotic Expansions of Integrals

)
4) Perturbation Methods in Partial Differential Equations
)

5) Singular Perturbation: Matching

In order to understand the exercises of the sections 4)-6) the reader should be fa-
miliar with basic analytical solution techniques for ordinary and partial differential
equations.

Each section is provided with a small review on the main topics which were discussed
in the lecture. A list of references is given at the beginning of a section.
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1 Simple cases: Operators in R

References:

Bellman, R.: Perturbation Techniques in Mathematics, Physics and Engineering, Holt,
Rinehart and Winston, New York, 1975.

Berg, L.. Aymptotische Darstellungen und Entwicklungen, VEB Berlin, 1968.

Let us consider an operator A, : IR — IR, where ¢ is a small parameter.
We are interested in the dependence of the solution of

A(z)=0 (1)
on the small parameter . For example, we may study the solution of the equation
Ao(JJ) =0

and on the other hand we may investigate the convergence of the solution z. of (1) in
the limit when ¢ goes to zero. We also investigate the case, where A, is a differential
operator acting on a function space C*([a, b]).

In order to study the asymptotic behaviour of the solution of (1) we consider an
expansion of x. in a formal power series

LT = Z aksk

keZ

and try to derive a set of equations for the parameter set {ay}rez.

One problem arises directly: the powers of the expansion are not a priori given by
integer numbers. Hence we have to introduce a scaling to derive the correct asymptotic
behaviour. Furthermore a scaling is used to derive the asymptotic behaviour of a
solution of (1), if the solution is not known explicitly.

Exercise 1.1
Find the sensible scalings of the equation

e+ a2t +2x+e=0

We investigate a transformation (scaling) in the form
r=16(e)X

with the restriction

1
X=0(1) $=0() if =0

In order to get the sensible scaling — this means the different orders of magnitude of
6(e) — we consider the various cases.



a) If 6(¢) ~ 1 we have
X% 42X +small=0

and hence

X = —2+small vV
X = 0+ small but X # O(1)

b) If 6(¢) ~ ¢ we get
28X° + X7+ 26X +e=0
and
small +2X +1 = 0
X =— l+ small
2
¢) It 6(¢) > 1 then
X(€262X2 +6X +2)+small=0
X =0 is not valid, hence we consider the case
28X+ 6X+2=0

and |
X = L Qga2\1/2
2625(1:&(1 87)%)

If we choose () ~ % then
€

X =1+ small

Finally we end up with the sensible scalings

1
6(e) ~ 1 o(e)~e  b(e) ~ o
and | 1
$(1)=—2+... oL c) p— — e+ ... 2B = — + ...
2 g2



Exercise 1.2

Find the first terms of z(¢) (¢ = o(1)), solution of

2

\/ﬁsin(;v—l—%)—l—:v-l—%:—

[=> N N0}

We define the curves Ki(z) and Ky(z) by

2

Ki(e) = V2sin(z+ 7)) Kyfo) =142 =

The solutions of the unperturbed problem (e = 0) are given by the intersection points

of Ki(x) and Kj(z).

Fig. 1.1: Curves K;(z) and K;(z)

One intersection is at * = 0 and we try to construct an asymptotic expansions for
¢ > 0 in the neighbourhood of z = 0.
The main question is: What asymptotic expansion is useful?

T = Ehoxo + shlxl + ...

What is the correct Ansatz for hg etc.?

The function K;(z) can be expanded in a power series around z = 0. One gets

sin(z + ) \/_+ \/_x——\/jr ——\/E"c +7 \/57: + O(z”)



. . . . €
Substituting the expansion into the equation Ki(z) 4+ K(z) = — G e have

1, 1, I
6" 21" T2 T 6
Hence we get the scaling
XelB =g
and { {
€X3_Z€4/3X4_555/3X5+€+'":0

with an expansion of the form
X(e)= X1 +"3X, + ...
Substituting this expansion into (2)
e( X2 4+ 33X2X, + 3P X, X2 4 e XD)
—354/3()(;1 +4e83X32 4 6e2PX2XE 4 4e X, XD 4 Y3 XY)
- 4+ .. =0

Comparing the powers in ¢ we get

1
Xi=1 Xo=—
1 2 12
and
X(e)=1+ Loy
12
or 1
_ /3 L 93
zle)=¢e/"+ T

Exercise 1.3

Find the first two terms for all three roots of

a) ex’+2P+(2+¢e)r+1=0
by ex’4+2P+(2-¢e)x+1=0

We investigate the sensible scalings

r=46(e)X



a) If 6(e) ~ 1 we get
X2 492X +1+small=0

Hence

X = —1 +small
and X = —1 is a double root of the unperturbed problem.

b) If 6(e) ~ e the equations becomes
e XP+ X+ (2+£e)6X +1=0

or

small+1 =0

This leads to a contradiction — this scaling gives no reasonable result.
c) If 6(¢) > 1 we have
X(e*X*+6X +2+¢) +small =0

X = 0 1s not valid, hence we have to investigate the solution of the quadratic

equation
X= b (—1+ (1 —4(2+¢e)e)?)
2e6

In the case § = l it follows that
€

X = —1 +small
as sensible scaling.

To evaluate the first terms of the roots we first investigate case a). (In the following
we will see that their are strong differences between the two cases a) and b))
Using the scaling 6 ~ 1 we have to consider the equation

eXP+ X 4+ (24e)X+1=0 (3)

The first term of the asymptotic expansion is given by the solution of the quadratic
equation

X2492X+1=0

Hence we get the expansion

X =-14Y(e)

with Y(¢) — 0if ¢ — 0. In order to compute the suitable e—power of Y'(¢) we compute

X? = 1=-2Y(e)+Y?e)
X% = 143Y(e) =3Y?(e) + Y?(¢)

8



Using equation (3) we get
eY?+ (1 =3e)Y?+2Y =0

If we compare the powers in ¢ it is obvious that we have to choose an asymptotic
expansion in the form

X =—14&72X, +...
Furthermore we have the relation
XI—2=0
This means that we have two solutions

xW=-v2 xP=v2

It follows that the first two terms of the first two roots of equation a) are given by

2 = -1 — V212 4 0(e) 2 = —1 4212 4 0(e)

1
Consider now the scaling 6 = —.
B

We end up with the equation
X34+ X2+ (24e)X+e2=0

and

X =-14Y(e)
The equation for Y(¢) reads
Y2422+ (142)Y —2e=0
If we compare the powers in ¢ we get
X =—142¢+0(c?)
Therefore the first two terms of the third root are given by

1
¥ = — 2424 0(?)

€
Case b):

We investigate again the scaling 6 ~ 1, where the corresponding equation is given by

eXP+ X4+ (2-e)X+1=0



We know that the expansion has the form

X =—-14Y(e)

with Y(e) = 0if ¢ — 0.
Taking

X% = 1-2Y(e)+ Y*e)

X3 = 143Y(e) —3Y?(e) + Y?(¢)
one gets

eY?+ (1 -3e)Y?+2eY =0

for Y(e).

In contrast to case a) we now have the asymptotic expansion
X =-1 + €X1 + 0(52)

where X; is the solution of

It follows that the first two terms of the first root are given by
e = —14 2+ 0(e?) (5)

The second solution of equation (4) says that their is now perturbation of the order
¢. But we already know that it is not possible to have any perturbation of the order
e’ with b > 1. Therefore the root (3 = —1 of the unperturbed problem must be
also a root of the perturbed equation for all ¢ € IR. This may be simply verified by
substitution.

1

We consider the scaling 6 ~ —.
€

The corresponding equation reads
X34+ X2+ (2-e)X+*=0

With the Ansaiz
X =-14Y(e)

the equation for Y(¢) gets
V3 —2Y? 4+ (1 +2e —*)Y +2° -2 =0
We get the same as in case a), namely

1
ﬂm=—2+2+0@

10



What can be done with the asymptotic expansions?

As an example we consider the expansion of the third root

1
X® =~ —4240()
€
It follows that

limz® = o

e—0

Using the expansion it is easy the estimate the location of z(3).
Example:
Choose ¢ = 0.01 we have

2® = —98 + 0(0.01)

Choose ¢ = 0.001 we have
2 = —998 + 0(0.001)

Figures 1.2 and 1.3 show the curve K(z) = ez® + 2? + (2 + )z + 1 for the region
around the third root given above.

|
-98.08 -98.04 -98.00 -97.96 -97.92

Fig. 1.2: Curve K(z) for ¢ = 0.01

11



|
-998.008  -998.004 -998.000 -997.996 -997.992
f(x) —
Fig. 1.3: Curve K(z) for ¢ = 0.001

In the same way we may estimate the location of the first root, which has the expan-
sion

¢ = —1 -2+ 0(?)

Figure 1.4 shows the given function with ¢ = 0.001. One may recognize the stable
root at © = —1 und the root shifted by the perturbation of order . The expansion
gives

M = —1.002 4+ O(107°)

_2_10—6 | | | | |
-1.003  -1.002 -1.001 -1 -0.999

Fig. 1.4: Curve K(z) for ¢ = 0.001
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Exercise 1.4
Find the first order perturbation of the eigenvalues of

y'+ Ay +ey" =0 (6)
in 0<z<wm, y0)=y(r)=0,n=1,2and 3.
Cosider the unperturbed problem (¢ = 0)

y'+ Ay =0 (7)

With the prescribed boundary condition there exists nontrivial solution only if

A, = n? n e N

This are the eigenvalues of equation (7) together with the eigenfunctions
2 1/2
Yp = (—) sinnx
s

The set {y, }nen forms an orthonormal basis on the space C([0, 1]) of functions with
boundary conditions f(0) = f(x) = 0 and we have

lyalle = [y2(@)de =1
0

et = [ al@hun(e) de =0

0

falls n#m
If y(z) € C([0, 1]) we have
y(z) =D byw b, = /.y(:c)yk(:ﬁ)dx

We use this Fourier expansion to find the expansion of the eigenvalues )\, and the
eigenfunction y,

y(z) = yu(z)+e ;; a"yi(z) + O(c?) (8)

A= i Y ema®
n=1

13



We may use an expansion of the inhomogeneous part of (6)
yP(x) = ) bryn(x)
keN

Using (8) we have

where

(bﬁf) does not vanish if k # n!)
If we use the expansions for the differential equation we get

i+ aly + (02 + Ny +e Y alyn)
ktn k#n
+e > 0y + 0(e?) =0

keN

It follows that

-y, — ) kQagcn)yk + nty, + &\Yb)yn

k#n
+ ey n2aMy, + ¢ > by + 0(e?) =0
k#n keN

Comparing powers in ¢ one gets

e’ —nly 4ty =0
et Y =Ry + My + 3 00y =0
k#n keN

The zeroth order equation holds. Hence we consider the first order equation:

Because the set of function {y,} form an orthonormal basis the first order equation
must hold for all k£ € IV separately

k=n A" 1@ =9
k#n (n®— k2)a§n) + bgco) =0

Hence we get



or

where

and

y(z) = yote Y alyi(z) + O(?)

k#n
b :
= o) m2 Y () + O:)
k#n
Explicit calculation gives:
Ifp=2
) 0 it n even
b, = 2
" —3 if n odd
n
Itp=3
o) _ 3

n = ﬁ
2 Asymptotic Expansions

References:

Bleistein, N. and Handelsman, R.A.: Asymptotic Expansions of Integrals, Holt, Rine-
hart and Winston, New York, 1975.

Olver, F.W.J.: Integrals Asymptotics and Special Functions, Academic Press, New
York, 1974.

An expansion Y f,(z) is convergent for fixed z, if
n=0

M
Ve>0 3 Ny(z,e) | > falz)] < e YN, M > No(z,¢)

n=N

The expansion is called uniformly convergent, if No(z,¢) is independent of z.
Convergent expansions may not be useful to get an accurate approximation for all

15



values of z. One example is the error function

2 [ _p
Erf(z) = \/—E/e_t dt
0

A convergent expansion is

i 2 3 2P z’
Eri(x)—ﬁ(:v—?-l-m—ﬁ—l—...)

but for large x it requires a large number of terms to achieve a certain accuracy.
Expansions, which may be divergent, can give for large z a high accuracy if only a
small number of terms is talen into account:

Erf(z) =1 — 2_—\/7? (1 - % + (2;)2 + ) (9)

Consider

for x — oo.
The expansion diverges for all z, but gives for z > 3 an accuracy of 107 using 2
terms of (9).

Exercise 2.1

Let the function f(z) be given by
flz) = e 1+ cos(el/xg)

Find an asymptotic expansion of f(z) if + — 0. Consider the derivative of
the expansion and show that the derivative is not an asymptotic expansion

of f'(z).
Obviously it hold that

lin% flz)=0
because we have
| e /% cos(e/™) | < e 30 g

Furthermore we have

limif(;t:)ZO Vme N

r—0 g™

Hence one gets f(x) ~ 0 if 2 — 0.
Consider the derivative of the function f(x)

fl(z) = 2 (6_1/952 cos(el/xQ) + sin(el/xQ) )

3

16



The first term of f'(z) has the same asymptotic expansion as f(z). The second term
2

g sin(el/xQ)

does not converge to 0 if + — 0. Therefore the relation f'(z) ~ 0 if £ — 0 can not be

valid.
(Remark:

Let f(z) be a continous function on IR. The formal power series

o0

Z an(r — x0)"

n=0
is called asymptotic expansion of f if  — zq (

o0

f(@) ~ 3 anle = o))
it
N
f(@) = ¥ an(x — 0)"
xh_%lo (;zi z0)V =0

holds for all N € IN).

Exercise 2.2

Find the behaviour of y(z) if + — o0 and
1
vy'(2) +y(@) =27 + 5y"(2) (10)

(Use, that
1 71 2
Erf(z)=1- \/—% (; + y(x)) e ™ )
It is easy to verify, that
y(@) = Vre (1 = Exf(x)) — —
x

is a solution of the differential equation (10).
We now look for an asymptotic expansion of y(z) if © — oo. We use a result presented
in the lecture, namely

e 1 3 15 1
Erf(z) =1 — <1—— — - — O—) 11
(@) NLT 22 + 4zt 8xb + ($8> (11)
If we use the expansion (11) of the Error function we get
1 3 15 1
i =— —|l—-=—+-—+4+0(—
y(z) 223 < 222 + 4t + (:UG))

as asymptotic behaviour if x — oo.
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3 Asymptotic Expansions of Integrals

References:

Bleistein, N. and Handelsman, R.A.: Asymptotic Expansions of Integrals, Holt, Rine-
hart and Winston, New York, 1975.

Olver, F.W.J.: Integrals Asymptotics and Special Functions, Academic Press, New
York, 1974.

Let us consider an integral I(x)

I(x) = /f(t,;z:) a

We want to investigate the asymptotic behaviour of I(z) as 1.
This is a very large field in asymptotic analysis (see for example the book of Bleistein
and Handelsman) — the exercises cover the following cases

1) Laplace Integrals

o0

Flz) = / e~ f(t) dl
0
where z € C and f € L],

2) Generalized Laplace Integrals

o0

/ e £ (1) dt

0

where ® : [a,b] — IR.

3) Complex integrals
/ e W (1) dt

Ca,b

where a,b,t € C and C, a curve in C connecting a and b.

4) Generalized Fourier Integrals

where f,® : [a,b] — IR

18



The method used are
1) The Watson Lemma for integrals of type 1) and 2)

2) The method of the steepest descent for integrals of type 3) (or constant phase
curves)

3) The method of stationary phase for integrals of type 4)

Exercise 3.1
Evaluate the asymptotic expansions if x — oo for

2

m/
Cl) / e—a: tant dt

0

b) /e—xsinth dit
0
T

/2
0) / (1 4+ 2)e= st dy

—7/2

We will use Watson’s Lemma to evaluate the asymptotic expansions.

Lemma (G.H. Watson, Proc. London Math. Soc., Series 2, 17, 116-148 (1918))
Consider the integral I(z) with

o0

I(z) = / e~ f(1) dt

0

Let f(t) be locally integrable on (0, 00), bounded for finite ¢ and

m=0
Then .
— —ztiam — F((Lm + 1)
I(z) Nmz::()cm/e b dt = z_:ocm pr—
if £ — oo.

19



We consider the case a)

/2

://e—xtantdt
0

u=®(t) =tant with (1) =

. o0 1
=//e_“7du
1+ u?
0

We choose |

cos?t

and get

So we may define

and use Watson’s Lemma.
The function f(u) has the (Taylor) expansion

o0
) ~ Z epu®™ =1 —uw? +ut —uf +u® —

Therefore the asymptotic expansion of /(x) is given by

= I'(2m+1)
m=0

We consider the case b)

o0

/e—xsinth dt

0

We choose

u = ®(t) =sinh®t with ®'(t) = 2sinh ¢ cosh ¢
and get
du

0/e (4u( 1-|— u?))1/2
The asymptotic expansion of f(u) is

o0
E Crpy ™

=0

1 w12 _ 1 u3? 3 W2 5,11/2
2" PR 304 T

20



Using Watson’s Lemma we get

CIT(1/2) 1 T(/2) 5 T(9/2)

@)~ 5 —5m —1 wk 30 298

We consider the case ¢)
| w2+ 2t ar
—r/2
We divide the complete integral into
[ rr+2emetat= [ o+ 2e ot + [ n/2(+2)e e di
—x/2 —r/2 0

Using the transformation v = cost we get

1

1
—xcost _ —ru ;
—7/2 0
The f i ! b ded
e function f(u) = 4m can be expanded as
flu) = 4; =4 +222 + §174 + §.176 + O(xg)
(1 —u)/2 27 4
and we get
4 4 36 1
Exercise 3.2
Consider _
1 7.
Jo(l') — Re — / em:cosht dt
T

%
Show, that there exists two curves (1) and o,(¢) which run from —ooc £ 7
to oo F i3 through the point = 0.

We have to separate the function
®(t) =icosht t complex
into real and imaginary part. We set
t=7+10

21



and get
®(r 4+ 10) = icosh(r +i0)
= —sinh7sino +2cosh7coso
and
¢ =7(r,0)+:1¥(r,0) Y(r,0)= —sinhtsino W(r,0)= cosh7coso

The curves of constant phase are given by ¥(7,0) = const and the curves should run
through the origin, hence
coshtcoso =1

The curves are given by the implicit function K(7,0) = 0 where

K(r,0) =coshtcoso —1 (12)
Hence there exists a function o = o(7) in a neighbourhood of a point (7o, 0q) if
9K
M = —coshrsino # 0
do

The partial derivative is not equal zero as long as ¢ # n7 with n € IV.

3’/T_ T I ]

or L N 4

=27 )~

—37T — | | | | 1

Fig. 3.1: Curves of constant phase

Using the two curves o1(7) and o3(7) we get

/2 —oco—1m/2 co+im/2
/ eix cosht dt = / eix cosht dt-l— / eixcosht dt-l— / eixcosht dt-l— / eiaccosht dt
—im/2 —im/2 a1(t) /2 oa(t)

The rest of the exercise is left ot the reader.

22



Exercise 3.3

Lemma

Consider the generalized Fourier integral

b
I(z) = / F(1)e=®0 dt

Show that, if f € £, ® € C'([a,b]) and @' has only a finite number of zeroes
in [a, b],
I(z) =0 if - o

Proof:
Denote the zeroes of ®(t) in [a, b] by

S1 < S < ... < SN
Define

So=a SN+1 =0
Now the integral I(z) can be written in the form

N Sntl

@)=Y [ fit)e=*ar

n=0 g

For every intervall (s, s,41) we have

() £0  V1E (Sn,5np1)

Therefore the function ®(¢) is monotone on very intervall. We consider the transfor-
mation

u=®(t) du = ®'(¢) dt
For the single integrals one gets

Sn41 Q(sn+1)
/ f(t)em@(t) dt =

Sn @(sn)

fo®(u)
(¢ 0 d=1)(u)

eZl"U, du

For every integral we may use Riemann—Lebesgue Lemma, because the function

% is locally integrable (which is a direct consequence of the locally inte-
grability of f). ]

23



Exercise 3.4

Consider the integral
b
I(z) = / F(£)ei*®® dy (13)

Evaluate the leading term of 7(z)
if ®(a)=...= 0" (a) =0 and f(t) ~ At —a)*, a > —1.

The point t= a is called stationary point if
®'(a)=0

Furthermore we consider in this example the case that

d'(a)=..=3P(a)=0
We write (13) in the form
ate b
I(z) = / f(t)e=®® dt + / f(t)e=®® dt
a a+e

It holds that
/ F(H)e™*® dt = O(1/z)

ate
Consider
ate ate
= /f(t>eix<1>(t) dt ~ /A(t_a)aeiz'(@(a)+Rp+1(t))dt
where ( +1)( |
PP a
R - - 7 t —a p+1
p+1 P+ 1) ( )
We get
]1 2x<1> /Saeszsp‘H
0
where 1
C= ®P+(,
TETRNE
Remark:

Using the transformation we have, at the same time, enlarged the domain of integra-
tion on IRy. This is valid because we are looking for an asymptotic expansion:

On the intervall [0, oo] the function under the integral has only a vanishing derivative

24



at the origin. The part which is added by going to the whole half space converges
like 1/ if @ runs to infinity. Because we have a vanishing derivative at the origin one
would expect a slower convergence on bounded intervall. Therefore we do not change
the asymptotic behaviour by taken the whole half space as domain of integration.

Using the transformation

o a+1l
U= n 78
we get
Ii(z) ~ Ae'r?() /eixoluﬁ ds
0
and
g = ptl
' a+1
¢ = (a+1)

Now we are able to determine the leading term.
Consider the integral

J(z) = /eiszP ds
0
and K > 0.
In order to evaluate the asymptotic expansion of the integral we try to separate den
imaginary part of the integral such that we need only to calculate the real part — if
we reduce the problem to a real integral we may use Watson’s Lemma.
To separate the imaginary part we use the relation

e = cos ¢ + isin ¢
w1
Takind a rotation in the complex plane with angle 5> i.e. the transformation
P

i
S =¢€

(ME]

1
PT

the integral J(z) becomes

=

J(z) = e /exp(i:ﬂls’e”/QTp) dr
0

Caution:
This is a coordinate transformation and not a deformation of the path of integration

25



in the complex plane

It holds that

e'™? = cos /2 + isinw/2

and hence

and the integral on the right hand side is real.
If we choose

=K Lo Kpr?
dr
we get
J(;E) = ezgillfl/p\/ul—l/pe—l‘u du
p

Using Watson’s Lemma we get the asymptotic expansion
;El 1 ,1/ _1/
J(x) ~e2r—K/PT(1/p)a™"/"
p

and this leads directly to the asymptotic expansion

H(zP(a +§l 1 1 18
(a) ~ AT 5) ()

Exercise 3.5

Find the leading term of

1
]($> — /eix(t—sint) dt
0

We may directly apply the result of exercise 3.4.
If we choose

O(t) =1t —sint
we get for the first derivatives
¢0) = 0
®'(0) = 1—cos0=0
®"(0) = sin0=0
d(0) = cos0=1

26



Comparing with exercise 3.4 we have the parameter

As leading term we get

I(2) ~ %e”/GF(l /3) (%)1/3

X

4 Perturbation Methods in Differential Equations

References:

Kevorkian, J.: Partial Differential Fquations, Analytical Solution Techniques, 1990.

Wasov, W.: Asymptotic Fxpansions for Ordinary Differential Equations, John Wiley
& Sons, New York, 1965.

A perturbation problem for differential equations is an differential equation including
a small parameter ¢.

P(D,e)f =g

In the same way we can have the problem
P(D)f =g

and the small parameter ¢ is included in the boundary values.

The expansion f(z,e) = > e"f,(z) is called a regular perturbation if the solution fy
of the unperturbed problem (i.e. if ¢ = 0) is available. The correction fi, fs,... are
computed recursively.

In the following two exercises we consider the case, that the partial differential equa-
tion is independent of ¢ and the small parameter ¢ is included in the boundary values.

Exercise 4.1

The flux through a slightly corrugated channel is given by the solution
u(z,y;¢e) of
Au = -1 in J|y| < h(z,e) =1+ ccoska
u = 0 on |y| = h(z,e)

and u(z,y;¢) periodic in z.
Evaluate correct to order ¢ the average flux per unit width

A 2r/k h(z,e)
E./ / u(z,y;e)dy | da
0 —h(z,e)
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We consider the unperturbed problem ¢ = 0

Ay = —1 in |y| <1
v =0 on |y =1
27
’U(O,y) = u(?ay) Yy € [_L 1]

For small values of ¢ we consider the expansion
u(z,yse) = i enu(”)(;v, y) = u(o)(:v, y) + Eu(l)(;v, y) + e2u® 4 O(e?) (14)
n=0
Together with the equation Au = —1 we get
i &:nAu(n)(x,y) =—1
n=0

and compare, as usual, powers in ¢

el Aul® = —1
e Aul™ =0 Vn>1

The correction functions (™ (z,y), n > 1 are harmonic and u(®)(z,y) is the solution
of the unperturbed problem.

What are the boundary conditions?

We consider the boundary condition on the upper boundary of the channel
u(z, h(z,e) =0

Because the function u(z,y;e) is given in the form (14) we may consider the Taylor
expansion of u(x, h(x,e)) around (z,1).

u(z, h(z,e) =Y g‘ Z(@, ) (h(z,e) = 1) =3 g‘ 2 (@,1)e" cos™ ka
n=0 y n=0 y

together with the condition
u(z, h(z,e)) =0

We again use the expansion (14) to get

o0

u(z,1) = Zu(”)(;v,l)
n=0
0™ u(z, 1) Gy
R R 1 >1
aym n=0 aym ('1:’ ) \v,m N



and finally

[e%e] o) o0 2,
Z E”u(”)(:p 1)+ Z dulr (z,1)e "t oeos kx + Z Ou (x 1)6”+2 coskx+..=0
n=0 n=0 y
The comparison of e—powers gives
e uwOz,1)=0
ou®
e wM(z,1) = —cos ka ;‘y (z,1)
out) Ou®
et u®(z,1) = —cos ka v (2,1) — cos® kx v (z,1)
y y

Let us conclude:
In order to evaluate the integral

1 2r/k h(z,e)
Ll u(z,y;e)dy | d
. / ( / u(z,y; ) y) x

0 h(z,e)

up to order £ we have to solve, recursively, the following three boundary value prob-
lems

1)
Au® = —1
Oz, lyl=1) = 0

u©(0,y) = u(o)(%ﬂ,y)
2)
Au) = 0
uV(z,1) = —cosk:cag;)(:v,l)
D —1) = —cos xag;)(x,—l)
uM(0,y) = u(”(%,y)
3)
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9. (1) 97,(0)
u(2)($,1) =  — oS kxa;y (z, 1)—cos2 kxagy (z,1)
() Du(®)
:u/(2)(:g’—1) = —cos k"ﬂa (,—1) — cos? kxa.u—(fﬂa_l)
dy dy
2
(2)(0 y) = u(l)(%,y)

The solution of problem 1):

Au = —1 (15)

on a rectangle R with homogenous boundary conditions.

We get a solution of this problem using the Green’s function G(z,y;&,n):

Let us suppose that the rectangle R is given by R = [0, a] x [0, b]. The Green’s function
is constructed using a conformal mapping of the circle into the given rectangle. The
derivation can be found Courant, Hilbert: Methoden der mathematischen Physik I,
Seite 335.

One gets

sin kZx sinmyysin k2§ sinmyn

G(z,y;€,m) = —

The solution of problem (15) with homogeneous boundary condition is given by

=/a/bGIy€?7dfd?7
0

Solution of problem 2):

We have the equation
Au=20 (16)

on a rectangle with given boundary values.
Again we assume that the rectangle is given by R = [0, a] x [0, b].
Using separation of variables
u(z,y) = X(2)Y(y)

we get two ordinary differential equations for X and Y.
The general solution of (16) is given by

u(z,y) =Y [C sinh = T + D, cosh = T sin 222

a

n=1

Using €', und D,, the boundary conditions have to be fitted. The boundary conditions
of u depend on the solution of problem 1).

Solution of problem 3):

Make the same as in case 2)
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Exercise 4.2

o(x,y,;¢) und A(e) are solutions of the eigenvalue problem
gretpn +Ap=0 in 0<s<n e(r-or<y<n

and ¢ = 0 at the boundary.
Find the order ¢ correction for the unperturbed eigenvalue 2 and the cor-
responding eigenfunction ¢ = sin x siny.

How do we calculate the solution of the unperturbed problem?

Consider the linear eigenvalue problem
Ap+ i =0 in [0, 7] x [0, 7]

and ¢ = 0 at the boundary.
We use an Ansatz

ple,y) = X(2)Y(y)
and get the equation
XezY + XY, + AXY =0

This equation can be written as

Xow _ Yy +AY
X Y

Now, the left hand side only depends on the variable =, whereas the right hand side
depends only on y. Hence we get for X and Y the ordinary differential equations

Xow — kX =

with an arbitray constant k& € IR.
The corresponding boundary conditions are

X0)=X(r)=0 und Y(0)=Y(r)=0

We already know that nontrivial solutions together with the prescribed boundary
conditions only exists if the constants & and A statisfy the conditions

—k=n? und A—k=m?

with arbitrary integers n,m € IV.
Hence we get

A =n?+m? with n,m & IN (17)
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In the current exercise we investigate the perturbation of the unperturbed eigenvalue
A = 2. If we set n = m = 1 relation (17) is fulfilled!

We now try to calculate the solution of
Ap+Adp =0 0<z<mex(r—z)<y<rm

and ¢ = 0 at the boundary (up to order ¢).
As usual, we consider the series expansion with respect to the small parameter e:

e(z,ye) = Y e (a,y)
n=0

Ae) = Yo ema
n=0

Using the given eigenvalue we get (we are only interested on the order ¢)
Ap© 4 eApM 4 ()\(0) 4+ 5)\(1))(@(()) 4+ 599(1)) +0(eH) =0
If we compare coeflicients in e—powers we get

¥ Ap® 4 A0, =g
e Agp(l) + A(O)¢(1) + )\(1)99(0) -0

Now we have to derive the boundary conditions for both equations at the boundary
of [0,7] x [0, 7] (we use the same technique as in exercise 4.1)

2, d"p en .
99(.17,6:17(71’—[E>,€) _7;) ayn (ra())ﬁw (ﬂ— _:E)

and
oz, ex(r—a);e) =0

If we use the expansion of ¢(z,y;¢e) we get the two boundary conditions
pO(z,y) = 0

¢W(z,y) = a(z—n) o (z,0)

The function () is exactly the solution of the unperturbed system and we set
A =9 ©(z,y) =sinaxsiny
Hence the boundary condition for ¢™)(z,0) is

e = 2(x — 7)sinz
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We now consider the problem
AW 4200 £ AW ginzsiny =0 (18)
with boundary conditions
pD0,y) =W (r,y) = W(z,m) =0 ¢V(2,0) = 2(z —7)sinz

Because of the boundary conditions (especially the condition p™)(0,y) = M (7, y) =
0) we assume the solution to be a Fourier series in x

e W(z,y) = 3 an(y) sinnz
n=1

where the coeflicients a,, = a,,(y), n € IN are functions of y.
Using equation (18) one gets

> [(ag(y) + (2 — n*)an(y)) sin nw] + AW sinzsiny =0
n=1

with boundary conditions
Z an(0)sinne = z(x—7)sinz
)

n=1

o0

D an

=1

sinnz = 0

3

The set of functions {sin na},en constitutes a basis on the space C([0, 7]) of functions
with boundary conditions f(0) = f(x) = 0.

Hence we get

ay(y) + ai(y) + AV siny =

a,(y)+ (2—na,(y) = 0 Vn>l1

Now we have to construct the boundary conditions for the given equations.
From the relation

o0

Z an(7)sinne =0

n=1
it follows directly
ay(m) =0 Vn>1

In order to calculate the coundary condition at y = 0 we have to compute the Fourier
coefficient of the function z(z — 7) sin x:
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We know that

o0

Z an(0)sinne = x(z — 7)sinx
n=1
and hence _
2 o
a,(0) = —/ z(x —7)sinzsinnadx
Vs
0

One calculates (—1)"(n? ) — (n? )
Gn(o) =—4 (nz _ 1)3

and
—é(7r2+3) if n=1
an(0) = 0 if n>1 gerade
8n
(21
We first consider the solution if n > 1 and even. According to (19) we have to solve
the ordinary differential equation

if n>1 ungerade

"

an(y) + (2 = n*)an(y) = 0

with boundary conditions

Now it holds that
2-nt<0

We already know that nontrivial solution only exists, if
2 —n?=m? with m € IN
Hence
a,(y) =0
It n > 1 and n odd, we have to solve the differential equation
a,(y) = (n* = 2)an(y)

with boundary conditions

n

AR

an(7) =0

It holds that
2-nt<0
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We get the solution

an(y) = epsinhvn? —2 (7 — y)

with
1 n

sinh 7v/n? —2 (n? —1)2

Finally it remains equation (19) for the Fourier coeeficient a(y)

Cp = —

ay (y) + ar(y) + AV siny = 0

with {
ay1(0) = —6(772 +3) ay(r) =0

The homogeneous equation
"

a,(y) + ai(y) =0
has the general solution
w(y) =asiny + bcosy

(We can directly assume that ¢ = 0 because the function sin z siny is the solution of
the unperturbed system)
In order to construct a special solution we take the Ansatz

z(y) = (a + bx)siny + (¢ + dz) cos y
and get the equation
2y) + 2(y) + A\ siny = (20 — a — by) cosy + (a + bz — 2d + X\V)siny = 0
It follows that

26 —a—bx =0
a4 br—2d+ )\ =0

and the solution is

d
=b=0 AV =_=
¢ 2
The special solution is given by
A
z(y) = — 5 cose
and the corresponding solution ay(y) is
A

a(y) =bcosy — —5ycosy
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Now we have to fulfill the two boundary conditions
1,
a:1(0) = 6(71‘ +3) ar(7) =0
From the first condition we directly conclude that
1
b= 6(772 + 3)
In order to fulfill the second condition we end up with the following restriction on

A

1 .
A = — (2243
377(7r +3)

Now we are able to give the expressions for the order € correction of the unperturbed
system

AMe) = MO 4 M O
1. A
= 24 Eg(ﬂ'z +3) + 0(?)
ple,yie) = @Ox,y) + eV (e,y) + O
o L, . 2 .
= sinzsiny + 58(77 +3)(1 — —y)sinz cos y
T
+ Z asky1(y)sin(2k + Dz + 0(52)
k=0

where

a1(y) = corprsinh[(4k% 4+ 4k — 1) (x — y)]

1 8(2k + 1)
sinh[(4k? 4+ 4k — 1)'/27]  (4k? 4+ 4k — 1)?

Cok+1

5 Singular Perturbation: Matching
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Consider the perturbation problem
L.f=0

A perturbation problem is called singular if the operator L. is defined for ¢ > 0 and
L has a different character.
For example we have an ordinary differential equation

Ly=cy'"+y +y=0 in [0,1]
If ¢ > 0 we have to prescribe two boundary conditions, for example we set
y0) =y y(l)=wun (19)
If we consider the unperturbed problem
Loy=y'"4+y=0 in [0, 1] (20)

only one boundary condition is needed and the problem (20) together with boundary
conditions (19) may have no solution.

Such problems often lead to infinitesimal layers for example near to a boundary:
The change in the equation from ¢ > 0 to ¢ = 0 is a small effect which can only be
seen near to a boundary. To get the correct behaviour inside the layer it is useful to
introduce a scaling in order to enlarge the layer.

Now we can consider two asymptotic expansions

1) an outer expansion which should be valid outside the layer
2) an inner expansion which should be valid inside the layer

Furthermore one may try to find 'matching conditions’ such that both expansion
conincide within an overlapping domain. One may also investigate where the layer is
located and what is the correct scaling for the layer.

Exercise 5.1

Consider the equation
ey +(1+e)y' +y=0 in [0,1], y(0)=0, y(l)=- (21)

Find 2 terms of the outer expansion, 2 terms of the inner expansion and
match.
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In order to compute the explicit solution of (21) we compute the roots of the quadratic
polynomial

P(z) = ez + (I+e)z+1 (22)
The zeroes are given by
AN =1
o -1
€

and hence the general solution of (21) is given by
y(x) =be ™+ bye~*/*
Using the boundary condition one gets
y(0) = bi+by=0

1 1
y(1) = b—+ bye '/E = —
e

e
It follows that the explicit solution is given by

y(z) = C (e_x — e_x/a)

e—l

C =

e~1l _ g—1/e

Figure 5.1 illustrates the explicit solution for various values of e.

Fig. 5.1: Explicit solution of (21) for various ¢
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The outer expansion

We want to construct the outer expansion of the solution of (21)

y(ase) = i & fol)

and
o0

> () + (L4 )" i) + " ulw) = 0

n=0

Now we have
e o+ fo=0 fo(l) =

A fa=0 f(1)=0 Yr>1

o | =

The solution is given by

folz) = e7*
falz) = 0 Vn>1

The outer expansion terminates with fo.

The inner expansion

We apply the scaling

{= §(&e) = y(e€;e)
with
ﬁ& =&Yz lﬁé& = 52ym¢

and get the equation
1 1
iy 1+ 2)4 =0
e (L4 )ge 49

We take an expansion of the form
j(&e) =) c"ga(6)
n=0

and

[oe]

1
> (g + (14 D)+ ) =0
9

n=0

and the boundary condition

> e"g,(0)=0
n=0
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(23) leads to the equations
et gitg=0  g(0)=0
et g Gt g =0 g, (0)=0 ¥Yn>0

The solution of the first equation is

90(§) = Ao(1 — ™)

Hence we get for ¢4
g +91+Ag=0
and
91(6) = Au(1 —e™%) = Aoé

The equation for gy reads

G+t oi+gs+9;=0
or

gy +gh— Al + A — Ag =0

and
2

§2(8) = Ay(1 —e™8) — A€ + Ao;
Now we match the inner and outer expansions.

Choose an intermediate variable g

T] = — = f{—:l_a
€OA

for some 0 < a < 1, such that if we keep 7 fixed and let ¢ — 0, then  — 0 and
£ — .
The outer expansion gets

2a 3o

Ey=e =e""=1-¢"n+ %Tl2 - %773 +0("n") (24)
and the inner expansion
Hiy = Ao+ EST +e(A;+ ES.T —e*nA,) (25)

A
‘|‘52(A2 + ES.T. — ga_lnAl + 520:—277270) 1o

52

= AO + EQT]AO + TT]QAl + €A1 — €$A1 + €2A2 + EST + ...
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We get the equations

/40 == 1
Al == 0
A2 - 0

Hence the inner expansion is

1
Hy=1- et — el + 55252

1 | |
outer expansion —

0.8 H inner expansion — _|

0.6 { _

04 B \Y

0.2 _
0 ' ' I I

0 0.2 0.4 0.6 0.8 1

Fig. 5.2: Matched outer and inner expansion for ¢ = 0.01

One may recognize the overlapping region where the inner and outer expansion coin-
cide and compare the solution with the exact solution shown in figure 5.1.

Exercise 5.2

Consider the equation
by + ¢ = hy in [0,1] @®(0)=0, &(1)=1 (26)

Do van Dyke’s matching rule for P=(¢Q =2 and P=0,Q = 1.
Show for the given example that

EpHo® = HoEp®

can always be satisfied, i.e. for all P and ().
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For problem (26) the outer expansion with P + 1 terms is given by

Ep® =1+ i(—e)”[h(”)(x) — h™M(1)]

n=0

the inner expansion with ) + 1 terms by

3" At 4 S (et 3 (28
HQ(I)z(l—e)z_%An&t +§_:1(—€>h (02—

and £ = z
€

van Dyke’s matching rule for P = Q =2

We compute the two terms expansion F,® and Hy®
Ey® = 1+h(z)—h(1) —e(hV(z) = hDQ)) + 2(hP(2) — hD(1))

0,0 = Ao(l—e_f)—l-eAl(l—e_f)—l-e?Al(l—e_f)+€h(1)(0)€+62h(2)(0)(%—5)

and hence we get
EgHQq) = E2 [ Ao(l — e_f) + EAl(l — e_f) + €2A2(1 — e_f)

+ehM(0)¢ + 52h(2)(0)(§2—2 -6 ]

= E2 [ Ao(l - e_x/a) + €A1(1 - e_x/a) + €2A2(1 - e_x/a)

+2zhM(0) + 52h<2>(0)("’5—2 — Iy
2¢? ¢

2
= Ao+ 2hW(0) + %h@)(O)aAl — cxh®(0) + 24,
and

HyEp® = Hy [1+ h(z) — h(1) — e(hO(z) — hI(1)) + &2(h®)(2) — KO (1))]
= Hy [1+h(e€) — h(1) — e(AM () = K (1)) + e2(hP () — hP(1))]
= 1+ h(0) +£rM(0) + 52%1(2)(0) — h(1)

—ehW(0) — 2hPD(0) + M (1) + 2D (0) — 20P(1)

Taking
Egng) == HQEQq)
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and using

we get
Ao = 1+ h(0) —h(1)
Ay = hW(1) = rM(0)
Ay = K0) - r®(1)

van Dyke’s matching rule for P =0, Q =1
We compute Fq® and H,d:

Eo® = 1+ h(z)—h(1)
Hi® = Ag(l —e 8)+cAy(1 —e ™€) +ehM(0)¢

Now
EoHy® = FEo[Ag(l —e &)+ eAy(1 —e ) +ehD(0)¢ ]
= B[ Ao(1 —e ™)+ cA1(1 —e™%) + B(0)z ]
= Ao+ M (0)z
and

HEq® = Hy[1+4 h(z)—h(1)]
= Hi[1+4h(c€)—h(1)]
= 1+ h(0) — k(1) +£rM(0)

Using again

D (0)z = c£hM(0)

we have

Ao =14 h(0) — h(1)
It is clear, that we only get the constant Ag of the zeroth order.
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van Dyke’s matching rule for general P and @)

Take again

Bp® = 1+ 3" (— ) [h")(x) — K1)

n=0

3 & n ? ny(n) Y (_g)k
HQ(I):(l—e )Z_%Anaf +z_:1(—5> h (O)E L

We first evaluate Hg Ep®:

HoBpd = Ho[1+ 3 (~e)" () — AO(1)]]

— Hy[l+ Z@(-e)n[h“)(eé) — A1) ]

= 1+ H [ Y(—e)"[h"(e€) = (1] ]

n=0

min(P,Q)

= 17X (T o) - )

Now we compute the opposite expansion Ep Hg®:

Q Q
EpHo® = Ep[(1—€)> A"+ (¢
Q Q
= Ep[(1—e")3 Ape™+ > (—¢
n=0 n=1
min(P,Q) n
= > A +Ep[z 0

The rest of the exercise is left to the reader.

Exercise 5.3

Find the interesting scalings for
2"y +y=1 in [0,1], y(0)=0

if0<m<1and if m=1.
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We take as outer expansion
o0
y(x) =3 " ful2)
n=0

and get the equation

> (e fofe) + € falw) =1
hence .
¥ folz)=1
e 2 () + ful) =0 Vn>1
and

folz) =1
fulz) = 0 Vn>1
The outer expansion terminates with fo.

Consider the case where 0 < m < 1:

We try a scaling in the form

and get
g(&) = (™) ge(§) = e"y2(e7¢)
Equation (27) becomes
Smasagn b= 1
We get the interesting scaling if (28) is independent of e:

€1+ma—a — 1

or

1
l+ma—a=0 o=
1—m

The first term of the inner solution is calculated by considering the equation
"ge+y=1 §(0)=0

with solution

é‘l—m
ol€) = 1 —exp(E—)
Using the scaling ££7/0-™) = 2 we get
1-m

y(x) ~ 1 - exp(m)

which is the exact solution of the problem if 0 < m < 1.
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e=0.50 —
0.8 7
0.6 - _
0.4 _
0.2 _
0 | | | |
0 0.2 0.4 0.6 0.8 1

Fig. 5.3: Solution for m =1/2 and ¢ = 0.5

0.8 - _

0.6 - _

0 | | | |
0 10 5-1074 1073
Fig. 5.4: Solution for m = 1/2 and ¢ = 0.01

Now consider the case if m = 1:

We try the scaling
{=—— (29)

with

and equation



= if m =1, the equation is invariant under a scaling of the form (29).
We need a scaling which is not of the form (29). Consider

£ =o'
For fixed  we have £ — 0, if ¢ — 0 and the boundary layer at * = 0 shrinks.
9(6) = y(&)
() = e y(€)
and the equation gets
e b= 1
= {ety=1

with boundary condition ¢(0) = 0.
The equation can be transformed into

(&9 )e=1
and by integration we get
Ei=t+e
with an arbitray constant c.
It follows that c
g(€) =1+ ¢

but obviously the solution diverges if £ — 0.
This means that the equation (27) with the given boundary condition has no solution
for e > 0 and m = 1.

Exercise 5.4
Consider
sy + 2y 4y =0 in [0,1], y(0) =0, y(1) =1 (30)

Find the appropiate scaling for a boundary layer at + = 0 and construct
the inner solution, find the outer solution and match!

We consider the scaling

and the equation
€' e + e e + =0 (31)
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We get the appropiate scaling for the boundary layer at x = 0 if we have a balance
between the first and second term of (31):

1-2 = —=
¢T3
— 2
a = -
3
Equation (31) becomes
e e + &P g+ =0 (32)

To calculate the outer expansion we take

y(z) = ioe“fn(:c)

and
Z_% (E”Hf,/;(x) + (22 (2) + fn(;v))) =0

with boundary condition Y e"f,(1) = 1.

et 2 PR) + folx) =0 fo(l) =1

S @) 2P+ fule) =0 fu(l) =1 n>1
The solutions are given by

folz) = o2 P42

1 1/2
filz) = —5(5 _ 47V _ e e /249

For the inner expansion we take

TGED LA

and get
S (eIB(g(€) + €291 (€)) + €729 (€)) = 0

n=0
with boundary condition 3~ &"/3¢,(0) = 0.
e g+ =0 go(0) =0
e W+ =0 9(0)=0
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The solutions are

go(6) = Ag(1—e™9)
g1(€) = Ao(l —¢&—e (14 £)) + A(1 — exp(—¢))

As an exercise, the matching of the two expansions
, —2z1/242 l —1/2 —1y,.—2z1/242
ylz) ~ e 52(5—43: —x7 e

§(€) ~ Ao(l—e®) + e (Ag(1 — € — e (1 + ) + As(1 — exp(—£)))

is left to the reader.

Exercise 5.5
Consider the Burger’s equation
U + Uy = EUgy (33)
with
o ={ 7 tS

Introduce a corner layer by considering

_eFt
S TE

and choose §(¢).
(see also Kevorkian, Chapter 8.3, p. 500-501)

The outer expansion

The outer expansion is given by

and terminates with ug.
Near the point * = £+t we need to introduce a corner layer to get a smooth transition
between the two sides. We introduce the scaling

rFt

TE
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and
(1, 5¢) = u(t, 6(c)€ £ 1) (34)
We compute
Ou _ 0u_ 1 0u
By o1 T 8() 0¢

ou _ 1 0u
or  6(e) 0¢
0*u 1 0%

dx? 6(e)? 0€?
Substituting (34) into (33) we get

ou_ 1 du .1 du_ e O 4
9 Tae0e T s 0~ s(r oe (35)

Since we are looking for a corner layer at + = +t we expand the function wu(t,§;¢)
around the values +1

u(t, §e) = £1 4+ v(e)te(t, &) + o(y) (36)
Using (36) equation (35) reads

Jtu, v 0.

v vy Ot ey 0%,
o0 T s oe

soe ~ s oe 0

+ (1 +7a.)

This equation can be simplified

ot ~*. Ou. ey 0.
o T ~ 5 g T o0

To get an equation independent of the scaling parameters we have to set

_ T _ =
i 5 52

or
"}/ = 5 = {—:1/2

Then the full equation is
ou. . Odu. 0%,

or TlepE T e

Hence the scaling for the corner layer is given by

§(e) = e'/?
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