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Abstract

The identification of entities that play an important role in a system is one
of the fundamental analyses being performed in network studies. This topic is
mainly related to centrality indices, which quantify node centrality with respect
to several properties in the represented network. The nodes identified in such
an analysis are called central nodes. Although centrality indices are very useful
for these analyses, there exist several challenges regarding which one fits best
for a network. In addition, if the usage of only one index for determining cen-
tral nodes leads to under- or overestimation of the importance of nodes and is
insufficient for finding important nodes, then the question is how multiple in-
dices can be used in conjunction in such an evaluation. Thus, in this thesis an
approach is proposed that includes multiple indices of nodes, each indicating
an aspect of importance, in the respective evaluation and where all the aspects
of a node’s centrality are analyzed in an explorative manner. To achieve this
aim, the proposed idea uses fuzzy operators, including a parameter for gener-
ating different types of aggregations over multiple indices. In addition, several
preprocessing methods for normalization of those values are proposed and dis-
cussed. We investigate whether the choice of different decisions regarding the
aggregation of the values changes the ranking of the nodes or not. It is revealed
that (1) there are nodes that remain stable among the top-ranking nodes, which
makes them the most central nodes, and there are nodes that remain stable
among the bottom-ranking nodes, which makes them the least central nodes;
and (2) there are nodes that show high sensitivity to the choice of normalization
methods and/or aggregations. We explain both cases and the reasons why the
nodes’ rankings are stable or sensitive to the corresponding choices in various
networks, such as social networks, communication networks, and air trans-
portation networks.
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Chapter 1

Introduction

There exist many complex systems in the world that are comprised of a collec-
tion of individuals or components that are connected to each other. One way
to study such systems is to represent them as a network [62]. A network en-
compasses a set of entities (so-called nodes) that are linked with respect to a
specific type of connection (e.g., a social relation) that is represented by using
an edge between the corresponding pair of nodes. This type of representation
allows addressing many research questions that scientists face analyzing data
from many different areas, such as sociology [12], medicine [4], biology [3],
and economy [79]. In fact, network analysis is an interdisciplinary field, which
provides a means for expressing concepts in networks using a set of formal
definitions [90].

In recent decades, interesting network analytic methods and ideas have
been proposed, ranging from graph theory [15] via statistics [49] to physics [1,
19], to qualitatively analyze the structure of a network and study the connec-
tions between a pair of nodes or those between larger groups. In addition to
the analysis of the connections, there is great interest in identifying important
nodes (also termed influential nodes) using network analytic methods such as
centrality measures. These measures aim at obtaining indices that character-
ize important nodes and allow identifying the major structural center and/or
quantifying the influence of individuals who control processes in a network [50,
51, 10]. One main source describing what centrality means and what centrality
measures compute is a paper published by Freeman in 1979, where he states
the three classical centrality measures: degree, which measures the direct influ-
ence of a node using the number of connections it has in a network; between-
ness, which counts the number of shortest paths in a network that pass through
a node; and closeness, which quantifies how close a node is to other nodes in
terms of distance in a network [30]. Depending on the type of system and the
interactions between nodes, representations other than simple representation
are used, such as weighted networks [65, 61, 70] or temporal networks [38, 72,
20]. More complicated representations of systems include so-called multiplex
networks, where the entities in the node set are linked using multiple types of
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relations [90] or interactions [47] in multiple layers of the network. An exam-
ple of the latter would be the friendship and co-working relationships among
members of an organization (who are represented as nodes) represented in two
layers of a network. Accordingly, network analytic measures have been ex-
tended from simple networks to other types of networks in recent years [71,
81, 22, 23, 41, 7]. Researchers mostly use classical centrality measures or define
their own measure depending on the property they are interested in capturing.
In the context of such analyses, an indispensable part of presenting the results
of almost all centrality measures is “centrality ranking”. Simply put, central-
ity ranking allows nodes that are more important than others to be observed
better; those that are at “the thick of things”, as Freeman states 1. There is no
doubt regarding the usefulness of centrality measures and their applicability in
network analysis— a huge number of studies ( 130, 000) were found on Google
Scholar in October 2017 for ”centrality ranking”. However, several challenges
exist regarding their usage in various types of networks, which is the main
topic studied in this thesis. One of the key questions is: What characterizes im-
portant nodes in a specific network? Since network analysis has to deal with a
multitude of information for nodes, this thesis aims at analyzing node centrality
when multiple indices contribute to this characterization. So the next question
is: If those indices have conflicting views, how to analyze whether the nodes’
ranking is sensitive or insensitive to different aggregations that can be made
in the evaluation? Which nodes show stable ranking among the top-ranking
nodes and which ones show stable ranking among the bottom-ranking nodes,
making them the most central or the least central ones, respectively? And the
last question is: Are centrality rankings sensitive to different type of normal-
izations that are performed prior to any aggregation, and if so, why is this the
case? We will address these questions considering several aspects regarding the
identification of important nodes in various complex networks. The proposed
approach contains a sensitivity analysis designed with the help of fuzzy aggre-
gation operators. Furthermore, several normalization methods are proposed
and discussed that can be applied to multiple values of nodes in networks be-
fore using any aggregation. In the following, we will explain what motivated
us to conduct this research and what its contribution is for the analysis of node
centrality in complex networks.

1.1 Motivations

I. A search for network analytic methods immediately reveals that despite
the simplicity of centrality measures, they are very helpful for analyzing
the basics underlying many studies, such as controlling the transmission
of disease in human contact networks [20], analyzing information diffu-
sion in organizations [46], finding the best target in viral marketing cam-
paigns [78], handling bottlenecks in traffic networks [83], or analyzing
leaders’ activities in preplanned networks [53]. Although each centrality
measure is defined for a specific property of nodes in a network, in some

1Two definitions of centrality in the Oxford Dictionary of English are: (1) the quality or fact of
being in the middle of somewhere or something; (2) the quality of being essential or of the greatest
importance.
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datasets, identifying the top entities requires using more properties in the
evaluation of node centrality. For instance, in a study on the analysis of
a chat-log data, it turned out that multiple properties needed to be used
to completely quantify the activities of the participants in an online group
chat, as there was some additional information about the activity of partic-
ipants that could not be represented in any network representation. There
are only two works [70, 25] that focus on including multiple node proper-
ties in the analysis of centrality in a network. However, both of them can
not be applied to datasets under analysis without supplements. The study
by Opsahl, and Agneessens, and Skvoretz, focuses on the combination of
two indices values in weighted networks using a formula for quantifying
the relative importance of nodes, and proposes a sensitivity analysis with
respect to the trade-off between the results of two indices using a tuning
parameter [70]. In their method, the limitation is on the number of in-
volved measures, i.e., it includes only two, whereas in many datasets more
than two properties can be captured for node centrality. This is our first
motivation for proposing an approach where a similar sensitivity analysis
using a parameter is conducted, but without any strict limitation on the
number of measures. The second work considers the use of multiple clas-
sical centrality indices in the analysis of node centrality, as proposed by
Du et al. in [25]. However, they assume a fixed weight vector attached
to multiple centrality indices, which makes scaling between different ag-
gregations over the values of centrality indices impossible without any
supplement. We thus propose a generalized approach that can deal with
the aforementioned limitations for analyzing node centrality and allows
performing a sensitivity analysis on centrality rankings. This contribution
will be described in the next section.

II. Since the majority of real-world complex systems have a more complicated
structure than one type of relation among their entities, multilayer net-
works have been proposed in the field of network science to represent mul-
tiple types of relations. A vivid example of a multiplex network is a person
who is connected to others based on (1) the relation of being co-workers
and (2) seeking or getting advice from others. These two types of relations
can be represented using two layers where each layer is a network itself.
Since the influence of nodes in multiple layers might differ, identifying
influential nodes becomes a more complicated evaluation. Multiple theo-
retical frameworks and mathematical models have been proposed in the
literature to generalize the classical centrality measures to the new repre-
sentation [41, 81, 23, 22]. Summarizing, most papers present attempts on
generalizing the basic methods from simple to multiplex networks. The
two main concerns are how to deal with conflicting rankings of centrality
measures in one layer, and how to deal with conflicting rankings in multi-
ple layers of interest. These motivated us to apply the approach that is able
to reveal conflicting rankings of nodes in simple networks to multiplex
network in order to identify (1) groups of nodes that have similar behav-
ior in their rankings; (2) whether or not they stay within a layer in the best
position with respect to multiple centrality indices; and/or (3) whether or
not they have the same importance considering all layers of interest.
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III. Regarding the ranking of nodes in multiplex networks and how to parti-
tion nodes with respect to their ranking behavior, it turned out that central-
ity rankings can fluctuate heavily in multiple layers. One of the reasons for
this fluctuation is the centrality indices have totally different views about
nodes’ ranking in the layers that have different structures. This motivated
us to focus on the normalization of one measure in order to make the re-
sults of nodes’ ranking comparable across the layers. There are multiple
ways to normalize the result of a centrality measure in multiplex networks.
Surprisingly, we found that not many network analytic papers describe
such a basic preprocessing method before performing any aggregation.
This motivated us to conduct a sensitivity analysis in order to analyze the
influence of the choices on both modeling decisions in identifying impor-
tant nodes for a measure like degree in multiplex networks.

IV. Many real-world networks are deduced from incomplete data, but, not
many network analytic methods consider that this incompleteness can be
the origin of uncertainty in the results. Regarding node centrality, pro-
ducing a precise ranking might overestimate the importance of a node.
Instead of such a discrete result, we are interested in partitioning nodes
into a set of centrality classes that simply distinguishes nodes into classes
of centrality ranging from very peripheral to very central.

1.2 Contributions

I. As mentioned above, the previous method by Opsahl, Agneessens, and
Skvoretz, can not be generalized easily to more than two centrality mea-
sures. Thus, in the first contribution, we propose an approach that has a
similar scaling feature but including more than two properties in the anal-
ysis of nodes’ importance in real chat-log data and in a communication net-
work represented as weighted networks. We first explain those properties
that can be used for indicating the importance of a node in deduced net-
works. We think of such an evaluation as a Multi-Criteria Decision Making
(MCDM) problem. An MCDM, is a problem where a decision maker aims
at identifying the best solution from a set of alternatives that are assessed
using multiple criteria. The decision maker might select the best alterna-
tive as being the one that satisfies at least one, some, most, or all of the
criteria. Therefore, the result of the identification might differ depending
on which decision is made. In this consideration, nodes play the role of
alternatives and multiple properties play the role of multiple criteria. A
fuzzy aggregation operator called Ordered Weighted Averaging (OWA)
facilitates guiding different decisions in the selection of top-ranking nodes
with respect to their overall Score.

The OWA operator first orders the values of the criteria associated with the
nodes in descending order and multiplies them with a weight vector in the
evaluation. We use a parameter β to generate a set of different weight vec-
tors (different types of aggregations), including the classic ones, such as
min, max, average. We will present several situations in two communica-
tion networks, in which the nodes are assigned both structural properties
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classically obtained from network analysis and properties obtained from
data that cannot be readily represented in the network representation. We
focus on those nodes that have a robust importance and stay always on top-
ranking and those are sensitive to the choices of different aggregations. In
a transportation network, we also exemplify a situation where multiple
classical centrality indices have different opinions about a node’s central-
ity. We use the same proposed approach to find which nodes stay at the
top of the ranking, respectively at the bottom, and to identify most central
or least central nodes. Some results of this contribution including figures
have been published already in two papers [84, 86]. All the included parts
from these papers were written by myself.

II. Proceeding to multiplex network representation, we extend the proposed
idea and explore the conflicting rankings with a new visualization show-
ing the influence of nodes within a layer with respect to multiple cen-
trality centrality indices and allowing simultaneous comparison of all lay-
ers. We categorize nodes with respect to their ranking behaviors and dis-
cuss their behavior in several multiplex networks, such as a European air-
transportation network (which contains three layers), a law firm network
(with three layers), and a Twitter network (with four layers). We discuss
that an air transportation network allows for a smaller number of differ-
ent ranking behaviors than a social network in a medium size or a large
dataset of Tweets. Some parts of the discussed results have been published
in a paper [85].

III. Focusing on the behavior of node rankings in multiplex networks led us to
focus on a topic in the field of network analysis that seemed to be simple,
as many studies dismiss investigating it: sensitivity analysis of degree cen-
trality in the identification of influential nodes in multiplex networks with
respect to different modeling assumptions for normalizing the result of the
corresponding measure. We show that even in such a seemingly simple
case, very basic modeling using different assumptions result in very differ-
ent centrality rankings. We state that an analysis in multiplex networks re-
quires at least two preprocessing steps to compute a ranking of the nodes.
The first step is normalization of all centrality indices to make them com-
parable over multiple layers. We propose a set of intuitive normalizations
that leads to very different rankings. Second, we present different aggre-
gations for the different centrality index values across all layers using an
aggregation operator with the different values of a tuning parameter. We
then visualize the results of the rankings using two measures that capture
the sensitivity of a node’s ranking considering the choices of normaliza-
tion methods and aggregations. In the experimental results obtained from
three multiplex network datasets, we observe that some nodes are very
fragile to different modeling decisions and some are not sensitive to any
one of them. Such variation in the sensitivity of nodes confirms that any
normalization method as well as any aggregation needs to be taken in to
account carefully in the analysis of node centrality in order to make the
findings interpretable. The results of this work led us to a publication [89].
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IV. We also discuss a problem regarding the usage of centrality ranking: it
provides a delusive picture of node centrality and it can be sometimes very
sensitive to the different choice of modeling decisions or be influenced by
the incompleteness of data—this is a problem occurring in many real net-
works. In most studies, precise ranking is used to indicate the importance
of nodes and to label them as either the most central or the least central
node. We discuss this problem in a real network dataset and show the re-
sults using a 2-tuple fuzzy model, which contains a centrality label and the
extent to which a node’s normalized value is close to its label. We use a set
of predefined labels (Very Peripheral, Low, Medium, High, Very Central) to
determine the extent to which a node is central in a network, i.e., whether
the node is among the group of nodes that have Medium importance or
whether it is a Very Central node. The empirical results using visualiza-
tions emphasize the usefulness of this type of representation and the sim-
plicity of the analysis of node centrality in a real network that satisfies the
concern of imperfection. We discuss the pros and cons of this model at the
end of analysis. Some parts of the obtained results are published in [88].

1.3 Thesis Outline

The structure of this thesis is shown in Figure 1.1 to help the reader find the
connections between the different chapters. Following the contribution of this
thesis as described above, the basics of complex networks, the fundamental
concepts, and the definitions of centrality indices in simple, weighted networks
and in multiplex networks are provided in the first section of Chapter 2. A
theoretical background on fuzzy models and OWA operators employed in the
main approach forming our contribution is given in the second section of Chap-
ter 2. To facilitate reading, we dedicate Chapter 2 to the theoretical background
including preliminaries and related work used for comparison with our ap-
proach. Figure 1.1 depicts which preliminaries from Chapter 2 are necessary to
be read before reading one of the subsequent chapters.

Chapter 3 includes the findings using the proposed approach from commu-
nications networks and from a transportation network.

The extension of the idea presented in the first chapter is shown in Chapter 4
for the results of several multiplex networks. Multiple datasets, such as an
air transportation network dataset, a law firm network dataset, and a twitter
network dataset, are analyzed and various findings are discussed related to the
ranking behaviors of nodes.

The results of the analysis regarding the impact of different modeling de-
cisions in the evaluation of node centrality and the identification of important
nodes from three different network datasets are explained in Chapter 5.

Chapter 6 is dedicated to node centrality being represented using labels in
networks. The results of the partitioning of the nodes in to a set of classes of
centrality in a real network dataset are presented in this chapter.

Finally, in Chapter 7, all the discussion from the applications of the pro-
posed idea to various datasets are summarized to show how the contribution
presented in this thesis allow investigating multiple aspects of node centrality
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Chapter 1
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FIGURE 1.1: Structure of the thesis, including connections
between background/preliminaries and main chapters. The
darker squares indicate the main contribution presented in this

thesis.

and conducting exploratory analyses of centrality indices in complex networks.
We present several ideas regarding future studies of this topic as well.
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Chapter 2

Theoretical background

Using a network representation, structural and behavioral analyses of the enti-
ties and the connections between them in different networked systems become
more feasible. Since different disciplines such as economic, computer science,
and mathematic, contribute to network analysis, different kinds of definitions
or terms may exist for the same idea [62, pp. 1–3]. In addition to this, many
interesting network methods and ideas inspired from different disciplines have
been proposed in the literature by scientists; all are aimed at capturing the un-
derlying patterns governing the connections between entities (or actors in social
networks). Regarding the properties of nodes, many discoveries related to the
concept of centrality in different types of network representations—from sim-
ple and weighted [65, 13, 70] to temporal [72, 20] and further on to multiplex
networks [81, 22]—have been proposed. However, here we stick to the descrip-
tion of the classical centrality indices widely used in studies to date. We will
first present the theoretical concepts and basic definitions of networks. Then
we explain classical centrality indices in weighted and multiplex networks in
detail. In order to deal with some of the challenges regarding node centrality
we encountered, we propose the usage of fuzzy models and Ordered Weighted
Averaging (OWA) aggregation operators that are very practical and useful in
this matter. The approaches based on fuzzy logic have been used before to ana-
lyze social networks for different aims, such as community detecting [100] and
fuzzy relations modeling [60]. In this thesis, we address the questions of how
to use multiple properties for the exploratory analysis of node centrality and
how to conduct a sensitivity analysis on the centrality ranking of nodes using
aggregation operators.

We will thus provide the basics in fuzzy models and OWA operators, which
are the preliminaries for the ideas proposed in Chapters 3, 4, 5, and 6. In addi-
tion, any related work used for comparison with our proposed approach will
be noted and described in the current chapter.
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2.1 Complex networks

Complex network analysis is described as a part of network science, which
uses different theorems from graph theory that is also the basis of social net-
work analysis [101, pp. 26-27]. Mathematically, networks are viewed as graphs
in which a collection of nodes are connected using edges [82, pp. 18–19]. In
fact, graph theory provides a wide range of vocabulary that can be used for the
formalization of properties in networks [90, p. 93]. Therefore, in the follow-
ing section, we describe some graph theoretic definitions and classic network
analytic measures.

2.1.1 Basic definitions

A graph is defined as follows:

Definition 2.1.1. A simple undirected graph G = (V,E) is a tuple of a set of
nodes V , and a set of edges E ⊆ V ×V . If a pair of nodes u, v ∈ V is connected,
then there is an edge between them denoted by an unordered pair 〈u, v〉.

To denote a set of n nodes and m edges, we use V (G) = {v1, v2, · · · , vn} and
E(G) = {e1, e2, · · · , em}, respectively. If there are multiple edges, let’s say two,
between a pair of nodes u and v, then the edges can be indexed as e1 = 〈u, v〉
and e2 = 〈u, v〉 [82, pp. 18–19]. If the graph is weighted, each edge has a real-
valued number. The weights represent different measures depending on the
modeled real network, e.g., the total energy flow between prey and predator in
a food web [62, p. 112]. If the graph is directed, the set of edges consists of tuples
of nodes 〈−→u, v〉, where u is said to be the source and v is said to be the target of the
edge. The neighbors of node v can be denoted as N(v) = {w ∈ V | 〈v, w〉 ∈ E}.
Accordingly, in a directed graph, N+(v) = {w ∈ V | 〈v, w〉 ∈ E}, where node w
is the target and N−(v) = {w ∈ V | 〈w, v〉 ∈ E}, where node w is the source.1.

Let G be a graph. The degree denoted by deg(v) is the number of edges
incident with v. Assume all the degree values of nodes in a graph have been
obtained. Then 〈deg〉 denotes the average of the sums of all degree values. In
a directed version of a graph, the in-degree deg−(v) is defined as the number
of edges in which v is the target, while the out-degree deg+(v) is defined as
the number of edges in which v is the source. One of the basic topics stud-
ied in graphs is the degree sequence, which is an ordered sequence of degrees,
{deg(v1), deg(v2), · · · , deg(vn)}. By considering the definition of in-degree and
out-degree, the degree sequence can be extended to directed graphs as well. There
are several basic ways to display a graph, e.g, global edge list, local edge list
and adjacency matrix.

Definition 2.1.2. Let A be the adjacency matrix of the undirected graph G,
where an element aij indicates the existence of an edge between a pair of nodes;
then in order to compute the degree of node i, deg(i) =

∑
j aij can be used.

In a weighted graph, the cells of the corresponding adjacency matrix contain
the weight of the edges. If the weight is zero, it can be interpreted that the edge
between the corresponding pair of nodes does not exist [6]. Considering the

1Most of the definitions are based on those provided in two references [90, 82].



2.1. Complex networks 11

number of edges incident with a node in a graph, it is of interest to know how
many edges exist in the total graph. This refers to the density of a graph, which
is defined as:

Definition 2.1.3. Let |E| be the number of edges presented in graph G. Then
the density of the graph is defined based on the maximum possible number of
edges in a graph |V |(|V | − 1)/2 using the following division:

η(G) =
2|E|

|V |(|V | − 1)

Let G be a graph with |E| = 20 and |V | = 16 as depicted in Figure 2.2. Its
density is then computed as: η(G) = 2×20

16×15 = 0.167.
In the definition of the density of a directed graph, the maximum possible

number of edges is equal to |V |(|V | − 1). In order to describe the concept of
connectivity between nodes and to measure the distance between two nodes,
some definitions need to be provided. A graph G is called connected if all pairs
of distinct nodes are reachable, i.e., nodes v and u are reachable if there is a
path between them. To clarify this, consider a network that represents the con-
nections among a number of students of a college. If all students are linked
and reachable on, e.g., Facebook, then any information transmission is feasible
among them. If G is not connected, then it is called a disconnected graph. In
order to understand the indirect influence of nodes on each other, several dis-
tance measures are defined for graphs, such as walk, trail and path described in
the following:

Definition 2.1.4. A walkW(s, t) is an alternating sequence of nodes and edges
[v0 = s, e1, v1, e2, ..., vk−1, ek, vk = t] with ei = 〈vi−1, vi〉, 0 < i ≤ k. Duplication
of nodes and edges is allowed.

The length of a walk is the number of edges occurring in it. A trail is a walk
in which the duplication of edges is not allowed. The length of a trail is defined
similarly [82, pp. 37–38].

Definition 2.1.5. A path P(s, t) between a pair of nodes 〈s, t〉 is a sequence of
nodes [v0 = s, v1, ..., vk = t] such that no node and no edge is contained more
than once and that for all subsequent node pairs 〈vi−1, vi〉, 0 < i ≤ k, there
exists an edge ei ∈ E.

The length of a path |P(s, t)| is defined as the number of edges in the path.
The shortest path between s and t is the path with minimal length in the set of
all paths between s and t.

The distance d(s, t) between the pair s and t is defined as the length of
the shortest path between s and t. If no such path exists, d(s, t) is ∞ by def-
inition. In a directed graph, an edge in the definitions above is defined as
ei = 〈−−−−→vi, vi+1〉 [82, p. 61]. Back to the concept of connectivity: A directed graph
is called strongly connected if a directed path exists between every pair of nodes
in the graph. This graph is called weakly connected if its undirected version is
connected.

If a graph is disconnected, then the nodes may be divided into two or more
than two subsets. After such a division, it contains more than one subgraph. A
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subgraph Gs of graph G is a graph whose set of nodes is a subset of node set
of G, Vs ⊆ V and whose set of edges is a subset of edge set of G, Es ⊆ E.
A component is known as a maximal connected subgraph in which all pairs of
nodes are reachable; there exists a path between all pairs in the component and
there is no path between any chosen node in the component and any node out
of the component [90, p. 109]. The definitions of weakly connected component and
strongly connected component are similarly defined for a directed graph.

Clustering coefficient and transitivity are two fundamental ideas in networks,
which focus on two aspects. The first one tries to provide an insight in to
the connections between the neighbors of a node v, whether or not they are
neighbors and linked to each other—as Watts and Strogatz describe in [91], this
provides information about the local clustering coefficient and the local connect-
edness of a node. When all its neighbors are connected, the best result will
be achieved. This means the neighbors of v can form a complete graph, i.e., a
graph in which all pairs of nodes are connected via an edge [82, p. 144]. The
outcome of such an analysis in networks can indicate that the node is able to
spread information or transmit an epidemic to its neighbors [26]. On the other
hand, network transitivity considers a global view on the stated property for the
whole network [82]. Considering the definition of density in Eq. 2.1.3, the clus-
tering coefficient of a node v ∈ V (G) with a degree greater than one in a simple
undirected graph G is defined as follows:

Definition 2.1.6. Let N(v) be the set of neighbors of node v and E(G[N(v)]) be
the set of edges in the subgraph that the neighbors of v form, then, we have,

cc(v) =

{
2|E(G[N(v)])|
|N(v)|(|N(v)|−1) if deg(v) > 1

undefined otherwise

Now consider the whole network G, in which all the Clustering coefficient of
nodes are obtained. Then the average clustering coefficient of G can be simply
obtained by computing the average as CC(G) = 1

|V ◦|
∑
v∈V ◦ cc(v), where V ◦ is

the set of all nodes with a degree greater than one.
In 2003, Newman showed that by using the number of triangles for a node

v ∈ V (G) as |N4(v)| and the number of its triples as denoted by |N∧(v)| in a
graph, it is possible to measure the local clustering coefficient as |N4(v)|

|N∧(v)| , [64]. The
definition of network transitivity then is described as follows:

Definition 2.1.7. Transitivity is defined as τ(G) =
3|N4(G)|
|N∧(G)| , where |N4(G)| is

the total number of distinct triangles, and |N∧(G)| in the denominator is the
total number of triples.

2.1.2 Centrality indices in simple and weighted Networks

Going further into detail regarding the structural and positional properties of
nodes in networks, several measures are defined formally for the centrality con-
cept in simple networks, where the connections are represented using undi-
rected edges, and in weighted networks, where the connections have some
form of weights. To understand which nodes are at the center among all nodes
in a network, different centrality measures for quantifying a node’s centrality
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(A) (B)

FIGURE 2.1: (A) Transformation of different types of graphs
from temporal ones via multi-graphs including multiple edges
to weighted graphs. (B) A weighted graph comprised of four
nodes, where two nodes A and C have a similar strength value

but different degree values.

are defined that show to which degree a node is important considering local or
global structural properties. The most commonly used measure among them is
degree centrality, which is described as follows:

Definition 2.1.8. The degree centrality of a node v is equal to its degree, and is
denoted by an index CD(v) = deg(v). If the graph is directed, the in- and degree
can be used as degree centrality as well.

Let n denote the number of nodes in the network. This measure is stan-
dardized using division by n − 1. This standardization is performed to make
the measure independent of the network order (i.e., the number of nodes) [90,
pp. 178–179]. The interpretation of this measure is: A node with a large degree
is at the top of direct influence or communication, or has a high accessibility to
first-hand information [101, p. 269], and thus is called the most central node.
The remaining nodes in the network—those that have low degree values—are
called least central. Freeman illustrates his point of view by using a star graph
with five nodes (consider an unweighted form of Figure 2.1(c)). Node 3 has the
maximum degree, i.e., deg(n3) = 4, in the graph with the size of n = 5 and its
standardized centrality value equals 1. According to Freeman, this index shows
the “potential communication activity” of the node in a network [30].

A wide range of complex systems, such as communication, biological, and
collaboration data, have been represented as weighted networks to explore pat-
terns with respect to the strength of the connections between the nodes [56, 99,
80, 68, 71]. In order to analyze weighted networks, all the structural proper-
ties of nodes in simple networks have been extended to the new framework of
weighted networks [61, 63].

Consider a weighted graph as shown in Figure 2.1(c). The definition of de-
gree centrality is generalized in terms of strength s(v) as shown by Barrat et al. [5]
as follows:

Definition 2.1.9. Let W be the weighted adjacency matrix of a graph. Then if
node v has a connection to node u, the element ωvw is greater than 0. Then the
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strength of node v is:
s(v) = CwD(v) =

∑
u

wvu

In the aforementioned generalization, one point is missing: the number of
edges that is the basis of the original definition for degree centrality; see the graph
shown in Figure 2.1 (B), where the two nodes of “A” and “C” have the same
strength but a different number of connections. Therefore, a new description for
degree centrality in weighted networks is proposed by Opsahl, Agneessens, and
Skvoretz which focuses on the relative importance of weights on the connec-
tions to the number of communication partners using the following equation:

CwαD (v) = deg(v) ·
(

s(v)

deg(v)

)α
(2.1)

where α is a tuning parameter and setting it to 0 and 1 convert the measure to
degree and strength, respectively. A value of α between 0 and 1 indicates having
a high degree is favored and a value above 1 indicates having a low degree is
favored [70].

Other classic centrality indices are eccentricity, defined as the inverse of the
maximal distance of node v to any node u in the graph as ecc(v) = 1

maxu∈V d(v,u)
,

farness far(v), defined as the sum of the distances of v to all other nodes, and
closeness CC(v), defined as the inverse of the farness of v.

Definition 2.1.10. Assume d(v, u) is the distance between nodes v and u. The
closeness centrality is defined as the inverse of the sum of distances to all other
nodes in a network.

CC(v) =
1∑

u d(v, u)

To make the result comparable over the networks, it can be standardized by
multiplying CC(v) with n − 1. When a node is adjacent to all the other nodes,
the centrality index reaches its maximum value which is 1

n−1 . This measure tells
about the potential of a node in passing a piece of information to all other nodes.
Note that this measure is defined for connected networks [90, pp. 178–190]. In
a direct version of a network, for measuring the distance between nodes v and
u, the in-closeness centrality considers paths to node v and the out-closeness
measures paths from node v.

If a node lies on many shortest paths in a network, it is assumed that it has
some control over the interaction between those nodes in the network and it
is regarded as the most central node because it plays an important role as a
mediator in the network.

Definition 2.1.11. Let δ(s, t) denote the number of shortest paths between s
and t, and δv(s, t) denote the number of shortest paths between s 6= v and t 6= v
containing v. Then betweenness centrality is equated as follows:

CB(v) =
∑
s,t∈V

δv(s, t)

δ(s, t)
(2.2)

If a node is located between many nodes via their geodesics, then it obtains
a large betweenness centrality. In order to compare the betweenness values across
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FIGURE 2.2: The small graph of Florentine families of Padgett.
The figure is redrawn from the graph discussed in [90].

networks, this measure is standardized by dividing it by (n−1)(n−2)
2 . In con-

trast to closeness, it can be computed even if the network is disconnected [90,
pp. 178–190]. The computation of the aforementioned measures using efficient
algorithms is described in detail in [42].

To exemplify the operation of the three aforementioned centrality indices,
we obtain them for 15 families in the graph of Padgett’s Florentine families,
which is a simple network as shown in Figure 2.2 with respect to marital rela-
tionships [90]. There is an undirected edge between two nodes if a member of
family A married a member of family B. The results of the centrality indices
values of degree, betweenness, and closeness are sorted from the highest to the
lowest values for each corresponding index and are listed in Table 2.1. It can
be observed that the measures sometimes agree on a node’s importance (e.g.,
Medici family and Pazzi) and sometimes have different opinions about it, e.g.,
Ridolfi and Albizzi 2.

The measures above are generalized to weighted networks in two stud-
ies [13, 63] by applying Dijkstra’s algorithm to the inverted edge weights in
order to find the shortest paths between a pair of nodes. In this generalization,
the weights are considered as costs, meaning less weight is preferable. How-
ever, again, as stated by Opsahl, Agneessens, and Skvoretz, the problem men-
tioned earlier still remains: The number of edges is missing in the formulation.
Opsahl, Agneessens, and Skvoretz argue that a piece of information or disease
might be transformed quicker through strong connections than through weak
connections [70]. In their generalization, the weights are normalized with the

2Both families have the same importance with respect to the normalized degree centrality; how-
ever, using betweenness, Albizzi has a higher value than Ridolfi. Conversely, Ridolfi gets a better
rank than Albizzi, with respect to closeness centrality.
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TABLE 2.1: The centrality of 15 members of the Florentine fam-
ilies of Padgett is obtained using the three classical centrality
indices—the isolated node (”Pucci”) is removed from the com-
putation. This exemplification is based on the example pro-

vided in [90].

Names (sorted by stan-
dardized CD(v))

Names (sorted by stan-
dardized CB(v))

Names (sorted by stan-
dardized CC(v))

Medici(0.429) Medici(0.522) Medici(0.56)
Guadagni(0.286) Guadagni(0.255) Ridolfi(0.5)

Strozzi(0.286) Albizzi(0.212) Albizzi(0.483)

Albizzi(0.214) Salviati(0.143) Tornabuoni(0.483)

Bischeri(0.214) Ridolfi(0.114) Guadagni(0.467)
Castellani(0.214) Bischeri(0.104) Barbadori(0.438)
Peruzzi(0.214) Strozzi(0.103) Strozzi(0.438)
Ridolfi(0.214) Barbadori(0.093) Bischeri(0.4)

Tornabuoni(0.214) Tornabuoni(0.092) Castellani(0.389)
Barbadori(0.143) Castellani(0.055) Salviati(0.389)
Salviati(0.143) Peruzzi(0.022) Acciaiuoli(0.368)
Acciaiuoli(0.071) Acciaiuoli(0) Peruzzi(0.368)
Ginori(0.071) Ginori(0) Ginori(0.333)
Lamberteschi(0.071) Lamberteschi(0) Lamberteschi(0.326)
Pazzi(0.071) Pazzi(0) Pazzi(0.286)

average distance, and both the weights and the number of intermediary nodes
are considered in path length before using the Dijkstra’s algorithm.

Opsahl, Agneessens, and Skvoretz, defined the binary distance measure as
the minimum number of edges directly or indirectly connecting nodes v and u
as follows:

d(v, u) = min(avh + · · ·+ ahu)

where h are intermediary nodes on paths between node v and u and A is
the adjacency matrix. The generalized distance between these two nodes in
a weighted network then is defined as follows:

dwα(v, u) = min

(
1

(wvh)α
+ ...+

1

(whu)α

)
where α is the same tuning parameter as used in Eq.2.1. When α = 0, the

measure acts as same as the binary distance measure. When α = 1, it produces
the same result as Dijkstra’s algorithm as implemented in [13, 63]. For α < 1,
the shortest path constituted of weak connections is preferred and for α > 1,
a path with more intermediaries is favored. Following this generalization, Op-
sahl, Agneessens, and Skvoretz extended the closeness centrality and betweenness
centrality as well (see [70] for more details).

2.1.3 Centrality indices in Multiplex Networks

As the complexity of systems increases, a network representation needs to be
equipped with some means that make it possible to reveal the inherently com-
plex nature of the corresponding systems. For example, when the dynamics
of interaction are of interest with respect to a period of time, a temporal net-
work representation is used most frequently [38]. There is other type of net-
work such as multi-relational [90, p. 81] or multiplex networks, that has been
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FIGURE 2.3: A three-layer multiplex network where the five
blue nodes are shared.

recently in the center of attention in many studies [47]. In a multi-relational net-
work, multiple relations exist between a set of actors. Assume |R| relations be-
tween |V | nodes. A multi-relational network can be represented using a three-
dimensional matrix of the size |V | × |V | × |R|, where each entry indicates the
existence of a relation r between a pair of nodes

r
vi → vj as described in the so-

ciology literature [90]. Sometimes, for the sake of simplicity, the relations are
aggregated in order to produce weights between a pair of nodes [57]. But in
some studies, it has been shown that this type of aggregation might dismiss
useful information in the actual layers of a network [58]. A multiplex network
representation is of interest for the representation of different complex systems
such as biological organs, transportation systems, and social networks. Differ-
ent types of interactions between the entities in the corresponding systems are
demonstrated in multiple layers. For instance, in an air transportation network,
cities can be represented as nodes and flights operated by different airlines can
form the edges in multiple different layers of the network. For the sake of clar-
ity, assume Figure 2.3 to be a small multiplex network comprised of three layers
sharing some nodes (blue nodes). In this type of representation, the individual
network layers are used to show the difference between the position of nodes
with respect to different types of relations or interactions. The definition of a
multiplex network based on this representation is given below.

Definition 2.1.12. A multiplex network is a network comprised of |L| layers
L = {l1, l2, · · · , lm}, where each layer li itself is a network comprised of |Vi|
nodes and |Ei| edges. Each edge set Ei represents a different type of relation or
interaction, and in almost all multiplex networks, a set of nodes (sometimes all
nodes) are contained in multiple layers, which are denoted by V ∗.

In other studies [9, 23], a multiplex network is defined as an interconnected
network that allows interconnections between nodes in different layers. They



18 Chapter 2. Theoretical background

FIGURE 2.4: A multiplex network comprised of three layers
with a set of shared nodes, which are colored red. The numbers

of nodes and edges vary between the layers.

define a multiplex (interconnected) network using a pair (L, C), where L simi-
larly denotes a family of layers and C denotes a set of interconnections between
nodes between different layers, i.e., the set of edges connecting nodes in dif-
ferent layers. They explain that most researchers use a vector-type node degree,
by which obtaining the overlapping of the degrees using an aggregation in a
multiplex (interconnected) network is feasible [9]. Based on this definition, the
authors in a study [23] propose a model to identify the most central node in a
multiplex (interconnected) network, whose role is to bridge the different types
of relations. Accordingly, they consider interconnections between the layers
and define the shortest path P∗[sσ→tγ], as the path with the minimum cost from
node s in layer σ to node t in layer γ [23]. They define that betweenness centrality
of node v is proportional to the number of times that node v belongs to the set
P∗ for any possible pair (s, t) irrespective of the layers [23]. Based on this con-
sideration, a number of nodes are identified less central in an interconnected
network; these nodes were more central in the aggregated network [23].

There are different ways to describe centrality measures in a multiplex frame-
work and researchers continue to explore new ways regarding this matter in
different attempts and for several purposes [41, 7, 22]. If we assume multiple
(non-interconnected) layers and check the position of nodes with respect to the
different relations as exemplified in Figure 2.3, then the centrality measures can
be extended from a simple network to a multiplex (unweighted) network as
follows:

Definition 2.1.13. The degree degli(v) of node v is defined as the number of
edges connected to v that are contained in layer li. Then, the degree centrality
CliD(v) of the node is equal to its degree.
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To compute the degree of node v in layer li, an undirected and unweighted
adjacency matrix of layer li denoted by Ali can be used [41]. In the matrix, the
corresponding cell element alivu equals 1 if node v is connected to node u and 0
otherwise. Then the degree of node v equals degli(v) =

∑
u∈Vi

aivu.

Definition 2.1.14. Let dli(v, u) denote the distance between nodes v and u in
layer li, which is defined if and only if v, u ∈ Vi. Similarly, the closeness centrality
is described by an index ofCliC (v) for node v in layer li, as the inverse of the sum
of all distances of v to all other nodes in Vi.

Definition 2.1.15. The betweenness centrality of node v in layer li is defined as
follows:

CliB(v) =
∑
s,t∈Vi

δliv (s, t)

δli(s, t)

where δliv (s, t) denotes the number of shortest paths between any pair s and t
that contains v in layer li and δli(s, t) denotes the number of all shortest paths
between s and t in layer li.

In a multiplex network, the layers might have different numbers of nodes
and edges, and some nodes might be inactive or might not exist in one or two
layers as depicted in Figure 2.4. Therefore, it is worth noting that a preprocess-
ing step is required to make the results of any centrality measure obtained for a
specific node comparable across multiple layers. Therefore, four different nor-
malization methods are proposed for degree centrality, which will be explained
in Chapter 5.

Although many researches focus on the analysis of
node centrality in simple, weighted, and multiplex net-
works in network analytic studies, not many of them
consider that the analysis of node centrality might re-
late to more than one or two aspects of importance in
networks. The search for a useful approach that al-
lows including multiple indices in the evaluation of
node centrality and is capable of providing different
aggregations over the used indices brought to our at-
tention fuzzy models and OWA aggregation operators
as a very promising approach of exploration for our
aims. In the following section, we will thus provide ba-
sic definitions in the area of fuzzy logic and then con-
tinue with Subsection 2.2.1 required for the approach
in Chapters 3, 4, and 5 and Subsection 2.2.2 required
for the analysis in Chapter 6.

2.2 Fuzzy models and aggregation operators

Fuzzy logic was introduced by Zadeh in his seminal work in 1965 in order to
deal with problems for which imprecise information exists [98]. The idea he
proposed had a deep impact on how we think about analytical models with
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TABLE 2.2: A decision matrix D with the size m× n.

Multiple criteria
Alternatives a1 a2 · · · an

x1 d11 d12 · · · d1n
x2 d21 d22 · · · d2n
...

...
... · · ·

...
xm dm1 dm2 · · · dmn

respect to uncertainty originating from various problems such as incomplete-
ness of data. Although most of the information we get from complex systems is
fuzzy, our decision making processes are binary [77]. We say an element either
belongs to a crisp set A or not. In contrast, as introduced by Zadeh, a fuzzy
set A
∼

contains elements that have degrees of membership, which are measured
using a function [98, 77, 48].

Definition 2.2.1. Let X be a set of objects. A fuzzy set A
∼

in the so-called uni-
verse of discourse X , is denoted by a membership function that maps an ele-
ment x to a real number in the interval [0, 1]. Therefore, the element x is char-
acterized by µA

∼
(x) in the setA

∼
: the closer the corresponding value to unity, the

higher the degree of membership for x.

2.2.1 Aggregation operators

Aggregation operators are a means for aggregating a set of values into a single
value. These operators are generally classified as either conjunctive or disjunc-
tive, depending on whether they combine the values by a logical AND or an
OR operator, respectively, and between these categories there is the category of
averaging. A number of studies show that these operators are very practical for
resolving Multi-Criteria Decision Making (MCDM) problems [94, 28, 8, 97].

Definition 2.2.2. Let Dm×n be a decision matrix with n criteria that are used to
assessm alternatives, where each dij denotes the degree to which an alternative
xi satisfies a criterion aj , as shown in Table 2.2. MCDM is then a problem for
which the best solution among the set of alternatives needs to satisfy at least
one, some, few, most, or all criteria provided in an evaluation.

Zadeh explains that the aforementioned linguistic terms allow us to express
what we desire from the corresponding aggregation [97]. This type of problem
solving has vast applications in many different disciplines. In complex systems,
it can be considered for modeling complicated situations where the best entities
have to be identified with respect to important roles 3.

3More specifically, it is proposed for the exploratory analysis of node centrality in complex and
multiplex networks as will be elaborated in Chapters 3, 4, and 5.
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Ordered Weighted Averaging (OWA)

In 1988, Yager proposed an aggregation operator that is between the two ex-
treme cases of the min and max operators [94]. According to him, the aggre-
gation of multiple criteria is mostly done through the guidance of a quantifier
that characterizes a linguistic term, e.g., most. In fact, there are several decision
making problems for which it does not matter which criteria are actually satis-
fied, as long as enough of them are fulfilled. Yager assumes that the degree to
which a criterion j is satisfied can be expressed by a real positive number in a
unit interval [0, 1], and that 1 means full satisfaction and 0 means no satisfac-
tion for the respective criterion. In the extreme case of “all”, an alternative x
should satisfy all of the criteria. This aggregation is described by an “anding”
of the values [94]. In the case of “at least one”, the alternative x must satisfy at
least one criterion with the best value to be selected as the best solution. This
aggregation is accordingly described by “oring” of the values [94]. 4

Definition 2.2.3. Let A be the set of satisfaction values for all criteria, let B be a
descending version of it, and W = [w1, w2, ..., wn] (where n = |A|) be a weight
vector such that wi ∈ [0, 1] and

∑
i wi = 1.

Then the operator OWA is defined as a mapping function In → I (where
I = [0, 1]) as follows:

OWA(a1, a2, · · · , an) =

n∑
i=1

wibi, (2.3)

where bi is the ith largest element in A. The function uses the inner product of
a weight vector W and B5.

Yager explains that the OWA operators need to satisfy four properties of be-
ing monotonic, symmetric, idempotent and being bounded bymax andmin [93,
28, 95]. The two extreme cases of OWA (max, min) can be obtained using
two weight vectors in the following way: If we set W = [1, 0, 0, ...0], the op-
erator returns the maximal satisfaction value among n ordered criteria and
W = [0, 0, ..., 1] results in the minimal satisfaction value among them.

Example 1. Assume the weight vector W = [0.4, 0.3, 0.2, 0.1] is associated with
n = 4 criteria. For an alternative xwith the satisfaction valuesA = [0.6, 1, 0.1, 0.3],
whose ordered version is B = [1, 0.6, 0.3, 0.1], the operator results in:

OWA(0.6, 1, 0.1, 0.3) = 0.4× 1 + 0.3× 0.6 + 0.2× 0.3 + 0.1× 0.1 = 0.65.

It is obvious that the weights are not associated with a specific criterion but
with an ordered position. Therefore, there is no fixed weight for any particular
criterion. The only fixed weighting vector that is included in OWA operators is
the regular average, as it can be obtained by W = [1/n, 1/n, ..., 1/n] [94].

Example 2. Let W = [0.25, 0.25, 0.25, 0.25] be a weight vector. Then all the
values of the n = 4 criteria have the same importance and the operator gives

4In multi-criteria decision making, no compensation is allowed if “anding” is used, i.e., a high
satisfaction in one criterion does not compensate a low satisfaction in other criteria [94].

5Because of the ordering process, OWA is a nonlinear aggregation.
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the result as follows:

OWA(0.6, 1, 0.1, 0.3) = 0.25× 1 + 0.25× 0.6 + 0.25× 0.3 + 0.25× 0.1 = 0.5

Regarding the semantics of the extreme cases ofOWA operators, the weight
vector W = [1, 0, 0, · · · 0] indicates that there is complete satisfaction if “at least
one criterion is satisfied” and, analogously, the weight vector W = [0, 0, · · · , 1]
indicates that there is no satisfaction unless “all criteria are satisfied” [94].

Example 3. Assume two candidates x1 and x2 are assessed using n = 4 criteria
in a selection process. The two candidates have the values [0.4, 0.8, 0.1, 0.7] and
[0.5, 0.4, 0.8, 0.3], respectively. If a decision maker prefers to choose the one who
has at least one criterion with the best value and if the weight vector equals
[1, 0, 0, 0], x1 and x2 get the same score, as their highest value is equal to 0.8.
Now consider the selection of the one who has a higher score on average. Both
candidates would get the same score of 0.5. However, if a decision maker wants
to reward the one whose least value is maximal, the results vary between the
candidates:

OWAx1
(0.4, 0.8, 0.1, 0.7) = 0× 0.8 + 0× 0.7 + 0× 0.4 + 1× 0.1 = 0.1

OWAx2
(0.5, 0.4, 0.8, 0.3) = 0× 0.8 + 0× 0.5 + 0× 0.4 + 1× 0.3 = 0.3

In order to scale between different aggregations, Yager states that the de-
gree to which an aggregation operator is close to either of the aforementioned
extreme cases can be computed by a measure called orness.

Definition 2.2.4. The orness of weight vector W can be measured by:

orness(W ) =
1

n− 1

n∑
i=1

((n− i)wi)

where n is the number of criteria to aggregate.

Therefore, the orness of a weight vector like [ 1n ,
1
n , · · · ,

1
n ] is 0.5, the orness of

the [1, 0, 0, · · · , 0] vector is 1, and the orness of the [0, 0, 0, · · · , 1] vector is 0 (and-
ness=1-orness as defined in [28]). Although this measure allows one to recognize
the type of the chosen decision strategy, there might be some weight vectors
that have the same orness but that are different in the sense of information us-
age. Assume two weight vectors [0, 1, 0] and [ 13 ,

1
3 ,

1
3 ] for n = 3 criteria. Both of

them have an orness of 0.5. However, the second vector uses more information.
Yager therefore introduces a measure of entropy to obtain the dispersion degree
of weight vectors.

Definition 2.2.5. Let W be a weight vector including weights for n criteria in
an OWA operator. Its dispersion is defined as follows:

dispersion(W ) = −
n∑
i=1

wi lnwi

Considering the operators “all” and “at least one”, it reveals that they have
minimum dispersion and the regular average has maximum dispersion according
to [94].
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In real-world problems, we use linguistic quantifiers to express our expec-
tations in making decisions, such as few, most, many. In 1983, Zadeh elab-
orated that these quantifiers can be categorized into two classes with respect
to their expression: either the number of criteria or the proportion of crite-
ria [97]. For the sake of formality, Zadeh introduced a representation using
fuzzy sets for any kind of quantifier. Any relative quantifier such as most or
many can be represented as a fuzzy subset Q, where for any proportion of cri-
teria, x ∈ [0, 1], Q(x) gives the degree to which x expresses the corresponding
concept. Yager explains that a Regular Increasing Monotone (RIM), e.g., all,
many, at least α, results in an aggregation saying the more criteria satisfied the
better the solution [95]. Briefly, a fuzzy subset Q of a real line is RIM quantifier
when Q(0) = 0;Q(1) = 1;Q(x) ≥ Q(y) if x ≥ y. Furthermore, the weights are
obtained as follows:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
for i = 1, · · ·n (2.4)

If we consider an RIM quantifier such as Q(r) = rβ with β ≥ 0, then the
orness of this quantifier can be obtained as follows:

orness =

∫ 1

0

rβdr =
1

β + 1

which is the area under the quantifier Q. If β > 1, then orness < 0.5 and if
β < 1, then orness > 0.5 [28].

By changing the value of β, we obtain a wide range of weight vectors and,
consequently, various aggregation types. When β = 0, the first term is 1 (based
on 00 = 0) and all other values are 0 (“or” aggregation). If β = 1, all values
are 1/n (averaging). If limβ→∞, the last term is 1 and all others are 0 (“and”
aggregation). Tables 2.3 summarize some weight vectors, each of which can be
obtained with a value of β.

For a long time, obtaining the weights of OWA operators was a challenging
problem [29]. For instance, in the weights generated by the quantifier Q(r) =
rβ , the dispersion of OWA weights around β = 1 does not indicate symmetric
behavior. When β ≥ 1, the weights are close to the maximum; however, when
β < 1, the weights are less close to it [54].

Maximum Entropy Ordered Weighted Averaging (MEOWA)

Regarding the OWA weights with having maximum entropy between them,
Yager analyzed an approach proposed by O’Hagan [67]. In 1995, he proposed
a method to provide the OWA weights with Maximum Entropy directly as
follows:

He stated that the weight vector for n criteria can be obtained based on a
parameter β [28]:

wi =
eβ

n−i
n−1∑n

j=1 e
β n−j

n−1

, i = (1, n) (2.5)

In order to make relevant any chosen β and the degree of orness of the corre-
sponding operator, Yager used a non-linear equation [28], which is as follows:
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TABLE 2.3: A diverse range of weights obtained using different
values of β is listed in the upper table. * denotes that in these
cases the weight vector depends on the number of criteria and
the chosen value of β. The lower table shows the associated
weight vectors for some numbers of criteria (n = 3 and n = 4).

The numbers in the tables are rounded.

β Associated Weights in OWA orness
β → 0 w = [1, 0, ..., 0] 1.0
β → 1 w = [1/n, 1/n, ...1/n] 0.5
β →∞ w = [0, 0, ..., 1] 0

β n = 3 n = 4 orness
β → 0 w = [1, 0, 0] w = [1, 0, 0, 0] 1
β → 0.5 w = [0.58, 0.24, 0.18] w = [0.50, 0.21, 0.16, 0.13] 0.67
β → 1 w = [0.33, 0.33, 0.33] w = [0.25, 0.25, 0.25, 0.25] 0.5
β → 2 w = [0.11, 0.33, 0.56] w = [0.06, 0.19, 0.31, 0.44] 0.33
β → 5 w = [0, 0.13, 0.87] w = [0, 0.03, 0.21, 0.76] 0.17
β →∞ w = [0, 0, 1] w = [0, 0, 0, 1] 0

TABLE 2.4: MEOWA weights, orness values, and the entropy
of weights for different β-values on the aggregation of n = 3

criteria.

β w1 w2 w3 orness(W ) dispersion(W )
-20 0 0 1 0 0
-10 0 0.01 0.99 0.01 0.04
-5 0.01 0.07 0.92 0.04 0.30
-2 0.09 0.24 0.67 0.21 0.83
0 0.33 0.33 0.33 0.5 1
2 0.67 0.24 0.09 0.79 0.83
5 0.92 0.07 0.01 0.96 0.30

10 0.99 0.01 0 0.99 0.04
20 1 0 0 1 0

orness =
1

n− 1

n∑
i=1

(n− i) eβ
n−i
n−1∑n

j=1 e
β n−j

n−1

The produced weights are always between [0, 1] and the sum of the resulting
weights is equal to 1, the same as the conditions of OWA weights. For β → 20,
the resulting MEOWA weight vector is [1, 0, . . . 0] and the orness of the operator
equals 1. When β → −20, the weight vector is [0, . . . 0, 1] and the orness of the
operator equals 0. When β = 0, then (for all n), the weight vector is simply
given by [ 1n ,

1
n , · · ·

1
n ] and its orness value is 0.5. The MEOWA weight vectors for

n = 3 criteria and their orness and dispersion values are listed in Table 2.4.
To clarify the operation of OWA even better, we extend the example stated

earlier to an MCDM problem including m = 6 alternatives that are assessed
with n = 3 criteria, where each has a value between [0, 1], i.e., 0 means no
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TABLE 2.5: A 6× 3 decision matrix containing the satisfaction
values of three criteria for six students. For each student, the

maximum value is highlighted in bold.

Students Multiple Criteria
x1 0.7 0.9 0.8
x2 0.8 0.3 0.4
x3 0.2 0.8 0.3
x4 0.4 0.2 0.3
x5 0.1 0.2 0.1
x6 0.1 0.1 0.1

satisfaction and 1 means full satisfaction.

Example 4. Assume the values of a decision matrix on choosing the most promis-
ing student among six students with respect to their multiple activities in Ta-
ble 2.5. Considering anOWA operator with the weight vectorsW = [1, 0, 0] and
W = [0, 0, 1], respectively, different outcomes will be obtained for the students.
Using the weight vector W = [1, 0, 0], the result will be the best activity level
that each student has: 0.9, 0.8, 0.8, 0.4, 0.2, 0.1 x1 to x6, respectively. x1 has the
best result and x6 has the worst one. Now, consider an aggregation that results
in a score for students with respect to their least activity level; this means the
one whose least activity level is maximal can be selected as the most promising
student. The resulting scores for students x1 to x6 are 0.7, 0.3, 0.2, 0.2, 0.1, 0.1,
respectively. Again, the best observed value is for the student x1 and similarly,
x6 has the worst value. Obviously, both decision strategies can be used in the
evaluation process. However, in some cases the selection with respect to the
second aggregation will be an strict decision. Assume a student has the values
[0.8, 0.7, 0.1]. In the first aggregation he/she will be among the top 4 students.
But, using the second aggregation he/she will be among the bottom 3 students.
Instead, if the aggregation uses a weight vector that gives more importance to
highest and second highest activity values, e.g., [0.6, 0.3, 0.1], then he/she will
be among top 3 students.

2.2.2 A 2-tuple fuzzy representation model

Let x be a value in [0, 1]. Herrera and Martinez propose a model to trans-
form x into a linguistic 2-tuple in [36, 37]. They assume a set of labels S =
{s0, s1, · · · , sg}, where each label is represented using a membership function,
e.g., triangular, or Gaussian as shown in Figure 2.5 (A). In the transformation
process, the value is converted into a fuzzy set in S. Then the fuzzy set is trans-
formed into a linguistic 2-tuple, i.e., it requires an aggregation operation over
multiple obtained membership values, which is defined by Herrera and Mar-
tinez as follow:

Definition 2.2.6. Let S = {(s0, µs0), (s1, µs1), · · · , (sg, µsg )} be a fuzzy set, then
a symbolic aggregation operation is used as follows:

θ =

∑g
j=0 j · µsj∑g
j=0 µsj

(2.6)
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FIGURE 2.5: Two basic membership functions for variable x.

The result of the aggregation is a linear projection onto the sequence of lin-
guistic term set denoted by θ, which is∈ [0, g].

Definition 2.2.7. Let θ be the result of symbolic aggregation. As Herrera explain
the equivalent information of θ in the linguistic term set S can be expressed
using the 2-tuple model using a function ∆ : [0, g]→ S × [−0.5, 0.5):

∆(θ) = (si, α), with

{
si, i = round(θ)

α = θ − i, α ∈ [−0.5, 0.5),
(2.7)

where round is the regular operation of rounding [36]. This results in a 2-
tuple comprised of a label to which value x mostly belongs to and a param-
eter α ∈ [−0.5, 0.5) that indicates the value of the symbolic translation, i.e., the
corresponding value expresses the difference of information between θ and the
closest index in {0, · · · , g}.

The inverse function of ∆ is: ∆−1 : S×[−0.5, 0.5)→ [0, g] defined as follows:

∆−1(si, α) = i+ α = θ, (2.8)
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Chapter 3

Analyzing node centrality in
complex networks

Centrality measures are well known and mostly used to focus on different
structural properties of nodes and to quantify the corresponding importance
of nodes in a network [10, 50]. They are functions on the nodes of a graph
that take the structure of the graph and assign a real-value to all nodes; higher
index values of nodes emphasize that the corresponding entities are more cen-
tral and lower index values of nodes identify them as less central in the net-
worked system. Depending on the network process under investigation, the
most central nodes are described as most mobile nodes [46], key mediators [83],
or brokers [14]; there are many names, but only a few semantic descriptions of
centrality. Again, depending on the type of network representation, such as
directed [92], weighted [65, 70], temporal [72, 20, 2], or multi-layer representa-
tions [81, 22], a number of centrality indices have been developed or have been
extended from one type of network representation to another one. Such a wide
range of studies and developments does, on the one hand, indicate the impor-
tance of “node centrality” and of “identifying the most influential nodes”; on
the other hand, it is surprising that such a large range of measures has been
proposed to do the same thing, namely, “rank the nodes” according to their
influence.

The most frequently cited work related to the concept of centrality and dif-
ferent methods for measuring node centrality is a paper published in 1979 by
Freeman [30]. He discusses many ways to define the concept of centrality in
human groups and illustrates multiple aspects of centrality using a star graph
with five nodes. He exemplifies that if node centrality is conceived in terms of
degree, in a human group, the purpose of using it is to analyze the activities of
persons with respect to a specific process of communication. Then the nodes
can be assessed based on their position and their potential to control the infor-
mation or knowledge flow in the network. In this scenario, as Freeman says [30]
the concept of centrality and its measurement refer to the question of whether
or not a node has an important role in a network, and if so, to which degree.
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Going beyond simple networks, there have been many attempts to gener-
alize classical centrality measures into more complicated frameworks such as
weighted networks as already sketched in Section 2.1.2.

In this type of networks, weights can be indicators of the intensity of emo-
tions, functions regarding the duration of links in social networks [33], or quan-
tifiers for a specific capacity of links between a pair of nodes in non-social net-
works [70].

Opsahl, Agneessens, and Skvoretz argue that in all the extensions of central-
ity measures to weighted networks by several researchers (e.g., in [5, 65]), the
key feature of the original measures proposed by Freeman is missing: the num-
ber of communication partners. They mention a situation concerning node cen-
trality in weighted networks that focuses on the relative importance of weights,
which are attached to links, to the number of communication partners of a node.

They found a trade-off between two properties, where each can be captured
using a centrality index: The first one is quantified by strength and the second
one is computed as degree. Using a tuning parameter, they show a scaling be-
tween different decisions that can be made using two properties in the analysis
of node centrality [70]. This is an interesting idea with respect to the degree
centrality measure in weighted networks, which has been highly cited in net-
work analytic papers; with about 1290 citations until 2017. However, a crucial
question is raised here: What if more than two indices are able to character-
ize important nodes? We realized that their measure cannot be generalized
easily to include more than two centrality indices. We show that using an ap-
proach based on a fuzzy aggregation operator enables us to include more than
two properties in the analysis of node centrality 1. We will discuss how the
proposed approach using a tuning parameter controls the trade-offs between
multiple properties and how it provides insights into a node’s importance with
respect to the worst and the best rankings yielded by multiple properties and
whether the importance of the nodes is robust to the choices of different deci-
sions, which are guided by the parameter. Thus, in this chapter, we will explain
this idea in the analysis of a chat-log network and a communication network.
We will show how the stated case can be turned into an MCDM problem and
how this problem can be solved.

Besides the problem mentioned above, which encouraged us to propose the
idea of including multiple properties in the analysis of node centrality, there is
another problem with centrality measures in many real networks. It is not al-
ways clear which measure of centrality fits best for a specific network. The main
reason for Freeman to introduce several centrality measures was that according
to him, each classical centrality measure has a certain limitation as regards the
analysis of node importance in a simple network. Briefly explained, degree cen-
trality considers the involvement of a node in a network [30]; however, it only
focuses on the local structural property of the respective node. Closeness cen-
trality considers the reachability of nodes from any other node in the network
and focuses on the global structure of a network, but it also has its own limita-
tion, as it results in an infinity value for some nodes in disconnected networks.
Betweenness centrality focuses on the flow control of a node in the network and
measures the degree to which the corresponding node lies on the shortest path

1In many real-world problems, to analyze the importance of an entity, we need to consider
multiple properties, each of which is characteristic of a specific aspect of importance.
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between two other nodes. It thus provides information about a node with re-
spect to the global structure of the network and can also be applied to discon-
nected networks. However, a large number of nodes might not lie on the short-
est paths between any pair of nodes; therefore, it results in the value of 0 for
these [70]. Borgatti also argues that each centrality measure is defined to cap-
ture a specific flow process in a network. He discusses different topologies of
flow processes and categorizes them according to two dimensions of trajectory
(e.g., geodesics, paths) and transmission (e.g., duplication, transfer) [10]. Based
on his categorization, there are some measures that can be used for a specific
flow process, e.g., the measures of both betweenness and closeness can be used to
analyze the importance of nodes if a process passes along geodesics [10]. Once
again, for a long time, no generalized method existed that included all of the
centrality measures in a scalable evaluation and also allowed checking whether
multiple measures agree on a node’s importance or have totally different views.

The usage of multiple centrality measures in such a generalized method
has only been pointed out in one paper, by Du et al. [25]. They use a hand-
ful of classical centrality indices to identify most central nodes using the TOPSIS
technique [40]. They consider the evaluation of influential nodes as a decision
making problem and compute the difference of each node’s centrality values
to a hypothetical, ideal solution determined by the respective decision maker.
However, the TOPSIS approach requires a fixed weight vector that assigns a
value between 0 and 1 to each of the centrality indices whose sum of weights is
1. This opens a huge range of possible weight vectors that cannot possibly be
explored fully. Instead, in our proposed approach based on a fuzzy aggregation
operator, which contains a weighting equation, it is possible to meaningfully
produce a range of weight vectors as lying between the aggregation that either
satisfying one aspect maximally is favored, or doing well on average, or satis-
fying all aspects. The nodes at the top-ranking and at the bottom-ranking with
a stable behavior are revealed in multiple network datasets as described below.

3.1 Description of node centrality in different data
sets

3.1.1 Communication networks

There are many rich data in the world that can be represented as networks and
can then be analyzed using network analytic methods. Although this type of
representation allows for better exploration of the interactions among entities
in the corresponding data, the entities and/or the interactions in the data might
have additional properties that cannot be easily mapped to the represented net-
work.

Chat-log data is one of those types of rich data that is used for various kinds
of research. Recent studies argue that many mental disorders can be partially
improved in online group psychotherapy sessions [59, 32]. Thus, constructing
a social network deduced from digitally logged interactions allows for much
more extensive exploration of the activity of persons in a group chat and their
involvement with respect to the logged communication. In a psychotherapy
group chat, the findings will provide more insights about the productivity of
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a session and will be helpful for therapists. In a study, we preprocessed a
large amount of semi-structured chat-log data2 and deduced a weighted so-
cial network from multiple group chat sessions. A network representation was
chosen where each participant represented by a node and interaction in the
form of a message sent between a pair of participants is represented using an
edge. Since in a chat session, multiple interactions exist between the same par-
ticipants, these multiple interactions can be represented by multi-edges or by
weighted edges, i.e., the number of statements sent from person A to person B
can be summed up to result in a weight. In total, a network was constructed
from multiple sessions including 52 nodes and 29, 590 multiple edges [84].

What characterizes important nodes? In fact, in a human group the impor-
tance of the participants can be determined in different ways. Here the question
is which properties can show the activity level of one participant. Obviously, in
the represented weighted network, degree centrality and strength can be two of
these properties (see the definition of these two measures in Chapter 2.1.2.). The
chat-log data encompasses features such as the number of words or the exact
timing of when the statement was submitted. Therefore, it is obvious that one
way to operationalize the importance of a participant in a chat is to count the
number of words a person submits. Another way is to sum up the reaction time
of the other participants to his or her statements. We operationalize this idea
by measuring the total reaction time, i.e., the total time until the next participant
starts sending a statement after A has submitted a statement (disregarding the
10 first and last sentences of the sessions, which only refer to hello and farewell
statements). A participant might have a large number of communication part-
ners, but might have sent only a small number of statements, or spent a very
short time in the chat session. This may vary from participant to participant.
Thus, any meaningful approach should be able to draw conclusions from these
multiple trade-offs and possibly conflicting rankings.

Freeman’s EIES communication data set is the second dataset that contains
multiple features for nodes. It was originally compiled and analyzed by Free-
man [31]. This dataset contains three networks of researchers working in the
Social Network Analysis area. The first and the second network contain the
personal relationships between a group of researchers at the start and at the end
of the study. Opsahl, Agneessen, and Skvoretz used the third network of this
dataset to analyze the researchers’ importance in the represented (weighted)
network [70, 69]. The network illustrates the interactions among 32 researchers
in terms of sending messages to each other—we obtained the network from
http://toreopsahl.com/datasets/#FreemansEIES. The network con-
sists of 460 multiple edges, which can also be represented by a simple, weighted
network where the weights on the edges denote the number of messages sent
between a pair of nodes.

What characterizes important nodes? Although having a high number of
collaborators and strong relationships would give insights into the activity and
importance of a researcher, we assume that in order to characterize whether

2Some statements in this data did not include the intended username of a receiver and were
termed “misaddressed statements”. We proposed six methods for reliably predicting a receiver of
such statements by using a set of prediction rules that follow human communication behaviors.
The dataset is not public. See paper [84] for more details.

http://toreopsahl.com/datasets/#FreemansEIES
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a researcher is an active researcher or not, additional information may be re-
quired in some cases. This dataset contains other information for each re-
searcher, such as the number of citations and the disciplinary affiliation in 1978.
Therefore, in addition to the out-degree and the out-strength (the number of sent
messages), which are measures in the represented weighted network, we use
the number of citations as additional information that describes a researcher’s
activity in a field in a year. Again, a researcher might have a large number
of communications, but weak relationships, or a low number of citations. In
another case, the situation may be the reverse: a low number of collaborators,
but strong relationships and a large number of citations. Such trade-offs make
finding the top researchers a more complicated problem to be solved. There-
fore, any practical approach should be able to deal with conflicting rankings
resulting from such an evaluation.

3.1.2 Air transportation network

As mentioned above, it is not always clear which centrality measure fits best
for a network. In addition, no generalized method has existed to date that in-
cludes all of them to show the conflicting views of classical centrality indices.
In a network of airline transportation data, airports are represented as nodes;
two nodes are connected using an edge if a flight exists between them that is
operated by a specific airline. This network was selected from a large dataset
comprised of 37 networks, each containing data about the flights of a European
airline [17]. We use the data from the low-cost airline, AirBerlin, provided at
http://complex.unizar.es/˜atnmultiplex/. It encompasses an undi-
rected network of 75 airports and 239 edges.

What characterizes important nodes? The three classical centrality indices
can all together show the importance of an airport in this network. We as-
sume that degree is correlated with the number of people willing to go to the
other cities via a low-cost comfortable airline. The average distance to other
airports can be captured by closeness. Betweenness can indicate the importance
of an airport in losing a network process if the airport is shut down. We thus
measure three centrality indices: degree, betweenness and closeness for all nodes in
this dataset. Any practical approach should be able to find the top nodes with
respect to multiple indices of centrality. Since each centrality measure has a dif-
ferent view on a node’s ranking, finding the top-ranking nodes with respect to
different types of aggregations and drawing appropriate conclusions from all
the conflicting rankings should be done using the proposed approach.

3.2 The evaluation of node centrality in networks

We aim at analyzing node centrality with respect to multiple aspects of im-
portance, where the importance itself is characterized differently depending on
the type of dataset under analysis. Different properties are measured for nodes
depending on the network data. We thus use the term “multiple criteria” for
multiple aspects of importance in the evaluation process.

http://complex.unizar.es/~atnmultiplex/
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Having multiple criteria obtained to identify the best node(s) among all ini-
tiates the elements of an MCDM problem (see Definition 2.2.2). In this configu-
ration, the nodes play the role of alternatives, which are assessed using multiple
criteria. As explained in Chapter 2.2.1, OWA operators are one of the best meth-
ods for dealing with MCDM problems as they provide a global evaluation of
alternatives with respect to their best and worst results. The steps of the pro-
posed method are listed in the following box.

Step 1: Measure multiple properties and
normalize the values of each one
between [0, 1]: Assume A = {~a1,~a2, · · · ,~am}
is a set of numerical vectors where
each vector aj corresponds to one
measure. For each vector aj,
normalization is computed by the max
and min-values of all aj [i], and

a′j [i] =
aj [i]−min
max−min. Set multiple criteria

for all nodes in the network.

Step 2: Compute the aggregated scores for all
nodes using the OWA(a′1, a

′
2, · · · , a′m)

operator 2.2.1 with respect to a set
of different values of the
β-parameter in Eq. 2.5.

Step 3: Rank all nodes with respect to the
aggregated scores for all values of
β-parameter.

Step 4: Find the minimal and maximal rank for
all nodes over the set of β-values.
For any node i these are denoted by
MinRank(i) and MaxRank(i).

In this evaluation, 0 always means no satisfaction and 1 indicates full sat-
isfaction for each criterion. Using the different aggregations guided by the β-
parameter (in MEOWA weighting function), node i gets different scores. The
scores will be between [0, 1]. The aggregations scale between two cases: taking
either at least one criterion with the best value of satisfaction, or all of them.
This consequently leads to different rankings for node i with respect to its best
and worst value.

Here, we are especially interested in whether the ranking changes strongly
depending on the choice of different types of aggregations, or whether their
importance is robust. Therefore, we apply the OWA operator accompanied
by a range of different β-values, which scales between two cases: The −∞-
symbol represents a large value for β that is used to obtain the weight vector
[0, · · · , 0, 1]. The∞ shows a large value that is used to result in the weight vec-
tor [1, 0, · · · , 0]. When β = 0, a regular average is performed. Note that taking
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only a range of values before and after β = 0 would be sufficient to show the
changes in the rankings. However, in this chapter, the values are more detailed
on the x-axis.

Once all the nodes have been evaluated with all the possible aggregations,
they are ranked according to their resulting scores in non-increasing order for
all β-values. A node whose ranking remains stable among top-ranking nodes
with respect to the different values of β is speculated to have robust importance,
whereas one whose ranking changes only fulfills some aspects of importance
but not all in the same way.

The results are presented using a table of the criteria’ values of all nodes in
the corresponding datasets, a plot of the pairwise correlations of the multiple
criteria, a visualization of the rankings of the nodes over the different values
of the β-parameter, and a visualization of MinRank(i) versus MaxRank(i)
obtained over all β-values for all nodes. If the values of MinRank(i) and
MaxRank(i) for any node i are too far apart, the node does not have a sta-
ble ranking, i.e., it might have a high satisfaction value in one or two criteria
but not in all.

3.3 Results

Chat-log network

In the deduced network, the questions to be addressed are: How active are the
participants in a group-chat session? and Who is (are) the most active participant(s)
among all? It can be conjectured that in a group chat session with a fixed topic,
the responsibility of the moderator (e.g., the psychotherapist) demands a higher
level of activity compared to that of the other members of the group [96]. For
example, the therapist might need to spend more time communicating with
more other members than a normal member. Sometimes, however, the ther-
apist should talk less than other members and moderate the chat in order to
make the session productive. Due to the informal and basically unstructured
nature of a chat, some participants will attempt to dominate it by sending more
statements, and others will isolate themselves. This might lead the therapist to
have many interactions with the same persons to either activate or moderate
them; this results in low degree and high strength for the therapist. However, in
most therapy sessions, a reasonable measure should identify the therapist(s) as
the most active or most central person(s).

Following the steps of the proposed approach, the four criteria are set for
node i as follows:

a1[i] : the number of communication partners (in- plus out-degree).

a2[i] : the total number of statements sent by the participant i (out-strength).

a3[i] : the total number of words submitted by the participant i.

a4[i] : the overall reaction time.

Then all the values are normalized and the results for different values of the
β-parameter are computed. Then the nodes are ranked for the corresponding
values of β.
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FIGURE 3.1: The figures show (A) the scatter plot of pairwise
correlation of four criteria for chat-log data. (B) The scatter
plot of three criteria for Freeman’s EIES dataset. (C) Pairwise
correlation of three criteria for an air transportation network.
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FIGURE 3.2: Chat-log data. (A) The detailed rankings of
eleven nodes are depicted over using the different aggrega-
tions guided by the β parameter in MEOWA operator (see Def-
inition 2.2.1). (B) Minimal ranking versus Maximal ranking of
the nodes are obtained over all β values (from −∞, via 0, to
∞). The details of the four criteria used in the evaluation are

listed in Table 3.1.
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A pairwise correlation analysis is a good first step to understand whether
there are trivial relationships between the values of the criteria associated with
the nodes or not. However, in a pairwise comparison, it is not easily possible
to track the same node’s behavior in different correlations. Thus, a human ob-
server of the different correlation plots still has a hard time to decide which
nodes do best with respect to multiple criteria in general. The pairwise cor-
relations between four associated criteria are demonstrated in Fig. 3.1 (A). It
is obvious that the correlations are not negligible; however, we apply the pro-
posed approach to the data to see how it performs the evaluation based on the
associated criteria and how nodes compete for the top position.

The visualization of Fig. 3.2 (A) starts with the ranks of the nodes obtained
in the extreme case of β → −∞ and as it proceeds to the right side, we see some
variations on the ranks of the score of the nodes until β →∞ is reached.

At first glance, it can be observed that the therapist—because of his/her
responsibility—gets a high score and consequently gets the highest rank for all
the values of β; regardless of whether at least one of the criteria is favored to
reach the highest importance value or all of them or any mixture of them, the
therapist is the most active participant. After him, four participants (P1, P6,
P36, P11) are the most active ones.

We choose three interesting cases to emphasize the exploratory feature of
our proposed approach. These cases are the nodes labeled P14, P17, and P28,
which differ in their ranking on the extreme scales of β. The first case is P14:
This person communicated with only 13 participants out of the 52 participants
of the chat-log. If all nodes were ranked by the normalized degree (a′1) alone,
(s)he would be ranked right in the middle (rank 31 out of 52) as listed in Ta-
ble 3.1. His level of activity involving these 13 persons, measured by the num-
ber of words used in the statements, is medium, as is his level of activity with
respect to the number of messages and the overall reaction time. In the extreme
case of β = −∞, when the weight vector equals [0, 0, 1], he has a medium rank-
ing until β =∞ is reached. Therefore, he is a medium active person.

Another case is P28 who has a higher rank than P14 if only the highest
satisfaction level of the nodes is regarded (in Table 3.1)—this is given by the
normalized degree. In the extreme case β → ∞, his rank, however, is much
lower than P14. As can be seen in Fig. 3.2 (A), going to β → ∞, when the
aggregation rewards nodes that have at least one criterion with the best value,
P28 is ranked higher than P14. By referring back to the full chat-log data,
we found that he did indeed communicate with more distinct members than
P14, but using only single-word statements. Thus, by using the aggregation
β = 0, his ranking is still less than that of P14 as he does not have on average a
better score to get a better ranking. The participant P27 has a similar behavioral
ranking to P28, but he has a better score and a better ranking than those of P14
and P28 on average.

Another interesting case is P17, who has a medium number of distinct com-
munication partners, namely 8. However, all his other criteria satisfaction val-
ues are extremely close to 0, such that the lower the value of β is, the lower his
ranking becomes. Looking at the chat session, it became clear that P17 was not
actually a patient, but a psychologist who visited the chat-log and was only a
bystander; therefore, (s)he greeted many persons at the beginning but was just
an observer for the remaining time.
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TABLE 3.2: The values of three criteria (normalized out-degree,
out-strength, and number of citations) associated with 32 re-
searchers in Freeman’s EIES dataset are listed here. The nodes
are ranked from the highest rank 32 to the lowest rank 1 with

respect to the results of the normalized out-degree (a′1).

Rank Researcher (i) a′1[i] a′2[i] a′3[i]
32 Lin Freeman 1 1 0.1118
31 Nick Mullins 1 0.2036 0.1059
30 Sue Freeman 1 0.3275 0
29 Doug White 0.8966 0.3519 0.0176
28 Phipps Arabie 0.8966 0.0465 0.0941
27 Barry Wellman 0.8966 0.6955 0.0706
26 Russ Bernard 0.7931 0.5021 0.0529
25 Ron Burt 0.6207 0.1113 0.2353
24 Pat Doreian 0.6207 0.2624 0.0882
23 Richard Alba 0.5517 0.1021 0.1353
22 Jack Hunter 0.5517 0.0711 0.1353
21 Lee Sailer 0.5172 0.3329 0.0059
20 Steve Seidman 0.4828 0.0939 0.0235
19 Carol Barner-Barry 0.4483 0.073 0.0353
18 Al Wolfe 0.4138 0.0869 0.0118
17 Paul Holland 0.3448 0.0601 0.1882
16 John Boyd 0.3103 0.0569 0.0353
15 Davor Jedlicka 0.3103 0.0569 0.0059
14 Charles Kadushin 0.1724 0.018 0.2
13 Nan Lin 0.1724 0.0158 0.1824
12 Don Ploch 0.1724 0.0319 0.0235
11 Claude Fischer 0.1379 0.0234 0.3176
10 Mark Granovetter 0.1379 0.0231 0.2706
9 Maureen Hallinan 0.1379 0.0692 0.1
8 Nick Poushinsky 0.1034 0.019 0
7 Sam Leinhardt 0.069 0.0044 0.0647
6 Joel Levine 0.069 0.0196 0.0647
5 John Sonquist 0.069 0.0051 0.3294
4 Ev Rogers 0.0345 0.0019 1
3 Brian Foster 0.0345 0.0022 0.0235
2 Gary Coombs 0 0.0038 0.0059
1 Ed Laumann 0 0 0.3765

Obviously, making decisions over a set of multiple criteria with conflicting
opinions about the importance of a node is not a simple task to do. However, to
draw a conclusion out of all possible aggregation, the best top-ranking nodes
and the worst bottom-ranking nodes can be selected when nodes have robust
and high importance, and have low importance with a stable ranking, respec-
tively. As illustrated in Figure 3.2 (B), it is clear from the results that the thera-
pist was the most active person and always remained at the top. His values of
MinRank and MaxRank are equal. The visitor is the one who frequently stays
in the bottom ranking and is not even identified as a medium-active person,
i.e., the nodes in the center of the visualization. The cases of P28 and P27 are
observed only very few times among top 10 nodes. And the case P14 has a
medium stable ranking as shown on the diagonal. The cases P38, P44, and are
always among bottom 10 nodes.

Freeman’s EIES network

The questions to be addressed in the represented weighted network are: How
do we evaluate the researchers with respect to their activity in a field? and Who is (are)
the most active researcher(s)?
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As the first step of the proposed approach, three properties are measured as
follows:

a1[i] : the number of communication partners (out-degree).

a2[i] : the total number of messages sent by researcher i (out-strength).

a3[i] : the total number of citations of researcher i.

Following along the steps, normalization is then performed using the maxi-
mum and minimum values of each measured property. Looking at the pairwise
correlation between the three aforementioned criteria, there is no strong corre-
lation between any pair (s.Figure 3.1 (B)), and even for such a small network,
tracking the ranking of nodes for a human observer would not be easy. Then
the overall aggregation score is computed with respect to different aggregations
guided by β for all nodes. Looking at the visualizations in Fig. 3.3 (A) and (B),
we can see that there are much more fluctuations than in the first data set, even
though it has less nodes 3.

For all values of β and the produced aggregations, the most active researcher
with robust importance is Lin Freeman, who achieves maximal satisfaction val-
ues for two criteria. There is no one found having all three criteria with a full
satisfaction to get 1 in his/her score. And, Lin Freeman is so far not the one
with the most citations as listed in Table 3.2 (a value of 0.112). However, when
β = −∞, all the nodes are ranked with respect to their least value, he is the one
whose least value is maximal. Thus, he stays at the top. Sue Freeman and Nick
Mullins also have the highest satisfaction values (for the normalized out-degree
centrality) and Rogers has a maximal satisfaction value of 1 for number of cita-
tions (he has 170 citations and Sue Freeman has 0 citation). Thus they share the
first rank with Lin Freeman in β =∞.

Claude Fischer is the one with a medium and rather stable ranking in the
middle of Figure 3.3 (A), and all of his values result in a medium rank for him
among all the researchers. A considerable change can also be seen in the ranks
of Rogers (dark green curve) and Hallinan (purple curve) if different values of
β are used. If they were ranked only by their least satisfaction value, Rogers
would get a much lower rank than Hallinan. However, they switch their po-
sitions when the value of β is increased in Fig. 3.3 (A). Regarding the selection
of the top researchers, it turns out that they are not robustly among the top-
ranking nodes, as shown in Fig. 3.3 (B).

We assume that those nodes with the most stable behavior among top-
ranking nodes are the most central nodes. In this dataset, the examples are
Freeman, Mullins, and Wellman. In contrast, the least central nodes are in the
category that contains nodes with weak importance and have stable behavior,
e.g., Coombs, i.e., he is always (on average,min, andmax aggregations) among
the bottom 2 rankings. After him, Poushinsky and Foster are those who stay
often among the bottom-ranking nodes.

Air transportation network

An airline transportation network data including information about flights be-
tween airports in Europe is analyzed. Considering a process in the network

3The results obtained here are included in a journal paper, which is in preparation [87].
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FIGURE 3.3: Freeman’s EIES network. (A) The detailed rank-
ings of the nodes are depicted over using the different aggre-
gations guided by the β parameter in MEOWA operator. (B)
Minimal ranking versus Maximal ranking of the nodes are ob-
tained over all β values.The details of the three criteria used in
the evaluation are listed in Table 3.2. The results of MEOWA

are ranked by tied ranking.
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that can be captured in multiple ways, the approach should be able to reveal
which nodes are identified as important airports considering one measure but
unimportant with respect to the other two measures. Questions to be answered
include: Which airports are on top with respect to all the three aspects of centrality?

Following the steps of the proposed approach, multiple criteria for node i
are set as follows:

a1[i] : degree centrality.

a2[i] : betweenness centrality.

a3[i] : closeness centrality.

All the results of the three criteria are listed in Table 3.3, following the nor-
malization step taken in accordance with box 3.2. In this table, the nodes can
only be ranked by one of the criteria—we chose the normalized degree centrality.

Another representation, the pairwise correlation among the normalized three
classical centrality indices, is shown in Fig. 3.1 (C). Looking at the correlations
and the values make it clear that the normalized closeness index values for the
majority of the nodes are greater than the values of the other two indices. There-
fore, the corresponding criterion will have mostly a dominant role in the aggre-
gation results, i.e., 79% of nodes have a higher normalized closeness value than
those of the other two indices (i.e., a′2 < a′1 < a′3). We explain this problem in
Chapter 5 in detail.

Performing the remaining steps of the procedure results in the rankings of
75 airports depicted in Fig. 3.4 (A) with respect to the different aggregation
schemes over the three criteria employed. The visualization shows that the
top-ranking airports are always EDDT (Berlin) and EDDL (Düsseldorf); the two
lines at the top in Fig. 3.4 (A). In the extreme case of β = −∞, Berlin achieves
a slightly better ranking than Düsseldorf. However, they share the first rank
where another kind of aggregation with β =∞ is used. Note that not all of the
nodes’ ranking curves are depicted in the visualization 3.4 (A). But, Figure 3.4
(B) depicts all the nodes with respect to their values of minimal and maximal
ranking. The airports EDDT (Berlin) and EDDL (Düsseldorf) stay at the top
right in the plot and have robust importance. The airport EGCC (Manchester)
has stable weak importance as it mostly stays among the bottom 20 rankings.
There are many nodes whose rankings are more stable as visualized on the
diagonal rather than those staying far from it.

EDDV (Hanover) and LSZH (Zurich) airports are two interesting cases that
remain among the top 15 rankings, like Berlin. Looking at the values of their
centrality indices in Table 3.3, they both have the same number of connections
towards other airports, so they have the same importance for a network pro-
cess. Hanover airport has higher influence than Zurich airport with respect to
being in between pairs of other airports and has less influence with respect to
being close to other airports. Using our approach, they both stay almost close
to each other among the top-ranking nodes. If we ask how fast a process can
reach the other airports from these two, and to what extent these airports are
important in terms of losing a process if they shut down, they will get a pretty
equal score. LIRQ (Florence) has a stable ranking in the middle of the plot.
Two airports, LICJ (Falcone–Borsellino), LICC (Catania), stay often among the
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FIGURE 3.4: Air transportation network. (A) The detailed
ranking of the nodes is depicted over the different aggrega-
tions guided by the β parameter in MEOWA operator. (B) Min-
imal ranking versus Maximal ranking of nodes are obtained
over all β values. The values of the three criteria are listed in

Table 3.3.
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bottom-ranking nodes but with different frequency. Looking at their values in
Table 3.3 reveals that all three values of LICC are higher than those of LICJ and
thus its line of ranking is always above that of LICJ. However, in comparison
with LIRQ (Florence) airport, when the aggregation rewards airports that have
at least one best value, they both are at the bottom.

3.4 Discussion and Conclusion

In many real networked systems, analyzing the importance of entities and the
activity of actors requires the use of multiple aspects, each of which is able to
characterize importance. Network analysis often also has to deal with a multi-
tude of information known about a node: We focused on some situations in two
communication networks where a node was assigned both structural proper-
ties classically known from network analysis and properties deduced from data
that are not directly presented in the network (number of words, total reaction
time in a chat-log communication data; number of citation in a collaboration
network data). While multiple criteria all focus on one possible operationaliza-
tion of activity, they create conflicting rankings.

The exploratory analysis using the proposed approach based on the OWA
operator allows understanding how stable the ranks are, and thus provides
more insights than, e.g., pairwise correlation of the values or just a single rank-
ing based on one node centrality. We inspected some cases whose ranking
changed extremely by applying multiple criteria to the analysis of their activity
score. Then we discussed the nodes in both datasets that have robust impor-
tance and those which stay in the top ranking with respect to all types of ag-
gregations, each of which could be used for the aggregation of multiple criteria
associated with the nodes. In the chat-log dataset, we observed fewer fluctu-
ations in the ranking of the nodes since the correlations between the criteria
were stronger than the correlation between the criteria in the Freeman’s EIES
network. But, we still found some interesting cases that could not be identified
easily using a single ranking with respect to only one or two measures.

In an airline transportation network data, we focused on situations where
multiple centrality indices are used together to analyze node centrality. The main
concern was how to select top nodes that have conflicting rankings produced
because of the trade-offs between multiple measures.

We observed that some nodes have robust importance with respect to dif-
ferent aggregations, while the rankings of the rest fluctuate. In this dataset,
we observe that the values of a centrality index have a dominant role in the
aggregation, and this might not allow other criteria to have a high impact in
the results of the aggregation due to the ordering process. We discuss this in
Chapter3 in detail. Based on our experience, the nodes that change their ranks
the least and the most, are very interesting to inspect. It is concluded that those
nodes that have high and weak importance with high stability in their rankings,
respectively, are the most central and the least central nodes.

The observations indicated that there are some nodes that, based on a single
ranking, might be totally ignored or be identified as the most important node.
We show that the different decisions made over the used multiple criteria some-
times change the rankings of nodes strongly, except those have the best values
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in all of them, or in other words; those whose values give them a comparable
ranking.

Comparing the main idea of our approach with the basics of other methods
in general, it turns out that the proposed approach provides a means for deal-
ing with such complicated cases that the others would not be able to handle
without supplements; e.g., the method proposed by Opsahl, Agneessen, and
Skvoretz needs improvement regarding the number of measures that can be
contained in the evaluation (s. Chapter 2.1, Equation 2.1), and the method pro-
posed by Du et al. needs improvement with regard to the production of a range
of different weight vectors, as explained at the beginning of this chapter.

The proposed approach help to deal with other types of conflicting infor-
mation about node centrality in networks:

Note 3.1 Consider multiple centrality indices obtained for a node in a multiplex
network. If the node has different positions in different layers, then the approach can
show how its rankings change among all nodes with respect to some or all measures
over some or all layers.

In the following chapter, we will elaborate on this note and show what led
us to generalize the proposed method for analyzing multiple rankings of nodes
in several multiplex networks.
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Chapter 4

Analysis of multiple centrality
rankings in multiplex
networks

Regarding the concept of node centrality in complex networks, the success of
classical centrality indices proposed by Freeman in 1979 has been documented
well in recent decades in a wide range of applications such as the analysis of
influence spreading in social networks [45], anomalous centrality in transporta-
tion networks [34], and gene importance in cancer networks [99].

In addition, according to Borgatti (2005), each centrality index is tied to a
specific network flow [10], and various network processes can take place in
networks, such as the spread of a rumor [24] and the transmission of an in-
fection [44]. According to his categorization, if a process transmits through
geodesics, e.g., package delivery, classical betweenness and closeness measures
can be employed to predict the importance of nodes. However, for a long
time there existed no significant general characterization method aggregating
all these known, commonly used centrality indices and exploring node centrality
with respect to multiple aspects of importance.

In the previous chapter, we asked what happens if one wants to explore the
importance of nodes regarding multiple centrality indices. We include multiple
indices into the analysis of node centrality and reveal the ranking behaviors of
the nodes over different aggregations. We discussed a vivid example where the
activity level of a researcher in a collaboration with others could be measured
by quantifying the strength of his/her relationships with other researchers and
by measuring the number of people with whom he/she had at least one collab-
oration in a field.

Along the same line, imagine now that the relations among the correspond-
ing researchers with respect to friendship in social networks were also avail-
able for this analysis. This could be represented in a new network in which the
importance of the researchers is analyzed similarly using two measured prop-
erties. If both of these networks were available, they could be considered in
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a coherent framework comprised of two network layers. Recently, it has been
shown that articulating the complicated nature of complex systems found in
the world requires a more complicated framework that goes beyond single-
layer network representation, such as multi-layer or multiplex networks [47].
In multiplex networks, the same set of nodes is linked using multiple types
of relations or interactions [90, 47], as exemplified above. Based on different
analyses of such networks, various ideas have been suggested in the literature
regarding structural measures [7], centrality rankings [81], and the extraction of
information from multiplex networks [41]. Similarly, the fundamental concepts
of centrality have been extended to the new framework in several attempts to
explore nodes’ centrality with respect to their different relations or interactions.
In this regard, it is crucial to have an approach that can deal with a node’s cen-
trality index in multiple layers or, in the worst case, is even able to deal with
multiple centrality indices of a node in multiple layers.

A simple approach is to aggregate the results of the centrality indices over
the layers, e.g., by averaging over all indices in all layers. However, several
studies show that the aggregation of the classical centrality values over the lay-
ers yields misleading results [81, 23]. For example, De Domenico et al. use
a tensorial model to capture multiple rankings of nodes within multiple lay-
ers of an interconnected network [23], i.e., they define a multiplex network as
an interconnected network in which the interconnections between layers are
allowed. However, if we consider a multiplex network with separate layers
(non-interconnected), we are able to visualize the ranking positions of nodes
in individual layers and compare them. Going back to the example provided
above, we can analyze the importance of a researcher with respect to his/her
position in two layers, where the extent of the importance itself is quantified
in multiple ways, i.e., by looking at the number of communication partners the
researcher has and/or by looking at the strength of their relationships in two
layers—this results in two rankings in two layers for a researcher. Once we
have obtained all the results for all researchers over multiple layers, the ques-
tions for this example will be which one is (are) the most central node(s) and
which one is (are) the least central node(s). This might seem a simple problem
to solve. However, in this chapter we will show that having multiple centrality
indices (more than two), such as three classical centrality measures, in a mul-
tiplex network can turn this into a more complicated problem. We will show
that these centrality measures might have totally different views on a node’s
importance and thus produce more conflicting rankings. It is even worse when
such results differ among the layers as well. In such a case, arriving at a final
conclusion is more challenging, as it requires an exploratory approach that is
able to deal with this situation and to conveniently outline the nodes’ ranking
behavior.

Questions regarding multiple rankings

Considering multiple centrality indices for nodes in a network, it will be very in-
teresting to explore the importance of a node with respect to at least one index,
all of them, or any combination of them within a layer and over multiple layers.
Then we will be able to observe whether or not a particular node is especially
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important for at least one of the network measures, or we can aim at investi-
gating whether or not there is a node that is never the top-ranking one over
all layers, but has been identified as a node with moderate influence regarding
all classical centrality measures [85]. Analyzing the ranking of nodes with re-
spect to the differences among their rankings within a layer and the differences
among all layers will yield insights into the behavioral patterns of ranking and
will allow partitioning nodes into groups that each interpret a specific man-
ner. Summarizing our interests in this chapter, the following questions will be
addressed:

1. Do rankings based on a set of centrality indices rather correlate or conflict?

2. If they conflict, how can multiple measures of centrality be used in the
identification of top nodes within a layer?

3. How can multiple aspects of centrality be explored for each node within
all layers of interest?

4. Do nodes exhibit similar ranking behavior with respect to multiple as-
pects of centrality in multiple layers?

5. Do their rankings sensitive to the choice of aggregations within a layer
and among all layers?

To address these questions, we use a similar approach using OWA aggrega-
tion operator and two measures that allow partitioning nodes with respect to
their overall ranking behavior in each layer with respect to multiple indices of
centrality. We will apply this approach to several multiplex network datasets
with more than two network layers and demonstrate the partitions of nodes
based on their behavioral patterns within a layer and their ranking over all lay-
ers of interest.

4.1 Analyzing multiple rankings of nodes in multi-
ple layers of a network

So far in this thesis, we have explained some situations regarding node cen-
trality in which a node could be identified as central using multiple centrality
measures a single-layer network. Generalizing this analysis into a multiplex
framework, it turns out that this problem will be even more complicated be-
cause the involvement of nodes in multiple types of interaction most likely will
not result in the same quantity if the positions of nodes in the structure of one
network layer differ from their positions in the remaining layer(s).

To exemplify this, imagine that person A is a very trustworthy coworker
but rather isolated in terms of socializing and establishing friendships. Con-
versely, imagine that person B is a naturally solitary worker but open to advice
by others, with strong friendships ties outside work. This trade-off is more com-
plicated when different aspects of the importance result in different, possibly
conflicting, rankings for nodes. Thus, we assume the analysis of the different
normalized centrality indices (degree, betweenness, and closeness) of a node within
one layer as an MCDM problem. The nodes are considered as the alternatives
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in this decision-making process, where the best solution (the best node) can be
selected based on the satisfaction of either at least one criterion, or all of them, or
anything in between.

In a multiplex network with |L| layers, where |V ∗ | nodes are shared, we
compute the overall score of node v within layer li considering multiple in-
dices of centrality using a set of aggregations (denoted by Γ) guided by some
β-parameter. Then, as a result, we have |Γ| rankings for node v.

We visualize the ranking positions of node v by using a colored curve. Con-
sidering the same scenario in multiple layers, we end up with |L| colored curves
of rankings for node v. By inspecting all curves of the same color, we can com-
pare the within-layer importance for all nodes regarding the chosen measures.

The concise aforementioned steps of the proposed method are detailed in
the following.

Step 1: For all layers in a multiplex network with |L|
layers:

(a) Set the criteria by measuring multiple
centrality indices for all |V ∗| shared nodes and
normalizing the values of each between [0, 1]
by the max and min-values of all.

(b) Compute the overall scores using OWA
operator with Eq. 2.5 for all |V ∗| nodes with
respect to a set of β-values in Γ.

(c) Rank all |V ∗| nodes with respect to the
aggregated scores for the corresponding
values of β-parameter.

Step 2: Measure ∆agg and ∆layers for all |V ∗| nodes
using Algorithm 1.

Step 3: Normalize the computed values of ∆agg and
∆layers between [0, 1].

Step 4: Partition all |V ∗| nodes with respect to the two
normalized values of ∆agg and ∆layers.

To proceed with the remaining steps, we need to understand the behavioral
patterns of nodes’ ranking in a broader view. To do this, we propose two mea-
sures for partitioning nodes with respect to their various ranking manners.

Partitioning nodes with respect to the two measures of ∆agg and ∆layers

First, we obtain the minimal rank of node v within layer li over all β-values;
and we denote it by minRank(v, li) and obtain maxRank(v, li) accordingly.
Then we obtain a measure that computes the difference of ranking ∆agg(v) :=
max{maxRank(v, li) − minRank(v, li)|1 ≤ i ≤ |L|}; a large value of ∆agg
means the centrality indices were more conflicting, i.e., the nodes have a large
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value in one or two centrality indices but not in all. In general, ∆agg indicates
the maximum difference in ranking positions fixing a layer1.

The maximal differences among all layers for node v for any β-value is com-
puted usingmaxRank(v, β), which is the maximal rank of v based on any layer,
and minRank(v, β) is defined as the minimal rank for any β-value. The overall
maximum difference of node v is then defined as ∆layers(v) := max{maxRank(v, β)−
minRank(v, β)|β ∈ Γ}, where Γ is a set of β-values. A large value of ∆layers
indicates that the node v is more central in one or two layers and not central
in the rest2. The algorithm for computing ∆agg and ∆layers taking |Γ| rank-
ings of |V ∗| nodes in |L| layers as input is described as follows: Having both

Algorithm 1: Measuring sensitivity of ranking within a layer over dif-
ferent aggregations and in all layers.

for all nodes in V ∗ do
for all layers in L do

Find maxRank among all β-values
Find minRank among all β-values
Compute maxRank-minRank

end for
return Max over all maxRank-minRank {∆agg}

end for
for all nodes in V ∗ do

for all β-values in Γ do
Find maxRank among all layers
Find minRank among all layers
Compute maxRank-minRank

end for
return Max over all maxRank-minRank {∆layers}

end for

measures of ∆agg and ∆layers standardized between 0 and 1, we are able to
partition the nodes based on the behavioral patterns they exhibit in their rank-
ing. One behavioral pattern is conceived in this way: The nodes have very
different importance among all types of interactions (all layers L) and show
different importance with respect to different aggregation schemes of multi-
ple centrality indices; this can happen if the maximum and minimum values
in the corresponding criteria by which the nodes are assessed are too far apart
(L+A+L+A+L+A+). A second behavioral pattern is that the nodes have very similar rank-
ing within a layer with respect to multiple criteria but there exists a large dif-
ference between multiple layers of interest (L+A0L+A0L+A0). The third behavioral pat-
tern is one in which the nodes show the opposite behavior than in the second
pattern (L0A+L0A+L0A+). The fourth pattern contains nodes that have very similar im-
portance (less fluctuation of ranking) within all layers and indicate very similar

1This can be extended to the minimum difference as ∆agg(v) := min{maxRank(v, li) −
minRank(v, li)|1 ≤ i ≤ |L|} and the average in a similar way. We will discuss this in future
work in Chapter 7

2This can be extended to the minimum difference using ∆layers(v) := min{maxRank(v, β)−
minRank(v, β)|β ∈ Γ} and the average accordingly.



52 Chapter 4. Analysis of multiple centrality rankings in multiplex networks

stable importance considering the different aggregations with respect to multi-
ple centrality aspects (L0A0L0A0L0A0). Thus, in the experiments, we identify the nodes
in the corresponding four partitions as L+A+L+A+L+A+, L+A0L+A0L+A0, L0A+L0A+L0A+, and L0A0L0A0L0A0, re-
spectively.

4.2 Data sets represented as multiplex networks

1. A large dataset comprising the transportation links between airports based
on European airlines was developed in 2013 by Cardillo et al. [17]. It con-
tains the flight records between cities of 37 European airlines. The con-
nections between airports concerning a specific airline compose an undi-
rected and unweighted network layer. Therefore, the data of 37 network
layers are available, where the airports represent the nodes and a pair
of nodes are connected if there is at least one connecting flight between
them operated by the corresponding airline. In this large data, one inter-
esting category was used for inspection, namely the one comprised of the
low-cost airlines AirBerlin, Easyjet, and Ryanair. For the experiments in
this chapter, we built a multiplex network including three layers, where
each layer represents the flights between airports by the aforementioned
low-cost airlines. In total, 20 airports are shared between the three air-
lines. We obtained the network from http://complex.unizar.es/

˜atnmultiplex/. The details of this dataset are listed in Table 4.1 (A).
We measured several properties in the three layers; the values are demon-
strated in Figure 4.1. All the results obtained regarding the layers of
Ryanair and Easyjet are almost comparable in terms of density, but the
maximum degree values vary between the three layers.

2. A large dataset comprising a large number of tweets posted on Twitter
over the course of one week was collected by De Domenico et al. as a
means of analyzing the dynamics of information spreading (a scientific
rumor about the Higgs boson particle) in a social network [24]. All col-
lected posts were tweeted on Twitter between 1 and 7 July, 2012. The au-
thors built a network consisting of 456, 631 nodes and 14, 855, 875 directed
edges. The nodes constitute the authors of the tweets and there is a di-
rected edge between a pair of nodes if there is follower/followee relation
between them. In addition to this network, they deduced three directed,
unweighted networks based on three different types of interactions: a
user replying to another one; retweeting a post; or a user mentioning
other users in his/her tweet concerning the same topic. We obtained the
network from https://snap.stanford.edu/data/higgs-twitter.
html. We built a multiplex network comprised of three layers represent-
ing the three aforementioned relationships [85]. Since some users might
or might not be engaged in an activity (e.g., user A might retweet a tweet
but never reply to others), we restrict our analysis to those users who par-
ticipated in a minimum number of activities, and were therefore active in
a layer, i.e., user A replied at least once to other users. Considering this
assumption, 127 same nodes exist in the largest, strongly connected com-
ponent of each of the three networks. Considering this, the details of the
dataset are listed in Table 4.1 (C). All the basic properties are measured

http://complex.unizar.es/~atnmultiplex/
http://complex.unizar.es/~atnmultiplex/
https://snap.stanford.edu/data/higgs-twitter.html
https://snap.stanford.edu/data/higgs-twitter.html
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separately for the four types of relations and demonstrated in Figure 4.1.
Among them, the layer that represents the relation of follower/followee
includes some nodes with a maximum degree of more than 40, 000. Among
the four layers, the layer that represents the communications among users
who got involved into the action of replying to posts about the Higgs bo-
son is the densest network.

3. A dataset has been provided by Lazega in 2001, containing several types
of interactions among a number of attorneys in a law firm [55]. He stud-
ied the ways in which 71 attorneys communicate in a law firm on a law
case. His investigation is based on several relational aspects such as seek-
ing advice from others, co-working, and having friendships outside the
firm. Using these three different relationships, a multiplex network com-
prised of three layers can be deduced. In this construction, the nodes
indicate the attorneys and there exists a directed, unweighted edge be-
tween a pair of nodes if there is communication between them with re-
spect to the three mentioned social relations, i.e., in the first layer, a node
is connected to someone an attorney might approach for advice on a task.
Note that the person who is the advisor is not necessarily a co-worker
or vice versa. The data is obtained from https://www.stats.ox.ac.
uk/˜snijders/siena/Lazega_lawyers_data.htm. The details of
this dataset are listed in Table 4.1 (B). We depict the differences between
the basic properties measured in the three layers in Figure 4.1. The results
indicate that the characteristics of those layers that contain the interac-
tions of seeking/getting advice and those of co-working, respectively, do
not vary a lot. However, it seems that not many of the attorneys engage
in a friendship relation outside the firm, as can be interpreted from the
lower values obtained for the layer of friendship.

4.3 Experimental Results

4.3.1 European airlines network

We interpret the classical centrality measures on this data as follows: A direct
property that can be captured by degree indicates the importance of an airport
with respect to the number of connections that the city has to the other cities.
We assume that the respective property can be correlated with the number of
passengers who tend to go to their final destination via a particular airline. The
second centrality measure betweenness can be interpreted as a measure of the
importance of an airport in terms of losing the process if it shuts down [85]. An
indicator of importance based on the average distance to an airport directly cor-
responds to closeness. We think of this property as the ease by which a process
reaches the airport operated by a specific airline.

The aforementioned three centrality indices were computed in each layer and
the steps of the proposed method as listed in the box, were applied to the net-
work layers.

https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
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FIGURE 4.1: The basic properties of multiple layers are mea-
sured in the three multiplex networks: European airlines net-
work, Twitter network, and a law firm network, respectively.
All the definitions for the measured properties are provided in
Sections 2.1.1 and 2.1.6. Note that for the max and average de-
gree values, and the out-degree plus the in-degree of the nodes

are computed in directed networks.
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TABLE 4.1: Properties of all the layers of the three multiplex
network data; V ∗ is defined as the set of nodes shared by all

layers of the respective dataset.

(A) European airlines network.
|V ∗| = 20.

Properties Air-
Berlin

Easyjet Ryanair

|Vi| 75 99 128
|Ei| 239 347 601

(B) Twitter network. |V ∗| = 127.

Properties Mention Reply Retweet Social Network
|Vi| 1801 322 984 360210
|Ei| 7069 708 3850 14102605

(C) Law firm network. |V ∗| = |Vi| =
71

Properties Advice Coworker Friend
|Vi| 71 71 71
|Ei| 717 726 399

For ease of reading, we follow the research questions as listed in the intro-
duction. The first question is whether the nodes’ rankings regarding the cho-
sen centrality indices conflict or correlate. To address this issue, a pairwise scatter
plot of centrality indices is used as shown in Figure 4.2, which provides a general
insight. While there is a generally positive correlation, there always exists con-
flicting views on the same node. This turns the identification of the top (best)
nodes with respect to multiple importance values into an MCDM problem, for
which the usage of the proposed approach allows the exploration of conflicting
rankings in a convenient manner. After obtaining the scores over the different
values of β, the ranking for each of the shared airports within each of the three
low-cost airlines AirBerlin, Ryanair, and Easyjet is demonstrated in Figure 4.3.
Note that in the visualization, only some values of the β-parameter are shown
in the x-axis in order to reveal the changes better.

Focusing on each curve separately, it is possible to compare the rankings
within a layer. In the layer of AirBerlin, the airports of Palma de Mallorca
and Kos Island achieve the highest and the second highest ranking among the
airports, independent of β, for all types of aggregation scaling from (β = −20)
to (β = 20). Considering the airports of Faro and Alicante, it turns out that
Faro airport with the centrality values [0.48, 0.107, 0.72] and Alicante with the
centrality values [0.44, 0.098, 0.732] have almost stable ranking positions.

Imagine a single ranking of airports with respect to either betweenness or
closeness. The outcome would be definitely different if one were to ask which
airport is more important in case it was shut down, or which one is easier to
reach for a process that is indivisible. However, if one were to ask which air-
port is of importance in general considering all cases, the answer should not
be too different. We will come back to this point later on. Looking at all three
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FIGURE 4.2: European airlines network. The correlations be-
tween the three normalized centrality indices are depicted for
each layer of the multiplex network, respectively. The figure is

reprinted from [85].

layers of interest (three airlines), both Faro and Alicante show almost similar
behavior; their positions in the three layers are similar. In the layer of Easyjet,
independent of the β-value, Gatwick airport is the one that always occupies
the best rank; similar to London in the layer of Ryanair. As can be seen in
Figure 4.2 (B), the pairwise correlation between the normalized degree and the
betweenness centrality is strong; however, with respect to the other two pairs
of measures, there are some nodes that produce conflicting rankings, e.g., the
Barcelona airport. Consider the layer of Ryanair: London gets the highest im-
portance considering all chosen centrality measures as conjectured, while the
airports of Alicante and Madrid are always second and third.

Which nodes show similar ranking behavior? Going back to the point
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FIGURE 4.4: European airlines network. Partitioning of the 20
shared nodes using the two measures of ∆agg and ∆layers.

mentioned above, we use the two measures ∆agg and ∆layers to explore the
general behavior of nodes with respect to multiple measures within multiple
layers of interest to check which ones show less (or more) sensitivity in their
rankings? Following the steps of the proposed approach, the partitioning result
is demonstrated for all nodes in Figure 4.4. As can be seen, the three airports
of Alicante, Faro, Malága are both in the same partition (L0A0L0A0L0A0) as they have al-
most similar behavior if one considers multiple indices of centrality. They show
similar ranking behavior considering all three layers—they are both among the
most important airports almost persistently. This means their ranking experi-
ences less sensitivity within a layer considering multiple measures, and their
importance within all layers stays almost within the same range. In contrast,
an airport like London shows a pretty sensitive ranking within all layers and
within multiple indices of centrality; its high value of ∆agg indicates that, in
general, this airport is identified as very important with respect to one central-
ity, but not important for the rest. Also, it shows a medium value of sensitivity
within all the layers, ∆layers, which means it is very important in one layer but
not very important in the rest. This behavior is not as extreme as that revealed
for Gatwick, which has a very high value of ∆layers meaning that this airport
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FIGURE 4.5: Twitter network. The correlations between the
three normalized centrality indices are depicted for each layer
of the multiplex network. The figure is reprinted from [85].

is at the center of attention of one or two specific airlines but not for all. How-
ever, it almost shows stable ranking within each layer as its ∆agg value is small,
similar to Madrid and Kos Island airports; thus they are all in the partition of
L+A0L+A0L+A0.

4.3.2 Twitter network

The proposed approach is also applied to a data set containing information
about the tweets exchanged between a large number of users in a social net-
work. For the sake of clarity, we interpret the centrality measures for this data as
follows: degree indicates direct influence of a user in communicating with oth-
ers. As explained in Section 4.2, this dataset was developed and also analyzed
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by De Domenico et al. in [24]. They stated that many “information hubs”—
which are basically high-degree nodes— had more exchanges of information
with low-degree nodes, which they named “information consumers” [24]. Con-
sidering the other aspects of centrality, betweenness and closeness and according
to Borgatti (2005), it is pretty clear that this network would most likely not sup-
port any process that takes the shortest paths [10].

The reason for this is that, as the tweets were about a scientific rumor, it is
reasonable to assume that the users wanted to communicate with others with
the same frequency. However, we use this large multiplex dataset to show how
the proposed approach can deal with multiple conflicting rankings of nodes in
multiple layers using a pure demonstration. Therefore, we also measure for the
127 nodes the normalized indices of out-betweenness and out-closeness, since the
directed version of the relations is available for three layers: mentioning users
in tweets about the Higgs boson, replying to others, and retweeting the post. It
is revealed that these centrality indices do not correlate very strongly as depicted
in Figure 4.5. And, applying the proposed approach to analyze the multiple
conflicting rankings is reasonable as there won’t be any centrality index that
leads the result of some aggregations, e.g., at least one criterion with the best
value. Similar to the last two datasets, focusing on one curve shows information
regarding the ranking of a user in one type of interaction in Figure 4.6 (A).
A user such as node 2 is almost among the top 10 nodes with respect to the
interaction type of Mentioning. Users 59 and 96 are among the top 10 as well
with respect to this type of interaction. It would be expected that the number
of friends that these users have would be pretty close to each other. To inspect
this, we additionally obtain the degree of the 127 nodes in the Social network
layer, which represents the relation of followee/followers on Twitter. The degree
here indicates the number of friends a user has in total. What we observed,
however, was different than expected. It turns out that there is no correlation
between the number of direct friends and their centrality considering various
aspects of communication on Twitter [85]. Going back to the aforementioned
nodes, the number of followers/followees varies between them. Node 96 had
the smallest number of friends (322 users), while node 59 was linked to 33, 664
users on twitter.

Similarly, the person named node 15 was connected to 11, 880 users, which
is about 40 times higher than the number of friends of node 28. However, they
show almost similar ranking with respect to the Mentioning activity. Con-
versely, there were some users who were similar in terms of the number of
friends/followers, but nonetheless showed distinct ranking behavior; e.g., nodes
40 and 46. Both of these users had about 500 friends/followers on Twitter.

Which nodes show similar ranking behavior? Consider all the curves in
the visualizations. It is interesting to do a broad investigation on which nodes
show similar ranking behavior with respect to all multiple aspects of centrality
over multiple types of interactions. Following along the steps of the proposed
method, the partitioning results of the nodes are obtained, which are depicted
in Figure 4.6 (B). In general, we observe nodes that have almost the same rank-
ing behavior considering different aspects of importance over all layers in the
partition L0A0L0A0L0A0, such as nodes 46, 26, and 59— these show consistent ranking
behavior with respect to their activity level. Also, the nodes in the partition
L+A0L+A0L+A0 show different behavior within all the layers of activities, such as node
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FIGURE 4.6: Twitter network. (A) Rankings obtained using
different values of the β-parameter for some shared nodes be-
tween the three layers of the Higgs Boson dataset. (B) Parti-
tioning of the 127 shared nodes using the two measures ∆Agg

and ∆Layers.
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FIGURE 4.7: Law firm network. The correlations between the
three normalized centrality indices are depicted for each layer
of the multiplex network. The figure is reprinted from [85].

15; i.e., the ranking difference ∆agg in this partition is less than the ranking
difference within all layers ∆layers.

4.3.3 Law firm network

Nodes in the deduced network indicate the attorneys of a law firm and links
show their communications with respect to three different relations. One inter-
pretation for the degree centrality in this network can be the direct impact that
someone has on others in the firm. Analogously, the in-degree quantifies the di-
rect influence that node A receives from others and the out-degree indicates the
extent that node A influences others. We interpret the betweenness centrality as
quantity reflecting the importance of a person with respect to communication
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flows in a human group, and the last property of interest is considered to be
the average minimal number of steps needed to give a note to another person.
Since we have directed relations in this data, this property can be quantified by
out-closeness. As explained in Section 4.2, these measures are obtained for three
different relations: seeking/getting advice, co-working, and having friendships
outside the firm. Figure 4.7 demonstrates the different views that pairwise cen-
trality indices have on who is most influential with respect to the properties they
measure.

As shown in Figure 4.8 (A), by focusing on one curve, the ranking of a node
within one layer is revealed; e.g., node 1 is among the top three nodes in the Ad-
vice layer. This person gets the three normalized indices values [0.442, 0.114, 1].
One surprising point regarding his/her activity is that the number of people
seeking advice from this attorney is not maximal; i.e., this property is measured
by degree. However, since he/she achieves a maximal value in out-closeness—
when the aggregations requires at least one property with a high value— he/she
stays in the top ranking. This means that this is an important attorney in the
firm with respect to giving advice to others as the person is close to the other
members with a minimal number of intermediaries. Correspondingly, the other
top attorneys with respect to seeking/giving advice are: node 26 in the high-
est place and node 24 among the top 4.Considering the Coworker layer, the
two lawyers 24 and 4 are at the top when β = 20 with respect to their nor-
malized centrality index values of [1, 1, 0.332] and [0.632, 0.41, 1]. These two
nodes are also among the top 5 nodes in terms of having friendships outside
the firm. Which nodes show similar ranking behavior? We compute the two
measures ∆agg and ∆layers for all nodes and normalize them as explained in
the steps. Then we partition the nodes into four partitions; the results are de-
picted in Figure 4.8 (B). As can be seen, nodes 24 and 4 are among the nodes in
partition L0A0L0A0L0A0, which indicates that they are less sensitive to different types of
aggregations and their ranking behavior is similar within all types of relations.
Imagine a selection among attorneys in a law firm. The best person is the one
who is identified most of the time as top-ranking with respect to all types of
relations and all aspects of importance. Node 3, on the other hand, is among
the nodes that show extremely varying behavior with in a layer (considering
different aggregations over multiple chosen criteria) and within all layers of re-
lations, as both their normalized ∆agg and ∆layers values are high. There is
one interesting node in the partition L0A+L0A+L0A+, 66, which shows similar ranking
behavior considering all relations but has very different behavior if different
types of aggregations are used, meaning he/she has a high important in terms
of one or two aspects of centrality but not in all.

4.4 Summary

Our main goal in this chapter was to provide a means for exploring multiple
rankings of nodes in multiple layers of a network.

We use a similar approach to the previous chapter, including the OWA op-
erator and a partitioning for application to three different multiplex network
datasets, each of which consists of more than two layers. We explained in the
previous chapter that having a set of nodes evaluated by multiple measures
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ing of the 71 shared nodes using the two measures ∆agg and
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turns the exploration of node centrality into an MCDM problem. The reason
is that the centrality indices mostly result in conflicting rankings. This is even
worse when multiple types of interactions exist in the network; nodes have
different roles in the layers, and in each layer their various aspects of commu-
nication can be quantified in multiple ways. We started this type of analysis by
addressing a number of research questions in order to explore how the nodes’
rankings change over the layer and over the measured multiple centrality in-
dices. By means of two new ways of visualization and by comparing the result-
ing ranking curves of one node, we are able to explore the overall importance
of a node. Providing a means for a very detailed exploration of the ranking of
nodes is the strength of the proposed approach. In a transportation network,
we observed airports that are very important for one or two specific EU airlines
(e.g., London via Ryanair) but not important for the rest. We showed that if one
takes a single ranking on a specific aspect of importance, the outcome will be
different than what we get when considering multiple aspects of importance,
as in the cases of Faro and Alicante; these two show more stable rankings over
all aspects considering all layers of interest. In a law firm dataset, we identified
top attorneys who are well-known for seeking/giving advice on a legal case.
The centrality indices produced less conflicting rankings in this dataset in com-
parison to the first one. In a tweet-based network, we observed that the number
of direct followers/followees is not necessarily correlated with other aspects of
importance, such as mentioning or replying to the others’ tweets on Twitter. We
focused on some interesting users who, although top-ranked regarding various
aspects of centrality, were in contact with only a small number of users.

To get a broad view of the ranking-related behavioral patterns of the nodes,
four leading types of ranking behavior were conceived. We partitioned the
nodes with respect to the changes they exhibit in their ranking within one layer
and with respect to the changes they show within all the layers of interest. In
one of the partitions, we observed the group of nodes that have more stable
ranking, i.e., the nodes are either always most central in all layers or consis-
tently least centrals in all layers. Some nodes are at the center of attention of
one or two specific layers but not for all in one of the partitions. However,
these nodes show stable importance within each layer of interest, e.g., Gatwick
and Kos Island airports in the European airline network, or Node 103 in Tweets
network, which was in the partition L+A0L+A0L+A0. In the remaining partitions, e.g.,
L+A+L+A+L+A+, the nodes’ positions within a layer and/or within all layers give rise
to more conflicting centrality rankings, which makes nodes more fragile to the
choices.

Using the proposed approach in general, it is very interesting to observe
whether or not the importance of a node is stable within a layer or over all lay-
ers. The approach can also be applied to any other case in a multiplex network,
with multiple ways available to assess the activity of individuals or groups,
such as communities. However, the observed changes regarding centrality
rankings raise a question of great concern here that needs to be addressed:

Note 4.1 If the centrality rankings are very sensitive to the choices regarding aggre-
gation, what about other modeling decisions, e.g., normalization methods? Does the
choice of normalization methods for the result of a centrality measure before performing
any aggregation influence the rankings?
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In Chapter 3, we pointed out that if one of the centrality indices has always
a higher value than the values of other centrality indices, the corresponding in-
dex plays a dominant role in the aggregation’s result and does not allow other
indices to get a comparable chance to contribute to some types of aggregations.
This is more important in multiplex networks. Thus, it will be the main topic
of the next chapter. We will propose a set of different normalization methods
along with the same set of different aggregations used in this chapter for the
three multiplex networks in order to elaborate the aforementioned concerns.
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Chapter 5

Sensitivity analysis of
centrality rankings in
multiplex networks

A wide range of studies exist on node centrality in the field of network sci-
ence, which shows the importance of this topic. However, not many of the
works document all their modeling assumptions and discuss whether or not
the choice of different decisions influences the results of the produced central-
ity ranking. Considering only one centrality measure in different networks,
Freeman discusses that a comparison of the centrality index values of different
nodes requires careful normalization. Assume two networks with the orders
(i.e., number of nodes) 150 and 500, and consider two nodes with a degree of
100 occurred in the first network and a degree of 200 occurred in the second
network, respectively [89]. In this scenario, a classic normalization method can
be to use the division of the actual degree by the corresponding order of the
network— which results in higher importance for the first node than for the
second node in the example above—or to use the division by the maximal ob-
served value among the degree values, or to use the subtraction of the minimal
observed degree divided by the difference between the maximal and minimal
values in the network. In order to perform a meaningful comparison over net-
works that are most likely to have different sizes and orders, normalization of
the measured values is crucial.

Imagine the same scenario in a multiplex network. It has been well docu-
mented in the literature that the understanding of complex systems demands
more comprehensive models and frameworks, such as multiplex networks [47].
As explained in the previous chapters, some researchers consider the existence
of edges between nodes from different layers in interconnected networks [23,
24, 22].

Different strategies have been proposed for the evaluation of node central-
ity in multiplex networks. For instance, in a study, the authors propose the
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usage of a vector containing the centrality index values, where each entry be-
longs to the node’s value in one specific layer [7]. The problem here is that it is
not easy to perform a single ranking of all nodes based on such a vector. Thus,
other researchers have suggested either computing a sum or a regular average
of all centrality values [9]. In all strategies comparing or aggregating central-
ity indices, many preprocessing steps need to be described in a reproducible
manner. However, as mentioned earlier, no concrete normalization method or
aggregations regarding node centrality in multiplex networks have been dis-
cussed in the literature so far 1. As we have shown in the previous chapter, the
trade-offs between the different views of multiple centrality indices on a node’s
importance in multiple layers of a network result in more complicated ranking
behavior, as a node’s position might vary between the layers. This gives rise to
concern regarding the sensitivity of centrality rankings if the layers have very
different structures.

Thus in this chapter, we consider different definitions of normalizing cen-
trality index values prior to applying a set of aggregations, and investigate
whether or not the choice of different modeling decisions influences a node’s
centrality ranking. We focus on a very simple measure and show that even
sticking to the most frequently used centrality index, the degree, but applying
various normalization and aggregations reveals the extent of the rankings’ sen-
sitivity to the corresponding choices. We conduct this sensitivity analysis on the
same multiplex networks we used in the previous chapters: A multiplex net-
work representing a subset of the European air transportation network, a mul-
tiplex network of interactions between people who engaged in tweets about the
Higgs-Boson particle, and a dataset describing three types of relations between
employees of a law firm.

5.1 Comparing node degrees between network lay-
ers with different structures

In a multiplex network in which the position of the nodes varies between the
layers, we will most likely get different views of importance for a single node
using the same measure over the layers (as defined in Section 2.1.3). To discuss
this, consider the simplest node centrality measure, degree, in the three follow-
ing datasets, where each is represented as a multiplex network. Note that the
datasets are the same datasets used in Chapter 3. However, we provide the
details in the current chapter as well in order to make referring easier.

In the first dataset, which is a European airlines network comprised of 37
layers of European airlines (obtained from [17]), the number of airports shared
between the 37 airlines is extremely small. Therefore, we use two subsets of
airlines to construct two multiplex networks; in these networks, nodes always
represent airports and there is an undirected edge between a pair of nodes if
there exists a flight operated by the corresponding airlines. First, we consider
a multiplex network comprised of AirBerlin, Easyjet, Lufthansa, and Ryanair.
This constructed network has nine airports shared by the four aforementioned

1The possible reason might be, the choices of such preprocessing steps seem to be inconsequen-
tial as we discussed in our paper [89].
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airlines. Second, we exclude the Lufthansa layer from the first subset, which
results in a subset of three low-cost airlines. This consideration results in twenty
airports shared by the three airlines. In Figure 5.1, the red nodes in the three
airline layers depict the airports shared between them. It is obvious that the
positions of the red nodes and their degree vary between layers, which results
in different centrality rankings for these red nodes. Some airports have more
connections to other cities, and thus have a high degree within, for example,
the AirBerlin layer, but are not shared by other airlines in the market, while
some high-degree nodes in the remaining layers are shared by all three low-cost
airlines. For the subset including four layers, the structural properties are listed
in Table 5.1a. Taking a closer look at the number of nodes in a layer in this
data, it is obvious that the results are not as extreme as those we obtained for
the Twitter network data. However, some characteristics still vary between the
layers; e.g., while the layer of Air-Berlin has only 75 nodes, the layer of Ryanair
contains 128 nodes. If we want to compare the degree of the same airport over
the airlines, it is reasonable to do so by observing its position among all shared
airports or among all airports that are available in all three layers. This can be
done by performing normalization prior to any aggregation over the results of
the same airport if the aim is to get the overall degree of importance.

The second multiplex network consists of Twitter network data representing
the interactions among users who were active in tweets regarding the Higgs-
Boson particle [24]. As mentioned, the four layers of this network represent,
respectively: mentioning the users in tweets, replying to the tweets of other
users, re-tweeting the tweets, and the social network of followers/followees [24].
These four layers share |V ∗| = 127 nodes. Since the layers contain directed
edges between the nodes, we measure the total degree (out-degree plus in-degree)
of these nodes in all four layers per se showing the importance or the activity
level of the corresponding users. The details of the properties of each layer are
shown in Table 5.1(B). In this data, the orders are even more different; one net-
work layer, the Reply layer, contains 322 nodes and the last layer, which is the
social network of follower/followee relations, has the order of 360, 210 nodes.
Recalling the same example that we used at the beginning of this chapter, con-
sider that user A has replied to 45 users and retweeted 50 other users’ posts.
His first activity level might be higher than the second one if we compare their
normalized values with the maximum activity level that is obtained among all
active users (V ∗) with respect to the corresponding activities, i.e., 45 and 101,
respectively. Thus, before any comparison or aggregation of the result of the
same user, meaningful normalization is required.

In the third dataset, the Law firm data, the communications among 71 at-
torneys in a law firm compiled by Lazega in 2001 [55] are recorded. Similar to
the other datasets, the properties are listed in Table 5.1c. Figure 5.2 (A) to (C)
demonstrates the out-degree and in-degree by node color and size, respectively,
in the three layers of this dataset. As can be observed, all 71 nodes are available
in all three layers, but the size of the layer that represents friendship is different
than the values obtained in the remaining layers. It can be conjectured that the
rankings in this network will have less fluctuation in comparison to the other
two datasets. However, since the total degree (out-degree plus in-degree) of the
nodes in the layers is different, and considering the different orders and sizes of
the network layers, at least a few nodes would show some extent of sensitivity
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TABLE 5.1: Three multiplex network data sets. In the listed
properties, V ∗ denotes the set of nodes shared between all lay-
ers of a multiplex network. The tables are reprinted from [89].

(A) European airlines network. The num-
ber of shared nodes in the subset of
Lufthansa, AirBerlin, Ryanair and Easyjet
is |V ∗| = 9 and in the subset of AirBerlin,

Ryanair, and Easyjet equals 20.

Properties Air-Berlin Easyjet Lufthansa Ryanair
|Vi| 75 99 106 128
|Ei| 239 347 244 601
maxv∈Vi

{deg(v)} 37 67 78 85
maxv∈V ∗{deg(v)} 26 17 5 28
minv∈Vi

{deg(v)} 1 1 1 1
minv∈V ∗{deg(v)} 1 2 1 5

(B) Twitter network. The number of shared
nodes, based on the corresponding largest
stronglyconnected component among the lay-

ers, equals |V ∗| = 127.

Properties Mention Reply Retweet SocialNetwork
|Vi| 1801 322 984 360210
|Ei| 7069 708 3850 14102605
maxv∈Vi

{deg(v)} 466 45 212 44611
maxv∈V ∗{deg(v)} 141 45 101 33664
minv∈Vi

{deg(v)} 2 2 2 2
minv∈V ∗{deg(v)} 2 2 2 27

(C) Law firm network. The three layers of
this network share the same 71 nodes, i.e.,

Vi = V ∗ in all layers.

Properties Advice Coworker Friend
|Vi| 71 71 71
|Ei| 717 726 399
maxv∈Vi

{deg(v)} = maxv∈V ∗{deg(v)} 46 45 28
minv∈Vi

{deg(v)} = minv∈V ∗{deg(v)} 3 7 1

to the choice of different normalization methods and, consequently, different
aggregations, e.g., node 15. This means that the corresponding attorney has
different numbers of communication partners with respect to seeking/getting
advice, co-working with others, and being in a friendship relation outside the
firm. Thus it is important to compare his/her degrees with those of the other
attorneys.

5.2 Sensitivity analysis on centrality rankings

A set of normalization methods are proposed to be used prior to any aggre-
gation in order to make the results of the nodes over the layers comparable.
Afterwards, visualization is used to characterize a node’s sensitivity to either
the choice of a normalization or aggregation, to both, or to none of them in
several multiplex networks. This type of sensitivity analysis allows making a
decision on whether or not the choice of a specific normalization method can
be defended. Most of the results in this chapter are published in a paper [89].
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FIGURE 5.1: European airlines network. The nodes’ sizes show
their actual degree; the nodes shared between the three layers
of low-cost airlines are colored red. The degrees vary between

layers for any shared node.
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FIGURE 5.2: Law firm network. The nodes’ sizes show the
actual out-degree and their color indicates the in-degree; e.g., in
(A), node 13 has a high out-degree, but a rather low in-degree

represented by a pale red.
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5.2.1 Different normalization methods for degree centrality

Normalization can be performed differently based on the combination of var-
ious assumptions, such as: the minimum degree that a node obtains among all
nodes within a layer, the minimum degree that a node achieves among all nodes
within all the layers or, accordingly, among only those nodes that are active
with respect to all types of interaction or relations. Other possible definitions
include the maximum degree that a node gets among all nodes within a layer,
or the maximum degree that a node has among all nodes over all the layers; ac-
cordingly, among only active nodes. The methods we propose are described as
follows2:

NormMethod 1 considers degi(v) for all v ∈ V ∗ in layer li and normalizes it
with the minimum and maximum values observed in the set of common nodes.
Using this method, we then achieve a vector of normalized indices of [0, 1] for
layer li.

C1(v, i) =
degi(v)−min{degi(v)|v ∈ V ∗}

max{degi(v)|v ∈ V ∗} −min{degi(v)|v ∈ V ∗}

NormMethod 2 is a commonly applied normalization method in a lot of
studies. Like the last method, this method uses minimal and maximal values.
However, it takes these values from the set of all nodes (Vi) in the layer li. There-
fore, after ranking the nodes available in V ∗, a node with a normalized value
of 0 or 1 might or might not be found among them. This means if the nodes
having minimal and maximal degree values in li are also included in V ∗, then a
normalized value of 0 or 1 can be obtained.

C2(v, i) =
degi(v)−min{degi(v)|v ∈ Vi}

max{degi(v)|v ∈ Vi} −min{degi(v)|v ∈ Vi}

NormMethod 3 uses the results obtained by NormMethod 2 and multiplies
them with the fraction of the maximum degree in layer li and the maximum
degree among all nodes in all |L| layers. This results in a vector of indices of
nodes (v ∈ Vi) between [0, max{degi(v)|v∈Vi}

max{degi(v)|v∈
⋃
Vj ,1≤i≤|L|} ].

C3(v, i) = C2(v, i) ·
(

max{degi(v)|v ∈ Vi}
max{degi(v)|v ∈

⋃
Vj , i ∈ [1, . . . , |L|]}

)
NormMethod 4 is proposed as a means of considering each node degree’s

ranking position within each layer. NormMethod 4 ranks the nodes with respect
to their degree (degi(v)) in each layer non-increasingly. Then it denotes the
ranking of node v by Ranki(v) and normalizes it with the order of the layer
(the number of nodes existing in the corresponding layer).

C4(v, i) =
Ranki(v)

|Vi|
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FIGURE 5.3: The normalization of NormMethod 2—described in
definition 5.2.1— is applied to the three networks and the cu-
mulative distributions of the normalized degree are depicted.

The figures are reprinted from [89].
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The cumulative distribution of degree normalized using NormMethod 2

The cumulative distributions of normalized degree centrality for NormMethod
2 are shown for all three multiplex network datasets in Figure 5.3 (A) to (C).
Freeman discusses in his seminal work that some networks are more centralized
than other networks. In such networks, a node that has a large degree would
dominate the other nodes’ degree. Freeman states that in a centralized network,
the majority of nodes show a very small normalized degree, while some nodes
have a large normalized degree. In Figure 5.3 (A) to (C), in the cumulative dis-
tribution represented for the normalized degree values, we visualize the per-
centage of nodes with at least normalized degree x against x. As can be seen,
an increase followed by a long tail until reaching 1 is observed in a strongly
centralized network layer. In contrast, for a less centralized network layer, the
cumulative distribution of the values stays closer to the diagonal. Looking at
the Figure 5.3 (A) reveals that the cumulative distributions of the normalized
degree values are quite similar for the Easyjet and Ryanair layers. Conversely,
the other two layers, AirBerlin and Lufthansa, show different behaviors. In the
Lufthansa layer, it is obvious that more than 90% of the normalized degrees of
nodes are smaller than about 70% of the normalized degrees in the Air Berlin
layer.

If one wants to find the node that is the most important node in at least one
layer of interest, this aggregation would not be able to identify most central
nodes in the Lufthansa layer as even a node with a medium normalized degree
in the AirBerlin layer would dominate a larger normalized degree centrality in
the other layers. Similarly, the social network layer in the Twitter network data
is a strongly centralized network layer, which gives it less chance to contribute
in the result of the aggregation. Thus, NormMethod 4 is proposed to deal with
such cases. In contrast to the other two datasets, the distribution of the values
for the law firm network for all three layer is close to the diagonal, which indi-
cates these layers are less centralized. Assume a total ordering in the results of
three layers (e.g., l1 < l2 < l3) on the set of all values. In this dataset, less than
9% of nodes have the exemplified order on their values.

5.2.2 Different aggregations over normalized degrees

After performing all the normalization methods for the measure of degree cen-
trality in multiplex networks, we can find out which nodes are top-ranking with
respect to multiple layers of relations using a set of aggregations.

Assume Cx(v, lγ) as the normalized degree value of node v in layer lγ that is
computed using NormMethod x. Then, having all four normalized values for a
set of shared nodes initiates the elements of an MCDM problem in the following
way:

2These methods and their results have been published in a paper [89].
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Alternatives: a set of |V ∗| shared nodes.

Multiple criteria: the normalized degree values
obtained using a specific normalization method x in
|L| = m layers.

Decision matrix:

v1 Cx(v1, l1) Cx(v1, l2) · · · Cx(v1, lm)
v2 Cx(v2, l1) Cx(v2, l2) · · · Cx(v2, lm)
...

...
...

...
...

v|V ∗| Cx(v|V ∗|, l1) Cx(v|V ∗|, l2) · · · Cx(v|V ∗|, lm)

Problem: which node(s) is (are) the most central one(s)
with respect to different aggregations used over multiple
criteria?

Note that in the previous chapter, we evaluated node centrality by consider-
ing three classical centrality indices as multiple criteria, where each had a value
in [0, 1], for example, using NormMethod 1. In contrast, in the current chapter,
we have one aspect of importance that is captured by degree centrality in mul-
tiple layers, but is normalized with respect to different assumptions using four
normalization methods. Therefore, a similar decision matrix is considered for
these four normalization methods. In such an evaluation, different aggrega-
tions can be created using a parameter in the MEOWA operator, as described
in Chapter 2.2.1. In this setting, we consider the same range of the β-parameter
(a set of values in [−20, 20]) as used in the previous chapter, where we aimed
at understanding the ranking behaviors of nodes in multiple layers and par-
titioned them based on their changes. However, here we rather focus on the
details regarding the sensitivity of the rankings.

For each node, we visualize its ranking by considering different normaliza-
tion methods over a set of β-values using colored curves.

5.2.3 Partitioning nodes with respect to their sensitivity

Similar to the previous chapter, we propose computing two measures as a
means of analyzing the sensitivity of the nodes’ ranking to the choices of differ-
ent normalization and aggregation using Algorithm 2.

For all nodes in the results of all normalization methods, we find the max
and min values over all β-values and compute the maximum difference be-
tween the respective max and min. To describe this, let minRank(v, Ci) denote
the minimal rank of node v based in a normalization method Ci over all β-
values and definemaxRank(v, Ci) accordingly. Then, ∆agg(v) := max{maxRank(v, Ci)−
minRank(v, Ci)|1 ≤ i ≤ 4} shows the overall sensitivity of a node on the cho-
sen aggregation.

Likewise, for all nodes over all β-values, find the max and min values
among all normalization results and compute the maximum difference between
the obtained max and min. For the sake of formality, assume maxRank(v, β)
denotes the maximal rank of v based on any normalization method and let
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Algorithm 2: Measuring sensitivity of ranking to the choice of different
normalizations and aggregations.

for all nodes in V ∗ do
for all normalizations Ci do

Find maxRank among all β-values
Find minRank among all β-values
Compute maxRank-minRank

end for
return Max over all max-min {∆agg}

end for
for all nodes in V ∗ do

for all β-values in Γ do
Find maxRank among all normalizations
Find minRank among all normalizations
Compute maxRank-minRank

end for
return Max over all maxRank-minRank {∆norms}

end for

minRank(v, β) be defined accordingly. The overall sensitivity of a node in the
chosen normalization method is then defined as ∆norm(v) := max{maxRank(v, β)−
minRank(v, β)|β ∈ Γ}, where Γ is a set of different β-values. If we plot nodes
with respect to their ∆agg and ∆norm values and take half of the maximum ob-
served value for each measure to draw a vertical and a horizontal line, a node
will be placed in one of the four categories A0N+A0N+A0N+, A+N0A+N0A+N0, A+N+A+N+A+N+, A0N0A0N0A0N0.
In the first category, we observe nodes that are sensitive only to the choice of
the normalization method; in the second category, nodes that are sensitive only
to the choice of the aggregation will be observed; the third category includes
nodes that are sensitive to both models; and the last one contains nodes that
are not sensitive to either one. In the second visualization, we use the actual
values of ∆agg and ∆norm and inspect those nodes that are more sensitive in
their rankings. All the contributions in this chapter have been published in a
paper [89].

5.3 Results in three multiplex network datasets

For all the experimental results obtained for the three different multiplex net-
work datasets, we visualize the aggregation of the normalized degree values for
a set of common nodes using a set of different values of β. We demonstrate the
scatter of nodes into four groups with respect to their sensitivity to the choices
of normalization and aggregation.
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European airlines network (excluding Lufthansa layer)

Assume that the Lufthansa layer is removed from the constructed multiplex
network3. Then the outcome is a multiplex network comprised of three lay-
ers —those of AirBerlin, Easyjet, and Ryanair— in which twenty airports are
shared. The ranking positions of the nodes are depicted in Figure. 5.4.

If we look at the rankings of airports as shown in Figure 5.4, an airport
like Chania obtains very similar ranking positions using different aggregation
and normalization methods. The two airports Gatwick and Kos Island show
strongly more conflicting rankings if we use the four different normalization
methods over a set of different β values. Consider the rankings in a simple,
average aggregation, which can be obtained when β = 0. Even in this case,
the normalization methods do not agree on the positions of these two airports.
Fig. 5.5 demonstrates a scatter plot of the aforementioned two sensitivity values
for each node in the European airlines data set.

We have four different groups of nodes. At the bottom left, we observe
nodes that have the least sensitivity to both choices of normalization and ag-
gregation. At the top right, on the other hand, nodes that are very sensitive to
both can be identified. In the figure, a correlation between the obtained two
sensitivity measures can be observed for the majority of the airports. However,
some of them, like Barcelona and Venice, are rather more sensitive to the aggre-
gation than to the normalization method. In contrast, there is no airport whose
sensitivity to the normalization method is rather considerable; no airports are
found in theA0N+A0N+A0N+ group.

As can be observed in Fig. 5.5, Chania airport is located in theA0N0A0N0A0N0 group,
which indicates its robust ranking; it does not have any sensitivity to the choice
of normalization method since all four curves are on top of each other. Nodes
like Gatwick and Kos Island have the highest sensitivity to both modeling deci-
sions and are therefore located in the top most right part of the groupA+N+A+N+A+N+.
They both have sensitivity values of ∆agg = 10 and ∆norm = 9. Venice airport
is much more sensitive to the choice of different types of aggregations than to
the normalization method and is thus located in theA+N0A+N0A+N0 group as it gets the
values ∆agg(V enice) = 10 and ∆norm(V enice) = 3, respectively.

The sensitivity analysis of this small dataset provides few but interesting
cases to inspect. Therefore, we aim at conducting the same analysis for larger
datasets in order to explore the influence of the choices regarding the normal-
ization and aggregation used.

Twitter network

In this data, we observe 127 Twitter users who were active with respect to four
different types of interactions, which are represented by four layers of the de-
duced multiplex network. Similar to the previous dataset, we obtain the rank-
ing position of the nodes using the four normalization methods. Looking at the
cumulative distribution of the degree values normalized by NormMethod 2 in
Figure 5.3 (B), it turns out that the portion of nodes in the social network layer
that have a small index value is much higher than the corresponding portion of
nodes in the retweet and reply layers.

3An example including four layers in this dataset is elaborated in Appendix A.2.
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FIGURE 5.4: European airlines network. The normalized de-
gree of the nodes in the three layers representing AirBerlin,
Easyjet, and Ryanair are aggregated using different aggrega-
tions obtained using the MEOWA operator scaled by the β pa-
rameter. The four colored curves show the ranking positions of
the indicated node based on its normalized degrees, depend-

ing on β. The figures are reprinted from [89].
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and ∆norm, respectively. The four sections of the plot con-
tain the group of nodes sensitive to only one choice (A0N+A0N+A0N+ or
A+N0A+N0A+N0), those nodes that are sensitive to none (A0N0A0N0A0N0), and
those that are sensitive to both models (A+N+A+N+A+N+), respectively.

The figure is reprinted from [89].

This indicates that it might happen that the social network layer will have
less of a chance to participate in an aggregation if nodes that have at least one
high degree value among the four normalized degree values are selected. Fig-
ure 5.6 depicts the scatter plot of the obtained values of ∆agg and ∆norm for
all 127 shared nodes. It can be observed that in contrast to the previous dataset,
although a correlation between two measures exists, a few number of nodes
appear in the A0N+A0N+A0N+ and A+N0A+N0A+N0 groups. These groups contain those nodes
that are rather sensitive to one model. Consider four nodes out of 127 shared
nodes, selected to illuminate the characteristic of the four categories of sensitiv-
ity in Figure 5.6. Their rankings, based on the different aggregations computed
over the results of the four layers, are shown by the four colored curves in Fig-
ure 5.7. Looking at the rankings of Node 59 in the bottom most left part of
Figure 5.6 in the group of nodes with almost stable ranking (A0N0A0N0A0N0), we see
that it has actual degrees of [141, 29, 101, 33664] in the four layers mentioning,



80 Chapter 5. Sensitivity analysis of centrality rankings in multiplex networks

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

∆agg

∆n
or

m
●

A0N+

A+N0

A0N0

A+N+

Node 59

Node 24

Node 118

Node 14
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ent aggregations (∆agg) and different normalization methods
(∆norm). The four sections of the plot encompass the group
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nodes that are sensitive to none (A0N0A0N0A0N0), and those that are sen-
sitive to both models (A+N+A+N+A+N+), respectively. The figures are

reprinted from [89].

replying, retweeting, and social network, respectively. Figure 5.7 depicts its rank-
ing curves on top of each other as it has an almost stable position, using all
four normalization methods and different aggregations. Recalling the maxi-
mum values listed in Table 5.1, it can be recognized that node 59 has maximum
total degree between |V ∗| = 127 shared nodes in the three layers mentioning,
replying and the social network. These high importance values are sufficient to
ensure that the corresponding user gets stable high ranking among the top five
users over any aggregation that is desired in the evaluation. This means his/her
ranking would not be sensitive to the choices. Instead, in the opposite side in
A+N+A+N+A+N+, a very conspicuous case is observed, which is Node 118. Its sensi-
tivity is extremely high to both normalization and aggregation to turn it from
being among the least central nodes to being among most central nodes. The
corresponding user has very different numbers of communication partners in
terms of mentioning, replying, retweeting, and having followers/followees relation
on Twitter; the actual degree values are [6, 2, 2, 1396]. Obviously, he mentioned
(and/or was mentioned by) six users in the tweets related to the Higgs-Boson
particle. His degree related to the replying activity is as low as his degree with
respect to the retweeting activity, even though he has a large number of friends
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on Twitter. The ranking curves of this user for the four normalization methods
are depicted in Figure 5.7. As a first impression, its ranking based on Norm-
Method 3 varies from 3 to 103, which results in a range of different rankings
between staying in the bottom 3 and staying in the top 24 nodes— depending
on which aggregation is used. NormMethod 4 results in similar behavior for this
user, but the differences in ranking between these NormMethod 3 and the re-
maining methods are the highest for any aggregation, particularly when β = 0,
i.e., when a regular average is computed.

Among the group of nodes that are rather more sensitive to one model, an
interesting case is observed in A0N+A0N+A0N+ group. Node 24 is rather more sensitive
to the choice of normalization method than to the choice of aggregation. The
degrees of its sensitivity are ∆norm = 60 and ∆norm = 40. The values of
its actual degree vary between four communication partners with respect to the
replying activity and 188 communication partners with respect to the relation
of followers/followees. This user contacted 35, resp. 22 other users by men-
tioning, resp. retweeting them. The ranking curves in Figure 5.7 reveal that
NormMethod 3 produces rankings with a downward trend as this node’s actual
degrees are normalized by the maximum degree found in the four layers (e.g.,
44611 in the social network as shown Table 5.1 (B)). In contrast, NormMethod 1
delivers a ranking curve with an upward trend, i.e., its normalized degree val-
ues for mentioning and retweeting activities become higher if this normaliza-
tion used. NormMethod 2 and NormMethod 4 both produce quite similar ranking
curves.

TheA+N0A+N0A+N0 group is not empty, either. One of the interesting cases is Node
14, which has the sensitivity degrees ∆agg = 65 and ∆norm = 46. This reveals
that this node is rather more sensitive to different aggregations than to differ-
ent normalization methods. Its ranking curves in the bottom right sub-plot in
Figure 5.7 detail the discussed sensitivity.

Law firm network

In this medium-sized network comprised of three layers, we observe less sensi-
tivity in the rankings of the nodes. This is an interesting example that explains
in which cases the rankings would be rather more stable if any choice of ag-
gregation is defended by a decision maker. Looking at the cumulative distri-
butions of the normalized degree values as demonstrated in Figure 5.3(C), it
is clear that the three network layers of seeking advice, co-working, and having
friendships are less centralized than what we observed in the layers of the other
multiplex networks as mentioned earlier. This means that there are not only a
few nodes that have almost high degree values in the network layers and that
the percentage of nodes that have a specific normalized degree value is almost
comparable in all layers.

As shown in Figure 5.8, a large portion of the nodes shows less sensitivity in
their ranking with respect to the choice of normalization methods and aggrega-
tions. For example, the number of nodes that are separated by the vertical line
and are sensitive to the aggregation used is pretty small; 6 out of 71 attorneys.
However, some cases are still worth inspecting more closely: 25, 64, 24, and 19
from the four groups, respectively. Their ranking curves are depicted for all



82 Chapter 5. Sensitivity analysis of centrality rankings in multiplex networks

0
20

40
60

80
10

0
12

0
N

od
e 

24

0
20

40
60

80
10

0
12

0
N

od
e 

11
8

0
20

40
60

80
10

0
12

0
N

od
e 

59

−20 −10 −7 −5 −2 0 2 5 7 10 20

NormMethod 1
NormMethod 2
NormMethod 3
NormMethod 4

 β 

0
20

40
60

80
10

0
12

0
N

od
e 

14

−20 −10 −7 −5 −2 0 2 5 7 10 20

NormMethod 1
NormMethod 2
NormMethod 3
NormMethod 4

 β 

FIGURE 5.7: Twitter network. The rankings of the four nodes
that are positioned in the four sections of the ∆agg and ∆norm
scatter plot are depicted here. Their ranking positions are ob-
tained using different aggregations (guided by β) for the four
layers mentioning, replying, retweeting, and social network). The
curves show the results obtained using the four normalization

methods. The figures are reprinted from [89].

three normalization methods in Figure 5.9. Note that we applied three normal-
ization methods to the degree values because all 71 nodes are shared between all
layers; i.e., |Vi| = |V ∗| = 71, and the results of NormMethod 1 and NormMethod
2 are the same.

Node 24 in theA0N0A0N0A0N0 group has a very robust ranking for all normalization
methods; as depicted, it gets almost the same ranking position. In theA+N+A+N+A+N+
group, the most sensitive node has ∆agg of 56 and ∆norm = 13, as illustrated
in Figure 5.8; i.e., this is Node 15, as conjectured at the beginning of this sec-
tion. The second-highest value of sensitivity to different aggregations belongs
to Node 19—it has ∆agg = 47. The main observation is that if various aggre-
gations, such as maximum, minimum, or average, are used over the result of
the normalized degree values, Node 19 obtains more conflicting rankings, but
shows less sensitivity to the choices for normalization methods. Therefore, it is
located inA+N0A+N0A+N0. The second-highest value of sensitivity to different normal-
ization methods is obtained for Node 25, which has ∆norm = 21; this node is
hence placed in the A0N+A0N+A0N+ group. Following its ranking curves in Figure 5.9,
it turns out that NormMethod 3 results in a different ranking compared to the
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other two methods NormMethod 2 and NormMethod 4, i.e., these produce almost
similar rankings. Since the minimum and the maximum degree values do not
vary much between the layers of this dataset as listed in Table 5.1 (C), and the
structure of the layers are comparable, there is not much difference between the
four normalization methods.

5.4 Discussion and conclusion

The intuitive exploration of nodes’ centrality ranking in this chapter shows that
even seemingly simple preprocessing steps, such as choosing a particular nor-
malization prior to aggregations, lead to very different ranking positions of the
nodes with respect to their degree values in multiplex networks. We conducted
a sensitivity analysis using an approach that considers multiple degree central-
ity values of different layers as multiple criteria in an MCDM problem, where
values are normalized using four different normalization methods. We showed
how choosing different aggregations over the results of all layers yield different
rankings for the nodes. The scatter plot of the nodes, based on their sensitivity
to different normalization methods versus different aggregations guided by a
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FIGURE 5.9: Law firm network. The ranking details of four
nodes, which characterize the four groups of the visualization
with respect to ∆agg versus ∆norm, are depicted here. The
ranking positions were obtained using different aggregations
(using the β-parameter) for the aggregation of the three layers
seeking advice, co-working, and friendship. The three curves show
the three different normalization methods (NormMethod 1 and
NormMethod 2 yield the same result in this dataset). The figures

are reprinted from [89].

parameter, were demonstrated using the two measures ∆agg and ∆norm. This
way of exploration allows determining the number of nodes in four different
groups: sensitive to different aggregations; sensitive to different normalization meth-
ods; not sensitive to any one, or sensitive to both modeling decisions.

In the experimental results, we inspected those nodes that show more sen-
sitivity or more stability in their rankings. In three multiplex networks — a
European airline network, a Twitter network data and a law firm network, we
explained different aspects of sensitivity analysis. Regarding the European air-
line network, we discussed how the competition for rewarding nodes with re-
spect to their highest degree values might be different if multiple ways of nor-
malization exist. The reason is that some network layers (e.g., Lufthansa) are
more centralized than the other layers and might not get a chance to participate
in an aggregation. For example, in the European airline network, the airport of
Kos Island is among the airports that are fragile with respect to both modeling
decisions, normalization and aggregation. On the other hand, an airport like
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Chania is among the nodes that are not sensitive to either one.
In the second dataset, which is a large tweet network, we observed that the

nodes are distributed across a wide spectrum, from having no sensitivity to
either modeling decision to having no stability in their ranking position. Fo-
cusing on the influences of different normalization assumptions, we found that
a specific preprocessing model like normalization can be defended only if we
study all the other choices that can be considered for its modeling and check
whether the ranking results are robust to taking different choices. For instance,
the NormMethod 1 can be used before taking any aggregation when the cumu-
lative distribution of values show that there is no dominant layer. As in the
law firm dataset observed, an aggregation over the results of the layers would
be meaningful, i.e., using NormMethod 1 there will be at least one node which
obtains the 0 value and at least one node which obtains 1 in each layer, and
there might be a node that has always the worst degree in all layers, i.e., [0, 0, 0]
and always the best value,i.e., [1, 1, 1] for three layers. Similarly, NormMethod
4 can be applied to solve the problem when there is a dominant layer among
the layers as we observed for the Twitter network data. If we consider only the
shared nodes, NormMethod 4 results in a value for the nodes between [ 1

|V ∗| ,1] in
each layer, i.e., it is assumed that the lowest and the highest ranking values are
1 and |V ∗| respectively.

In network layers with totally different characteristics and centralization,
applying any normalization for a centrality measure should be performed care-
fully and reproducibly. We discussed this in the Twitter network data in which
a high sensitivity was observed for a node.

It can be conjectured that for other types of centrality measures, such as be-
tweenness and closeness, more sensitivity will be recognized if the network layers
have different structures, as these properties globally capture the importance of
nodes. The proposed explanatory explorative analysis emphasizes a very im-
portant side of any analysis regarding node centrality and centrality ranking in
the field of network science.

As mentioned in the beginning of this chapter, a wide range of studies exist
on “centrality ranking”; 130, 000 papers were found on Google Scholar in Oc-
tober 2017. However, not all of them provide details about the basic assump-
tions made in the models used and about whether or not the node rankings are
dependent on a particular choice in their proposed models. We believe that for
any kind of network analysis, all the different modeling assumptions need to be
discussed and documented in order to make them reproducible. Even a small
change in the results might put the findings into question and thus require a
new interpretation for them.

Note 5.1 Since the rankings can be sometimes sensitive to the choices of different
modeling decisions, and as many networks are based on incomplete data that might
increase uncertainty in the outcome, is there any way to present the results of centrality
values using different class of centrality with respect to their normalized value?

In the following chapter, we will focus on a situation where a real dataset
is used to construct a multiplex network. We will partition the nodes into a
set of centrality classes, each containing a set of nodes with about the same
normalized centrality values.
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Chapter 6

Fuzzy representation of
centrality and the assignment
of nodes to classes of
centrality

Obtaining centrality ranking is a trivial and unavoidable part of analyzing node
centrality in simple, weighted, and multiplex networks. However, it has been
shown that in multiplex networks, a node’s ranking can be sensitive to the
choices of different definitions of normalization, which is an essential prepro-
cessing step before doing any aggregation over the centrality results of the
nodes in multiple layers. We have observed a high sensitivity of turning a node
from being the most central to the least central in a multiplex network where
the layers have different structures and characteristics. The findings emphasize
the importance of the choices we make in any type of analysis regarding cen-
trality ranking. To be aware of such sensitivity, any analysis needs to be done
carefully, by considering all the assumptions and their possible influence on
the results, similar to the explorative analysis in the previous chapter. In some
cases of quantifying an individual’s centrality, we overestimate the importance
of some nodes and ignore some others using a precise ranking. Imagine an-
alyzing the activity of patients in a psychotherapy chat session. Obviously, a
discrete ranking showing their activity level, which might be used to demon-
strate their improvement, would be too precise when additional factors might
have a more leading role in assessing the improvement of the patients. In such
cases, we might instead want to check which individuals have about the same
activity level. In this chapter we will show that by using a set of centrality
classes we are able to do this to a moderate extent.

In addition to the aforementioned problem, since many real networks are
constructed based on incomplete data and since centrality measures can be
sensitive to edge addition and removal, a very precise ranking is not always
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the best technique to opt for—we will elaborate this concern in the next section.
This motivates us to find a means of representing centrality values using a set
of classes, each containing nodes with about the same degree of importance
in real networks. A great number of studies shows that fuzzy models are one
solution for dealing with uncertainty stemming from imperfection of data and
for avoiding information loss in decision making problems [36, 37, 35, 75, 74,
76]. As described in Chapter2.2.2, Herrera in [36] proposed a 2-tuple model to
present the results of values by labels. Some studies used this linguistic model
to analyze central nodes in fuzzy cognitive maps [66]. In this chapter, we sim-
ilarly use a set of linguistic terms and a 2-tuple fuzzy model as proposed by
Herrera in [36] to label nodes with respect to their centrality index value in-
stead of comparing their importance with a discrete ranking, but in a multiplex
network. In addition, we will evaluate the robustness of the model to edge re-
moval and edge addition noises, applying each with several rates to multiple
layers of the network 1.

6.1 Imperfection of network data and its possible
influence on centrality measures

Consider a situation where person A is asked to name his/her friends. If the
answer is imprecise—independent of what the reason is— the number of com-
munication partners of that person, which will be captured by the degree of the
corresponding node in the deduced network, will not be precise either. Conse-
quently, if we aim at presenting the results of the measured degree using a pre-
cise ranking, we are neglecting the uncertainty coming from the imprecision of
the respective property. This has been shown in an experiment by Brewer and
Webster, where the residents of a university residence hall forgot to name 20%
of their friends on average. The authors showed the impact of incompleteness
on the results of node centrality in a constructed friendship network [16].

Having imprecise logged data with respect to multiple types of interaction—
which can be represented in multiple layers— is a similar issue that is of con-
cern in a multiplex network [88]. Multiple investigations have been conducted
to show the effects of missing information in collected datasets represented
as networks [52, 18]. In a study [52], Kossinets elaborates the effect of miss-
ing information in an experiment by simulating uncertainty using three dif-
ferent models and assessing the sensitivity of network measures to the sim-
ulated uncertainty. He states three main issues in data sets as follows: the
“boundary specification” problem, which considers the effect of missing nodes
and missing links in the statistical results; the issue of “non-response effects”,
which mainly considers missing data due to non-response of examinees (those
asked to complete the questionnaire by naming their interactions); and the is-
sue of “fixed-choice designs”, meaning that the actors (represented as nodes)
are asked to name two (a cut-off value) of their friends, while they might have
more than two. In any case, some interactions would be neglected in the de-
duced network, which can change the result of a measure, as shown in the
study [52].

1The results in this chapter have been published already in a paper [88].
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TABLE 6.1: Noordin network dataset. The structural prop-
erties of its three network layers that contain 79 nodes, i.e.,

Vi = V ∗, are listed here.

Properties Trust Network Operational Network Communication Network
|Vi| 79 79 79
|Ei| 259 437 200
maxv∈Vi{deg(v)} 28 43 41
η(li) 0.084 0.142 0.065

In contrast to the above-mentioned analyses, the other studies report that
centrality measures are almost robust to random network errors. Therefore, it
is likely that the confidence interval around a centrality value can be obtained
and the changes will be linear [11, 21]. In 2003, Costenbader and Valente ana-
lyzed the stability of eleven centrality measures by using a bootstrapping pro-
cedure and measuring the correlation of the results between the sampled and
the original networks. In their experiments, the most unstable measure among
all was a directed version of the betweenness centrality. In addition, in 2006 Bor-
gatti showed that the majority of the classical centrality measures are robust to
different rates of network errors. He states that the accuracy of the measures
declines slightly and predictably with respect to the rates of the applied errors.
In general, he concludes that network errors on nodes are negligible in compar-
ison to errors on edges. According to him, edge addition is the “least forgiving”
among the network errors. Regarding edge removal, he explains that if the den-
sity of a network is small, then this error would not greatly affect the accuracy of
the centrality measures. In contrast, if the density of a network is high, then the
error of edge addition has the least effect on the accuracy of most measures [11].

For dealing with the incompleteness of data, several approaches have been
proposed in the literature. In 2009 Huisman showed the effects of basic impu-
tation methods on a friendship network in a simulation study [39]. He demon-
strated that the imputation of data using simple approaches (as same as neglect-
ing the imprecision of data) has a negative effect on some network properties.

Considering uncertainty in the data—whether due to incompleteness or
imprecision— and looking back at the results of the sensitivity analysis of a
node’s ranking in a multiplex network motivated us to search for a real net-
work data, in which there is always imperfections to some extent, and to aim at
representing the result of a centrality index value using a set of labels.

6.2 A real-world network data

Regarding the incompleteness of real network data, we opted for a real dataset
that can be represented as a multiplex network and might be representative for
an incomplete data. This dataset contains multiple interactions among 79 in-
dividuals in the Noordin group. This organization was identified in various
report as the group responsible for several attacks between the years 2003 and
2005. The main report that led to the collection of the dataset was published
in 2006 [43]. Roberts provided a structured data set based on that report in a
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study [73]. Moreover, Everton and Cunningham thoroughly explored the in-
formation available in the data and studied this so-called “dark network” [27].
Iacovacci et al. also used this data to analyze the activity of members using
several multiplex page rank methods [41]. This data as a crucial dataset con-
tains very rich information regarding different types of relations and interac-
tions among the members of the aforementioned organization, which had pre-
planned attacks. In addition, it encompasses several features for each member,
such as information regarding military training, nationality, and level of educa-
tion. In this dataset, we are interested in observing to which extent these mem-
bers play an important role in their communications, and in partitioning them
based on the respective findings. As the data contain various kinds of informa-
tion regarding the activity of the members, we can represent it as a multiplex
network. We assume three different types of relations among the members as
the three layers of a multiplex network [88]. In the represented network, the
first layer constitutes the trust network, which is an aggregated version of four
types of ties, each indicating a relationship between the 79 members, such as
friendship, classmate, soulmate, or kinship. As listed in Table 6.1, this layer
encompasses 259 edges (excluding multiple edges and self-loops) and is an
undirected, unweighted network. The second layer is named operational net-
work: The edge between a pair of nodes represents the aggregated version of
multiple interactions if the corresponding members have provided the same
logistics, participated in the same meetings and/or in common operations, or
attended the same training event. This layer is the densest among the three
network layers. Note that all constructed networks are simple, meaning two
nodes are linked if at least one of the aforementioned relationships exists be-
tween the corresponding members. The third layer is named the communication
network: Between a pair of nodes in this network, there is a link if they had
contacts within the organization by means of messages, or communicated via
other kinds of tools, such as codes or videos as a means of recruiting other peo-
ple outside the organization. This network layer has the least density compared
with the other network layers.

6.3 Fuzzy representation of centrality

Instead of comparing nodes according to their centrality ranking, we aim at
assigning nodes to fuzzy labels exhibiting different degrees of importance in a
predefined term set {Very Peripheral, Low, Medium, High, Very Central}. As
input, consider a centrality index, e.g., degree or closeness, that is computed for
all nodes in a layer of a multiplex network. Then normalization is performed
for any centrality value by subtracting the minimum from the corresponding
value and dividing it by the amount obtained by subtracting the minimum
value from the maximum value found among the values of all nodes in the
same layer—this will keep all the resulting values of a centrality measure to be
in [0, 1].

Then we use a 2-tuple fuzzy representation model as explained in Chap-
ter 2.2.2 to transform a normalized centrality index value onto a set of labels.
Then, for any node the corresponding 2-tuple contains a label and the extent to
which a node is close to its label.
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FIGURE 6.1: Five linguistic terms
and their semantics are described
using five overlapping Gaussian
membership functions. The figure is

reprinted from [88].

Example: for a centrality index value of CX(v) = 0.15, the
fuzzy set is {(s0, 0.369), (s1, 0.642), (s2, 0.004), (s3, 0), (s4, 0)}

6.3.1 Assigning nodes to a set of centrality classes

To obtain the centrality class of node v in layer li, in the first step, we fuzzify
its normalized centrality index value (measured by degree or closeness) through
Gaussian curve membership functions, each representing a label in the corre-
sponding linguistic term set. The classes are distributed symmetrically and
equally between the least normalized centrality index value and the highest
normalized centrality index value. As described in Chapter 2.2.2, any value
x in the interval [0, 1] can be fuzzified using several membership functions as
proposed by Herrera [37].

Let S = {s0, ..., sg} be a linguistic term set and si ∈ S a linguistic term
described with a symmetric Gaussian function2. Assume a set of five ordered
classes (labels) as shown in Figure 6.1. The membership value µsi of a normal-
ized centrality value of node v, denoted by Cx(v), is then determined by the
intersection of the index value in the corresponding class of si. According to
the definition of membership functions in Chapter 2.2.2, we obtain the mem-
bership values for each node in several labels. This outcome is a fuzzy set that
contains the membership values for a node’s centrality index and all classes, as
illustrated in Figure 6.1 for an exemplified value of 0.15.

Then the membership values for node v over the fuzzy set using a symbolic
aggregation operator are aggregated as defined in Equation 2.6. For any node
v, the outcome of the corresponding aggregation θv is a value in ∈ [0, g], for
which an equivalent information in the predefined term set S, can be repre-
sented using the function ∆(θv) (s. Eq.2.7). This function results in a 2-tuple
(sj , α) that provides information about the centrality class of node v and the
extent α ∈ [−0.5, 0.5) to which the node is close to its assigned class sj . After
we have obtained all the labels for all nodes in multiple layers, we visualize the

2The set of Gaussian membership functions were built in a fuzzy toolbox in Matlab by setting
the standard division to 0.106, and the centers to 0, 0.25, 0.5, 0.75, and 1, respectively.
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assignments of the nodes to the classes—ranging from Very Peripheral to Very
Central— separately for each layer.

From a multiplex perspective, in order to answer the question of which cen-
trality class node v belongs to with respect to its best and worst normalized
centrality index values within multiple layers, we can employ the same model
accordingly: Using the three operators min, max, and average, we get the over-
all importance of the nodes with respect to their least value over all layers, their
best value over all the layers, and their average value over all layers3. Then a
2-tuple model is similarly applied in order to assign a node to the ordered set
of centrality classes with respect to its overall importance value.

6.3.2 Applying edge addition and removal

After assigning the nodes to the classes, we aim at analyzing the robustness of
the model by simulating uncertainty in the network data using network noises
through random edge removal and edge addition with rates of 10%, 20%, and
30%|Ei|. To apply the additional edges, we randomly select a pair of nodes for
each and check whether they are connected or not. If they are not linked but
have a common neighbor, then the edge is added to the layer—this condition
is considered based on the assumption that if some individuals are asked to
name their friends (or acquaintances) and they forgot to recall some of them.
For each rate of noise, we get an average over the result of a centrality measure
after 50 iterations of noise application. To apply the edge removal noise, we
randomly select a sequence of edges and delete them from a network layer;
then we compute the centrality of the nodes in the largest connected component
in the corresponding layer including noises [88].

Since we use five linguistic terms to present the classes of centrality, the min-
imum and maximum possible degrees of changes that a node can have within
its class in the original network and in the network with the noise equal 1 and
4, respectively. For this we can use a distance measure to calculate the extent
of the changes between classes in the following way: Assume dclass(li, l′i) :=∑|Vi|

v=1 |(s,α)v−(s
′,α′)v|

g·|Vi| as a dissimilarity measure [88], where li denotes the origi-
nal network layer and l′i is the network layer with the noise and where normal-
ization is performed by the number of nodes |vi| and the maximum degree of
changes that a node can have in its classes—this yields values between [0, 1].
Having a maximum of four possible change for all nodes will be however hard
to achieve with respect to our assumptions in the noise application. This might
only happen in a network that is very sparse, such that after the application
of a noise, e.g., adding edges with a very high rate, every node becomes con-
nected to all others in the resulting network. In contrast, we are interested in
low rate noises in order to model a small rate of uncertainty in the available
data—we assume that for any dataset regarding groups or friends, it will be
almost unexpected to have a very high degree of uncertainty caused, e.g., by
incompleteness: As shown in a friendship network in an experiment and ex-
plained at the beginning of this chapter, people forget to name their friends

3This can be done using an OWA aggregation operator; however, to avoid repetition, we leave
its explanation out of this chapter and will just present the results of the min, max, and average
cases.
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with a low but unavoidable rate. Instead, we compare the results of the per-
centage of nodes that change their classes between the original network and
the network including the noise with a low degree.

6.4 Results

As we mentioned in the introduction, the data we chose for the current analysis
is a real dataset, which is represented as a multiplex network including three
layers. The results of the degree centrality with respect to the fuzzy centrality
classes in the three layers trust network, operational network, and communication
network are depicted using a color code in Figure 6.2. The isolated nodes—
the members without any communication—-in the aforementioned network
layers, are removed in the visualizations. We focus on the analysis of those
members that were recognized as the key individuals of the organization in the
study by Iacovacci et al. [41]. Only the abbreviation of the members’ names are
used in the visualizations. The person whose name is abbreviated as A.S.R. is
a member in the center of the trust network who belongs to the highest class of
centrality (Very Central) with respect to the fuzzy degree centrality as depicted
in Figure 6.2 (A). It can be conjectured that he has a very important role in the
group and consequently in the other activities; however, we will explain in the
following that this is not the case here and that this person is just a strategist
known to some of the members as someone giving advice.

Five members, including the strategist in the visualization Figure 6.2 (A),
are assigned to the class of High centrality. These members are: the leader of
the group and the four remaining members M.R., T.R., A.B.B., and F.A.Gh., who
trusted the leader or were trusted. Note that using a precise ranking, they can
be considered differently, as their pure degree values range from 28 to 18. Ob-
viously, as recognized and expected, the leader is always in the best class with
respect to operational and communicational activities, which are represented in
two layers, the operational network and the communication network, in Figures 6.2
(B)-(C). In addition, A.H., whose role was the bomb expert in the organization,
is assigned to the class of Very Central nodes and is the closest member to the
leader in terms of operational activity. When we look at the importance of the
members with respect to the same activity, I.D., whose role was coordinator for
attacks and logistics, is the only member assigned to the class of High centrality.
While most nodes are distributed over the five classes of centrality in the trust
network and operational network layers, the nodes in the communication network
layer are condensed in the classes of Very Peripheral and Low centrality.

To get a general view of the aggregated class of node centrality, the nodes
in Figure 6.3 are assigned to all five previously defined classes of centrality.
However, to provide more detail, we see the classes in the x − axis and the
|α|-value, which denotes the distance of staying before or after a class, in the
y− axis [88]. For the sake of clarity and to avoid overlapping the names, the α-
values obtained for each node are also used in the x− axis. Thus, a negative α-
value of a node causes the node to stay before the middle line (|) of its label and
a positiveα-value positions the node ahead of the assigned label. Since a similar
centrality class might be obtained for multiple nodes, in the visualization, a
point can indicate the result of multiple nodes.
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FIGURE 6.2: The assignments of nodes to the five classes of
fuzzy degree centrality demonstrated separately for the three

layers of the network. Figures are reprinted from [88].
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FIGURE 6.3: The assignment of 79 individuals to the classes
of fuzzy degree centrality is depicted here based on the results
of the basic aggregations over the three layers. Figures are

reprinted from [88].

Assume three different aggregations, namely taking the minimum, maxi-
mum, and an average over the results of degree centrality obtained for the nodes
in the three layers. The importance of the nodes regarding their class of aggre-
gated degree centrality is depicted in Figure 6.3(A) to (C). In the first aggregation,
the nodes are assessed with their minimum value of centrality among the three
layers. It is revealed that four members of the organization in this network
are identified: The courier (A.R.R.), the coordinator of attacks and logistics, the
bomb expert, and the leader of the group, are the key members, even if we
assess their importance as their least important role. Similarly, Iacovacci et al.
have shown in their paper that the aforementioned members are always at the
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top of the activities [41]. Back to the case of A.S.R., who had the role of strate-
gist and was discussed above, he is no longer identified as one of the top key
members with respect to the least value of importance; he is assigned to the
class of Very Peripheral nodes. He is in the second aggregation—which assess
the nodes with their best role (max value) over all layers— among the Very
Central nodes as shown in Figure 6.3 (B); his most satisfying class of centrality
is obtained in only one layer (the trust network), not in all the layers. Similarly,
the four members M.R., T.R., A.B.B., and F.A.Gh., who had a good relation-
ship with the leader in terms of trustee/trustor, are not among the group of
nodes with Medium centrality to Very Central in the first aggregation, where
they need to have a satisfying value of fuzzy degree with respect to their worst
role (min) over all the layers. On average, only M.R. is assigned to the class of
Medium centrality. Looking at the second basic aggregation, it turns out that
these cases are identified as the key members in the groups Medium to High.
One interpretation of this result can be that the trustee/trustor relationship in
the trust network plays a leading role in the overall activity of the members.

The results of the fuzzy closeness centrality evaluation for all members in the
three layers are demonstrated in Figure 6.4(A) to (C). In addition, the classes
and the detailed |α| − value are depicted in Figures 6.5 (A), (B), and (C), respec-
tively, for the three layers. A member of the organization (with the abbreviated
name U.D.) who was jailed after four months of being in the organization, the
strategist, the leader, and the courier are assigned to the class of Very Cen-
tral nodes regarding their communications in the trust network. The member
mentioned first did not communicate directly with the leader as logged in the
interactions of this layer. However, he was connected to a couple of key mem-
bers, such as the strategist, the courier, a member whose role was facilitator for
materials (U.B.S.), and the coordinator of attacks and logistics. As can be seen
in Figure 6.4(B) and Figure 6.5(B), the bomb expert and the leader are assigned
to the class of Very Central nodes, which means they were easily reachable for
the other members with respect to operational activities. The one who had the
highest level of activity and was in the center of communications with all the
members is the leader, as he is assigned to the best class with respect to the
fuzzy closeness centrality value in the communication network layer.

Considering different aggregations over all three layers, as shown in Fig-
ure 6.6(A), reveals that the leader is assigned to the best class of closeness cen-
trality in all three types of relations. After him, three key members—the bomb
expert, the courier, and the attack coordinator, respectively— are located in the
classes of High and Medium centrality. Considering only their most satisfy-
ing activity, it turns out that the strategist and the member who was jailed
after a short time (U.D.) are in the class of Very Central nodes as shown in
Figure 6.6(B)— U.D. has many connections to the other key members in the
trust network and operational network layers. As shown in Figure 6.6(A), how-
ever, with respect to their worst activity, the strategist is identified as a Very
Peripheral node since he had no operational activity and a very low number of
communications with other members via internal and external mediums. On
average, he is among the nodes with Medium centrality; in fact, this shows that
getting an average over all layers will some time overestimate the actual im-
portance of a node.
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FIGURE 6.4: The assignments of the nodes to the five classes of
closeness centrality are separately demonstrated for the three

layers of the network. Figures are reprinted from [88].
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FIGURE 6.5: The assignment of the nodes to the classes of close-
ness centrality in the layers are shown separately here. Figures

are reprinted from [88].

To show how robust the nodes assigned to the classes are against edge ad-
dition and edge removal, we apply these to the network layers using several
different rates. The result is shown in Table 6.2 for the fuzzy closeness centrality
for several rates of noises.The results show that a high percentage of nodes stay
in the same class of centrality in the communication network layer when various
rates of edge removal and edge addition are applied. That is in accordance
with the low density of this layer (s.Table 6.1) and as explained by Borgatti in
his study[11], if a network has low density, edge removal has the least effect on
the results. In contrast, both edge removal and edge addition have the greatest
impact on the operational network layer, which is the densest network among the
three layers—still, the changes are very low, less than 10% for a noise rate of
10% for edge addition. Obviously, if we use a ranking over the results of the
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TABLE 6.2: The ratios of nodes that stayed in the same class of
centrality after different noise applications out of all nodes in

each layer.

Edge removal Edge addition
10%|Ei| 20%|Ei| 30%|Ei| 10%|Ei| 20%|Ei| 30%|Ei|

trust network 0.772 0.747 0.722 0.924 0.911 0.722
operational network 0.747 0.646 0.620 0.924 0.823 0.785

communication network 0.911 0.823 0.658 0.987 0.962 0.937

normalized closeness centrality values, we would get changes in the rankings
of a higher number of nodes after the application of additional edges with the
same noise rate. This is because even a slight increase or decrease in the result
of a normalized value of a node will be considered as a change in its ranking.

6.5 Discussions

The usage of a 2-tuple fuzzy representation model to assign nodes to the differ-
ent centrality classes has been studied in this chapter. We aim at showing the
importance of nodes in a set of classes instead of presenting the result of a cen-
trality measure using a discrete ranking and categorizing nodes as most or least
central. We used a real network data set, which may be prone to uncertainty
caused by incompleteness. We investigated the differences in the assignments
after the application of several types of noises with different rates to the net-
work layers. The results show that as long as the noise rates are small and the
resulting changes in a node’s importance (captured either by the degree or the
closeness centrality indices) are rather low, the nodes stay in the same class of
centrality.

This representation needs some improvements as described as follows: The
classes in the model are distributed symmetrically and equally between the
least normalized centrality index value and the highest index value and the
model does not consider the whole information about how the nodes’ central-
ity values are distributed; whether or not a network layer is strongly central-
ized, and whether a small number of nodes have a high normalized value while
the majority of the nodes have very low index values, i.e., communication net-
work is a more centralized layer than trust network layer. This problem can be
improved by deducing classes and generating membership functions based on
the distribution of the actual centrality values.
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FIGURE 6.6: The assignments of the nodes to the classes of
closeness centrality after the aggregation of the results over the

layers. Figures are reprinted from [88].
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Chapter 7

Summary and conclusion

Network analysis and the corresponding methods have greatly enhanced our
understanding of systems that are complicated in nature and structure. The
reason for this is that a network representation reveals the interactions or rela-
tions between the entities of the corresponding system. Thus, it is of interest for
researchers in many fields to analyze such systems at the structural and/or be-
havioral level using network analytic methods. In many studies, network anal-
ysis has to deal with a multitude of information regarding nodes and/or edges.
One of the fundamental analyses is to quantify node centrality in a network
using those indices that characterize the important ones among all nodes with
respect to their role in a network. Each centrality index can be used to capture a
specific property of nodes in a network, e.g., degree quantifies a node’s potential
for having a direct influence on other nodes. We explained a situation in net-
work analysis where the usage of only one property might not be sufficient for
identifying important nodes. However, several challenges exist regarding the
inclusion of multiple properties in the evaluation of node centrality—The idea
argued by Opsahl, Agneessens, and Skvoretz was the first paper that consid-
ered two properties of nodes and used a tuning parameter for scaling between
having a high value in degree and low value in strength is favored, and vice
versa.

We aimed at dealing with challenges regarding the usage of multiple in-
dices for evaluating node centrality in different types of network representa-
tions such as simple, weighted, and multiplex networks: If multiple central-
ity indices are applied to a simple or weighted network, then multiple values
regarding a node’s centrality will be obtained, which can be used to assess
whether the different values (each of which shows an importance degree) have
conflicting views about a node’s centrality or not. Similarly, if one centrality in-
dex is applied to all nodes in multiple layers of a network, then again multiple
values will be obtained regarding a node’s centrality. In such cases, the usage
of a single ranking with respect to one aspect of importance will not provide
any insights about how the ranking changes if the other aspects have different
views regarding a node’s centrality. We thus categorized the main questions



102 Chapter 7. Summary and conclusion

in this thesis as follows: Which indices determine important nodes in a net-
work? How can multiple indices providing information about the importance
of a node contribute jointly to the identification of important nodes? Which
nodes show stability in staying among the top-ranking nodes and which ones
show more sensitivity to different types of aggregation performed over the val-
ues? Can basic preprocessing methods such as normalization change the results
of any aggregation in this evaluation? If so, why is this happening?

To address these questions, we propose an approach that considers the eval-
uation of node centrality and the identification of most central nodes using
multiple indices as an MCDM problem, and where the best nodes are those
that always stay among the top-ranking ones in a stable manner. The approach
uses a parameter in an aggregation operator that scales between two extreme
cases of selecting nodes: (1) where at least one of the measured indices has a
high value, and (2) where the least value found among multiple measured in-
dices is high. This consideration allows exploring many interesting cases that
could not be found easily using other methods in various type of datasets, such
as communication networks, collaboration networks, transportation networks,
a social network, and a preplanned dark network.

In communication datasets, we showed that the proposed approach enables
us to see whether a node’s centrality ranking is robust to the choice of different
types of aggregations over the centrality values. We conclude that depending
on the type of dataset, we first need to identify which indices meaningfully
describe the importance of a node, e.g., the activity level of a participant in a
human group. We observed in the ranking of a chat-log dataset that the moder-
ator of the chat was always among the top-ranking nodes with a stable manner
in its ranking. In Freeman’s EIES communication network, we showed some
cases that if only degree centrality alone was used, might be totally ignored even
if they were very important with respect to the other aspects of centrality. In the
datasets represented as a simple network, e.g., an air transportation network,
we conclude that the choice of aggregations for analyzing node centrality is
very important, e.g., selecting nodes whose at least one centrality index is max-
imal. In such a case that sensitivity is because some nodes are very central with
respect to only one aspect, e.g., the potential of a node in passing a process to all
other nodes captured by closeness, but they do not have high importance with
respect to the other centrality indices.

We emphasized that the intuition behind this idea is not meant to be show-
ing which aggregation is better to use or which parameter value is the optimal
one. Rather, we aimed at revealing whether, if a set of different aggregations
is created over the values of multiple indices for analyzing node centrality, the
rankings of which nodes are robust enough to stay always stable among the
top-ranking nodes and which ones shows very sensitive behavior.

While performing this analysis, it became clear that rankings of some nodes
can be very sensitive and very dependent on the choices we make regarding
their aggregation in a multiplex network. This is an important point as there
is great interest in analyzing node centrality in multiplex networks. We ex-
plained that if the results of a network layer have a leading role in the results
of the aggregation, other normalization methods need to be used before any
aggregation. We proposed four different normalization methods for degree cen-
trality before applying different types of aggregations. The experiments show
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that findings vary between the network datasets. Applying the approach to
the Twitter network, it was revealed that a node can heavily change its ranking
from being among most central to being among least central nodes. However,
in the medium-size network of a law firm, the sensitivity to the choices was
negligible. We elaborated in which cases we get less sensitivity for a node’s
centrality ranking. For instance, the structure of the layers in the law firm data
indicate that they are almost comparable, which means we observe less sen-
sitivity to the choice of normalization methods. Then, considering any choice
on the aggregations, the behaviour of the nodes’ rankings will be almost simi-
lar. We emphasized that documenting all the preprocessing steps—even if they
may seem to be inconsequential—will allow better understanding and inter-
pretation of any network analysis since it mostly has to deal with a multitude
of information in complex systems.

Moreover, we consider that since most real networks are deduced from im-
perfect (incomplete and/or imprecise) data, the usage of a precise ranking to
represent the results of centrality indices might not be the best option to opt for.
We explained that instead of representing the values of centrality indices using
ranking, nodes can be labeled using a set of classes of centrality. We showed
that in a terrorist network dataset, containing multiple types of relations be-
tween the members, that satisfies the idea of imperfection, such consideration
facilitates representing the results of node centrality.

The evaluation proposed in this thesis will also be useful for other fields
that employ network analytic methods, such as psychology and sociology. If
they aim at evaluating the behavior of individuals and the data is represented
as a network, then the experts in the field can discuss the choices and explore
behavioral patterns related to the different roles of the individuals.

7.1 Future work

The idea proposed in this thesis has other interesting aspects that are the topic
of future work, as explained in the following:

• In the sensitivity analysis of the ranking, we considered the maximum
sensitivity that a node’s ranking has with respect to different choices of
normalization methods and aggregations. As mentioned in Chapter 5,
this can be extended to the minimum and average sensitivity degree of a
node’s ranking as well. The proposed idea can be extended in terms of
analyzing the sensitivity of other centrality measures, such as betweenness
and closeness in multiplex networks, which in recent years have been at
the center of attention in many studies. In addition, the partitioning of
nodes into four clusters with respect to their sensitivity degree can be
improved by fuzzy clustering methods.

• In our future work, we aim at developing a package based on the idea pro-
posed in this thesis in order to analyze the sensitivity of centrality indices
to the choices of different modeling decisions. This will be very helpful
for anyone who wants to check all conflicting rankings for nodes in a net-
work data and identify those nodes that are very sensitive to particular
choices.
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• A very important analysis regarding centrality indices is to investigate which
decision is most suitable for analyzing node centrality with respect to the
type of network processes, such as disease transmission and information
diffusion. This is an interesting topic that will be studied in the future
work.
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Appendix A

Supplementary results for
Chapter 3 and Chapter 5

A.1 Results obtained using OWA based on a quan-
tifier and MEOWA

As described in Chapter 3 in box 3.2, we can also use a quantifier to produce
weights for the OWA operator to get an overall importance score for the nodes
in the three network datasets (see the definition in 2.4). In the quantifier, a
set of values {0, 0.5, 1, · · · , 5,∞} is used for the β-parameter, where 0 results
in a max operator, 1 gives an average and ∞ results in a min operator. Note
that in the computation,∞ is used to show a much larger value than the value
before that. If we choose the three classic aggregations, which are created when
β = 0, β = 1, and β = ∞, the results are the same as those we obtain for the
MEOWA operator in Chapter3. Following the steps of the evaluation process
results in the ranking of nodes with respect to a set of β-value used in Eq 2.4.
The visualization of Fig. A.1 for the chat-log data set, starts with the rankings
of the nodes in the extreme case of β → 0 (simply put, a max operator over
the values) until the extreme case of β → ∞ is reached (a min operator). From
β = 1 until ∞ is reached for the β-parameter, the aggregations rather reward
nodes with high minimal values. As shown in Figure A.1 for the chat-log data,
similar to the results discussed in Chapter 3, the Therapist has the most robust
importance with the highest stability; and P28 is the person who stays very
few times among the top nodes and has a less stable ranking than P14, who is
recognized as a medium active person. The patients P44 and P38 are always
among the bottom five nodes. As can be seen in Fig. A.2 Lin Freeman, Mullin,
and Wellman are always among the top six nodes.

Also, similar to the results we obtained in the air transportation network,
the EDDL (Düsseldorf) and EDDT (Berlin) airports are among the top-ranking
airports over all different types of aggregations as can be seen in Fig. A.3.

In Chapter3, we also mentioned that the normalized closeness values of 79%
of the nodes in the air transportation network are greater than the degree and
betweenness values. We explained in Chapter 5, that in such cases, one of the cri-
terion will have a more important role in the result of the aggregation. To deal
with this problem, we propose the usage of a ranking over the actual measured
values of a centrality index. The aforementioned rate can be decreased to 29%
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FIGURE A.1: Chat-log network. The detailed rankings of the
nodes are depicted over a set of different aggregations guided
by the β parameter in the quantifier guided OWA. The details
of the four criteria used in the evaluation are listed in Table 3.1.

if we rank the actual values of the centrality measures (e.g., {75, 74, 73, · · · , 1})
and normalize them with the number of nodes in the network layer |Vi|. Then
values between 1

|Vi| and 1 are achieved for each criterion. The results of the
proposed approach are shown in Figure A.4 for the airports discussed in Sec-
tion 3.3. As can be seen here, there is no change in the finding regarding those
nodes that stay stable among top-ranking and bottom-ranking nodes even if
the NormMethod 4 is used. However, for those nodes that are sensitive to the
choice of different types of aggregation, such as LICJ and LICC, using this kind
of normalization appears to cause a different behavior considering a set of dif-
ferent aggregations. However, the interpretation depends on what we mean by
ranking the actual values. If we want to select some nodes that are always on
top, these nodes will definitely not be among them, regardless of what kinds of
normalization is used. Using the NormMethod 4 we rather focus on the position
of the nodes with respect to a centrality index and not on the actual index value
itself. In such cases we will thus get a different view of the ranking behavior.
As we see there is a more stable upward trend in the ranking behavior of these
nodes, in contrast to what we saw in Chapter3, where they had a downward
trend from left to right side of the plot. Thus, the interpretation of the finding
depends on what we want to select, i.e., whether we want to select nodes that
are among the top 15 positions (from 75 to 60), or whether we want to select
nodes using a cut-off score (e.g., those who have a value greater than 0.8). In
both cases, these nodes will never appear among selected nodes.
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FIGURE A.2: Freeman’s EIES network. The detailed rankings
of some nodes are depicted over the different aggregations
guided by the β parameter in the quantifier guided OWA. The

values of three criteria are listed in Table 3.2.

A.1.1 Comparisons of the results of Quantifier guided OWA
with the reproduced results of the method by Opsahl et
al.

Here we reproduce the results of the method proposed by Opsahl, Agneessen,
and Skvoretz in [70] for Freeman’s EIES data. As explained in Chapter 2 in
Equation 2.1, their method uses an α parameter to deal with the trade-off be-
tween nodes that have a high strength value but a low degree value and nodes
that have a low strength value but a high degree value. In Table A.1, we see
that when α = 0, the nodes are ranked based on degree. When α = 0.5, the
nodes with high degree are favored; when α = 1, the nodes are ranked by their
strength values, and any value above 1, e.g., α = 1.5, rewards nodes with low de-
gree. Using two properties, Coombs, Foster, and Ev. Rogers are often among the
bottom-ranking nodes. Using our approach, the ranking for Rogers was unsta-
ble, as discussed in Chapter 3. He had the highest number for citation value—
meaning when the aggregation rewards nodes with at least one high value, he
was among the top-ranking nodes—-, but he was not among top-rankings re-
garding all types of aggregations and his ranking was sensitive. Similarly using
our approach, but with three properties, Lin Freeman, Mullins and Wellman are
frequently among top-ranking nodes.
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FIGURE A.3: Air transportation network. The detailed rank-
ing of some nodes is depicted over the different aggregation
strategies guided by the β parameter in the quantifier guided

OWA. The values of the three criteria are listed in Table 3.3.
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FIGURE A.4: Air transportation network. The detailed scores
of the airports are depicted over the different aggregations

guided by the β parameter in the MEOWA operator.
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TABLE A.1: Freeman’s EIES network. The reproduced results
of the method proposed by Opsahl et al. using the different

values of α parameter in Equation 2.1.

Rank α = 0 α = 0.5 α = 1 α = 1.5

32 Lin Freeman Lin Freeman Lin Freeman Lin Freeman
31 Nick Mullins Barry Wellman Barry Wellman Barry Wellman
30 Sue Freeman Russ Bernard Russ Bernard Russ Bernard
29 Doug White Sue Freeman Doug White Lee Sailer
28 Phipps Arabie Doug White Lee Sailer Doug White
27 Barry Wellman Nick Mullins Sue Freeman Pat Doreian
26 Russ Bernard Pat Doreian Pat Doreian Sue Freeman
25 Ron Burt Lee Sailer Nick Mullins Nick Mullins
24 Pat Doreian Ron Burt Ron Burt Al Wolfe
23 Richard Alba Richard Alba Richard Alba Maureen Hallinan
22 Jack Hunter Steve Seidman Steve Seidman Ron Burt
21 Lee Sailer Phipps Arabie Al Wolfe Richard Alba
20 Steve Seidman Jack Hunter Carol Barner-Barry Steve Seidman
19 Carol Barner-Barry Carol Barner-Barry Jack Hunter Carol Barner-Barry
18 Al Wolfe Al Wolfe Maureen Hallinan Jack Hunter
17 Paul Holland Paul Holland Paul Holland Davor Jedlicka
16 John Boyd John Boyd John Boyd Paul Holland
15 Davor Jedlicka Davor Jedlicka Davor Jedlicka John Boyd
14 Charles Kadushin Maureen Hallinan Phipps Arabie Don Ploch
13 Nan Lin Don Ploch Don Ploch Claude Fischer
12 Don Ploch Mark Granovetter Claude Fischer Phipps Arabie
11 Claude Fischer Charles Kadushin Mark Granovetter Joel Levine
10 Mark Granovetter Nan Lin Joel Levine Mark Granovetter
9 Maureen Hallinan Claude Fischer Nick Poushinsky Nick Poushinsky
8 Nick Poushinsky Nick Poushinsky Charles Kadushin Charles Kadushin
7 Sam Leinhardt Joel Levine Nan Lin Nan Lin
6 Joel Levine John Sonquist John Sonquist Gary Coombs
5 John Sonquist Sam Leinhardt Sam Leinhardt John Sonquist
4 Ev Rogers Brian Foster Gary Coombs Sam Leinhardt
3 Brian Foster Ev Rogers Brian Foster Brian Foster
2 Gary Coombs Gary Coombs Ev Rogers Ev Rogers
1 Ed Laumann Ed Laumann Ed Laumann Ed Laumann
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FIGURE A.5: Rankings of two airports chosen from nine nodes
shared between the four layers representing AirBerlin, Easy-
jet, Lufthansa, and Ryanair. The resulting normalized values

using the four methods are elaborated below.

A.2 Results obtained using the normalization meth-
ods in the European airlines network (includ-
ing four layers)

In Chapter5 we discussed the European airline transportation network includ-
ing four layer: AirBerlin, Easyjet, Ryanair, and Lufthansa. While only nine
nodes are common among the four layers of airlines, a comparison of the be-
havior of all four layers is interesting because the Lufthansa airline network is
much more centralized than the other networks. We compare the aggregation
of the results of the four layers—including Lufthansa, which has a different nor-
malized degree cumulative distribution—with the aggregation of the results of
three layers after excluding Lufthansa from the scenario. Figure A.5 depicts the
resulting rankings of two airports demonstrated by one curve for each normal-
ization method and visualized against a set of β {−20,−10,−7,−5,−2, 0, 2, 5, 10, 20}
values, each of which guides an aggregation.

The actual degrees in the four layers of the airlines for Manchester airport
are: (1, 12, 5, 5), respectively, while the maximal degrees of all shared nodes are:
(26, 17, 5, 28) and the maximal degrees of all nodes in the respective layers are
computed as: (37, 67, 78, 85) (as listed in Table 5.1 (A)).

C1(v) : 0, 0.667, 1 , 0

C2(v) : 0, 1166 ,
4
77 ,

4
84 → 0, 0.167 , 0.052, 0.048

C3(v) : C2(v) · ( 37
85 ,

67
85 ,

78
85 ,

85
85 ) →

0, 0.131 , 0.048, 0.048

C4(v) : 0.093, 0.818, 0.887 , 0.461

If we follow the curve of NormMethod 1 along the different β-values, Manch-
ester airport increases its importance from rank 2 (among the 9 common nodes)
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to rank 7. For the sake of clarity, recall that NormMethod 1 normalizes the degree
value with the maximal degrees of all common nodes in the same layer. Thus,
in the Lufthansa layer, the corresponding node gets a normalized degree of 1
(denoted by a box) as it has the highest degree among the nine nodes within
the Lufthansa layer. For β = 20 and n = 4, the weight vector in the MEOWA
operator multiplies the highest normalized degree by (0.9933) and the second
highest by (0.0067). Two other nodes exist with the same maximal normalized
degree of 1 and a higher second-highest normalized degree than Manchester;
thus, Manchester gets the rank 7 for β = 20 because its minimal normalized de-
gree is very low and results in rank 2 when β = −20. Similarly, we compute the
values of the different normalized degrees using the four methods for Francisco
Sá Carneiro (Porto) airport.

Its pure degree values are: (12, 5, 1, 15). As can be seen, using NormMethod 4,
it gets a normalized index value of 0.833 in the AirBerlin layer, as it is connected
to twelve airports, which is less than what we obtain for Manchester airport in
the Lufthansa layer, namely 0.887 (marked with a box). When β = 20, the ag-
gregation favors nodes with at least one high value; in this case Manchester gets
a better rank than Francisco as the curve of NormMethod 4 shows in Figure A.5.

C1(v) : 0.44 , 0.2, 0, 0.435

C2(v) : 0.306 , 0.061, 0, 0.167

C3(v) : 0.133, 0.048, 0, 0.167

C4(v) : 0.833 , 0.611, 0.184, 0.789

With respect to sensitivity, we observe that Manchester is quite sensitive to
the chosen aggregation; if we fix a normalization method, then we can compute
the sensitivity of its ranking to different kinds of aggregations. Once we have
found all the sensitivity extents for Manchester, we see that ∆agg(Manchester) =
5, while for Francisco, sensitivity is only ∆agg(Francisco) = 2. Considering
sensitivity to the choice of normalization, it turns out that Francisco at β = 20
shows a maximal difference in the ranking positions of 7−2 = 5. Thus, Manch-
ester and Francisco both result in a ∆norm-value of 5.
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