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Kurzfassung

In der spanenden Bearbeitung treten im Werkstück große Deformationen, sowie große
Änderungen der Topologie auf. Beispiele dafür sind die Span- und Gratbildung. Beson-
ders die Auftrennung des Materials und die großen Längenskalen stellen etablierte
Simulationsmethoden vor große Herausforderungen. Diskrete Simulationsmethoden,
wie z.B. die Molekular Dynamik (MD) eignen sich für Simulationen mit stark verän-
derlicher Topologie. Allerdings weisen diese Methoden schnell sehr hohe Rechenzeiten
auf, wenn es darum geht Simulationen auf großen Längenskalen durchzuführen. Die
Finite Elemente Methode (FEM) hingegen, basiert auf der Kontinuumsmechanik und
ist daher in der Lage auch großskalige Probleme mit einer überschaubaren Anzahl von
Freiheitsgraden abzubilden. Andererseits stößt die FEM schnell an ihre Grenzen wenn
große Topologieänderungen in Simulationen auftreten. Die Entwicklung der Partikel
Finite Elemente Methode ist ein Versuch, die Vorzüge der Finite Elemente Methode
mit denen von diskreten Simulationsmethoden zu verbinden. Die Methode wurde
zunächst angewandt um schwappende Flüssigkeiten zu simulieren und wurde dann er-
weitert um die Interaktion von Flüssigkeiten mit Festkörpern zu modellieren. Aber
auch die Zahl der Anwendungen in der Mechanik fester Körper wächst stetig. Aufgrund
der Fähigkeit komplexes Materialverhalten auf großen Längenskalen zu modellieren
und dabei signifikante Topologieänderungen zu berücksichtigen, bildet die PFEM ein
geeignetes Werkzeug zur Simulation von Spanprozessen.

Da im Spanprozess große Deformationen auftreten, werden zu Beginn dieser Arbeit
die wesentlichen Grundlagen der nichtlinearen Kontinuumsmechanik erläutert. Um
Simulationen an verschiedenen Klassen von Materialien durchzuführen, werden zwei
konstitutive Gesetze vorgestellt. Ein hyperelastisches Materialmodell kann eingesetzt
werden um Spanprozesse an Kunststoffen zu simulieren, während ein elasto-plastisches
Materialmodell verwendet wird um das Spanen von Metallen zu modellieren. Auf
die Einführung in die Grundgleichungen der Kontinuumsmechanik folgt ein Kapitel
zur Formulierung von Finiten Elementen. Die Herleitung der schwachen Form des
mechanischen Gleichgewichts wird erläutert sowie deren Diskretisierung mit Dreieck-
selementen. Da das resultierende Problem nichtlinear von der Verschiebung abhängt,
wird das Newton Verfahren vorgestellt, welches zur Lösung des Problems verwendet
wird. Die im Newton Verfahren benötigte Linearisierung der schwachen Form wird
ebenfalls erläutert.



Ein zentraler Bestandteil der PFEM ist die Detektierung von Randsegmenten einer
Partikelwolke. Dazu wird die sogenannte α-shape Methode verwendet, welche ur-
sprünglich im Gebiet der Computergrafik entwickelt wurde. Auf eine kurze Erläuter-
ung der Funktionsweise, folgt eine Parameterstudie um den zentralen Parameter α.
Ziel dieser Studie ist es, die Schwierigkeiten der Ermittlung von Randsegmenten und
der damit verbundenen Wahl des Parameters aufzuzeigen. Da die Anwendung der α-
shape Methode in der PFEM einen Einfluss auf die Materialantwort und die Auftren-
nung des Materials aufweist, wird in dieser Arbeit eine Interpretation des Parameters
im Kontext der Strukturfestigkeit präsentiert. Es wird gezeigt, dass der Parameter
α mit einer kritischen Dehnung von Randsegmenten in Verbindung gebracht werden
kann, und eine Beziehung zu Eigenvektoren von Verzerrungstensoren wird erläutert.
Außerdem wird erklärt, dass α nicht nur die Dehnung von Randsegmenten einschränkt,
sondern auch die Orientierung der Segmente limitiert. Dieses Ergebnis wird an PFEM
Simulationen von einfachen Deformationszuständen demonstriert. Des Weiteren schaf-
fen Simulationen von Zugversuchen eine Verbindung von α zur Bruchdehnung, wie sie
aus der Werkstoffwissenschaft bekannt ist.

In der PFEM folgt auf die Detektion von Randsegmenten die Vernetzung mit Finiten
Elementen. Zusammen mit Randbedingungen wird dann ein Finite Elemente Problem
formuliert. Zu Beginn der Finite Elemente Simulation muss der Deformationsgradient
aus dem vorherigen PFEM-Schritt von den Partikeln auf die Gauß-Punkte übertragen
werden. Nach der Lösung des FE Problems wird der aktuelle Deformationsgradi-
ent dann zurück auf die Partikel projiziert und dort für den nächsten PFEM-Schritt
gespeichert. Bei Simulationen mit elasto-plastischem Material muss zusätzlich zum
Deformationsgradienten noch der plastische Deformationsgradient, sowie die Verfesti-
gungsvariable projiziert und auf den Partikeln gespeichert werden. Um den Einfluss
der wiederholten Projektion der Variablen auf die Qualität der Ergebnisse zu unter-
suchen, wird ein Vergleich der PFEM mit der FEM durchgeführt. Verglichen werden
Reaktionskräfte aus Simulationen mit hyperelastischem und elasto-plastischem Mate-
rial an einfachen Geometrien und Deformationszuständen.

In dieser Arbeit werden Spansimulationen mit hyperelastischem und elasto-plastischem
Materialverhalten präsentiert. Zu Beginn wird ein vertikales Abtrennen des Werk-
stücks simuliert, wobei das Werkstück mit Hilfe des hyperelastischen Materials und
entsprechenden Parametern als Kunststoff modelliert wird. Die Entwicklung von
Schub und Druckspannungen während des Abtrennprozesses wird gezeigt. In diesen
Simulationen wird das Werkzeug als Starrkörper betrachtet und Normalkontakt zwis-
chen Werkzeug und Werkstück ist berücksichtigt. Das Werkstück ist in einem gewissen
Bereich fixiert, während das Werkzeug mittels einer Verschiebungsrandbedingung in
das Werkstück eindringt. Spankräfte können berechnet werden über eine Summation
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der Raktionskräfte an den FE Knoten des Werkzeugs, und in einer Parameterstudie
von α werden diese Spankräfte verglichen.
Weitere PFEM Simulationen beschäftigen sich mit dem Extrusionsprozess. Ähn-
lich zur Simulation des Abtrennprozesses wird hier die Matrize des Extruders als
starrer Körper betrachtet und Normalkontakt zwischen Matrize und Werkstück ist
berücksichtigt. Das Werkstück wird durch eine Verschiebungsrandbedingung dem Ex-
truder zugeführt, während die Matrize räumlich fixiert ist. Druck- und Zugspan-
nungen, sowie die plastische Deformation des Werkstücks werden betrachtet. Die
resultierenden Extrusionskräfte können über eine Summation der Reaktionskräfte am
Verschiebungsrand des Werkstücks berechnet werden und ein Vergleich dieser Extru-
sionskräfte für unterschiedliche Anfangsfließspannungen wird gezeigt.
Ein weiterer Abschnitt dieser Arbeit befasst sich mit der Spansimulation von metallis-
chen Werkstoffen. Dabei wird das elasto-plastische Materialmodell mit entsprechen-
den Materialparamteren für Stähle verwendet. Analog zur Extrusionssimulation, wird
in diesen Simulationen das Werkstück mit Hilfe einer Verschiebungsrandbedingung
dem Werkzeug zugeführt, während das Werkzeug räumlich fixiert ist. Die Entstehung
von Spannungen während des Spanprozesses wird demonstriert und verglichen zu ein-
schlägiger Fachliteratur. Effekte wie die Ausbildung eines Scherbandes im Werkstück,
sowie die plastische Deformation im Span und in der Freifläche werden aufgezeigt.
Des Weiteren demonstrieren Parameterstudien den Einfluss von wichtigen Prozesspa-
rametern auf die Schnittkräfte, die Spannungen und die plastische Deformation. Eine
Parameterstudie von α zeigt auf, dass mit der Wahl von α das Spanen von spröden
oder zähen Werkstoffen realisiert werden kann. Abschließend wird ein Vergleich von
Spankräften aus PFEM Simulationen zu einer empirischen Methode durchgeführt.
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Abstract

In cutting processes the material experiences large deformations and large configura-
tional changes. This challenges established modelling techniques such as the finite el-
ement method (FEM) or molecular dynamics (MD). Discrete methods are well suited
to model large configurational changes, yet are computationally expensive for large
length and time scales. Continuum based methods on the other hand, are well fit
to model problems on the length scale of engineering components as well as intricate
geometries. Another benefit of the FEM is the ability to model complex material
behaviour. However, large topological changes push the method to its limits. The
particle finite element method (PFEM) represents a combination of the benefits of
discrete modelling techniques and continuum based methods. First applied to prob-
lems with sloshing liquids, the range of applications has widened to solid mechanics
and simulations with fluid-solid interaction.

Since large deformations occur in cutting simulations, some relations of nonlinear con-
tinuum mechanics are provided in the beginning of this work. In order to model
the cutting of metals and plastics, an elasto-plastic material model is introduced as
well as the concept of hyperelasticity. The following chapter is concerned with the
finite element formulation. The derivation of the weak form is elaborated as well as
the spatial discretisation. Since the weak form is nonlinear in the displacements, a
Newton scheme is employed and the linearisation of the weak form is demonstrated in
this work. Moreover the integration of the inelastic constitutive equations is explained.

A central operation within the PFEM is the detection of the boundary of a set of par-
ticles. This is accomplished with the so called α-shape method which was developed
in the field of computer graphics. After a brief description of the working princi-
ple, a parameter study is conducted on the method’s central parameter α in order to
demonstrate the difficulties in the detection of boundary segments. Furthermore, a
physical interpretation of the α-shape method in the context of strength of materials
is provided. It is shown that the parameter α can be associated to a critical stretch
of boundary segments and a relation to eigenvalues of strain tensors is presented. In
addition it is elaborated that α not only limits the stretch of boundary segments but



also the orientation. PFEM simulations of circular discs under basic deformations -
such as uniaxial stretch, biaxial stretch, and simple shear - are studied to demonstrate
these effects. Tensile tests on specimens with geometries similar to experiments in
material science are presented and a relation of α to the fracture strain is elaborated.
Further simulations demonstrate that by varying α the separation of material can be
triggered, which enables the modelling of brittle or ductile material.

In a PFEM simulation the boundary detection is followed by a meshing algorithm and
in combination with boundary conditions, a finite element problem is formulated. In
the beginning of the finite element simulation the deformation gradient of the previ-
ous PFEM step is transferred form the particles to the Gauß points. After solving the
FEM problem, the actual deformation gradient is projected to the particles and stored
for the next step. For simulations with elasto-plastic material, the plastic deforma-
tion gradient and the hardening variable are projected and stored on the particles as
well. In order to investigate the influence of the frequent projection on the quality of
the results, a comparison of PFEM to FEM simulations is studied. The benchmarks
include problems with uniform deformations as wells as non-uniform deformations.
These simulations are executed with hyperelastic and elasto-plastic material.

In this work cutting simulations of hyperelastic and elasto-plastic are presented. In
combination with suitable material parameters, the material models enable a cutting
of plastics and metals. The first cutting simulation in this work focuses on vertical
cutting of a workpiece with hyperelastic material. The evolution of shear and com-
pressive stresses during the cutting process is demonstrated. In the simulations the
cutting tool is considered as rigid body and normal contact is considered between tool
and workpiece. The workpiece is partially fixed, whereas a displacement boundary
condition is applied to the tool. Cutting forces are computed by a summation of reac-
tion forces at the finite element nodes of the tool. For the vertical cutting simulations
of hyperelastic material, the cutting forces are compared for a variation of α.
Furthermore, an extrusion process is studied using an elasto-plastic material. Analog
to the cutting simulations, the die of the extruder is considered as a rigid body and
normal contact to the workpiece is considered. The workpiece is fed to the die by
a displacement boundary condition and the die is fixed in space. The compressive
stresses in the workpiece during the extrusion process are studied as well as the plastic
deformation.
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Extrusion forces are computed analog to the cutting simulations and a parameter
study on the initial yield stress is presented.
For the cutting of metals, the elasto-plastic material model is considered for the work-
piece. Similar to the extrusion simulations, the workpiece is fed to the cutting tool
by applying a displacement boundary condition at the base of the workpiece and the
tool is fixed in space. The evolution of stresses in the workpiece is studied through-
out the cutting process and compared to literature. Effects such as the development
of shear bands are observed and the plastic deformation in the workpiece is demon-
strated. Parameter studies are conducted in order to show the influence of certain
process parameters on the cutting force, the stresses, and the plastic deformation. A
parameter study on α demonstrates that cutting of brittle or ductile material can be
realised by choosing an appropriate value for α. Furthermore, a comparison of the
cutting forces to an empirical model is considered. In a first approach the cutting
force from a PFEM simulation is compared to the empirical method for one specific
cutting depth. In order to do so, a certain segment of the PFEM result is selected,
in which the cutting force is relatively constant. In a second step the PFEM cutting
forces are compared to the empirical method for several cutting depths. In this exam-
ple the material parameters for the PFEM simulation are fixed and only the cutting
depth is varied.
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Chapter 1

Introduction

1.1 Motivation and State of the Art

In manufacturing the processed material is often referred to as workpiece and ex-
periences large deformations in many operations, such as forging, deep drawing or
turning. Especially cutting processes e.g. turning, milling, and drilling are charac-
terised by large deformations and large changes in the topology. In these procedures
the cutting edge of a tool penetrates the workpiece and produces chips and burrs.
Figure 1.1 sketches the cutting process.

Tool

Workpiece

δ

β
h

γ

Fig. 1.1: Tool and workpiece in cutting process

In manufacturing technology a certain terminology are used to specify cutting pro-
cesses. One of which distinguishes the angles of the cutting edge as demonstrated in
Fig. 1.1. The rake angle γ is defined as the angle between the rake face and the verti-
cal, whereas the clearance angle β is defined as the angle between flank face and the
horizontal. Together with the wedge angle δ, the relation β+δ+γ = 90◦ is prescribed.
The cutting depth is depicted by h in Fig. 1.1.



CHAPTER 1. INTRODUCTION

The physical modelling of cutting processes is challenging due to several reasons. For
one, the material undergoes large deformations and large configurational changes. Es-
pecially the formation of chips and burrs pushes established modelling techniques to
their limits. Due to the large deformations, elaborate material models are required for
certain groups of materials. For instance, plastic deformations in the workpiece have to
be considered in cutting simulations of metals. In cutting simulations of plastics a dif-
ferent class of material models is used, which are referred to as hyperelastic (Holzapfel,
2000; Bonet and Wood, 2008). Further obstacles in the simulation of cutting processes
are the length and time scale of the problem. Simulations on the scale of engineering
components generate unreasonably high computational effort for some modelling tech-
niques and only short simulation times can be considered. For this reason, methods
based on continuum mechanics, such as the finite element method (FEM), are well
suited. Large length and time scales can be covered, while the number of unknowns
remains moderate. Another benefit of the FEM is the ability to cope with intricate
geometries and complex material behaviour such as plasticity at finite strains, which is
important for simulations of metal cutting. Nonetheless, large changes in the topology
push the FEM to its limits and numerous work has been done to expand the FEM
in order to cope with material separations. Approaches to separate the mesh can be
found in Komvopoulos and Erpenbeck (1991); Shet and Deng (2000); Li et al. (2002);
Mamalis et al. (2001), where the nodes are separated depending on various criteria.
Another technique is the use of link elements, which are placed in the path of the cut-
ting tool and fail once the tool is in contact (Zhang and Bagchi, 1994). In some cases
however, the decision process whether the nodes are separated or the link elements
are removed, may be considered as rather unphysical. An empirical method to predict
cutting forces can be found in Kienzle (1952), which is used as a benchmark in this
work.

Discrete modelling techniques such as molecular dynamics (MD) are well suited to
model topological changes and cutting simulations on atomistic scales can be found
in Gao and Urbassek (2014); Alhafez et al. (2017). However, increasing length and
time scales lead to an unreasonable increase in computation time. Aside from MD,
the cutting process has been modelled with other mesh less methods such as smooth
particles hydrodynamics (SPH) Heinstein and Segalman (1997); Limido et al. (2007).
Cutting simulations using the finite pointset method (FPM) can be found in Uhlmann
et al. (2013, 2011) and in Eberhard and Gaugele (2013); Fleissner et al. (2007) the
discrete element method (DEM) is applied to model cutting processes.
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1.1. MOTIVATION AND STATE OF THE ART

The development of the particle finite element method (PFEM) is an attempt to com-
bine the benefits of discrete methods and modelling techniques based on continuum
mechanics. The first applications of the PFEM were concerned with sloshing liq-
uids (Oñate et al., 2004; Idelsohn et al., 2006, 2004; Aubry et al., 2005, 2006), where
collapsing water columns and free surface waves are simulated. Recent work in this
field can be found in Zhu and Scott (2014, 2017). Applications to problems with
fluid-solid interaction can be found in Oñate et al. (2006, 2011); Oñate et al. (2008).
Since sloshing liquids represent large topological changes, the finite element nodes are
treated as a set of particles and a so called α-shape algorithm is employed to detect
the shape of the set throughout the simulation. The α-shape method was developed
in the field of computer graphics (Edelsbrunner and Mücke (1994); Fischer (2000) and
literature cited in there) and provides a list of boundary segments, which is required
for the subsequent meshing procedure. After the mesh generation, a finite element
problem is solved and the particle coordinates are updated. In this way, changes in
the topology can be encountered, while simulations on large length and time scales
can be considered. An outline of the PFEM algorithm is illustrated in Fig. 1.2 and a
detailed explanation is provided in chapter 4.

n + 1

n n

mesh

FEM problem particle data

detect

boundary region

solve update

particle

coordinates

history

data

Fig. 1.2: Outline of the PFEM algorithm

In the α-shape method circles for every pair of particles in the set are defined, where
the radius of the circles is scaled by a parameter α, hence the name α-shape method.
As demonstrated in Edelsbrunner and Mücke (1994); Fischer (2000), the parameter α
controls the level of detail of the detected shape and in Oñate et al. (2004) experience
based recommendations are provided for the choice of α. As the number of PFEM
applications in solid mechanics increased (Oliver et al., 2007; Carbonell et al., 2013,
2010) it was observed in Sabel et al. (2014) that the parameter α affects the material
response. In Sabel et al. (2016b) a first attempt was made to find a physical interpre-
tation for α. Applications in the modelling of cutting processes can be found in Sabel
et al. (2016a); Rodríguez et al. (2017a,b); Oñate et al. (2014).
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CHAPTER 1. INTRODUCTION

1.2 Objectives and Overview

The basic relations of continuum mechanics necessary for the implementation of the
PFEM are introduced in chapter 2. The chapter starts with the definition of the defor-
mation gradient and a multiplicative decomposition which is followed by the derivation
of strain tensors. The Hencky strain is introduced, which is crucial for the plasticity
model used in this work. After the definition of strain tensors, the concept of stress is
introduced. The chapter closes with constitutive laws such as hyperelasticity, and von
Mises plasticity.

Chapter 3 begins with the derivation of the weak form of the equilibrium equation,
which is followed by the linearisation of the weak form. The spatial discretisation
is elaborated, as well as the numerical integration. The time integration of inelastic
constitutive relations on the element level is explained and the extension from small
strain plasticity to finite strains is introduced. The chapter closes with comments on
the Newton scheme, which is used to solve nonlinear systems of equations.

The implementation of the particle finite element method (PFEM) is elaborated in
chapter 4. At first, the structure of the PFEM algorithm is explained followed by a
description of the detection of boundary segments. The boundary is detected with
the α-shape method, which is studied in a benchmark with intricate topology. For the
PFEM implementation it is crucial to store deformation data on particles and therefore
it is necessary to transfer the data from the element level to the particles and vice
versa. This procedure is also explained in chapter 4. The PFEM is then validated by a
comparison to the finite element method (FEM) on several benchmarks, which include
problems with uniform deformations such as uniaxial stretch and simple shear as well
as non-uniform deformations. Two constitutive laws are considered and the validation
is accomplished by a comparison of reaction forces of FEM and PFEM. Furthermore,
the influence of the discretisation and the number of projections is investigated.
Section 4.3 is concerned with a physical interpretation of the α-shape method. A
relation of the parameter α to the stretch ratio is presented as well as a connection
to eigenvalues of a strain tensor and the respective eigenvectors. The outcome of this
interpretation is demonstrated on PFEM simulations of basic deformations such as
uniaxial tension, simple shear, and biaxial shear. Furthermore, a graphical explanation
the interpretation is provided. Finally, the role of α in material science is discussed
on tensile tests and simulations with separating material are shown.
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1.2. OBJECTIVES AND OVERVIEW

In chapter 5 cutting simulations with hyperelastic and elasto-plastic material are pre-
sented. The chapter begins with simulations of a vertical cutting process with hypere-
lastic material, where a parameter study demonstrates the influence of the parameter
α on the cutting force. Contour plots of simulations with varying α illustrate the
influence on material separation. A further example is the extrusion of elasto-plastic
material through a die. In these simulations the stresses are studied as well as the
plastic deformation as they occur during the extrusion process. A parameter study
on the initial yield stress is conducted and the extrusion forces are compared. In the
following section typical effects known from manufacturing technology are studied.
The chip formation in cutting of elasto-plastic material is investigated and stresses, as
well as the plastic deformation in the workpiece are observed. Parameter studies are
conducted in order to investigate the influence of parameters such as the hardening
modulus, the rake angle, as well as α on the cutting force. Given the physical inter-
pretation, especially the parameter study on α is of interest. Therefore, the norm of
the plastic deformation gradient is demonstrated in contour plots for a varying α. At
the end of the chapter empirical results are compared to cutting forces calculated by
the PFEM. The cutting forces are first compared for a fixed set of parameters and one
decisive cutting depth h. In a follow up study an attempt is made to reproduce the
empirical results for various cutting depths h.

Chapter 6 provides some conclusions and a brief outlook on further research.
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Chapter 2

Continuum Mechanics

The particle finite element implementation developed in this work, is based on nonlin-
ear continuum mechanics. Some core concepts of continuum mechanics are introduced
in this chapter, such as kinematics, stress measures, the mechanical equilibrium, and
some constitutive laws. For more details on continuum mechanics, the reader is re-
ferred to classical textbooks such as Holzapfel (2000); Spencer (2004); Greve (2003);
Bonet and Wood (2008); Becker and Gross (2002); Sadd (2014); Simo and Hughes
(2000); de Souza Neto et al. (2011).

2.1 Kinematics

2.1.1 Deformation Gradient

The deformation ϕ of a continuous body B in space can be considered as a sequence of
configurations, where the term configuration refers to a region Ωt which is occupied by
the body at time t. In the following, Ωt is called actual or current configuration since
it is associated to the current time t. The material points of the body in the current
configuration are described using spatial (Eulerian) coordinates x. For convenience, an
initial configuration Ω0 can be introduced to provide a reference at time t = 0. Hence,
this configuration is called reference configuration and the position of the material
points is described by the reference (Lagrangian) coordinates X. Figure 2.1 illustrates
the body B in the reference and current configuration.
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u
Ωt

P

P ′

dx

N dA
nda

dv

dX

dV

3

1

2

Ω0

X

ϕ,F

x

Fig. 2.1: Body in reference- and current configuration

Since the current position of a material point at time t depends on the deformation ϕ

and the reference coordinates X, the spatial coordinates can also be expressed as

x = x (X) = ϕ (X) . (2.1)

The derivative of the deformation with respect to the Lagrangian coordinates is called
deformation gradient

F =
∂x

∂X
=
∂ϕ (X)

∂X
, (2.2)

which is a commonly used measure in the finite deformation theory and for the def-
inition of strain tensors. Since the current position of a material point can also be
defined by the reference coordinates and the displacement vector u

x = X + u , (2.3)

the deformation gradient in Eq. (2.2) may be expressed alternatively in terms of dis-
placements u. Combining Eq. (2.2) and Eq. (2.3) leads to the definition of the dis-
placement gradient

H =
∂u

∂X
=
∂ (x−X)

∂X
= F − 1 , (2.4)

where 1 is the second order identity tensor. By employing the deformation gradient,
the deformation of infinitesimal line segments, surface elements, and volume elements
can be described, which is crucial to define balance laws and stress measures for the
reference and spatial configurations.
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2.1. KINEMATICS

For neighbouring points that define a line segment of infinitesimal length, the map

dx = F dX (2.5)

can be defined to describe the deformation of that line segment. For volume elements
dV = dX1 dX2 dX3 and dv = dx1 dx2 dx3 the relation

dv = J dV (2.6)

holds, where J = detF . The deformation gradient F is invertible and therefore J 6= 0,
and since a volume must not be negative J > 0 follows. In the case that the body
is not subjected to a deformation i.e. x = X and therefore F = 1 respectively, we
obtain J = 1.
The deformation of small surface elements is crucial for the transformation of stress
tensors. To obtain a relation between the surface elements

da = n da and dA = N dA (2.7)

from Fig. 2.1 we express the deformation of volume elements in Eq. (2.6) as

dv = da · dx = J dA · dX . (2.8)

The surface elements in Eq. (2.7) are defined using normal vectors N and n as well as
infinitesimal surface areas dA and da. Employing Eq. (2.5), the deformed line segment
in Eq. (2.8) can be replaced, which yields

da · F dX = J dA · dX . (2.9)

Rearranging Eq. (2.9) leads to

(
F Tda− J dA

)
· dX = 0 , (2.10)

and for arbitrary line segments dX we finally obtain

da = J F−TdA or dan = J F−TdAN . (2.11)

The relation between deformed- and undeformed surface elements in Eq. (2.11) is
known in literature as Nanson’s formula.

9
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2.1.2 Decomposition of the Deformation Gradient

As mentioned in the introduction of the deformation gradient, the deformation can
be considered as a sequence of configurations. Nonetheless, we fixated on just distin-
guishing between two, the reference- and the actual configuration. In the following, we
consider a sequence of configurations in order to define a multiplicative decomposition
of the deformation gradient, which e.g. is important for the modelling of elasto-plastic
material at finite strains. In this case the deformation gradient is split in an elastic part
F e and a plastic part F p, which was first applied in Lee (1969). In the context of the
particle finite element method, the decomposition is also needed, which is explained
in more detail in Sec. 4. In order to elaborate the multiplicative decomposition of the
deformation gradient, we will first study the body B in Fig. 2.2, which is subjected to
the deformation ϕ1.

2

ξ0

Ω0

3
Ω1

P

P ′

ϕ1

1

ξ1

Fig. 2.2: Two configurations of body B

The coordinates ξ1 in configuration Ω1 can also be expressed as function of the coor-
dinates of configuration Ω0 i.e. ξ1 = ϕ1 (ξ0). Then, the deformation gradient yields

F 1 =
∂ ξ1

∂ ξ0

=
∂ ϕ1 (ξ0)

∂ ξ0

. (2.12)

Next, we consider the body B subjected to a second deformation ϕ2, which evokes a
new configuration Ω2 as shown in Fig. 2.3.
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2

Ω2

3
Ω1

P ′′

P ′

ϕ2

1

ξ1

ξ2

Fig. 2.3: Body B in configuration Ω1 and Ω2

The coordinates in this configuration are labeled ξ2 = ϕ2 (ξ1) and the deformation
gradient is defined as

F 2 =
∂ ξ2

∂ ξ1

=
∂ ϕ2 (ξ1)

∂ ξ1

. (2.13)

Alternatively, we consider a deformation ϕ that maps the coordinates ξ0 of configu-
ration Ω0 to the coordinates ξ2 of configuration Ω2 as illustrated in Fig. 2.4.

2
ξ2

ϕ

Ω0

Ω2

3

P

P ′′

1

ξ0

Fig. 2.4: Body B subjected to deformation ϕ

The deformation ϕ can be alternatively expressed as ϕ = ϕ2 (ϕ1 (ξ0)). The deforma-
tion gradient then follows as

F =
∂ϕ2 (ϕ1 (ξ0))

∂ ξ0
=
∂ ϕ2 (ϕ1 (ξ0))

∂ ϕ1

∂ ϕ1 (ξ0)

∂ ξ0
=
∂ ξ2
∂ ξ1

∂ ξ1
∂ ξ0

= F 2 F 1 . (2.14)
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The deformation gradient for a respective sequence of n + 1 configurations can then
be expressed as a product of n deformation gradients

F =

n∏

i=1

∂ ξn+1−i

∂ ξn−i

=

n∏

i=1

F n+1−i . (2.15)

2.1.3 Polar Decomposition

In Eq. (2.15) a multiplicative decomposition of the deformation gradient is presented.
As mentioned, the multiplicative split can be applied for several purposes. An impor-
tant application is the unique decomposition in a rotation part R and a stretch part U
or V , which is useful for the definition of strain tensors. The split of the deformation
gradient can then be defined as

F = RU = V R , (2.16)

where U is called the right stretch tensor and V represents the left stretch tensor.
The rotation tensor R is a proper orthogonal tensor and therefore RT R = 1, where
the stretch tensors are symmetric thus, U = UT and V = V T .

2.1.4 Strain Tensors

Strain tensors are defined with respect to the reference configuration or the spatial
configuration. The right Cauchy-Green tensor yields

C = F TF or CIJ = FkI FkJ . (2.17)

In the following, we assign capital indices to the reference configuration and lower case
indices to the current configuration. The summation convention is adopted, which
implies a summation over an index from one to three if that index appears twice in the
same term. In Eq. (2.17) it can be observed that both indices of the right Cauchy-Green
tensor refer to the reference configuration. By expressing the deformation gradient in
Eq. (2.17) with the right stretch tensor and the rotation tensor from Eq. (2.16), the
right Cauchy-Green tensor can be expressed as

C = F TF = (RU)T RU = UTRTRU = UTU = U 2 . (2.18)

In analogy, the left Cauchy-Green tensor is defined as

b = F F T = or bij = FiK FjK , (2.19)

and it can be observed that both indices of the left Cauchy-Green tensor refer to the
spatial configuration. By replacing the deformation gradient in Eq. (2.19) with the
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left stretch tensor V and the rotation tensor R, the left Cauchy-Green tensor can be
rearranged to

b = F F T = V R (V R)T = V RRTV T = V TV = V 2 . (2.20)

In Eq. (2.18) and (2.20) the rigid body rotations of the deformation gradient cancel
out due to the properties of the orthogonal tensor RTR = 1. Therefore, the tensors
C and b represent a pure straining and - in contrast to the tensors U and V - are
positive definite. A further strain measure is the Green-Lagrange strain tensor, which
is defined as

E =
1

2

(
GradTu+ Gradu

)
+

1

2
GradTuGradu , (2.21)

with the displacement gradient

Gradu =
∂u

∂X
= H . (2.22)

The Green-Lagrange strain tensor is defined with respect to the reference configura-
tion. With the right Cauchy-Green tensor from Eq. (2.17) and the definition of the
displacement gradient from Eq. (2.4), the Green-Lagrange strain tensor can also be
expressed as

E =
1

2
(C − 1) . (2.23)

The equivalent of the Green-Lagrange tensor in the spatial configuration is the Euler-
Almansi tensor

ǫ =
1

2

(
gradTu+ gradu

)
+

1

2
gradTu gradu , (2.24)

where the displacement gradient in Eq. (2.24) is defined with respect to the spatial
configuration

gradu =
∂u

∂x
. (2.25)

In analogy to the Green-Lagrange tensor, the Euler-Almansi tensor can be expressed
using the left Cauchy-Green tensor from Eq. (2.19)

ǫ =
1

2

(
1− b−1

)
. (2.26)

2.1.5 Spectral Decomposition of Strain Tensors

Since strain tensors are symmetric, a representation in terms of the eigenvalues of these
tensors can be introduced. The spectral decomposition is useful in some applications,
one of which is shown in Sec. 2.1.7 within the definition of the Hencky strain. The right
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and left Cauchy-Green tensors from Eq. (2.17) and Eq. (2.19) can then be expressed
as

C = U 2 =

3∑

i=1

λ2i N i ⊗N i and b = V 2 =

3∑

i=1

λ2i ni ⊗ ni , (2.27)

where λ2i are the eigenvalues of the right and left Cauchy-Green tensors. In Eq. (2.27)
can also be observed that the eigenvalues of both tensors are identical. However, the
eigenvectors N i and ni refer to different configurations.

2.1.6 Small Strains

In many applications small strains are sufficient to describe the deformation of a ma-
terial. In theses cases the displacement u is assumed to be small and the spatial
coordinates approximate the reference coordinates x ≈ X. Then, the displacement
gradient from Eq. (2.4) yields

|Hij| ≪ 1 . (2.28)

Considering the definition of the Green-Lagrange tensor and the Euler-Almansi tensor
in Eq. (2.21) and (2.24), one can observe with Eq. (2.28) that the nonlinear terms are
small of higher order and can be neglected. With these assumption, we can define the
linearised strain tensor

ε =
1

2

(
gradTu+ gradu

)
. (2.29)

Split in Spherical and Deviatoric Part

For elasto-plastic material models, a decomposition of the linearised strain tensor into
a spherical and deviatoric part is practical, since plastic deformations are considered
to be incompressible. With the definition of a spherical strain

εs =
1

3
tr ε , (2.30)

and the deviatoric strain e, the linearised strain tensor can be decomposed as

ε = εs 1+ e . (2.31)

In Eq. (2.30) the spherical strain is introduced using the trace operator tr, which is
defined as tr ε = εii = ε11 + ε22 + ε33.
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2.2. STRESS TENSORS

2.1.7 The Hencky Strain

In Eq. (2.31) an additive decomposition of the linearised strain tensor is presented.
The additive decomposition can only be realised due to the assumptions made in
linear theory, namely |Hij| ≪ 1. In the finite deformation regime, only multiplicative
decompositions can be realised as in Eq. (2.15). In order to provide an additive
decomposition of nonlinear strain tensors, the logarithmic strain (or Hencky strain)
can be used. The Hencky strain is defined as

ε =
1

2
lnC = lnU . (2.32)

The properties of the Hencky strain can be easily shown by using the relations in
Eq. (2.18). In conjunction with U = UT , Eq. (2.32) can be expressed as

ε =
1

2
lnC =

1

2
lnU 2 =

1

2
(lnU + lnU) = lnU . (2.33)

As shown in Eq. (2.33), the properties of the logarithm enable an additive decomposi-
tion of nonlinear strain tensors. This feature is used in this work to model elasto-plastic
material, which is described in more detail in Sec. 3.5.2. For the actual computation
of the Hencky strain, the spectral decomposition from Eq. (2.27) is required. Then
the Hencky strain can be expressed as

ε =
1

2

3∑

i=1

ln
(
λ2i
)
N i ⊗N i , (2.34)

where λ2i are the eigenvalues and N i the eigenvectors of the right Cauchy-Green ten-
sor C.

2.2 Stress Tensors

To elaborate the concept of stress, we consider a control volume Ωt in the current
configuration as in Fig. 2.5 which is exposed to traction loads t and volume loads
b. These loads induce inner forces ∆F which are assumed to act on small surface
elements ∆a, as demonstrated in Fig. 2.6.
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Ωt

t

b

Fig. 2.5: Arbitrary control vol-
ume

∆F

Ωt

n

t

∆a

Fig. 2.6: Traction vector

The orientation of the cut, and therefore the surface element is characterised by the
unit normal vector n and the so called traction vector can then be defined as

t = lim
∆a→0

∆F

∆a
. (2.35)

The traction vector can also be described by a component collinear to the surface
normal, which is called normal stress σ, and an orthogonal component called shear
stress τ . In order to fully describe the state of stress in the body, three orthogonal
cuts are processed. The resulting traction vectors and stresses are shown in Fig. 2.7.

τ31

x1

x3

x2t2

t1

σ33

τ32

σ22
τ21

τ12
σ11

τ13

t3

τ23

Fig. 2.7: Cube displaying components of stress

The stress tensor can then be defined with Cauchy’s theorem

t = σTn , (2.36)
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and the Cauchy stress tensor yields

σ =
[
t1 t2 t3

]T
=





σ11 τ12 τ13
τ21 σ22 τ23
τ31 τ32 σ33



 . (2.37)

The Cauchy stress tensor possesses the following symmetry

σ = σT , (2.38)

which can be shown by the balance of angular momentum for the infinitesimal cube
in Fig. 2.7.

2.3 Equilibrium Equation

We consider an arbitrary control volume in mechanical equilibrium in the spatial con-
figuration Ωt as in Fig. 2.5. The body is subjected to body forces b, and traction loads
t on the boundary ∂Ωt. The mechanical equilibrium can then be expressed as

p =

∫

Ωt

ρ bdv +
∫

∂Ωt

t da = 0 . (2.39)

Using Cauchy’s theorem from Eq.(2.36) to replace the traction vector t, Eq. (2.39) can
be rearranged to

∫

Ωt

ρ b dv +
∫

∂Ωt

σn da = 0 . (2.40)

The surface term in Eq. (2.40) can be replaced by a volume term with the aid of the
divergence theorem

∫

∂Ωt

σn da =

∫

Ωt

divσ dv . (2.41)

Then, the equilibrium equation from Eq. (2.39) yields

∫

Ωtt

(ρ b+ divσ)dv = 0 . (2.42)

If Eq. (2.42) holds for any arbitrary control volume, the local mechanical equilibrium
follows to

divσ + ρ b = 0 or σij,j + ρ bi = 0 , (2.43)

whereas Eq. (2.42) is commonly referred to as the global mechanical equilibrium.
In order to derive the equilibrium condition in the reference configuration, Nanson’s
formula from Eq. (2.11) can be applied
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∫

∂Ωt

σn da =

∫

∂Ω0

σJF
−TN dA . (2.44)

The right hand side in Eq. (2.44) leads to the definition of the first Piola-Kirchhoff
stress tensor

P = JσF−T , (2.45)

which is defined in the reference configuration. The operation in Eq. (2.45) is called
pull back, since the Cauchy stress tensor is transferred from the current to the reference
configuration. Using this expression, Eq. (2.44) can be rearranged to

∫

∂Ωt

σn da =

∫

∂Ω0

P N dA . (2.46)

Then, we can replace the surface term in Eq. (2.39) with the surface term in Eq. (2.46).
The volume forces now act on the reference volume with the density ρ0, and the
equilibrium can be expressed as

∫

Ω0

ρ0 bdV +

∫

∂Ω0

P N dA = 0 . (2.47)

Note that due to the mass balance ρ0 dV = ρ dv, the density can be expressed in the
reference configuration as ρ0 = J ρ. In analogy to Eq. (2.41), the utilisation of the
divergence theorem yields

∫

Ω0

(ρ0 b+ DivP )dV = 0 , (2.48)

where the divergence operator in Eq. (2.48) is defined with respect to the reference
configuration. The local form of the equilibrium in the reference configuration follows
as

DivP + ρ0 b = 0 or PIJ,J + ρ0 bI = 0 . (2.49)

The first Piola-Kirchhoff stress tensor in Eq. (2.49) was introduced in Eq. (2.45) and
is not symmetric. A symmetric stress measure can be obtained by

S = F−1P = JF−1σF −T , (2.50)

which is known as second Piola-Kirchhoff stress tensor.
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2.4 Constitutive Laws

2.4.1 Linear Elasticity

A fundamental constitutive relation between stresses and strains can be provided by
the concept of linear elasticity, which is premised on the existence of a strain energy
potential

ψ =
1

2
ε : [Cε] or ψ =

1

2
εij Cijkl εkl . (2.51)

The stress is then defined as the derivative of the strain energy function ψ with respect
to the strain

σ =
∂ ψ

∂ ε
= Cε or σij = Cijkl εkl , (2.52)

where C represents the elasticity tensor. The fourth order tensor has the following
symmetries due to the symmetry of the stress and strain tensors, and the existence of
the potential from Eq. (2.51)

Cijkl = Cjikl = Cijlk = Cklij , (2.53)

which reduce the number of independent constants from 81 to 21. In the case of an
isotropic material, the number of constants can be reduced down to only 2. This
concept is based on an identical material response in all directions. The required
parameters can either be Young’s modulus E and Poisson’s ratio ν, or Lamé’s constants

µ =
E

2 (1 + ν)
, λ =

E ν

(1 + ν) (1− 2ν)
. (2.54)

For isotropic material, Hooke’s law can then be defined as

σij = λ εkk δij + 2µ εij , (2.55)

and the elasticity tensor yields

Cijkl = λ δij δkl + µ (δik δjl + δil δjk) . (2.56)

In various applications it is convenient to express Hooke’s law as an additive split in
a deviatoric

sij = 2µ eij with eij = εij −
1

3
εkk δij (2.57)

and a volumetric part

σkk = 3 κ εkk , (2.58)

with the bulk modulus κ = λ+
2

3
µ.
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2.4.2 Hyperelasticity

The concept of hyperelasticity is applied to materials, which act elastic under finite
strains and the method is characterised by the assumption that stresses can be derived
from a potential

S = 2
∂Ψ (C)

∂C
. (2.59)

The potential Ψ in Eq. (2.59) represents a strain energy density function, which in
this case is defined with respect to the right Cauchy-Green tensor. The strain energy
function can be expressed in terms of the invariants of the right Cauchy-Green tensor
if the material is isotropic Ψ (C) = Ψ (IC , IIC, IIIC). Isotropic materials possess the
properties Ψ (C) = Ψ

(
QCQT

)
for all orthogonal tensors Q. The invariants of the

right Cauchy-Green tensor are defined as

IC = trC = CII

IIC =
1

2

[
(trC)2 − tr

(
C2
)]

=
1

2
(CII CJJ − CIJ CIJ) (2.60)

IIIC = detC = ǫIJK C1I C2J C3K ,

where ǫIJK is the permutation symbol, which is defined as

ǫIJK =







1 for even permutations (i.e. ǫ123 = ǫ231 = ǫ312 = 1)

−1 for odd permutations (i.e. ǫ321 = ǫ132 = ǫ213 = −1)

0 if any two indices are equal (e.g. ǫ112 = ǫ333 = 0) .

(2.61)

With the invariants, the second Piola-Kirchhoff stress in Eq. (2.59) can be expressed
as

S = 2

[(
∂Ψ

∂ IC
+ IC

∂Ψ

∂ IIC

)

1−
∂Ψ

∂ IIC
C + IIIC

∂Ψ

∂ IIIC
C−1

]

, (2.62)

and the derivatives in Eq. (2.62) are defined as

∂IC
∂C

= 1 ,
∂IIC
∂C

= IC 1−C ,
∂IIIC
∂C

= IIIC C−1 . (2.63)
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In this work a compressible neo-Hookian material is used, which is defined as a function
of the first invariant of the right Cauchy-Green tensor and the determinant J of the
deformation gradient

Ψ (IC , J) =
µ

2
(IC − 3) +

λ

4

(
J2 − 1

)
− ln J

(
λ

2
+ µ

)

. (2.64)

Elastic materials often show a nearly incompressible behaviour under finite deforma-
tions. Therefore, the strain energy function has to fulfil the conditions

lim
J→+∞

Ψ → ∞ and lim
J→0

Ψ → ∞ . (2.65)

By inserting the strain energy function of Eq. (2.64) into Eq. (2.62) and considering
the derivatives of the invariants in Eq. (2.63), the second Piola-Kirchhoff stress tensor
yields

S =
λ

2

(
J2 − 1

)
C−1 + µ

(
1−C−1

)
. (2.66)

In Eq. (2.66) another important property of the strain energy function can be observed.
The stresses vanish S = 0 in the case of an unstretched material C = 1. In the
spatial configuration, the stresses are expressed by the Cauchy stress tensor and the
constitutive law can be obtained by a push forward of Eq. (2.66). The Cauchy stress
is then defined as

σ =
λ

2 J

(
J2 − 1

)
1+

µ

J
(b− 1) . (2.67)

2.4.3 Von Mises Plasticity

An additive split of the linearised strain tensor in an elastic and plastic part

ε = ε e + ε p (2.68)

is established. Since stress only depends on elastic strain ε e, the constitutive relation
is defined as

σ = Cε e = C (ε− ε p) , (2.69)

where C is the isotropic elasticity tensor from Eq. (2.56). It is often assumed that
plastic deformation is driven through deviatoric stresses. Therefore, we neglect the
volumetric stresses in the following and make use of the elastic law for the deviatoric
stresses

s = 2µ (e− e p) . (2.70)

In order to decide whether a material deforms plastically, a yield criterion is defined

21



CHAPTER 2. CONTINUUM MECHANICS

f (s, q) = 0 , (2.71)

where q = q(ψ) is used to model strain hardening and ψ is the hardening variable. In
this work a power law of the form

q(ψ) = σy + k ψm (2.72)

is used to model hardening. In this context σy describes an initial or virgin yield
stress, and k is often referred to as the hardening modulus. For the case of isotropic
hardening, the von Mises plasticity is often used. Thus, the yield function is defined
as

f (s, q) = σv − q(ψ) , (2.73)

where σv is the von Mises stress, which provides the name to the method (see Gross
and Seelig (2016)). The von Mises stress is defined as

σv = −
√

3 IIs (2.74)

with the second invariant of the deviatoric stresses

IIs =
1

2
‖s‖ . (2.75)

Consequently, the yield function can be expressed in the way, which is commonly found
in literature

f (s, q) = ‖s‖ −

√

2

3
q(ψ) . (2.76)

Since Eq. (2.76) only depends on the second invariant of the deviatoric stresses, this
approach is often referred to as J2-plasticity. In order to determine the plastic strain
rate ėp, a flow rule is required as well as an evolution law for the hardening variable
ψ. The plastic flow is proportional to the derivative of the yield function with respect
to the deviatoric stress

ėp = γ
∂f

∂s
= γ

s

‖s‖
= γN(s) . (2.77)

Eq. (2.77) is called the flow rule and γ ≥ 0 represents a plastic multiplier. The
direction of the plastic flow in Eq. (2.77) is governed by N(s). The evolution law for
the hardening variable can be derived in a similar fashion by

ψ̇ = γ
∂f

∂q
=

√

2

3
γ . (2.78)
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In order to decide whether or not a deformation is plastic and then compute the plastic
multiplier γ = ‖ėp‖, Eq. (2.71) has to be evaluated. The yield criterion classifies the
material response into the two cases

f (s, q) < 0  elastic  γ = 0 (2.79)

f (s, q) = 0  plastic  γ ≥ 0 .

From these equations one can conclude that γf (s, q) = 0, and the Kuhn-Tucker
conditions can be defined as

γ ≥ 0 , f (s, q) ≤ 0 , γ f (s, q) = 0 . (2.80)

To fully describe elasto-plasticity, the loading conditions have to be studied on a
plasticly deformed material. Therefore, a material point at time t⋆ is considered, at
which the material is plasticly deformed, i.e. f = 0. Then the loading/unloading
conditions follow to

ḟ > 0  inadmissible

ḟ = 0  plastic loading  γ > 0 (2.81)

ḟ < 0  elastic unloading  γ = 0 ,

which can be summarised to the so called consistency condition

γ ḟ (s, q) = 0 for f (s, q) = 0 . (2.82)
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Chapter 3

Numerical Implementation

In this chapter the derivation of triangular finite elements is demonstrated in the con-
text of finite strains. At first, the weak form of the equilibrium equation is introduced
and the linearisation is demonstrated in the following section. Furthermore, the spa-
tial discretisation, and the numerical integration are briefly explained. The following
section is concerned with the integration of inelastic constitutive equations, and the
chapter closes with some remarks on the solution of nonlinear problems. For more
details on the theory, the reader is referred to textbooks on nonlinear finite elements
such as Wriggers (2001); Bathe (2006); Zienkiewicz and Taylor (2000a,b); Bonet and
Wood (2008); Simo and Hughes (2000); de Souza Neto et al. (2011).

3.1 Weak Form of Equilibrium Equation

In order to derive finite element formulations, the equilibrium in Eq. (2.49) is trans-
ferred to the so called weak form. The weak form can be obtained by scalar multi-
plication of Eq. (2.49) with a vector-valued test function δx, and integration over the
domain Ω0

∫

Ω0

(DivP + ρ0b) · δx dV = 0 . (3.1)

The test function δx can also be interpreted as a virtual displacement. Analog
to the strong form in Eq. (2.49), the stresses in Eq. (3.1) are represented by the
first Piola-Kirchhoff tensor P , and ρ0b is a body force. Using the product rule
DivP · δx = PiJ,J δxi = (PiJ δxi),J − PiJ δxi,J , Eq. (3.1) can be rearranged to

∫

Ω0

Div (P δx) dV −

∫

Ω0

P : Grad δx dV +

∫

Ω0

ρ0b · δx dV = 0 . (3.2)

The divergence theorem (or Gauß theorem) describes the transformation of a volume
integral into a surface integral. Applied to the first term in Eq. (3.2), the Gauß theorem
yields
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∫

Ω0

Div (P δx) dV =

∫

∂Ωσ
0

(P N) · δx dA . (3.3)

By applying the Cauchy theorem P N = t0 on the boundary ∂Ωσ
0 and making use of

P : Grad δx = P : δF , the weak form in the reference configuration yields

G =

∫

Ω0

P : δF dV −

∫

∂Ωσ
0

t0 · δx dA−

∫

Ω0

ρ0b · δx dV = 0 ∀ δx . (3.4)

The boundary of the domain is partitioned as ∂Ω0 = ∂Ωu
0∪∂Ω

σ
0 and Dirichlet boundary

conditions x = x⋆ are defined on ∂Ωu
0 as well as Neumann boundary conditions P N =

t0 on ∂Ωσ
0 . The test function vanishes i.e. δx = 0 on the boundary ∂Ωu

0 . In order
to obtain the weak form in the spatial configuration, a push forward is applied to
Eq. (3.4). The push forward P : δF = Jσ : grad sδx in conjunction with dv = J dV
leads to

∫

Ω0

P : δF dV =

∫

Ωt

σ : grad s δx dv . (3.5)

In Eq. (3.5) the term grad s can be used because of the symmetry of the Cauchy stress
tensor. The boundary term in Eq. (3.4) can be expressed in the spatial configuration
as

∫

∂Ωσ
0

t0 · δx dA =

∫

∂Ωσ
0

(P N) · δx dA =

∫

∂Ωσ
t

(σn) · δx da =
∫

∂Ωσ
t

t · δx da , (3.6)

and the body force term can be transferred to the spatial configuration as

∫

Ω0

ρ0 b · δx dV =

∫

Ωt

ρ0
1

J
b · δx dv =

∫

Ωt

ρ b · δx dv . (3.7)

As a result of Eq. (3.5) - (3.7), the weak form in the spatial configuration yields

g =

∫

Ωt

σ : grads δx dv −
∫

∂Ωσ
t

t · δx da−
∫

Ωt

ρ b · δx dv = 0 ∀ δx . (3.8)

3.2 Linearisation of the Weak Form

The weak forms in Eq. (3.8) and Eq. (3.4) represent nonlinear functions of the dis-
placements. In nonlinear finite element theory it is common to approximate weak
forms by a Taylor series expansion. A linear approximation of G from the weak form
G = 0 can be obtained by a Taylor series expansion

L [G]x=x = G (x, δx) + DG (x, δx) ·∆u , (3.9)
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that is terminated after the linear term. The linearisation in Eq. (3.9) is evaluated at
the position x = x and ∆u represents a displacement increment. Therefore, G (x, δx)

is the weak form evaluated at position x and the term DG (x, δx) acts as a tangent.
The tangent for the weak form in the reference configuration from Eq. (3.4) then
follows with P = FS to

DG (x, δx) ·∆u =

∫

Ω0

[DP (x) ·∆u] : Grad δx dV

=

∫

Ω0

(
Grad∆uS + F [DS(x) ·∆u]

)
: Grad δx dV .

(3.10)

In Eq. (3.10) the surface and body loads are neglected and DS(x) is the tangent of
the second Piola Kirchhoff stress tensor. By expressing the tangent as

DS(x) ·∆u = C
[
∆E

]
, (3.11)

we can rearrange the linearisation of the weak form to

DG (x, δx) ·∆u =

∫

Ω0

(
Grad∆uS + F C

[
∆E

])
: Grad δx dV

=

∫

Ω0

(
Grad∆uS : Grad δx+ δE : C

[
∆E

])
dV .

(3.12)

In Eq. (3.12) the fourth order tensor C results from the linearisation of the second Piola-
Kirchhoff tensor and is often referred to as material tangent. The material tangent
depends on the constitutive law and can be found in literature as Holzapfel (2000);
Wriggers (2001), for hyperelastic materials as described in Sec. 2.4.2. A material law
to model elasto-plasticty at finite deformations is considered in this work as well and
is explained in more detail in Sec. 3.5.2. The respective material tangent can be found
in Cuitiño and Ortiz (1992); Montáns and Bathe (2003); de Souza Neto et al. (2011).
In order to express the linearisation of the weak form in the spatial configuration,
a push forward is applied to Eq. (3.12). Then the first term in Eq. (3.12) can be
expressed as

Grad∆uS : Grad δx = grad∆u J σ : grad δx , (3.13)

and the second term in Eq. (3.12) yields

δE : C
[
∆E

]
= grad s δx : c grads ∆u . (3.14)

In Eq. (3.14) the fourth order tensor c symbolises the material tangent in the spatial
configuration, which is computed with
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cijkl = F iA F jB F kC F lD CABCD . (3.15)

Finally, with ĉ = c/J , the linearisation of the weak form in the spatial configuration
can be expressed as

D g (x, δx) ·∆u =

∫

Ωt

(
grad∆uσ : grad δx+ grads δx : ĉ grads ∆u

)
dv (3.16)

3.3 Spatial Discretisation

The combination of kinematics, constitutive law, equilibrium equation, and bound-
ary conditions defines the boundary value problem BVP. In the following, the two
dimensional body B is discretised with finite elements Ωe as shown in Fig. 3.1. The
discretised body B h then consists of the assembly of finite elements as in Eq. (3.17),
and the boundary ∂B transforms to ∂B h.

Ωe B

∂B

∂Ωe

∂B h

Fig. 3.1: Discretised body B

B ≈ B h =

ne
⋃

e=1

Ωe (3.17)
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3.3. SPATIAL DISCRETISATION

In order to simplify the meshing procedure in every PFEM loading step, triangular
isoparametric finite elements are used. In the isoparametric concept, the coordinates
of a finite element are transformed from a global system to a reference system, in
which the integration is carried out. The name of the concept stems from the idea
that the same shape functions can be used to approximate the geometry of the body, as
well as the unknown displacements. Figure 3.2 shows a finite element in the reference
configuration Ωe

0, the spatial configuration Ωe
t , as well as the isoparametric element Ωe

△.

je

ϕ

J e

r

1

3s

2

X, x

1

Y, y

1
r

s

2

3

3

2

r

s

Ω e
0 Ω e

t

Ω e
△

Fig. 3.2: Isoparametric triangular finite element for finite deformations

In this context, the matrix je transforms the coordinates of the isoparametric element
to the spatial coordinates, and J e transforms the element coordinates to the refer-
ence coordinates. The isoparametric element is defined in the coordinates r and s.
In Fig. 3.2, ϕ represents the deformation of the element from the reference, to the
spatial configuration. The geometry in both configurations, and the displacements are
approximated using so called shape functions

Xe =
N∑

I=1

NI XI , xe =
N∑

I=1

NI xI , ue =
N∑

I=1

NI uI , (3.18)

where N represents the number of nodes per element i.e. N = 3. In this work linear
shape functions are used, which are defined in isoparametric coordinates

N1 = 1− r − s , N2 = r , N3 = s . (3.19)

Within a finite element the displacement gradient can then be computed using the
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shape functions. The displacement gradient with respect to the reference coordinates
yields

Gradue =

N∑

I=1

uI ⊗ GradNI =

N∑

I=1

uI ⊗N
I,X , (3.20)

and the gradient with respect to the spatial coordinates follows as

gradue =

N∑

I=1

uI ⊗ gradNI =

N∑

I=1

uI ⊗NI,x . (3.21)

The derivatives of the shape functions in Eq. (3.20) and (3.21) are calculated using the
transformation matrices J e and je respectively. The gradient of the shape functions
with respect to the spatial configuration in Eq. (3.21) can therefore be expressed as

gradNI =

[
NI,x

NI,y

]

= (je)−T

[
NI,r

NI,s

]

with je =








∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s







. (3.22)

In the following, the discretisation of the weak form in the spatial configuration from
Eq. (3.8) is demonstrated for neglected body forces and surface loads. Then, the term
grad s δx from Eq. (3.8) can be discretised with

grad s δx ≈
1

2

N∑

I=1

(δxI ⊗NI,x +NI,x ⊗ δxI) =

N∑

I=1

BI δxI (3.23)

where the under bar symbolises the Voigt or matrix notation. The matrix BI contains
the derivatives of the shape functions and - as the Cauchy stresses - is structured using
the Voigt notation

BI =







NI,x 0

0 NI,y

NI,y NI,x






, and σ =







σxx

σyy

σxy






. (3.24)

The discretisation of the internal virtual work can then be expressed as

∫

Ωt

grad s δx : σ da ≈
ne
⋃

e=1

∫

Ωe
t

(

grad
s
δx
)T

σ da

=

ne
⋃

e=1

N∑

I=1

δxT
I

∫

Ωe
t

BT
I σ da

=

ne
⋃

e=1

N∑

I=1

δxT
I re

I (u
e) = δxT r (u)

(3.25)
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In Eq. (3.25) the discretised internal virtual work is expressed as an assembly of the
virtual internal work of all finite elements ne. The global discretised nonlinear system
then yields

g (u, δx) = δxT
(
r (u)− p

)
= 0 , (3.26)

where r is often referred to as residual. The load term p is neglected in the linearisation
in Eq. (3.16) due to the assumption that the load is independent of the deformation
of the body and will therefore not be considered in the discretisation. Since a lin-
earised system is solved to approximate the solution of the nonlinear problem, the
discretisation of the increment of the weak form in Eq. (3.16) is required. Applying
the discretisations

grad∆u =

N∑

J=1

∆uJ ⊗NJ,x , and grad δx =

N∑

I=1

δxI ⊗NI,x (3.27)

to Eq. (3.16), the discretisation of the first term in Eq. (3.16) can be expressed as

∫

Ωt

(
grad∆uσ : grad δx

)
da ≈

ne
⋃

e=1

N∑

I=1

N∑

J=1

δxT
I

(
∫

Ωe
t

gIJ1 da

)

∆uJ . (3.28)

The upper bound of summation N in Eq. (3.27) and (3.28) corresponds to the number
of nodes per element and the scalars gIJ in Eq. (3.28) are called geometrical stiffness.
The geometrical stiffness is calculated as

gIJ =
[
NI,x NI,y

]

[

σxx σxy

sym σyy

] [

NJ,x

NJ,y

]

. (3.29)

The second term in Eq. (3.16) is called material stiffness and is discretised using the
matrix BI from Eq. (3.24)

∫

Ωt

(
grad s δx : ĉ grad s δ∆u

)
da ≈

ne
⋃

e=1

N∑

I=1

N∑

J=1

δxT
I

(
∫

Ωe
t

BT
I ĉBJ da

)

∆uJ . (3.30)

Therefore, the discretisation of the linearised system yields

D g (x, δx) ·∆u ≈
ne
⋃

e=1

N∑

I=1

N∑

J=1

δxT
I ke

IJ ∆uJ , (3.31)

where the tangential stiffness matrix is defined as

ke
IJ =

∫

Ωe
t

(
gIJ 1+BT

I ĉBJ

)
da . (3.32)
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In Eq. (3.31) the tangential stiffness matrices of all elements ne are assembled to form
the global tangential stiffness matrix. An explanation on how the solution of the
nonlinear system is approximated using the linearisation is provided in Sec. 3.6.

3.4 Numerical Integration

Prior to the assembly of the global residual and tangent, the integrals of the ele-
ment residual and tangent in Eqs. (3.25) and (3.32) are numerically evaluated. The
numerical integration is executed in the isoparametric parameter space using Gauß
quadrature. In order to facilitate the procedure, the integrals are transformed using
the determinant of the transformation matrix je

∫

Ωe
t

g (x) da =

∫

Ω△

g (r)det je d△ =

∫ 1

0

∫ 1−r

0

g (r, s)det je ds dr . (3.33)

In this work, a two dimensional approach is used in conjunction with triangular fi-
nite elements and linear shape functions. The right hand side in Eq. (3.33) is then
approximated by

∫ 1

0

∫ 1−r

0

g (r, s) det je ds dr ≈
np∑

p=1

g (rp, sp) det jewp , (3.34)

where the number of integration points is characterised by np, wp is the integration
weight, and the coordinates of the integration points are rp = [rp, sp]

T . Then, the
integral of the internal virtual work from Eq. (3.25) yields

re
I =

∫

Ωe
t

BT
I σ da ≈

np∑

p=1

△BT
I

△σ det je wp . (3.35)

In Eq. (3.35) and (3.36) a more compact notation is used to express quantities with
respect to the isoparametric coordinates △σ = σ (rp, sp). The element tangent from
Eq. (3.32) is computed with

ke
IJ =

∫

Ωe
t

(
gIJ 1 +BT

I ĉBJ

)
dv ≈

np∑

p=1

(
△gIJ 1+ △BT

I

△
ĉ

△BJ

)

det je wp . (3.36)
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RELATIONS

For triangular finite elements with linear shape functions used in this work, the pa-
rameters for the Gauß quadrature are shown in Tab. 3.1.

np rp sp wp

1 1/3 1/3 1/2

Table 3.1: Parameters for Gauß integration in triangular elements with linear shape
functions

3.5 Local Integration of Inelastic Constitutive

Relations

3.5.1 Return Mapping Algorithm for Small Strain Plasticity

In this work an implicit Euler scheme is used for the integration of the constitutive
equations, which is often referred to as return mapping algorithm in literature. Since
the constitutive equations have to be fulfilled at every point of the material, time
integration is performed at every Gauß point in a discretised finite element domain.
In the following we restrict ourselves to the von Mises model with isotropic hardening
as described in Sec. 2.4.3. At the beginning of the algorithm a trial deviatoric stress
is computed

str
n+1 = 2µ (en+1 − e p

n ) , (3.37)

as well as a trial state for the yield function

fn+1 = ‖str
n+1‖ −

√

2

3
q(ψn) . (3.38)

In Eq. (3.37) and (3.38) en+1 is the total deviatoric strain from time step n + 1, e p
n

represents the plastic strain of the previous time step n, and ψn is the hardening
variable. Then, the yield function from Eq. (3.38) is evaluated.

⋆ If fn+1 < 0 The plastic multiplier ∆γ = 0, the plastic strain remains unchanged
e

p
n+1 = e p

n , as well as the hardening variable ψn+1 = ψn. In this case, the
deviatoric stress coincides with the deviatoric trial stress sn+1 = s tr

n+1.

⋆ If fn+1 ≥ 0 holds, then the deformation is plastic, which means that the plastic
multiplier ∆γ > 0 and has to be determined. Since in this work, a nonlin-
ear function is used to model isotropic hardening, the strain increment is com-
puted using a Newton scheme. In this procedure the stress is computed using
a predictor-corrector method, where the trial stress acts as a stress prediction,
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and a corrector term can be formed with the plastic multiplier yielding the stress
update formula

sn+1 = 2µ
(
en+1 − e

p
n+1

)
= s tr

n+1
︸︷︷︸

predictor

− 2µ∆γNn+1
︸ ︷︷ ︸

corrector

. (3.39)

With Eq. (3.39) we can rearrange the yield condition in order to form a residual
for the iterative computation of ∆γ to

ri = fn+1 = |‖str
n+1‖ − 2µ∆γ −

√

2

3
q(ψn)| < TOL , (3.40)

where ψ is updated by the evolution law

ψi+1
n+1 = ψn +

√

2

3
∆γi+1

n+1 . (3.41)

Another crucial part for Newton’s method is the tangent to the residual, which is
computed as the derivative of the residual with respect to the plastic multiplier

ti =
∂ri

∂∆γ
= −2µ−

√

2

3

∂ q(ψ)

∂ ψ

∂ ψ

∂∆γ
= −2µ−

2

3
q′(ψ) . (3.42)

The value for ∆γ can then be updated in every iteration by

∆γi+1 = ∆γi −
ri

ti
. (3.43)

Since the local Newton scheme is applied in every time step n+1, the indices in
Eq. (3.42) and (3.43) are neglected in order to not overload the notation. The
employed Newton scheme for the computation of ∆γ is outlined in Alg. 1.

input : ∆γi = 0, ψi

output: ∆γi+1
n+1

while |ri| = |‖str

n+1‖ − 2µ∆γi −
√

2/3 q(ψi)| < TOL do

ti = −2/3 q′(ψi)− 2µ

∆γi+1 = ∆γi − ri/ti

ψi+1 = ψi +
√

2/3∆γi+1

end

Algorithm 1: Solve nonlinear yield condition (gamma_solve)
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With the solution ∆γi+1
n+1 for |ri+1| < TOL, the plastic strain, the stress, and the

hardening variable can be updated by

e
p
n+1 = e p

n +∆γn+1Nn+1

sn+1 = s tr
n+1 − 2µ∆γn+1Nn+1 (3.44)

ψn+1 = ψn +

√

2

3
∆γn+1 .

The algorithm for the complete stress update is summarised in Alg. 2.

input : en+1, e p
n , ψn

output: e p
n+1, ψn+1, sn+1

str
n+1 = 2µ (en+1 − e p

n )

%check yield condition

f = ‖s tr
n+1‖ −

√

2/3 q(ψn)

if f ≤ 0 then
%(elastic)

e
p
n+1 = e p

n

sn+1 = s tr
n+1

ψn+1 = ψn

else
%(plastic)

Nn+1 = s tr
n+1/‖s

tr
n+1‖

%solve yield condition for plastic multiplier
call gamma_solve (see Alg. 1)

e
p
n+1 = [e p

n ]
1 +∆γn+1Nn+1

sn+1 = s tr
n+1 − 2µ∆γn+1Nn+1

ψn+1 = ψn +
√

2/3∆γn+1

end

Algorithm 2: Return mapping algorithm for small strains (return_map)

3.5.2 Extension to Finite Strains

In order to describe elasto-plasticity in the finite deformation regime, it is convenient
to apply a multiplicative split of the deformation gradient as in Eq. (2.15). The
deformation gradient is split into an elastic part F e and a plastic part F p

1 If the stress update algorithm is extended to finite deformations, the term within brackets [e p
n
]

is neglected.
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F = F eF p . (3.45)

With the adoption of Eq. (3.45) - and therefore two additional unknowns - one addi-
tional equation is required. The plastic deformation gradient can be determined by
using an extension of small strain stress update algorithms to finite deformations as
presented in Cuitiño and Ortiz (1992); Montáns and Bathe (2003). In order to ex-
tend the stress update algorithm from small strains to finite deformations, the Hencky
strain from Eq. (2.32) is used and the elastic trial strain is computed by

ε e
tr =

1

2
ln (C e

tr) . (3.46)

In Eq. (3.46) C e
tr represents the trial elastic strain in the finite deformation regime

C e
tr = (F e

tr)
T
F e

tr , (3.47)

and is computed using a trial elastic deformation gradient

F e
tr = F (F p

n )
−1 . (3.48)

In Eqs. (3.48) and (3.49) the index n denotes the previous time step of the stress update
algorithm i.e. the previous Newton iteration. The indices for the current time step
n+1 are omitted in Eqs. (3.46) - (3.48) for the sake of clarity. The small strain stress
update algorithm provides the plastic small strain increment ∆ε p and the updated
hardening variables. The discretisation in time leads to the update rule for the plastic
deformation gradient

F
p
n+1 = exp (∆ε p)F p

n . (3.49)

With this exponential map integrator, the plastic deformation gradient can be recov-
ered from the small plastic strain increment. Equation (3.49) is often referred to as
exponential map integrator. The stress that is computed by the stress update algo-
rithm is defined in the plastic configuration and therefore has to be transferred with

σ = (J e)−1
F e σ (F e)T . (3.50)

More details on the extension of small strain stress update algorithms to finite deforma-
tion as well as exponential map integrators can be found in Cuitiño and Ortiz (1992);
Montáns and Bathe (2003); de Souza Neto et al. (2011). The method is summarised
in Alg. 3.
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input : F n+1, F
p
n , ψn

output: F p
n+1, ψn+1

%compute trial strain

Cn+1 = F T
n+1 F n+1

C
e,tr
n+1 = (F p

n )
−T

Cn+1 (F
p
n )

−1

ε tr
n+1 =

1

2
ln
(
C

e,tr
n+1

)

call return_map (see Alg. 2)

%update plastic deformation gradient

F
p
n+1 = exp (∆ε p)F p

n

%push forward of stresses

σ = (J e)−1
F e σ (F e)T

Algorithm 3: Extension from small to large strains (mat_driver)

3.6 Solution of Nonlinear Problems

Since the resulting system of equations in Eq. (3.26) is nonlinear in the displacements,
the problem is linearised as presented in Eq. (3.9). With the linearisation, the nonlinear
problem can then be solved iteratively with a Newton method. In order to ensure good
convergence of the method, a load parameter λ is introduced to prescribe a load level.
The nonlinear system is then given by

g (u, λ) = r (u)− λp = 0 . (3.51)

The linearised form of Eq. (3.51) is obtained by a Taylor expansion where only the
first order term is considered. This results in

g
(
un +∆u, λ

)
= g

(
un, λ

)
+ D g

(
un, λ

)
∆u . (3.52)

The requirement g
(
un +∆u, λ

)
= 0 leads to the system

D g
(
un, λ

)
∆u = −

(
r
(
un, λ

)
− λp

)
. (3.53)
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In Eq. (3.53) only the residual r and not the loading term p is linearised, which is
only valid if p is independent of the displacements. The linear system in Eq. (3.53)
is solved for ∆u in every Newton iteration n and the displacement is updated with
un+1 = un+∆u until ‖g

(
un+1, λ

)
‖ < TOL. The convergence of the Newton method

is presented in Fig. 3.3 for 1D.

∂ r̂(u)

∂ u

∣
∣
∣
∣
u1

un un+1u3u2u1 u

∆u0 ∆u1

r̂(u)

λ

λ

Fig. 3.3: Iterative solving of nonlinear problems
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Chapter 4

The Particle Finite Element Method

The simulation of problems with large configurational changes is challenging for estab-
lished modelling techniques such as the finite element method (FEM), where discrete
methods (e.g. molecular dynamics) are customary for this class of problems. For
large time- and length scales however, the computation time for discrete methods be-
comes unreasonable. The particle finite element method (PFEM) was developed in
an attempt to combine the benefits of discrete and continuum based methods and
was first introduced for simulation of sloshing liquids in Oñate et al. (2004). Due to
these assets, the PFEM is a suitable approach to model cutting processes, where the
material exhibits large configurational changes especially in the formation of chips and
burrs. In this chapter the structure of the PFEM algorithm is introduced, as well as
its components. A central part of the method is the detection of boundary segments,
which is explained followed by a section on processing of history data. A validation
of the PFEM on benchmarks is presented, as well as a physical interpretation of an
essential process parameter. The chapter closes with numerical examples that support
the outcome of the physical interpretation.

4.1 Structure of the PFEM Algorithm

The PFEM implementation presented in this work consists of several components,
which are illustrated in Fig. 4.1. In the context of the PFEM, a body is represented by
an ensemble of particles, which are characterised by a particle number and coordinates
in two dimensions. The particles carry physical quantities such as the deformation gra-
dient. For elasto-plastic materials the plastic deformation gradient and the hardening
variable are stored at the particles as well. To form a domain, the boundary - i.e. the
shape of the set of particles - needs to be determined. This process is realised with a so
called α-shape algorithm, which is described in detail in Sec. 4.1.1. After identifying
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the shape, the domain is meshed with the program Triangle
1. Along with boundary

conditions the setup for a finite element calculation is complete, which is solved using
the FEM-code Feap (Finite Element Analysis Program). Displacements are the out-
come of the finite element calculation and are used to update the particle coordinates.
Furthermore, the deformation gradient is transferred to the particles and preserved
for the following PFEM step. For simulations with elasto-plastic material, the plastic
deformation gradient and the hardening variable are stored at the particles as well.
In the following PFEM step the deformation gradient is recovered using the particle
data and the multiplicative decomposition of the deformation gradient from Eq. (2.15).
The processing of history data such as the deformation gradient is elaborated in more
detail in Sec. 4.1.2.

Fig. 4.1: Operations involved in the PFEM

1For more details see Shewchuk (1996)

40



4.1. STRUCTURE OF THE PFEM ALGORITHM

4.1.1 Detecting the Shape of a Particle Set

A central aspect in the PFEM is the detection of the shape, or more precisely the
boundary of a set of particles. There are many possible interpretations of the shape of

a set of points (see Edelsbrunner and Mücke (1994) and the literature cited in there)
and the α-shape method used in this work is one of them. The α-shape method is a
generalisation of the convex hull of a set of particles and for more details on the α-
shape method, the reader is referred to Edelsbrunner and Mücke (1994); Fischer (2000)
and the references cited in there. This section provides a brief description of the al-
gorithm used in this work. Consider a set of particles S with the minimum distance
hmin defined by the closest pair of particles of S. The positions of the two particles I
and J of the set S are defined by the vectors xI and xJ . Circles b of radius r = αhmin

(hence α scales the radius of the circle) are constructed for each pair of particles I and
J . If at least one of those circles b is empty (i.e. b ∩ S = ∅), the connecting line be-
tween the points I and J is a part of the boundary. In the following the construction of
α-circles and the detection of boundary segments is broken down into individual steps.

I

xJ

J

h

xI

y

x

The first step is to form the vector from particle J to I by
subtracting the position vectors

h = xI − xJ . (4.1)

In the following it is tested whether h is part of the boundary.

Subsequently, an orthogonal vector is constructed to show
the direction to the center M of the circle

n

y

r

x

n =
1

|h|

(

−h · ey

h · ex

)

, (4.2)

where ex and ey are the base vectors along x and y.

41



CHAPTER 4. THE PARTICLE FINITE ELEMENT METHOD

h

xM

x

y

r

M

dn

Since the radius of the circle is compared with the distance
to other particles, the position vector to M is of interest. In
order to find the center M , the distance d is required. Since
the radius is defined as r = α hmin we can get the distance
from the center of the circle to the vector h by

d =

√

r2 −

(
1

2
|h|

)2

. (4.3)

The vector n can now be scaled by the value d and the center M of the circle is
therefore defined as

xM =
1

2
(xI + xJ) + dn . (4.4)

In order to confirm that the points I and J are part of the boundary, a check is
performed if the circle is empty.

‖rK‖

x

y

xK

K

h

r

For example the position of point K is defined by the vector
xK and the distance of this point to the center of the circle
can be expressed as

|rK | = |xK − xM | . (4.5)

If the condition |rK | ≥ r holds, the point K is not located
within the circle and the algorithm continues by checking the next particle. If an
intersection of the circle and any particle except I and K can be ruled out, particles
I and J form a boundary segment. Algorithm 4 illustrates the implementation of the
α-shape algorithm.

42



4.1. STRUCTURE OF THE PFEM ALGORITHM

input : r,x %particle coordinates and radius for α-circles

output: s %list of boundary segments

for i = 1 : num_particles do

for j = 1 : num_particles do

isempty = TRUE

for k = 1 : num_particles do

h = xi − xj

n = 1/|h| (−h · ey h · ex)
T

d =
√

r2 − (1/2|h|)2

m = 1/2 (xi + xj) + dn

|rk| = |xk −m|

if |rk| < r then

isempty = FALSE

end

end
if isempty = TRUE then

%particles xi and xj form boundary segment
%append segment to list s

end

end

end

Algorithm 4: Implementation of the α-shape algorithm

In the following, three different representations of a snowflake are subjected to the
α-shape method in order to demonstrate the difficulties, which arise in boundary
detection. The three representations are shown in Fig. 4.2.

Fig. 4.2: Different particle representations of same shape
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The three particle sets in Fig. 4.2 represent a snowflake of the same shape, and differ
solely in number of particles and arrangement of particles. The particle density in
Fig. 4.2 increases from left to right. In order to study the effect of the parameter α
on the detected shape, the three representations from Fig. 4.2 are analysed with the
α-shape algorithm and for a varying α. Figure 4.3 shows the results this parameter
study, where α increases from right to left and the number of particles increases from
top to bottom.

increasing
num

b
er

of
particles

α = 4.0

α = 10.0 α = 5.0 α = 2.0

α = 5.0 α = 2.0 α = 1.5

α = 2.0 α = 1.5

increasing α

Fig. 4.3: Influence of α on detected shape

In this parameter study each of the three particle sets from Fig. 4.3 is analysed using
three different values of α, which produces three different shapes. In Fig. 4.3 it can
be observed that the choice of the parameter α greatly influences the detected shape.
More precisely, it can be seen that less details are detected if α increases. Another
important outcome of this parameter study is that the particle density influences the
detected shape as well, since some features of the snowflake can only be resolved if a
sufficiently high particle density is considered.
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For the choice of the parameter α, the following statements can be formulated:

• If α = 0.5 no boundary segments are detected.

• If α→ ∞ the convex hull of the set is detected.

4.1.2 Processing of History Variables

As mentioned in the beginning of this chapter, the deformation gradient F is stored
at the particles, as well as the plastic deformation gradient F p, and the hardening
variable ψ for simulations with elasto-plastic material. In order to compute nodal
values of variables that have been calculated at Gauß points, a procedure can be
developed based on the least square method. In the least square method, a functional

κ =

∫

A

e2 dA (4.6)

is minimised. In Eq. (4.6) e can be regarded as an error function. If applied to the finite
element method, the error function contains Gauß point variables, nodal variables, and
the shape functions

e (r, s) = tGP (r, s)− g (r, s) , (4.7)

with

g (r, s) =

N∑

I=1

NI tI . (4.8)

In Eq. (4.7) tGP are the Gauß point variables and in Eq. (4.8) tI are the unknown
nodal variables. Furthermore, NI are the shape functions of the isoparametric element
and N is the number of nodes per element. In order to determine the nodal variables,
the functional

κ =

∫ 1

0

∫ 1−r

0

[ tGP −
N∑

I=1

NI tI ]
2 det je ds dr (4.9)

is minimised. The variation ∂κ/∂tJ = 0 leads to a set of linear equations

Se
IJ t

e
I = reJ , (4.10)

where the right hand side contains the Gauß point variables and the shape functions

reJ =

∫ 1

0

∫ 1−r

0

NJ t
GP
J det je ds dr . (4.11)
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The matrix

Se
IJ =

∫ 1

0

∫ 1−r

0

NI NJ det je ds dr (4.12)

represents the element surface matrix. A global system can now be assembled from
the element arrays

SIJ tI = rJ with r =
ne
⋃

e=1

re and S =
ne
⋃

e=1

Se , (4.13)

and solved for the unknown nodal values tI . The matrix SIJ in Eq. (4.13) is a consistent
projection matrix and may also be expressed as a lumped matrix in order to speed
up the computation of S−1

IJ , which is necessary to solve the system in Eq. (4.13). For
more details on the method, the reader is referred to Hinton and Campbell (1974);
Bathe (2006).

4.2 Validation of the PFEM on Benchmarks

4.2.1 Examples with Uniform Deformations

As described in the introduction of this chapter, the main asset of the PFEM is the
repeated boundary detection and remeshing, which enables simulations with large
configurational changes. In order to facilitate the remeshing, history data has to
be stored at the particles. More specifically, the deformation gradient, the plastic
deformation gradient, and the hardening variable have to be transferred from the Gauß
points to the particles after every PFEM loading step and vice versa in the beginning of
the following step. These operations have been elaborated in the previous section. In
the following, the effect of the frequent projection from Gauß points to particles on the
quality of the solution is studied. For this purpose, the results of PFEM simulations
are compared to results of FEM simulations. The overall load applied in the FEM
simulation leads to the deformation Φ as demonstrated in Fig. 4.4.

Φ

Fig. 4.4: Deformation in FEM simulation

For the PFEM simulations, the load is incremented such that the overall deformation
is defined as

Φ = Φ3(Φ2(Φ1)) , (4.14)

46



4.2. VALIDATION OF THE PFEM ON BENCHMARKS

for the example presented in Fig. 4.5.

boundary detection

Φ1 Φ2 Φ3

remeshing

Fig. 4.5: Incremented deformation in PFEM

The deformation in Fig. 4.4 and Fig. 4.5 resembles a simple shear, which is considered
as one of the first benchmark simulations to validate the PFEM. The boundary con-
ditions for the simple shear simulation are characterised through a linear decreasing
displacement from top to bottom at the left and right boundary. The sides are then
tilted by the shear angle γ as described on the right hand side in Fig. 4.6. Another
first benchmark with uniform deformation is the uniaxial tensile test as demonstrated
on the left hand side in Fig. 4.6. In this simulation the body is vertically fixed at the
bottom and a vertical displacement is applied at the top.

u0 (X2)

X2

= tanγ

u0

l

L Lγ

u0

Fig. 4.6: Boundary conditions for benchmark simulations

The FEM and PFEM simulations are carried out using a hyperelastic material in
the first comparison and an elasto-plastic material in the second comparison. In the
benchmarks reaction forces are compared between FEM and PFEM simulations. For
the simulations with hyperelastic material the Lamé constants are chosen to be µ =

λ = 1, which implies a Poisson ratio of 1/4. The results of these simulations are shown
in Fig. 4.7 for the uniaxial tensile test, and in Fig. 4.8 for the simple shear simulations.
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Fig. 4.7: Tensile test simulations with
FEM and PFEM
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Fig. 4.8: Shear test simulations with FEM
and PFEM

As Fig. 4.7 and 4.8 clearly show, the reaction forces produced by the PFEM and
the FEM coincide perfectly. In the simulations with hyperelastic material, only the
deformation gradient is treated as history data and projected from Gauß points to
nodes and vice versa. The following simulations are run with elasto-plastic material,
which requires the projection of the deformation gradient, the plastic deformation
gradient, and the hardening variable. In these simulations, the Young’s modulus is
set to E = 210000 MPa, the Poisson ratio ν = 0.3, the initial yield stress σy = 300

MPa and the hardening modulus k = 2100 MPa. For the tensile test simulation,
the exponent of the hardening power law from Eq. (2.72) is m = 0.6. For the shear
simulation the exponent is m = 0, which resembles perfect plasticity. The material
parameters are taken from literature such as Wittel (2009); Böge et al. (2015) to model
steel. Figure 4.9 and Fig. 4.10 present the results of the simulations with elasto-plastic
material.

Fig. 4.9: Comparison of reaction force for
m = 0.6 in uniaxial tension

Fig. 4.10: Comparison of reaction force
for m = 0 in simple shear

Analog to the results for the hyperelastic material, the forces in Figs. 4.9 and 4.10
coincide. From these benchmark tests, it can be concluded that the projection of

48



4.2. VALIDATION OF THE PFEM ON BENCHMARKS

history variables exhibits no significant influence on the reaction force in simulations
with uniform deformations.

4.2.2 Examples with Non-Uniform Deformations

The boundary conditions in the previous benchmarks only produce uniform deforma-
tions. In the following a benchmark with a non-uniform deformation is considered to
study the influence of the projection on the reaction force. In Fig. 4.11 the undeformed
mesh is shown with the boundary conditions applied in the simulations.

u1 = 0, u2 = u0

u1 = 0, u2 = 0

Fig. 4.11: Boundary conditions for comparison with non-uniform deformations

The body is fixed in both degrees of freedom at the base and fixed in horizontal
direction at the top, where a displacement boundary condition is applied in vertical
direction. In the following a PFEM simulation with 10 loading steps, 20 loading
steps, and a FEM simulation are compared on three discretisations with elasto-plastic
material. Two contour plots of PFEM simulations with 20 loading steps are presented
in Fig. 4.12 and 4.13.

Fig. 4.12: PFEM simulation with 20
loading steps and coarse discretisation

Fig. 4.13: PFEM simulation with 20
loading steps and refined discretisation
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In Fig. 4.12 the coarse discretisation used in the comparison between FEM and PFEM
is presented and Fig. 4.13 shows the finest discretisation considered. In the follow-
ing the influence of the number of projections on the reaction force is demonstrated.
Figure 4.14 shows the results of the simulations with the coarse discretisation from
Fig. 4.12. The solid line represents the reaction force of the FEM simulation, the
circles symbolise the results of the PFEM simulation with 10 loading steps, and the
diamond shaped markers represent the results of the PFEM simulation with 20 loading
steps. Figure 4.15 shows the results of the simulations with the refined mesh.

Fig. 4.14: Comparison of the reaction
force for coarse discretisation

Fig. 4.15: Comparison of the reaction
force for refined discretisation

The results with the coarse discretisation in Fig. 4.14 demonstrate that the number
of projections in a PFEM simulation influences the reaction force. The reaction force
of the PFEM simulation with 20 loading steps is significantly lower than the reaction
force of the simulation with 10 loading steps, which is lower than the reaction force of
the FEM simulation. This effect can also be observed in Fig. 4.15 with the results of
the simulations with the refined discretisation. However, the reaction forces from the
FEM simulation, the PFEM simulation with 10 loading steps, and from the PFEM
simulation with 20 loading steps converge. In Fig. 4.16 the results of the simulations
with the finest discretisation are presented.

Fig. 4.16: Comparison of the reaction force for finest discretisation50
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The reaction forces of the simulations with the finest discretisation in Fig. 4.16 agree
better than the reaction forces of the simulations with the coarser discretisations in
Fig. 4.14 and 4.15. In conclusion, the results of the benchmark tests with non-uniform
deformations reveal that the number of PFEM loading steps - and therefore the number
of projections of history variables - influences the stress-strain response. An increasing
number of PFEM loading steps leads to declining reaction forces. Figures 4.14 - 4.16
also demonstrate that this behaviour can be moderated by refining the discretisation.

4.3 Physical Interpretation of α

In classical textbooks on continuum mechanics such as Holzapfel (2000); Spencer
(2004), the definition of strain tensors is motivated through the relative displacement
of neighbouring particles. In this concept, the particles are imagined to form line seg-
ments which are stretched if the body deforms. With the intention to find a physical
interpretation for the parameter α, we will investigate the effect of the α-shape method
on the boundary of a continuous body during a deformation. It should be noted at
this point that the following considerations are only valid for uniform deformations,
and particles in close neighbourhood. Nonetheless, the outcome of this investigation is
valuable and can provide a better understanding of the role of the α-shape algorithm
in PFEM simulations. In Figure 4.17, we consider a body in its reference configuration
Ω0. The boundary is occupied by set of particles Sb which are distributed in equal
distances and therefore form boundary segments of equal length. We assume that
the boundary in the undeformed configuration is known and that dL is the length
of the boundary segments in the reference configuration. Furthermore, we define the
orientation of the boundary segments in configuration Ω0 by the unit vector eH . In
Fig. 4.17, the undeformed- and the deformed configuration Ωt are shown as well as the
line segment eH (eh resp.) and the α-circles.

dLeHΩ0 Ωt

dleh

r
r

J

I′

J ′

I

Φ

X1, x1

X2, x2

Fig. 4.17: Boundary of body B in reference- and spatial-configuration
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A line segment in the reference configuration is denoted by dL eH which points
from particle J to particle I. J has the position XJ and I is therefore located
at XI = XJ + dL eH . A line segment in the deformed configuration dl eh is then
defined by the particles J ′ and I ′. J ′ has the position xJ and I ′ is located at
xI = xJ + dl eh. The position of particle J ′ can also be expressed using the de-
formation Φ as

xJ = Φ(XJ) , (4.15)

and similarly for I ′

xI = xJ + dl eh = Φ(XJ + dL eH) . (4.16)

An alternate description of xI can be defined by using a Taylor series expansion. Here,
only the first order term of the expansion is considered which yields

xI = xJ + dl eh = xJ +
∂Φ (XJ)

∂XJ

dL eH , (4.17)

where F = ∂Φ (XJ) /∂XJ represents the deformation gradient. With this notation
we can express Eq. (4.17) as

dl eh = F dL eH . (4.18)

This leads to the definition of the stretch ratio

λ =
dl
dL

= eT
h F eH . (4.19)

Squaring Eq. (4.18) on both sides, and rearranging in terms of λ2 = (dl/dL)2 yields
the quadratic stretch

λ2 = eT
H CeH , (4.20)

where C = F TF is the right Cauchy-Green tensor. To demonstrate the effect of the
para-
meter α on the boundary during a deformation, we have to recall the working principle
of the α-shape method. As described in Sec. 4.1.1 the method defines a circle for each
pair of particles, where the radius is defined as r = αhmin. This leads to the conclusion
that the distance between the respective pair of particles must not exceed the diameter
of the α-circle. In the example presented in Fig. 4.17, the radius of the circle is defined
as r = α dL, and therefore the length of the deformed line segment has to fulfill the
condition

dl ≤ 2α dL . (4.21)
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Inserting Eq. (4.21) into Eq. (4.19) we can define a critical stretch ratio

λc = 2α , (4.22)

and recalling the quadratic stretch from Eq. (4.20) the following quadratic form can
be defined

4α2 ≥ eT
H CeH , (4.23)

which is studied in the following section for the case of three basic deformations. In
three PFEM simulations, a circular disc is subjected to the following scenarios

1. uniaxial stretch,

2. biaxial stretch,

3. simple shear.

1. An example with uniaxial stretch is characterised by the deformation gradient

F =

[

1 0

0 m

]

. (4.24)

By expressing the deformation gradient in Eq. (4.24) with the displacement gra-
dient from Eq. (2.4), boundary conditions for the uniaxial stretch can be formu-
lated with

m =
du2
dX2

+ 1 . (4.25)

Therefore, the displacement boundary condition yields

u2 (X2) = (m− 1)X2 . (4.26)

In Fig. 4.18 the circular disc is presented as well as the boundary conditions that
produce a uniaxial stretch in the body.
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u2 (X2) = (m− 1)X2

X1

X2

Fig. 4.18: Boundary conditions for uniaxial stretch

In the PFEM simulation with the boundary condition of Eq. (4.26) the parameter
α is set to α = 0.8. In Fig. 4.19 the circular disc is shown immediately before
reaching the critical deformation, and in Fig. 4.20 the separated disc is shown.

Fig. 4.19: Quadratic stretch of
boundary segments for tension

Fig. 4.20: Failure of boundary seg-
ments after reaching λ2/4 = α2

The colour code in Fig. 4.19 and 4.20 highlights the quadratic stretch λ2/4, where
the green colour represents unstretched boundary segments, and the red colour
indicates the maximum stretch λ2/4 = α2. In the figures it can be seen that the
boundary segments separate after reaching the critical stretch.
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In order to present a relation between α and the eigenvalues of the right Cauchy-
Green tensor, we rearrange Eq. (4.20) to

eT
H

(
C − 1λ2

)
eH = 0 . (4.27)

The unit vector of the undeformed line segment eH in Eq. (4.27) is compared
to the eigenvectors, and λ2 to the eigenvalues of C. Therefore the classical
eigenvalue problem

(
C − γ2i 1

)
vi = 0 (4.28)

is considered, where γ2i and vi resemble the eigenvalues and eigenvectors of the
right Cauchy-Green tensor. To simplify Eq. (4.27), the transformation matrix

Q =
[
v1 v2

]
(4.29)

is introduced, which contains the eigenvectors of C. Due to the nature of the
eigenvectors v1 ⊥ v2, the matrix Q is orthogonal (i.e. QTQ = 1), and is used
in this scenario to rotate the basis vectors ei into the eigenvectors vi and vice
versa by

ei = Qvi , vi = QTei . (4.30)

Applying the transformation matrix to the unit vector of the unstretched line
segment yields eH = Qe′

H . With this expression, Eq. (4.27) is rearranged to

λ2 = (Qe′
H)

T
CQe′

H = e′T
H C ′ e′

H , (4.31)

where the tensor C ′ represents the diagonalised right Cauchy-Green tensor

C ′ = QT CQ =

[

γ21 0

0 γ22

]

. (4.32)

The transformations used in the expressions above are illustrated in Fig. 4.21.
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basis ei

Q

C

QT QT

C ′

Q

C ′ e′
He′

H

eH C eH

basisvi

Fig. 4.21: Rotation of line segments and the right Cauchy-Green tensor

With the following definitions for the rotated unit vector of the line segment

e′
H =

(

e′H1

e′H2

)

and e′H1 + e′H2 = 1 , (4.33)

and considering the structure of C ′ in Eq. (4.32) we can expand Eq. (4.31) to

λ2 = γ21 e
′ 2
H1 + γ22 e

′ 2
H2 = γ21 −

(
γ21 − γ22

)
e′ 2H2 . (4.34)

By regarding Eq. (4.34) one can observe that the following two scenarios are
conceivable:

• The first and second eigenvalues are equal γ21 = γ22 . Then λ2 = γ21 = γ22
follows and a critical stretch is reached if γ2i = λ2 = 4α2. In Eq. (4.34) can
be observed that in this case the orientation of the rotated line segment is
arbitrary.

• In the event that γ2i > γ2j (without loss of generality γ21 > γ22) it follows
that

λ2 = γ21 −
(
γ21 − γ22

)

︸ ︷︷ ︸
>0

e′ 2H
︸︷︷︸
≥0

︸ ︷︷ ︸
≥0

≤ γ21 , (4.35)

which yields a maximum allowed stretch of the line segment

λ2max = γ21 for e′
H =

(

e′H1

e′H2

)

(4.36)

with respect to basis vi. In this case, the unit vector of the undeformed
line segment is collinear to the respective eigenvector
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eH = Qe′
H = v1 (4.37)

with respect to basis ei. From this result can be concluded that the
quadratic stretch of the line segment λ2 gets maximal (w.r.t. direction
eH) for the principal direction v1 with the maximal eigenvalue γ21 i.e.

λ2max = vT
1Cv1 = γ21 . (4.38)

The quadratic stretch of a boundary segment - perfectly aligned with di-
rection v1 - becomes critical, if γ21 = λ2max = 4α2.

Figures 4.22 and 4.23 show the undeformed and deformed mesh of a PFEM simu-
lation with boundary conditions according to Fig. 4.18, and α = 0.8. Figure 4.22
demonstrates the orientation of the eigenvector corresponding to λ21.

eH

Fig. 4.22: Undeformed disc and scaled
eigenvector corresponding to λ21 Fig. 4.23: Deformed disc with failed

boundary segment

2. In the next example, a deformation which resembles a biaxial stretch is studied.
In this case, the deformation gradient yields

F =

[

m 0

0 n

]

, (4.39)

where we set n =
3

4
m. By expressing the deformation gradient in Eq. (4.39)

with the displacement gradient from Eq. (2.4), boundary conditions for a biaxial
stretch can be formulated with

m =
du1
dX1

+ 1 and
3

4
m =

du2
dX2

+ 1 . (4.40)
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The displacement boundary conditions can then be expressed as

u1 (X1) = (m− 1)X1 and u2 (X2) = (3/4m− 1)X2 . (4.41)

In Fig. 4.24 the circular disc is presented as well as the boundary conditions to
enforce a biaxial stretch.

u1 (X1) = (m− 1)X1

u2 (X2) = (3/4m− 1)X2

X1

X2

Fig. 4.24: Boundary conditions for biaxial stretch

In the PFEM simulation with the boundary conditions of Eq. (4.41) the param-
eter α is set to α = 0.8. In Fig. 4.25 the circular disc is shown immediately
before reaching the critical deformation, and in Fig. 4.26 the separated disc is
presented.

Fig. 4.25: Quadratic stretch of
boundary segments for biaxial stretch

Fig. 4.26: Failure of boundary seg-
ments after reaching λ2/4 = α2

The colour code in Fig. 4.25 and 4.26 highlights the quadratic stretch λ2/4,
where the red colour indicates the maximum stretch λ2/4 = α2. In the figures
it can be seen that the boundary segments separate after reaching the critical
stretch. Analog to the example with uniaxial stretch, a maximum parameter
m for the deformation gradient in Eq. (4.39) can be calculated. Since α = 0.8

as in the previous example, the maximum stretch is m = 8/5 and n = 3/4.
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For this deformation the largest principal stretch is λ21 = 2.56 and therefore
fulfills the α-shape condition λ2 ≤ 4α2. With the eigenvalue we can calculate
the corresponding eigenvector. Figure 4.27 and 4.28 show the undeformed and
deformed mesh of the PFEM simulation with boundary conditions according
to Fig. 4.24, and α = 0.8. Figure. 4.27 demonstrates the orientation of the
eigenvector corresponding to λ21.

eH

Fig. 4.27: Undeformed disc and scaled
eigenvector corresponding to λ21

Fig. 4.28: Deformed disc with failed
boundary segment

3. The last example is concerned with a simple shear deformation, which is char-
acterised by the deformation gradient

F =

[

1 m

0 1

]

. (4.42)

Analog to the previous examples, the deformation gradient is expressed with the
displacement gradient, which yields

m =
du1
dX2

. (4.43)

The boundary condition then follows as

u1 (X2) = mX2 . (4.44)

In Fig. 4.29 the disc is presented and the boundary conditions indicated.
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u1 (X2) = mX2

X1

X2

Fig. 4.29: Boundary conditions for simple shear

In the PFEM simulation with boundary conditions according to Eq. (4.44) the
parameter α is set to α = 0.75. The contour plots in Fig. 4.30 and 4.31 show
the disc under simple shear before, and after reaching the critical stretch of the
boundary segments.

Fig. 4.30: Quadratic stretch of
boundary segments for simple shear

Fig. 4.31: Failure of boundary seg-
ments after reaching λ2/4 = α2

Analog to the previous examples, a maximum shear m for the deformation gra-
dient in Eq. (4.42) can be determined. Since α = 0.75, the maximum shear
yields m = 5/6. For this deformation the largest principal stretch is λ21 = 2.25,
which satisfies the α-shape condition λ2 ≤ 4α2. Figures 4.33 and 4.32 show the
deformed and undeformed mesh of a PFEM simulation with simple shear and
α = 0.75. Figure 4.32 demonstrates the orientation of the eigenvector corre-
sponding to λ21.
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eH

Fig. 4.32: Deformed disc with failed
boundary segment

Fig. 4.33: Undeformed disc and scaled
eigenvector corresponding to λ21

In Fig. 4.33 the deformed mesh of the PFEM simulation is shown after the
first boundary segment has exceeded the critical stretch. Figure 4.32 shows the
undeformed disc and the scaled eigenvector of the largest principal stretch.

The PFEM simulations of the three basic deformations demonstrate that the material
separates where λ21 > 4α2, and where the corresponding eigenvector is collinear to
the boundary. In the following the three examples are considered again, only now the
vectors that describe the boundary segments in the unreformed configuration H , and
in the deformed configuration h are not considered to be unit vectors. The aim of
this further investigation is to provide a graphical representation of the restriction on
boundary segments by the parameter α.

1. For the uniaxial stretch with the deformation gradient of Eq. (4.24), the quadratic
form of Eq. (4.23) is visualised in Fig. 4.34. The grey surface resembles the
quadratic stretch and the black surface symbolises the restriction due to α. Fig-
ure 4.34 is plotted with α = 0.8 and the consequential maximum deformation
for the uniaxial stretch m = 8/5.
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Fig. 4.34: Restriction of quadratic stretch for uniaxial stretch

The quadratic stretch in Fig. 4.34 is limited by the condition λ2 ≤ 4 r2, meaning
that only the quadratic stretch underneath the black surface is feasible. Initially
in the α-shape algorithm, the condition |H| ≤ 2 r is examined for the reference
configuration. The radius r is set to r = α |H| and represents the shortest
distance between any pair of particles in the undeformed configuration. We define
|H| to be equal for all boundary segments. If the above-mentioned condition
holds, and no other particle is located in the α-circle, H is considered as a
boundary segment. Due to the deformation, the segments H transform into
the segments h of length |h|, which in general are not of equal length. In the
actual configuration, the α-shape method examines if the condition |h| ≤ 2Lα

holds, which means that the length of the deformed segment has to be less
or equal than the diameter of the α-circle. Since h = F H , the condition
HTF TFH ≤ 4 r2 has to be fulfilled in order that the deformed line segment h

is still a boundary segment. The above mentioned conditions for the reference
and the actual configuration are shown in the H1-H2 plane in Fig. 4.35.

Fig. 4.35: Restriction on choice of boundary segments62
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The solid line in Figure 4.35 represents the set of all potential boundary seg-
ments H for the reference configuration, where the dashed line presents a re-
striction on the boundary segments due to the deformation. The dashed line in
Fig. 4.35 represent the maximum stretch for a uniaxial deformation with α = 0.8

and m = 8/5 respectively.

2. In agreement with the previous example, the biaxial stretch with the deformation
gradient of Eq. (4.39) is considered. The quadratic form of Eq. (4.23) is visualised
in Fig. 4.34, where the grey surface resembles the quadratic stretch, and the black
surface symbolises the restriction due to α.

Fig. 4.36: Restriction of quadratic stretch for biaxial stretch

In Fig. 4.37 the restriction on boundary segments is illustrated in the H1-H2

plane for α = 0.8, m = 8/5, and n = 6/5.

Fig. 4.37: Restriction on choice of boundary segments
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As in the previous example, the solid line represents the set of all potential
boundary segments for the reference configuration, and the dashed line symbol-
ises the restriction on the boundary segments in the reference configuration due
to the deformation.

3. Finally, simple shear is considered with the deformation gradient of Eq. (4.42).
The quadratic form of Eq. (4.23) is illustrated in Fig. 4.34. The grey surface in
Fig. 4.34 represents the quadratic stretch, and the black surface symbolises the
restriction due to α.

Fig. 4.38: Restriction of quadratic stretch for simple shear

The plots in Fig. 4.38 and 4.39 are generated with α = 0.75 and the maximum
shear deformationm = 5/6 in Eq. (4.42). In Fig. 4.39 the restriction on boundary
segments is illustrated in the H1-H2 plane.

Fig. 4.39: Restriction on choice of boundary segments

As in the previous two examples, the solid line symbolises the set of all potential
boundary segments H in the reference configuration. After the line segments are64
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deformed, the α-shape algorithm detects the boundary again. The dashed line in
Fig. 4.39 represents the restriction on the boundary segments in the undeformed
configuration.

4.3.1 The Role of α in Tensile Tests

Section 4.3 illustrates that α can be regarded as the maximum stretch of a boundary
segment. If the critical stretch λ = 2α is exceeded, the material separates. In order
to demonstrate the meaning of α on an engineering based example, a tensile test is
simulated. Figure 4.40 shows the undeformed specimen and the boundary conditions.

u1 = 0, u2 = 0 u1 = u0, u2 = 0

L

X1

X2

Fig. 4.40: Specimen for tensile test and boundary conditions

In Fig. 4.40 L represents the reference length and in Fig. 4.41 l denotes the deformed
length. The undeformed overall length of the specimen is 160 mm. At the left side
the sample is clamped in both directions i.e. u1 = 0, u2 = 0, and a displacement is
applied at the right side in X1 direction u1 = u0. The displacements in X2 direction
at the right side are set to u2 = 0. In order to investigate the influence of α on
the material response the reaction force is plotted with respect to the stretch of the
mid section l/L. In all simulations, the Young’s modulus is set to E = 210000 MPa,
the Poisson’s ratio ν = 0.3, the hardening modulus k = 1600 MPa, the initial yield
stress σy = 300 MPa, and the exponent of the hardening power law from
Eq. (2.72) m = 0.8. The material parameters are taken from literature such as Wittel
(2009); Böge et al. (2015) to model steel. Figure 4.41 shows the stress distribution in
the deformed sample.

l

Fig. 4.41: Contour plot of stresses on deformed specimen
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As can be seen in Fig. 4.41, high tensile stresses develop in the mid section of the
specimen as the load increases up to the point, where the material starts to separate.
In Fig. 4.42 the reaction forces are plotted with regard to the stretch of the mid section
for three simulations with a varying α.

λC(α = 0.7)λC(α = 0.65) λC(α = 0.75)

Fig. 4.42: Comparison of reaction force for uniaxial tension

Figure 4.42 demonstrates the properties of the elasto-plastic material model. In the
beginning, the reaction forces increase linearly in all simulations until the yield criterion
is met, then the response shows a nonlinear plastic hardening. From Sec. 4.3 it follows
that the material is expected to separate, if the stretch of the boundary segments
exceeds the critical value λ = 2α. However, the specimen from Fig. 4.40 fails not
precisely at the predicted stretch. Therefore, a follow up study is conducted, where a
body under perfect uniaxial stretch is considered as shown in Fig. 4.43.
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u2 = u0

u2 = 0

Fig. 4.43: Boundary conditions for comparison with non-uniform deformations (lateral
contraction is free to ensure traction t = 0 on left and right boundary)

The body in Fig. 4.43 is of size 40 mm x 40 mm, and the material parameters are
identical to those of the previous example. From the derivation of the maximum stretch
criterion in Sec. 4.3 follows that it is independent of the discretisation. To emphasise
this effect, this tensile test is carried out using two discretisations. In Fig. 4.44 the
results of the simulations with α = 0.65 are illustrated for both discretisations and
Fig. 4.45 shows the results for the simulations with α = 0.7.

Fig. 4.44: Uniaxial tension with
α = 0.65

Fig. 4.45: Uniaxial tension with
α = 0.7

In Fig. 4.44 and 4.45 the results are shown from simulations with 20x20 boundary
segments and for 10x10 boundary segments and it can be observed that the number
of boundary segments - and therefore the initial length of the segments - does not
influence material separation. The specimen from Fig. 4.43 separates exactly at the
predicted point λ = 2α, which can be observed in Fig. 4.44 for l/L = 1.3, and in
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Fig. 4.45 for l/L = 1.4. In Fig. 4.46 the results of the simulations with α = 0.75 are
presented.

Fig. 4.46: Uniaxial tension with α = 0.75

Analog to the results in Fig. 4.44 and 4.45, the simulation with α = 0.75 in Fig. 4.46
shows coinciding results for both discretisations and the material separates at the
predicted stretch. The maximum strain a material can endure is often referred to as
fracture strain (see Gross and Seelig (2016); Böge et al. (2015)).

4.3.2 Modelling of Material Separation

As demonstrated in the previous section, the parameter α can be related to the fracture
strain in tensile tests. As a conclusion, material separation can be modelled using α,
and brittle, as well as tough material behaviour can be mimicked. In the following, a
plate is studied under boundary conditions as shown in Fig. 4.47.

u1 = 0
u2 = 0
u1 = 0

u2 = u0

Fig. 4.47: Benchmark for material separation
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The plate in Fig. 4.47 is clamped on the right side and a vertical displacement is
applied on the left boundary. In all simulations a hyperelastic material is used and the
Lamé constants are set to µ = 925 MPa and λ = 2160 MPa, which is characteristic
for plastics (see Hellerich et al. (2004)). In Fig. 4.48 the results of simulations for
three different values of α are shown. The left column in Fig. 4.48 shows the results
of simulations with α = 0.6, the center column shows the results for α = 0.8, and
the right column presents the results for α = 1.0. Each row in Fig. 4.48 represents a
loading step in the PFEM simulation.

α = 0.6 α = 0.8 α = 1.0

st
ep

20
st

ep
40

st
ep

80

Fig. 4.48: Material separation by shearing for varying α

As can be seen in Fig. 4.48 the left column - i.e. the results of the simulation for
α = 0.6 - the material separates early in the simulation and therefore may be de-
scribed as brittle. In the right column the material undergoes larger deformations
before separating. From the results in Fig. 4.48 can be concluded that the parameter
α provides a spectrum for the material separation from brittle to tough material be-
haviour. Furthermore, it can be seen that material separation, although being related
to maximal strain, occurs at positions with high stress concentrations; here the edges
of the fixtures.
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Chapter 5

Cutting Simulations

The following chapter is devoted to PFEM simulations of cutting processes. In the
beginning, vertical cutting of hyperelastic material is investigated. In this example the
cutting force is studied for varying values of α and several steps of the cutting process
are visualised. The following section focusses on the cutting of elasto-plastic material,
where the states of stresses and plastic deformations in the workpiece are studied,
which result from the cutting process. Furthermore, parameter studies on important
process parameters such as hardening modulus, rake angle, and α are conducted. In
these studies the effect of the parameters on the cutting force is observed. The chapter
concludes with a comparison of cutting forces to empirical results. At this point it
should be noted that only the work piece is considered as a deformable body. The tool
is treated as rigid body throughout all following simulations.

5.1 Vertical Cutting of Hyperelastic Material

The first cutting simulation is a vertical cut of a workpiece. For this simulation, a
hyperelastic material is used and the boundary conditions are illustrated in Fig. 5.1.
The base of the workpiece is partly fixed and a vertical displacement is applied to the
tool, forcing it to cut the workpiece.
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u1 = 0, u2 = 0

u1 = 0
u2 = −u0

Fig. 5.1: Boundary conditions for vertical cutting

For the cutting simulations with hyperelastic material, the Lamé constants are set
to λ = 2160 MPa and µ = 925 MPa. Figure 5.2 presents the vertical stress component
σ22, and Fig. 5.3 shows the shear stress σ12 for a selected simulation step.

Fig. 5.2: Stress component σ22 Fig. 5.3: Shear stress σ12

In Fig. 5.2 it can be observed that high compressive stresses develop underneath the
tool during the cutting operation. Figure 5.3 demonstrates the shear stress during the
cutting process and it can be seen that a band of high shear stresses emerges. In order
to study the influence of the parameter α, a parameter study is conducted. Fig. 5.4
shows the resulting cutting forces for three different values of α.
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Fig. 5.4: Cutting force for variation of α

The cutting forces in Fig. 5.4 are obtained by summing the vertical component of the
reaction forces of all tool nodes. The cutting forces are then plotted with regard to the
relative feed, which is defined as the tool displacement with respect to the thickness
of the workpiece. As can be seen in Fig. 5.4, the parameter α has a strong influence
on the cutting force. The peak of the cutting force for α = 0.9 is significantly higher
compared to the peak of the cutting force for α = 0.7. Even after the cutting force
passes the peak, the level remains higher compared to the cutting force for α = 0.7.
This is due to the fact that the boundary segments endure higher stretches before
failing. To affirm this effect, contour plots for three different values of α are shown in
Fig. 5.5. The left column in Fig. 5.5 shows the results of simulations with α = 0.7, the
center column shows the results for α = 0.8, and the right column presents the results
for α = 0.9. Each row in Fig. 5.5 represents a selected step in the PFEM simulation.
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α = 0.7 α = 0.8 α = 0.9
st

ep
50

st
ep

80
st

ep
10

7

Fig. 5.5: Vertical cutting simulations for three values of α

As can be seen in the left column in Fig. 5.5 - i.e. the results of the simulation for
α = 0.7 - the material separates early and reacts rather brittle. In the right column
the material undergoes somewhat higher deformations before separating.

5.2 Extrusion of Elasto-Plastic Material

In extrusion processes the material of the workpiece is pushed through a die and ex-
periences large plastic deformations (see Klocke and König (2006)). In the following
simulations the die is treated as a rigid body and the workpiece is fed to the extruder
by a displacement boundary condition as shown in Fig. 5.6. The extrusion is mod-
elled with an elasto-plastic material, where the Young’s modulus is set to E = 210000

MPa, the Poisson ratio ν = 0.3, the hardening modulus k = 2500 MPa, the initial
yield stress σy = 275 MPa, and the exponent of the hardening power law from
Eq. (2.72) m = 0.8.
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The material parameters mimic steel and can be found in literature such as Wittel
(2009); Böge et al. (2015). Since a ductile material is considered, α = 1.4.

u1 = 0, u2 = 0

u1 = u0, u2 = 0

Die

Workpiece

Fig. 5.6: Setup and boundary conditions for extrusion simulation

Figure 5.7 shows four steps of the extrusion process and the colour code represents
the stress σ11. In step 70 compressive stresses develop where the workpiece is pressed
against the die. In step 140 the region of compressive stresses has increased and the
workpiece is partly extruded. As the process continues, tensile stresses develop in the
extruded part and the material builds up in front of the die.

step 70 step 140

step 210 step 280

Fig. 5.7: Stress σ11 during extrusion process
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In Fig. 5.7 it can be observed that an uneven surface develops in the extruded material.
This effect is a result of high tensile stresses in this part of the workpiece and the
consequential failure of boundary segments. The plastic deformation of the workpiece
is illustrated in Fig. 5.8.

step 70 step 140

step 210 step 280

Fig. 5.8: Plastic deformation during extrusion

In the following a parameter study on the initial yield stress σy is conducted for the
extrusion process. Except for the initial yield stress, the material parameters are taken
according to the previous extrusion simulation. In this parameter study the extrusion
forces are compared for three values of σy.
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Fig. 5.9: Extrusion force for variation of initial yield stress σy

The extrusion forces increase as the workpiece is fed into the die, as can be seen in
Fig. 5.9. It can also be observed that higher values for the initial yield stress σy lead
to increased extrusion forces. This effect is as expected since the material deforms
plastically at higher stresses. Simulations of extrusion processes can also be found
in Oñate et al. (2014).

5.3 Cutting Simulations for Elasto-Plastic Material

In the following simulations we consider an elasto-plastic material, where Young’s
modulus E = 210000 MPa, the Poisson ratio ν = 0.3, the hardening modulus k =

E/100, the initial yield stress σy = 235 MPa, and the exponent of the hardening power
law from Eq. (2.72) m = 1. The material parameters mimic steel and can be found
in literature such as Wittel (2009); Böge et al. (2015). The cutting depth is set to
0.5mm. The setup for the simulations is presented in Fig. 5.10.

u1 = u0, u2 = 0

u1 = 0, u2 = 0

Fig. 5.10: Boundary conditions for cutting simulations
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Throughout the simulation, a displacement boundary condition is applied at the base
of the workpiece, which translates the work piece towards the tool. The tool is fixed
and normal contact is considered between tool and workpiece. Figures 5.11, 5.12, 5.13,
and 5.14 illustrate stress and deformation patterns as described in classical textbooks
on manufacturing and cutting like Denkena and Toenshoff (2011); König (1999); Böge
et al. (2015).

Fig. 5.11: σ11 stress in workpiece during
cutting

Fig. 5.12: Shear stress σ12

In Fig. 5.11 the workpiece exhibits a region of compressive stresses in front of the tool,
and tensile stresses underneath the tool, where the material is stretched due to the
chip formation. In Fig. 5.12 two regions of high shear stresses can be observed. The
region with shear stresses of a negative sign is often called primary shear zone, whereas
the region with positive shear stresses is called secondary shear zone (see Denkena and
Toenshoff (2011); Böge et al. (2015)). Figures 5.13 and 5.14 show a contour plot of
the norm of the plastic deformation gradient during cutting.

Fig. 5.13: Norm of the plastic deforma-
tion gradient ‖F p‖

Fig. 5.14: Plastic deformation in pro-
gressed cut
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The plastic deformation as shown in Fig. 5.13 and 5.14 evolves with the progress of
the cut. In Fig. 5.13 a small chip has formed under large plastic deformations and the
process zone is surrounded by a region of smaller plastic deformations. In Fig. 5.14
the cut has progressed and the chip is fully plastified. Here, the workpiece exhibits
small plastic deformations in the whole segment behind the cutting tool. Moreover, a
small burr can be observed on the workpiece. The following section is concerned with
a parameter study of important process parameters.

5.4 Study of Important Process Parameters

5.4.1 Variation of the Hardening Modulus

The power law in Eq. (2.72) represents the hardening model used for the cutting
simulations. In this section, the influence of the hardening modulus on the cutting
force and the shape of the chip is studied. Figure 5.15 and 5.16 show contour plots of
the stresses for two different hardening moduli.

Fig. 5.15: Cauchy stress σ11 for a harden-
ing modulus k = E/100

Fig. 5.16: Cauchy stress σ11 for a harden-
ing modulus k = E/10

Figures 5.15 and 5.16 present similar patterns in the stress distribution. However, the
stresses for the simulation with k = E/10 (Fig. 5.16) are significantly higher as for the
simulation with with k = E/100 in Fig. 5.15. By taking a closer look on the shape
of the chip, it can be seen that the chip in the simulation with k = E/10 (Fig. 5.16)
appears somewhat more curled. Figure 5.17 shows the cutting forces for a variation of
the hardening modulus k.
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Fig. 5.17: Cutting force for variation of hardening modulus

The graphs in Fig. 5.17 illustrate that higher values for k lead to increased cutting
forces. The zig-zag shape of the cutting forces is caused by the α-shape algorithm.
While the line segment in front of the cutting edge is stretched, the cutting force
increases. After reaching the critical stretch prescribed by the value of α, the boundary
segment fails, a new boundary is detected, and the cutting force declines.

5.4.2 Variation of the Rake Angle

The rake angle γ is defined as the angle between the front edge of the cutting tool
(rake face) and the vertical as illustrated in Fig. 1.1. From textbooks on cutting such
as Denkena and Toenshoff (2011); Böge et al. (2015) it is known that a small rake angle
leads to high cutting forces, whereas increased rake angles lead to reduced cutting
forces. Figures 5.18 and 5.19 present contour plots of the stresses for simulations with
two different rake angles.

Fig. 5.18: Cauchy stress σ11 for small rake
angle γ−

Fig. 5.19: Cauchy stress σ11 for large rake
angle γ+
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In Fig. 5.18 and 5.19 differences in the distribution of stresses as well as in the de-
formation are visible. The chip in the simulation with a large rake angle is slightly
thicker and the cutting depth is increased. Moreover, the zone of high tensile stresses
underneath the tool is somewhat increased. Figure 5.20 shows the influence of the
rake angle γ on the cutting force.

Fig. 5.20: Plot of cutting forces for varying rake angles

The rake angles for the three simulations are set to γ− = 5◦, γ0 = 11◦, γ+ = 17◦.
Figure 5.20 affirms that small rake angles, denoted by γ− produce increased cutting
forces. In contrast, cutting with increased rake angles leads to reduced cutting forces
as expected.

5.4.3 Variation of α

As established in Sec. 4.3, the value of α influences the material separation and can
be interpreted as the maximum stretch of a line segment. The cutting simulation
processes in a way that the boundary segments in front of the tool are stretched up
to the critical stretch prescribed by α. If this threshold is exceeded, the segment fails
and a new boundary is created. Figures 5.21 and 5.22 present the results of cutting
simulations for two different values of α .
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Fig. 5.21: Contour plot of stress σ11
for α = 0.7

Fig. 5.22: Contour plot of stress σ11
for α = 0.9

Figure 5.21 shows the result of a cutting simulation with α = 0.7. The low value of α
provokes the material to separate at relatively small deformations and the material
reacts rather brittle. The tensile stresses underneath the cutting tool are reduced and
the cut progresses in a certain distance in front of the tool. In contrast, in Figure 5.22
the cut progresses immediately in front of the tool and the material shows a more
ductile behavior. The increased value of α results in a large region of tensile stresses,
and the chip thickness is increased. Figure 5.23 shows a plot of the cutting forces for
a variation of α.

Fig. 5.23: Plot of cutting forces for varying α

The curves in Fig. 5.23 coincide in the beginning of the cutting process. However, at
a certain relative feed they diverge due to the different values of α. The simulation
with α = 0.9 allows the highest stretch of boundary segments in front of the tool.
Hence, the cutting force is significantly higher compared to the simulations with a
lower α. The cutting force from the simulation with α = 0.7 is lower, since the line
segments in front of the cutting tool fail at a much lower stretch. The effect of α on
the ductility of the material can also be demonstrated by observing the norm of the
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plastic deformation gradient ‖F p‖, which is plotted in Fig. 5.24 for three values of α.
The left column in Fig. 5.24 shows the results of simulations with α = 0.7, the center
column shows the results for α = 0.8, and the right column presents the results for
α = 0.9. Each row in Fig. 5.24 represents a selected step in the PFEM simulation.

α = 0.7 α = 0.8 α = 0.9

st
ep

40
st

ep
90

st
ep

14
0

Fig. 5.24: Plastic deformation ‖F p‖ for varying value of α

The results in the first column (α = 0.7) display a simulation of a rather brittle
material. Throughout the simulation, the norm of the plastic deformation gradient
‖F p‖ is small compared to the simulations with higher values of α. It can also be
observed that the material of the workpiece separates in a certain distance in front
of the tool. In the right column (α = 0.9) the material exhibits more ductility and
the norm of the plastic deformation gradient reaches high values compared to the
simulations in the left column. Furthermore, it can be seen that the chip formation
differs significantly throughout the three columns i.e. three different values of α.
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5.5 Comparison to Empirical Results

In manufacturing technology a concept has been developed in Kienzle (1952) to model
the required power in turning processes. In order to calculate the power, the cutting
force is calculated, which may be employed as empirical reference for the cutting force
computations with the PFEM. The resultant force F z in Fig. 5.25 is a product of the
cutting process and in general is a force in three dimensional space. This resultant
force consists of the components

F z = F c + F f + F p . (5.1)

In Eq. (5.1) the cutting force F c acts tangential on the turning workpiece. The passive
force F p acts in direction of the cutting tool, and the feed force F f in opposite direction
of the feed. The forces are illustrated in Fig. 5.25.

F z

Ωc

F c

F p
F f

Fig. 5.25: Cutting forces in turning oper-
ation

b

h

Fig. 5.26: Dimensions in orthogonal cut-
ting

In this work the focus is on computing the cutting force F c with the PFEM and on
a comparison to orthogonal cutting as demonstrated in Fig. 5.26. Orthogonal cutting
is characterised by orthogonal axes of cutting tool and workpiece. Derived in Kienzle
(1952) and later mentioned in textbooks on manufacturing as Denkena and Toenshoff
(2011); Böge et al. (2015), the formula

Fc = |F c| = b h kc (5.2)

can be applied to estimate the cutting force. Since the cutting force in this work
is computed in a plane strain setting, the cutting thickness is set to b = 1mm. In
Eq. (5.2) h is the undeformed chip thickness and kc is defined as
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kc =
kc1.1
hz

kλ (λ1, ..., λn) . (5.3)

The constants kc1.1, and z are material specific parameters which can be found in
literature as Böge et al. (2015) and kλ is an influence factor, which is usually employed
to account for friction, shape of the cutting tool, etc.. However, in this work we
set kλ = 1 to reduce the number of parameters involved in this observation. For the
comparison between the results of the Kienzle formula in Eq. (5.2) and the cutting force
from the PFEM simulations, we focus on the material S 235 JR. Then the parameters
in Eq. (5.3) follow to kc1.1 = 1780 MPa and z = 0.17. The undeformed chip thickness
is set to h = 0.5mm and the parameters used to describe the elastoplastic material in
the PFEM simulations are E = 210000 MPa, ν = 0.3, σy = 235 MPa, k = 2500 MPa,
m = 0.8, and α = 0.8. Figure 5.27 shows the cutting force from the PFEM simulation
and the estimate from Eq. (5.2).

Fig. 5.27: Comparison of PFEM and Kienzle formula for chip thickness h = 0.5mm

As can be seen in Fig. 5.27 the PFEM simulation is capable to reproduce the empirical
result from Eq. (5.2). In order to provide a more wholesome comparison, Eq. (5.3) is
studied for various cutting depths h in the following. In Böge et al. (2015) a range for
the cutting depth h = 0.05−2.5 mm is provided, in which Eq. 5.3 is valid. In Fig. 5.28
the cutting force from Eq. (5.3) is plotted in the valid range of h, as well as cutting
forces of PFEM simulations.
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Fig. 5.28: Cutting forces from PFEM simulations and Kienzle’s estimate

In order to generate the graph that represent the PFEM simulations in Fig. 5.28,
only a sequence of the cutting force is considered, where the force is relatively steady.
This sequence corresponds to the sequence selected for the comparison in Fig. 5.27.
After extracting the sequence, the mean value is computed. These mean values are
represented in Fig. 5.28 by the diamond shaped markers. As can be observed, the
PFEM matches Kienzle’s equation nicely for low cutting depths. However, for deeper
cuts the results diverge.
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Chapter 6

Conclusion and Outlook

The PFEM implementation presented in this work is based on finite deformations and
two constitutive laws are considered. A hyperelastic constitutive law is implemented to
model cutting processes of plastics. Furthermore, an elasto-plastic material is consid-
ered, which enables simulations of metal cutting. An attempt to validate the PFEM in
a comparison to the FEM is made for both material models. The benchmarks for the
comparison include simulations with uniform deformations, such as uniaxial stretch
and simple shear. In this study the reaction forces of both methods are compared
and good agreement of the results can be observed. However, in these simulations the
deformation gradient is spatially constant and one can argue that in this case the fre-
quent projection of the history data should barely influence the quality of the results.
Therefore, a further benchmark is considered, where the boundary conditions lead to
a non-uniform deformation gradient. Another objective in this study is the influence
of the number of projections and the discretisation on the cutting force. From the re-
sults can be concluded that refined discretisations within the PFEM simulations lead
to a better agreement of both methods. On the other hand, an increasing number of
projections impairs the agreement.

In the first applications of the PFEM only experience based recommendations were
provided on the choice of the crucial parameter α and no efforts were made in order
to find a physical interpretation. In this work it is shown that α can be associated
with a maximum stretch of boundary segments and a relation to the stretch ratio is
demonstrated. A restriction on the quadratic stretch is derived as well as on the first
eigenvalue of the right Cauchy-Green tensor. Furthermore, it is shown that α not only
restricts the stretch of boundary segments but the orientation as well. It is elaborated
that former boundary segments fail if the first eigenvalue exceeds the limit λ21 = 4α2

and the orientation of the former segment is collinear to the corresponding eigenvec-
tor. PFEM simulations on basic deformations such as uniaxial stretch, biaxial stretch,
and simple shear are presented to support the outcome of the physical interpretation.
Moreover, a graphical representation of the restriction on boundary segments is pro-
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vided. The graphs demonstrate a restriction on the length and orientation of boundary
segments in their undeformed configuration before and after a deformation. Further
PFEM simulations of tensile tests with different values for α reveal the meaning of
the parameter in the context of material science. It is shown that α can be related
to the fracture strain in tensile tests. Since the results of the tensile test with real-
istic geometry slightly deviate from the expectation, a follow up study is conducted
with simple geometries and uniform deformations. In addition to that, a parameter
study on α is regarded in another PFEM simulation with hyperelastic material and
material separation. On this example it is demonstrated that by varying α, the sep-
aration of the material can be triggered. It is shown that small values of α can be
associated with brittle material, where a high α can be used to describe tough material.

In the beginning of chapter 5 cutting simulations with hyperelastic material are pre-
sented. A parameter study on α is conducted in order to investigate the influence on
the cutting force. As predicted in the physical interpretation of the α-shape method,
increasing values of α lead to an increased critical stretch of boundary segments. As a
result, the boundary segments in front of the cutting tool endure more stretch before
failing and therefore the cutting force increases for an increasing α. A further example
presented in this work is an extrusion simulation of elasto-plastic material. It is shown
that high compressive stresses develop in the workpiece in front of the die and high
tensile stresses evolve in the extruded material. Furthermore, the plastic deformation
in the workpiece during the extrusion is demonstrated and a parameter study on the
initial yield stress σy shows that increased values for σy lead to increased extrusion
forces. In the following section the cutting of elasto-plastic material is considered. Ef-
fects as the plastic deformation during cutting are visualised as well as the distribution
of stresses. In literature on manufacturing technology such as Denkena and Toenshoff
(2011) shear bands are reported in the workpiece, which can be reproduced by the
PFEM simulations. Furthermore, the influence of important process parameters is
studied. A variation of the hardening modulus shows that an increased hardening
modulus produces increased cutting forces. A parameter study on the rake angle
demonstrates that smaller rake angles produce higher cutting forces, which agrees
with literature on manufacturing such as Denkena and Toenshoff (2011); Böge et al.
(2015). The final parameter study is concerned with the parameter α. As expected
from the physical interpretation and previous results, the cutting force increases with
an increasing value of α. In cutting simulations with elasto-plastic material it can be
shown that simulations with high values for α lead to increasing plastic deformations.
Moreover, the chip formation varies for varying values of α and it can be seen that
cutting simulations of brittle material (small value of α) resemble a similar chip forma-
tion as it is known from literature such as Denkena and Toenshoff (2011); Böge et al.
(2015). On the other hand, cutting simulations with a high value of α resemble the
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chip formation of tough materials. The final section is concerned with a comparison of
cutting forces from PFEM simulations to an empirical benchmark known from Kienzle
(1952). In a first approach the Kienzle equation is compared to a cutting simulation
for an explicit cutting depth h. The parameters for the constitutive law and α used
for this comparison are then adopted to conduct a more wholesome investigation. In
this study the cutting simulations are compared to the Kienzle equation for several
cutting depths and the results expose good agreement especially for low cutting depths.

For future work, an expansion of the implementation to three dimensional problems
should be considered. The current simulations only consider normal contact between
tool and workpiece. Friction and heat conduction should be accounted for, since they
play an important role in cutting processes. Since the PFEM has already been suc-
cessfully applied to problems with fluid-solid interaction, the heat conduction between
a coolant and the workpiece should be investigated. In order to improve the current
implementation, triangular finite elements with quadratic shape functions should be
considered.
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