
Dissertation

Design and Analysis
of Adaptive Caching Techniques

for Internet Content Delivery

Thesis approved by the
Department of Computer Science

of the University of Kaiserslautern (TU Kaiserslautern)

for the award of the Doctoral Degree
Doctor of Engineering (Dr.-Ing.)

to

Daniel S. Berger

Date of the viva : June 8, 2018
Dean : Prof. Dr. Stefan Deßloch
PhD committee
Chair : Prof. Dr. Pascal Schweitzer
Reviewers : Prof. Dr. Jens B. Schmitt

Prof. Dr. Florin Ciucu (University of Warwick)
Prof. Dr. Mor Harchol-Balter (Carnegie Mellon University)

D 386

Abstract

Fast Internet content delivery relies on two layers of caches on the request path. Firstly,
content delivery networks (CDNs) seek to answer user requests before they traverse
slow Internet paths. Secondly, aggregation caches in data centers seek to answer user
requests before they traverse slow backend systems. The key challenge in managing these
caches is the high variability of object sizes, request patterns, and retrieval latencies.
Unfortunately, most existing literature focuses on caching with low (or no) variability in
object sizes and ignores the intricacies of data center subsystems.

This thesis seeks to fill this gap with three contributions. First, we design a new
caching system, called AdaptSize, that is robust under high object size variability. Sec-
ond, we derive a method (called Flow-Offline Optimum or FOO) to predict the optimal
cache hit ratio under variable object sizes. Third, we design a new caching system, called
RobinHood, that exploits variances in retrieval latencies to deliver faster responses to
user requests in data centers.

The techniques proposed in this thesis significantly improve the performance of CDN
and data center caches. On two production traces from one of the world’s largest CDN
AdaptSize achieves 30-91% higher hit ratios than widely-used production systems, and
33-46% higher hit ratios than state-of-the-art research systems. Further, AdaptSize
reduces the latency by more than 30% at the median, 90-percentile and 99-percentile.

We evaluate the accuracy of our FOO analysis technique on eight different production
traces spanning four major Internet companies. We find that FOO’s error is at most
0.3%. Further, FOO reveals that the gap between online policies and OPT is much larger
than previously thought: 27% on average, and up to 43% on web application traces.

We evaluate RobinHood with production traces from a major Internet company on a
50-server cluster. We find that RobinHood improves the 99-percentile latency by more
than 50% over existing caching systems. As load imbalances grow, RobinHood’s latency
improvement can be more than 2x. Further, we show that RobinHood is robust against
server failures and adapts to automatic scaling of backend systems.

The results of this thesis demonstrate the power of guiding the design of practical
caching policies using mathematical performance models and analysis. These models are
general enough to find application in other areas of caching design and future challenges
in Internet content delivery.

iii

Acknowledgements

This dissertation would not have been possible without the ongoing support, advice, and
encouragement of my mentors Jens Schmitt (TU Kaiserslautern), Florin Ciucu (Univer-
sity of Warwick), and Mor Harchol-Balter (Carnegie Mellon University).
Thank you, Jens, for believing and guiding me across five years and six countries (Ger-
many, Canada, Switzerland, Italy, UK, and USA). Thank you, Florin, for challenging
and nurturing my mathematical side and your advice on a life in academia. Thank you,
Mor, for encouraging my practical side with industry collaborations and showing me the
fun side of academic everyday life.

I am grateful to all of those with whom I have had the pleasure to work during
this and other related projects. My early collaborators: Martin Karsten (University of
Waterloo), Ivan Martinovic (University of Oxford), and Francesco Gringoli (University
of Brescia). All members of the distributed systems lab: Steffen Bondorf, Michael Beck,
Paul Nikolaus, Carolina Nogueira, and Matthias Schäfer. My current collaborators:
Ramesh Sitaraman (University of Massachusetts and Akamai Technologies) and Nathan
Beckmann (Carnegie Mellon University).

Nobody has been more important to me in the pursuit of my dissertation than the
members of my family and my circle of friends. I would like to thank my parents, whose
love and guidance are with me in whatever I pursue and wherever my journey takes me.
My parents are my ultimate role models.
A sincere thank you also to all my travel companions and friends: Tobias (my brother),
Tanja and Sabrina Stier, Hiroaki and Aya Shioi, Helen Xu and Peter Goodman, and
Simon Birnbach. Without our journeys and vacations my source of creativity would
have dried up years ago.

v

Contents

List of Figures xvi

List of Tables xvii

List of Abbreviations xix

1 Caching and Internet content delivery 1

1.1 Challenges and Motivation . 5
1.1.1 At the CDN level: variability in object sizes and request patterns 5
1.1.2 In the data center: variability in retrieval latency 6

1.2 Research questions and contributions of this thesis 8
1.2.1 How do we build caching systems that optimize hit ratios despite

the size variability and changes in request patterns seen in CDNs? 8
1.2.2 What is the optimal hit ratio under size variability and how much

further can hit ratios be improved in CDNs? 9
1.2.3 Can we build aggregation caches that balance latency across dif-

ferent backend systems to minimize request latency in data centers? 9
1.3 Thesis outline . 10

2 Caching system design and analysis 11

2.1 Caching System Design Goals . 12
2.1.1 Maximizing hit ratios, minimizing miss ratios and latencies. . . . 12
2.1.2 Robustness against changing request patterns. 13
2.1.3 Low overhead and high concurrency. 14

2.2 State of the art in caching systems . 15
2.2.1 Production caching systems. 15
2.2.2 Academic caching systems. 15

2.3 State of the art in cache performance modeling 17
2.4 State of the art in optimal caching . 18

2.4.1 OPT with variable object sizes is hard 18
2.4.2 Theoretical bounds on OPT . 19
2.4.3 Heuristics used in practice to bound OPT 20

vii

Contents viii

3 AdaptSize: a size-aware hot object memory cache 23

3.1 Rationale for AdaptSize . 25

3.1.1 Why HOCs need size-aware admission 25

3.1.2 Why size-aware admission needs to be dynamically tuned 26

3.1.3 Why we need a new tuning method 28

3.2 High-level description of AdaptSize . 30

3.3 AdaptSize’s Markov chain tuning model 31

3.3.1 The Markov chain approximation model. 31

3.3.2 Deriving the OHR from the Markov chain 32

3.3.3 Accuracy of AdaptSize’s model. 34

3.4 Implementation and integration with a production system 34

3.4.1 Lock-free statistics collection. 35

3.4.2 Robust and efficient model evaluation. 36

3.4.3 Global search for the optimal c. 36

3.5 Evaluation Methodology . 36

3.5.1 Production CDN request traces 36

3.5.2 Trace-based simulator . 37

3.5.3 Prototype Evaluation Testbed . 37

3.6 Empirical Evaluation . 39

3.6.1 Comparison with production systems 39

3.6.2 Comparison with research systems 42

3.6.3 Robustness of alternative tuning methods 43

3.6.4 Side effects of Size-Aware Admission 45

3.7 Summary . 47

4 FOO: Analysis of optimal caching under variable object sizes 49

4.1 Flow-based Offline Optimal . 52

4.1.1 Our new interval representation of OPT 53

4.1.2 FOO’s min-cost flow representation 53

4.1.3 FOO yields upper and lower bounds on OPT 54

4.1.4 Overview of our proof of FOO’s optimality 55

4.2 Formal Definition of FOO . 56

4.2.1 Notation and definitions . 57

4.2.2 New ILP representation of OPT 57

ix Contents

4.2.3 Proof of equivalence of interval and classic ILP representations of
OPT . 58

4.2.4 FOO’s min-cost flow representation of OPT 59
4.3 FOO is Asymptotically Optimal . 61

4.3.1 Main result and assumptions . 61
4.3.2 Bounding the number of non-integer solutions using a precedence

graph . 62
4.3.3 Relating the precedence graph to the coupon collector problem . . 64
4.3.4 Typical objects almost always lead to integer decision variables . . 68
4.3.5 Bringing it all together: Proof of Theorem 4.3.1 76

4.4 Practical Flow-based Offline Optimal for Real Traces 78
4.4.1 Practical lower bound: PFOO-L 78
4.4.2 Practical upper bound: PFOO-U 80
4.4.3 Summary . 81

4.5 Experimental Methodology . 82
4.5.1 Trace Characterization . 82
4.5.2 Caching policies. 84

4.6 Empirical Evaluation . 84
4.6.1 PFOO is necessary to process real traces 85
4.6.2 FOO is nearly exact on short traces 86
4.6.3 PFOO is accurate on real traces 88
4.6.4 PFOO shows that there is significant room for improvement in

online policies . 89
4.7 Summary . 90

5 RobinHood: a tail latency aware cache partitioning system 93
5.1 Background and Motivation . 95

5.1.1 How does Caching Address Tail Latency? 95
5.1.2 Key Challenges of Caching for Tail Latency 98

5.2 The RobinHood Caching System . 102
5.2.1 Basic RobinHood algorithm . 102
5.2.2 Accommodating Real-World Constraints in RobinHood 102
5.2.3 RobinHood Architecture . 104

5.3 System Implementation and Challenges 105
5.3.1 Generating Experimental Data 105

Contents x

5.3.2 Our Experimental Deployment . 106
5.3.3 Implementation Challenges . 107

5.4 Empirical Evaluation . 107
5.4.1 Competing Caching Systems . 108
5.4.2 Latency-Imbalance Microexperiments 109
5.4.3 Scaled-Up Experiments . 110

5.5 Summary . 114

6 Summary & Future Work 115
6.1 Future Directions . 116
6.2 Final Thoughts . 118

Bibliography 119

Curriculum Vitae 133

List of Figures

1.1 User request path (part I). 2
1.2 User request path (part II). 3
1.3 Timeline of a request from the perspective of an aggregation server in a

data center at Microsoft. 4
1.4 The cumulative distribution for object sizes in two Akamai production

traces from Hong Kong and the US. Sizes vary by more than nine orders
of magnitude. 5

1.5 Per-backend tail latency in a Microsoft data center at different times of
a day (in February 2018). We observe that P99 latencies across differ-
ent backend systems are highly variable, and the slowest backend system
changes over the course of a few hours. 7

3.1 Experimental results with different size thresholds. (a) A OHR-vs-threshold
curve shows that the Object Hit Ratio (OHR) is highly sensitive to the
size threshold, and that the optimal threshold (red arrow) can signifi-
cantly improve the OHR. (b) The optimal threshold admits the requested
object for only 80% of the requests. 27

3.2 The optimal size threshold changes significantly over time. (a) In the
morning hours, small objects (e.g., news items) are more popular, which
requires a small size threshold of a few tens of KiBs. (b) In the evening
hours, web traffic gets mixed with video traffic, which requires a size
threshold of a few MiBs. 27

3.3 Experimental results showing that setting the size threshold to a fixed
function does not work. All three traces shown here have the same 80-
th size percentile, but their optimal thresholds differ by two orders of
magnitude. 28

3.4 AdaptSize system overview. 30
3.5 AdaptSize’s Markov chain model for object i represents i’s position in the

LRU list and the possibility that the object is out of the cache. Each
object is represented by a separate Markov chain, but all Markov chains
are connected by the common “pushdown” rate µc. Solving these models
yields the OHR as a function of c. 32

3.6 The modified Markov chain for AdaptSize with a length of the LRU list, `. 33

xi

List of Figures xii

3.7 AdaptSize’s Markov model predicts the OHR sensitivity curve (red solid
line). This is very accurate when compared to the actual OHR (black
dots) that results when that threshold is chosen. Each experiment involves
a portion of the production trace of length ∆ = 250K. 35

3.8 Comparison of AdaptSize’s implementation to the Varnish and Nginx pro-
duction systems and SIZE-OPT. (a) On the HK trace, AdaptSize improves
the OHR by 48-91% over the production systems and achieves 95% of the
OHR of SIZE-OPT. (b) On the US trace, AdaptSize improves the OHR
by 30-47% over the production systems and achieves 99% of the OHR of
SIZE-OPT. 38

3.9 Comparison of AdaptSize to SIZE-OPT, Varnish, and Nginx when scaling
the HOC size under the production server traffic of two 1.2 GiB HOCs.
AdaptSize always stays close to SIZE-OPT and significantly improves the
OHR for all HOC sizes. 40

3.10 Comparison of the throughput of AdaptSize and Varnish in micro experi-
ments with (a) 100% OHR and (b) 0% OHR. Scenario (a) stress tests the
hit request path and shows that there is no difference between AdaptSize
and Varnish. Scenario (b) stress tests the miss request path (every re-
quest requires an admission decision) and shows that the throughput of
AdaptSize and Varnish is very close (within confidence intervals). 41

3.11 Comparison of AdaptSize to state-of-the-art research caching systems.
Most of these are sophisticated admission and eviction policies that com-
bine recency and frequency (striped blue bars). LRU-S is the only system
– besides AdaptSize – that incorporates size. AdaptSize improves the
OHR by 33% over the next best system. Policies annotated by “++” are
optimistic, because we offline-tuned their parameters to the trace. These
results are for the HK trace; corresponding results for the US trace are
shown in Figure 3.12. 42

3.12 Comparison of AdaptSize to state-of-the-art research caching systems.
Most of these use sophisticated admission and eviction policies that com-
bine recency and frequency (striped blue bars). AdaptSize improves the
OHR by 46% over the next best system. Policies annotated by “++” are
optimistic, because we offline-tuned their parameters to the trace. These
results are for the US trace and a HOC size 1.2 GiB. 43

xiii List of Figures

3.13 Comparison of AdaptSize, threshold tuning via hill climbing and shadow
caches (HillClimb), and a static size threshold (Static) under a traffic
mix change from only web to mixed web/video traffic. While AdaptSize
quickly adapts to the new traffic mix, HillClimb gets stuck in a subopti-
mal configuration, and Static (by definition) does not adapt. AdaptSize
improves the OHR by 20% over HillClimb and by 25% over Static on this
trace. 43

3.14 Comparison of cache tuning methods under traffic mix changes. We per-
formed 50 randomized traffic mix changes (a), and 25 adversarial traffic
mix changes (b). The boxes show the range of OHR from the 25-th to
the 75-th percentile among the 25-50 experiments. The whiskers show the
5-th to the 95-th percentile. 45

3.15 Evaluation of AdaptSize’s side effects across ten different sections of the
US trace. AdaptSize has a neutral impact on the byte hit ratio and leads
to a 10% reduction in the median number of I/O operations going to the
disk, and a 20% reduction in disk utilization. 46

3.16 Comparison of the distribution of request sizes to the disk cache under
a HOC running AdaptSize versus unmodified Varnish. All object sizes
below 256 KiB are significantly less frequent under AdaptSize, whereas
larger objects are slightly more frequent. 47

4.1 Example trace of requests to objects a, b, c, and d, of sizes 3, 1, 1, and
2, respectively. 52

4.2 Interval ILP representation of OPT. 53

4.3 FOO’s min-cost flow problem for the short trace in Figure 4.1. Nodes
represent requests, and cost measures cache misses. Requests are con-
nected by central edges with capacity equal to the cache capacity and
cost zero—flow routed along this path represents cached objects (hits).
Outer edges connect requests to the same object, with capacity equal to
the object’s size—flow routed along this path represents misses. The first
request for each object is a source of flow equal to the object’s size, and
the last request is a sink of flow of the same amount. Outer edges’ costs
are inversely proportional to object size so that they cost 1 miss when an
entire object is not cached. The minimum-cost flow achieves the fewest
misses. 54

List of Figures xiv

4.4 Caching decisions made by OPT, FOO-L, and FOO-U with a cache ca-
pacity of C = 3. 55

4.5 Classic ILP representation of OPT. 58

4.6 The precedence relation i ≺ j from Definition 4.3.1 forces integer decisions
on interval i. In any min-cost flow solution, we can reroute flow such that
if xj > 0 then xi = 1. 63

4.7 Simplified notation for the coupon collector representation of offline caching
with equal object sizes. We translate the precedence relation from The-
orem 4.3.2 into the relation between two random variables. Li denotes
the length of interval i. THi

is the coupon collector time, where we wait
until all objects that are cached at the beginning of Li (Hi denotes these
objects) are requested at least once. 64

4.8 Full notation for the coupon collector representation of offline caching.
With variable object sizes, we need to ignore all objects with a smaller
size than si (grayed out intervals xb and xe). We then define the coupon
collector time TB among a subset B ⊂ Hi of cached objects with a size
larger than or equal to si. Using this notation, the event TB > Li implies
that xi has a child, which forces xi to be integer by Theorem 4.3.2. . . . 65

4.9 Translation of the time until all B objects are requested once, TB into
a coupon-collector problem (CCP), Tb,p. As the CCP is based on fewer
coupons (only objects ∈ B), the CCP serves as a lower bound on TB. . . 67

4.10 The number of cached objects at time i, hi, is unlikely to be far below
h∗ = C/maxk sk, the fewest number of objects that fit in the cache. In
order for hi < h∗ to happen, no other interval must fit in the white
triangular space centered at i (otherwise FOO-L would cache the interval). 70

4.11 Sketch of the event Z = {hi ≤ z}, which happens with vanishing proba-
bility if z is a constant with respect to M . The times u and v denote the
beginning and the end of the current period where the number of cached
objects is less than h∗ = C/maxk sk, the fewest number of objects that
fit in the cache. We define the set Γ of objects that are requested in (u, i].
If any object in Γ is requested in [i, v), then FOO must cache this object
(green interval). If such an interval exists, hi > z and thus Z cannot
happen. 72

xv List of Figures

4.12 PFOO’s lower bound, PFOO-L, constrains the total resources used over
the full trace (i.e., size × time). PFOO-L claims the hits that require
fewest resources, allowing cached objects to temporarily exceed the cache
capacity. 79

4.13 Starting from FOO’s full formulation, PFOO-U breaks the min-cost flow
problem into overlapping segments. Going left-to-right through the trace,
PFOO-U optimally solves MCF on each segment, and updates link capac-
ities in subsequent segments to maintain feasibility for all cached objects.
The segments overlap to capture interactions across segment boundaries. 80

4.14 The production traces used in our evaluation come from three different
domains (CDNs, WebApps, and storage) and thus exhibit starkly different
request patterns in terms of object sizes (a), object popularities (b), reuse
distances (c), and correlations between the request streams of different
objects. 83

4.15 Execution time of FOO, PFOO, and prior theoretical offline bounds at
different trace lengths. Most prior bounds are unusable above 500K re-
quests. Only PFOO can process real traces with many millions of requests. 85

4.16 Comparison of the maximum approximation error of FOO, PFOO, and
prior offline bounds across five cache sizes on a CDN production trace.
FOO’s upper and lower bounds are nearly identical and PFOO intro-
duces small error, whereas all prior policies have error several orders-of-
magnitude larger. (OPT is assumed to be halfway between FOO-U and
FOO-L, which introduces negligible error due to FOO’s high accuracy.) . 86

4.17 Approximation error of FOO, PFOO, and several prior offline bounds
on four of our eight production traces (Figure 4.18 shows the other four).
FOO and PFOO’s lower and upper bounds are orders of magnitude better
than any other offline bound. (See Figure 4.16.) 87

4.18 Approximation error of FOO, PFOO, and several prior offline bounds
on four of our eight production traces (Figure 4.17 shows the other four).
FOO and PFOO’s lower and upper bounds are orders of magnitude better
than any other offline bound. (See Figure 4.16.) 88

4.19 Miss ratio curves for PFOO vs. LRU, Infinite-Cap, the best prior offline
upper bound, and the best online policy for the first four traces (see
Figure 4.20 for the other four). 89

List of Figures xvi

4.20 Miss ratio curves for PFOO vs. LRU, Infinite-Cap, the best prior offline
upper bound, and the best online policy for the first four traces (see
Figure 4.19 for the other four). 91

5.1 In the OneRF aggregation system at Microsoft, a user request requires ag-
gregating data from various backend services by issuing a series of queries.
The request is only considered to be completed when all subqueries have
finished. 94

5.2 Scatterplot of query latency and popularity. We find that query latency
is neither correlated with popularity or a particular query. 97

5.3 Backend latencies in OneRF production backend systems. 98
5.4 Per-backend system P99 latency over the course of a typical day in the

OneRF production system. 99
5.5 The query rate per backend in the OneRF production system. 100
5.6 Request structure example. This request has 7 queries and fanout 3

(queries three distinct backends). The backend’s batch sizes are 4 (Back-
end 1), 2 (Backend 2), and 1 (Backend 3). 100

5.7 Sketch of RobinHood. 104
5.8 P99 request latency in the latency imbalance microexperiment as a box-

plot: bold black line indicates median, box indicates 25/75-percentiles,
whiskers indicate 10/90-percentiles. 110

5.9 Comparison of the P99 request latency of RobinHood, Shared-Cache, and
By-Latency allocation. 111

5.10 Comparison of the P99 request latency of RobinHood, By-HitRatio, and
By-QueryRate allocation. 112

5.11 P99 request latency in the experiment in Figure 5.9 as a boxplot: bold
black line indicates median, box indicates 25/75-percentiles, whiskers in-
dicate 10/90-percentiles. 113

5.12 Cache allocation of RobinHood during the experiment in Figure 5.9. This
is the total allocation across all 16 aggregation servers. 113

List of Tables

2.1 Historical overview of web caching systems. While many sophisticated
eviction policies combine different properties (indicated by a “+” in the
eviction policy column), there are only two systems (other than Adapt-
Size) that use size-aware admission. The complexity column shows that
systems after 2002 have a constant per-request time complexity, whereas
the complexity of some older systems depends on the number (n) of cached
objects. More recently, several systems introduced concurrent caching sys-
tems. The last column distinguishes between evaluation through research-
based prototypes (implementation) and simulation experiments. 21

2.2 Comparison of FOO and PFOO to prior bounds on OPT with variable
object sizes. Computing OPT is NP-hard. Prior bounds [1–3] provide
only weak approximation guarantees, whereas FOO’s bounds are tight.
PFOO performs well empirically and can be calculated for hundreds of
millions of requests. 22

3.1 The eviction volume of caching systems without admission policy is very
high, independent of the eviction policy. The table shows the result for
LRU and a lower bound for any eviction policy (Any) based purely on
the unique bytes requested in the trace. AdaptSize requires much fewer
evictions, which are a magnitude lower than that of any eviction policy. . 26

3.2 Basic information about our web traces. 37

4.1 Notation for FOO’s min cost flow graph. 54
4.2 Length and object sizes for evaluated traces. 82

5.1 Four key metrics describing the 10 most popular OneRF backends. Query
% describes the percentage of the total number of queries directed to a
given backend. Request % denotes the percentage of requests with at least
one query to the given backend. Batch size describes the average number
of simultaneous queries made to the given backend across requests with
at least one query to that backend. Fanout width describes the average
number of backends queried across requests with at least one query to the
given backend. 101

xvii

List of Tables xviii

List of Abbreviations

AGS Aggregation servers in data centers compile webpages from many
subcomponents by querying backend systems.

Akamai Akamai Technologies Inc. – one of the earliest and largest content
delivery networks (CDN).

BHR The Byte Hit Ratio is the sum of bytes that are served by the cache
divided by the total number of requested bytes.

BMR The Byte Miss Ratio is (1-BHR), i.e., the fraction of missed bytes.

CCP The coupon collector’s problem in probability theory describes the
"collect all coupons and win" contests.

CDF The cumulative distribution function.

CDN A Content Delivery Network consists of a geographically distributed
network of caching servers that quickly answer client requests.)

Che approx. . . The Che approximation is a performance heuristic that allows de-
riving the cache hit ratio under the IRM.

DC The Disk Cache is a large second-level cache in CDN servers.

FastCGI The Fast-Common-Gateway-Interface is a binary protocol for in-
terfacing interactive programs with a web server.

Flash Crowd . . Flash crowds describe exponential spikes in website usage, e.g, when
a website is mentioned in the news.

FOO The Flow-Offline-Optimum algorithm, proposed in this thesis, cal-
culates the optimal cache hit ratio on a given request trace.

GCCP In the generalized CCP, the underlying probability function of coupons
is unconstrained, whereas in the classical CCP, all coupons occur with equal prob-
ability.

xix

List of Abbreviations xx

Hill Climbing . The hill climbing technique is a popular local-search optimization
technique, in which the search algorithm follows the gradient “uphill” towards an
optimization objective.

HOC The Hot Object Cache is the first-level cache in a CDN, it is a small
but very fast in-memory cache.

ILP Integer linear program.

iostat Iostat monitors key parameters of system input/output operations
such as device utilization and queue lengths.

IRM The Independent Reference Model is a popular modeling assump-
tion where caching requests are modeled as independent sampling from a universe
of objects with a static probability distribution defined over the universe.

libcurl The curl library is an open-source client-side HTTP requestor li-
brary.

LRU The Least Recently-Used eviction algorithm assumes that recently-
requested objects are likely to get requested again soon, and thus evict the object
which has been requested the longest time in the past.

MRU The Most Recently-Used eviction algorithm is the opposite of the
LRU algorithm. MRU also denotes the head of the LRU queue, i.e., the most-
recently-requested object.

Mutex Mutual exclusion.

Nginx The Nginx web server is a production system used to serve and
cache HTTP traffic used by large websites and CDNs.)

OHR The Object hit ratio is the number of requests that are served by
the cache divided by the total number of requests.

OMR The Object Miss Ratio is (1 - OHR), i.e., the fraction of cache
misses.

OPT An optimal solution (e.g., the optimal cache hit ratio, or an optimally-
tuned parameter of an adaptive caching system.

xxi List of Abbreviations

Padé approximant The Padé approximant is the ’best’ approximation of a function by
a rational function of given order.

shadow caches . Micro simulation of caches to evaluate different parameters.

SIZE-OPT . . . SIZE-OPT is an offline caching system that continuously optimizes
OHR with knowledge of future requests.

SSE/AVX . . . SIMD optimizations in modern Intel and AMD processors that can
speed up mathematical computations..

tc-netem The traffic control network emulator is an enhancement of the Linux
traffic control facilities to simulate network properties (such as loss).

Threshold . . . There are many thresholds in caching system, e.g., objects are only
admitted with a size less than a certain threshold, or after they’ve been requested
more often than a certain threshold.

TTL A Time-To-Live mechanism limits the lifespan of an object in a
cache.

Varnish The Varnish caching system is a production HTTP caching system
used by large websites and CDNs.

1
Caching and Internet content

delivery

Contents

1.1 Challenges and Motivation . 5

1.1.1 At the CDN level: variability in object sizes and request patterns 5

1.1.2 In the data center: variability in retrieval latency 6

1.2 Research questions and contributions of this thesis 8

1.2.1 How do we build caching systems that optimize hit ratios de-
spite the size variability and changes in request patterns seen
in CDNs? . 8

1.2.2 What is the optimal hit ratio under size variability and how
much further can hit ratios be improved in CDNs? 9

1.2.3 Can we build aggregation caches that balance latency across
different backend systems to minimize request latency in data
centers? . 9

1.3 Thesis outline . 10

1

Chapter 1 Caching and Internet content delivery 2

Being fast really matters. . . half a second delay caused a 20% drop in traffic.
— Marissa Mayer, Google employee #20, in 2008

As observed by Marissa Mayer at Google, and as repeatedly stressed by several other
companies, achieving low latency is a key challenge in Internet content delivery [4–7].
Along the path that requests travel between a user and the server holding the content,
there are two principal sources of high latency. First, latency grows very quickly with
distance [8]. For example, the latency between a user in Australia and the servers of a
content provider in the US (such as Facebook) lies in the hundreds of milliseconds [9].
Second, queries to the servers of content providers are frequently slowed down by exces-
sive queueing of user requests in data centers and backend systems [7].

A key component in fighting this latency has been the de-
ployment of many layers of caching along the path taken by
user requests. Ideally, we can quickly respond to a user re-
quest by delivering the requested data from a cache early on
the request path instead of traversing high-latency parts fur-
ther down the path.

Figure 1.1 outlines a typical path of a user request before
entering a data center. On this path, the user request typically
passes through several caching layers operated by a Content
delivery network (CDN) [10]. CDNs operate caching servers
around the globe such that most users can be served by a
nearby CDN server. For example, a large CDN such as Aka-
mai [11, 12] operates 240,000 servers located in 1,700+ net-
works in 130 countries around the world

As most users can connect to a nearby CDN server, this
part of the path takes only a few tens of milliseconds. Each
CDN server employs two levels of caching: a small but fast
in-memory cache called the Hot Object Cache (HOC) and a
large second-level Disk Cache (DC).

Each requested web object is first looked up in the HOC.
If the object is found in the HOC (cache hit), it can be im-
mediately returned to the user (green path in the figure). A
HOC cache hit leads to the lowest-possible request latency.
The first goal of this dissertation is to maximize the fraction
of user requests served from the HOC.

u
se

r re
q
u
e
st

HOC
(Hot Object

Cache)

ca
ch

e
 h

it

ca
ch

e
 m

iss

DC
(Disk Cache)

ca
ch

e
 h

it

ca
ch

e
 m

iss

(1
5

-4
0

m
s)

(5
 - 1

0
0

m
s)

(1
0

0
m

s - 2
s)

C
D

N
 (C

o
n

te
n
t D

e
liv

e
ry

 N
e
tw

o
rk)

WAN
(World Area Network)

Data Center

Figure 1.1: User request
path (part I).

3

AGS
(Aggregation

Server)

ca
ch

e
 h

it

ca
ch

e
m

is
se

s

(5
0
 - 5

0
0
m

s)

C
o
n
te

n
t

p
ro

v
id

e
r

d
a
ta

 c
e
n
te

r

C
a
ch

e

B
a
ck

e
n
d

 s
y
st

e
m

 5

B
a
ck

e
n
d

 s
y
st

e
m

 4

B
a
ck

e
n
d

 s
y
st

e
m

 3

B
a
ck

e
n
d

 s
y
st

e
m

 2

B
a
ck

e
n
d

 s
y
st

e
m

 1

WAN
(World Area Network)

Figure 1.2: User request
path (part II).

If the object is absent from the HOC (cache miss), then
it is looked up in the DC. As the DC is much larger than
the HOC, it is more likely to find an object there. How-
ever, the DC is also much slower than the HOC and can
add a variable amount of several tens of milliseconds to
the request path.
If the object is also absent in the DC, then the ob-

ject is fetched over the world-area network (WAN) from
the content provider’s data center. Traversing the WAN
and reaching the data center increases the latency by the
hundreds of milliseconds.
Figure 1.2 outlines a typical path of a user request

within a content provider’s data center. As the request
enters the data center, it is first routed to a so-called ag-
gregation server. Most modern websites consist of many
subcomponents and often include personalized content
such as recommendations or advertisement. The aggre-
gation server compiles these subcomponents into the final
website and delivers it back to the user.
For each subcomponent, the aggregation server first

queries its local cache (the aggregation cache). If all sub-
components can be found in the aggregation cache, the
aggregation server can answer a user request within a few
milliseconds.

If any subcomponent is not found in the aggregation cache, the subcomponent has
to be fetched from a backend system such as a machine learning system for recom-
mendations, or such as a database for user data. Querying a backend system is often
compute-intensive and IO-intensive; this step can take several hundreds of milliseconds.
The aggregation server must wait for the slowest backend query, as assembling the web-
site requires all subcomponents to be present at the aggregation server.

Figure 1.3 shows a typical timeline for a request from the aggregation server’s per-
spective. After the request arrives, the aggregation server processes the request and
looks up all components it needs in the aggregation cache. In this case, there are three
backend systems. Of two queries to the first backend system (green), one is found in
the aggregation cache, the other query has to be retrieved from the backend. For the

Chapter 1 Caching and Internet content delivery 4

second backend system (blue), all three queries must be retrieved from the backend;
and for the third (red), two out of three queries have to be retrieved from the backend.
Only once all queries to the backend systems have returned (the slowest is the third
blue query), can the aggregation server continue processing the request and reply to the
user. In the production systems we have analyzed, the total response time is dominated
by the waiting time for queries to the backends. As the aggregation server waits for the
slowest query, queries that return earlier essentially waste resources (green, red). The
second goal of this dissertation is therefore to balance the latency of backend queries to
minimize the overall response time of user requests.

time

request
arrives

request
completed

cache
lookup

wait for queries
to backends processing

2/3 cache misses
go to backend 3

1/3 cache hits for backend 3

1/2 cache hits for backend 1
1/2 cache misses

3/3 cache misses
go to backend 2

go to backend 1

Figure 1.3: Timeline of a request from the perspective of an aggregation server in a data
center at Microsoft.

High-level research question of this thesis. User requests pass through1 three dis-
tinct caching layers: the HOC, the DC, and the aggregation server cache. As every
layer adds significant latency to the request path, we seek to respond to user requests
at the earliest possible layer and as quickly as possible. Unfortunately, we will see that
achieving this goal is very challenging. The central research question of this thesis is:
how we can use these caches most effectively to minimize Internet request latency?
We next introduce two key challenges that complicate the design and operation of

CDN and aggregation caches.

1Note that not all user requests pass through a CDN and not all websites require a large data center.
However, all major websites follow a variant of this design. CDNs already carry the majority of
today’s Internet traffic and are expected to carry almost two thirds by 2020 [13].

5 1.1 Challenges and Motivation

1.1 Challenges and Motivation

The research presented in this thesis is motivated by two classes of variability. Firstly,
variability in object sizes and request patterns in CDN request streams. Seconds, vari-
ability in the retrieval latency, cacheability and request rate of aggregation cache request
streams. We discuss these two types in turn.

1.1.1 At the CDN level: variability in object sizes and request

patterns

CDNs serve multiple traffic classes using a shared server infrastructure. Such classes in-
clude web sites, videos, and interactive applications from thousands of content providers,
each class with its own distinctive object size distributions and request patterns [11].
Figure 1.4 shows the object size distribution of requests served by two Akamai produc-
tion servers (one in the US, the other in Hong Kong).

0

25

50

75

100

1B 1KiB 1MiB 1GiB

Request size

C
D

F

HK
US

Figure 1.4: The cumulative distribution for object sizes in two Akamai production traces
from Hong Kong and the US. Sizes vary by more than nine orders of magni-
tude.

We find that object sizes span more than nine orders of magnitude. This is particularly
challenging for HOCs as their size is very small, e.g., a few GBs on the production servers
we analyze in Chapter 3. In fact, HOCs are tiny when compared to the extent of size
variability: CDNs have consistently observed that the largest objects are often of the
same order of magnitude as the HOC size itself, even as HOC sizes and web objects have
grown over the last decade.

To explain why this is challenging for a HOC, let us consider the limited choices that
are open to a HOC. First, the cache can decide whether or not to admit an object (cache

Chapter 1 Caching and Internet content delivery 6

admission). Second, the cache can decide which object to evict from the cache (cache
eviction) if there is no space for a newly admitted object. Existing caching systems,
both in academia and industry, focus on advanced eviction policies and typically admit
all objects into the cache.
We use a toy example to illustrate the effect of size variability. Imagine that there

are only two types of objects: 9999 small objects of size 100 KiB (say, web pages) and 1
large object of size 500 MiB (say, a software download). Further, assume that all objects
are equally popular and requested forever in round-robin order. Suppose that our HOC
has a capacity of 1 GiB.
A caching system which admits all objects cannot achieve an OHR above 0.5 – inde-

pendently of the eviction policy. Every time the large object is requested, it pushes out
≈5000 small objects. It does not matter which objects are evicted: when the evicted
objects are requested, they cannot contribute any cache hits.
This toy example is illustrative of what happens under real production traffic. We

observe from Figure 1.4 that approximately 5% of objects have a size bigger than 1 MiB.
Every time a cache admits a 1 MiB object, it needs to evict space equivalent to one
thousand 1 KiB objects, which make up about 15% of requests. Again, those evicted
objects will not be able to contribute any future cache hits.
While the academic literature on caching policies is extensive, it focuses on situations

where objects are of the same size and eviction policies are sufficient (see Chapter 2).
This thesis will argue that cache admission policies warrant a much greater focus. For

example, the toy example problem can be resolved using a simple size threshold. If the
HOC admits only objects with a size at most 100 KiB, then it can achieve an OHR of
0.9999 as all small objects stay in the cache. Unfortunately, we will see that request
patterns and size distribution in CDNs change significantly over the course of minutes,
and thus static thresholds perform suboptimally. This problem is further complicated
as we find that simple strategies for dynamically tuning thresholds do not work well (see
Chapter 3).
In summary, we need a new caching system that handles high variability in object sizes

and is robust to changes in the traffic mix as they occur in daily operation, e.g., due to
the CDN’s global load balancer.

1.1.2 In the data center: variability in retrieval latency

Large commercial websites rely on a variety of backend systems such as advertising
systems, recommender systems, databases for transactional data, and key-value stores

7 1.1 Challenges and Motivation

for product listings. To answer a user request, all these backend systems are queried for
data, which is then assembled in the complete webpage. This is the architecture shown
in Figure 1.2 and matches the architecture at Microsoft (see Chapter 5 for more details).
Amazon uses a similar architecture [4].

A major goal in optimizing these data center architectures is to minimize the 99-th
percentile of the request latency [4–7]. As the request latency is defined by the slowest
query to a backend system, minimizing the 99-th percentile requires that the backend
systems’ latencies are approximately equal2. If queries to a backend service A take much
longer than to the other systems, then user requests will always be bottlenecked by A.

0

50

100

150

1 2 3 4 5 6 7 8

Backend id

P
99

 L
at

en
cy

 [m
s]

(a) Latency at 8am

0

100

200

300

400

500

1 2 3 4 5 6 7 8

Backend id

P
99

 L
at

en
cy

 [m
s]

(b) Latency at 11am

0

50

100

150

1 2 3 4 5 6 7 8

Backend id
P

99
 L

at
en

cy
 [m

s]

(c) Latency at 2pm

Figure 1.5: Per-backend tail latency in a Microsoft data center at different times of a day
(in February 2018). We observe that P99 latencies across different backend
systems are highly variable, and the slowest backend system changes over
the course of a few hours.

Figure 1.5 shows backend-query latencies from a production data center at Microsoft.
The figure reveals two import properties. First, P99 latencies between different backend
systems differ by an order of magnitude. For example, in Figure 1.5a, the latency of
backends 3,4, and 8 are at almost 150ms whereas backend 2 is just above 50ms and
backend 6 is at about 10ms. Second, the slowest backend system changes throughout
the day. For example, backend 8 is the slowest system at 8am, backend 3 is the slowest
system at 11am, and backend 4 is the slowest system at 2pm.

While there is much work on balancing load and on automatically scaling backend
systems [15], these approaches do not resolve latency imbalance in practice. The reason

2As not all requests query all backends, and requests can send multiple queries to certain backends the
actual goal significantly more involved, as shown in Chapter 5. We remark that in practice, some
systems do not strictly wait for the slowest request, but instead present the user with lower-quality
data [14]. In such a system, our goal would be to maximize the data quality of user requests.

Chapter 1 Caching and Internet content delivery 8

is that it is often impossible to balance load across different backend systems, which use
specialized software stacks and even sometimes specialized hardware. Additionally, most
backend system are stateful, which makes scaling them very hard. In fact, Microsoft uses
all these approaches in their data centers, and latency imbalance remains a challenge,
as shown in Figure 1.5.
In summary, we need a new way to balance latency across different backend systems

to minimize the request-level latency.

1.2 Research questions and contributions of this

thesis

This thesis addresses the following three research questions motivated by the two types
of variability observed in Internet content delivery systems.

1.2.1 How do we build caching systems that optimize hit ratios

despite the size variability and changes in request patterns

seen in CDNs?

To answer this question, we propose AdaptSize: a high-performance HOC system that
is robust under highly-variable object sizes. AdaptSize’s key idea is to use size-aware
admission (instead of eviction) and to continuously adapt this admission policy to the
request traffic. Our adaption policy is based on a stochastic approximation of the cache
using a Markov model. We present a lock-free implementation of AdaptSize that inte-
grates our model into a CDN production caching system, without limiting the inherent
parallelism of such systems. We also show that AdaptSize significantly improves the hit
ratio and reduces the latency of requests to the overall CDN server.

Contributions to the Internet content delivery research community. AdaptSize
has raised an understanding in CDN operators that admission policies matter and need
to be tuned. We have discussed AdaptSize in talks at Google, Microsoft, Facebook,
and several universities. All of AdaptSize’s source code is available online and has been
widely studied. The CDN of the seventh-largest website in the world, wikipedia.org, has
adapted a variant of AdaptSize into production use in late 2017.

9 1.2 Research questions and contributions of this thesis

1.2.2 What is the optimal hit ratio under size variability and

how much further can hit ratios be improved in CDNs?

To answer this question, we propose Flow-offline optimal (FOO): a new analysis tech-
nique to derive the optimal hit ratio on a given request trace. Deriving the optimal
hit ratio is NP hard, and existing approximation algorithms are both slow and highly
inaccurate. FOO overcomes these limitations thanks to a new representation of optimal
caching as a graph-theoretic flow problem. We prove that, under simple independence
assumptions, FOO’s bounds become asymptotically tight as the number of objects goes
to infinity. We evaluate FOO on eight production traces from CDNs, storage systems,
and data center caches and confirm that FOO’s error is negligible in practice. FOO thus
reveals, for the first time, the limits of caching with variable object sizes.

Contributions to the Internet content delivery research community. Several recent
caching systems (following up on AdaptSize), have further improved hit ratios under
variable object sizes. Many in the system community believe that these recent gains
exhaust the potential for further improvement. This is motivated by the best prior
bounds on optimality, which suggest that there is essentially no room for improvement.
In contrast, our FOO analysis shows that current caching systems are in fact still far
from optimal, suffering 11–43% more cache misses than the optimal policy. Therefore,
we conclude that there is still significant room for improving hit ratios in Internet content
delivery systems.

1.2.3 Can we build aggregation caches that balance latency

across different backend systems to minimize request

latency in data centers?

To answer this question, we propose RobinHood: a new aggregation server caching
system that minimizes the request tail latency. The key observation of RobinHood is
that existing cache-level metrics such as hit ratio, request rate, or latency are insufficient
to decide about the allocation of cache space to backend systems. RobinHood develops
a new decision metric that accurately captures the impact that each backend system has
on the overall tail latency. We implement RobinHood in a cluster with 50 servers in the
public cloud and show that RobinHood’s metric can be retrieved online without overhead
from a production system. Our evaluation with production traces from Microsoft shows

Chapter 1 Caching and Internet content delivery 10

that RobinHood significantly outperforms existing resource allocation strategies and that
RobinHood is robust under load changes across backend systems.

Contributions to the Internet content delivery research community. RobinHood
introduces a new concept to caching research: caches cannot only be used to get fast
responses for hits, but they can also be used to improve the latency of misses (by
balancing load). This concept opens a new research direction in performance modeling:
the intersection between queueing theory and caching analysis. A future quantitative
understanding of this intersection promises a new set of tools to fight latency in data
centers and beyond.

1.3 Thesis outline

The remainder of this thesis is structured as follows:

• Chapter 2 introduces the constraints and goals of caching optimization and dis-
cusses the state of the art in caching systems and performance modeling.

• Chapter 3 introduces AdaptSize and its tuning model, which has also been de-
veloped in several papers [16–18]. This chapter furthermore discusses our imple-
mentation and evaluation setup, and the empirical performance of AdaptSize on
CDN production traces.

• Chapter 4 introduces the FOO representation of optimal caching and proves
that FOO is asymptotically correct. The FOO analysis has been published in
two papers [19, 20]. This chapter furthermore discusses empirical results on the
optimality of FOO and the gap between existing caching systems and the optimal
cache hit ratio.

• Chapter 5 proposes RobinHood caching as a mean to balance load across the
backends of an aggregation server. The RobinHood idea and prototype have been
published in an extended abstract [21] and a paper [22]. This chapter furthermore
discusses our implementation and evaluation setup, and the empirical performance
of RobinHood on data center production traces.

• Chapter 6 concludes this thesis with a review and discussion of future and ongoing
work.

2
Caching system design and analysis

Contents

2.1 Caching System Design Goals 12

2.1.1 Maximizing hit ratios, minimizing miss ratios and latencies. . 12

2.1.2 Robustness against changing request patterns. 13

2.1.3 Low overhead and high concurrency. 14

2.2 State of the art in caching systems 15

2.2.1 Production caching systems. 15

2.2.2 Academic caching systems. 15

2.3 State of the art in cache performance modeling 17

2.4 State of the art in optimal caching 18

2.4.1 OPT with variable object sizes is hard 18

2.4.2 Theoretical bounds on OPT 19

2.4.3 Heuristics used in practice to bound OPT 20

11

Chapter 2 Caching system design and analysis 12

This chapter introduces terminology and design constraints for Internet content caching
systems and discusses the state of the art. Specifically, Section 2.1 discusses the design
goal of building caching systems for CDNs and data centers. Section 2.2 discusses the
state of the art in academic caching systems. Section 2.3 discusses the state of the art
in cache performance modeling and evaluation. And, Section 2.4 discusses the state of
the art in deriving optimal caching decisions and performance bounds.

2.1 Caching System Design Goals

Caches are deployed in many places throughout the Internet and in various places in
computers themselves. These different deployment scenarios lead to a multitude of per-
formance metrics and design constraints. This section introduces key notation, metrics
and constraints that apply to CDN and aggregation caches.
At a high level there are three key design goals: we seek to maximize the hit ratio or

minimize the tail latency, while maintaining a robust and scalable system, and avoiding
adverse side-effects on second-level caches.

2.1.1 Maximizing hit ratios, minimizing miss ratios and latencies.

The classical performance metric in caching system design is the hit ratio, i.e., the
number of requests that are served by the cache divided by the number of total requests.
Conversely, the miss ratio is 1 − hit ratio. As object sizes are variable in CDNs and
aggregation caches, the hit ratio can be measured as either assigning an equal weight to
every request, or as assigning a weight proportional to the size of each requested object.
This leads to four metrics: OHR and OMR (for equal weight) and BHR and BMR (for
weight proportional to size).

Object Hit Ratio (OHR) =
#cache hits
#requests

Object Miss Ratio (OMR) =
#cachemisses

#requests

Byte Hit Ratio (BHR) =
sum of bytes of with cache hits

sum of bytes

Byte Miss Ratio (BMR) =
sum of bytes of with cache misses

sum of bytes

13 2.1 Caching System Design Goals

CDN caches. The HOC’s primary design objective is user performance, which it op-
timizes by providing fast responses for as many requests as possible. A natural way to
measure this objective is the OHR, which gives equal weight to all user requests. An-
other important reason why CDNs focus on OHR in their HOCs is that HOCs are good
at serving small objects, whereas, small objects are a problem for the DC. Specifically,
every HOC cache miss typically requires a random read from the DC (an I/O operation),
which is very slow on the spinning disks typically found in CDN deployments. Thus,
improving the OHR/OMR typically leads to faster responses from the CDN server as
the disk is less busy: if a HOC miss occurs, the DC’s work queue is shorter. In summary,
HOCs in production deployments at Akamai, Fastly [23] and Wikipedia [24], all seek to
maximize the OHR, or minimize the OMR, of the HOC.

The BHR and BMR metric is less relevant to the HOC. While the much larger DC
focuses on the BHR [25], the HOC has little impact on the BHR as it is typically three
orders of magnitude smaller than the DC.

Aggregation caches. While hit ratio variants are an important metric for CDN perfor-
mance, hit ratio is less well defined for the caches in aggregation servers in data centers.
Specifically, as each request requires the results from many subqueries, full requests hits
are rare as query results to all backends need to be in the cache. The key performance
metric instead is the tail latency, which is the request latency at a high percentile such
as the 99-th percentile.

2.1.2 Robustness against changing request patterns.

All caches on the Internet request path are subjected to a variety of traffic changes each
day.

CDN caches. For HOCs, web content popularity changes during the day (e.g., news
in the morning vs. video at night), which includes rapid changes due to flash crowds.
Another source of traffic changes is the sharing of the server infrastructure between
traffic classes. Such classes include web sites, videos, software downloads, and interactive
applications from thousands of content providers [11]. As a shared infrastructure is more
cost effective, a CDN server typically serves a mix of traffic classes. Due to load balancing
decisions, this mix can change abruptly. This poses a particular challenge as each traffic
class has its own distinctive request and object size distribution statistics: large objects
can be unpopular within one hour and popular during the next. A HOC admission

Chapter 2 Caching system design and analysis 14

policy must be able to rapidly adapt to all these changing request patterns to achieve
consistently high OHRs.

Aggregation caches. In data centers there are many sources of variability besides re-
trieval latency (Subsection 1.1.2). As in CDNs, content popularity changes significantly
during the day. Additionally, request rates and request composition are in constant flux.
For example, at Microsoft, news see very high request rates in the morning, and involve
image, text, and advertising backend systems, but typically do not involve the store
catalog backend system. In the evening, xbox.com becomes very popular, which often
involves the store catalog backend system and various recommender systems. Aggrega-
tion server caches must be able to rapidly adapt to all these changing request patterns
to achieve consistently low tail latencies of user requests.

2.1.3 Low overhead and high concurrency.

Caches are deployed on the request path to answer user requests very quickly. Thus,
HOCs and aggregation-server caches needs to both respond quickly to requests and
deliver high throughput. The main bottleneck of a caching system is object lookup,
the admission, and the cache eviction policies. To maintain high throughput, all three
operations must have a small processing overhead, i.e., a constant time complexity per
request. Additionally, almost all caching systems use multiple cores and thus caching
systems must support concurrent implementations. This means that caching operations
must involve as few concurrency locks (e.g., mutexes) as possible, and often aim to be
lock free [26–28]. To maintain high throughput, any changes to the caching system must
not interfere with this design.

CDN caches. In addition to the low overhead and high concurrency requirements, the
HOC must also not impede the performance of the overall CDN server. Specifically,
changes to the HOC must not negatively affect the BHR and disk utilization of the DC.

Aggregation caches. In addition to the low overhead and high concurrency require-
ments, aggregation caches must also not impede the performance of aggregation servers.
Specifically, changes to the aggregation cache must not add significant CPU or network
load.

15 2.2 State of the art in caching systems

2.2 State of the art in caching systems

This section discusses the most widely used types of caching systems and surveys the
academic literature on caching systems.

2.2.1 Production caching systems.

Almost all production systems (both in CDNs and data centers) use a variant of a simple
caching system. Lookups are performed using a hash map or hash tree, which can be
implemented concurrently [29]. There is no admission policy (all objects get admitted
into the cache). The cache evicts the least-recently-used (LRU) object.

The intuition behind the common LRU policy is, that a recently-requested object is
much more likely to get requested that an object from several minutes or hours ago.
LRU is also widely considered to be robust against changes in the request traffic, as it
makes few assumptions on the request pattern. LRU is also easy to implement: a linked
list keeps track of the recency order, where the most-recently-used (MRU) object is kept
at the head, and the LRU object at the tail of the list. Whenever an object is requested,
it’s position is reset to the head. Whenever an object needs to be evicted, LRU picks
the lists’ tail.

In practice, the straightforward LRU implementation is actually very rare. The most
common reason is that list-based implementations of LRU have inherent concurrent
limits due to lock-competition for the head of the list [26–28]. Typical strategies include
not always resetting objects to the LRU head (e.g., if they are not far from the head).
Another strategy is to use a less-fine granular notion of recency which can be kept in a
single lock-free ring buffer [28].

2.2.2 Academic caching systems.

The extensive body on related work on caching is surveyed in Table 2.1. We survey 33
major caching systems that have been proposed in the research literature between 1993
and 2016. We classify these systems in terms of the per-request time complexity, the
eviction and admission policies used, the support for a concurrent implementation, and
the evaluation method.

Not all of the 33 caching systems fulfill the low overhead design goal. Specifically, the
complexity column in Table 2.1 shows that some proposals before 2002 have a computa-
tional overhead that scales logarithmically in the number of objects in the cache, which

Chapter 2 Caching system design and analysis 16

is impractical. The caching systems discussed in this thesis differ from these systems
because they have a constant complexity, and a low synchronization overhead, which we
demonstrated by incorporating our proposals into production caching systems.
Of those caching systems that have a low overhead, almost none (except LRU-S and

Threshold) incorporate object sizes. In particular, these systems admit and evict ob-
jects based only on recency, frequency, or a combination thereof. Our first proposal,
AdaptSize, differs from these systems because it is size aware, which improves the OHR
by 33-46% (as shown in Section 3.6.2).
There are only three low-overhead caching systems that are size aware. Threshold [55]

uses a static size threshold, which has to be determined in advance. The corresponding
Static policy in Section 3.6.3 performs poorly in our experiments. LRU-S [46] uses size-
aware admission, where it admits objects with probability 1/size. Unfortunately, this
static probability is too low3. AdaptSize achieves a 61-78% OHR improvement over
LRU-S (Figures 3.12 and 3.11). The third system [58] also uses a static parameter and
was developed in parallel to AdaptSize. AdaptSize differs from these caching systems
by automatically adapting the size-aware admission parameter over time.
While tuning for size-based admission is entirely new, tuning has been used in other

caching contexts such as tuning for the optimal balance between recency and frequency [18,
39–41,43, 50, 56] and for the allocation of capacity to cache partitions [30, 33, 34, 59]. In
these other contexts, the most common tuning approach is hill climbing with shadow
caches [30, 39–41, 43, 50, 56]. Section 3.1.3 discusses why this approach often performs
poorly when tuning size-aware admission, and Section 3.6 provides corresponding exper-
imental evidence.
Another method involves a prediction model together with a global search algorithm.

The most widely used prediction model is the calculation of stack distances [60–63],
which has been recently used as an alternative to shadow caches [34, 59, 59]. Unfor-
tunately, the stack distance model is not suited to optimizing the parameters of an
admission policy like in AdaptSize, since each admission parameter leads to a different
request sequence and thus a different stack distance distribution that needs to be re-
calculated. The first caching systems proposed in this thesis, AdaptSize, introduces a
new tuning model based on a Markov chain that is very different from existing tuning
models.
While most of these caching systems share our goal of improving the OHR, an or-

thogonal line of research seeks to achieve superior throughput using concurrent cache

3We also tested several variants of LRU-S. We were either confronted with a cache tuning problem

17 2.3 State of the art in cache performance modeling

implementations (compare the concurrent implementation column in Table 2.1). Adapt-
Size also uses a concurrent implementation and achieves throughput comparable to pro-
duction systems (Section 3.6.1). AdaptSize differs from these systems by improving the
OHR – without sacrificing cache throughput.

Our second caching system, RobinHood, differs from all these works, as RobinHood
targets the tail latency of requests that are composed of many subqueries. We are not
aware of prior literature studying this goal in the context of caching systems.

The last column in Table 2.1 shows that most recent caching systems are evaluated
using prototype implementations. Likewise, we evaluate an actual implementation of
AdaptSize of RobinHood through experiments in dedicated and shared data centers.
We additionally use trace-driven simulations to compare to some of those systems that
have only been used in simulations.

2.3 State of the art in cache performance modeling

Online policies such as LRU and its variants are studied extensively in the literature [17,
18, 32, 64–85]. A common theme in the literature is that all these models assume unit-
sized objects and focus on the eviction policy. AdaptSize’s Markov model focuses on
size-aware admission and the performance under variable-sized objects.

Within the class of unit-size-object cache models, there are two major branches.
In the first branch, people have modeled the entire state of the cache, tracking all

objects in the cache and their ordering in the LRU list [64–69, 72, 73, 75, 76]. Classical
works have compared LRU and FIFO (First-in-first-out) and have shown convergence
between FIFO and RND (random eviction): [64] uses a Markov chain of the entire cache
state to model LRU and FIFO, and [65] uses an automaton model of the entire cache
state [65] While these models 100% accurate, subsequent works found the solutions to be
impractical when the number of objects is high, because of a combinatorial state space
explosion. Subsequent work in this branch has thus derived numerical approximation
methods [70,72,73] or relaxed the problem to asymptotic distributions [74–78,86].

In the second branch, people start with a model that is already an approximation and
do not consider the entire state space. A popular method is due to Che et al. [87] and
thus often called the Che approximation. The essential idea in this model is to collapse
the state space to two states per object: either an object is cached (IN), or it is not

with no obvious solution (Section 3.1.3), or (by removing the admission component) with an OHR
similar to LRU.

Chapter 2 Caching system design and analysis 18

(OUT). If an object in the IN state does not receive a request for a certain time, typically
called the characteristic time, then the object is assumed to transition to OUT. If an
OUT state receives a request, is transition to IN.
The intuition behind the Che approximation is that LRU works essentially as a fre-

quency filter: objects, for which two consecutive requests are farther apart that the char-
acteristic time, never receive a cache hit. This intuition has been supported using simula-
tions [87], using mean-field theory analysis [88], an in asymptotic fluid-limit analysis [89].
Recent work has extended this approximation concept to LRU variants [85, 88, 90]. We
remark that none of these models considers variable object sizes and size-aware admis-
sion.

2.4 State of the art in optimal caching

We define OPT as the optimal caching policy for a given cache size and a given trace,
free of algorithm constraints such as the information available to the caching policy.
Specifically, OPT is the offline optimal policy, which is has knowledge of the future and
maximizes OHR (or minimizes OMR, equivalently).
Very little is known about how to efficiently compute OPT with variable object sizes.

On the theory side, the best known approximation algorithms give weak approximation
guarantees and are computationally expensive. On the practical side, system builders
use offline heuristics that are much cheaper to compute, but give no guarantee that they
are close to OPT. This section surveys theoretical results on OPT and offline heuristics
used in practice.

2.4.1 OPT with variable object sizes is hard

While OPT is simple to compute for equal-sized objects [91, 92], computing OPT with
variable object sizes is significantly harder. In fact, this problem has been recently
shown to be strongly NP-complete [93], which means that no fully polynomial-time
approximation scheme (FPTAS) can exist.4

Though caching may seem similar to Bin-Packing or Knapsack, it is quite different
because the trace imposes an order on requests that constrains OPT’s choices in ways
that are not captured by these problems or their variants. In fact, the proof in [93]
is by reduction from Vertex Cover, not Knapsack. Furthermore, unlike Bin-Packing

4The observation that no FPTAS can exist follows from Corollary 8.6 in [94] because OPT meets the
assumptions of Theorem 8.5.

19 2.4 State of the art in optimal caching

and Knapsack variants which can be approximated well for limited (small) object sizes
and costs, computing OPT remains strongly NP-complete even with just three object
sizes [95], and heuristics that work well on Knapsack perform badly in caching (see
below).

2.4.2 Theoretical bounds on OPT

Prior work gives only three polynomial time bounds on OPT [1–3], which vary in time
complexity and approximation guarantee. Table 2.2 summarizes these bounds by com-
paring their asymptotic run-time, how many requests can be calculated in practice (e.g.,
within 24 hrs), and their approximation guarantee.

Albers et al. [1] propose an LP relaxation of OPT and a rounding scheme. Unfortu-
nately, the LP requires N2 variables, which leads to a high Ω(N5.6)-time complexity [96].
Not only is this running time high, but the approximation factor is logarithmic in the
ratio of largest to smallest object (e.g., around 30 on production traces), making this
approach impractical.

Bar et al. [2] propose a general approximation framework (which we call LocalRatio),
which can be applied to the offline caching problem. This algorithm gives the best-known
approximation guarantee, a factor of 4. Unfortunately, this is still a weak guarantee,
as for miss ratio of 0.4, the offline optimal may lie anywhere between 0.1 and 0.4.
Additionally, LocalRatio is a purely theoretical algorithm, with a high running time
of O(N3), and which we believe had not been implemented prior to our work. Our
implementation of LocalRatio can calculate up to 500K requests in 24 hrs, which is only
a small fraction of the length of production traces.

Irani proposes the OFMA approximation algorithm [3], which has O(N2) running
time. This running time is small enough for our implementation of OFMA to run on
small traces. Unfortunately, OFMA achieves a weak approximation guarantee, logarith-
mic in the cache capacity C, and in fact OFMA does badly on our traces, giving much
weaker bounds than simple Belady-inspired heuristics.

Hence, prior work that considers adversarial assumptions yields only weak approxi-
mation guarantees. We therefore turn to stochastic assumptions to obtain tight bounds
on the kinds of traces actually seen in practice. Under independence assumptions, FOO
achieves a tight approximation guarantee on OPT, unlike prior approximation algo-
rithms, and has asymptotically better runtime, specifically O

(
N3/2

)
.

We are not aware of any prior stochastic analysis of offline optimal caching.

Chapter 2 Caching system design and analysis 20

2.4.3 Heuristics used in practice to bound OPT

Since the running times of prior approximation algorithms are too high for production
traces, practitioners have been forced to rely on heuristics that can be calculated more
quickly. However, these heuristics only give upper bounds on OPT and there is no
guarantee on how close to OPT they are.
The simplest offline upper bound is Belady’s algorithm, which evicts the object whose

next use lies furthest in the future. Belady is optimal in caching variants with equal-
sized objects [91,92,97,98]. Even though it has no approximation guarantees for variable
object sizes, it is still widely used in the systems community [36, 99–101]. However,
Belady performs very badly with variable object sizes and is easily outperformed by
state-of-the-art online policies.
A straightforward size-aware extension of Belady is to evict the object with the high-

est cost = object size × next-use distance. We call this variant Belady-Size. Among
practitioners, Belady-Size is widely believed to perform near-optimally, but it has no
guarantees. It falls short on simple examples: e.g., imagine that A is 4MB and is refer-
enced 10 requests hence and never referenced again, and B is 5MB and is referenced 9
and 12 requests hence. With 5MB of cache space, the best choice between these objects
is to keep B, getting two hits. But A has cost = 4 × 10 = 40, and B has cost = 5 × 9
= 45, so Belady-Size keeps A and gets only one hit.
Alternatively, one could use Knapsack heuristics as size-aware offline upper bounds,

such as the density-ordered Knapsack heuristic, which is known to perform well on
Knapsack in practice [102]. We call this heuristic Freq/Size, as Freq/Size evicts the
object with the lowest utility = frequency / size, where frequency is the number of
requests to the object. Unfortunately, Freq/Size also falls short on simple examples:
e.g., imagine that A is 1MB and is referenced 10 requests hence, and B is (as before)
5MB and is referenced 9 and 12 requests hence. With 5MB of cache space, the best
choice between these objects is to keep B, getting two hits. But A has utility = 1 ÷ 1
= 1, and B has utility = 2 ÷ 5 = 0.4, so Freq/Size keeps A and gets only one hit.
Though these heuristics are easy to compute and intuitive, they give no approximation

guarantees. We will show that they are in fact far from OPT on real traces, and PFOO
is a much better bound.

21 2.4 State of the art in optimal caching

Name Year Over-
head

Admission
Policy

Eviction Policy Concur-
rent

Evaluation

Cliffhanger [30] 2016 O(1) none recency no implementation
Billion [26] 2015 O(1) none recency yes implementation
BloomFilter [31] 2015 O(1) frequency recency no implementation
SLRU [32] 2015 O(1) none recency+frequency no analysis
Lama [33] 2015 O(1) none recency no implementation
DynaCache [34] 2015 O(1) none recency no implementation
MICA [27] 2014 O(1) none recency yes implementation
TLRU [35] 2014 O(1) frequency recency no simulation
MemC3 [28] 2013 O(1) none recency yes implementation
S4LRU [36] 2013 O(1) none recency+frequency no simulation
CFLRU [37] 2006 O(1) none recency+cost no simulation
Clock-Pro [38] 2005 O(1) none recency+frequency yes simulation
CAR [39] 2004 O(1) none recency+frequency yes simulation
ARC [40] 2003 O(1) none recency+frequency no simulation
LIRS [41] 2002 O(1) none recency+frequency no simulation
LUV [42] 2002 O(log n) none recency+size no simulation
MQ [43] 2001 O(1) none recency+frequency no simulation
PGDS [44] 2001 O(log n) none recency+frequency+size no simulation
GD* [45] 2001 O(log n) none recency+frequency+size no simulation
LRU-S [46] 2001 O(1) size recency+size no simulation
LRV [47] 2000 O(log n) none frequency+recency+size no simulation
LFU-DA [48,49] 2000 O(1) none frequency no simulation
LRFU [50] 1999 O(log n) none recency+frequency no simulation
PSS [51] 1999 O(log n) frequency frequency+size no simulation
GDS [52] 1997 O(log n) none recency+size no simulation
Hybrid [53] 1997 O(log n) none recency+frequency+size no simulation
SIZE [54] 1996 O(log n) none size no simulation
Hyper [54] 1996 O(log n) none frequency+recency no simulation
Log2(SIZE) [55] 1995 O(log n) none recency+size no simulation
LRU-MIN [55] 1995 O(n) none recency+size no simulation
Threshold [55] 1995 O(1) size recency no simulation
2Q [56] 1994 O(1) frequency recency+frequency no simulation
LRU-K [57] 1993 O(log n) none recency+frequency no implementation

Table 2.1: Historical overview of web caching systems. While many sophisticated evic-
tion policies combine different properties (indicated by a “+” in the eviction
policy column), there are only two systems (other than AdaptSize) that use
size-aware admission. The complexity column shows that systems after 2002
have a constant per-request time complexity, whereas the complexity of some
older systems depends on the number (n) of cached objects. More recently,
several systems introduced concurrent caching systems. The last column dis-
tinguishes between evaluation through research-based prototypes (implemen-
tation) and simulation experiments.

Chapter 2 Caching system design and analysis 22

Technique Time Requests / 24hrs Approximation

OPT NP-hard [93] <1K 1
LP rounding Ω(N5.6) 50K O

(
log

maxi{si}
mini{si}

)
LocalRatio [2] O(N3) 500K 4

OFMA [3] O(N2) 28M O(log C)

FOOa O(N3/2) 28M 1
PFOOb O(N log N) 250M ≈1.06

Notation: N is the trace length, C is the cache capacity, and si is the size of object i.
aFOO’s approximation guarantee holds under independence assumptions.
bPFOO does not have an approximation guarantee but its upper and lower bounds are within 6% on
average on production traces.

Table 2.2: Comparison of FOO and PFOO to prior bounds on OPT with variable object
sizes. Computing OPT is NP-hard. Prior bounds [1–3] provide only weak
approximation guarantees, whereas FOO’s bounds are tight. PFOO performs
well empirically and can be calculated for hundreds of millions of requests.

3
AdaptSize: a size-aware hot object

memory cache

Contents

3.1 Rationale for AdaptSize . 25

3.1.1 Why HOCs need size-aware admission 25

3.1.2 Why size-aware admission needs to be dynamically tuned . . . 26

3.1.3 Why we need a new tuning method 28

3.2 High-level description of AdaptSize 30

3.3 AdaptSize’s Markov chain tuning model 31

3.3.1 The Markov chain approximation model. 31

3.3.2 Deriving the OHR from the Markov chain 32

3.3.3 Accuracy of AdaptSize’s model. 34

3.4 Implementation and integration with a production system . 34

3.4.1 Lock-free statistics collection. 35

3.4.2 Robust and efficient model evaluation. 36

3.4.3 Global search for the optimal c. 36

3.5 Evaluation Methodology . 36

3.5.1 Production CDN request traces 36

3.5.2 Trace-based simulator . 37

3.5.3 Prototype Evaluation Testbed 37

3.6 Empirical Evaluation . 39

3.6.1 Comparison with production systems 39

3.6.2 Comparison with research systems 42

3.6.3 Robustness of alternative tuning methods 43

3.6.4 Side effects of Size-Aware Admission 45

3.7 Summary . 47

23

Chapter 3 AdaptSize: a size-aware hot object memory cache 24

25 3.1 Rationale for AdaptSize

This chapter introduces a new caching system for the Hot Object Cache (HOC) in a
CDN. The main goal of our system, AdaptSize, is to improve the OHR under the huge
amounts of object size variability seen in CDNs (see Section 1.1). AdaptSize is a new
size-aware admission policy that is dynamically adapted to the request traffic. The key
idea of AdaptSize is to use a new Markov model that allows us to continuously pick the
parameters, that optimize the OHR.

This chapter is structured as follows. Section 3.1 discusses the rationale for Adapt-
Size, i.e., why HOCs need size-aware admission policies, why they need to be tune the
parameters of such an admission policy, and why existing tuning methods are inade-
quate. Section 3.2 introduces the high-level design of AdaptSize. Section 3.3 describes
AdaptSize’s tuning model and the underlying approximation ideas. Section 3.4 shows
how AdaptSize is integrated into a production caching system. Section 3.5 discusses our
experimental setup. Section 3.6 discusses the results from our empirical evaluation with
production traces. And, Section 3.7 summarizes the results and ideas introduced in this
chapter.

3.1 Rationale for AdaptSize

The goal of this section is to answer why the HOC needs size-aware admission, why such
an admission policy needs to be adaptively tuned, and why a new approach to parameter
tuning is needed.

3.1.1 Why HOCs need size-aware admission

We recall the toy example from Subsection 1.1.1. There are only two types of objects:
9999 small objects of size 100 KiB (say, web pages) and 1 large object of size 500 MiB
(say, a software download). Further, assume that all objects are equally popular and
requested forever in round-robin order. Suppose that our HOC has a capacity of 1 GiB.

As discussed before, a HOC that does not use admission control cannot achieve an
OHR above 0.5. Every time the large object is requested, it pushes out ≈5000 small
objects. It does not matter which objects are evicted: when the evicted objects are
requested, they cannot contribute to the OHR.

An obvious solution for this toy example is to control admissions via a size threshold.
If the HOC admits only objects with a size at most 100 KiB, then it can achieve an
OHR of 0.9999 as all small objects stay in the cache.

Chapter 3 AdaptSize: a size-aware hot object memory cache 26

System Eviction Volume
HK trace US trace

LRU w/o admission policy 3.4 TB 2.8 TB
Any eviction policy w/o admission policy 1.4 TB 0.9 TB
AdaptSize(Threshold) 27 GB 82 GB

Table 3.1: The eviction volume of caching systems without admission policy is very high,
independent of the eviction policy. The table shows the result for LRU and a
lower bound for any eviction policy (Any) based purely on the unique bytes
requested in the trace. AdaptSize requires much fewer evictions, which are a
magnitude lower than that of any eviction policy.

We experimentally verify the insights taken from our toy example under production
traffic. Using a cache simulator (Section 3.5.2), we record the volume of evictions caused
by LRU on the first 20 million requests of both of our production traces. Additionally,
we record the sum of unique object sizes in the same trace section. This sum serves
as a lower bound for any eviction policy that uses no admission policy: every unique
object is admitted at least once. The results in Table 3.1 shows that on both traces,
LRU evicts several TBs of objects. In comparison, the result for any eviction policy is
about 3x lower, but still very large.

We also record the volume of evictions under a size threshold. Table 3.1 shows that
on both traces, the eviction volume of a size threshold is an order of magnitude below
that of any system that uses no admission policy.

Note that size-aware cache admission boosts the OHR by shielding already admitted
objects fromWe therefore want to implement size-aware admission for production HOCs.
Because high eviction numbers are triggered mainly by large objects, it is not sufficient
to use a purely frequency-based admission policy.

A small cache such as the HOC therefore needs to implement size-aware admission.
AdaptSize is motivated by the high variability of object sizes in CDN request traffic.

3.1.2 Why size-aware admission needs to be dynamically tuned

In contrast to much of the academic research, production systems recognize the fact that
not all objects can be admitted into the HOC. A common approach is to define a static
size threshold and to only admit objects with size below this threshold. Unfortunately,
the static admission policies used in production systems perform sub-optimally for CDN
workloads.

27 3.1 Rationale for AdaptSize

0.0

0.2

0.4

0.6

0.8

1B 1KiB 1MiB 1GiB

Size threshold

O
H

R
OPT

too high

too low

(a) OHR versus threshold.

0

25

50

75

100

Request Size

C
D

F

1B 1KiB 1MiB 1GiB
OPT

80% get
admitted

20%
don't get
admitted

(b) Request size distribution.

Figure 3.1: Experimental results with different size thresholds. (a) A OHR-vs-threshold
curve shows that the Object Hit Ratio (OHR) is highly sensitive to the
size threshold, and that the optimal threshold (red arrow) can significantly
improve the OHR. (b) The optimal threshold admits the requested object
for only 80% of the requests.

0.0

0.2

0.4

0.6

0.8

1B 1KiB 1MiB 1GiB

Size threshold

O
H

R

OPT

(a) Morning: web traffic.

0.0

0.2

0.4

0.6

0.8

1B 1KiB 1MiB 1GiB

Size threshold

O
H

R

OPT

(b) Evening: web/video mix.

Figure 3.2: The optimal size threshold changes significantly over time. (a) In the morn-
ing hours, small objects (e.g., news items) are more popular, which requires
a small size threshold of a few tens of KiBs. (b) In the evening hours, web
traffic gets mixed with video traffic, which requires a size threshold of a few
MiBs.

Figure 3.1a shows how OHR is affected by the size threshold for a production CDN
workload. While the optimal threshold (OPT) almost doubles the OHR compared to
admitting all objects, conservative thresholds that are too high lead to marginal gains,
and the OHR quickly drops to zero for aggressive thresholds that are too low.

Unfortunately, the “best” threshold changes significantly over time. Figures 3.2a
and 3.2b show the OHR as a function of the size threshold at two different times of the
day. Note that the optimal thresholds can vary by as much as two orders of magnitude
during a day. Since no prior method exists for dynamically tuning such a threshold,
companies have resorted to either setting the size admission threshold conservatively
high, or (more commonly) not using size-aware admission at all [23, 24,103].

Chapter 3 AdaptSize: a size-aware hot object memory cache 28

0.0

0.2

0.4

0.6

1B 1KiB 1MiB 1GiB

Size Threshold

O
H

R Trace 1
Trace 2
Trace 3

same
80 %tile
of size

OPT3OPT2
OPT1

Figure 3.3: Experimental results showing that setting the size threshold to a fixed func-
tion does not work. All three traces shown here have the same 80-th size
percentile, but their optimal thresholds differ by two orders of magnitude.

3.1.3 Why we need a new tuning method

We have seen that the parameter of a size-aware admission policy needs to be adapted
over time. The key question when implementing size-aware admission is picking its
parameters.

We explore three canonical approaches for tuning a size threshold. These approaches
are well-known in prior literature and have been applied in other contexts (unrelated
to the tuning of size thresholds). However, we show that these known approaches are
deficient in our context, motivating the need for AdaptSize’s new tuning mechanism.

Tuning based on request size percentiles. A common approach used in many
contexts (e.g., capacity provisioning) is to derive the required parameter as some function
of the request size distribution and arrival rate. A simple way of using this approach
in our context is to set the size threshold for cache admission to be a fixed percentile
of the object size distribution. However, for production CDN traces, there is no fixed
relationship between the percentiles of the object size distribution and optimal size
threshold that maximizes the OHR. In Figure 3.1, the optimal size threshold lands on
the 80-th percentile request size. However, in Figure 3.3, note that all three traces
have the same 80-th percentile but very different optimal thresholds. In fact, we found
many examples of multiple traces that agree on all size percentiles and yet have different
optimal size thresholds. The reason is that for maximizing OHR it matters whether the
number of requests seen for a specific object size come from one (very popular) object
or from many (unpopular) objects. This information is not captured by the request size
distribution.

Tuning via hill climbing and shadow caches. A common tool for the tuning of
caching parameters is the use of shadow caches. For example, in the seminal paper on
ARC [40], the authors tune their eviction policy to have the optimal balance between

29 3.1 Rationale for AdaptSize

recency and frequency by using a shadow cache (see Section 2.2). A shadow cache is a
simulation which is run in real time simultaneously with the main (implemented) cache,
but using a different parameter value than the main cache. Hill climbing then adapts the
parameter by comparing the hit ratio achieved by the shadow cache to that of the main
cache (or another shadow cache). In theory, we could exploit the same idea to set our
size-aware admission threshold. Unfortunately, when we tried this, we found that the
OHR-vs-threshold curves are not concave and that they can have several local optima,
in which the hill climbing gets frequently stuck. Figure 3.2b shows such an example, in
which the local optima result from mixed traffic (web and video). Consequently, we will
demonstrate experimentally in Section 3.6.3 that hill climbing is suboptimal. AdaptSize
achieves an OHR that is 29% higher than hill climbing on average and 75% higher
in some cases. We tried adding more shadow caches, and randomizing the evaluated
parameters, but could not find a robust variant that consistently optimized the OHR
across multiple traces5.

In conclusion, our extensive experiments show that tuning methods like shadow caches
with hill climbing are simply not robust enough for the problem of size-aware admission
with CDN traffic.

Avoiding tuning by using probabilistic admission. One might imagine that
the difficulty in tuning the size threshold lies in the fact that we are limited to a single
strict threshold. The vast literature on randomized algorithm suggests that probabilistic
parameters are more robust than deterministic ones [104]. We attempted to apply this
idea to size-aware tuning by considering probabilistic admission policies, which “favor
the smalls” by admitting them with high probability, whereas large objects are admitted
with low probability. We chose a probabilistic function that is exponentially decreasing
in the object size (e−size/c). Unfortunately, the parameterization of the exponential
curve (the c) matters a lot – and it’s just as hard to find this c parameter as it is
to find the optimal size threshold. Furthermore, the best exponential curve (the best
c) changes over time. In addition to exponentially decreasing probabilities, we also
tried inversely proportional (admission probability c/size), linear (admission probability
c−size/max(size)), and log-linear (admission probability c−log(size)/ log(max(size))),
and several other variants. Unfortunately, none of these variants resolves the problem
that there is at least one parameter without an obvious way how to choose it.

In conclusion, even randomized admission control requires the tuning of some param-
eter.

5While there are many complicated variants of shadow-cache search algorithms, they all rely on a

Chapter 3 AdaptSize: a size-aware hot object memory cache 30

Figure 3.4: AdaptSize system overview.

3.2 High-level description of AdaptSize

AdaptSize is a HOC caching system based on a lightweight and near-optimal tuning
method for size-aware cache admission.
Figure 3.4 shows a high-level description of AdaptSize. When requests enter the HOC,

AdaptSize gathers aggregate statistics on the request popularity and size distribution.
These statistics are fed into our model, which predicts the OHR of different parameter
choices. We derive the optimal parameter from this model and enforce the parameter
as an admission policy.
AdaptSize admits objects with probability e−size/c and evicts objects using a con-

current variant of LRU [105]. Observe that the function e−size/c is biased in favor of
admitting small sizes with higher probability.

Why a probabilistic admission function? The simplest size-based admission policy
is a deterministic threshold c where only objects with a size < c are admitted. However,
a probabilistic admission function, like e−size/c, is more flexible: objects greater than
c retain a low but non-zero admission probability, which results in eventual admission
for popular objects (but not for unpopular ones). In this way, probabilistic admission
functions incorporate both object size and popularity — without the need for additional
data structures that keep track of object requests counts [31]. In our experiments e−size/c

consistently achieves a 10% higher OHR than the best deterministic threshold.

What parameter c does AdaptSize use in the e−size/c function? AdaptSize’s tuning
policy recomputes the optimal c every ∆ requests. A natural approach is to use hill-
climbing with shadow caches to determine the optimal c parameter. Unfortunately,
that leads to a myopic view in that only a local neighborhood of the current c can be
searched. This leads to sub-optimal results, given the non-convexities present in the

fundamental assumption of stationarity, which does not need to apply to web traffic.

31 3.3 AdaptSize’s Markov chain tuning model

OHR-vs-c curve (Figure 3.2). By contrast, we derive a full Markov chain model of the
cache. This model allows AdaptSize to view the entire OHR-vs-c curve and perform a
global search for the optimal c. The challenge of the Markov model approach is in devising
an algorithm for finding the solution quickly and in incorporating that algorithm into a
production system.

In the following, we describe the derivation of AdaptSize’s Markov model (Section 3.3),
and how we incorporate AdaptSize into a production system (Section 3.4).

3.3 AdaptSize’s Markov chain tuning model

To find the optimal c, AdaptSize uses a novel Markov chain model, which differs sig-
nificantly from existing cache models. Traditionally, people have modeled the entire
state of the cache, tracking all objects in the cache and their ordering in the LRU
list [64–69, 72, 73, 75, 76]. While this is 100% accurate, it also becomes completely in-
feasible when the number of objects is high, because of a combinatorial state space
explosion.

AdaptSize instead creates a separate Markov chain for each object (cf. Figure 3.5).
Each object’s chain tracks its position in the LRU list (if the object is in the cache), as
well as a state for the possibility that the object is out of the cache. Using an individual
Markov chain greatly reduces the model complexity, which now scales linearly with the
number of objects, rather than exponentially in the number of objects.

3.3.1 The Markov chain approximation model.

Figure 3.5 shows the Markov chain for the ith object. The chain has two important
parameters. The first is the rate at which object i is moved up to the head of the LRU
list, due to accesses to the object. We get the “move up” rate, ri, by collecting aggregate
statistics for object i during the previous ∆ time interval. The second parameter is the
average rate at which object i is pushed down the LRU list. The “pushdown” rate, µc,
depends on the rate with which any object is moved to the top of the LRU list (due to a
hit, or after cache admission). As it does not matter which object is moved to the top,
µc is approximately the same for all objects [88]. So, we consider a single “pushdown”
rate for all objects. We calculate µc by solving an equation that takes all objects into
account, and thus captures the interactions between all the objects6. Specifically, we

6Mean-field theory [106] provides analytical justification for why it is reasonable to assume a single
average pushdown rate, when there are thousands of objects (as in our case).

Chapter 3 AdaptSize: a size-aware hot object memory cache 32

Figure 3.5: AdaptSize’s Markov chain model for object i represents i’s position in the
LRU list and the possibility that the object is out of the cache. Each object is
represented by a separate Markov chain, but all Markov chains are connected
by the common “pushdown” rate µc. Solving these models yields the OHR
as a function of c.

find µc by solving an equation that says that the expected size of all cached objects
can’t exceed the capacity K that is actually available to the cache:

N∑
i=1

P [object i in cache] si = K . (3.1)

Here, N is the number of all objects observed over the previous ∆ interval, and si is
the size of object i. Note that P [object i in cache] is a monotonic function in terms of
µc, which leads to a unique solution.

3.3.2 Deriving the OHR from the Markov chain

We seek to find P [object i in cache] as a function of c by solving for the limiting prob-
abilities of all “in” states in Figure 3.5. We first derive these limiting probabilities and
then obtain the OHR as a function of c in closed form.

Limiting probabilities of “in” states.

The key challenge when solving this chain is that the length of the LRU list changes
over time. We solve this by using a mathematical convergence result [89].

We consider a fixed object i, and a fixed size-aware admission parameter c. Let `
denote the length of the LRU list. Now the Markov chain has `+ 1 states: one for each
position in the list and one to represent the object is out of the cache, as shown below:

33 3.3 AdaptSize’s Markov chain tuning model

Figure 3.6: The modified Markov chain for AdaptSize with a length of the LRU list, `.

Over time, ` changes as either larger or small objects populate the cache. However,
what remains constant is the expected time for an object to get evicted (if it is not
requested again) as this time only depends on the overall admission rate (i.e. the size-
aware admission parameter c), which is independent of `. Using this insight, we modify
the Markov chain to increase the push-down rate µc by a factor of `: now, the expected
time to traverse from position 1 to `+ 1 (without new requests) is constant at 1/µc.

We now solve the Markov chain for a fixed ` and obtain the limiting probability πi of
each position i ∈ {0, . . . , `, `+1}. Using the πi, we can now derive the limiting probability
(as time → ∞) of being “in” the cache, πin =

∑`
i=0 πi, which can be algebraically

simplified to:

πin = 1−

(
`

`+ri/µc

)`
e−si/c +

(
`

`+ri/µc

)`
− e−si/c

(
`

`+ri/µc

)`
We observe that the πin quickly converges in `; numerically, convergence happens

around ` > 100. In our simulations, the cache typically holds many more objects
than 100, simultaneously. Therefore, it is reasonable to always use the converged result
` → ∞. We formally solve this limit for πin and obtain the closed-form solution of the
long-term probability that object i is present in the cache, as stated in Theorem 3.3.1.

The convergence (which we only verified numerically) can be formally proven in the
fluid limit as objects are further and further divided into smaller parts (or, equivalently,
the cache size becomes large) [89]. Specifically, [89] shows that the time it takes an
object to get from position 1 to `+ 1 (if there are no further requests to it) converges to
a constant in a LRU cache. As AdaptSize’s only difference is a thinning-out of the LRU
request stream (through size-aware admission), our final result only slightly differs from
the model in [89].

We obtain the following equation for the limiting probabilities.

Chapter 3 AdaptSize: a size-aware hot object memory cache 34

Theorem 3.3.1

P [object i in cache] =
(eri/µc − 1) · e−c·si

1 + (eri/µc − 1) · e−c·si

Note that the size admission parameter c affects both the admission probability (e−si/c)
and the pushdown rate (µc). For example, a lower c results in fewer admissions, which
results in fewer evictions, and in a smaller pushdown rate.

The OHR as a function of c. Theorem 3.3.1 and Equation (3.1) yield the OHR
by observing that the expected number of hits of object i equals ri (i’s average request
rate) times the long-term probability that i is in the cache. The OHR predicted for the
threshold parameter c is then simply the ratio of expected hits to requests:

OHR(c) =

∑N
i=1 ri P [object i in cache]∑N

i=1 ri
.

If we consider a discretized range of c values, we can now compute the OHR for each
c in the range which gives us a “curve” of OHR-vs-c (similar to the curves in Figure 3.7).

3.3.3 Accuracy of AdaptSize’s model.

Our Markov chain relies on several simplifying assumptions that can potentially impact
the accuracy of the OHR predictions. Figure 3.7 shows that AdaptSize’s OHR equation
matches experimental results across the whole range of the threshold parameter c on two
typical traces of length ∆. In addition, we continuously compared AdaptSize’s model
to measurements during our experiments (Section 3.6). AdaptSize is very accurate with
an average error of about 1%.

3.4 Implementation and integration with a

production system

We implemented AdaptSize on top of Varnish [107, 108], a production caching system,
by modifying the miss request path. On a cache miss, Varnish accesses the second-level
cache to retrieve the object, and places it in its HOC. With AdaptSize, the probabilistic
admission decision is executed, which is evaluated independently for all cache threads

35 3.4 Implementation and integration with a production system

●● ●

●
●

●
●●●

●
●●●●●

0.0

0.2

0.4

0.6

0.8

1B 1KiB 1MiB 1GiB

Size admission parameter c

O
H

R
●

(a) HK trace

●●
●
●●

●●●●●
●
●●●●

0.0

0.2

0.4

0.6

0.8

1B 1KiB 1MiB 1GiB

Size admission parameter c

●

O
H

R

(b) US trace

Figure 3.7: AdaptSize’s Markov model predicts the OHR sensitivity curve (red solid
line). This is very accurate when compared to the actual OHR (black dots)
that results when that threshold is chosen. Each experiment involves a por-
tion of the production trace of length ∆ = 250K.

and adds a constant number of instructions to the request path. If the object is not
admitted, it is served from Varnish’s transient memory.

Our implementation uses a parameter ∆ which is the size of the window of requests
over which our Markov model for tuning is computed. In addition to statistics from
the current window, we also incorporate the statistical history from prior windows via
exponential smoothing, which makes AdaptSize more robust and largely insensitive to
∆ on both of our production traces. In our experiments, we choose ∆=250K requests
(about 5-10 mins on average), which allows AdaptSize to react quickly to changes in the
request traffic.

We describe three key implementation challenges: how to gather statistics in a con-
current implementation, how to efficiently implement our math model, and how to use
our math model to find the optimal c.

3.4.1 Lock-free statistics collection.

A key problem in implementing AdaptSize lies in efficient statistics collection for the
tuning model. Gathering request statistics can add significant overhead to concurrent
caching designs [59]. Varnish and AdaptSize use thousands of threads in our experiments,
so centralized request counters would cause high lock contention. In fact, we find that
Varnish’s throughput bottleneck is lock contention for the few remaining synchronization
points (e.g., [105]).
Instead of a central request counter, AdaptSize hooks into the internal data structure

of the cache threads. Each cache thread keeps debugging information in a concurrent
ring buffer, to which all events are simply appended (overwriting old events after some
time). AdaptSize’s statistics collection frequently scans this ring buffer (read only) and
does not require any synchronization.

Chapter 3 AdaptSize: a size-aware hot object memory cache 36

3.4.2 Robust and efficient model evaluation.

The OHR prediction in our statistical model involves two more implementation chal-
lenges. The first challenge lies in efficiently solving equation (3.1). We achieve a con-
stant time overhead by using a fixed-point solver [109]. The second challenge is due to
the exponential function in the Theorem 3.3.1. The value of the exponential function
outgrows even 128-bit float number representations. We solve this problem by using an
accurate and efficient approximation for the exponential function using a Padé approx-
imant [110] that only uses simple float operations which are compatible with SSE/AVX
vectorization, speeding up the model evaluation by about 10-50× in our experiments.

3.4.3 Global search for the optimal c.

Once we have the input data and the model, we are capable of producing an OHR-vs-c
plot within each ∆ interval. To search for the optimal c, we use a systematic sampling
of the search space combined with a local search method (as suggested in [111]). The
systematic sampling uses logarithmic step sizes (1B-2B, 2B-4B, etc.) and starts in
parallel from the smallest (c =1B) and largest threshold parameter (c =cache capacity).
The local search method is a text book approach, golden section search, with the default
parameters [112].
At the end of the parameter search step, we have found the threshold parameter that

maximizes the OHR for each ∆ interval.

3.5 Evaluation Methodology

We evaluate AdaptSize using both trace-based simulations (Section 3.5.2) and a Varnish-
based implementation (Section 3.5.3) running on our experimental testbed. For both
these approaches, the request load is derived from traces from Akamai’s production CDN
servers (Section 3.5.1).

3.5.1 Production CDN request traces

We collected request traces from two production CDN servers in Akamai’s global net-
work. Table 3.2 summarizes the main characteristics of the two traces. Our first trace is
from urban Hong Kong (HK trace). Our second trace is from rural Tennessee, in the
US, (US trace). Both span multiple consecutive days, with over 440 million requests

37 3.5 Evaluation Methodology

HK trace US trace
Total Requests 450 million 440 million
Total Bytes 157.5 TiB 152.3 TiB

Unique Objects 25 million 55 million
Unique Bytes 14.7 TiB 8.9 TiB
Start Date Jan 29, 2015 Jul 15, 2015
End Date Feb 06, 2015 Jul 20, 2015

Table 3.2: Basic information about our web traces.

per trace during the months of February and July 2015. Both production servers use a
HOC of size 1.2 GiB and several hard disks as second-level caches. They serve a traf-
fic mix of several thousand popular web sites, which represents a typical cross section
of the web (news, social networks, downloads, ecommerce, etc.) with highly variable
object sizes. Some content providers split very large objects (e.g., videos) into smaller
(e.g., 2 MiB) chunks. The chunking approach is accurately represented in our request
traces. For example, the cumulative distribution function shown in Figure 1.4 shows a
noticeable jump around the popular 2 MiB chunk size.

3.5.2 Trace-based simulator

We implemented a cache simulator in C++ that incorporates AdaptSize and several
state-of-the-art research caching policies. The simulator is a single-threaded implemen-
tation of the admission and eviction policies and performs the appropriate cache actions
when it is fed the CDN request traces. Objects are only stored via their ids and the
HOC size is enforced by a simple check on the sum of bytes currently stored. While
actual caching systems (such as Varnish [105,113]) use multi-threaded concurrent imple-
mentations, our single-threaded simulator provides a good approximation of the OHR
when compared with our prototype implementations that we describe next.

3.5.3 Prototype Evaluation Testbed

Our implementation testbed is a dedicated (university) data center consisting of a client
server, an origin server, and a CDN server that incorporates the HOC. We use FUJITSU
CX250 HPC servers, which run RHEL 6.5, kernel 2.6.32 and gcc 4.4.7 on two Intel E5-
2670 CPUs with 32 GiB RAM and an IB QDR networking interface.

7We refer to AdaptSize incorporated into Varnish as “AdaptSize” and Varnish without modifications
as “Varnish”.

Chapter 3 AdaptSize: a size-aware hot object memory cache 38

SIZE-OPT

AdaptSize

Nginx

Varnish

0.0 0.2 0.4 0.6
Object Hit Ratio

+91%
+48%

(a) HK.

SIZE-OPT

AdaptSize

Nginx

Varnish

0.0 0.2 0.4 0.6 0.8
Object Hit Ratio

+47%
+30%

(b) HK.

Figure 3.8: Comparison of AdaptSize’s implementation to the Varnish and Nginx pro-
duction systems and SIZE-OPT. (a) On the HK trace, AdaptSize improves
the OHR by 48-91% over the production systems and achieves 95% of the
OHR of SIZE-OPT. (b) On the US trace, AdaptSize improves the OHR
by 30-47% over the production systems and achieves 99% of the OHR of
SIZE-OPT.

In our evaluation, the HOC on our CDN server is either running Nginx, Varnish, or
AdaptSize. Recall that we implemented AdaptSize by adding it to Varnish7 as described
in Section 3.4. We use Nginx 1.9.12 (February 2016) with its build-in frequency-based
admission policy. This policy relies on one parameter: how many requests need to be
seen for an object before being admitted to the cache. We use an optimized version of
Nginx, since we have tuned its parameter offline for both traces. We use Varnish 4.1.2
(March 2016) with its default configuration that does not use an admission policy.
The experiments in Section 3.6.1, 3.6.2, and 3.6.3 focus on the HOC and do not

use a DC. The DC in Section 3.6.1 uses Varnish in a configuration similar to that of
the Wikimedia Foundation’s CDN [24]. We use four equal dedicated 1 TB WD-RE3
7200 RPM 32 MiB-Cache hard disks attached via a Dell 6 Gb/s SAS Host Bus Adapter
Card in raw mode (RAID disabled).
The client fetches content specified in the request trace from the CDN server using

libcurl. The request trace is continuously read into a global queue, which is distributed
to worker threads (client threads). Each client thread continually requests objects in
a closed-loop fashion. We use up to 200 such threads and verified that the number of
client threads has a negligible impact on the OHR.
If the CDN server does not have the requested content, it is fetched from the origin

server. Our origin server is implemented in FastCGI. As it is infeasible to store all trace
objects (23 TB total) on the origin server, our implementation creates objects with the
correct size on the fly before sending them over the network. In order to stress test
our caching implementation, the origin server is highly multi-threaded and intentionally
never the bottleneck.

39 3.6 Empirical Evaluation

3.6 Empirical Evaluation

This section presents our empirical evaluation of AdaptSize. We divide our evaluation
into three parts. In Section 3.6.1, we compare AdaptSize with production caching sys-
tems, as well as with an offline caching system called SIZE-OPT that continuously opti-
mizes OHR with knowledge of future requests. While SIZE-OPT is not implementable
in practice. it provides an upper bound on the achievable OHR to which AdaptSize can
be compared. In Section 3.6.2, we compare AdaptSize with research caching systems
that use more elaborate eviction and admission policies. In Section 3.6.3, we evaluate
the robustness of AdaptSize by emulating both randomized and adversarial traffic mix
changes. In Section 3.6.4, we evaluate the side-effects of AdaptSize on the overall CDN
server.

3.6.1 Comparison with production systems

We use our experimental testbed outlined in Section 3.5.3 and answer four basic questions
about AdaptSize.

What is AdaptSize’s OHR improvement over production systems? Quick
answer: AdaptSize improves the OHR by 47-91% over Varnish and by 30-48% over
Nginx. We compare the OHR of AdaptSize to Nginx and Varnish using the 1.2 GiB
HOC configuration from the corresponding Akamai production servers (Section 3.5.1).
For the HK trace (Figure 3.8b), we find that AdaptSize improves over Nginx by 30%
and over Varnish by 47%. For the US trace (Figure 3.8a), the improvement increases to
48% over Nginx and 91% over Varnish.

The difference in the improvement over the two traces stems from the fact that the
US trace contains 55 million unique objects as compared to only 25 million unique
objects in the HK trace. We further find that AdaptSize improves the OHR variability
(the coefficient of variation) by 1.9× on the HK trace and by 3.8× on the US trace
(compared to Nginx and Varnish).

How does AdaptSize compare with SIZE-OPT? Quick answer: for the typi-
cal HOC size, AdaptSize achieves an OHR within 95% of SIZE-OPT. We benchmark
AdaptSize against the SIZE-OPT policy, which tunes the threshold parameter c using
a priori knowledge of the next one million requests. Figures 3.8a and 3.8b show that
AdaptSize is within 95% of SIZE-OPT on the US trace, and within 99% of SIZE-OPT
on the HK trace, respectively.

Chapter 3 AdaptSize: a size-aware hot object memory cache 40

0.0

0.2

0.4

0.6

0.8

512MiB 2GiB 8GiB 32GiB

HOC size

SIZE-OPT
AdaptSize
Nginx
Varnish

O
H

R

(a) HK trace

0.0

0.2

0.4

0.6

512MiB 2GiB 8GiB 32GiB

HOC size

O
H

R

SIZE-OPT
AdaptSize
Nginx
Varnish

(b) US trace

Figure 3.9: Comparison of AdaptSize to SIZE-OPT, Varnish, and Nginx when scaling
the HOC size under the production server traffic of two 1.2 GiB HOCs.
AdaptSize always stays close to SIZE-OPT and significantly improves the
OHR for all HOC sizes.

How much is AdaptSize’s performance affected by the HOC size? Quick
answer: AdaptSize’s improvement over production caching systems becomes greater for
smaller HOC sizes and decreases for larger HOC sizes. We consider the OHR when
scaling the HOC size between 512 MiB and 32 GiB under the production server traffic
of a 1.2 GiB HOC. Figures 3.9a and 3.9b shows that the performance of AdaptSize is
close to SIZE-OPT for all HOC sizes. The improvement of AdaptSize over Nginx and
Varnish is most pronounced for HOC sizes close to the original configuration. As the
HOC size increases, the OHR of all caching systems improves, since the HOC can store
more objects. This leads to a smaller relative improvement of AdaptSize for a HOC size
of 32 GiB: 10-12% over Nginx and 13-14% over Varnish.

How much is AdaptSize’s performance affected when jointly scaling up
HOC size and traffic rate? Quick answer: AdaptSize’s improvement over production
caching systems remains constant for larger HOC sizes. We consider the OHR when
jointly scaling the HOC size and the traffic rate by up 128x (153 GiB HOC size). This
is done by splitting a production trace into 128 non-overlapping segments and replaying
all 128 segments concurrently. We find that the OHR remains approximately constant
as we scale up the system, and that AdaptSize achieves similar OHR improvements as
under the original 1.2 GiB HOC configuration.

What about AdaptSize’s overhead? Quick answer: AdaptSize’s throughput is
comparable to existing production systems and AdaptSize’s memory overhead is reason-
ably small. AdaptSize is built on top of Varnish, which focuses on high concurrency and

41 3.6 Empirical Evaluation

0

10

20

0 100 200 300
Concurrency (# client threads)

T
hr

ou
gh

pu
t (

G
bp

s)

AdaptSize
Varnish

(a) 100% OHR scenario.

0

5

10

0 100 200 300
Concurrency (# client threads)

T
hr

ou
gh

pu
t (

G
bp

s)

AdaptSize
Varnish

(b) 0% OHR scenario.

Figure 3.10: Comparison of the throughput of AdaptSize and Varnish in micro experi-
ments with (a) 100% OHR and (b) 0% OHR. Scenario (a) stress tests the
hit request path and shows that there is no difference between AdaptSize
and Varnish. Scenario (b) stress tests the miss request path (every request
requires an admission decision) and shows that the throughput of AdaptSize
and Varnish is very close (within confidence intervals).

simplicity. In Figure 3.10, we compare the throughput (bytes per second of satisfied re-
quests) of AdaptSize to an unmodified Varnish system. We use two micro experiments.
The first benchmarks the hit request path (100% OHR scenario), to verify that there
is indeed no overhead for cache hits (see section 3.4). The second benchmarks the miss
request path (0% OHR scenario), to assess the worst-case overhead due to the admission
decision.

We replay one million requests and configure different concurrency levels via the num-
ber of client threads. Note that a client thread does not represent an individual user
(Section 3.5.3). The results are based on 50 repetitions.

Figure 3.10a shows that the application throughput of AdaptSize and Varnish are
indistinguishable in the 100% OHR scenario. Both systems achieve a peak throughput
of 17.5 Gb/s for 50 clients’ threads. Due to lock contention, the throughput of both
systems decreases to around 15 Gb/s for 100-300 clients’ threads. Figure 3.10b shows
that the application throughput of both systems in the 0% OHR scenario is very close,
and always within the 95% confidence interval.

The memory overhead of AdaptSize is small. The memory overhead comes from the
request statistics needed for AdaptSize’s tuning model. Each entry in this list describes
one object (size, request count, hash), which requires less than 40 bytes. The maxi-
mum length of this list, across all experiments, is 1.5 million objects (58 MiB), which
also agrees with the memory high water mark (VmHWM) reported by the Kernel for
AdaptSize’s tuning process.

Chapter 3 AdaptSize: a size-aware hot object memory cache 42

3.6.2 Comparison with research systems

We have seen that AdaptSize performs very well against production systems. We now
ask the following.
How does AdaptSize compare with research caching systems, which involve

more sophisticated admission and eviction policies? Quick answer: AdaptSize
improves by 33-46% over state-of-the-art research caching system. We use the simulation
evaluation setup explained in Section 3.5.2 with eight systems from Table 2.1, which are
selected with the criteria of having an efficient constant-time implementation. Four
of the eight systems use a recency and frequency trade-off with fixed weights between
recency and frequency. Another three systems (ending with “++”) use sophisticated
recency and frequency trade-offs with variable weights, which we hand-tuned to our
traces to create optimistic variants8. The remaining system is LRU-S [46], which uses
size-aware eviction and admission with static parameters.

Figure 3.11: Comparison of AdaptSize to state-of-the-art research caching systems. Most
of these are sophisticated admission and eviction policies that combine re-
cency and frequency (striped blue bars). LRU-S is the only system – besides
AdaptSize – that incorporates size. AdaptSize improves the OHR by 33%
over the next best system. Policies annotated by “++” are optimistic, be-
cause we offline-tuned their parameters to the trace. These results are for
the HK trace; corresponding results for the US trace are shown in Fig-
ure 3.12.

Figure 3.11 shows the simulation results for a HOC of size 1.2 GiB on the HK trace.
We find that AdaptSize achieves a 33% higher OHR than the second best system, which
is SLRU++. Figure 3.12 shows the simulation results for the US trace. AdaptSize
achieves a 46% higher OHR than the second best system, which is again SLRU++.
Note that SLRU’s performance heavily relies on offline parameters as can be seen by

8There are self-tuning variants of recency-frequency trade-offs such as ARC [40]. Unfortunately, we
could not test ARC itself, because its learning rule relies on the assumption of unit-sized object sizes.

43 3.6 Empirical Evaluation

Figure 3.12: Comparison of AdaptSize to state-of-the-art research caching systems. Most
of these use sophisticated admission and eviction policies that combine re-
cency and frequency (striped blue bars). AdaptSize improves the OHR by
46% over the next best system. Policies annotated by “++” are optimistic,
because we offline-tuned their parameters to the trace. These results are
for the US trace and a HOC size 1.2 GiB.

the much smaller OHR of S4LRU, which is a static-parameter variant of SLRU. In
contrast, AdaptSize achieves its superior performance without needing offline parameter
optimization. In conclusion, we find that AdaptSize’s policies outperform sophisticated
eviction and admission policies, which do not depend on the object size.

3.6.3 Robustness of alternative tuning methods

0.4

0.6

0.8

6pm 7pm 8pm 9pm 10pm

O
H

R

web/videoweb

Time

AdaptSize

Static

HillClimb

Figure 3.13: Comparison of AdaptSize, threshold tuning via hill climbing and shadow
caches (HillClimb), and a static size threshold (Static) under a traffic mix
change from only web to mixed web/video traffic. While AdaptSize quickly
adapts to the new traffic mix, HillClimb gets stuck in a suboptimal config-
uration, and Static (by definition) does not adapt. AdaptSize improves the
OHR by 20% over HillClimb and by 25% over Static on this trace.

So far we have seen that AdaptSize significantly improves the OHR over caching sys-
tems without size-aware admission, including production caching systems (Section 3.6.1)
and research caching systems (Section 3.6.2). We now focus on different cache tuning
methods for the size-aware admission parameter c (see the beginning of Section 3.2).

Chapter 3 AdaptSize: a size-aware hot object memory cache 44

Specifically, we compare AdaptSize with hill climbing (HillClimb), based on shadow
caches (cf. Section 3.1). HillClimb uses two shadow caches and we hand-optimized its
parameters (interval of climbing steps, step size) on our production traces. We also
compare to a static size threshold (Static), where the value of this static threshold
is offline optimized on our production traces. We also compare to SIZE-OPT, which
tunes c based on offline knowledge of the next one million requests. All four policies are
implemented on Varnish using the setup explained in Section 3.5.3.

We consider two scenarios: 1) randomized traffic mix changes and 2) adversarial traf-
fic mix changes. A randomized traffic mix change involves a random selection of objects
which abruptly become very popular (similar to a flash crowd event). An adversarial
traffic mix change involves frequently changing the traffic mix between classes that re-
quire vastly different size-aware admission parameters (e.g., web, video, or download
traffic). An example of an adversarial change is the case where objects larger than the
previously-optimal threshold suddenly become very popular, as shown in Figure 3.13.

Is AdaptSize robust against randomized traffic mix changes? Quick answer:
AdaptSize performs within 95% of SIZE-OPT’s OHR even for the worst 5% of exper-
iments, whereas HillClimb and Static achieve only 47-54% of SIZE-OPT’s OHR. We
create 50 different randomized traffic mix changes. Each experiment consists of two
parts. The first part is five million requests long and allows each tuning method to
converge to a stable configuration. The second part is ten million requests long and
consists of 50% production-trace requests and 50% of very popular objects. The very
popular objects consist of a random number of objects (between 200 and 1000), which
are randomly sampled from the trace.

Figure 3.14a shows a boxplot of the OHR for each caching tuning method across the
50 experiments. The boxes indicate the 25-th and 75-th percentile, the whiskers indicate
the 5-th and 95-th percentile. AdaptSize improves the OHR over HillClimb across every
percentile, by 9% on average, and by more than 75% in five of the 50 experiments.
AdaptSize improves the OHR over Static across every percentile, by 30% on average, and
by more than 100% in five of the 50 experiments. Compared to SIZE-OPT, AdaptSize
achieves 95% of the OHR for all percentiles.

Is AdaptSize robust against adversarial traffic mix changes? Quick answer:
AdaptSize performs within 81% of SIZE-OPT’s OHR even for the worst 5% of exper-
iments, whereas HillClimb and Static achieve only 5-15% of SIZE-OPT’s OHR. Our
experiment consists of 25 traffic mix changes. Each traffic mix is three million requests

45 3.6 Empirical Evaluation

0.0

0.2

0.4

0.6

0.8

OPT

Ada
pt

Size

HillC
lim

b
Sta

tic

O
bj

ec
t H

it
R

at
io

(a) Randomized.

0.0

0.2

0.4

0.6

0.8

OPT

Ada
pt

Size

HillC
lim

b
Sta

tic

O
bj

ec
t H

it
R

at
io

(b) Adversarial.

Figure 3.14: Comparison of cache tuning methods under traffic mix changes. We per-
formed 50 randomized traffic mix changes (a), and 25 adversarial traffic
mix changes (b). The boxes show the range of OHR from the 25-th to the
75-th percentile among the 25-50 experiments. The whiskers show the 5-th
to the 95-th percentile.

long, and the optimal c parameter changes from 32-256 KiB to 1-2 MiB, then to 16-32
MiB, and back again.

Figure 3.14b shows a boxplot of the OHR for each caching tuning method across
all 50 experiments. The boxes indicate the 25-th and 75-th percentile, the whiskers
indicate the 5-th and 95-th percentile. AdaptSize improves the OHR over HillClimb
across every percentile, by 29% on average, and by more than 75% in seven of the
25 experiments. AdaptSize improves the OHR over Static across every percentile, by
almost 3x on average, and by more than 10x in eleven of the 25 experiments. Compared
to SIZE-OPT, AdaptSize achieves 81% of the OHR for all percentiles.

3.6.4 Side effects of Size-Aware Admission

So far, our evaluation has focused on AdaptSize’s improvement with regard to the OHR.
We evaluate AdaptSize’s side-effects on the DC and on the client’s request latency (cf.
Section 2.1). Specifically, we compare AdaptSize to an unmodified Varnish system using
the setup explained in Section 3.5.3. Network latencies are emulated using the Linux
kernel (tc-netem). We set a 30ms round-trip latency between client and CDN server,
and 100ms round-trip latency between CDN server and origin server. We answer the
following three questions on the CDN server’s performance.
How much does AdaptSize affect the BHR of the DC? Quick answer: Adapt-

Size has a neutral effect on the BHR of the DC. The DC’s goal is to maximize the BHR,

Chapter 3 AdaptSize: a size-aware hot object memory cache 46

0.00

0.25

0.50

0.75

1.00

Ada
pt

Size

Var
nis

h

B
yt

e
H

it
R

at
io

(a) BHR.

0

50

100

150

200

Ada
pt

Size

Var
nis

h

D
is

k
IO

P
S

(b) IOPS.

0

20

40

60

Ada
pt

Size

Var
nis

h

D
is

k
U

til
. [

%
]

(c) Utilization.

0

200

400

600

Ada
pt

Size

Var
nis

h

La
te

nc
y

[m
s]

(d) Latency.

Figure 3.15: Evaluation of AdaptSize’s side effects across ten different sections of the US
trace. AdaptSize has a neutral impact on the byte hit ratio and leads to a
10% reduction in the median number of I/O operations going to the disk,
and a 20% reduction in disk utilization.

which is achieved by a very large DC capacity [31]. In fact, compared to the DC the
HOC has less than on thousandth the capacity. Therefore, changes to the HOC have
little effect on the DC’s BHR.

In our experiment, we measure the DC’s byte hit ratio (BHR) from the origin server.
Figure 3.15a shows that there is no noticeable difference between the BHR under Adapt-
Size and under an unmodified Varnish.

Does AdaptSize increase the load of the DC’s hard disks? Quick answer:
No. In fact, AdaptSize reduces the average disk utilization by 20%. With AdaptSize,
the HOC admits fewer large objects, but caches many more small objects. The DC’s
request traffic therefore consists of more requests to large objects, and significantly fewer
requests to small objects.

We measure the request size distribution at the DC and report the corresponding
histogram in Figure 3.16. We observe that AdaptSize decreases the number of cache
misses significantly for all object sizes below 256 KiB. For object sizes above 256 KiB,
we observe a slight increase in the number of cache misses. Overall, we find that the
DC has to serve 60% fewer requests with AdaptSize, but that the disks have to transfer
a 30% higher byte volume. The average request size is also 4x larger with AdaptSize,
which improves the sequentiality of disk access and thus makes the DC’s disks more
efficient.

To quantify the performance impact on the DC’s hard disks we use iostat [114]. Fig-
ure 3.15b shows that the average rate of I/O operations per second decreases by about
10%. Moreover, Figure 3.15c shows that AdaptSize reduces the disk’s utilization (the
fraction of time with busy periods) by more than 20%. We conclude that the increase in

47 3.7 Summary

0

0.5m

1m

<128B 256KiB 1KiB 4KiB 16KiB 64KiB 256KiB 1MiB 4MiB >4MiB
Object size

re

qu
es

ts
 to

 D
C

AdaptSize
Varnish

Figure 3.16: Comparison of the distribution of request sizes to the disk cache under a
HOC running AdaptSize versus unmodified Varnish. All object sizes below
256 KiB are significantly less frequent under AdaptSize, whereas larger
objects are slightly more frequent.

byte volume is more than offset by the fact that AdaptSize shields the DC from many
small requests and improves the sequentiality of requests served by the DC.

How much does AdaptSize reduce the request latency? Quick answer: Adapt-
Size reduces the request latency across all percentiles by at least 30%.

We measure the end-to-end request latency (time until completion of a request) from
the client server. Figure 3.15d shows that AdaptSize reduces the median request latency
by 43%, which is mostly achieved by the fast HOC answering a higher fraction of requests.
The figure also shows significant reduction of tail latency, e.g., the 90-th and 99-th latency
percentiles are reduced by more than 30%. This reduction in the tail latency is due to the
DC’s improved utilization factor, which leads to a much smaller number of outstanding
requests, which makes it easier to absorb traffic bursts.

3.7 Summary

AdaptSize is a new caching system for the hot object cache in CDN servers. The power
of AdaptSize stems from a size-aware admission policy that is continuously optimized
using a new Markov model of the HOC. In experiments with Akamai production traces,
we show that AdaptSize vastly improves the OHR over both state-of-the-art production
systems and research systems. We also show that our implementation of AdaptSize is
robust and scalable and improves the DC’s disk utilization.

As more diverse applications with richer content migrate onto the Internet, future
CDNs will experience even greater variability in request patterns and object sizes. We
believe that AdaptSize and its underlying mathematical model will be valuable in ad-
dressing this challenge.

Chapter 3 AdaptSize: a size-aware hot object memory cache 48

To summarize, AdaptSize addresses the concerns in [28] in making the point that it is
possible to maximize the OHR with a sophisticated caching policy in a high throughput
caching system.

4
FOO: Analysis of optimal caching

under variable object sizes

Contents

4.1 Flow-based Offline Optimal 52

4.1.1 Our new interval representation of OPT 53

4.1.2 FOO’s min-cost flow representation 53

4.1.3 FOO yields upper and lower bounds on OPT 54

4.1.4 Overview of our proof of FOO’s optimality 55

4.2 Formal Definition of FOO . 56

4.2.1 Notation and definitions . 57

4.2.2 New ILP representation of OPT 57

4.2.3 Proof of equivalence of interval and classic ILP representations
of OPT . 58

4.2.4 FOO’s min-cost flow representation of OPT 59

4.3 FOO is Asymptotically Optimal 61

4.3.1 Main result and assumptions 61

4.3.2 Bounding the number of non-integer solutions using a prece-
dence graph . 62

4.3.3 Relating the precedence graph to the coupon collector problem 64

4.3.4 Typical objects almost always lead to integer decision variables 68

4.3.5 Bringing it all together: Proof of Theorem 4.3.1 76

4.4 Practical Flow-based Offline Optimal for Real Traces 78

4.4.1 Practical lower bound: PFOO-L 78

4.4.2 Practical upper bound: PFOO-U 80

4.4.3 Summary . 81

4.5 Experimental Methodology 82

4.5.1 Trace Characterization . 82

49

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 50

4.5.2 Caching policies. 84

4.6 Empirical Evaluation . 84

4.6.1 PFOO is necessary to process real traces 85

4.6.2 FOO is nearly exact on short traces 86

4.6.3 PFOO is accurate on real traces 88

4.6.4 PFOO shows that there is significant room for improvement in
online policies . 89

4.7 Summary . 90

51

In Chapter 3 we have seen that the OHR of CDN caching system can be signifi-
cantly improved in practice. This chapter asks: how much further can we improve hit
ratios? Should the systems community continue trying to improve miss ratios, or have
all achievable gains been exhausted?

To answer this question, one would like to know the best achievable hit ratio, free
of constraints—i.e., the offline optimal (OPT). In computer science theory community,
there are a few works that study OPT’s miss ratio (the OMR, see Section 2.1). Conse-
quently, our performance metric throughout this chapter is the OMR.

Unfortunately, very little is known about OPT with variable object sizes (see Sec-
tion 2.4). For equal-sized objects, computing OPT is simple (i.e., Belady [91, 92]), and
it is widely used in the systems community to bound miss ratios. But object sizes often
vary widely in practice, from a few bytes (e.g., metadata [115]) to several gigabytes (e.g.,
videos [16, 36]). We need a way to compute OPT for variable object sizes, but unfortu-
nately this is known to be NP-hard [93]. The best known approximation algorithm [1–3]
is only provably within a factor of 4 of OPT. Hence, when this algorithm estimates a
miss ratio of 0.4, OPT may lie anywhere between 0.1 and 0.4. This is a big range—in
practice, a difference of 0.05 in miss ratio is significant—, so bounds from prior theory
are of limited practical value.

Since the theoretical bounds are incomputable, practitioners have been forced to use
conservative lower bounds or pessimistic upper bounds on OPT. The only prior lower
bound is an infinitely large cache [30, 36, 55], which is very conservative and gives no
sense of how OPT changes at different cache sizes. Belady variants (e.g., Belady-Size
in Subsection 2.4.3) are widely used as an upper bound [36,99–101], despite offering no
guarantees of optimality.

While these offline bounds are easy to compute, we will show that they are in fact
far from OPT. They have thus given practitioners a false sense of complacency, since
existing online algorithms often achieve similar miss ratios to these weak offline upper
bounds.

This chapter proposes a new approach to compute bounds on OPT with variable
object sizes, which we call the flow-based offline optimal (FOO). The key insight behind
FOO is to represent caching as a min-cost flow problem. This formulation yields a lower
bound on OPT by allowing non-integer decisions, i.e., letting the cache retain fractions
of objects for a proportionally smaller reward. It also yields an upper bound on OPT
by ignoring all non-integer decisions. Under simple independence assumptions, we prove

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 52

that the non-integer decisions become negligible as the number of objects goes to infinity,
and thus the bounds are asymptotically tight.
Our proof is based on the observation that an optimal policy will strictly prefer some

requests over others, forcing integer decisions. We show such preferences apply to almost
all requests by relating such preferences to the well-known coupon collector problem.
While FOO is very accurate, it is too computationally expensive to apply directly to

production traces containing hundreds of millions of requests. To extend our analysis to
such traces, we develop more efficient upper and lower bounds on OPT, which we call
practical flow-based offline optimal (PFOO). PFOO enables the first analysis of optimal
caching on traces with hundreds of millions of requests and reveals that there is still
significant room to improve current caching systems.
In the following, we first give a high-level overview of FOO and our proof of FOO’s

optimality (Section 4.1). We then formally define FOO (Section 4.2) and state our
proof of correctness (Section 4.3). We proceed by presenting the PFOO upper and
lower bounds (Section 4.4). Finally, we evaluate FOO and PFOO on eight production
traces (Section 4.5 and Section 4.6). We summarize the chapter’s results and ideas in
Section 4.7.

4.1 Flow-based Offline Optimal

This section gives a conceptual roadmap for our construction of FOO and our proof of
FOO’s optimality, which we present formally in Sections 4.2 and 4.3. Throughout this
section we use a small request trace shown in Figure 4.1 as a running example. This
trace contains four objects, a, b, c, and d, with sizes 3, 1, 1, and 2, respectively.

Object a b c b d a c d a b b a
Size 3 1 1 1 2 3 1 2 3 1 1 3

Figure 4.1: Example trace of requests to objects a, b, c, and d, of sizes 3, 1, 1, and 2,
respectively.

First, we introduce a new integer linear program to represent OPT (Subsection 4.1.1).
After relaxing integrality constraints, we derive FOO’s min-cost flow representation,
which can be solved efficiently (Subsection 4.1.2). We then observe how FOO yields
tight upper and lower bounds on OPT (Subsection 4.1.3). To prove that FOO’s bounds
are tight on real-world traces, we relate the gap between FOO’s upper and lower bounds

53 4.1 Flow-based Offline Optimal

to the occurrence of a partial order on intervals, and then reduce the partial order’s
occurrence to an instance of the generalized coupon collector problem (Subsection 4.1.4).

4.1.1 Our new interval representation of OPT

We start by introducing a novel representation of OPT. Our integer linear program (ILP)
minimizes the number of cache misses, while having full knowledge of the request trace.

We exploit a unique property of offline optimal caching: OPT never changes its de-
cision to cache object k in between two requests to k (see Section 4.2). This naturally
leads to an interval representation of OPT as shown in Figure 4.2. While the classical
representation of OPT uses decision variables to track the state of every object at every
time step [1], our ILP only keeps track of interval-level decisions. Specifically, we use
decision variables xi to indicate whether OPT caches the object requested at time i, or
not.

Object a b c b d a c d a b b a

In
te
rv
al

D
ec
is
io
n

V
ar
ia
bl
es

x1

x2
x3

x5

x4

x7x6

x8

Figure 4.2: Interval ILP representation of OPT.

4.1.2 FOO’s min-cost flow representation

This interval representation leads naturally to FOO’s flow-based representation, shown
in Figure 4.3. The key idea is to use flow to represent the interval decision variables.
Each request is represented by a node. Each object’s first request is a source of flow
equal to the object’s size, and its last request is a sink of flow in the same amount.
This flow must be routed along intervening edges, and hence min-cost flow must decide
whether to cache the object throughout the trace.

For cached objects, there is a central path of black edges connecting all requests. These
edges have capacity equal to the cache capacity and cost zero (since cached objects lead
to zero misses). Min-cost flow will thus route as much flow as possible through this
central path to avoid costly misses elsewhere [116]. Table 4.1 visualizes our min cost
flow notation for the example of a two-node graph.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 54

a
+3

b
+1

c
+1

b d
+2

a c
−1

d
−2

a b b
−1

a
−3

(3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0)

(3, 1/3) (3, 1/3) (3, 1/3)

(1, 1)
(1, 1)

(1, 1)

(1, 1)

(2, 1/2)

Figure 4.3: FOO’s min-cost flow problem for the short trace in Figure 4.1. Nodes rep-
resent requests, and cost measures cache misses. Requests are connected by
central edges with capacity equal to the cache capacity and cost zero—flow
routed along this path represents cached objects (hits). Outer edges connect
requests to the same object, with capacity equal to the object’s size—flow
routed along this path represents misses. The first request for each object
is a source of flow equal to the object’s size, and the last request is a sink
of flow of the same amount. Outer edges’ costs are inversely proportional to
object size so that they cost 1 miss when an entire object is not cached. The
minimum-cost flow achieves the fewest misses.

cap Capacity of edge (i, j)
cost Cost per unit flow on edge (i, j)
βi Flow surplus at node i, if βi > 0, flow

demand if βi < 0

i

βi

j

βj

(cap, cost)

Table 4.1: Notation for FOO’s min cost flow graph.

To represent cache misses, FOO adds outer edges between subsequent requests to the
same object. For example, there are three edges along the top of Figure 4.3 connecting
the requests to a. These edges have capacity equal to the object’s size s and cost inversely
proportional to the object’s size 1/s. Hence, if an object of size s is not cached (i.e., its
flow s is routed along this outer edge), it will incur a cost of s× (1/s) = 1 miss.

The routing of flow through this graph implies which objects are cached and when.
When no flow is routed along an outer edge, this implies that the object is cached, and
the subsequent request is a hit. All other requests, i.e., those with any flow routed along
an outer edge, are misses. The min-cost flow gives the decisions that minimize total
misses.

4.1.3 FOO yields upper and lower bounds on OPT

FOO can deviate from OPT as there is no guarantee that an object’s flow will be entirely
routed along its outer edge. Thus, FOO allows the cache to keep fractions of objects,
accounting for only a fractional miss on the next request to that object. In a real system,

55 4.1 Flow-based Offline Optimal

each fractional miss would be a full miss. This error is the price FOO pays for making
the offline optimal computable.

To deal with fractional (non-integer) solutions, we consider two variants of FOO.
FOO-L keeps all non-integer solutions and is therefore a lower bound on OPT. FOO-U
considers all non-integer decisions as uncached, “rounding up” flow along outer edges,
and is therefore an upper bound on OPT. We will prove this in Section 4.2.

Object a b c b d a c d a b b a
OPT decision 7 3 3 3 7 7 3 7 7 3 7 7

FOO-L decision 0 1 1 1 1
2

0 1 1
2

0 1 0 0
FOO-U decision 0 1 1 1 0 0 1 0 0 1 0 0

Figure 4.4: Caching decisions made by OPT, FOO-L, and FOO-U with a cache capacity
of C = 3.

Figure 4.4 shows the caching decisions made by OPT, FOO-L, and FOO-U assuming
a cache of size 3. A “3” indicates that OPT caches the object until its next request,
and a “7” indicates it is not cached. OPT suffers five misses on this trace by caching
object b and either c or d. OPT caches b because it is referenced thrice and is small.
This leaves space to cache the two references to either c or d, but not both. (OPT in
Figure 4.4 chooses to cache c since it requires less space.) OPT does not cache a because
it takes the full cache, forcing misses on all other requests.

The solutions found by FOO-L are very similar to OPT. FOO-L decides to cache
objects b and c, matching OPT, and also caches half of d. FOO-L thus underestimates
the misses by one, counting d’s misses fractionally. FOO-U gives an upper bound for
OPT by counting d’s misses fully. In this example, FOO-U matches OPT exactly.

4.1.4 Overview of our proof of FOO’s optimality

We show both theoretically and empirically that FOO-U and FOO-L yield tight bounds.
Specifically, we prove that FOO-L’s solutions are almost always integer when there are
many objects (as in production traces). Thus, FOO-U and FOO-L coincide with OPT.

Our proof is based on a natural precedence relation between intervals such that an
optimal policy strictly prefers some intervals over others. For example, in Figure 4.2,
FOO will always prefer x2 over x1 and x8 over x7. This can be seen in the figure, as
interval x2 fits entirely within x1, and likewise x8 fits within x7. In contrast, no such
precedence relation exists between x6 and x4 because a is larger than b, and so x6 does
not fit within x4. Similarly, no precedence relation exists between x2 and x5 because,

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 56

although x5 is longer and larger, their intervals do not overlap, and so x2 does not fit
within x5.

This precedence relation means that if FOO caches any part of x1, then it must have
cached all of x2. Likewise, if FOO caches any part of x7, then it must have cached all of
x8. The precedence relation thus forces integer solutions in FOO. Although this relation
is sparse in the small trace from Figure 4.2, as one scales up the number of objects the
precedence relation becomes dense. Our challenge is to prove that this holds on traces
seen in practice.

At the highest level, our proof distinguishes between “typical” and “atypical” objects.
Atypical objects are those that are exceptionally unpopular or exceptionally large; typi-
cal objects are everything else. While the precedence relation may not hold for atypical
objects, intervals from atypical objects are rare enough that they can be safely ignored.
We then show that for all the typical objects, the precedence relation is dense. In fact,
one only needs to consider precedence relations among cached objects, as all other inter-
val have zero decision variables. The basic intuition behind our proof is that a popular
cached object almost always takes precedence over another object. Specifically, it will
take precedence over one of the exceptionally large objects, since the only way it could
not is if all of the exceptionally large objects were requested before it was requested
again. There are enough large objects to make this vanishingly unlikely.

This is an instance of the generalized coupon collector problem (CCP). In the CCP,
one collects coupons (with replacement) from an urn with k distinct types of coupons,
stopping once all k types have been collected. The classical CCP (where coupons are
equally likely) is a well-studied problem [117]. The generalized CCP, where coupons have
non-uniform probabilities, is very challenging and the focus of recent work in probability
theory [118–121].

Applying these recent results, we show that it is extremely unlikely that a popular
object does not take precedence over any others. Therefore, there are very few non-
integer solutions among popular objects, which make up nearly all hits, and the gap
between FOO-U and FOO-L vanishes as the number of objects grows large.

4.2 Formal Definition of FOO

This section shows how to construct FOO and that FOO yields upper and lower bounds
on OPT. Section 4.2.1 introduces our notation. Section 4.2.2 defines our new interval

57 4.2 Formal Definition of FOO

representation of OPT. Section 4.2.4 relaxes the integer constraints and proves that our
min-cost flow representation yields upper and lower bounds on OPT.

4.2.1 Notation and definitions

The trace σ consists of N requests to M distinct objects. The i-th request σi contains
the corresponding object id, for all i ∈ {1 . . . N}. We use si to reference the size of the
object σi referenced in the i-th request. We denote the i-th interval (e.g., in Figure 4.2)
by [i, `i), where

`i =

∞ , if σi is not requested again;

the time of the next request to object σi after time i , otherwise.
(4.1)

OPT minimizes the number of cache misses, while having full knowledge of the request
trace. OPT is constrained to only use cache capacity C (bytes), and is not allowed to
prefetch objects as this would lead to trivial solutions (no misses) [1]. Formally,

Assumption 4.2.1 An object k ∈ {1 . . .M} can only enter the cache at times i ∈
{1 . . . N} with σi = k.

4.2.2 New ILP representation of OPT

We start by formally stating our ILP formulation of OPT, based on intervals as illus-
trated in Figure 4.2. First, we define the set I of all requests i where σi is requested
again, i.e., I = {i : `i <∞}. I is the times when OPT must decide whether to cache an
object. For all i ∈ I, we associate a decision variable xi. This decision variable denotes
whether object σi is cached during the interval [i, `i). Our ILP formulation needs only
N−M variables, vs. N×M for prior approaches [1], and leads directly to our flow-based
approximation.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 58

Definition 4.2.1 (Definition of OPT) The interval representation of OPT for a trace
of length N with M objects is as follows.

OPT = min
∑
i∈I

(1− xi) (4.2)

subject to: ∑
j∈I : j<i<`j

sjxj ≤ C ∀i ∈ I (4.3)

xi ∈ {0, 1} ∀i ∈ I (4.4)

To represent the capacity constraint at every time step i, our representation needs to
find all intervals [j, `j) that intersect with i, i.e., where j < i < `j. Eq. (4.3) enforces the
capacity constraint by bounding the size of cached intervals to be less than the cache
size C. Eq. (4.4) ensures that decisions are integral, i.e., that each interval is cached
either fully or not at all.

4.2.3 Proof of equivalence of interval and classic ILP

representations of OPT

We next prove that our new interval ILP is equivalent to classic ILP formulations of OPT
from prior work [1]. Figure 4.5 shows this classic ILP representation on the example
trace from Section 4.1. The ILP uses decision variables xi,k to track at each time i
whether object k is cached or not. The constraint on the cache capacity is naturally
represented: the sum of the sizes for all cached objects must be less than the cache
capacity for ever time i. Additional constraints enforce that OPT is not allowed to
prefetch objects (decision variables must not increase if the corresponding object is not
requested) and that the cache starts empty.

Objecta b c b d a c d a b a. . .

D
ec
is
io
n

V
ar
ia
bl
es x1,a x2,a x3,a x4,a x5,a x6,a x7,a x8,a x9,a x10,ax11,a

x1,b x2,b x3,b x4,b x5,b x6,b x7,b x8,b x9,b x10,bx11,b

x1,c x2,c x3,c x4,c x5,c x6,c x7,c x8,c x9,c x10,cx11,c

x1,d x2,d x3,d x4,d x5,d x6,d x7,d x8,d x9,d x10,dx11,d

Figure 4.5: Classic ILP representation of OPT.

Lemma 4.2.1 Under Assumption 4.2.1, our ILP in Definition 4.2.1 is equivalent to the
classical ILP from [1].

59 4.2 Formal Definition of FOO

Proof sketch Under Assumption 4.2.1, OPT changes the caching decision of object k
only at times i when σi = k. To see why this is true, let us consider the two cases of
changing a decision variable xk,j for i < j < `i. If xk,i = 0, then OPT cannot set xk,j = 1

because this would violate Assumption 4.2.1. Similarly, if xk,j = 0, then setting xk,i = 1

does not yield any fewer misses, so we can safely assume that xk,i = 0. Hence, decisions
do not change within an interval in the classic ILP formulation.

To obtain the decision variables x′p,i of the classical ILP formulation of OPT from a
given solution xi for the interval ILP, set x′σi,j = xi for all i ≤ j < `i, and for all i. This
leads to an equivalent solution because the capacity constraint is enforced at every time
step.

�

Having formulated OPT with fewer decision variables, we could try to solve the LP
relaxation of this specific ILP. However, the capacity constraint, Eq. (4.3), still poses a
practical problem since finding the intersecting intervals is computationally expensive.
Additionally, the LP formulation does not exploit the underlying problem structure,
which we need to bound the number of integer solutions. We instead reformulate the
problem as min-cost flow.

4.2.4 FOO’s min-cost flow representation of OPT

This section presents the relaxed version of OPT as an instance of min-cost flow (MCF)
in a graph G. We denote a surplus of flow at a node i with βi > 0, and a demand for
flow with βi < 0. Each edge (i, j) in G has a cost per unit flow γ(i,j) and a capacity for
flow µ(i,j) (see right-hand side of Figure 4.3).

As discussed in Section 4.1, the key idea in our construction of an MCF instance is
that each interval introduces an amount of flow equal to the object’s size. The graph
G is constructed such that this flow competes for a single sequence of edges (the “inner
edges”) with zero cost. These “inner edges” represent the cache’s capacity: if an object
is stored in the cache, we incur zero cost (no misses). As not all objects will fit into
the cache, we introduce “outer edges”, which allow MCF to satisfy the flow constraints.
However, these outer edges come at a cost: when the full flow of an object uses an outer
edge we incur cost 1 (i.e., a miss). Non-integer decision variables arise if part of an
object is in the cache (flow along inner edges) and part is out of the cache (flow along
outer edges).

Formally, we construct our MCF instance of OPT as follows:

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 60

Definition 4.2.2 (FOO’s representation of OPT) Given a trace with N requests
and M objects, the MCF graph G consists of N nodes. For each request i ∈ {1 . . . N}
there is a node with supply/demand

βi =

si if i is the first request to σi

−si if i is the last request to σi

0 otherwise.

(4.5)

An inner edge connects nodes i and i+1. Inner edges have capacity µ(i,i+1) = C and
cost γ(i,i+1) = 0, for i ∈ {1 . . . N − 1}.
For all i ∈ I, an outer edge connects nodes i and `i. Outer edges have capacity

µ(i,`i) = si and cost γ(i,`i) = 1/si. We denote the flow through outer edge (i, `i) as fi.

FOO-L denotes the cost of an optimal feasible solution to the MCF graph G. FOO-U
denotes the cost if all non-zero flows through outer edges fi are rounded up to the edge’s
capacity si.

This representation yields a min-cost flow instance with 2N −M − 1 edges, which is
solvable in O(N3/2) [122–124]. Note that while this chapter focuses on optimizing miss
ratio (i.e., the fault model [1], where all misses have the same cost), Definition 4.2.2 easily
supports non-uniform miss costs by setting outer edge costs to γ(i,`i) = costi/si. We next
show how to derive upper and lower bounds from this min-cost flow representation.

Lemma 4.2.2 (FOO bounds OPT) For FOO-L and FOO-U from Definition 4.2.2,

FOO-L ≤ OPT ≤ FOO-U (4.6)

Proof: We observe that fi as defined in Definition 4.2.2, defines the number of bytes “not
stored” in the cache. fi corresponds to the i-th decision variable xi from Definition 4.2.1
as xi = (1− fi/si).

(FOO-L ≤ OPT): FOO-L is a feasible solution for the LP relaxation of Definition 4.2.1,
because a total amount of flow si needs to flow from node i to node `i (by definition of
βi). At most µ(i,i+1) = C flows uses an inner edge which enforces constraint Eq. (4.3).
FOO-L is an optimal solution because it minimizes the total cost of flow along outer
edges. Each outer edge’s cost is γ(i,`i) = 1/si, so γ(i,`i)fi = (1− xi), and thus

FOO-L = min
{∑

i∈I

γ(i,`i)fi
}

= min
{∑

i∈I

(1− xi)
}
≤ OPT (4.7)

61 4.3 FOO is Asymptotically Optimal

(OPT ≤ FOO-U): After rounding, each outer edge (i, `i) has flow fi ∈ {0, si}, so
the corresponding decision variable xi ∈ {0, 1}. FOO-U thus yields a feasible integer
solution, and OPT yields no more misses than any feasible solution.

�

4.3 FOO is Asymptotically Optimal

This section proves that FOO is asymptotically optimal, namely that the gap between
FOO-U and FOO-L vanishes as the number of objects grows large. Subsection 4.3.1
formally states this result and our assumptions, and Sections 4.3.2–4.3.5 present the
proof.

4.3.1 Main result and assumptions

Our proof of FOO’s optimality relies on two assumptions: (i) that the trace is created
by stochastically independent request processes and (ii) that the popularity distribution
is not concentrated on a finite set of objects as the number of objects grows.

Assumption 4.3.1 (Independence) The request sequence is generated by indepen-
dently sampling from a popularity distribution PM . Object sizes are sampled from an
arbitrary continuous size distribution S, which is independent of M and has a finite
maxi si.

We assume that object sizes are unique to break ties when making caching decisions.
If the object sizes are not unique, one can simply add small amounts of noise to make
them so. We assume a maximum object size to show the existence of a scaling regime,
i.e., that the number of cached objects grows large as the cache grows large. For the
same reason, we exclude trivial cases where a finite set of objects dominates the request
sequence even as the total universe of objects grows large:

Assumption 4.3.2 (Diverging popularity distribution) For any number M > 0

of objects, the popularity distribution PM is defined via an infinite sequence ψk. At any
time 1 ≤ i ≤ N ,

P [object k is requested |M objects overall] =
ψk∑M
k=1 ψk

(4.8)

The sequence ψk must be positive and diverging such that cache size C →∞ is required
to achieve a constant miss ratio as M →∞.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 62

Our assumptions on PM allow for many common distributions, such as uniform popular-
ities (ψk = 1) or heavy-tailed Zipfian probabilities (ψk = 1/kα for α ≤ 1, as is common
in practice [16,25,31,36,125]). Moreover, with some change to notation, our proofs can
be extended to require only that ψk remains constant over short timeframes. With these
assumptions in place, we are now ready to state our main result on FOO’s asymptotic
optimality.

Theorem 4.3.1 (FOO is Asymptotically Optimal) Under Assumptions 4.3.1 and 4.3.2,
for any error ε and violation probability κ, there exists an M∗ such that for any trace
with M > M∗ objects

P [FOO-U− FOO-L ≥ ε N] ≤ κ (4.9)

where the trace length N ≥ M log2M and the cache capacity C is scaled with M such
that FOO-L’s miss ratio remains constant.

Theorem 4.3.1 states that, as M → ∞, FOO’s miss ratio error is almost surely
less than ε for any ε > 0. Since FOO-L and FOO-U bound OPT (Lemma 4.2.2),
FOO-L = OPT = FOO-U.
The rest of this section is dedicated to the proof Theorem 4.3.1. The key idea in our

proof is to bound the number of non-integer solutions in FOO-L via a precedence relation
that forces FOO-L to strictly prefer some decision variables over others, which forces
them to be integer. Subsection 4.3.2 introduces this precedence relation. Subsection 4.3.3
maps this relation to a representation that can be stochastically analyzed (as a variant
of the coupon collector problem). Subsection 4.3.4 then shows that almost all decision
variables are part of a precedence relation and thus integer, and Subsection 4.3.5 brings
all these parts together in the proof of Theorem 4.3.1.

4.3.2 Bounding the number of non-integer solutions using a

precedence graph

This section introduces the precedence relation ≺ between caching intervals. The intu-
ition behind ≺ is that if an interval i is nested entirely within interval j, then min-cost
flow must prefer i over j. We first formally define ≺, and then state the property about
optimal policies in Theorem 4.3.2.

Definition 4.3.1 (Precedence relation) For two caching intervals [i, `i) and [j, `j),
let the relation ≺ be such that i ≺ j (“i takes precedence over j”) if

63 4.3 FOO is Asymptotically Optimal

1. j < i,

2. `j > `i, and

3. si < sj.

The key property of ≺ is that it forces integer decision variables.

Theorem 4.3.2 (Precedence forces integer decisions) If i ≺ j, then xj > 0 in
FOO-L’s min-cost flow solution implies xi = 1.

In other words, if interval i is strictly preferable to interval j, then FOO-L will take
all of i before taking any of j. The proof of this result relies on the notion of a residual
MCF graph [116, p.304 ff], where for any edge (i, j) ∈ G with positive flow, we add a
backwards edge (j, i) with cost γj,i = −γi,j.

Proof: By contradiction. Let G′ be the residual MCF graph induced by a given MCF so-
lution. Figure 4.6 sketches the MCF graph in the neighborhood of j, . . . , i, . . . , `i, . . . , `j.

. . . j . . . i . . . `i . . . `j . . .

Figure 4.6: The precedence relation i ≺ j from Definition 4.3.1 forces integer decisions
on interval i. In any min-cost flow solution, we can reroute flow such that if
xj > 0 then xi = 1.

Assume that xj > 0 and that xi < 1, as otherwise the statement is trivially true.
Because xj > 0 there exist backwards inner edges all the way between `j and j. Because
xi < 1, the MCF solution must include some flow on the outer edge (i, `i), and there
exists a backwards outer edge (`i, i) ∈ G′ with cost γ`i,i = −1/si.
We can use the backwards edges to create a cycle in G′, starting at j, then following

edge (j, `j), backwards inner edges to `i, the backwards outer edge (`i, i), and finally
backwards inner edges to return to j. Figure 4.6 highlights this clockwise path in darker
colored edges.
This cycle has cost = 1/sj−1/si, which is negative because si < sj (by definition of ≺

and since i ≺ j). As negative-cost cycles cannot exist in a MCF solution [116, Theorem
9.1, p.307], this leads to a contradiction.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 64

�

To quantify how many integer solutions there are, we need to know the general struc-
ture of the precedence graph. Intuitively, for large production traces with many over-
lapping intervals, the graph will be very dense. We have empirically verified this for our
production traces.
Unfortunately, the combinatorial nature of caching traces made it difficult for us to

characterize the general structure of the precedence graph under stochastic assumptions.
For example, we considered classical results on random graphs [126] and the concentra-
tion of measure in random partial orders [127]. None of these paths yielded sufficiently
tight bounds on FOO. Instead, we bound the number of non-integer solutions via the
generalized coupon collector problem.

4.3.3 Relating the precedence graph to the coupon collector

problem

We now translate the problem of intervals without child in the precedence graph (i.e.,
intervals i for which there exists no i ≺ j) into a tractable stochastic representation.
We first describe the intuition for equal object sizes, and then consider variable object

sizes.

Definition 4.3.2 (Cached objects) Let Hi denote the set of cached intervals that
overlap time i, excluding i.

Hi =
{
j 6= i : xj > 0 and i ∈ [j, `j)

}
and hi = |Hi| (4.10)

We observe that interval [i, `i) is without child if and only if all other objects xj ∈ Hi

are requested at least once in [i, `i). Figure 4.7 shows an example where Hi consists of five
objects (intervals xa, . . . , xe). As all five objects are requested before `i, all five intervals

Li

THi

Hi

xi

xe

xd

xc

xb

xa

ii

Figure 4.7: Simplified notation for the coupon collector represen-
tation of offline caching with equal object sizes. We
translate the precedence relation from Theorem 4.3.2
into the relation between two random variables. Li
denotes the length of interval i. THi

is the coupon
collector time, where we wait until all objects that
are cached at the beginning of Li (Hi denotes these
objects) are requested at least once.

65 4.3 FOO is Asymptotically Optimal

end before xi ends, and so [i, `i) cannot fit in any of them. To formalize this observation,
we introduce the following random variables, also illustrated in Figure 4.7. Li is the
length of the i-th interval, i.e., Li = `i − i. THi

is the time after i when all intervals in
Hi end. We observe that THi

is the stopping time in a coupon-collector problem (CCP)
where we associate a coupon type with every object in Hi. With equal object sizes, the
event {i has a child} is equivalent to the event {THi

> Li}.
We now extend our intuition to the case of variable object sizes. We now need to

consider that objects in Hi can be smaller than si and thus may not be i’s children for a
new reason: the precedence relation (Definition 4.3.1) requires i’s children to have size
larger than or equal to si. Figure 4.8 shows an example where Li is without child because
(i) xb, which ends after `i, is smaller than si, and (ii) all larger objects (xa, xc, xd) are
requested before `i. The important conclusion is that, by ignoring the smaller objects,
we can reduce the problem back to the CCP.

Li

TB

Hi

xi

xd

xc

xa

ii

Figure 4.8: Full notation for the coupon collector representation
of offline caching. With variable object sizes, we
need to ignore all objects with a smaller size than
si (grayed out intervals xb and xe). We then define
the coupon collector time TB among a subset B ⊂ Hi

of cached objects with a size larger than or equal to
si. Using this notation, the event TB > Li implies
that xi has a child, which forces xi to be integer by
Theorem 4.3.2.

To formalize our observation about the relation to the CCP, we introduce the following
random variables, also illustrated in Figure 4.8. We define B, which is a subset of the
cached objects Hi with a size equal to or larger than si, and the coupon collector time
TB for B-objects. These definitions are useful as the event {TB > Li} implies that i has
a child and thus xi is integer, as we now show.

Theorem 4.3.3 (Stochastic bound on non-integer variables) For decision vari-
able xi, i ∈ {1 . . . N}, assume that B ⊆ Hi is a subset of cached objects where sj ≥ si

for all j ∈ B. Further, let the random variable TB denote the time until all intervals in
B end, i.e., TB = maxj∈B `j − i.
If B is non-empty, then the probability that xi is non-integer is upper bounded by the

probability interval i ends after all intervals in B, i.e.,

P [0 < xi < 1] ≤ P [Li > TB] . (4.11)

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 66

The proof works backwards by assuming that TB > Li. We then show that this implies
that there exists an interval j with i ≺ j and then apply Theorem 4.3.2 to conclude that
xi is integer. Finally, we use this implication to bound the probability.

Proof: Consider an arbitrary i ∈ {1 . . . N} with TB > Li. Let [j, `j) denote the interval
in B that is last requested, i.e., `j = maxk∈B `k (j exists because B is non-empty). To
show that i ≺ j, we check the three conditions of Definition 4.3.1.

1. j < i, because j ∈ Hi (i.e., j is cached at time i);

2. `j > `i, because `j = maxk∈B `k = i+ TB > i+ Li = `i; and

3. si < sj, because j ∈ B (i.e., sj is bigger than si by assumption).

Having shown that i ≺ j, we can apply Theorem 4.3.2, so that xj > 0 implies xi = 1.
Because j ∈ Hi, j is cached xj > 0 and thus xi = 1. Finally, we observe that Li 6= TB

and conclude the theorem’s statement by translating the above implications, xi = 1 ⇐
i ≺ j ⇐ TB > Li, into probability.

P [0 < xi < 1] = 1− P [xi ∈ {0, 1}] ≤ 1− P [i ≺ j] ≤ 1− P [TB > Li] = P [Li > TB] .

(4.12)
�

Theorem 4.3.3 simplifies the analysis of non-integer xi to the relation of two random
variables, Li and TB. While Li is geometrically distributed, TB’s distribution is more
involved.
We map TB to the stopping time Tb,p of a generalized CCP with b = |B| different

coupon types. The coupon probabilities p follow from the object popularity distribution
PM by conditioning on objects in B. As the object popularities p are not equal in general,
characterizing the stopping time Tb,p is much more challenging than in the classical CCP,
where the coupon probabilities are assumed to be equal. We solve this problem by
observing that collecting b coupons under equal probabilities stops faster than under
p. This fact may appear obvious, but it was only recently shown by Anceaume et
al. [121, Theorem 4, p. 415] (the proof is non-trivial). Thus, we can use a classical CCP
to bound the generalized CCP’s stopping time and TB.

Lemma 4.3.1 (Connection to classical coupon connector problem) For any ob-
ject popularity distribution PM , and for q = (1/b, . . . , 1/b), using the notation from
Theorem 4.3.3

P [TB < l] ≤ P [Tb,q < l] for any l ≥ 0 . (4.13)

67 4.3 FOO is Asymptotically Optimal

The proof of this Lemma simply extends the following result by Anceaume et al.,
which is proven as Theorem 4, in [121, p. 415].

Theorem 4.3.4 For b ≥ 0 coupons, any probability vector p, and the equal-probability
vector q = (1/b, . . . , 1/b), it holds that P [Tb,p < l] ≤ P [Tb,q < l] for any l ≥ 0.

The proof bounds Tb,q first using a GCCP and then a CCCP.

Proof: We first bound TB via a generalized CCP with stopping time Tb,p and p =

(p1, . . . , pb) with

pi = P [object k is requested | k ∈ B] under PM . (4.14)

As TB contains requests to other objects j /∈ B, it always holds that TB ≥ Tb,p. Figure 4.9
shows such a case, where TB is extended because of requests to uncached objects and
large cached objects. Tb,p, on the other hand, does not include these other requests, and
is thus always shorter or equal to TB.

xi...

xℓ... ...
... ...

xn... ...

xj... ...

TB

xm... ...
......

coupon 2

coupon 3

coupon 1

coupon 4

Tb,p

Figure 4.9: Translation of the time until all B objects are requested once, TB into a
coupon-collector problem (CCP), Tb,p. As the CCP is based on fewer coupons
(only objects ∈ B), the CCP serves as a lower bound on TB.

This inequality bounds the probabilities for all l ≥ 0.

P [TB < l] ≤ P [Tb,p < l] (4.15)

We then apply Theorem 4.3.4.

≤ P [Tb,q < l] (4.16)
�

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 68

4.3.4 Typical objects almost always lead to integer decision

variables

We now use the connection to the coupon collector problem to show that almost all of
FOO’s decision variables are integer. Specifically, we exclude a small number of very large
and unpopular objects, and show that the remaining objects are almost always part of a
precedence relation, which forces the corresponding decision variables to become integer.
In Subsection 4.3.5, we show that the excluded fraction is diminishingly small.
We start with a definition of the sets of large objects and the set of popular objects.

Definition 4.3.3 (Large objects and popular objects) Let N∗ be the time after
which the cache needs to evict at least one object. For time i ∈ {N∗ . . . N}, we define
the sets of large objects, Bi, and the set of popular objects, Fi.
The set Bi ⊆ Hi consists of the requests to the fraction δ largest objects of Hi (0 <

δ < 1). We also define bi = |Bi|, and we write “si < Bi” if si < sj for all j ∈ Bi and
“si 6< Bi” otherwise.
The set Fi consists of those objects k with a request probability ρk which lies above the

following threshold.

Fi =

{
k : ρk ≥

1

bi log log bi

}
(4.17)

Using the above definitions, we prove that “typical” objects (i.e., popular objects that
are not too large) rarely lead to non-integer decision variables as the number of objects
M grows large.

Theorem 4.3.5 (Typical objects are rarely non-integer) For i ∈ {N∗ . . . N}, Bi,
and Fi from Definition 4.3.3,

P
[
0 < xi < 1

∣∣ si < Bi, σi ∈ Fi
]
→ 0 as M →∞ . (4.18)

The intuition is that, as the number of cached objects grows large, it is vanishingly
unlikely that all objects in Bi will be requested before a single object is requested again.
That is, though there are not many large objects in Bi, there are enough that, following
Theorem 4.3.3, xi is vanishingly unlikely to be non-integer. The proof of Theorem 4.3.5
uses elementary probability but relies on several very technical proofs.
We first given an overview, then state two auxiliary results, and then state the proof.

69 4.3 FOO is Asymptotically Optimal

Overview and main ideas in the proof of Lemma 4.3.5

Following Theorem 4.3.3, it suffices to consider the event {Li > TBi
}.

• (P [Li > TBi
]→ 0 as hi →∞): We first condition on Li = l, so that Li and TBi

become stochastically independent and we can bound P [Li > TBi
] by bounding

either P [Li > l] or P [l > TBi
]. Specifically, we split l carefully into “small l” and

“large l”, and then show that Li is concentrated at small l, and TBi
is concentrated

at large l. Hence, P [Li > TBi
] is negligible.

– (Small l:) For small l, we show that it is unlikely for all objects in Bi to have
been requested after l requests. We upper bound the distribution of TBi

with
Tbi,u (4.3.1). We then show that the distribution of Tbi,u decays exponentially
at values below its expectation (4.3.2). Hence, for l far below the expectation
of Tbi,u, the probability vanishes P [Tbi,u < l] → 0, so long as bi = δhi grows
large, which it does because hi grows large.

– (Large l:) For large l, P [Li > l]→ 0 because we only consider popular objects
σi ∈ Fi by assumption, and it is highly unlikely that a popular object is not
requested after many requests.

• (hi →∞): What remains to be shown is that the number of cached objects hi
actually grows large. Since the cache size C →∞ asM →∞ by Assumption 4.3.2,
this may seem obvious. Nevertheless, it must be demonstrated (4.3.3). The basic
intuition is that hi is almost never much less than h∗ = C/maxk sk, the fewest
number of objects that could fit in the cache, and h∗ →∞ as C →∞.

To see why hi is almost never much less than h∗, consider the probability that
hi < x, where x is constant with respect to M . For any x, take large enough M
such that x < h∗.

Now, in order for hi < x, almost all requests must go to distinct objects. Any
object that is requested twice between u (the last time where hu ≥ h∗) and v (the
next time where hv ≥ h∗) produces an interval (see Figure 4.10). This interval
is guaranteed to fit in the cache, since hi < x < h∗ means there is space for an
object of any size. As h∗ and M grow further, the amount of cache resources that
must lay unused for hi < x grows further and further, and the probability that no
interval fits within these resources becomes negligible.

Before we state the proof of Lemma 4.3.5, we introduce two auxiliary results.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 70

h*

i

x

#
C

a
ch

e
d

 O
b

je
ct

s

Timeu v

1st request 2nd request

Figure 4.10: The number of cached objects at time i, hi, is unlikely to be far below
h∗ = C/maxk sk, the fewest number of objects that fit in the cache. In order
for hi < h∗ to happen, no other interval must fit in the white triangular
space centered at i (otherwise FOO-L would cache the interval).

Exponential coupon collector bound

Our first auxiliary result derives an exponential bound on the lower tail of the distri-
bution of the coupon collector stopping time as it gets further from its mean (roughly
h log h).

Lemma 4.3.2 The time Tb,q to collect b > 1 coupons, which have equal probabilities
q = (1/b, . . . , 1/b), is lower bounded by

P [Tb,q ≤ b log b− c b] < e−c for all c > 0 . (4.19)

Proof: We consider the time Tb,q to collect b > 1 coupons, which have equal probabilities
q = (1/b, . . . , 1/b). To simplify notation, we set T = Tb,q throughput this proof.
We first transform our term using the exponential function, which is strictly mono-

tonic.

P [T ≤ b log b− c b] = P
[
e−sT ≤ e−s(b log b−c b)] for all s > 0 (4.20)

We next apply the Chernoff bound.

P
[
e−sT ≤ e−s(b log b−c b)] ≤ E

[
e−sT

]
es(b log b−c b) (4.21)

To derive E
[
e−sT

]
, we observe that T =

∑b
i=1 Ti, where Ti is the time between

collecting the (i − 1)-th unique coupon and the i-th unique coupon. As all Ti are
independent, we obtain a product of Laplace-Stieltjes transforms.

E
[
e−sT

]
=

b∏
i=1

E
[
e−sTi

]
(4.22)

71 4.3 FOO is Asymptotically Optimal

We derive the individual transforms.

E
[
e−sTi

]
=
∞∑
k=1

e−s kpi(1− pi)k−1 (4.23)

=
pi

es + pi − 1
(4.24)

We plug the coupon probabilities pi = 1− i−1
b

= b−i+1
b

into Eq. (4.22), and simplify by
reversing the product order.

b∏
i=1

E
[
e−sTi

]
=

b∏
i=1

(b− i+ 1)/b

es + (b− i+ 1)/b− 1
=

b∏
j=1

j/b

es + j/b− 1
(4.25)

Finally, we choose s = 1
b
, which yields es = e1/b ≥ 1 + 1/b and simplifies the product.

b∏
j=1

j/b

es + j/b− 1
≤

b∏
j=1

j/b

1/b+ j/b
=

1

b+ 1
(4.26)

This gives the statement of the lemma.

P [T ≤ b log b− c b] ≤ 1

b+ 1
e

b log b−c b
b < e−c (4.27)

�

The number of cached objects grows to infinity

Our second auxiliary result shows that the number of cached objects, hi, goes to infinity
as the cache capacity, C, and the number of objects, M , go to infinity.

Lemma 4.3.3 For i > N∗ from Definition 4.3.3, P [hi →∞] = 1 as M →∞.

We assume throughout the proof that i > N∗, the time after which the cache needs to
evict at least one object. Throughout the proof, let E denote the complementary event
of an event E.
Intuition of the proof. The proof exploits the fact that at least h∗ = C/maxk sk

distinct objects fit into the cache at any time, and that FOO finds an optimal solution
(4.2.2). Due to Assumption 4.3.2, M → ∞ implies that C → ∞, and thus h∗ → ∞.
So, the case where FOO caches only a finite number of objects requires that hi < h∗.
Whenever hi < h∗ occurs, there cannot exist intervals that FOO could put into the

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 72

cache. If any intervals could be put into the cache, FOO would cache them, due to its
optimality.
Our proof is by induction. We first show that the case of no intervals that could

be put into the cache has zero probability, and then prove this successively for larger
thresholds.

Proof: We assume that 0 < h∗ < M because h∗ ∈ {0,M} leads to trivial hit ratios ∈
{0, 1}.
For arbitrary i > N∗ and any x that is constant in M , we consider the event X =

{hi ≤ x}. Furthermore, let Z = {hi ≤ z} for any 0 ≤ z ≤ x. We prove that P [X]

vanishes as M grows by induction over z and corresponding P [Z].
Figure 4.11 sketches the number of objects over a time interval including i. Note that,

for any z ≤ x, we can take a large enough M such that z < h∗, because h∗ →∞. So the
figure shows h∗ > z. The figure also defines the time interval [u, v], where u is the last
time before i when FOO cached h∗ objects, and v is the next time after i when FOO
caches h∗ objects. So, for times j ∈ (u, v), it holds that hj < h∗.

h*

i

z

#
C

a
ch

e
d
 O

b
je

ct
s

Timeu v

repeated -request

Figure 4.11: Sketch of the event Z = {hi ≤ z}, which happens with vanishing probability
if z is a constant with respect toM . The times u and v denote the beginning
and the end of the current period where the number of cached objects is less
than h∗ = C/maxk sk, the fewest number of objects that fit in the cache.
We define the set Γ of objects that are requested in (u, i]. If any object in
Γ is requested in [i, v), then FOO must cache this object (green interval).
If such an interval exists, hi > z and thus Z cannot happen.

Induction base: z = 0 and event Z = {hi ≤ 0}. In other words, Z means the cache is
empty. Let Γ denote the set of distinct objects requested in the interval (u, i]. Note that
the event Z requires that, during (u, i], FOO stopped caching all h∗ objects. Because
FOO only changes caching decisions at interval boundaries, Γ must at least contain h∗

objects. Using the same argument, we observe that there happen at least h∗ requests to
distinct objects in [i, v).
A request to any Γ object in [i, v) makes Z impossible. Formally, let A denote the event

that any object in Γ is requested again in [i, v). We observe that A ⇒ Z because any

73 4.3 FOO is Asymptotically Optimal

Γ-object that is requested in [i, v) must be cached by FOO due to FOO-L’s optimality
(4.2.2). By inverting the implication we obtain Z ⇒ A and thus P [Z] ≤ P

[
A
]
.

We next upper bound P
[
A
]
. We start by observing that P [A] is minimized (and thus

P
[
A
]
is maximized) if all objects are requested with equal popularities. This follows

because, if popularities are not equal, popular objects are more likely to be in Γ than
unpopular objects due to the popular object’s higher sampling probability (similar to
the inspection paradox). When Γ contains more popular objects, it is more likely that
we repeat a request in [i, v), and thus P [A] increases (P

[
A
]
decreases).

We upper bound P
[
A
]
by assuming that objects are requested with equal probability

ρk = 1/M for 1 ≤ k ≤ M . As the number of Γ-objects is at least h∗, the probability of
requesting any Γ-object is at least h∗/M . Further, we know that v − i ≥ h∗ and so

P
[
A
]
≤
(

1− h∗

M

)h∗
.

We arrive at the following bound.

P [{hi ≤ z}] = P [Z] ≤ P
[
A
]
≤
(

1− h∗

M

)h∗
−→ 0 as M →∞ (4.28)

Induction step: z − 1→ z for z ≤ x. We assume that the probability of caching only
z − 1 objects goes to zero as M →∞. We prove the same statement for z objects.

As for the induction base, let Γ denote the set of distinct objects requested in the
interval (u, i], excluding objects in Hi. We observe that |Γ| ≥ h∗− z, following a similar
argument.

We define P [A] as above and use the induction assumption. As the probability of less
than z − 1 is vanishingly small, it must be that hi ≥ z. Thus, a request to any Γ object
in [i, v) makes hi = z impossible. Consequently, Z ⇒ A and thus P [Z] ≤ P

[
A
]
.

To bound P [A], we focus on the requests in [i, v) that do not go Hi-objects. There
are at least h∗ − x such requests. P [A] is minimized if all objects, ignoring objects in
Hi, are requested with equal popularities. We thus upper bound P

[
A
]
by assuming

the condition requests happen to objects with equal probability ρk = 1/(M − z) for
1 ≤ k ≤M − z. As before, we conclude that the probability of requesting any Γ-object

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 74

is at least (h∗ − z)/(M − z) and we use the fact that there are at least h∗ − x to them
in [i, v).

P [{hi ≤ z}] = P [Z] ≤ P
[
A
]

(4.29)

≤
(

1− h∗ − z
M − z

)h∗−z
(4.30)

We then use that z ≤ x and that x is constant in M .

≤
(

1− h∗ − x
M

)h∗−x
−→ 0 as M →∞ (4.31)

In summary, the number of objects cached by FOO at an arbitrary time i remains
constant only with vanishingly small probability. Consequently, this number grows to
infinity with probability one.

�

Proof of Lemma 4.3.5

With these results in place, we are ready to prove Lemma 4.3.5. This proof proceeds
by using elementary probability theory and exploits our previous definitions of Li, THi

,
and Thi,u from Lemma 4.3.1.

Proof: We know from Theorem 4.3.3 that the probability of non-integer decision vari-
ables can be upper bounded using the random variables Li and TBi

.

P [0 < xi < 1] ≤ P [Li > TBi
] (4.32)

We expand this expression by conditioning on Li = l.

=
∞∑
l=1

P [TBi
< l|Li = l]P [Li = l] (4.33)

We observe that P [TBi
< l] = 0 for l ≤ bi because requesting bi distinct objects takes at

least bi time steps.

=
∞∑

l=bi+1

P [TBi
< l|Li = l]P [Li = l] (4.34)

75 4.3 FOO is Asymptotically Optimal

We use the fact that conditioned on Li = l, events {Li = l} and {TBi
< l} are stochas-

tically independent.

=
∞∑

l=bi+1

P [TBi
< l]P [Li = l] (4.35)

We split this sum into two parts, l ≤ Λ and l > Λ, where Λ = 1
2
bi log bi is chosen such

that Λ scales slower than the expectation of the underlying coupon collector problem
with bi = δhi coupons. (Recall that δ = |Bi|/|Hi| is the largest fraction of objects in Hi,
defined in Definition 4.3.3.)

≤
Λ∑
l=bi

P [TBi
< l]P [Li = l] (4.36)

+
∞∑

l=Λ+1

P [TBi
< l]P [Li = l] (4.37)

≤
Λ∑
l=bi

P [TBi
< l] +

∞∑
l=Λ+1

P [Li = l] (4.38)

We now bound the two terms in Eq. (4.38), separately. For the first term, we start by
applying 4.3.1.

Λ∑
l=bi

P [TBi
< l] ≤

Λ∑
l=bi

P [Tbi,q ≤ l] (4.39)

We rearrange the sum (replacing l by c).

=

1+log bi∑
c= 1

2
log bi

P [Tbi,q ≤ bi log bi − c bi] (4.40)

We apply 4.3.2.

<

1+log bi∑
c= 1

2
log bi

e−c (4.41)

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 76

We solve the finite exponential sum.

=
e2

e2 − e
1√
bi

(4.42)

For the second term in Eq. (4.38), we use the fact that Li’s distribution is Geometric(ρσi)
due to Assumption 4.3.1.

∞∑
l=Λ+1

P [Li = l] =
∞∑

l=Λ+1

(1− ρσi)
l−1 ρσi (4.43)

We solve the finite sum.

= (1− ρσi)
Λ (4.44)

We apply Definition 4.3.3, i.e., ρσi ≥ 1
bi log log bi

.

≤
(

1− 1

bi log log bi

) 1
2
bi log bi

(4.45)

Finally, combining Eqs. (4.42) and (4.45) yields the following.

P [Li ≥ Tbi,q] <
e2

e2 − e
1√
bi

+

(
1− 1

bi log log bi

)bi log bi

(4.46)

As bi log bi grows faster than bi log log bi, this proves the statement P [Li ≥ Tbi,q]→ 0 as
hi →∞ (implying that bi = δhi →∞) due to 4.3.3.

�

4.3.5 Bringing it all together: Proof of Theorem 4.3.1

This section combines our results so far and shows how to obtain the exact statement
on the violation probability of Theorem 4.3.1.

There exists M∗ such that for any M > M∗ and for any error ε and violation proba-
bility κ,

P [FOO-U− FOO-L ≥ ε N] ≤ κ (4.47)

77 4.3 FOO is Asymptotically Optimal

Proof of Theorem 4.3.1 We start by bounding the cost of non-integer solutions by the
number of non-integer solutions, Ω.∑

{i: 0<xi<1}

xi ≤
∑
i∈I

1{i: 0<xi<1} = Ω (4.48)

It follows that (FOO-U− FOO-L) ≤ Ω.

P [FOO-U− FOO-L ≥ ε N] ≤ P [Ω ≥ ε N] (4.49)

We apply the Markov inequality.

≤ E [Ω]

N ε
=

1

N ε

∑
i∈I

P [0 < xi < 1] (4.50)

There are at most N terms in the sum.

≤ P [0 < xi < 1]

ε
(4.51)

To complete Eq. (4.47), we upper bound P [0 < xi < 1] to be less than ε κ. We first
condition on si < Bi and σi ∈ Fi, double counting those i where si 6< Bi and σi /∈ Fi.

P [0 < xi < 1] ≤P
[
0 < xi < 1

∣∣ si < Bi, σi ∈ Fi
]
P [si < Bi, σi ∈ Fi] (4.52)

+ P
[
0 < xi < 1

∣∣ si 6< Bi

]
P [si 6< Bi] (4.53)

+ P
[
0 < xi < 1

∣∣ σi /∈ Fi]P [σi /∈ Fi] (4.54)

Drop ≤ 1 terms.

≤P
[
0 < xi < 1

∣∣ si < Bi, σi ∈ Fi
]

+ P [si 6< Bi] + P [i /∈ Fi] (4.55)

To bound P [0 < xi < 1] ≤ ε κ, we choose parameters such that each term in Eq. (4.55)
is less than ε κ/3. The first term vanishes by Theorem 4.3.5. The second term is satisfied
by choosing δ = ε κ/3 (Definition 4.3.3). For the third term, the probability that any
cached object is unpopular vanishes as hi grows large.

P [i /∈ Fi] ≤
hi

bi log log bi
=

3

ε κ log log ε κ hi/3
→ 0 as hi →∞ (4.56)

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 78

Finally, we choose M∗ large enough that the first and third terms in Eq. (4.55) are each
less than ε κ/3.

�

This concludes our theoretical proof of FOO’s optimality.

4.4 Practical Flow-based Offline Optimal for Real

Traces

While FOO is asymptotically optimal and very accurate in practice, as well as faster
than prior approximation algorithms, it is still not fast enough to process production
traces with hundreds of millions of requests in a reasonable timeframe. We now use the
insights gained from FOO’s graph-theoretic formulation to design new upper and lower
bounds on OPT, which we call practical flow-based offline optimal (PFOO). We provide
the first practically useful lower bound, PFOO-L, and an upper bound that is much
tighter than prior practical offline upper bounds, PFOO-U:

PFOO-L ≤ FOO-L ≤ OPT ≤ FOO-U ≤ PFOO-U

4.4.1 Practical lower bound: PFOO-L

PFOO-L considers the total resources consumed by OPT. As Figure 4.12a illustrates,
cache resources are limited in both space and time [128]: measured in resources, the
cost to cache an object is the product of (i) its size and (ii) its reuse distance (i.e., the
number of accesses until it is next requested). On a trace of length N , a cache of size
C has total resources N × C. The objects cached by OPT, or any other policy, cannot
cost more total resources than this.

Definition of PFOO-L PFOO-L sorts all intervals by their resource cost and caches
the smallest-cost intervals up a total resource usage of N × C. Figure 4.12b shows
PFOO-L on a short request trace. By considering only the total resource usage, PFOO-
L ignores other constraints that are faced by caching policies. In particular, PFOO-L
does not guarantee that cached intervals take less than C space at all times, as shown
by interval 6 for object a in Figure 4.12b, which exceeds the cache capacity during part
of its interval.

79 4.4 Practical Flow-based Offline Optimal for Real Traces

(a) Intervals sorted by resource cost = reuse distance × object size.

(b) PFOO-L greedily claims the smallest intervals.

Figure 4.12: PFOO’s lower bound, PFOO-L, constrains the total resources used over the
full trace (i.e., size × time). PFOO-L claims the hits that require fewest
resources, allowing cached objects to temporarily exceed the cache capacity.

Why PFOO-L works PFOO-L is a lower bound because no policy, including OPT,
can get fewer misses using N × C total resources. It gives a reasonably tight bound
because, on large caches with many objects, the distribution of interval costs is similar
throughout the request trace. Hence, for a given cache capacity, the “marginal interval”
(i.e., the one barely does not fit in the cache under OPT) is also of similar cost throughout
the trace. Informally, PFOO-L caches intervals up to this marginal cost, and so rarely
exceeds cache capacity by very much. This intuition holds particularly when requests
are largely independent, as in our proof assumptions and in traces from CDNs or other
Internet services. However, as we will see, PFOO-L introduces modest error even on
other workloads where these assumptions do not hold.

PFOO-L uses a similar notion of “cost” as Belady-Size but provides two key advan-
tages. First, PFOO-L is closer to OPT. Relaxing the capacity constraint lets PFOO-L
avoid the pathologies discussed in Subsection 2.4.3, since PFOO-L can temporarily ex-
ceed the cache capacity to retain valuable objects that Belady-Size is forced to evict.
Second, relaxing the capacity constraint makes PFOO-L a lower bound, giving the first
reasonably tight lower bound on long traces.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 80

4.4.2 Practical upper bound: PFOO-U

Definition of PFOO-U PFOO-U breaks FOO’s min-cost flow graph into smaller seg-
ments of constant size, and then solves each segment using min-cost flow incrementally.
By keeping track of the resource usage of already solved segments, PFOO-U yields a
globally-feasible solution, which is an upper bound on FOO-U. Furthermore, since each
segment takes constant time to solve, PFOO-U completes in linear time on the trace
length.

a b c b d a c d a b b a

Segment 1
Segment 2

Segment 3
Segment 4

Segment 5

(a) PFOO-U breaks the trace into small segments . . .

a b c b(3, 0) (3, 0) (3, 0) (3, 0)

(3, 1/3)

(1, 1)

(1, 1)

(1, 1)

Segment 1. Cache both bs and
c;forget c and second b.

c b d a(2, 0)

(2, 1/2)

(3, 0) (3, 0) (3, 0)
(3, 1/3)

(1, 1)

(1, 1)

Segment 2. Cache c and b.

Segment 3.
Cache c; forget c. d a c d

(3, 1/3)

(1, 0) (1, 0)

(1, 1)

(2, 1/2)

(2, 0) (2, 0)

(2, 1/2) . . .

(b) . . . and solves min-cost flow for each segment.

Figure 4.13: Starting from FOO’s full formulation, PFOO-U breaks the min-cost flow
problem into overlapping segments. Going left-to-right through the trace,
PFOO-U optimally solves MCF on each segment, and updates link capac-
ities in subsequent segments to maintain feasibility for all cached objects.
The segments overlap to capture interactions across segment boundaries.

Example of PFOO-U Figure 4.13 shows our approach on the trace from Figure 4.1
for a cache capacity of 3. At the top is FOO’s full min-cost flow problem; for large

81 4.4 Practical Flow-based Offline Optimal for Real Traces

traces, this MCF problem is too expensive to solve directly. Instead, PFOO-U breaks
the trace into segments and constructs a min-cost flow problem for each segment.

PFOO-U begins by solving the min-cost flow for the first segment. In this case,
the solution is to cache both bs, c, and one-third of a, since these decisions incur the
minimum cost of two-thirds, i.e., less than one cache miss. As in FOO-U, PFOO-
U rounds down the non-integer decision for a and all following non-integer decisions.
Furthermore, PFOO-U only fixes decisions for objects in the first half of this segment.
This is done to capture interactions between intervals that cross segment boundaries.
Hence, PFOO-U “forgets” the decision to cache c and the second b, and its final decision
for this segment is only to cache the first b interval.

PFOO-U then updates the second segment to account for its previous decisions. That
is, since b is cached until the second request to b, capacity must be removed from the
min-cost flow to reflect this allocation. Hence, the capacity along the inner edge c → b
is reduced from 3 to 2 in the second segment (b is size 1). Solving the second segment,
PFOO-U decides to cache c and b (as well as half of d, which is ignored). Since these are
in the first half of the segment, we fix both decisions, and move onto the third segment,
updating the capacity of edges to reflect these decisions as before.

PFOO-U continues to solve the following segments in this manner until the full trace
is processed. On the trace from Section 4.1, it decides to cache all requests to b and c,
yielding 5 misses on the requests to a and d. These are the same decisions as taken by
FOO-U and OPT. We generally find that PFOO-U yields nearly identical miss ratios as
FOO-U, as we next demonstrate on real traces.

4.4.3 Summary

Putting it all together, PFOO provides efficient lower and upper bounds on OPT with
variable object sizes. PFOO-L runs in O(N logN) time, as required to sort the intervals;
and PFOO-U runs in O(N) because it divides the min-cost flow into segments of constant
size. In practice, PFOO-L is faster than PFOO-U at realistic trace lengths, despite its
worse asymptotic runtime, due to the large constant factor in solving each segment in
PFOO-U.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 82

4.5 Experimental Methodology

We evaluate FOO and PFOO against prior offline bounds and online caching policies on
eight different production traces.

4.5.1 Trace Characterization

Traces We use production traces from three global content-distribution networks (CDNs),
two web-applications from different anonymous large Internet companies, and storage
workloads from Microsoft [129]. We summarize the trace characteristics in Table 4.2.
Figure 4.14 shows four key distributions of these workloads.

Trace Year # Requests # Objects Object sizes

CDN 1 2016 500M 18M 10B – 616MB
CDN 2 2015 440M 19M 1B – 1.5GB
CDN 3 2015 420M 43M 1B – 2.3GB

WebApp 1 2017 104M 10M 3B – 1.9MB
WebApp 2 2016 100M 14M 5B – 977KB
Storage 1 2008 29M 16M 501B – 780KB
Storage 2 2008 37M 6M 501B – 78KB
Storage 3 2008 45M 14M 501B – 489KB

Table 4.2: Length and object sizes for evaluated traces.

The object size distribution (Figure 4.14a) shows that object sizes are variable in
all traces. However, while they span almost ten orders of magnitude in CDNs, object
sizes vary only by six orders of magnitude in web applications, and only by three orders
of magnitude in storage systems. WebApp 1 also has noticeably smaller object sizes
throughout, as is representative for application-cache workloads.
The popularity distribution (Figure 4.14b) shows that CDN workloads and WebApp

workloads all follow approximately a Zipf distribution with a Zipf alpha parameter be-
tween 0.85 and 1. In contrast, the popularity distribution of storage traces is much more
irregular with a set of disproportionally popular objects, an approximately log-linear
middle part, and an exponential cutoff for the least popular objects.
The reuse distance distribution (Figure 4.14c) — i.e., the distribution of the number of

requests between requests to the same object — further distinguishes CDN and WebApp
traces from storage workloads. CDNs and WebApps serve millions of different customers
and so exhibit largely independent requests with smoothly diminishing object popular-

83 4.5 Experimental Methodology

0.25

0.50

0.75

1.00

1B 1KB 1MB 1GB

Object Size

C
u
m

u
la

tiv
e
 D

is
tr

ib
u
tio

n

CDN 1 CDN 2

(a) Object sizes.

1

100

10000

1e+06

1 100 10000 1e+06

i−th Most Popular Object

R
e
q
u
e
st

 C
o
u
n
t

CDN 3 WebApp 1

(b) Popularities.

0.00

0.25

0.50

0.75

1.00

1 100 10000 1e+06 1e+08

Reuse Distance

R
e
q
u
e
st

 P
ro

b
a
b
ili

ty

WebApp 2 Storage 1

(c) Reuse distances.

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

Correlation Coefficient

C
u
m

u
la

tiv
e
 D

is
tr

ib
u
ti
o
n

Storage 2 Storage 3

(d) Correlations.

Figure 4.14: The production traces used in our evaluation come from three different do-
mains (CDNs, WebApps, and storage) and thus exhibit starkly different
request patterns in terms of object sizes (a), object popularities (b), reuse
distances (c), and correlations between the request streams of different ob-
jects.

ities, which matches our proof assumptions. Thus, the CDN and WebApp traces lead
to a smooth reuse distance, as shown in the figure. In contrast, storage workloads serve
requests from one or a few applications, and so often exhibit highly correlated requests
(producing spikes in the reuse distance distribution). For example, scans are common
in storage (e.g., traces like: ABCDABCD ...), but never seen in CDNs. This is evident
from the figure, where the storage traces exhibit several steps in their cumulative request
probability, as correlated objects (e.g., due to scans) have the same reuse distance.

Finally, we measure the correlation across different objects (Figure 4.14d). Ideally,
we could directly test our independence assumption (Assumption 4.3.1). Unfortunately,
quantifying independence on real traces is challenging. For example, classical meth-
ods such as Hoeffding’s independence test [130] only apply to continuous distributions,
whereas we consider cache requests in discrete time (our traces include only second-
accuracy timestamps).

We therefore turn to correlation coefficients. Specifically, we use the Pearson correla-
tion coefficient as it is computable in linear time (as opposed to Spearman’s rank and
Kendall’s tau [131]). We define the coefficient based on the number of requests each
object receives in a time bucket that spans 4000 requests (we verified that the results do
not change significantly for time bucket sizes in the range 400 - 40k requests). In order
to capture pair-wise correlations, we chose the top 10k objects in each trace, calculated

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 84

the request counts for all time buckets, and then calculated the Pearson coefficient for
all possible combinations of object pairs.
Figure 4.14d shows the distribution of coefficients for all object pair combinations.

We find that both CDN and WebApps do not show a significant correlation; over 95%
of the object pair have a coefficient coefficient between -0.25 and 0.25. In contrast, we
find strong positive correlations in the storage traces. For the first storage trace, we
measure a correlation coefficient greater than 0.5 for all 10k-most popular objects. For
the second storage trace, we measure a correlation coefficient greater than 0.5 for more
than 20% of the object pairs. And, for the third storage trace, we measure a correlation
coefficient greater than 0.5 for more than 14% of the object pairs. We conclude that
the simple Pearson correlation coefficient is sufficiently powerful to quantify the position
linear correlation inherent to storage traces (such as loops and scans).

4.5.2 Caching policies.

We evaluate three classes of policies: theoretical bounds on OPT, practical offline heuris-
tics, and online caching policies. Besides FOO, there exist three other theoretical bounds
on OPT with approximation guarantees (Subsection 2.4.2): OFMA, LocalRatio, and
LP. Besides PFOO-U, we consider three other practical upper bounds (Subsection 2.4.3:
Belady, Belady-Size, and Freq/Size. Besides PFOO-L, there is only one other practical
lower bound: a cache with infinite capacity (Infinite-Cap). Finally, for online policies,
we evaluated GDSF [132], GD-Wheel [133], AdaptSize Chapter 3, and Hyperbolic [134].
We also evaluated several other older policies which perform much worse on our traces
(including LRU-K [57], TLFU [35], SLRU [36], and LRU).
Our implementations are in C++ and use the COIN-OR::LEMON library [135], GNU

parallel [136], OpenMP [137], and CPLEX 12.6.1.0. OFMA runs in O(N2), LocalRatio
runs in O(N3), Belady in O(N logC). We rely on sampling [138] to run Belady-Size on
large traces, which gives us an O(N) implementation.

4.6 Empirical Evaluation

We evaluate FOO and PFOO to demonstrate the following: (i) PFOO is fast enough
to process real traces, whereas FOO and prior theoretical bounds are not; (ii) FOO
yields nearly tight bounds on OPT, even when our proof assumptions do not hold;
(iii) PFOO is highly accurate on full production traces; and (iv) PFOO reveals that

85 4.6 Empirical Evaluation

there is significantly more room for improving current caching systems than implied by
prior offline bounds.

Figure 4.15: Execution time of FOO, PFOO, and prior theoretical offline bounds at dif-
ferent trace lengths. Most prior bounds are unusable above 500K requests.
Only PFOO can process real traces with many millions of requests.

4.6.1 PFOO is necessary to process real traces

Figure 4.15 shows the execution time of FOO, PFOO, and prior theoretical offline bounds
at different trace lengths. Specifically, we run each policy on the first N requests of the
CDN 1 trace, and vary N from a few thousand to over 30 million. Each policy ran alone
on a 2016 SuperMicro server with 44 Intel Xeon E5-2699 cores and 500GB of memory.

These results show that LP and LocalRatio are unusable: they can process only a
few hundred thousand requests in a 24-hour period, and their execution time increases
rapidly as traces lengthen. While FOO and OFMA are faster, they both take more than
24 hours to process more than 30 million requests, and their execution times increase
super-linearly.

Finally, PFOO is much faster and scales well, allowing us to process traces with
hundreds of millions of requests. PFOO’s lower bound completes in a few minutes, and
while PFOO’s upper bound is slower, it scales linearly with trace length. PFOO is thus
the only bound that completes in reasonable time on real traces.

9While we have tried downsampling the traces to run LP and LocalRatio (as suggested in [139–141]
for equal-sized objects), we were unable to achieve meaningful results. Under variable object sizes,
scaling down the system (including the cache capacity), makes large objects disproportionately
disruptive.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 86

Figure 4.16: Comparison of the maximum ap-
proximation error of FOO, PFOO,
and prior offline bounds across
five cache sizes on a CDN pro-
duction trace. FOO’s upper and
lower bounds are nearly identical
and PFOO introduces small error,
whereas all prior policies have error
several orders-of-magnitude larger.
(OPT is assumed to be halfway be-
tween FOO-U and FOO-L, which
introduces negligible error due to
FOO’s high accuracy.)

0
.1

8

0
.0

5

3
e
−

0
5

5
e
−

0
5

0
.7

2

0
.0

5

n
/a

−
7
e
−

0
3

−
3
e
−

0
5

−
0
.1

9

−
0
.3

9

n
/a

n
/a

n
/a

CDN 1

F
O

O

P
F

O
O

O
F

M
A

B
e
la

d
y

B
e
la

d
y−

S
iz

e

F
re

q
/S

iz
e

In
fin

ite
−

C
a
p

−0.2

−0.1

OPT

0.1

0.2

M
a

xi
m

u
m

 E
rr

o
r

in
 M

is
s
 R

a
tio

u
p
p
e
r b

o
u
n
d

s
lo
w
e
r b

o
u

n
d

s

4.6.2 FOO is nearly exact on short traces

We compare FOO, PFOO, and prior theoretical upper bounds on the first 10 million
requests of each trace. Of the prior theoretical upper bounds, only OFMA runs in a
reasonable time at this trace length,9 so we compare FOO, PFOO, OFMA, the Belady
variants, Freq/Size, and Infinite-Cap.

Our first finding is that FOO-U and FOO-L are nearly identical, as predicted by our
analysis. The largest difference between FOO-U’s and FOO-L’s miss ratio on CDN and
WebApp traces is 0.0005—a relative error of 0.15%. Even on the storage traces, where
requests are highly correlated and hence our proof assumptions do not hold, the largest
difference is 0.0014—a relative error of 0.27%. Compared to the other offline bounds,
FOO is at least an order of magnitude and often several orders of magnitude more
accurate.

Given FOO’s high accuracy, we use FOO to estimate the error of the other offline
bounds. Specifically, we assume that OPT lies in the middle between FOO-U and
FOO-L. Since the difference between FOO-U and FOO-L is so small, this adds negligible
error (less than 0.14%) to all other results.

Figure 4.16 shows the maximum error from OPT across five cache sizes on our first
CDN production trace. All upper bounds are shown with a bar extending above OPT,
and all lower bounds are shown with a bar extending below OPT. Note that the practical
offline upper bounds (e.g., Belady) do not have corresponding lower bounds. Likewise,

87 4.6 Empirical Evaluation

0
.2

2

0
.0

5

1
e

−
0

4

2
e

−
0

4

0
.6

6

0
.0

4

n
/a

−
2

e
−

0
3

−
1

e
−

0
4

−
0

.0
6

−
0

.1
5

n
/a

n
/a

n
/a

0
.3

2

0
.0

6

2
e

−
0

4

2
e

−
0

3

0
.6

6

0
.0

4

n
/a

−
2

e
−

0
3

−
2

e
−

0
4

−
0

.0
4

−
0

.2
6

n
/a

n
/a

n
/a

0
.0

8

0
.0

7

2
e

−
0

4

0
.5

9

0
.2

5

4
e

−
0

4

n
/a

−
0

.0
2

−
2

e
−

0
4

−
0

.5
7

−
0

.7
9

n
/a

n
/a

n
/a

CDN 2 CDN 3 WebApp 1

F
O

O

P
F

O
O

O
F

M
A

B
e

la
d

y

B
e

la
d

y−
S

iz
e

F
re

q
/S

iz
e

In
fin

ite
−

C
a

p

F
O

O

P
F

O
O

O
F

M
A

B
e

la
d

y

B
e

la
d

y−
S

iz
e

F
re

q
/S

iz
e

In
fin

ite
−

C
a

p

F
O

O

P
F

O
O

O
F

M
A

B
e

la
d

y

B
e

la
d

y−
S

iz
e

F
re

q
/S

iz
e

In
fin

ite
−

C
a

p

0
.1

8

0
.0

5

3
e

−
0

5

5
e

−
0

5

0
.7

2

0
.0

5

n
/a

−
7

e
−

0
3

−
3

e
−

0
5

−
0

.1
9

−
0

.3
9

n
/a

n
/a

n
/a

CDN 1

F
O

O

P
F

O
O

O
F

M
A

B
e

la
d

y

B
e

la
d

y−
S

iz
e

F
re

q
/S

iz
e

In
fin

ite
−

C
a

p

−0.2

−0.1

OPT

0.1

0.2

M
a
xi

m
u
m

 E
rr

o
r

in
 M

is
s

R
a
ti
o

u
p
p
e
r b

o
u
n
d

s
lo
w
e
r b

o
u

n
d

s

Figure 4.17: Approximation error of FOO, PFOO, and several prior offline bounds on
four of our eight production traces (Figure 4.18 shows the other four). FOO
and PFOO’s lower and upper bounds are orders of magnitude better than
any other offline bound. (See Figure 4.16.)

there is no upper bound corresponding to Infinite-Cap. Also note that OFMA’s bars
are so large than they extend above and below the figure. We have therefore annotated
each bar with its absolute error from OPT.

The figure shows that FOO-U and FOO-L nearly coincide, with error of 0.00003 (=3e-
5) on this trace. PFOO-U is 0.00005 (=5e-5) above OPT, nearly matching FOO-U, and
PFOO-L is 0.007 below OPT, which is very accurate though worse than FOO-L.

All prior techniques yield error several orders of magnitude larger. OFMA has very
high error: its bounds are 0.72 above and 0.39 below OPT. The practical upper bounds
are more accurate than OFMA: Belady is 0.18 above OPT, Belady-Size 0.05, and
Freq/Size 0.05. Finally, Infinite-Cap is 0.19 below OPT. Prior to FOO and PFOO,
the best bounds for OPT give a broad range of up to 0.24. PFOO and FOO reduce error
by 34× and 4000×, respectively.
Figures 4.17 and 4.18 show the approximation error on all eight production traces.

The prior upper bounds are much worse than PFOO-U, except on one trace (Storage 1),
where Belady-Size and Freq/Size are somewhat accurate. Averaging across all traces,
PFOO-U is 0.0014 above OPT. PFOO-U reduces mean error by 37× over Belady-Size,
the best prior upper bound. Prior work gives even weaker lower bounds. PFOO-L is on
average 0.004 below OPT on the CDN traces, 0.02 below OPT on the WebApp traces,

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 88

0
.2

5

0
.0

8

3
e

−
0

4

0
.5

8

0
.1

3

3
e

−
0

3

n
/a

−
0

.0
1

−
3

e
−

0
4

−
0

.1
5

−
0

.4
2

n
/a

n
/a

n
/a

0
.0

3

9
e

−
0

3

1
e

−
0

6

5
e

−
0

4

0
.1

9

0
.0

1

n
/a

−
0

.0
2

−
1

e
−

0
6

−
0

.0
5

−
0

.8
3

n
/a

n
/a

n
/a

0
.1

3

0
.0

7

7
e

−
0

4

3
e

−
0

3

0
.4

8

0
.0

9

n
/a

−
0

.0
3

−
7

e
−

0
4

−
0

.4
1

−
0

.8
2

n
/a

n
/a

n
/a

0
.1

2

0
.0

3

9
e

−
0

6

1
e

−
0

3

0
.1

2

0
.0

3

n
/a

−
0

.0
7−
9

e
−

0
6

−
0

.1
2

−
0

.7
3

n
/a

n
/a

n
/a

WebApp 2 Storage 1 Storage 2 Storage 3

F
O

O

P
F

O
O

O
F

M
A

B
e

la
d

y

B
e

la
d

y−
S

iz
e

F
re

q
/S

iz
e

In
fin

ite
−

C
a

p

F
O

O

P
F

O
O

O
F

M
A

B
e

la
d

y

B
e

la
d

y−
S

iz
e

F
re

q
/S

iz
e

In
fin

ite
−

C
a

p

F
O

O

P
F

O
O

O
F

M
A

B
e

la
d

y

B
e

la
d

y−
S

iz
e

F
re

q
/S

iz
e

In
fin

ite
−

C
a

p

F
O

O

P
F

O
O

O
F

M
A

B
e

la
d

y

B
e

la
d

y−
S

iz
e

F
re

q
/S

iz
e

In
fin

ite
−

C
a

p

u
p
p
e
r b

o
u
n
d

s
lo
w
e
r b

o
u

n
d

s

−0.2

−0.1

OPT

0.1

0.2

M
a
xi

m
u
m

 E
rr

o
r

in
 M

is
s

R
a
ti
o

Figure 4.18: Approximation error of FOO, PFOO, and several prior offline bounds on
four of our eight production traces (Figure 4.17 shows the other four). FOO
and PFOO’s lower and upper bounds are orders of magnitude better than
any other offline bound. (See Figure 4.16.)

and 0.04 below OPT on the storage traces. PFOO-L reduces mean error by 9.8× over
Infinite-Cap and 27× over OFMA. Hence, across a wide range of workloads, PFOO is
by far the best practical bound on OPT.

4.6.3 PFOO is accurate on real traces

Now that we have seen that FOO is accurate on short traces, we next show that PFOO
is accurate on long traces. Figures 4.19 and 4.20 show the miss ratio over the full traces
achieved by PFOO, the best prior practical upper bounds (one of Belady, Belady-Size,
and Freq/Size), the Infinite-Cap lower bound, and the best online policy (see Section 4.5).

On average, PFOO-U and PFOO-L bound the optimal miss ratio within a narrow
range of 4.2%. PFOO’s bounds are tighter on the CDN and WebApp traces than the
storage traces: PFOO gives an average bound of just 1.4% on CDN 1-3 and 1.3% on We-
bApp 1-2 but 5.7% on Storage 1-3. This is likely due to error in PFOO-L when requests
are highly correlated, as they are in the storage traces (see our trace characterization in
Subsection 4.5.1).

Nevertheless, PFOO gives much tighter bounds than prior techniques on every trace.
The prior offline upper bounds are noticeably higher than PFOO-U. On average, com-

89 4.6 Empirical Evaluation

pared to PFOO-U, Belady-Size is 19% higher, Freq/Size is 22% higher, and Belady is
fully 72% higher. These prior upper bounds are not, therefore, good proxies for the
offline optimal. Moreover, the best upper bound varies across traces: Freq/Size is lower
on CDN 1 and CDN 3, but Belady-Size is lower on the others. Unmodified Belady gives
a very poor upper bound, showing that caching policies must account for object size.
The only lower bound in prior work is an infinitely large cache, whose miss ratio is much
lower than PFOO-L. PFOO thus gives the first reasonably tight bounds on the offline
miss ratio for real traces.

4.6.4 PFOO shows that there is significant room for

improvement in online policies

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

1GB 4GB 16GB 64GB 256GB

Cache Size

M
is

s
R

a
ti
o

●

LRU
GDWheel

Freq/Size
Infinite Cap

PFOO−U
PFOO−L

(a) CDN 1

●

●

●

●

●

0.0

0.1

0.2

1GB 4GB 16GB 64GB 256GB

Cache Size

M
is

s
R

a
ti
o

●

LRU
GDSF

Belady−Size
Infinite Cap

PFOO−U
PFOO−L

(b) CDN 2

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

1GB 4GB 16GB 64GB 256GB

Cache Size

M
is

s
 R

a
ti
o

●

LRU
GDSF

Freq/Size
Infinite Cap

PFOO−U
PFOO−L

(c) CDN 3

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

64MB 256MB 1GB 4GB 16GB 64GB

Cache Size

M
is

s
 R

a
ti
o

●

LRU
GDWheel

Belady−Size
Infinite Cap

PFOO−U
PFOO−L

(d) WebApp 1

Figure 4.19: Miss ratio curves for PFOO vs. LRU, Infinite-Cap, the best prior offline
upper bound, and the best online policy for the first four traces (see Fig-
ure 4.20 for the other four).

Finally, we compare with online caching policies. Figures 4.19 and 4.20 show the best
online policy (by average miss ratio) and the offline bounds for each trace. We also show
LRU for reference on all traces.

Chapter 4 FOO: Analysis of optimal caching under variable object sizes 90

On all traces at most cache capacities, there is a large gap between the best online
policy and PFOO-U, showing that there remains significant room for improvement in
online caching policies. Moreover, this gap is much larger than prior offline bounds would
suggest. On average, PFOO-U achieves 27% fewer misses than the best online policy,
whereas the best prior offline policy achieves only 7.2% fewer misses; the miss ratio
gap between online policies and offline optimal is thus 3.75× as large as implied by prior
bounds. The storage traces are the only ones where PFOO does not consistently increase
this gap vs. prior offline bounds, but even on these traces there is a large difference at
some sizes (e.g., at 64GB in Figure 4.20c). On CDN and WebApp traces, the gap is
much larger.

For example, on CDN 2, GDSF (the best online policy) matches Belady-Size (the best
prior offline upper bound) at most cache capacities. One would therefore conclude that
existing online policies are nearly optimal, but PFOO-U reveals that there is in fact a
large gap between GDSF and OPT on this trace, as it is 21% lower on average.

These miss ratio reductions make a large difference in real systems. For example, on
CDN 2, CDN 3, and WebApp 1, OPT requires just 16GB to match the miss ratio of
the best prior offline bound at 64GB (recall that the x-axis in these figures is shown
in log-scale). Prior bounds thus suggest that online policies require 4× as much cache
space as is necessary.

4.7 Summary

We began this chapter by asking: Should the systems community continue trying to
improve miss ratios, or have all achievable gains been exhausted? We have answered
this question by developing new techniques, FOO and PFOO, to accurately and quickly
estimate OPT with variable object sizes. Our techniques reveal that prior bounds for
OPT lead to qualitatively wrong conclusions about the potential for improving current
caching systems. Prior bounds indicate that current systems are nearly optimal, whereas
PFOO reveals that misses can be reduced by up to 43%.

This chapter introduces the first principled way to evaluate caching policies with vari-
able object sizes: FOO gives the first asymptotically exact, polynomial-time bounds on
OPT, and PFOO gives the first practical and accurate bounds for long traces. Fur-
thermore, our results are verified on eight production traces from several large Internet
companies, including CDN, web application, and storage workloads, where FOO reduces

91 4.7 Summary

●

●

●

●

0.0

0.1

0.2

0.3

0.4

16MB 64MB 256MB 1GB

Cache Size

M
is

s
 R

a
ti
o

●

LRU
GDWheel

Belady−Size
Infinite Cap

PFOO−U
PFOO−L

(a) WebApp 2

●
●

●
●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1GB 4GB 16GB 64GB 256GB

Cache Size

M
is

s
 R

a
ti
o

●

LRU
Hyperbolic

Belady−Size
Infinite Cap

PFOO−U
PFOO−L

(b) Storage 1

●

●

●

●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1GB 4GB 16GB 64GB 256GB

Cache Size

M
is

s
 R

a
ti
o

●

LRU
AdaptSize

Belady−Size
Infinite Cap

PFOO−U
PFOO−L

(c) Storage 2

●

●

●

●
●

0.0

0.1

0.2

0.3

0.4

0.5

1GB 4GB 16GB 64GB 256GB

Cache Size

M
is

s
 R

a
ti
o

●

LRU
GDWheel

Belady−Size
Infinite Cap

PFOO−U
PFOO−L

(d) Storage 3

Figure 4.20: Miss ratio curves for PFOO vs. LRU, Infinite-Cap, the best prior offline
upper bound, and the best online policy for the first four traces (see Fig-
ure 4.19 for the other four).

approximation error by 4000×. We anticipate that FOO and PFOO will prove important
tools in the design of future caching systems.

5
RobinHood: a tail latency aware

cache partitioning system

Contents

5.1 Background and Motivation 95

5.1.1 How does Caching Address Tail Latency? 95

5.1.2 Key Challenges of Caching for Tail Latency 98

5.2 The RobinHood Caching System 102
5.2.1 Basic RobinHood algorithm 102

5.2.2 Accommodating Real-World Constraints in RobinHood 102

5.2.3 RobinHood Architecture . 104

5.3 System Implementation and Challenges 105
5.3.1 Generating Experimental Data 105

5.3.2 Our Experimental Deployment 106

5.3.3 Implementation Challenges 107

5.4 Empirical Evaluation . 107
5.4.1 Competing Caching Systems 108

5.4.2 Latency-Imbalance Microexperiments 109

5.4.3 Scaled-Up Experiments . 110

5.5 Summary . 114

93

Chapter 5 RobinHood: a tail latency aware cache partitioning system 94

In previous chapters we have seen that adaptive caching systems can significantly
improve cache hit ratios, and we have studied optimal cache hit ratios. This chapter
extends the idea of adaptive caching to a different performance metric: request tail
latency. Specifically, we are interested in the 99th-percentile request latency (P99) in
systems where requests are composed of many subqueries.
We analyze the example of a modern webservice at Microsoft. The OneRF page

rendering framework serves a wide range of content including news (microsoft.com) and
an online retail software store (xbox.com). This system relies on more than 20 backend
systems, such as product catalog databases and recommender systems. As shown in
Figure 5.1, each user request is received by an aggregation server, which then sends
queries to the necessary backends, waits for all queries to complete, and then packages
the results for delivery back to the user. Other large webservices like Wikipedia [24],
Amazon [142], and Facebook [143] have all followed a similar design. Note that a request
in these systems is not considered complete until all queries have completed.

OneRF Aggregation
Servers

Client Request

Product Catalogue
Backend

Recommender
Backend

User Entitlements
Backend

Backend
Systems

C
a
ch

eQueries

Figure 5.1: In the OneRF aggregation system at Microsoft, a user request requires ag-
gregating data from various backend services by issuing a series of queries.
The request is only considered to be completed when all subqueries have
finished.

In this chapter we ask the question whether the aggregation caches (colocated with
aggregation servers) can help to reduce the P99 request latency. Traditionally, aggrega-
tion caches are very simple. At Microsoft, they are unmanaged caches with a single LRU
eviction queue. In other systems, such as at Wikipedia and Facebook, the aggregation
caches are statically partitioned into separate caches, each tasked with caching queries
for a specific backend.
We propose RobinHood, which is an adaptive caching system that dynamically parti-

tions an aggregation cache with the goal of minimizing request tail latency. Section 5.1
motivates the problem by showing that existing caching systems are not effective in

95 5.1 Background and Motivation

reducing tail latency. Section 5.2 then introduces our proposed RobinHood caching sys-
tem, and discusses some of our experiences that have affected its design. Section 5.3
describes the implementation of RobinHood and of our evaluation testbed. Our empir-
ical results are presented in Section 5.4. Section 5.5 summarizes the results from this
chapter.

5.1 Background and Motivation

It is common for large Internet companies to support a wide variety of webservices
which all make use of a common set of backend services. Several Microsoft storefront
properties10 share more than 20 backend services. These storefronts use a common
aggregation service, the OneRF system (see Figure 5.1), which translates a user request
into backend queries and aggregates the results. Such aggregation services are common
in multi-tiered systems [142].
In such a system, a request first arrives at an aggregation server, where it is broken into

its component queries. Queries are first looked up in a local cache, which is collocated
with the aggregation server. The aggregation server then dispatches the remaining
queries (cache misses) to the appropriate backend. A request is considered complete
when each query has either been found in the cache or retrieved from a backend. Hence,
latency of a request is defined as the maximum of its query latencies.
The goal of RobinHood. RobinHood aims to minimize the tail latency of requests

in a multi-tiered system by dynamically allocating cache space to the backends which
cause high-latency requests. While RobinHood can optimize any latency percentile, we
will focus on minimizing the 99-percentile request latency (P99) throughout this chapter.

We first discuss the intuition behind RobinHood (Subsection 5.1.1) and then the
challenges in achieving RobinHood’s goal (Subsection 5.1.2).

5.1.1 How does Caching Address Tail Latency?

Caching is widely used to shield backends from overload [144] and to improve average-
case performance [128,145]. However, once a backend is within its capacity region [146]
further improving cache hit ratios is widely considered to not help tail latency latency [147].
This perspective is often explained with a simple example. Let’s say that a cache re-
sponds within 1ms and has hit ratio 70%, while its backend responds to cache misses

10microsoft.com, xbox.com, onestore.com

Chapter 5 RobinHood: a tail latency aware cache partitioning system 96

within 50ms. In this case, the P99 is 50ms. From this perspective, the P99 will be 50ms
for any cache with a hit ratio below 99%, which is typical for web and datacenter cache
hit ratios [31,144]. Thus, it seems that in practice caches cannot improve the P99.

RobinHood uses a cache to significantly improve the P99 in systems like OneRF,
where requests depend on queries to many backends. The intuition behind this counter-
intuitive result relies on three observations.

Observation 1: backend latency is not constant and not correlated with
individual queries. Unlike the example above, backend query latency is highly variable
in practice, typically spanning more than an order of magnitude. In OneRF’s backends
and in other large web backends [146], this variance in query latency is not correlated to
particular “slow queries”, but rather reflects a more holistic state of the backend system
at some point in time. Figure 5.2 shows latency scatterplots ordered by the popularity of
the underlying query. We observe that high latency is neither correlated with a specific
query nor with the query’s popularity. We thus think of each backend query latency as
a sample from some distribution which reflects the state of the backend system.

Even small increases in the hit ratio (10-20%) will result in fewer queries to the
backend system and consequently fewer samples from the query latency distribution.
This reduces the probability of sampling at least one high-latency query11. Hence, by
increasing the cache hit ratio of a backend, we are able to decrease the total number of
high latency queries, which may improve request tail latency.

Observation 2: higher cache hit ratios reduce backend load. Most production
systems are run at low load to maintain low tail latency since queueing effects often cause
latency to increases quickly for loads above 50% [146–148]. Higher cache hit ratios also
decrease load, which typically improves latency across a wide range of percentiles. In
many backend systems such as OneRF, backends can become temporarily overloaded
(see Figure 1.5). It is at these moments that small reductions in backend load can have
an outsized impact on the tail latency. Caching can provide a flexible mechanism for
providing this temporary relief.

Observation 3: in multi-tiered architectures with many backend systems,
caches can act as a load balancer. Tail request latency in the OneRF system would
benefit greatly from the ability to balance load between backend systems. While load
would have to be balanced carefully to account for request structure, load balancing

11Consider the following toy example. A backend query takes 10ms 95% of the time, and 50ms 5% of
the time. Then, increasing the hit ratio from 70% to 85% means the probability of a query taking
50ms goes down from 1.5% to 0.75% (so the P99 goes down from 50ms to 10ms).

97 5.1 Background and Motivation

●

●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●

●●●●●

●●●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●

●●●●

●●●●

●●●

●

●

●●

●●●
●●

●●●

●●●

●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●

●●

●

●

B
ackend−

ID
 1

B
ackend−

ID
 5

B
ackend−

ID
 6

B
ackend−

ID
 8

 most popular least popular

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

Query Popularity

Q
ue

ry
 L

at
en

cy
 [N

or
m

al
iz

ed
 to

 P
50

]

Figure 5.2: Scatterplot of query latency and popularity. We find that query latency is
neither correlated with popularity or a particular query.

could be used to make the slowest backends in the system faster without increasing the
latency of the fast, lightly-loaded backends too much. Unfortunately, traditional load
balancing cannot balance load between backends, since every query must be sent to its
correct, corresponding backend. The caching layer, however, can shift cache capacity
from backends that do not affect the P99 request latency to those that do. According
to Observation 2, this will raise the cache hit ratio and lower the load of the beneficiary
backends and have the inverse effect on their benefactors. RobinHood exploits this
phenomenon and tries to balance load across dissimilar backend systems by continuously
reallocating cache space.

Chapter 5 RobinHood: a tail latency aware cache partitioning system 98

0

50

100

1 5 10 15 20

Backend id
N

or
m

al
iz

ed
 P

99
 L

at
en

cy

Figure 5.3: Backend latencies in OneRF production backend systems.

5.1.2 Key Challenges of Caching for Tail Latency

We analyze traces from a OneRF production cluster to diagnose why achieving low
tail latency in a multi-tiered system is difficult. We identified the following three key
challenges.

Latency is imbalanced and the imbalance changes over time

As noted previously, it is common for the latencies of different backends to vary widely.

In OneRF, Figure 5.3 shows that latency across the 20 most used backends varies by
more than two orders of magnitude. The fundamental reason for this latency imbalance
is that several of these backend systems are complex multi-tiered distributed systems in
their own right. They serve multiple customers within the company, not just OneRF. In
addition to high latency imbalance, backend latencies also change over time (see Figure
5.4) independently of the request stream seen by applications servers.

Why latency imbalance poses a challenge for existing systems. Existing
caching systems take a myopic view of performance in that they focus on optimizing
cache-centric metrics (e.g., hit ratio) instead of latency. For example, a common ap-
proach is to divide fairly the cache space between partitions [149]. Another common
approach is to allocate cache space to balance hit ratios or to maximize the marginal
gain in hit ratio [145]. These approaches fail to explicitly account for latency, and hence
would only work if backends have identical latencies.

Some production systems use static cache allocations, e.g., the “arenas” in Facebook’s
TAO [143]. Manually deriving the optimal allocation is challenging and mentioned as
an open problem [143]. To actually minimize request tail latency, any solution must not

99 5.1 Background and Motivation

0

100

200

300

400

04 10 16 22

Hours of the Day

P
99

 L
at

en
cy

 [m
s] BackendID

1

5

6

8

Figure 5.4: Per-backend system P99 latency over the course of a typical day in the On-
eRF production system.

only consider which backends will tend to be the slowest, but it must be able to adapt
as this latency imbalance changes.

Latency is not correlated with query rate

Many caching schemes (including the OneRF production system) share the cache space
among the backends and use a common eviction policy (such as LRU). Shared caching
systems effectively give more cache space to backends that have a higher query rate.
Intuitively, this occurs because backends that have a higher query rate have more op-
portunities to their objects admitted into the cache. Unfortunately, query rate is not
necessarily correlated with latency. Figure 5.5 shows the query rate per backend (Back-
endIDs are ordered by rate), and Figure 5.3 shows the latency per backend. We find
that query rate is typically not correlated with P99 query latency. For example, the
seventh most popular backend receives only about 0.04x as many queries as the most
popular backend but has 2x the latency.

Why uncorrelated latency poses a challenge for existing systems. Many
caching systems allocate cache space proportionally to query rate, which is a known
problem in practice [150]. This applies to LRU, as used by OneRF, and many caching
systems [16]. Since latency is not correlated with query rate, such caching systems will
not be effective in reducing request tail latency.

Chapter 5 RobinHood: a tail latency aware cache partitioning system 100

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 1011121314151617181920

BackendId

Q
ue

ry
 R

at
e

Figure 5.5: The query rate per backend in the OneRF production system.

Backend 1 Backend 2 Backend 3

Figure 5.6: Request structure example. This request has 7 queries and fanout 3 (queries
three distinct backends). The backend’s batch sizes are 4 (Backend 1), 2
(Backend 2), and 1 (Backend 3).

Latency Depends on Request Structure, Which Varies Greatly

The manner in which an incoming request is split into backend queries by the application
varies between requests. We call the mapping of a request to its component backend
queries the request structure (e.g., Figure 5.6).

To characterize the request structure, we define the number of parallel queries to a
single backend as the backend’s batch size. For example, Backend 1 in Figure 5.6 has
batch size 4. We define the number of distinct backends queried by a request as its
fanout. For example, the request in Figure 5.6 has fanout 3. For a given backend, we
measure the average batch size and fanout of requests which reference this backend.

Table 5.1 summarizes how the query traffic of different backends is affected by the
request structure. We list the percentage of the overall number of queries that go to each
backend, and the percentage of requests which reference each backend. Furthermore, we

101 5.1 Background and Motivation

ID Query % Request % Mean Batch Size Mean Fanout Width
1 37.7% 14.7% 15 5.6
2 16.0% 4.5% 32 7.4
3 15.3% 4.5% 26 7.4
4 14.0% 20.0% 2 4.8
5 7.7% 19.0% 2 4.9
6 4.2% 4.7% 15 7.3
7 2.4% 10.8% 2 5.3
8 1.6% 15.5% 1 5.3
9 0.7% 3.4% 2 7.5
10 0.2% 0.7% 3 9.1

Table 5.1: Four key metrics describing the 10 most popular OneRF backends. Query %
describes the percentage of the total number of queries directed to a given
backend. Request % denotes the percentage of requests with at least one
query to the given backend. Batch size describes the average number of
simultaneous queries made to the given backend across requests with at least
one query to that backend. Fanout width describes the average number of
backends queried across requests with at least one query to the given backend.

list the batch size and fanout by backend. We can see that all of these metrics vary
across the different backends and are not strongly correlated with each other.
Why request structure poses a challenge for existing systems. There are

few caching systems that incorporate latency into their decisions, and they consider the
average query latency as opposed to the tail request latency [33, 134]. We find that
even after changing these latency aware systems to measure the P99 query latency, they
remain ineffective.

These systems fail because a backend with high query latency does not always cause
high request latency. A simple example would be high query latency in backend 10.
As backend 10 occurs in less than 0.7% of all requests, its impact on the P99 request
latency is limited – even if backend 10 was arbitrarily slow, it could not be responsible
for all of the requests above the P99 request latency. A scheme that incorporates query
rate and latency might decide to allocate most of the cache space towards backend 10,
while not improving the P99 request latency. While this specific case might be simple to
detect, differences in batch sizes and fanout-widths give rise to complicated scenarios12.
As a consequence, minimizing request tail latency is difficult unless request structure is
explicitly considered.

12For example, in Table 5.1, backend 3’s query latency is often high (due to large batch sizes). In
comparison, backend 4 often has lower query latency, but occurs in 4.5× more requests, which makes
it more likely to affect the P99 request latency. In addition, backend 4 occurs in requests with a
55% smaller fanout width, which makes it more likely to be actually the slowest backend, whereas
backend 3’s query latency is frequently hidden by queries to other backends.

Chapter 5 RobinHood: a tail latency aware cache partitioning system 102

5.2 The RobinHood Caching System

The purpose of this section is to describe the design of the RobinHood caching sys-
tem, whereas implementation details are discussed in Section 5.3. We describe the basic
RobinHood algorithm (Section 5.2.1), how we accommodate real-world constraints (Sec-
tion 5.2.2), and the high-level architecture of RobinHood (Section 5.2.3).

5.2.1 Basic RobinHood algorithm

We first describe the high-level idea behind RobinHood’s adaption algorithm. Given
some target percentile, e.g., the P99, RobinHood reallocates cache space towards the
backends that are responsible for high P99 request latency. We call such backends
“resource poor”. RobinHood repeatedly identifies the resource poor backends, taxes
every backend with 1% of its cache space, and redistributes the pooled tax to resource
poor backends.
Now, we discuss how RobinHood identifies resource-poor backends. First, we identify

the set S of requests whose latency exceeds the P99. For each request in S, we then
determine the query that took the longest, blocking the completion of this request.
Then, we tally the number of times each backend contributed a blocking query in S. A
backend’s tally is called the request-blocking-count (RBC).
A backend’s RBC is a measure of how poor a resource is. RobinHood thus distributes

the pooled taxed to all backends in proportion to the RBC.
As request structures and backend loads change over time (see Section 5.1), Robin-

Hood continuously repeats this algorithm every ∆ seconds We currently use ∆ = 5

seconds.

5.2.2 Accommodating Real-World Constraints in RobinHood

Next, we discuss three key constraints that have shaped the design and the implemen-
tation of RobinHood.

Backends appreciate the loot differently. The basic RobinHood algorithm assumes
that redistributed cache space is used immediately by each backend’s queries. In reality,
some backend’s queries do not use the additional cache space because their working set
already fits into the cache. RobinHood detects this phenomenon by monitoring for each
backend the gap between the assigned and the used cache capacity. If this gap is more

103 5.2 The RobinHood Caching System

than a safety margin of 30%, RobinHood temporarily ignores RBC of this backend to
avoids wasting cache space. Note that such a backend may continue to affect the request
tail latency. However, RobinHood instead focuses on backends that are currently more
receptive to additional cache space.

Local decision making and distributed controllers. The basic RobinHood algorithm
assumes an abstraction of a single cache with one partition per backend. In reality, e.g.,
in the OneRF system, incoming requests are load balanced across a cluster of aggregation
servers, each of which has its own local cache (see Section 5.1). Due to randomness13,
each server may see a slightly different view of the request and query streams. For
example, the speed at which different backend queries claim new cache space slightly
differs across aggregation servers. So, instead of making a global decision of how to
reallocate cache space (which may be suboptimal on some aggregation servers), we make
cache allocation decisions locally on each aggregation server. Thus, RobinHood runs as
a distributed controller as shown in Section 5.2.3.

One might think that the choice of distributed controllers could lead to diverging
allocations and cache space fragmentation across application servers over time. However,
we can show that over time, the difference in allocation is not larger than the difference
in working sets. Specifically, given ∆ = 5 seconds, any application server (e.g., a newly
started one) will converge to the average allocation within 30 minutes for all partitions
that see sufficient traffic to fill the caches.14

Honing the definition of the P99. The basic RobinHood algorithm assumes that the
slowest 1% of requests (which includes the P99.9 and the P99.99) are representative of the
P99. In reality, it is well known that the highest percentiles, e.g., the P99.99, include
non-representative outliers [142]. Rather than catering to these outliers, RobinHood
focuses on the region around the P99, specifically the P98.5 to the P99.5, which better
reflects the requests affecting the P99 in the next round.

13The load balancer in aggregation systems is typically only aware of requests, and not aware of the
queries that are triggered by the request. Therefore, differences in application server query streams
are common.

14This assumes stationary RBCs and query rates, and this holds for an application server starting
with any initial allocation and for the time until it is within 5% of the mean allocation across all
application servers.

Chapter 5 RobinHood: a tail latency aware cache partitioning system 104

5.2.3 RobinHood Architecture

Figure 5.7 shows the RobinHood architecture. It consists of the aggregation servers and
their caches, the backend services, and a statistics collection server.

C1

RobinHood
Controller

C2 C3
Cache

Resize()

1 2 3

Statistics
Collection

(Request-Latency,
Blocking Query)

RBC

Aggregation
Servers

Client Requests

Product Catalogue
Backend

Recommender
Backend

User Entitlements
Backend

Backend
Systems

Load Balancer

Figure 5.7: Sketch of RobinHood.

RobinHood requires an application caching system that can be dynamically resized.
For example, we use an unmodified memcached instance per aggregation server in our
testbed (see Section 5.3). Compared to a production aggregation system, such as OneRF,
we add two components. First, we add a lightweight controller to each aggregation server.
The controller implements the RobinHood algorithm (Sections 5.2.1 and 5.2.2) and issues
resize requests to the local cache’s partitions. Second, we add a statistics collection server
(or extend an existing real-time statistics framework). The aggregation library in the
aggregation server sends the latency of each request, and the blocking query’s backend-
ID to the statistics server. In our implementation this happens in batches, every second.
The statistics server calculates the RBC based on these measurements. The controller
then pulls the RBC from the statistics server and runs the RobinHood algorithm.

Notice that both RobinHood components (controller and statistics server) are not on
the critical path of requests and queries, and thus do not impose any latency overhead.
Moreover, both are stateless and the RobinHood architecture can tolerate faults and
restarts.

105 5.3 System Implementation and Challenges

5.3 System Implementation and Challenges

In designing an experimental testbed for the RobinHood Algorithm, our goal was to
recreate the dynamics of the OneRF system as accurately as possible. To accomplish
this, we made an effort to scale our testbed to a sufficient size that we were likely to
encounter challenges similar to those faced by the OneRF system. The end result was
a deployment across 50 servers that consisted of 20 backends (where several backends
have replicas), and 16 aggregation servers. Indeed, scaling to this degree revealed several
challenges not found in smaller scale experiments (see Section 5.3.3).

5.3.1 Generating Experimental Data

The first challenge in replicating the OneRF system is generating a realistic trace of
requests to drive our experiments. This requires knowing the distribution of request
structures – the relative frequency of each different way a request can be split into
queries. Furthermore, for each query to a given backend, we must know the popularity
distribution for this backend – the relative frequency with which each object in this
backend is queried. Finally, we must know the distribution of sizes for objects in each
backend.

Microsoft shared the above data with us for one of their OneRF cluster deployments in
their “east-us” data center for one week in 2017 and one week in 2018. We use the 2018
data in our evaluation (Section 5.4). The OneRF production cluster aggregated queries
from more than 40 distinct backend systems. We focus on the top 20 backend systems,
which make up more than 99% of all queries. The technologies used for each backend
include distributed key-value stores, multitiered content management systems, replicated
databases, and distributed machine learning systems. In addition to the data necessary
for generating the above distributions, we received per-query latency information. This
allowed additional analysis of performance trends across backends (see Section 5.1).

To create the experimental request trace, we generate a sequence of 50 million requests.
To generate each request, we first sample i.i.d. from the request structure distribution,
revealing which backends will be queried (and how many times each will be queried)
by this request. Then, for each query, we sample i.i.d. from the appropriate backend
popularity distribution, defining exactly which objects will be retrieved by each query.
Object sizes are generated from a size distribution independently by each backend and
are not explicitly encoded in the request trace. Note that, although we draw i.i.d. from
each distribution, the request structure and popularity distributions encode correlations

Chapter 5 RobinHood: a tail latency aware cache partitioning system 106

between queries. Hence, our generated trace will preserve correlations from the produc-
tion request stream. Furthermore, the popularity distribution also preserves the unique
locality and cacheability characteristics of each stream of backend queries.

5.3.2 Our Experimental Deployment

Our experimental deployment captures all of the key elements of the OneRF system
described in Section 5.1. Our deployment consists of 20 distinct backend services. These
services include several I/O intensive databases which store objects of the appropriate
size, a key-value store which serves objects of various sizes from memory, and a CPU
intensive machine-learning emulation which multiplies matrices of various sizes. Each
of these backends corresponds to the databases, key-value stores, and machine learning
services used by OneRF. Each backend is replicated according to its popularity relative
to the other backends. We additionally deploy a requestor, which reads the experimental
trace and generates requests, aggregation servers to respond to these requests, and the
RobinHood statistics server which aggregates system statistics and makes them available
system wide.

For database backends, MySQL was used. We wrote our own key-value store and
matrix-multiply backend in Go. Similarly, we wrote the aggregation servers and the
RobinHood statistics in Go. The caches on each aggregation server are memcached
instances. We developed the RobinHood controller in Python, as the controller is very
lightweight and not on the critical path of requests or queries.

All of these components are deployed as individual docker containers on a Microsoft
Azure virtual machine scale set composed of 50 instances joined by a virtual network.
Each server has 60 GB of memory; on aggregation servers 32 GB can be used by the
caching system. Container management services, persistent container storage, and inter-
container networking (via an overlay network) are provided by Docker Swarm. Swarm
leverages IPVS advanced layer-4 load balancing to route requests between replicated
container instances. On top of this framework, we built an extensive real-time moni-
toring and visualization framework to track various metrics such as latency, RBC, CPU
load, memory usage, and disk and network I/O for each container. This extensive setup
allowed us to reliably scale to production traffic speeds of several hundred thousand
queries per second.

107 5.4 Empirical Evaluation

5.3.3 Implementation Challenges

The biggest challenges in implementing this experimental setup was associated with the
high number (20) of backend services we had incorporated. An astute reader may ask
why we eschew the use of a remote, distributed caching layer, which is the design choice
in some production systems. We began by building a system which used a distributed
caching layer to support only 4 backends. When we increased the number of backends,
we began to see some of the issues that have been described in the literature on dis-
tributed caching, such as hotspots and the distribution of correlated data across cache
instances [143, 146]. While we acknowledge that solutions to these problems exist, they
are non-trivial and outside the scope of this work. We thus reverted to our design of
placing local, redundant caches on each aggregation server. This had the additional
benefit of removing network latencies from our measurement of cache hit times. This
matches, in fact, the design used in the OneRF production system.

Another challenge we encountered was the contention caused by reallocating cache
space in memcached instances. While we were able to implement the aggregation server
cache on top of unmodified memcached, we find that reallocating partition sizes while
under load can be expensive. For example, a deallocation of space requires acquiring
several locks to evict safely a potentially high number of pages to free up space. Hence, we
built our controllers to tolerate significant contention on these resources. The controller
makes a best-effort to enforce their desired allocation but will defer enforcement to a
future iteration of the algorithm if there is contention on cache resources is too high.

Finally, we expended significant effort creating a reproducible experimental setup.
Given the complexity of the deployment, and the variable nature of the cloud platform on
which we run, this required extensive monitoring. We also developed complex procedures
for resetting the state of the system between experimental runs to clear all system buffers
and prevent any carried over optimizations attempted by the underlying hardware. This
included a full restart of every instance between runs.

5.4 Empirical Evaluation

This section presents empirical results on the performance of RobinHood and existing
state of the art caching systems. The experiments use 50 servers, production traces
from the OneRF system, and the experimental testbed described in Section 5.3. We
first describe the competing caching systems (Section 5.4.1). Next, we present our
results from microexperiments on the impact of latency imbalance on these systems

Chapter 5 RobinHood: a tail latency aware cache partitioning system 108

(Section 5.4.2). Finally, we discuss the results from scaling up the experiments to 20
backend systems (Section 5.4.3).

5.4.1 Competing Caching Systems

We compare RobinHood to the state-of-the-art caching systems described in Section 5.1.
In total our experiments contain up to:

RobinHood: Our proposed dynamic partitioning system, using the design discussed in
Section 5.2, and the implementation discussed in Section 5.3.

Shared-Cache: A single shared cache partition with LRU eviction. This resembles most
closely the OneRF production configuration.

Static-Partition: Static per-backend partitions, where the partition sizes are optimized
once and then kept static (e.g., optimized for one part of the trace). This is an
optimistic (due to the recent optimization) representation of the Facebook TAO
configuration [143]

Offline-Opt: An offline-optimized partitioning scheme that has knowledge about future
requests and load patterns. We created this policy’s allocation by brute-force
searching over the space of allocation over the course of several days. This is an
impractical policy in general, and even with future knowledge we were only able
to implement this scheme for up to four partitions.

FairSpace (Static): Another static per-backend partitioning scheme, where each par-
tition is assigned the same share of the cache. Fair sharing has been proposed (in
the different context of sharing cluster computing caches) in FairRide [149].

By-Latency: A dynamic partitioning system that allocates in proportion to the P99
latency of each backend. This has not previously been proposed in the literature
but is similar in spirit to the recently-proposed Hyperbolic system [134]. As in
RobinHood, By-Latency taxes all backends every Delta = 5 with 1%. In our first
implementation of ByLatency, we just allocated to the slowest P99, which worked
for 4 backends but not for 20 (too slow). To fix this problem, ByLatency now
allocates to all backends that are above the average P99 across the backends, in
proportion to how much they exceed the average.

15We also tested a scheme that allocates with the goal of maximize the overall hit ratio, but that this

109 5.4 Empirical Evaluation

By-HitRatio: A dynamic partitioning system that allocates with the goal of equalizing
hit ratios15. This is similar to Cliffhanger [145].

By-QueryRate: A dynamic partitioning system that allocates in proportion to a back-
end’s query rate

The following two sections use a subset of these policies, where we selected the policies
by feasibility.

5.4.2 Latency-Imbalance Microexperiments

A key feature of production aggregation systems, like OneRF, is a severe degree of
latency imbalance (see Section 5.1). In this section, we evaluate how different caching
systems react to latency imbalance. We induce this latency imbalance by limiting the
resource of a backend system16. To isolate the effect of load imbalance, we consider
only four backends and induce latency imbalance into only one of the four backends.
Specifically, we randomly picked BackendIDs 1,4,7,9 and induce latency imbalance into
BackendID 7 to reproduce a scenario similar to Figure 5.3, where latency is uncorrelated
with query rate (see Section 5.1).

We evaluate three levels of latency imbalance: “mild”, “moderate”, and “severe”. Un-
der mild latency imbalance, almost all backends have the same latency (there is some
imbalance due to randomness in the backend architectures). Under moderate latency
imbalance, BackendId 7 has 10x the latency as BackendsIds 1,4, and 9. Under severe
latency imbalance, BackendId 7 has 100x the latency as BackendsIds 1,4, and 9. An
experiment is performed by gradually increasing the imbalance to the target value over
the course of 15 minutes and is then kept stable over the course of 45 minutes. This
is repeated at all three levels, for RobinHood, OfflineOpt, By-Latency, FairSpace, By-
HitRatio, Shared, and By-QueryRate.

Figure 5.8 shows a box plot of the P99 request latency in this experiment, for each
caching policy, at all three levels of latency imbalance. We find that OfflineOpt, Robin-
Hood and By-Latency are the only policies whose P99 latency remains below 100ms
across all three levels of latency imbalance. All other policies are not robust under
latency imbalance.

alternative scheme performed always worse than Shared-Cache and is thus represented by Shared-
Cache.

16Using Linux Control Groups, we limit how many IOPS and how much CPU time a set of backend
servers is allowed to use.

Chapter 5 RobinHood: a tail latency aware cache partitioning system 110

0

25

50

75

100

OfflineOPT RobinHood By−Latency FairSpace By−HitRatio Shared By−QueryRate

P
9

9
 L

a
te

n
c
y

[m
s]

Level of

Imbalance

mild

moderate

severe

P99 >> 100ms

Figure 5.8: P99 request latency in the latency imbalance microexperiment as a boxplot:
bold black line indicates median, box indicates 25/75-percentiles, whiskers
indicate 10/90-percentiles.

When comparing RobinHood and By-Latency, we find that their P99 latency is very
similar under mild latency imbalance. However, under moderate latency imbalance the
P99 latency of By-Latency grows significantly, whereas RobinHood’s P99 remains low.
Under several latency imbalances, the median P99 latency of By-Latency is more than
70% higher than RobinHood’s P99. The P99 of By-Latency is also much more variable,
whereas RobinHood’s P99 is tightly concentrated.
When comparing RobinHood and OfflineOpt, we find that OfflineOpt’s P99 is 30-

50% better than RobinHood. This happens because OfflineOpt has prior knowledge of
the increase in load imbalance and does not need to adjust its partitions, and is thus
not subjected to fluctuations in the partition sizes. This allows OfflineOpt to more
efficiently use its cache capacity. In contrast to OfflineOpt, RobinHood is a practical
policy. However, we find that there is significant potential for future improvements in
the RobinHood design.

5.4.3 Scaled-Up Experiments

In this experiment, we scale up the number of backends from 4 to 20 different backend
systems, which matches the OneRF production system. We also limit the resources on

111 5.4 Empirical Evaluation

several groups of backends in order to create a scenario with dynamic latency imbalances
similar to the period between 19:00 and 24:00 on the day of our production trace (see
Figure 5.4 in Section 5.1). Our experiment are about four hours long, and we discard the
25 minutes of each experiment (so, we are showing a total of 13K seconds or 216 minutes
of experiment time). The experiment includes the following policies: RobinHood, By-
Latency, Static, Shared, By-HitRatio, and By-QueryRate. We excluded FairSpace, as it
leads to an unstable system, and we excluded OfflineOpt as it was impossible to brute-
force search a 20-dimensional space of partition sizes. Static was optimized for the first
hour of the experiment, starting with the configuration found by RobinHood.

0

250

500

750

1000

0 2500 5000 7500 10000 12500

Time [s]

P
99

 L
at

en
cy

 [m
s]

RobinHood
Shared−Cache
By−Latency
Static

Figure 5.9: Comparison of the P99 request latency of RobinHood, Shared-Cache, and
By-Latency allocation.

Figure 5.9 shows the P99 request latency over time for RobinHood, Shared, By-
Latency and Static. We find that RobinHood is the only policy whose P99 stays below
100ms throughout the experiment.

Shared shows high latency early in the experiment, between 0 and 5000 seconds.
Shared peaks again around 10000 seconds.

By-Latency generally works well in the first half of the experiment. There are several
small P99 peaks at the beginning, and a prolonged period of around 125ms P99 latency
between 2500 and 5000 seconds. In the second half of the experiment, By-Latency
becomes unstable around 9000 seconds, and does not recover.

Static does very well in the first hour of the experiment (as expected), where it’s P99
is 5-10% better than RobinHood’s P99. However, Static is unstable between 3000 and
5000 seconds, and after 9000 seconds.

Chapter 5 RobinHood: a tail latency aware cache partitioning system 112

0

250

500

750

1000

0 2500 5000 7500 10000 12500

Time [s]

P
99

 L
at

en
cy

 [m
s]

RobinHood
By−HitRatio
By−QueryRate

Figure 5.10: Comparison of the P99 request latency of RobinHood, By-HitRatio, and
By-QueryRate allocation.

Figure 5.10 shows the P99 request latency over time for RobinHood, By-HitRatio,
and By-QueryRate. We find that, of these three, RobinHood is the only policy that is
stable between 0 and 5000 seconds. By-Hit-Ratio also leads to very high P99 latency in
the second half of the experiment. By-QueryRate performs better in the second half of
the experiment, but still occasionally peaks above 200ms.

We summarize the performance of all six policies throughout the whole experiment as
a boxplot in Figure 5.11.

Compared to Shared, RobinHood improves the P99 by 57% in the median. RobinHood
also leads to a much more stable performance, as it improves by more than 2.7x the 90-
percentile of the P99 over the course of the experiment.

113 5.4 Empirical Evaluation

Compared to By-Latency, RobinHood
improves the P99 by 58% in the me-
dian. Due to By-Latency leading to un-
stable performance in part of the trace,
RobinHood’s improvement is more than
10x for higher percentiles. Compared to
Static, RobinHood improves the P99 by
56% in the median. Again, the improve-
ment is even more significant at higher
percentiles. Compared to By-HitRatio,
RobinHood’s improvement is more than
2x at all percentiles. Compared to By-
QueryRate, RobinHood’s improvement
is 60% in the median, and more than 3x
at the 75-th and 90-th percentiles.

0

50

100

150

200

RH Sh Lat St HR QR

P
99

 L
at

en
cy

 [m
s]

RobinHood
Shared−Cache
By−Latency
Static
By−HitRatio
By−QueryRate

Figure 5.11: P99 request latency in the ex-
periment in Figure 5.9 as a
boxplot: bold black line in-
dicates median, box indicates
25/75-percentiles, whiskers in-
dicate 10/90-percentiles.

We finally consider how RobinHood adjusts the partition sizes. Figure 5.12 shows the
cache allocation chosen by RobinHood across all aggregation servers for all partitions at
5-second granularity, over the course of the experiment.

50

100

150

200

0 2500 5000 7500 10000 12500

Time [s]

C
ac

he
 A

llo
ca

tio
n

[G
B

]

Backend Type
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20

Figure 5.12: Cache allocation of RobinHood during the experiment in Figure 5.9. This
is the total allocation across all 16 aggregation servers.

We find that RobinHood ramps up the cache space of BackendID 5 (which is the
bottleneck is the first quarter of the experiment) from 50 GB to 150 GB and back
within the first 6000 seconds of the experiment. BackendID 4 starts at 75 GB, grows
up 175 GB around 5000 seconds, and then slowly decreases over time. The partition

Chapter 5 RobinHood: a tail latency aware cache partitioning system 114

sizes of BackendIDs 6, 9, and 1 also significantly change during the experiment. Overall,
RobinHood dynamically reallocates almost 75% of its 512 GB of total cache space17

throughout the experiment. Without the multiplexing gain (of being able to ramp-up
and ramp-down partition sizes), a cache would have wasted more than 380 GB of cache
space. RobinHood thus allows us aggregation server to use their cache space much more
efficiently.

5.5 Summary

RobinHood is a new caching system for aggregation servers in data centers. The goal of
RobinHood is to reduce tail request latency by dynamically allocating the cache resources
towards backends that slow down requests. In experiments with Microsoft production
traces, we show that RobinHood significantly reduces tail latency and, additionally, that
tail latencies are more stable under RobinHood than in existing state-of-the-art caching
systems.
The concept and results presented in this chapter disprove a widely held opinion in

the literature, which is that the caching layer does not directly address tail latency [147].
Our design and evaluation of RobinHood has, for the first time, connected the previously
separate communities on tail latency reduction and caching system optimization.

17As described in Section 5.3, each aggregation server allocates 32 GB of cache space. With 16 aggre-
gation servers, there are 512 GB of cache space in total.

6
Summary & Future Work

Contents

6.1 Future Directions . 116
6.2 Final Thoughts . 118

115

Chapter 6 Summary & Future Work 116

The research presented in this thesis is motivated by the large scale of variability
observed in production systems at Akamai and Microsoft. The robustness of our pro-
posals AdaptSize (Chapter 3) and RobinHood (Chapter 5) relies on being aware of this
variability and on continuously adapting the systems’ parameters over time. Variability
affects many other systems in Internet content delivery and beyond. In fact, several large
Internet companies, such as Akamai, have reported to us that the amount of variability
has been steadily increasing over the past years, as content delivery architectures are
shared by an increasing number and variety of applications [13].
This chapter discusses future work in this area, as well as in the analysis of optimal

caching (Chapter 4), and puts into a larger context our proposals of adaptive caching
systems.

6.1 Future Directions

Designing and analyzing second-level caching system for CDNs. In our work on
AdaptSize, we have focused on maximizing the OHR of the first-level cache, the HOC.
CDNs are interested in the OHR, because many Internet objects are small and lead to
an isolated (random) I/O operation on the second-level cache, the DC. In our evaluation
of AdaptSize, we have seen that improving the OHR had a highly positive effect on
the DC, which served fewer files or a larger average size, which lead to more sequential
access patterns and lower latency.
Explicitly optimizing the DC is more complex that optimizing the HOC in a CDN.

The main optimization goal of DCs is cost (whereas the HOC optimizes performance).
Cost is inherently harder to determine than a simple metric such as OHR. A common
metric is the byte miss ratio (BMR), as every byte not served by the DC needs to be
send over the public Internet, where bandwidth is costly. Optimizing the BMR requires
a significantly different approach than OHR as the trade-off between small and large
object is less clearly defined. The direction of designing caching systems for BMR is
wide open for further study. Furthermore, analyzing the optimal BMR is also a new
question. While our FOO analysis (the min cost flow representation) can capture any
cost metric, our analysis of the asymptotic correctness of this approach relies heavily on
an equal cost per miss. Preliminary experiments with FOO for BMR also suggest that
FOO’s upper and lower bounds are further apart under this metric.
A further challenge in optimizing the DC is that there are secondary constraints

dictated by the hardware. For example, the speed of serving requests from a spinning

117 6.1 Future Directions

disk depends heavily on the position of where data is stored on the disk (outer vs inner
ring). On the other hand, flash-based disks are highly sensitive to writes. In fact, most
flash disks have a small write budget per day – exceeding this write budget increases
the probability of failure for this type of disk. This creates a dual-optimization goal or
highly-constraint optimization problem.

Adaptive caching systems promise significant improvements in this area, but we need
to further develop our toolset in order to be able to incorporate these additional con-
straints.

Cross-layer caching optimization in Internet content delivery. Many CDN servers
include two to three levels of caching. Furthermore, CDN servers are typically orches-
trated in several layers of caching servers, called the edge, parent, and origin layers.
Each layer consists of a pool of CDN servers in the same geographic location. A miss in
the edge layer, is looked up in the parent layer, and so on.

In AdaptSize we use a Markov-chain model of a single cache to find the optimal
size-threshold parameter. In general, we will need to apply our tuning method across
multiple levels of caches. Thus, we need to a) find a way to expand the model to capture
a vector of states (i.e., the cache state across multiple caches as in [17]), and b) ensure
that the model’s complexity is still simple enough to have an efficient tuning system.
The challenge is that state vectors require multi-dimensional Markov chains, which are
inherently hard to solve. We plan to exploit recent mathematical developments such
as the Recursive Renewal Reward technique [151, 152] and to pursue a higher-order
modeling approaches to these caching systems.

Cross-layer optimization also requires tuning and modeling more complex caching
rules. Specifically, the interaction between edge, parent, and origin caches frequently
requires splitting the misses of an edge server between multiple parent servers. Addi-
tionally, servers at different levels have different optimization goals and see very different
traffic patterns. To jointly optimize caching rules across several levels of CDN servers,
we need a significantly more powerful tuning approach.

This scenario may well be beyond the reach of detailed performance modeling tech-
niques (such as Markov chains). Some of the ideas from RobinHood may be applied
in this case, e.g., deriving a feedback metric for the critical latency path, and combin-
ing this with a simple controller. However, this problem remains wide open and future
work in this direction relies a strong industrial partner to allow prototyping analysis and
design technique in this space.

Chapter 6 Summary & Future Work 118

6.2 Final Thoughts

While variability occurs as a motivating problem throughout this thesis, variability can
also be seen as an opportunity. Without size variability, AdaptSize would miss a key
predictor that distinguishes the effect of objects on the cache. If all objects were equal, it
would be much harder to decide whether to admit and object or not – less information is
known about an object that which is new or for which we do not track meta data. In this
sense AdaptSize exploits the variability inherent to CDN traffic. Similarly, RobinHood
relies on the occurrence of temporarily over-provisioned backends so that it can allocate
their cache space towards backends that are currently overloaded. If all backends were
equally highly loaded, RobinHood cannot do anything to improve the request latency.
In practice, variability can come from different sources. Variability that is inherent

in the system and that has a known and static magnitude over time can be seen as an
opportunity for systems like AdaptSize and RobinHood. However, Internet system also
sometimes face adversarial variability, e.g., where outside actors seek to bring down a
part of the content delivery architecture to deny service to a set of users. While we
tested AdaptSize under randomized and adversarial traffic changes, such synthetics are
not enough to certify robustness against any type of variability. Recent examples in the
context of neural networks, which can easily be tricked [153, 154] to show unintended
behavior, prove that highly-complex systems are not robust against adversarial input
and variability. While AdaptSize and RobinHood are conceptually simple, and likely to
be more robust than a static size threshold or static cache allocation, we will need to
incorporate adversarial variability into our increasingly complex infrastructure.

Bibliography

[1] S. Albers, S. Arora, and S. Khanna, “Page replacement for general caching prob-
lems,” in SODA, vol. 99, 1999, pp. 31–40.

[2] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, “A unified
approach to approximating resource allocation and scheduling,” Journal of the
ACM, vol. 48, no. 5, pp. 1069–1090, 2001.

[3] S. Irani, “Page replacement with multi-size pages and applications to web caching,”
in ACM STOC, 1997, pp. 701–710.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly avail-
able key-value store,” in ACM SOSP, 2007, pp. 205–220.

[5] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding long tails in the
cloud,” in USENIX NSDI, 2013, pp. 329–342.

[6] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56, no. 2, pp.
74–80, Feb. 2013.

[7] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand,
and J. Crowcroft, “Queues don’t matter when you can jump them!” in USENIX
NSDI, 2015.

[8] I. N. Bozkurt, A. Aguirre, B. Chandrasekaran, P. B. Godfrey, G. Laughlin,
B. Maggs, and A. Singla, “Why is the internet so slow?!” in International Confer-
ence on Passive and Active Network Measurement, 2017, pp. 173–187.

[9] S. Sundaresan, N. Magharei, N. Feamster, R. Teixeira, and S. Crawford, “Web
performance bottlenecks in broadband access networks,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 41, no. 1, 2013, pp. 383–384.

[10] J. Dilley, B. M. Maggs, J. Parikh, H. Prokop, R. K. Sitaraman, and W. E. Weihl,
“Globally distributed content delivery,” IEEE Internet Computing, vol. 6, no. 5,
pp. 50–58, 2002.

119

Bibliography 120

[11] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A platform for
high-performance Internet applications,” ACM SIGOPS Operating Systems Re-
view, vol. 44, no. 3, pp. 2–19, 2010.

[12] “Akamai facts and figures,” April 2018, available at https://www.akamai.com/us/
en/about/facts-figures.jsp, accessed 04/13/18.

[13] “CISCO VNI global IP traffic forecast: The zettabyte era—trends and analysis,”
May 2015, available at http://goo.gl/wxuvVk, accessed 09/12/16.

[14] M. Chow, K. Veeraraghavan, M. J. Cafarella, and J. Flinn, “Dqbarge: Improving
data-quality tradeoffs in large-scale internet services.” in USENIX OSDI, 2016, pp.
771–786.

[15] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek, V. Khemani, S. Fulger, P. Gu,
L. Bhuvanagiri, J. Hunter et al., “Slicer: Auto-sharding for datacenter applica-
tions.” in OSDI, 2016, pp. 739–753.

[16] D. S. Berger, R. Sitaraman, and M. Harchol-Balter, “Adaptsize: Orchestrating the
hot object memory cache in a cdn,” in USENIX NSDI, March 2017.

[17] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL cache
networks,” Perform. Eval., vol. 79, pp. 2 – 23, 2014, special Issue: Performance
2014.

[18] D. S. Berger, S. Henningsen, F. Ciucu, and J. B. Schmitt, “Maximizing cache
hit ratios by variance reduction,” ACM SIGMETRICS Performance Evaluation
Review, vol. 43, no. 2, pp. 57–59, 2015.

[19] D. S. Berger, N. Beckmann, and M. Harchol-Balter, “Practical bounds on optimal
caching with variable object sizes,” ACM POMACS, vol. 2, no. 2, p. 32, 2018.

[20] ——, “Practical bounds on optimal caching with variable object sizes,” in ACM
SIGMETRICS, June 2018.

[21] D. S. Berger, B. Berg, T. Zhu, and M. Harchol-Balter, “The case for dynamic cache
partitioning for tail latency,” in USENIX NSDI (Extended Abstract), March 2017.

[22] D. S. Berger, B. Berg, T. Zhu, S. Sen, and M. Harchol-Balter, “Robinhood: Tail
latency aware caching—dynamic reallocation from cache-rich to cache-poor,” in
USENIX OSDI, October 2018.

https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
http://goo.gl/wxuvVk

121 Bibliography

[23] “Modern network design,” November 2016, available at https://www.fastly.com/
products/modern-network-design, accessed 02/17/17.

[24] E. Rocca, “Running Wikipedia.org,” June 2016, available at https:
//www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf, accessed
09/12/16.

[25] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, “Overlay networks:
An Akamai perspective,” in Advanced Content Delivery, Streaming, and Cloud
Services. John Wiley & Sons, 2014.

[26] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G. Andersen,
O. Seongil, S. Lee, and P. Dubey, “Architecting to achieve a billion requests per
second throughput on a single key-value store server platform,” in ACM ISCA,
2015, pp. 476–488.

[27] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A holistic approach
to fast in-memory key-value storage,” in USENIX NSDI, 2014, pp. 429–444.

[28] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and concurrent
memcache with dumber caching and smarter hashing,” in USENIX NSDI, 2013,
pp. 371–384.

[29] P.-H. Kamp, “You’re doing it wrong,” Communications of the ACM, vol. 53, no. 7,
pp. 55–59, 2010.

[30] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Cliffhanger: Scaling perfor-
mance cliffs in web memory caches,” in USENIX NSDI, 2016, pp. 379–392.

[31] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content delivery,”
ACM SIGCOMM CCR, vol. 45, pp. 52–66, 2015.

[32] N. Gast and B. Van Houdt, “Transient and steady-state regime of a family of list-
based cache replacement algorithms,” in ACM SIGMETRICS, 2015, pp. 123–136.

[33] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding, S. Jiang, and Z. Wang, “LAMA:
Optimized locality-aware memory allocation for key-value cache,” in USENIX
ATC, 2015, pp. 57–69.

[34] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Dynacache: dynamic cloud
caching,” in USENIX HotCloud, 2015.

https://www.fastly.com/products/modern-network-design
https://www.fastly.com/products/modern-network-design
https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf
https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf

Bibliography 122

[35] G. Einziger and R. Friedman, “Tinylfu: A highly efficient cache admission policy,”
in IEE Euromicro PDP, 2014, pp. 146–153.

[36] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C. Li, “An
analysis of Facebook photo caching,” in ACM SOSP, 2013, pp. 167–181.

[37] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee, “CFLRU: a replacement
algorithm for flash memory,” in ACM/IEEE CASES, 2006, pp. 234–241.

[38] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective improvement of the
clock replacement.” in USENIX ATC, 2005, pp. 323–336.

[39] S. Bansal and D. S. Modha, “CAR: Clock with adaptive replacement.” in USENIX
FAST, vol. 4, 2004, pp. 187–200.

[40] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead replacement
cache.” in USENIX FAST, vol. 3, 2003, pp. 115–130.

[41] S. Jiang and X. Zhang, “LIRS: an efficient low inter-reference recency set replace-
ment policy to improve buffer cache performance,” ACM SIGMETRICS, vol. 30,
no. 1, pp. 31–42, 2002.

[42] H. Bahn, K. Koh, S. H. Noh, and S. Lyul, “Efficient replacement of nonuniform
objects in web caches,” IEEE Computer, vol. 35, no. 6, pp. 65–73, 2002.

[43] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algorithm for second
level buffer caches.” in USENIX ATC, 2001, pp. 91–104.

[44] L. Cherkasova and G. Ciardo, “Role of aging, frequency, and size in web cache
replacement policies,” in High-Performance Computing and Networking, 2001, pp.
114–123.

[45] S. Jin and A. Bestavros, “GreedyDual* web caching algorithm: exploiting the two
sources of temporal locality in web request streams,” Computer Communications,
vol. 24, pp. 174–183, 2001.

[46] D. Starobinski and D. Tse, “Probabilistic methods for web caching,” Perform.
Eval., vol. 46, pp. 125–137, 2001.

[47] L. Rizzo and L. Vicisano, “Replacement policies for a proxy cache,” IEEE/ACM
TON, vol. 8, pp. 158–170, 2000.

123 Bibliography

[48] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating content
management techniques for web proxy caches,” Performance Evaluation Review,
vol. 27, no. 4, pp. 3–11, 2000.

[49] K. Shah, A. Mitra, and D. Matani, “An O(1) algorithm for implementing the LFU
cache eviction scheme,” Stony Brook University, Tech. Rep., 2010.

[50] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, “On the
existence of a spectrum of policies that subsumes the least recently used (LRU)
and least frequently used (LFU) policies,” in ACM SIGMETRICS, vol. 27, 1999,
pp. 134–143.

[51] C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching on the world wide web,” IEEE
Transactions on Knowledge and Data Engineering, vol. 11, no. 1, pp. 94–107, 1999.

[52] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms.” in USENIX
symposium on Internet technologies and systems, vol. 12, 1997, pp. 193–206.

[53] R. P. Wooster and M. Abrams, “Proxy caching that estimates page load delays,”
Computer Networks and ISDN Systems, vol. 29, no. 8, pp. 977–986, 1997.

[54] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, and S. Williams, “Removal
policies in network caches for World-Wide Web documents,” in ACM SIGCOMM,
1996, pp. 293–305.

[55] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox, “Caching
Proxies: Limitations and Potentials,” Virginia Polytechnic Institute & State Uni-
versity Blacksburgh, VA, Tech. Rep., 1995.

[56] T. Johnson and D. Shasha, “2Q: A low overhead high performance buffer manage-
ment replacement algorithm,” in VLDB, 1994, pp. 439–450.

[57] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page replacement algo-
rithm for database disk buffering,” ACM SIGMOD, vol. 22, no. 2, pp. 297–306,
1993.

[58] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, and D. Tsigkari,
“Access-time aware cache algorithms,” in IEEE ITC, vol. 1, 2016, pp. 148–156.

[59] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson, “Dynamic perfor-
mance profiling of cloud caches,” in ACM SoCC, 2014, pp. 1–14.

Bibliography 124

[60] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques
for storage hierarchies,” IBM Systems journal, vol. 9, no. 2, pp. 78–117, 1970.

[61] G. Almasi, C. Caşcaval, and D. A. Padua, “Calculating stack distances efficiently,”
in ACM SIGPLAN Notices, vol. 38, 2002, pp. 37–43.

[62] J. Wires, S. Ingram, Z. Drudi, N. J. Harvey, and A. Warfield, “Characterizing
storage workloads with counter stacks,” in USENIX OSDI, 2014, pp. 335–349.

[63] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad, “Efficient MRC con-
struction with SHARDS,” in USENIX FAST, 2015, pp. 95–110.

[64] W. F. King, “Analysis of demand paging algorithms,” in IFIP Congress (1), 1971,
pp. 485–490.

[65] E. Gelenbe, “A unified approach to the evaluation of a class of replacement algo-
rithms,” IEEE Transactions on Computers, vol. 100, pp. 611–618, 1973.

[66] E. G. Coffman and P. J. Denning, Operating systems theory. Prentice-Hall, 1973.

[67] J. McCabe, “On serial files with relocatable records,” Operations Research, vol. 13,
pp. 609–618, 1965.

[68] P. Burville and J. Kingman, “On a model for storage and search,” Journal of
Applied Probability, pp. 697–701, 1973.

[69] W. Hendricks, “The stationary distribution of an interesting Markov chain,” Jour-
nal of Applied Probability, pp. 231–233, 1972.

[70] A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO buffer
replacement schemes,” in ACM SIGMETRICS, 1990, pp. 143–152.

[71] N. Tsukada, R. Hirade, and N. Miyoshi, “Fluid limit analysis of FIFO and RR
caching for independent reference model,” Perform. Eval., vol. 69, pp. 403–412,
Sep. 2012.

[72] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon collectors,
caching algorithms and self-organizing search,” Discrete Applied Mathematics,
vol. 39, pp. 207–229, 1992.

[73] J. A. Fill and L. Holst, “On the distribution of search cost for the move-to-front
rule,” Random Structures & Algorithms, vol. 8, pp. 179–186, 1996.

125 Bibliography

[74] P. R. Jelenković, “Asymptotic approximation of the move-to-front search cost dis-
tribution and least-recently used caching fault probabilities,” The Annals of Ap-
plied Probability, vol. 9, pp. 430–464, 1999.

[75] R. P. Dobrow and J. A. Fill, “The move-to-front rule for self-organizing lists with
Markov dependent requests,” in Discrete Probability and Algorithms. Springer,
1995, pp. 57–80.

[76] E. R. Rodrigues, “The performance of the move-to-front scheme under some par-
ticular forms of Markov requests,” Journal of applied probability, pp. 1089–1102,
1995.

[77] E. G. Coffman and P. Jelenković, “Performance of the move-to-front algorithm
with Markov-modulated request sequences,” Operations Research Letters, vol. 25,
pp. 109–118, 1999.

[78] P. R. Jelenković and A. Radovanović, “Least-recently-used caching with dependent
requests,” Theoretical computer science, vol. 326, pp. 293–327, 2004.

[79] A. Panagakis, A. Vaios, and I. Stavrakakis, “Approximate analysis of LRU in the
case of short term correlations,” Computer Networks, vol. 52, pp. 1142–1152, 2008.

[80] K. Psounis, A. Zhu, B. Prabhakar, and R. Motwani, “Modeling correlations in web
traces and implications for designing replacement policies,” Computer Networks,
vol. 45, pp. 379–398, 2004.

[81] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy, “Perfor-
mance evaluation of the random replacement policy for networks of caches,” in
ACM SIGMETRICS/ PERFORMANCE, 2012, pp. 395–396.

[82] N. E. Young, “Online paging against adversarially biased random inputs,” Journal
of Algorithms, vol. 37, pp. 218–235, 2000.

[83] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “An optimality proof of the LRU-K
page replacement algorithm,” JACM, vol. 46, pp. 92–112, 1999.

[84] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approximation for
LRU cache performance,” in ITC, 2012, p. 8.

[85] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the performance
analysis of caching systems.” in IEEE INFOCOM, 2014.

Bibliography 126

[86] P. Olivier and A. Simonian, “Performance of a cache with random replacement
and zipf document popularity,” in VALUETOOLS, 2013.

[87] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling,
design and experimental results,” IEEE JSAC, vol. 20, pp. 1305–1314, 2002.

[88] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approximation for
LRU cache performance,” in International Teletraffic Congress, 2012, pp. 8:1–8:8.

[89] T. Osogami, “A fluid limit for a cache algorithm with general request processes,”
Advances in Applied Probability, vol. 42, no. 3, pp. 816–833, 2010.

[90] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before storing:
what is the performance price of content integrity verification in LRU caching?”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 3, pp. 59–67,
2013.

[91] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer.”
in IBM Systems journal, vol. 5, 1996, pp. 78–101.

[92] e. a. Mattson, Richard L., “Evaluation techniques for storage hierarchies.” in IBM
Systems journal, vol. 9, 1970, pp. 78–117.

[93] M. Chrobak, G. J. Woeginger, K. Makino, and H. Xu, “Caching is hard—even in
the fault model,” in Algorithmica, vol. 63, 2012, pp. 781–794.

[94] V. V. Vazirani, Approximation algorithms. Springer Science & Business Media,
2013.

[95] L. Folwarcznỳ and J. Sgall, “General caching is hard: Even with small pages,”
Algorithmica, vol. 79, no. 2, pp. 319–339, 2017.

[96] C. Koufogiannakis and N. E. Young, “A nearly linear-time PTAS for explicit frac-
tional packing and covering linear programs,” Algorithmica, vol. 70, no. 4, pp.
648–674, 2014.

[97] B. S. Gill, “On multi-level exclusive caching: offline optimality and why promotions
are better than demotions,” in USENIX FAST, 2008, p. 4.

[98] M. Kallahalla and P. J. Varman, “Pc-opt: optimal offline prefetching and caching
for parallel i/o systems,” IEEE Transactions on Computers, vol. 51, no. 11, pp.
1333–1344, 2002.

127 Bibliography

[99] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content caching,”
in IEEE INFOCOM, 2016, pp. 1–9.

[100] P. Hillmann, T. Uhlig, G. D. Rodosek, and O. Rose, “Simulation and optimization
of content delivery networks considering user profiles and preferences of internet
service providers,” in IEEE Winter Simulation Conference, 2016, pp. 3143–3154.

[101] S. Shukla and A. Abouzeid, “Optimal device aware caching,” IEEE Transactions
on Mobile Computing, vol. PP, no. 99, pp. 1–1, September 2016.

[102] D.-Z. Du and P. M. Pardalos, Handbook of combinatorial optimization, 2nd ed.
Springer, 2013.

[103] H. ElAarag, S. Romano, and J. Cobb, Web Proxy Cache Replacement Strategies:
Simulation, Implementation, and Performance Evaluation, ser. Springer Briefs in
Computer Science. Springer London, 2013.

[104] R. Motwani and P. Raghavan, Randomized algorithms. Chapman & Hall/CRC,
2010.

[105] P.-H. Kamp, “Varnish LRU architecture,” June 2007, available at https://www.
varnish-cache.org/trac/wiki/ArchitectureLRU, accessed 09/12/16.

[106] J.-Y. Le Boudec, D. McDonald, and J. Mundinger, “A generic mean field con-
vergence result for systems of interacting objects,” in Quantitative Evaluation of
Systems. IEEE, 2007, pp. 3–18.

[107] F. Velázquez, K. Lyngstøl, T. Fog Heen, and J. Renard, The Varnish Book for
Varnish 4.0. Varnish Software AS, March 2016.

[108] P. Graziano, “Speed up your web site with Varnish,” Linux Journal, vol. 2013, no.
227, p. 4, 2013.

[109] N. C. Fofack, M. Dehghan, D. Towsley, M. Badov, and D. L. Goeckel, “On the
performance of general cache networks,” in VALUETOOLS, 2014, pp. 106–113.

[110] P. P. Petrushev and V. A. Popov, Rational approximation of real functions. Cam-
bridge University Press, 2011, vol. 28.

[111] P. Pošík, W. Huyer, and L. Pál, “A comparison of global search algorithms for
continuous black box optimization,” Evolutionary computation, vol. 20, no. 4, pp.
509–541, 2012.

https://www.varnish-cache.org/trac/wiki/ArchitectureLRU
https://www.varnish-cache.org/trac/wiki/ArchitectureLRU

Bibliography 128

[112] W. H. Press, Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press, 2007.

[113] P.-H. Kamp, “Varnish notes from the architect,” 2006, available at https://www.
varnish-cache.org/docs/trunk/phk/notes.html, accessed 09/12/16.

[114] S. Godard, “Iostat,” 2015, available at http://goo.gl/JZmbUp, accessed 09/12/16.

[115] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache at facebook,” in USENIX
NSDI, 2013, pp. 385–398.

[116] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: theory, algorithms,
and applications. Prentice hall, 1993.

[117] W. Feller, An introduction to probability theory and its applications. John Wiley
& Sons, 2008, vol. 2.

[118] A. V. Doumas and V. G. Papanicolaou, “The coupon collector’s problem revisited:
asymptotics of the variance,” Advances in Applied Probability, vol. 44, no. 1, pp.
166–195, 2012.

[119] J. Moriarty and P. Neal, “The generalized coupon collector problem,” Journal of
Applied Probability, vol. 45, pp. 621–29, 2008.

[120] W. Xu and A. K. Tang, “A generalized coupon collector problem,” Journal of
Applied Probability, vol. 48, no. 4, pp. 1081–1094, 2011.

[121] E. Anceaume, Y. Busnel, and B. Sericola, “New results on a generalized coupon
collector problem using markov chains,” Journal of Applied Probability, vol. 52,
no. 2, pp. 405–418, 2015.

[122] S. I. Daitch and D. A. Spielman, “Faster approximate lossy generalized flow via
interior point algorithms,” in ACM STOC, 2008, pp. 451–460.

[123] R. Becker and A. Karrenbauer, “Adaptive caching networks with optimality guar-
antees,” in ISAAC, 2014, pp. 753–765.

[124] ——, “A combinatorial o(m 3/2)-time algorithm for the min-cost flow problem,”
arXiv preprint arXiv:1312.3905, 2013.

https://www.varnish-cache.org/docs/trunk/phk/notes.html
https://www.varnish-cache.org/docs/trunk/phk/notes.html
http://goo.gl/JZmbUp

129 Bibliography

[125] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like
distributions: Evidence and implications,” in IEEE INFOCOM, 1999, pp. 126–134.

[126] B. Karrer and M. E. Newman, “Random graph models for directed acyclic net-
works,” Physical Review E, vol. 80, no. 4, p. 046110, 2009.

[127] B. Bollobás and G. Brightwell, “The height of a random partial order: concentra-
tion of measure,” The Annals of Applied Probability, pp. 1009–1018, 1992.

[128] N. Beckmann, H. Chen, and A. Cidon, “Lhd: Improving hit rate by maximizing
hit density,” in USENIX NSDI., 2018.

[129] SNIA, “MSR Cambridge Traces,” http://iotta.snia.org/traces/388, 2008.

[130] W. Hoeffding, “A non-parametric test of independence,” The annals of mathemat-
ical statistics, pp. 546–557, 1948.

[131] W. W. Daniel et al., Applied nonparametric statistics. Houghton Mifflin, 1978.

[132] L. Cherkasova, Improving WWW proxies performance with greedy-dual-size-
frequency caching policy. Hewlett-Packard Laboratories, 1998.

[133] C. Li and A. L. Cox, “Gd-wheel: a cost-aware replacement policy for key-value
stores,” in EUROSYS, 2015, p. 5.

[134] A. Blankstein, S. Sen, and M. J. Freedman, “Hyperbolic caching: Flexible caching
for web applications,” in USENIX ATC, 2017.

[135] E. R. G. on Combinatorial Optimization, “Coin-or::lemon library,” 2015, available
at http://lemon.cs.elte.hu/trac/lemon, accessed 10/21/17.

[136] O. Tange, “Gnu parallel - the command-line power tool,” ;login: The
USENIX Magazine, vol. 36, no. 1, pp. 42–47, Feb 2011. [Online]. Available:
http://www.gnu.org/s/parallel

[137] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory
programming,” IEEE computational science and engineering, vol. 5, no. 1, pp.
46–55, 1998.

[138] K. Psounis and B. Prabhakar, “A randomized web-cache replacement scheme,” in
INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 3. IEEE, 2001, pp. 1407–1415.

http://iotta.snia.org/traces/388
http://lemon.cs.elte.hu/trac/lemon
http://www.gnu.org/s/parallel

Bibliography 130

[139] R. E. Kessler, M. D. Hill, and D. A. Wood, “A comparison of trace-sampling
techniques for multi-megabyte caches,” IEEE Transactions on Computers, 1994.

[140] N. Beckmann and D. Sanchez, “Talus: A simple way to remove cliffs in cache
performance,” in IEEE HPCA., 2015.

[141] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park, “Cache modeling and
optimization using miniature simulations,” in 2017 USENIX Annual Technical
Conference (USENIX ATC 17), 2017.

[142] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly avail-
able key-value store,” in ACM SOSP, vol. 41, no. 6, 2007, pp. 205–220.

[143] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,
A. Giardullo, S. Kulkarni, H. C. Li et al., “Tao: Facebook’s distributed data store
for the social graph.” in USENIX ATC, 2013, pp. 49–60.

[144] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C. Li, “An
analysis of Facebook photo caching,” in SOSP, 2013.

[145] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Cliffhanger: Scaling perfor-
mance cliffs in web memory caches,” in USENIX NSDI, 2016.

[146] K. Veeraraghavan, J. Meza, D. Chou, W. Kim, S. Margulis, S. Michelson, R. Nish-
tala, D. Obenshain, D. Perelman, and Y. J. Song, “Kraken: leveraging live traffic
tests to identify and resolve resource utilization bottlenecks in large scale web
services,” in USENIX OSDI, 2016, pp. 635–650.

[147] J. Dean and L. A. Barroso, “The tail at scale,” CACM, vol. 56, no. 2, pp. 74–80,
2013.

[148] H. Kasture and D. Sanchez, “Ubik: efficient cache sharing with strict qos for
latency-critical workloads,” in ACM SIGPLAN Notices, vol. 49, no. 4, 2014, pp.
729–742.

[149] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica, “Fairride: Near-optimal, fair
cache sharing,” in NSDI, 2016, pp. 393–406.

[150] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload analysis
of a large-scale key-value store,” in ACM SIGMETRICS, 2012, pp. 53–64.

131 Bibliography

[151] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf, “Analysis of cycle stealing
with switching times and thresholds,” in ACM SIGMETRICS, San Diego, CA,
June 2003, pp. 184–195.

[152] A. Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf, “Exact analysis
of the M/M/k/setup class of markov chains via recursive renewal reward,” in ACM
SIGMETRICS, 2013.

[153] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The
limitations of deep learning in adversarial settings,” in IEEE EuroS&P, 2016, pp.
372–387.

[154] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 427–436.

Curriculum Vitae

Daniel S. Berger

Education

2014 - 2018 PhD in Computer Science
Technische Universität Kaiserslautern, Germany
Thesis: “Design and Analysis of Adaptive Caching Techniques for
Internet Content Delivery”
Committee: Jens Schmitt (Kaiserslautern), Mor Harchol-
Balter (CMU), Florin Ciucu (U. Warwick)

2012 - 2014 Master of Science in Computer Science
Technische Universität Kaiserslautern, Germany
Specialization: information and communication systems
Thesis: “Towards Analytical Cache Models for Feedforward Net-
works”
Committee: Jens Schmitt (Kaiserslautern), Florin Ciucu (U. War-
wick)

2009 - 2012 Bachelor of Science in Computer Science
Technische Universität Kaiserslautern, Germany
Specialization: information and communication systems
Thesis: “Effects and Factors of Network Instability:”
Committee: Jens Schmitt (Kaiserslautern), Martin Karsten (U.
Waterloo)

Professional Experience

since 2011 Teaching Assistant and Tutor at Distributed Computer Sys-
tems Lab
Technische Universität Kaiserslautern, Germany

133

Bibliography 134

Lectures: Performance Evaluation of Distributed Systems (89-
4245), Mobile Computing (89-4271), Distributed and Networked
Systems (89-4111), Kommunikationssysteme/Computer Networks
(89-0013)

2/2013–10/2013 Internship at Telekom Innovation Laboratories+T
Berlin, Germany

7/2009–10/2012 Research Assistant at German Cancer Research Center
Heidelberg, Germany
Department of Radiology

Honors & Awards

2016 M.Sc. Research Price, German Informatics Society. Technical
committee on Measurements, Modeling and Evaluation of Com-
puter Systems.

2015 Invited to the 3rd Heidelberg Laureate Forum, selected as
one of 200 students to meet Turing and Abel price laureates.

2014 Best Paper Award at IFIP Performance, for “Exact Analysis
of TTL Cache Networks”, International Federation for Information
Processing. Working group on Computer System Modeling

2014 Best Student Paper Award at ACM WiSec, for “Gaining In-
sight on Friendly Jamming in a Real-World IEEE 802.11 Network”,
ACM Special Interest Group on Security, Audit and Control.

2015 Mobility Grant, Kaiserslautern Network for the Promotion of
Young Scientists.

2012–2017 Informatik Promotionsprogram, Department of Computer
Science, University of Kaiserslautern.

2008–2013 Full Scholarship Holder, Deutsche Studien Stiftung.

135 Bibliography

Publications

Peer-Reviewed

• RobinHood: Tail Latency Aware Caching - Dynamic Reallocation from Cache-Rich
to Cache-Poor.
(Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, Mor Harchol-
Balter), In Proceedings of USENIX OSDI (Symposium on Operating Systems De-
sign and Implementation), October 2018.

• Practical Bounds on Optimal Caching with Variable Object Sizes.
(Daniel S. Berger, Nathan Beckmann, Mor Harchol-Balter), In Proceedings of
ACM SIGMETRICS (International Conference on Measurement and Modeling of
Computer Systems), June 2018.

• AdaptSize: Orchestrating the Hot Object Memory Cache in a CDN.
(Daniel S. Berger, Ramesh Sitaraman, Mor Harchol-Balter), In Proceedings of
USENIX NSDI (Symposium on Networked Systems Design and Implementation),
March 2017.

• The Case for Dynamic Cache Partitioning.
(Daniel S. Berger, Benjamin Berg, Timothy Zhu, Mor Harchol-Balter), Extended
Abstract, In Proceedings of USENIX NSDI (Symposium on Networked Systems
Design and Implementation), March 2017.

• Maximizing Cache Hit Ratios by Variance Reduction.
(Daniel S. Berger, Sebastian A. Henningsen, Florin Ciucu, Jens B. Schmitt), Work-
shop on Mathematical Performance Modeling and Analysis (ACM SIGMETRICS
Performance Evaluation Review, volume 43, 2015), June 2015.

• Exact analysis of TTL cache networks.
(Daniel S. Berger, Philipp Gland, Sahil Singla, Florin Ciucu), In IFIP Performance
(International Symposium on Computer Performance, Modeling, Measurements
and Evaluation), October 2014.

• Stochastic Bounds on Inter-Miss Times from TTL Caches.
(Daniel S. Berger, Florin Ciucu), Praxis der Informationsverarbeitung und Kom-
munikation 37(2): 109-120 (2014).

Bibliography 136

• Exact analysis of TTL cache networks: the case of caching policies driven by stop-
ping times.
(Daniel S. Berger, Philipp Gland, Sahil Singla, Florin Ciucu), Extended Abstract,
In Proceedings of ACM SIGMETRICS (International Conference on Measurement
and Modeling of Computer Systems), June 2014.

Technical Reports

• Practical Bounds on Optimal Caching with Variable Object Sizes (Daniel S. Berger,
N. Beckmann, M. Harchol-Balter), CoRR abs/1711.03709, December 2017.

• Achieving High Cache Hit Ratios for CDN Memory Caches with Size-aware Ad-
mission (Daniel S. Berger, RK. Sitaraman, M. Harchol-Balter), Technical Report
University of Kaiserslautern / CMU-CS-16-120, June 2016.

• Exact Analysis of TTL Cache Networks: The Case of Caching Policies driven by
Stopping Times (Daniel S. Berger, P. Gland, S. Singla, F. Ciucu), Tech Report
University of Kaiserslautern / arXiv:1402.5987, February 2014.

Invited Talks

• Towards Practical Bounds on Optimal Caching with Variable Object Sizes.
CMU CS Theory Lunch, Pittsburgh, December 2017.

• Can caching be used to resolve data center load imbalances?
Microsoft Research Lab, New York City, September 2017.

• Can caching be used to resolve data center load imbalances?
The New York Times Tech Lab, New York City, April 2017.

• Adaptive Caching Techniques for CDN Memory Caches.
Google CDN Research Lab, Boston, March 2017.

• Adaptive Caching Techniques for CDN Memory Caches.
Facebook HQ, Menlo Park, October 2016.

• Maximizing Cache Hit Ratios of CDN Memory Caches with Adaptive Size-Aware
Admission Control.
Intel Science and Technology Center, Pittsburgh, September 2016.

137 Bibliography

• Towards Analytical Cache Models for Feedforward Networks.
GI/ITG Conference on Measurement, Modeling and Evaluation of Computing Sys-
tems, Muenster, April 2016.

• New mathematical techniques for the analysis of TTL caches.
Probability seminar, Division of Applied Mathematics, Brown University, Provi-
dence, May 2015.

• New mathematical techniques for the analysis of TTL caches.
SQUALL seminar series, School of Computer Science, Carnegie Mellon University,
Pittsburgh, USA. April 2015.

	List of Figures
	List of Tables
	List of Abbreviations
	Caching and Internet content delivery
	Challenges and Motivation
	At the CDN level: variability in object sizes and request patterns
	In the data center: variability in retrieval latency

	Research questions and contributions of this thesis
	How do we build caching systems that optimize hit ratios despite the size variability and changes in request patterns seen in CDNs?
	What is the optimal hit ratio under size variability and how much further can hit ratios be improved in CDNs?
	Can we build aggregation caches that balance latency across different backend systems to minimize request latency in data centers?

	Thesis outline

	Caching system design and analysis
	Caching System Design Goals
	Maximizing hit ratios, minimizing miss ratios and latencies.
	Robustness against changing request patterns.
	Low overhead and high concurrency.

	State of the art in caching systems
	Production caching systems.
	Academic caching systems.

	State of the art in cache performance modeling
	State of the art in optimal caching
	OPT with variable object sizes is hard
	Theoretical bounds on OPT
	Heuristics used in practice to bound OPT

	AdaptSize: a size-aware hot object memory cache
	Rationale for AdaptSize
	Why HOCs need size-aware admission
	Why size-aware admission needs to be dynamically tuned
	Why we need a new tuning method

	High-level description of AdaptSize
	AdaptSize's Markov chain tuning model
	The Markov chain approximation model.
	Deriving the OHR from the Markov chain
	Accuracy of AdaptSize's model.

	Implementation and integration with a production system
	Lock-free statistics collection.
	Robust and efficient model evaluation.
	Global search for the optimal c.

	Evaluation Methodology
	Production CDN request traces
	Trace-based simulator
	Prototype Evaluation Testbed

	Empirical Evaluation
	Comparison with production systems
	Comparison with research systems
	Robustness of alternative tuning methods
	Side effects of Size-Aware Admission

	Summary

	FOO: Analysis of optimal caching under variable object sizes
	Flow-based Offline Optimal
	Our new interval representation of OPT
	FOO's min-cost flow representation
	FOO yields upper and lower bounds on OPT
	Overview of our proof of FOO's optimality

	Formal Definition of FOO
	Notation and definitions
	New ILP representation of OPT
	Proof of equivalence of interval and classic ILP representations of OPT
	FOO's min-cost flow representation of OPT

	FOO is Asymptotically Optimal
	Main result and assumptions
	Bounding the number of non-integer solutions using a precedence graph
	Relating the precedence graph to the coupon collector problem
	Typical objects almost always lead to integer decision variables
	Bringing it all together: Proof of Theorem 4.3.1

	Practical Flow-based Offline Optimal for Real Traces
	Practical lower bound: PFOO-L
	Practical upper bound: PFOO-U
	Summary

	Experimental Methodology
	Trace Characterization
	Caching policies.

	Empirical Evaluation
	PFOO is necessary to process real traces
	FOO is nearly exact on short traces
	PFOO is accurate on real traces
	PFOO shows that there is significant room for improvement in online policies

	Summary

	RobinHood: a tail latency aware cache partitioning system
	Background and Motivation
	How does Caching Address Tail Latency?
	Key Challenges of Caching for Tail Latency

	The RobinHood Caching System
	Basic RobinHood algorithm
	Accommodating Real-World Constraints in RobinHood
	RobinHood Architecture

	System Implementation and Challenges
	Generating Experimental Data
	Our Experimental Deployment
	Implementation Challenges

	Empirical Evaluation
	Competing Caching Systems
	Latency-Imbalance Microexperiments
	Scaled-Up Experiments

	Summary

	Summary & Future Work
	Future Directions
	Final Thoughts

	Bibliography
	Curriculum Vitae

