
EMERGING TRENDS IN LOGISTICS:

NEW MODELS AND ALGORITHMS FOR VEHICLE ROUTING

Vom Fachbereich Wirtschaftswissenschaften der Technischen Universität Kaiserslautern zur Verleihung

des akademischen Grades Doctor rerum politicarum (Dr. rer. pol.) genehmigte

DISSERTATION

vorgelegt von

Dipl.-Wirtsch.-Ing. Dominik Janosch Goeke

Tag der mündlichen Prüfung: 23. Mai 2018

Dekan und Vorsitzender der Prüfungskommission: Prof. Dr. Jan Wenzelburger

Erster Berichterstatter: Prof. Dr. Oliver Wendt, Technische Universität Kaiserslautern

Zweiter Berichterstatter: Prof. Dr. Stefan Irnich, Johannes Gutenberg-Universität Mainz

D 386

(2018)





Contents

List of Figures v

List of Tables vii

List of Abbreviations viii

1. Thesis Overview 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Contribution and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Outsourcing and Postponement of Deliveries 15
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. The Vehicle-Routing Problem with Private Fleet and Common Carrier . . . . . . . . . . 16

2.3. Branch-Price-and-Cut Algorithm for the VRPPC . . . . . . . . . . . . . . . . . . . . . 16

2.3.1. Path-Based Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2. Cutting Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3. Labeling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4. Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4. Large Neighborhood Search for the VRPPC . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1. Generation of Initial Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2. Generalized Cost Function and Penalty Calculation . . . . . . . . . . . . . . . . 24

2.4.3. Solution Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4. Set Covering with Fleet Constraints . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5. Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1. Benchmark Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2. Performance of the LNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.3. Results of the BPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



3. Respecting Consistency Requirements in Delivery 41
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3. A New Compact Formulation for the Consistent Vehicle-Routing

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4. An Exact Method for the ConVRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1. Lower Bounds based on Formulation SP . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2. Overview of CCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3. Computing Kmin in Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.4. Generating the Set Ω̂ in Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.5. Computing Lower Bounds z(LP1) and z(LP2) in Step 3 . . . . . . . . . . . . . 50

3.4.6. Computing Cost gC in Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5. Large Neighborhood Search for the ConVRP . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1. Modified Savings Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2. Generalized Objective Function and Penalty Calculation . . . . . . . . . . . . . 53

3.5.3. Large Neighborhood Search Component . . . . . . . . . . . . . . . . . . . . . . 54

3.5.4. Set Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6. Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1. Benchmark Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2. Comparison between Compact Formulations and CCG on Dataset A . . . . . . . 61

3.6.3. Computational Results of CCG on Dataset D . . . . . . . . . . . . . . . . . . . 62

3.6.4. Computational Results of LNS-SP . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4. Mixed Fleets: The Transition to Electric Commercial Vehicles 71
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2. Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3. Energy Consumption Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1. Energy Consumption of Electric Vehicles . . . . . . . . . . . . . . . . . . . . . 75

4.3.2. Energy Consumption of Combustion Engines . . . . . . . . . . . . . . . . . . . 77

4.4. The Electric Vehicle Routing Problem with Time Windows and Mixed Fleet . . . . . . . 77

4.5. Adaptive Large Neighborhood Search for Solving E-VRPTWMF . . . . . . . . . . . . . 81

4.5.1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2. Generalized Cost Function and Penalty Calculation . . . . . . . . . . . . . . . . 82

4.5.3. Generation of Initial Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.4. Solution Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6. Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6.1. Experimental Environment and Parameter Setting . . . . . . . . . . . . . . . . . 89

4.6.2. Generation of E-VRPTWMF Instances . . . . . . . . . . . . . . . . . . . . . . 90

4.6.3. Experiments on E-VRPTWMF Instances . . . . . . . . . . . . . . . . . . . . . 91

4.6.4. Performance of our ALNS on Instances of Related Problems . . . . . . . . . . . 97

4.7. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iv



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5. Electric Vehicles for Pickups and Deliveries in Urban Areas 105
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2. The Pickup and Delivery Problem with Time Windows and Electric Vehicles . . . . . . . 107

5.3. Granular Tabu Search to Solve the PDPTW-EV . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1. Preprocessing and Arc Sparsification . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.2. Generalized Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.3. Recharging Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.4. Generation of the Initial Solution . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.5. Reduced Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.6. Tabu Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.7. Set Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4. Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1. Experiments on PDPTW-EV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.2. Experiments on PDPTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6. Conclusion 133
6.1. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Appendix A. Updated Results for the TS Algorithm of Côté and Potvin (2009) 141

Appendix B. Detailed results on Datasets A and D for the ConVRP 143

Appendix C. Detailed results on E-VRPTWMF 149

v





List of Figures

1.1. Example instances for the four investigated problem variants . . . . . . . . . . . . . . . 8

2.1. Overview of the LNS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1. Overview of the LNS-SP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2. Four steps of our modified savings algorithm on a two-day example problem . . . . . . . 53

3.3. Example application of the ATC improvement procedure . . . . . . . . . . . . . . . . . 58

4.1. Calculation of required energy and fuel . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2. Overview of the ALNS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3. Effect of using the surrogate cost function . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1. Overview of the GTS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2. Recharging policy applied to an example . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3. Comparison of three different methods to generate the set of granular arcs . . . . . . . . 128

vii





List of Tables

2.1. Results of our parameter study on a subset of the VRPPC instances . . . . . . . . . . . . 31

2.2. Detailed results and comparison of algorithmic components on the instance sets with a

homogeneous fleet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3. Detailed results and comparison of algorithmic components on the instance sets with a

heterogeneous fleet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4. Overview of results obtained with LNS and heuristics from the literature . . . . . . . . . 35

2.5. Results of the BPC for the homogeneous instances . . . . . . . . . . . . . . . . . . . . 36

2.6. Results of the BPC for the heterogeneous instances . . . . . . . . . . . . . . . . . . . . 37

3.1. Computational performance of GGW, GRS, and CCG on Dataset A . . . . . . . . . . . 62

3.2. Overview of results for different values of maximum allowed time difference on Dataset D 63

3.3. Overview of results for different service frequencies on Dataset D . . . . . . . . . . . . 63

3.4. Comparison of LNS-SP to the best-performing approaches from the literature . . . . . . 65

3.5. Comparison of LNS-SP–25k to KPH on Dataset C . . . . . . . . . . . . . . . . . . . . 67

4.1. Variable and parameter definitions of the E-VRPTWMF model . . . . . . . . . . . . . . 78

4.2. Results of different parameter settings on a subset of the E-VRPTWMF instances . . . . 89

4.3. Final parameter setting of ALNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4. Data of E-VRPTWMF instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5. Comparison of solution quality using the exact and surrogate cost function . . . . . . . . 93

4.6. Effect of considering the distribution of load on the solution quality and cost estimates . 95

4.7. Comparison of different objective functions . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8. Share that ECVs contribute to the traveled distance for different objective functions . . . 97

4.9. Comparison of ALNS to the currently best VRPTW heuristic from the literature . . . . . 98

4.10. Results of ALNS on E-VRPTW instances in comparison to HPH and SSG . . . . . . . . 100

5.1. Results on the small-sized instances for our compact formulation and GTS . . . . . . . . 123

5.2. Comparison between the partial and the full recharging option . . . . . . . . . . . . . . 125

5.3. Comparison of GTS to other heuristics from the literature . . . . . . . . . . . . . . . . . 126

5.4. Comparison of three different methods for arc sparsification . . . . . . . . . . . . . . . 127

A.1. Updated results for the TS of Côté and Potvin (2009) . . . . . . . . . . . . . . . . . . . 142

B.1. Detailed results on small instances of Dataset A . . . . . . . . . . . . . . . . . . . . . . 144

ix



B.2. Detailed results on Dataset D with 20 customers and route duration . . . . . . . . . . . . 145

B.3. Detailed results on Dataset D with 20 customers and without route duration . . . . . . . 146

B.4. Detailed results on Dataset D with 30 customers and with route duration . . . . . . . . . 147

B.5. Detailed results on Dataset D with 30 customers and without route duration . . . . . . . 148

C.1. Overview of results for the complete E-VRPTWMF instance set . . . . . . . . . . . . . 150

x



List of Abbreviations

2E-CVRP two-echelon capacitated vehicle-routing problem

2PLs second-party logistics providers

3PLs third-party logistics providers

4PLs fourth-party logistics providers

ALNS adaptive large neighborhood search

ATC arrival time consistency

BKS best-known solution

BKV best-known value

BPC branch-price-and-cut

CCG cluster column generation

CG column generation

CNV cumulative number of vehicles

ConVRP consistent vehicle-routing problem

CTD cumulative traveled distance

CVRP capacitated vehicle-routing problem

DC driver consistency

DP dynamic programming

E-VRPTW electric vehicle-routing problem with time windows

E-VRPTWMF electric vehicle-routing problem with mixed fleet

ECV electric commercial vehicle

ESPPRC elementary shortest-path problem with resource constraints

EV electric vehicle

xi



GRASP greedy randomized adaptive search

GTS granular tabu search

ICCV internal combustion commercial vehicle

ICV internal combustion vehicle

LB lower bound

LDS limited discrepancy search

lmSR limited memory subset row

LNS large neighborhood search

LNS-SP large neighborhood search with set partitioning

LP linear programming

LS local search

MILP mixed-integer linear programming

NFL no-free-lunch

OR operations research

PDPTW pickup and delivery problem with time windows

PDPTW-EV electric pickup and delivery problem with time windows and electric vehicles

PRP pollution-routing problem

REF resource extension function

SA simulated annealing

SEC generalized subtour elimination constraint

SEC subtour elimination constraint

SP set partitioning

SR subset row

TS tabu search

TSP traveling-salesman problem

UB upper bound

VND variable neighborhood descent

VNS variable neighborhood search

VRP vehicle-routing problem

VRPPC vehicle-routing problem with private fleet and common carrier

VRPTW vehicle-routing problem with time windows

xii



Chapter 1

Thesis Overview

Section 1.1 highlights recent trends in logistics and provides the context for the four optimization prob-

lems discussed in this thesis. Section 1.2 gives a brief introduction to optimization. Finally, Section 1.3

motivates the relevance of each of the problems studied and explains how this thesis contributes to them

in terms of new models and algorithms.

1.1. Background

The logistics sector is one of the main drivers of economical growth and prosperity. In the European

Union, the transport and storage services sector accounted for 5.1% of Gross Value Added in 20141

(European Commission, 2016). However, this figure only hints at the importance of logistics as many

other economic activities rely on it. Disruptive social and technological transitions begin to change the

way in which logistics services are provided. Besides changing the work processes related to logistics,

this transformation can affect everyday life, i.e., how people shop, how they live in urban and rural area,

how they are taken care when they age, and ultimately how human health is affected by transportation

related emissions.

Sophisticated algorithms enable this transition because simple strategies are not sufficient to cope with

these complex and interrelated planning tasks: “Logistics management is that part of supply chain man-

agement that plans, implements, and controls the efficient, effective forward and reverse flow and storage

of goods, services, and related information between the point of origin and the point of consumption in

order to meet customers’ requirements. Logistics management activities typically include inbound and

outbound transportation management, fleet management, warehousing, materials handling, order fulfill-

ment, logistics network design, inventory management, supply/demand planning, and management of

third party logistics services providers.” (Council of Supply Chain Management Professionals, 2013)

The archetype of many planning tasks in logistics is the vehicle-routing problem (VRP). The VRP is

about planning routes that start and end at a depot in order to visit a set of customers with minimum cost.

This thesis aims to develop and study algorithms for VRPs that emerge from current real-world trends.

In the following, trends are mapped out that potentially have a high impact on logistics. First, trends that

are mainly motivated by organizational changes on the supply side are described. Then, trends motivated

by changes in consumer behavior are discussed. Finally, advances in technology are presented, putting a

focus on electric vehicles (EVs).
1Excluding self-provided transportation services by non-logistics companies.

1



Logistics processes change from an organizational perspective. A traditional view on supply chains is

that the flow of material and information through the participants is organized linearly. These unidirec-

tional relationships are undergoing a transition to non-linear networks and will eventually evolve into

collaborative supply chain clusters (Stevens and Johnson, 2016). The management of these complex

supply networks is often transferred to fourth-party logistics providers (4PLs) that do not possess own

transportation capabilities but the information technology and know-how to supervise the network. Inte-

grating different businesses, 4PLs can encourage the sharing of existing networks that so far only coexist.

Groceries and medicine can be transported using the same cold-chain truck. Vehicles for passenger trans-

portation can also be used for the delivery of parcels. Examples for such co-utilization are taxi cabs that

perform home-deliveries2, coaches that transport parcels between stops3, and the well-tried practice of

transporting parcels with passenger trains between stations4.

Prediction of customer behavior can be used to send out shipments to geographical areas before customer

orders arrive from there. The actual delivery address is then specified while the package is in transit.

Anticipatory shipping—patented by Amazon in the US in 2013 (Spiegel et al., 2013)—increases delivery

reliability and helps to realize same-day deliveries. Demand peaks can be countered that otherwise would

cause high costs because additional transportation capacity must be acquired. Dynamic pricing is another

instrument that can increase robustness against demand peaks and exogenous disruptions. Prices that

reflect cost can be a means to dynamically balance demand and supply. Online marketplaces that aim

at price-conscious customers are established. For example, the marketplace Jet5 reduces prices when (i)

larger quantities are bought, (ii) purchase orders are issued close to distribution centers, and (iii) bundles

of goods are purchased that are stocked together.

Logistics marketplaces are online platforms that allow customers to place transportation requests from

a pickup to a destination location. Transporters then bid for these contracts. Since 2015, several mar-

ketplaces6 have been started that for the first time allow to book cargo electronically. Besides reduced

transaction times, the number of empty tours can be reduced, excess capacity can be sold, and customers

have a convenient way to purchase transportation capacity for less-than-truckload cargo.

Focusing on the consumers’ side, online commerce is growing, and online and offline commerce begin

to coalesce (Bernon, Cullen, and Gorst, 2016). In this new environment, a distinguishing competitive

factor for retail operations is the quality of last-mile deliveries. The organization of inventory is crucial

for high-quality delivery , i.e., the proximity to the demand and the quantity of items kept in stock. As

it is expensive to provide an ubiquitous infrastructure, new alternative concepts are introduced: (i) the

entire fulfillment service, including storage, can be rented from specialized companies7, (ii) warehouse

space can be shared via online market-places that act as intermediary8, (iii) conventional stores can act

as micro-warehouses (as practiced by IKEA), and (iv) inventory can be laterally shifted between stores

(Paterson et al., 2011). There are also ideas to improve customer convenience by new modes of delivery

2Lineup (Australia): http://www.taxilineup.com, accessed 12/11/2017
3Greyhound Package Express (USA): http://www.shipgreyhound.com, accessed 12/11/2017
4time:matters (Germany): https://www.time-matters.com/de/transportloesungen/ickurier,
accessed 12/11/2017

5Jet (USA): https://jet.com, accessed 12/11/2017
6For example: (i) FreightNet: http://www.freightnet.com, (ii) SimpliShip: https://www.simpliship.com,
and (iii) Freightos: https://www.freightos.com, all accessed 12/11/2017

7Shipwire: https://www.shipwire.com, accessed 12/11/2017
8Flexe: https:/https://www.flexe.com, accessed 12/11/2017

2

http://www.taxilineup.com
http://www.shipgreyhound.com
https://www.time-matters.com/de/transportloesungen/ickurier
https://jet.com
http://www.freightnet.com
https://www.simpliship.com
https://www.freightos.com
https://www.shipwire.com
https:/https://www.flexe.com


and return, i.e., to deliver orders to personal parcel lockers, car trunks, or stores, and to make all ways of

delivery also available for the simple return of products.

Two other trends go hand in hand: end consumers—turning into prosumers—desire highly-customized

products and want to be involved in the design process (Wulfsberg, Redlich, and Bruhns, 2011); and

industries aim to produce locally and just-in-time, e.g., rarely used parts on-demand to reduce storage

cost (Lanz and Tuokko, 2017). Both trends facilitate a transition towards micro-factories that are located

close to the point-of-need. This leads to a highly decentralized production, ideally provided at costs

close to that of modern mass-production. For logistics, micro-factories vastly increase the complexity.

Services must be rendered in shorter times, pickups and deliveries become more frequent, and the size of

the network increases. In addition, the quantity of cargo loaded in one operation decreases, so it becomes

more important to already consider at the level of route planning how the items are later arranged within

the trucks so that they can be easily retrieved. When requests can arrive at any time, it might be necessary

to implement dynamic re-routing strategies.

From a technological perspective, the installation of micro-depots in delivery areas is a main opportunity

to decrease traffic caused by last-mile package shipping. Electrified load tricycles can pick up small

packages and deliver them local-emission-free in the proximity of these micro-depots. Typically, these

bikes can carry a load between 1 m2 and 2 m2 and they have an electrically supported range that is about

30 km (Bogdanski, 2017). Regular depots are not suited as pickup points as they are usually located in

the city’s outskirts and to reposition them would claim considerable space in the city center. For example,

UPS is conducting a model-project in Hamburg, Germany since 2012, where swap-bodies (exchangeable

containers with four up-folding legs) are placed by trucks at four locations. In this way, 13 delivery men

using bikes proved to be sufficient to replace seven diesel-powered trucks with 7.5 ton, driving in total

800 km (Reichel, 2016).

Drone-based deliveries have the advantage of quicker deliveries, less inner-city traffic, and independence

from road networks. For example, the airborne delivery drone M29 produced by Matternet can travel

up to 20 km carrying a payload of 1 kg with one battery charge and carry a maximum payload of 2 kg.

However, one obstacle is the limitation of the drones’ range when used as a stand-alone system. In 2016,

Amazon proposed one possible remedy (Berg, Isaacs, and Blodgett, 2016): Drone platforms (airships)

are positioned above a delivery area. They dispatch drones which exploit the force of gravity to descend

to their target destination, and then they continue without payload and therefore lower energy consump-

tion to ground-based collection points. Another approach was recently introduced by Daimler10. They

presented prototypes of delivery vans serving as road-based drone platforms. In urban centers, smaller

autonomous transport vehicles (droids) are used to drive into pedestrian areas. Another van prototype

operates airborne drones for faster deliveries in rural regions.

The deployment of EVs, also referred to as zero-emission vehicles, is becoming a major topic of public

and political interest. Incentives for EVs are set in motion, e.g., direct payments, tax credits, parking

benefits, exemptions from driving bans for certain types of vehicles or kilometer taxes, lifting of legal

constraints or funding of research. For an overview of current policies and measures, see, e.g., Ajanovic

9https://www.post.ch/companycars/-/media/post/ueber-uns/medienmitteilungen/2017/
drohnen/spezifikationen-matternet-m2.pdf, accessed 12/11/2017

10https://www.daimler.com/innovation/specials/future-transportation-vans/
vans-drones.html, accessed 12/11/2017

3

https://www.post.ch/companycars/-/media/post/ueber-uns/medienmitteilungen/2017/drohnen/spezifikationen-matternet-m2.pdf
https://www.post.ch/companycars/-/media/post/ueber-uns/medienmitteilungen/2017/drohnen/spezifikationen-matternet-m2.pdf
https://www.daimler.com/innovation/specials/future-transportation-vans/vans-drones.html
https://www.daimler.com/innovation/specials/future-transportation-vans/vans-drones.html


and Haas (2016). The European Union set a binding target for the year 2030 to reduce greenhouse

gas emissions by at least 40% compared to the level of 1990. Sectors not participating in the Emis-

sion Trading System, e.g., non-aviation transportation, have a lower but still considerable goal to reduce

emissions by 30% compared to the level of 2005 (European Commission, 2014). As the transportation

sector caused 25.8% of all greenhouse gas emissions in the EU in 2015 (European Environment Agency,

2017b), it is of particular importance. But, especially the transportation sector is encountering difficulties

to meet these targets. Between 1990 and 2015, emissions of green house gases increased in the trans-

portation sector by 15.9% opposed to total emissions over all sectors that decreased by 21.1% (European

Environment Agency, 2017a). Especially urban areas are affected negatively by transportation, with

freight transportation accounting for a significant share. For example, in London 17% percent of all road

traffic is related to freight transportation, thus causing 24% of all CO2 emissions related to road traffic

(Wainwright, 2015). Using electric commercial vehicles (ECVs) presents an opportunity to address these

problems.

Because ECVs have never been widely used, transport operators have little knowledge about the actual

specifications of currently available vehicles and there exist many concerns about using them. The most

prominent ones being the limited range of ECVs and failing batteries. If ECVs are to be used, these

anxieties need to be dispelled. Especially so, as typically many businesses in the field of city logistics are

small and operate only few vehicles (Lebeau, Macharis, and van Mierlo, 2016). To this end, the Com-

mission of the European Union conducted a demonstration project: Freight Electric Vehicles in Urban

Europe, in which 127 ECVs were used in different applications in eight large European cities. They were

found to have a satisfying technical performance that is mostly according to the manufacturer’s specifi-

cation and to be suitable for most tasks in urban logistics with few changes necessary to the companies

processes (Quak, Nesterova, and Rooijen, 2016).

However, there are also concerns raised concerning ECVs. Many argue that they are not competitive

from a cost point of view under various scenarios (Davis and Figliozzi, 2013; Lebeau, Macharis, van

Mierlo, and Lebeau, 2015). This can mainly be attributed to the high cost of the battery and the cost of

the power electronics. As heavy trucks need larger batteries, this is, in particular, a setback for trucks

above the 3.5 ton category. In addition, there is evidence that the production of EVs has a higher en-

vironmental impact than the production of internal combustion vehicles (ICVs) and is accompanied by

increased levels of (human) toxicity (Hawkins, Gausen, and Strømman, 2012; Nordelöf et al., 2014; van

Mierlo, Messagie, and Rangaraju, 2017), that can be mainly attributed to mining processes. In Lithium-

ion batteries, cobalt (possible blended with other metals) is the currently most used and attractive cathode

material but also the major cost factor (Nitta et al., 2015). About half of the world production of cobalt

originates from the Katanga Province, Congo; mainly from artisanal cobalt mining, i.e., independent

miners working with primitive hand tools. The working conditions are often poor and the risk of acci-

dents, exposure to harmful substances, and child labor is high (Tsurukawa, Prakash, and Manhart, 2011).

However, despite these negative factors, the authors stress the importance of artisanal mining to alleviate

poverty because it requires little skill and capital.

Another severe issue is that external costs—costs that are not paid for by the users of the specific trans-

portation service but that are, e.g., related to air pollution, noise and climate change—were expected to

be lower for EVs (Juan et al., 2016). But, there is evidence that this is only true if certain premises are

met. Jochem, Doll, and Fichtner (2016) find that neither under present conditions, nor under projections

4



for the year 2030, significant differences over the entire lifetime of a regular passenger car in Germany

exist. This can be mainly attributed to the heavy reliance of the German power generation on fossil fuel

power plants and the ratio between driving in urban and rural areas for standard driving profiles. Nev-

ertheless, they conclude that reducing tail-pipe emissions in (mega-)cities might still be advantageous;

especially, if life quality is significantly compromised by air pollution.

1.2. Fundamentals

This work focuses on combinatorial optimization problems that can be stated as: Find the element

x∗ ∈ X that is associated with the extremum of an objective function f defined over the elements

x ∈ X , where X denotes a finite set of possible solutions to the investigated problem, i.e., look for

x∗ = arg minx∈Xf(x) with |X| < ∞. However, typically the search space X , shaped by the prob-

lem constraints, is not known explicitly and too large to be entirely enumerated. Therefore, one resorts

to algorithms that implicitly search the space X . In this work, the primary emphasis is on heuristics

that sample step-by-step from X by defining operators that generate at iteration t the neighborhood

N (xt) ⊂ X of solution xt. Then, the next solution xt+1 ∈ N (xt) is selected according to some crite-

rion. The way in which this sampling is performed often follows a specific set of (stochastic) rules that

are independent from the problem investigated. These universal frameworks are generally referred to as

metaheuristics since the term was coined in Glover (1986); for an excellent introduction to metaheuris-

tics, see, e.g., Gendreau and Potvin (2010). As second algorithmic contribution, two variants of column

generation (CG) are studied. CG is an exact solution approach that is suitable if each solution x ∈ X
is composed of several meaningful variables (denoted as columns), e.g., the solution to a VRP consists

of several routes, each route serving a subset of customers. Consequently, it is sufficient to select the

correct routes if the set of all possible routes has been listed. As this is typically prohibitive, CG resorts

to iteratively generating new columns in a pricing-subproblem, e.g., adding promising routes until no

improving columns can be found. Recommendable introductions to CG can be found in, e.g., Desrosiers

and Lübbecke (2005) and Feillet (2010).

The remainder of this section is dedicated to a discussion of the limitations of metaheuristics and why

it is important to devise algorithms that are tailored to the problem that needs to be solved. Wolpert

and Macready (1997) present no-free-lunch (NFL) theorems for optimization problems, and show that

no black-box algorithm—no information about the problem solved is used—can be expected to perform

better than any other on all problems. An interesting and surprising implication is that if one aims

to maximize an objective function, a hill-climbing strategy does on average (with the same number of

steps) not work better than random search, or even a hill-descending strategy. Certainly, if hill-climbing

is confronted with only monotonic increasing objective functions, i.e., f(xt+1) > f(xt) ∀t, it performs

better, and when confronted with flat ones f(xt+1) = f(xt) ∀t the performance of all three strategies

would be the same. Yet, for objective functions shaped in every conceivable profile, no strategy, assume

that the strategy randomly continues the search from a different point whenever it encounters a local

optimum, dominates the other (Ho and Pepyne, 2002).11 Therefore, if one desired to debate the relevance

11Donald Duck reached this conclusion already 50 years earlier when he joined the Great Society of Flippists—"Life is but a
gamble! Let Flipism chart your ramble"—and decided to let coin flips govern all his decisions from then on (Barks, 1953).

5



of endeavors to approach optimization problems with black-box algorithms, i.e., metaheuristics, one

could ask the following question:

"’What is exactly the contribution of a given metaheuristic, since NFL theorem proves that

all heuristics are globally equivalent’." (Weinberg and Talbi, 2004)

For many classes of problems—here the interest is in those for which no polynomial run-time algorithm is

known—there seems to be strong empirical evidence that considerable improvements on random search

can be achieved. However, at the same time, there is also evidence that algorithms can drastically fail.

For example, the symmetric traveling-salesman problem (TSP)—find one shortest loop that visits all

given n-cities—has (n − 1)!/2 possible tours. Nevertheless, the state-of-the-art Concorde solver can

solve instances with more than 80,000 cities to optimality using branch-and-cut (Applegate et al., 2007).

But, Ahammed and Moscato (2011) demonstrate that by only slightly perturbing the cities’ locations, the

run-time of the Concorde solver can be increased up to 30,000-fold compared to the run-time required

for the original instances. The branching rule at the heart of exact branching algorithms can also be

considered a metaheuristic. An often used procedure for choosing the next variable to branch on is to

select the variable that is desired to be integer and whose fractional part is closest to 0.5. Computational

experiments on a library of instances from different real-world mixed-integer problems show that this

heuristic does in general not perform better than randomly selecting the next variable (Achterberg, Koch,

and Martin, 2005).

Turning away from finding black-box algorithms that serve all purposes, a more promising goal can be

pursed, i.e., to focus on the problems of interest and to inject problem-specific information into algo-

rithms.12 As stated in Dembski and Marks II (2009): "Problem-specific information is almost always

embedded in search algorithms. Yet, because this information can be so familiar, we can fail to notice its

presence". For example, it is well-known that the optimal solution to the TSP with an euclidean metric

does not have any intersecting edges. If a clever way could be devised to only sample from tours without

intersecting edges, the chance of finding a good solution would increase. This might be the reason that

the two-opt operator, that removes two edges and replaces them with two different edges, works so well

for many problems that are structurally similar to the TSP. On the other hand, if the information is wrong,

the algorithm can even perform worse than random search: Considering the TSP with time windows, it

is easy to construct instances that do not have a feasible solution without intersecting edges.

"Finally, we can conclude that if there is no dominance of heuristics, we can still believe in

the efficiency of some strategies for a certain class of problems. Indeed the search space is

usually defined with a specific (sometimes non-trivial) neighborhood operator." (Weinberg

and Talbi, 2004)

This is the motivation to approach the problems studied in this thesis in a practical-oriented way. This

work does not aim to suggest new metaheuristic paradigms. Instead, figuratively speaking, it follows

the “practitioners in the earlier days of computing [that] sometimes referred to themselves as ’penalty

function artists’” (Dembski and Marks II, 2009). The focus is on the development of problem-specific

and interacting components that exploit the structure of the problems investigated. For some problems,

12However, when Donald is soon after charged with a heavy fine for "letting a dime do your thinking", he abandons Flipism
(Barks, 1953).

6



observations can be made that help with the design decision. For other problems, a trial-and-error ap-

proach can be used to detect rules that work at least for the subset of studied instances, and hopefully

for other instances from the same distribution. Further, this thesis aims to develop techniques to increase

the speed of the heuristics used, as this certainly helps to sample more solutions. This is not meant to

implicate that there is no merit in the development of metaheuristics. As experience teaches, guiding

principles are needed to control the problem-specific heuristics.

1.3. Contribution and Organization

In the following, the VRPs studied in this work and the solution methods applied to them are presented.

The selection of VRPs is motivated by the transformation of traditional supply chains into networks of

actors, challenges in improving customer satisfaction, and the emergence of EVs in logistics. As they

exhibit rich constraints, they elude simple methods. Note the use of "we" to indicate that the first three of

the four chapters of this thesis originate from collaborating with other researchers in the field of vehicle

routing. However, the author was responsible for a large portion of the work related to these projects.

Because the problems studied are too divers, no entirely unified notation is used. Self-contained notation

is introduced in every chapter, and every chapter can be read on its own.

Chapter 2 is concerned with an important strategic decision when designing the logistics activities of a

company, i.e., the extent to which deliveries are performed by vehicles privately owned by the company

and to which extent they are subcontracted to second-party logistics providers (2PLs). While there are

benefits of using 2PLs—low capital commitment, economies of scope and scale, contracting away of

risk, and avoiding complex regulations—providing own transport capacities has the advantage of staying

in control of a central business function with a high level of customer contact. However, if the decision

is in favor of providing logistics services in-house, procuring sufficient capacity to meet fluctuating

demands in every scenario is likely to result in excess capacity on many days and to cause high cost. A

possible remedy is to define a sufficient level of service and to outsource customers on high-demand days

to 2PLs. The planning problem where one simultaneously needs to determine customers to subcontract

and routes respecting capacity for the remaining customers is called the VRP with private fleet and

common carrier (VRPPC). An example is depicted in Figure 1.1.a: The private fleet carries out three

tours, and four customers are subcontracted. Note that customers might also be subcontracted in case

there is sufficient capacity to serve all of them if this beneficial from a cost point of view, i.e., because

the customers require long detours or have a low subcontracting cost. In addition, the VRPPC can

also be used for scenarios where customers are not subcontracted to 2PLs but one desires to distinguish

between low and high priority customers. This can be accomplished by assigning different costs to the

customers. Then, customers not served by the private fleet on one day, can be postponed to another day

(and their priority can be increased to ensure that they are eventually served). We propose the first exact

solution method for the VRPPC by developing a branch-and-price-and-cut algorithm that provides high-

quality lower bounds. In addition, we develop a large neighborhood search (LNS) to solve the VRPPC

heuristically, that shows a very convincing performance on instances from the literature. This paper

was submitted to the special issue Combinatorial Optimization: between Practice and Theory (Discrete

Applied Mathematics) as "Upper and lower bounds for the vehicle-routing problem with private fleet

and common carrier" by Dominik Goeke, Timo Gschwind, and Michael Schneider.

7



a) VRP with private fleet and common carrier

served by private fleet
subcontracted to common carrier

b) Consistent VRP

served on two days
served on day one/two

c) E-VRP with time windows and mixed fleet

customer
charging station

internal combustion vehicle
electric vehicle

d) PDP with time windows and electric vehicles

pickup and delivery pair
charging station

Figure 1.1.: Example instances for the four investigated problem variants.

8



Chapter 3 is about providing consistent service by satisfying customer demands with the same driver

(driver consistency) at approximately the same time (arrival time consistency). This allows companies

in last-mile distribution to stand out among competitors. The consistent VRP (ConVRP) is a multi-day

problem addressing such consistency requirements along with traditional constraints on vehicle capacity

and route duration. A simplified example with two days and three drivers is depicted in Figure 1.1.b.

The literature offers several heuristics, but no exact method for this problem. The state-of-the-art ex-

act technique to solve VRPs—CG applied to route-based formulations where columns are generated

via dynamic programming (DP)—cannot be successfully extended to the ConVRP because the linear

relaxation of route-based formulations is weak. We propose the first exact method for the ConVRP,

which can solve medium-sized instances with five days and 30 customers. The method solves, via CG,

a formulation where each variable represents the set of routes assigned to a vehicle over the planning

horizon. As upper bounding procedure, we develop a LNS featuring a repair procedure specifically de-

signed to improve the arrival time consistency of solutions. Used as stand-alone heuristic, the LNS is

able to significantly improve the solution quality on benchmark instances from the literature compared to

state-of-the-art heuristics. This chapter was submitted to Transportation Science as "Exact and Heuristic

Solution of the Consistent Vehicle-Routing Problem" by Dominik Goeke, Roberto Roberti, and Michael

Schneider.

Chapter 4 discusses how rising energy costs and new regulations concerning the emission of greenhouse

gases render ECVs an alternative to internal combustion commercial vehicles (ICCVs). Several com-

panies are gradually introducing ECVs into their fleet, thus performing their last-mile deliveries with a

mixed vehicle fleet. This motivates the development of models and algorithms to plan delivery routes

that take the characteristics of ECVs into account. We propose the VRP with mixed fleet (E-VRPTWMF)

to optimize the routing of a mixed fleet of ECVs and ICCVs. Contrary to existing routing models for

ECVs, which assume energy consumption to be a linear function of traveled distance, we utilize a re-

alistic energy consumption model that incorporates speed, gradient and cargo load distribution. This

is highly relevant in the context of ECVs because energy consumption determines the maximal driving

range of ECVs and the recharging times at stations. In Figure 1.1.c, we present an example with two

ECVs and one ICCV. Each of the ECVs is recharged once en route. Two of the three routes are not in

the blossom shape that is typical for many VRPs to clarify that time windows at customers can impose

routes that drastically deviate from what is often perceived as reasonable (pleasing to the eye). To ad-

dress the problem, we develop an adaptive LNS (ALNS) algorithm that is enhanced by a local search

(LS) for intensification. In numerical studies on newly designed E-VRPTWMF test instances, we inves-

tigate the effect of considering the actual load distribution on the structure and quality of the generated

solutions. Moreover, we study the influence of different objective functions on solution attributes and

on the contribution of ECVs to the overall routing costs. Finally, we demonstrate the performance of

the developed algorithm on benchmark instances of the related VRP with time windows (VRPTW) and

electric VRPTW (E-VRPTW). This chapter was published in Goeke and Schneider (2015).

Chapter 5 examines the electric pickup and delivery problem with time windows and electric vehicles

(PDPTW-EV) that generalizes the classical VRP. In the literature, problems have been studied that con-

sider the distribution of goods with ECVs from a central depot. However, many real-world applications

have a pickup and delivery structure. In these applications, one needs to plan routes in order to satisfy

requests; each request requires that a commodity is transported from a pickup to a delivery location. The

9



PDPTW-EV is about planning routes to satisfy these requests. In addition, we consider that access to

locations is restricted by a time window. ECVs, which are constrained by battery capacity and a capacity

for commodities, serve the routes. The vehicles start with a fully charged battery at the depot, and they

can recharge the battery en route at dedicated recharging stations. Figure 1.1.d provides an example with

three ECVs. The dotted connections indicate which pairs must be served together in a route, i.e., pickup

before delivery. To address the problem, we develop a granular tabu search (GTS) algorithm that features

a policy to determine the amount of energy recharged at visits to stations. Further, we introduce a set of

small-sized instances and another set of larger-sized instances for the PDPTW-EV. In numerical studies,

we validate our approach on the small-sized instances. To this end, we compare the results obtained with

a commercial solver to the results of GTS. In addition, we demonstrate on the second set of instances that

GTS can handle the partial recharging aspect by comparing it to mandatory full recharging. Finally, we

show that our algorithm is also competitive on benchmark instances of the related pickup and delivery

problem with time windows (PDPTW). This chapter was submitted to the European Journal of Opera-

tional Research as "Granular Tabu Search for the Pickup and Delivery Problem with Time Windows and

Electric Vehicles" by Dominik Goeke.

Finally, Chapter 6 concludes the thesis and gives an outlook on future directions of research.

Bibliography

Achterberg, T., T. Koch, and A. Martin (2005). Branching rules revisited. In: Operations Research Letters

33 (1), pp. 42–54.

Ahammed, F. and P. Moscato (2011). Evolving L-systems as an intelligent design approach to find classes

of difficult-to-solve traveling salesman problem instances. In: Applications of Evolutionary Compu-

tation. EvoApplications 2011. Ed. by C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. I.

Esparcia-Alcázar, J. J. Merelo, F. Neri, et al. Vol. 6624. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, pp. 1–11.

Ajanovic, A. and R. Haas (2016). Dissemination of electric vehicles in urban areas: Major factors for

success. In: Energy 115 (Part 2), pp. 1451–1458.

Applegate, D. L., R. E. Bixby, V. Chvatal, and W. J. Cook (2007). The Traveling Salesman Problem:

A Computational Study (Princeton Series in Applied Mathematics). Princeton, NJ, USA: Princeton

University Press.

Barks, C. (1953). Walt Disney’s Comics and Stories. Vol. 149. New York, NY, USA: Dell Comics.

Berg, P., S. Isaacs, and K. Blodgett (2016). Airborne fulfillment center utilizing unmanned aerial vehicles

for item delivery. US Patent 9,305,280. April 5, 2016.

Bernon, M., J. Cullen, and J. Gorst (2016). Online retail returns management: Integration within an omni-

channel distribution context. In: International Journal of Physical Distribution & Logistics Manage-

ment 46 (6/7), pp. 584–605.

Bogdanski, R. (2017). Innovationen auf der letzten Meile - Bewertung der Chancen für die nachhaltige

Stadtlogistik von morgen - Nachhaltigkeitsstudie 2017. Ed. by Bundesverband Paket & Express Lo-

gistik. Accessed 7/24/2017. URL: www.biek.de/index.php/studien.html?file=tl_files/biek/Nachhaltigkeitsst

udie%202017/BIEK_Nachhaltigkeitsstudie_2017.pdf.

10

www.biek.de/index.php/studien.html?file=tl_files/biek/Nachhaltigkeitsstudie%202017/BIEK_Nachhaltigkeitsstudie_2017.pdf
www.biek.de/index.php/studien.html?file=tl_files/biek/Nachhaltigkeitsstudie%202017/BIEK_Nachhaltigkeitsstudie_2017.pdf


Council of Supply Chain Management Professionals (2013). Supply chain management terms and glos-

sary. Accessed July 20, 2017. URL: http://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_

of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx.

Davis, B. A. and M. A. Figliozzi (2013). A methodology to evaluate the competitiveness of electric de-

livery trucks. In: Transportation Research Part E: Logistics and Transportation Review 49 (1), pp. 8–

23.

Dembski, W. A. and R. J. Marks II (2009). Conservation of information in search: Measuring the cost

of success. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans

39 (5), pp. 1051–1061.

Desrosiers, J. and M. E. Lübbecke (2005). A primer in column generation. In: Column Generation. Ed.

by G. Desaulniers, J. Desrosiers, and M. M. Solomon. Boston, MA, USA: Springer, pp. 1–32.

European Commission (2014). Communication from the Commission to the European Parliament, the

Council, the European Economic and Social Committee and the Committee of the regions. A policy

framework for climate and energy in the period from 2020 to 2030, COM(2014)15, SWD(2014) 16

final. Accessed July 25, 2017. URL: http : / / eur - lex . europa . eu / legal - content / EN / ALL / ?uri = CELEX :

52014DC0015.

– (2016). EU Transport in figures: Statistical pocketbook. Luxembourg: Publications Office of the Eu-

ropean Union.

European Environment Agency (2017a). Data viewer on greenhouse gas emissions and removals, sent

by countries to UNFCCC and the EU Greenhouse Gas Monitoring Mechanism (EU Member States).

Accessed July 25, 2017. URL: http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-

gases-viewer.

– (2017b). Greenhouse gas emissions from transport. Accessed July 25, 2017. URL: https://www.eea.

europa . eu / data - and - maps / indicators / transport - emissions - of - greenhouse - gases / transport - emissions - of -

greenhouse-gases-10.

Feillet, D. (2010). A tutorial on column generation and branch-and-price for vehicle routing problems.

In: 4OR - A Quarterly Journal of Operations Research 8 (4), pp. 407–424.

Gendreau, M. and J.-Y. Potvin (2010). Tabu search. In: Handbook of Metaheuristics. Ed. by M. Gen-

dreau and J.-Y. Potvin. Vol. 146. International Series in Operations Research & Management Science.

Springer, pp. 41–59.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. In: Computers

& Operations Research 13 (5), pp. 533–549.

Goeke, D. and M. Schneider (2015). Routing a mixed fleet of electric and conventional vehicles. In:

European Journal of Operational Research 245 (1), pp. 81–99.

Hawkins, T. R., O. M. Gausen, and A. H. Strømman (2012). Environmental impacts of hybrid and electric

vehicles: A review. In: The International Journal of Life Cycle Assessment 17 (8), pp. 997–1014.

Ho, Y. and D. Pepyne (2002). Simple explanation of the no-free-lunch theorem and its implications. In:

Journal of Optimization Theory and Applications 115 (3), pp. 549–570.

Jochem, P., C. Doll, and W. Fichtner (2016). External costs of electric vehicles. In: Transportation Re-

search Part D: Transport and Environment 42, pp. 60–76.

11

http://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx
http://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52014DC0015
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52014DC0015
http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10


Juan, A., C. Méndez, J. Faulin, J. de Armas, and S. Grasman (2016). Electric vehicles in logistics and

transportation: A survey on emerging environmental, strategic, and operational challenges. In: Ener-

gies 9 (2), pp. 86–107.

Lanz, M. and R. Tuokko (2017). Concepts, methods and tools for individualized production. In: Produc-

tion Engineering 11 (2), pp. 205–212.

Lebeau, P., C. Macharis, and J. van Mierlo (2016). Exploring the choice of battery electric vehicles in

city logistics: A conjoint-based choice analysis. In: Transportation Research Part E: Logistics and

Transportation Review 91, pp. 245–258.

Lebeau, P., C. Macharis, J. van Mierlo, and K. Lebeau (2015). Electrifying light commercial vehicles for

city logistics? A total cost of ownership analysis. In: European Journal of Transport and Infrastructure

Research 15 (4), pp. 551–569.

Nitta, N., F. Wu, J. T. Lee, and G. Yushin (2015). Li-ion battery materials: Present and future. In: Mate-

rials Today 18 (5), pp. 252–264.

Nordelöf, A., M. Messagie, A.-M. Tillman, M. Ljunggren Söderman, and J. van Mierlo (2014). Environ-

mental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life

cycle assessment? In: The International Journal of Life Cycle Assessment 19 (11), pp. 1866–1890.

Paterson, C., G. Kiesmüller, R. Teunter, and K. Glazebrook (2011). Inventory models with lateral trans-

shipments: A review. In: European Journal of Operational Research 210 (2), pp. 125–136.

Quak, H., N. Nesterova, and T. van Rooijen (2016). Possibilities and barriers for using electric-powered

vehicles in city logistics practice. In: Tenth International Conference on City Logistics 17-19 June

2015, Tenerife, Spain. Ed. by E. Taniguchi and G. Russell. Vol. 12. Transportation Research Procedia.

Elsevier, pp. 157–169.

Reichel, J. (2016). Lastenrad-Projekt: UPS gewinnt Nachhaltigkeitspreis. In: Logistra - News. Accessed

7/24/2017. URL: http://www.logistra.de/news- nachrichten/nfz- fuhrpark- lagerlogistik- intralogistik/7687/

maerkte-amp-trends/lastenrad-projekt-ups-gewinnt-nachhaltigkeitsp.

Spiegel, J., M. McKenna, G. Lakshman, and P. Nordstrom (2013). Method and system for anticipatory

package shipping. US Patent 8,615,473. December 24, 2013.

Stevens, G. C. and M. Johnson (2016). Integrating the supply chain ... 25 years on. In: International

Journal of Physical Distribution & Logistics Management 46 (1), pp. 19–42.

Tsurukawa, N., S. Prakash, and A. Manhart (2011). Social impact of artisanal cobalt mining in Katanga,

Democratic Republic of Congo. Tech. rep. Accessed December 13, 2017. Freiburg, Germany: ÖkoIn-

stitut e.V. URL: https://www.oeko.de/oekodoc/1294/2011-419-en.pdf.

van Mierlo, J., M. Messagie, and S. Rangaraju (2017). Comparative environmental assessment of alterna-

tive fueled vehicles using a life cycle assessment. In: World Conference on Transport Research - WCTR

2016 Shanghai. 10-15 July 2016. Vol. 25. Transportation Research Procedia. Elsevier, pp. 3435–3445.

Wainwright, I. (2015). TfL Freight and fleet presentation to UKNMB. Presentation on sustainable deliv-

ery and servicing - Lessons from London. Accessed July 25, 2017. URL: http://www.ukroadsliaisongroup.

org/download.cfm/docid/31DA53DC-664B-4164-87603AFECDFAE6C7.

Weinberg, B. and E. G. Talbi (2004). NFL theorem is unusable on structured classes of problems. In:

Proceedings of the 2004 Congress on Evolutionary Computation. Vol. 1. IEEE, pp. 220–226.

Wolpert, D. H. and W. G. Macready (1997). No free lunch theorems for optimization. In: IEEE Transac-

tions on Evolutionary Computation 1 (1), pp. 67–82.

12

http://www.logistra.de/news-nachrichten/nfz-fuhrpark-lagerlogistik-intralogistik/7687/maerkte-amp-trends/lastenrad-projekt-ups-gewinnt-nachhaltigkeitsp
http://www.logistra.de/news-nachrichten/nfz-fuhrpark-lagerlogistik-intralogistik/7687/maerkte-amp-trends/lastenrad-projekt-ups-gewinnt-nachhaltigkeitsp
https://www.oeko.de/oekodoc/1294/2011-419-en.pdf
http://www.ukroadsliaisongroup.org/download.cfm/docid/31DA53DC-664B-4164-87603AFECDFAE6C7
http://www.ukroadsliaisongroup.org/download.cfm/docid/31DA53DC-664B-4164-87603AFECDFAE6C7


Wulfsberg, J. P., T. Redlich, and F.-L. Bruhns (2011). Open production: Scientific foundation for co-

creative product realization. In: Production Engineering 5 (2), pp. 127–139.

13





Chapter 2

Outsourcing and Postponement of Deliveries

2.1. Introduction

The vehicle-routing problem with private fleet and common carrier (VRPPC) is a variant of the vehicle-

routing problem (VRP) in which customers can be subcontracted at a customer-dependent cost if the

privately-owned capacity is insufficient to serve all customers, or if doing so is beneficial from a cost

point of view. Consequently, the subcontracted customers do not need to be served on vehicle routes of

the privately-owned fleet, but a cost is paid for outsourcing customers to the so-called common carrier.

The VRPPC has direct applications in manufacturing (Tang and Wang, 2006) and less-than-truckload

shipping (Chu, 2005; Stenger, Schneider, and Goeke, 2013). It is also closely related to problems aris-

ing in collaborative transportation, in which carriers can pass on requests to other carriers and accept or

decline requests offered by their partners (Liu et al., 2010), and to the integrated operational transporta-

tion planning problem that considers different subcontracting options (Krajewska and Kopfer, 2009).

The VRPPC also has applications in the planning of same-day parcel deliveries. By choosing adequate

customer-dependent outsourcing costs, important customers—e.g., subscribers of Amazon Prime or cus-

tomers that have already been postponed on previous days—can be favored over regular new requests.

Despite its practical relevance, relatively few papers have focused on solution methods for the VRPPC.

The following heuristic paradigms have been proposed in the literature: simple construction and improve-

ment heuristics (Chu, 2005; Bolduc, Renaud, and Boctor, 2007), randomized construction–improvement–

perturbation (RIP, Bolduc, Renaud, Boctor, and Laporte, 2008), tabu search (TS, Côté and Potvin, 2009;

Potvin and Naud, 2011), variable neighborhood search (VNS, Stenger, Schneider, and Goeke, 2013;

Stenger, Vigo, et al., 2013), multi-start local search (MS-LS, Vidal, Maculan, et al., 2016), iterated local

search (MS-ILS, Vidal, Maculan, et al., 2016), and a memetic algorithm (MA, Vidal, Maculan, et al.,

2016). All of the listed methods have been investigated on instances assuming a homogeneous vehicle

fleet, and the MA of Vidal, Maculan, et al. (2016) shows the best performance with regards to solution

quality. On instances with a heterogeneous fleet composition, only RIP and the two TS algorithms have

been tested.

It is notable that early approaches (Chu, 2005; Bolduc, Renaud, and Boctor, 2007) only take the decision

which customers to subcontract into account when constructing the initial solution. Later approaches

consider the subcontracting decision when generating the neighborhood of a solution (Bolduc, Renaud,

Boctor, and Laporte, 2008; Côté and Potvin, 2009; Potvin and Naud, 2011; Stenger, Vigo, et al., 2013;

15



Stenger, Schneider, and Goeke, 2013). The most recent approach (Vidal, Maculan, et al., 2016) uses an

implicit customer selection, i.e., for every move a resource-constrained shortest path problem is solved

to evaluate which customers should be subcontracted.

The contribution of this chapter is twofold and concerns the heuristic and exact domain:

• We develop a large neighborhood search (LNS) to solve the VRPPC heuristically. Our LNS fea-

tures a new decomposition procedure, and we demonstrate the effectiveness of this component

by comparing it to an LNS without this component on the VRPPC benchmark instances from the

literature. We are able to provide several new best-known solutions on the larger instances from

the literature, and we demonstrate that our heuristic is among the best solution methods published

for the VRPPC.

• To the best of our knowledge, we are the first to propose an exact solution method for the VRPPC.

Our method uses a path-based formulation that is solved by means of a branch-price-and-cut al-

gorithm (BPC). The BPC is able to provide optimal solutions for some small to medium-sized

instances. For larger instances, it provides tight lower bounds that can be used to assess the quality

of the heuristic solutions.

This chapter is organized as follows: Section 2.2 formally describes the problem. Our two solution

methods, BPC and LNS, are explained in Sections 2.3 and 2.4. Section 2.5 details the parameter setting,

the test instances and presents the numerical results. Section 2.6 concludes the chapter.

2.2. The Vehicle-Routing Problem with Private Fleet and Common Carrier

To define the VRPPC as a graph-theoretical problem, let G = (V, E) be a complete undirected graph with

vertices V = {v0} ∪ N and edges E = V × V . Vertex v0 denotes the depot, the other vertices represent

customers i ∈ N . Each customer i ∈ N is assigned a demand qi and a cost hi for subcontracting the

customer. Each edge {i, j} ∈ E is assigned a travel cost cij . At the depot, a set of vehicles K, which

represent the private fleet, is based. The vehicles k ∈ K can differ with regard to capacity Ck and

fixed cost Fk. The fixed cost Fk is only incurred if a route is assigned to vehicle k. Typically, not all

vehicles are different, and we can group the vehicles according to their attributes such that vehicles with

identical attributes are in the same group l ∈ L. We denote the number of vehicles in group l as zl. The

VRPPC now calls for: (i) satisfying the demand of every customer with exactly one visit, either using

the common carrier or a vehicle of the private fleet, and (ii) planning at most one route for each vehicle

of the private fleet so that every route starts and ends at the depot, and the vehicle capacity is respected.

The goal is to minimize the total cost consisting of the sum of fixed cost, the cost of routing the vehicles

of the private fleet, and the cost of subcontracting customers.

2.3. Branch-Price-and-Cut Algorithm for the VRPPC

In this section, we give details on our exact approach to the VRPPC that is used to obtain optimal

solutions for small to medium-sized instances. For larger instances, we provide lower bounds, which can

be used to assess the quality of the heuristic solutions. The approach is based on a path-based formulation

that is solved by means of a BPC algorithm.

16



2.3.1. Path-Based Formulation

Master program Let Ωl be the set of all feasible routes for vehicle group l ∈ L. We denote by cr
the routing cost of route r ∈ Ωl. Binary decision variables λr indicate if the route r ∈ Ωl is selected

(λr = 1) or not (λr = 0) while binary decision variables yi indicate if customer i ∈ N is served by the

common carrier (yi = 1) or by the private fleet (yi = 0). Finally, let ari be the number of times route r

visits customer i. The VRPPC can then be defined as:

min
∑
l∈L

∑
r∈Ωl

(Fl + cr)λr +
∑
i∈N

hiyi (2.1a)

s.t.
∑
l∈L

∑
r∈Ωl

ariλr + yi = 1 ∀i ∈ N (2.1b)

∑
r∈Ωl

λr ≤ zl ∀l ∈ L (2.1c)

λr ∈ {0, 1} ∀l ∈ L, r ∈ Ωl (2.1d)

yi ∈ {0, 1} ∀i ∈ N (2.1e)

The objective function (2.1a) minimizes the total cost comprising vehicle fixed costs, routing costs, and

subcontracting costs. Partitioning constraints (2.1b) ensure that each customer is served exactly once

either by the private fleet or by the common carrier. Note that constraints (2.1b) can be replaced by their

covering counterpart if routing costs satisfy the triangle inequality. Convexity constraints (2.1c) limit the

number of vehicles of each type. The variable domains are specified in (2.1d) and (2.1e).

Because of the huge number of feasible routes, model (2.1) cannot be solved directly and one has to resort

to column-generation (or Lagrangean-relaxation) based methods: The linear relaxation of model (2.1)

is initialized with a proper subset of routes and missing routes (=columns) with negative reduced costs

are dynamically identified by calling the pricing subproblems and added to the master program (2.1).

Integrality is finally ensured by integrating the column-generation process into a branch-and-bound al-

gorithm (Lübbecke and Desrosiers, 2005).

Pricing subproblem The task of the pricing subproblems is to find feasible routes with negative re-

duced costs or to prove that no such routes exist. Similar to many other VRP variants, the pricing

subproblems of the VRPPC are elementary shortest-path problems with resource constraints (ESPPRCs)

on graphs with negative-cost cycles (Irnich and Desaulniers, 2005). In the VRPPC, there are |L| different

pricing problems, one for each vehicle type l ∈ L. Given a vehicle type l ∈ L, a feasible VRPPC route

starts and ends at the depot v0, visits some customers i ∈ N in between, and respects the vehicle capacity

Cl.

Let πi and µl be the dual prices of constraints (2.1b) and (2.1c), respectively. The reduced cost of a route

r ∈ Ωl is given by:

c̃r = cr −
∑
i∈N

πi − µl =
∑

(i,j)∈E(r)

c̃lij , (2.2)

where E(r) denotes the sequence of edges traversed by route r and c̃lij = cij − 1/2π̃i − 1/2π̃j with

17



π̃v0 = µl and π̃i = πi for all customers i ∈ N . The pricing subproblem for vehicle type l ∈ L can then

be formalized as:

min
r∈Ωl
{c̃r}. (2.3)

It is well-known that the ESPPRCs (2.3) are strongly NP -hard. To obtain better-solvable pricing sub-

problems, the elementarity condition of routes can be relaxed so that routes containing cycles can be

priced out. This comes at the cost of weaker lower bounds of formulation (2.1). A good trade-off be-

tween the hardness of the pricing subproblems and the strength of the lower bounds is often achieved by

the so-called ng-routes (Baldacci, Mingozzi, and Roberti, 2011) that forbid certain types of cycles. Here,

each customer i ∈ N is assigned a neighborhood Ni ⊂ N with i ∈ Ni. Typically, the cardinalities |Ni|
and the neighborhoodsNi themselves are fixed a priori for all customers i ∈ N . An ng-route now allows

multiple visits to a customer i provided that another customer j with i /∈ Nj is visited in between, i.e., an

ng-route forgets previous visits to those customers that are not in the neighborhoods of the subsequently

visited customers. In the following, we redefine the set Ωl as the set of all ng-feasible routes. Clearly,

the cycles that are allowed and, thus, the quality of the lower bounds provided by the ng-route relaxation

of (2.1) critically depends on the choices of Ni. Elementarity of all routes of a solution is finally ensured

by branching.

2.3.2. Cutting Planes

Path-based models like the extended set-partitioning formulation (2.1) generally provide much stronger

bounds compared to edge-based formulations. Still, even with large |Ni| or pure elementary sets Ωl,

the lower bounds provided by (2.1) are not sufficiently tight for the effective solution of even small

to medium-sized instances of the VRPPC. To further strengthen the formulation, we add the following

additional families of valid inequalities.

Robust cuts The first type of cuts describes inequalities on the aggregated flow on edges {i, j} ∈ E .

Such inequalities can be incorporated into the master problem using expressions x(δ(S)) ≤ rhs or

x(δ(S)) ≥ rhs, where δ(S) = {{i, j} ∈ E : i ∈ S, j ∈ V \ S} denotes the cut-set of S ⊂ V and

x(δ(S)) =
∑

l∈L
∑

r∈Ωl

∑
{i,j}∈δ(S) bijrλr denotes the cut-set flow. Parameter bijr gives the number

of times edge {i, j} is traversed by route r. The dual prices of these inequalities directly transfer to

the reduced cost c̃lij , l ∈ L of the included edges meaning that they do not change the structure and the

complexity of the pricing subproblems, i.e., they are robust cuts. In our BPC approach, we use rounded

capacity cuts, which are separated with the CVRPSEP package (Lysgaard, 2003).

Non-robust cuts To further strengthen the linear relaxation, we also incorporate non-robust cuts into

model (2.1). The addition of non-robust cuts has to be done carefully because each cut makes the pricing

subproblem harder. Subset-row inequalities (SR) originally introduced by Jepsen et al. (2008) are a

family of non-robust cuts that have been successfully used in many exact approaches to VRP variants.

Each SR is defined on a subset of customers. As proposed by Jepsen et al. (2008), we restrict ourselves

to SR defined on three customers because they can be separated by straightforward enumeration. Let

18



U ⊂ N be a set of three customers. The corresponding inequality is defined as
∑

l∈L
∑

r∈Ωl

⌊gr
2

⌋
λr ≤

1, where gr is the number of times route r visits customers in U . Denote by σ ≤ 0 its associated dual

price. For every second visit to a customer in U , σ has to be subtracted from the reduced cost of a route.

This complicates the solution of the pricing subproblem (see Section 2.3.3).

Recently, Pecin, Contardo, et al. (2017) proposed the use of limited memory SR (lmSR) which are a

generalization of SR and whose impact on the solution of the pricing subproblem is typically reduced

compared to standard SR. With each lmSR are associated a set of (three) customers U and a memory

set M of nodes with U ⊆ M ⊆ N . The basic idea of lmSR is similar to the ng-routes. Roughly

speaking, each time a route r visits a node j /∈ M not in the memory of the cut, the coefficient gr
‘forgets’ a previous visit to one of the customers i ∈ U if the ‘remembered’ number of visits up to node

j is odd. In the following section, we clarify why this simplifies the solution of the pricing subproblem

if |M | < |N |, and we give details on the computation of the coefficient gr. For a detailed description of

lmSR, the computation of the coefficient gr, and the determination of the smallest-possible memory sets

M we refer to Pecin, Contardo, et al. (2017).

Dynamic neighborhood extension As mentioned in Section 2.3.1, the quality of the lower bounds

depends on the choices of the neighborhoods Ni of the ng-route relaxation. However, it is not clear a

priori what good choices for Ni are. Roberti and Mingozzi (2014) proposed the dynamic extension of

these neighborhoods, which can be interpreted as adding valid inequalities to formulation (2.1) forbid-

ding routes with certain cycles. Let r be a route of the current linear programming (LP) solution that

contains a cycle C = (i, . . . , i) with i ∈ N . Then, we add customer i to the neighborhoods Nj of all

nodes j ∈ C, forbidding this cycle in all routes that are priced out. In addition, all routes that are not

feasible with respect to the new neighborhoods are removed from the master program (2.1).

2.3.3. Labeling Algorithm

The predominant technique to solve ESPPRCs are dynamic-programming labeling algorithms (Irnich and

Desaulniers, 2005). In labeling algorithms, partial paths are gradually extended in a network looking for

a minimum-cost path from a given source node to a given sink node. The partial paths are represented by

labels storing the accumulated cost and resource consumption along the partial path. To avoid a complete

enumeration of all feasible paths, dominance relations between different labels as well as other fathoming

rules are typically exploited to eliminate unpromising labels. For a more comprehensive discussion on

ESPPRCs and labeling algorithms, we refer to Irnich and Desaulniers (2005).

Forward labeling In the VRPPC, source and sink node of the pricing network are both given by the

depot v0. A partial path P = (v0, . . . , i) from the depot v0 to a vertex i ∈ V is represented by a label

L(P ) = (c̃(P ), v(P ) = i, q(P ),Π(P ), S(P )) storing its reduced cost c̃(P ), its last vertex v(P ), the

load q(P ) of the vehicle, the set Π(P ) of visited customer nodes (in the ng-sense), and a binary vector

S(P ) representing the states of the lmSR. Let Θ be the set of all lmSR with strictly negative dual price in

the current pricing iteration. We denote by Ss(P ), Us, σs, and Ms the state, customer set, dual price, and

memory associated with an lmSR s ∈ Θ. The initial label at the depot v0 is given by (0, v0, 0, ∅,0). The

extension of a label L(P ) to a node j ∈ V along edge {v(P ), j} ∈ E is feasible if q(P ) + qj ≤ Cl and

19



j /∈ Π(P ). If the extension is feasible, a new label L(P ′) = (c̃(P ′), j, q(P ′),Π(P ′), S(P ′)) is created

according to the following resource extension functions (REFs):

c̃(P ′) = c̃(P ) + c̃lv(P )j −
∑

s∈Θ:j∈Us∧Ss(P )=1

σs (2.4)

v(P ′) = j (2.5)

q(P ′) = q(P ) + qj (2.6)

Π(P ′) = (Π(P ) ∪ {j}) ∩Nj (2.7)

Ss(P
′) =


0 if j /∈Ms ∨ (j ∈ Us ∧ Ss(P ) = 1)

1 j ∈ Us ∧ Ss(P ) = 0

Ss(P ) otherwise

∀s ∈ Θ (2.8)

To eliminate unpromising labels that cannot lead to an improved complete path compared to another

label, the following dominance rule is used. A label L(P1) dominates another label L(P2) with the same

last vertex i if:

c̃(P1)−
∑

s∈Θ:Ss(P1)>Ss(P2)

σs ≤ c̃(P2), (2.9)

q(P1) ≤ q(P2), (2.10)

Π(P1) ⊆ Π(P2). (2.11)

REFs (2.4) and (2.8) together with the dominance relation (2.9) give the intuition of how the lmSR are

handled in the labeling algorithm and why their impact on the solution of the pricing subproblems is

reduced compared to the standard SR. The overall handling of the lmSR is analog to the SR. For every

second visit to a customer i ∈ Us (there can be several visits to the same customer in an ng-route),

the dual price σs has to be incorporated in the reduced cost. Thus, a binary representation of the state

is sufficient for each cut s ∈ Θ, and the state Ss(P ) changes whenever a node i ∈ Us is visited.

Additionally, the state of cut s is reset in the lmSR case whenever a customer is visited that is not in the

memory set Ms. In the dominance rule, two labels L(P1) and L(P2) with different states Ss(P1) and

Ss(P2) for cut s can still be compared by penalizing the dominating label L(P1) if it is inferior with

respect to the state of s (Jepsen et al., 2008). When using lmSR instead of SR, many more labels are

directly comparable without penalization because the states for all lmSR s ∈ Θ for which v(P ) /∈ Ms

are reset.

In the remainder of this section, we describe several techniques that are used to speed-up the pricing

process, namely bidirectional labeling, completion bounds, edge elimination, and heuristic pricing.

Bidirectional labeling In labeling algorithms, the number of generated labels typically increases strongly

with the length of the generated partial paths. Bounded bidirectional labeling, originally introduced by

Righini and Salani (2006) and successfully used in many state-of-the-art approaches to VRPs variants,

can help mitigate this effect and is therefore typically superior to its monodirectional counterpart. In bidi-

rectional labeling, forward and backward partial paths are extended only up to a so-called halfway point

20



(HWP) defined on one of the resources (that needs to be monotone). After the labeling process, suitable

forward and backward partial paths have to be merged to complete feasible paths. Recently, Pecin, Con-

tardo, et al. (2017) and Tilk et al. (2017) proposed the use of a HWP that is dynamically detected during

the bidirectional labeling process based on the expected remaining forward and backward work. The

idea is to reduce the overall workload by better balancing the necessary forward and backward labeling

because they might be unequally complex due to asymmetry in the instance data or in the labeling itself.

The VRPPC pricing subproblem instances of this section that use the reduced cost c̃lij , l ∈ L from (2.2),

however, are completely symmetric so that forward and backward labeling are essentially identical. As

a consequence, it is sufficient to perform only the forward labeling up to the HWP. The resulting labels

can then be interpreted as both forward and backward partial paths.

The bidirectional labeling algorithm for the VRPPC pricing subproblems works as follows. The HWP

is defined on the load resource q(P ) of the labels. Forward labeling is then executed, extending a label

L(P ) only if q(P ) ≤ Cl/2 holds. When the labeling process terminates, suitable labels L(P ) and L(P ′)

are merged. To avoid creating the same path from different combinations of labels, the ‘first’ label L(P )

is a candidate for merging only if q(P ) > Cl/2 or v(P ) = v0. The two labels L(P ) and L(P ′) can be

merged to a complete feasible route if they end at the same vertex (v(P ) = v(P ′)), the capacity of the

vehicle is not exceeded (q(P ) + q(P ′)− qv(P ) ≤ Cl), and the sequence of customer visits is feasible in

the ng-route sense (|Π(P ) ∩Π(P ′)| = 1). The reduced cost of the resulting route are:

c̃(P ) + c̃(P ′)−
∑

s∈Θ:v(P )/∈Us∧Ss(P )+Ss(P ′)=2

σs +
∑

s∈Θ:v(P )∈Us∧Ss(P )+Ss(P ′)=0

σs.

Completion bounds The dominance between labels allows the elimination of unpromising labels if

there exists a label that is provably superior. Another strategy to discard unpromising labels is the use of

completion bounds. The basic idea is to compute lower bounds for the cost of completing a label L(P )

to a feasible route. Clearly, if the resulting estimated reduced cost of a complete route is not negative,

the corresponding label can be discarded because the real reduced cost of the route cannot be negative.

Completion bounds are typically obtained by running the labeling algorithm on a relaxation of the pricing

subproblem in the opposite direction, i.e., solving the relaxed problem with backward labeling to obtain

completion bounds for the original problem solved with a forward labeling algorithm. As pointed out

before, labeling in the VRPPC pricing subproblem is completely symmetric so that completion bounds

for the forward labeling of the bidirectional labeling algorithm can be obtained by using the forward

labeling on a relaxed version of the problem. In our approach, we relax the pricing subproblem in two

different ways. First, we use smaller ng-neighborhoods Ni. Second, we consider only a fraction of

the lmSR cuts (those with smallest dual price) explicitly in the labeling. As proposed by Contardo and

Martinelli (2014), the effect of the remaining lmSR is partly incorporated into the completion bounds by

subtracting σs/2 from the reduced cost c̃lij , l ∈ L of the edges {i, j} with i, j ∈ Us.

Let ĉ(i, q) be the minimum reduced cost of a label at vertex i with load q that results from the forward

labeling algorithm solving the described relaxation of the pricing subproblem for vehicle type l ∈ L.

Then, in the bidirectional labeling algorithm for the original pricing subproblem of l, all labels L(P ) at

node v(P ) for which c̃(P ) + minq≤Cl−q(P ) ĉ(i, q) ≥ 0 holds are discarded.

21



Edge elimination A final acceleration technique that we use in our algorithm is the elimination of

edges that cannot be part of any optimal solution as proposed by Irnich, Desaulniers, et al. (2010). Define

the edge reduced cost ĉlij for edge {i, j} ∈ E and vehicle type l ∈ L as the minimal reduced cost of any

route r ∈ Ωl regarding the current dual solution that uses edge {i, j}. If for some {i, j} ∈ E , l ∈ L
the edge reduced cost ĉlij is larger than the current integrality gap, then edge {i, j} can be removed

from the pricing subproblem for vehicle type l ∈ L. Irnich, Desaulniers, et al. (2010) have shown that

the values ĉlij for all edges {i, j} ∈ E can be computed by concatenating forward and backward labels

L(P ) with v(P ) = i and L(P ′) with v(P ′) = j resulting from a call to the full forward and backward

labeling algorithm for l ∈ L. Again, due to symmetry reasons, labels from the forward labeling can

be interpreted also as backward labels in the VRPPC so that a single call to the forward algorithm is

sufficient to compute the ĉlij for each l ∈ L.

Heuristic pricers For the column-generation process, it is not necessary to identify a route with min-

imal reduced cost in every iteration. Instead, it is sufficient to provide any route with negative reduced

cost. Consequently, pricing heuristics can be used to solve the pricing subproblems as long as they find

such routes. The exact solution algorithm for the pricing subproblems only has to be invoked if the

heuristic pricers fail to identify additional routes. In our BPC approach, we use limited discrepancy

search (LDS, Feillet, Gendreau, and Rousseau, 2007) to solve the pricing subproblems heuristically. The

basic idea of LDS is to divide the set of edges into good and bad edges and to limit the number of bad

edges that are allowed in the routes by discarding labels that exceed the allowed number. We define for

each node the five best edges (w.r.t. reduced cost) as good edges, all other edges are bad edges. Further-

more, we consider two different values (zero and one) for the number of allowed bad edges, giving rise to

two different heuristic pricers with differing computational effort. The pricing solvers are then executed

in the following order: LDS with no bad edges, LDS with one bad edge, the exact labeling algorithm.

Within the three pricing algorithms, the pricing subproblems for the different vehicle types l ∈ L are

solved in the order of increasing capacity Cl. Whenever one or more routes with negative reduced cost

are found by a combination of pricing solvers and pricing subproblem, they are returned to the master

program, and the remaining solver-subproblem combinations are not invoked in this pricing iteration.

2.3.4. Branching

Denote by λ̄r and ȳi the values of variables λr and yi in a solution of the LP relaxation of model (2.1).

Furthermore, let x̄ij =
∑

l∈L
∑

r∈Ωl
bijrλ̄r be the aggregated flow over edge {i, j} ∈ E in this solution.

Recall that bijr gives the number of times edge {i, j} is traversed by route r.

We use the following hierarchical branching scheme. First, we branch on the overall number of customers

served by the common carrier
∑

i∈N ȳi. Second, we branch on the number of vehicles of type l ∈ L given

by
∑

r∈Ωl
λ̄r. If this is fractional for several vehicle types, we branch on the one that is closest to 0.5.

Third, we branch on single yi variables and the customer with ȳi closest to 0.65 is chosen first. Finally,

we branch on the edges E of the undirected graph G giving priority to the edge {i, j} for which x̄ij is

closest to 0.5. All branching decision can be implemented by adding a single constraint to model (2.1).

Moreover, the pricing subproblems remain structurally unchanged, and all branching decision preserve

the inherent symmetry of the VRPPC. The node selection strategy is best first.

22



2.4. Large Neighborhood Search for the VRPPC

This section describes our LNS for solving VRPPC. LNS was introduced by Shaw (1998) as a local

search method with larger moves that make distant solutions accessible. The large moves are realized by

means of a removal and an insertion step: a possibly large part of the solution, i.e., in the context of VRPs

a subset of customers, is removed and then reintegrated into the partial solution. A similar approach was

proposed by Schrimpf et al. (2000) as ruin and recreate. Ropke and Pisinger (2006b) introduced adaptive

LNS, which allows to use a range of different operators that are selected with a probability depending

on their past success. Our LNS is based on the latter approach, but we select each operator with the

same fixed probability instead of adapting probabilities during the search. Figure 2.1 shows our solution

method in pseudocode.

1: Sc ← generateInitialSolution()
2: for η iterations do
3: St ← Sc
4: for two rounds do
5: for all r ∈ St do

{Decompose solution into subproblem Pr for selected route r.}
{Generate solution of subproblem from the tentative solution of the original problem.}

6: SPr ← copyPartialSolution(Pr,St)
{Randomly select removal operator. Draw δ customers to remove from SPr

.}
7: SPr ← applyRemoval(SPr , δ)

{Randomly select insertion operator to reinsert customers.}
8: SPr

← applyInsertion(SPr
)

9: if acceptSA(SPr
,St) then

10: St ← integrate(SPr
,St)

11: end if
12: end for
13: end for
14: if St is feasible and with a probability of 0.25 then
15: St ← VND(St)
16: end if
17: updatePenaltyFactor(St)
18: ΩLNS ← addFeasibleRoutes(St)
19: if acceptSA(St,Sc) then
20: Sc ← St
21: end if
22: end for
23: Sbest ← postProcessing(ΩLNS)

Figure 2.1.: Overview of the LNS algorithm.

First, we generate an initial feasible solution Sc with a modified savings algorithm (Section 2.4.1). In

the following improvement phase, we allow infeasible solutions and penalize violations in the objective

function (Section 2.4.2). The improvement phase (Section 2.4.3) works as follows: In every iteration, we

decompose the original problem into a sequence of subproblems Pr. Then, we derive a first solution SPr
to subproblem Pr from the tentative solution St and apply a randomly selected removal and insertion

operator on the solution of the subproblem. Afterwards, the new solution is reintegrated into the current

solution of the original problem based on a simulated annealing (SA) acceptance criterion. After all

23



subproblems are processed, we repeat the procedure for another round. If the resulting complete solution

is feasible, we apply a variable neighborhood descent (VND) with a probability of 0.25. The final

acceptance decision of the iteration is again based on SA. Finally, we save every feasible route found

during the search. In a post-processing step, these routes are recombined into the best possible feasible

solution (Section 2.4.4).

2.4.1. Generation of Initial Solution

We use a modified savings algorithm (see Clarke and Wright, 1964) to create an initial feasible solution

for the VRPPC. The idea is to first serve each customer with a dedicated route, and then to merge pairs of

routes as long as a positive saving can be realized and vehicle capacity is not violated. In each iteration,

we merge the pair with the highest saving. To merge two routes r1 and r2, we consider only the edges

incident to the depot and remove one edge of r1 and one edge of r2. Then, we replace them by an edge

directly linking the corresponding customer i of r1 and j of r2.

In the basic version of the algorithm, a tendency to favor peripheral routes can be observed, i.e., to

prefer routes that serve customers that are far from the depot and to eventually isolate customers that are

located close to the depot (Gaskell, 1967). We calculate the saving s(i, j) when linking customers i and

j as s(i, j) = c0i + cj0−λ · cij , where λ is a weight to balance between the distance to the depot and the

distance between customers (see, e.g., Gaskell, 1967; Yellow, 1970). We randomly select λ ∈ [0.6, 1.6]

using the values proposed in Li, Golden, and Wasil (2005) to define the interval. To ensure that at most

|K| vehicles are used, we implement the following simple procedure. In the beginning, none of the initial

single-customer routes are assigned to vehicles. We only merge two single-customer routes if an unused

vehicle is available, in this case we assign a vehicle to the resulting two-customer route. Otherwise, we

refrain from merging the two routes. When two multiple-customer routes are merged, we release one

vehicle. Finally, all the customers of the remaining single-customer routes are assigned to the common

carrier.

2.4.2. Generalized Cost Function and Penalty Calculation

During the search, we allow solutions that violate the vehicle capacity constraint and add a penalty to

the objective function value to account for the respective violation. Although restoring feasibility of a

solution is always possible by assigning certain customers to the common carrier, we allow temporary

violations to be able to traverse the solution space more freely. The objective value of a solution S is

given by the generalized cost function fgen(S) (see, e.g., Gendreau, Hertz, and Laporte, 1994):

fgen(S) = f(S) + γ · L(S) = fvar (S) + ffix (S) + γ · L(S).

The term f(S) comprises two parts: fvar (S) denotes the cost for the distance traveled by the private

fleet and the cost of outsourcing customers to the common carrier; ffix (S) denotes the cost of using the

vehicles of the private fleet. The penalty for capacity violations is calculated as the product of a penalty

factor γ and the total capacity violation L(S) of solution S. For all operators that our algorithm uses to

modify a solution, L(S) can be calculated in O(1) time.

24



We initially set the penalty factor to γ = h̄max , where h̄max denotes the maximum cost per demand unit

to subcontract any customer, i.e., h̄max = maxi∈N (hi/qi). Then, we update γ as follows: If the capacity

constraint has been violated for two iterations, the penalty factor is multiplied by %, and vice versa it is

divided by % if the capacity constraint is satisfied for two iterations. We restrict the value of the penalty

factor to the interval γ ∈ [0.001, 10.0 · h̄max ].

2.4.3. Solution Improvement

In every iteration of the improvement phase, we decompose the original problem into a series of sub-

problems Pr, one for each route r ∈ St, and solve these subproblems one at a time. However, instead

of solving each subproblem from scratch, we derive a solution SPr of Pr from St and improve this solu-

tion (Section 2.4.3.1). Improvement is achieved by applying a randomly selected removal and insertion

operator to SPr (Section 2.4.3.2). Then, an acceptance criterion based on SA decides whether SPr is

integrated into St or discarded (Section 2.4.3.3). If we accept the new solution, we immediately replace

the corresponding routes in St with the modified routes and update the customers assigned to the com-

mon carrier according to SPr . Note that the definition of the next subproblem to be investigated depends

on the solution of the current subproblem because we modify St continuously. The entire procedure is

repeated for two rounds (in every round one subproblem Pr originates from each route r).

If the resulting solution is feasible, we further improve the solution by applying a VND with a probability

of 0.25 (Section 2.4.3.4). Then, at the end of every iteration, the SA criterion (Section 2.4.3.3) decides

whether the search is continued from the new solution. The search terminates after η iterations.

2.4.3.1. Decomposition Strategy

Although problem decomposition is generally used in algorithms developed to tackle large-scale VRP

instances (see, e.g., Vidal, Crainic, et al., 2013), we observed that even for medium-sized instances of

the VRPPC, we often find better solutions if we focus the search on partial solutions instead of the

overall problem. We define subproblems by means of the set of customers to be served and the vehicles

available to carry out the service. Our decomposition strategy works as follows: In randomized order,

we generate one subproblem Pr for each route r of the private fleet. Based on the tentative solution St,
each subproblem Pr is defined by:

i) The customers and the vehicle that are currently assigned to route r.

ii) All customers and vehicles of a random number α of routes that are closest to route r. The number

of routes α is drawn from the interval [2, b|K|/4c] if |K| ≥ 12 and set to α = min(|K| − 1, 2),

otherwise. We select the α routes that are closest to route r by measuring the distance between

routes as the Euclidean distance between their centers of gravity, where the center of gravity of a

route is calculated as the average of the coordinates of the vertices of the route.

iii) Customers that are closely-located to route r and that are currently assigned to the common carrier.

To select such customers, we create a rectangular box that contains all customers already present in

Pr after steps (i) and (ii), and we add a margin to every side of the bounding box that corresponds

to 10% of the maximal distance between any two customers in the instance. Then, we add all

25



customers to Pr that are assigned to the common carrier in St and that are positioned within the

enlarged box.

2.4.3.2. Removal and Insertion Operators

We remove δ customers from SPr . Let |Pr| denote the number of vertices in the current subproblem of

our instance Pr. Then δ is drawn from the interval [ωmin , ωmax ] ·min(|Pr|, 100) with parameters ωmin

and ωmax .

Our LNS uses the following removal operators:

Random removal removes arbitrary customers from the routes of the private fleet and from the common

carrier.

Route and common carrier removal selects at random routes from the private fleet or it selects the

common carrier and removes the customers assigned until δ customers are removed.

Worst removal was proposed in Ropke and Pisinger (2006b) in order to remove customers whose pres-

ence in the solution strongly contributes to the objective function value. We do not use the direct

contribution to fgen(S) to identify these customers but introduce problem-specific measures to

select customers for removal. Whenever the worst removal operator is selected, we select one of

three measures at random that is then used until δ customers are removed. Let S−i denote a solu-

tion where customer i is removed and is either replaced by the connection between its predecessor

and successor if it was previously assigned to the private fleet or removed without additional mod-

ification if it was assigned to the common carrier. For each customer i, let Wx(i) denote the value

of one of the following measures x ∈ {1, 2, 3}:
(i) change of variable cost: W1(i) = fvar (S)− fvar (S−i) ,

(ii) change of variable cost compared to subcontracting: W2(i) = fvar (S)− fvar (S−i)− hi,
(iii) and change of variable cost per unit of demand: W3(i) = (fvar (S)− fvar (S−i))/qi.
Measure W1 is implemented in two variants, one variant including customers assigned to the

common carrier and one variant ignoring these customers, and measure W2 does not consider

customers assigned to the common carrier. In the next step, the customers are sorted in descending

order ofWx(i), and the vertex at position bD ·bχrem c is chosen, whereD is the size of the list, b is a

uniform random number ∈ [0, 1], and χrem is a parameter to control the amount of diversification.

After a customer is removed, the values are updated.

Shaw removal was introduced in Shaw (1997) in order to select customers for removal that are similar

to each other. We define the similarityR(i, j) between two customers i and j by their geographical

distance dij , the difference in demand |qi − qj |, and the difference in subcontracting cost |hi −
hj |. Each term is weighted with a parameter χ and normalized using the maximum value in the

instance:

R(i, j) = χd
dij

max
i,j∈V

(dij)
+ χq

|qi − qj |
max
i∈N

(qi)−min
i∈N

(qi)
+ χh

|hi − hj |
max
i∈N

(hi)−min
i∈N

(hi)
.

The first customer is randomly selected, and we sort all remaining customers j ∈ S in ascending

order of their R(i, j)-value. From this list, the customer at position bD · bχrem c is chosen as

26



described above. The next iteration starts from an already removed customer that is selected at

random.

Historical node-pair removal was introduced in Ropke and Pisinger (2006a). The idea is to remove

edges from the current solution that have so far been only present in solutions with poor quality.

To this end, an auxiliary graph G̃ = (Ṽ, Ẽ) is created and initially a large weight wẽ is assigned

to each edge ẽ ∈ Ẽ . In the following, for each edge e that is present in the current solution S,

the edge weight in the auxiliary graph is replaced if the current objective function value is smaller

than the previous weight, i.e., wẽ := f(S) if f(S) < wẽ.

To select customers, we assign to every customer served by the private fleet the sum of the weights

wẽ of the two edges incident to the customer and then sort the customers in descending order

according to this value. Now, the customers with the highest value are removed. We adapt this

procedure to also account for customers that are assigned to the common carrier (for which there

are no edges) as follows: (i) in addition to the edge weights, we store for each vertex ṽ a weight

wṽ that contains the best objective function value of any solution encountered so far in which the

customer was subcontracted and include them in the list, (ii) because each customer served by the

private fleet is assigned the sum of two edge weights, but customers served by the common carrier

are only assigned one vertex weight, we divide each edge-related value by 2 before we add it to

the list to make the measures comparable.

The following insertion operators are used in our LNS:

Greedy insertion basic determines for each unassigned customer i the minimal increase of the gener-

alized cost function ∆fgen(S+i) when i is inserted into the routes of the private fleet. Then, the

customer with the smallest value of min(∆fgen(S+i), hi) is assigned to either the best route of the

private fleet at its best position (if the first term is smaller) or to the common carrier (if the second

term is smaller). This is repeated until all customers are assigned.

Greedy insertion priority works similar to the basic version, but we modify the selection criterion for

the next customer to insert. The idea is to prefer customers in the beginning that are expensive to

subcontract and that have a low demand. Therefore, instead of selecting the customer i based on

the minimum cost increase ∆fgen(S+i), we calculate for each customer (i) the difference between

the minimum cost change for the assignment to the private fleet and the cost of subcontracting the

customer in relation to its demand, i.e., (∆fgen(S+i) − hi)/qi, and (ii) the direct subcontracting

cost per unit, i.e., hi/qi. Then, we select the customer for insertion where the minimum of these

two values is smallest. If the first value is smaller, we insert the customer at the cost-minimal

position in the corresponding route of the private fleet. If the second value is smaller, we assign it

to the common carrier.

Regret-2 insertion aims at finding a customer insertion order that tries to avoid negative future conse-

quences, i.e., we insert a customer now because otherwise we might regret it. A description of

the regret-k insertion is given in Ropke and Pisinger (2006a), we only implement the case k = 2

because larger values of k did not improve the solution quality in preliminary studies. The regret-2

value is calculated as the difference between the second best assignment to a route of the private

fleet or to the common carrier and the best assignment. In every step, we choose the customer with

the currently highest regret-2 value and insert this customer into the best route or assign it to the

common carrier, whichever is cheaper. If the best assignment corresponds to the common carrier,

27



we assume a regret-2 value of zero because the common carrier has unlimited capacity.

Insertion diversification adapts the three previously introduced insertion operators by adding an ad-

ditional term to the change of the objective function value. On the one hand, we set the cost

hi of subcontracting customer i to hi := hi + ι where ι is uniformly chosen from the interval

ι ∈ [−ζ · hmax , ζ · hmax ] with hmax = maxi∈N (hi) and parameter ζ in order to try different

configurations of subcontracted customers. On the other hand, for assignments to the private fleet,

we use a principle known as continuous diversification (Cordeau, Laporte, and Mercier, 2001)

that originated in the context of tabu search but is less restrictive than using a tabu list. Assign-

ments to routes of the private fleet are changed based on the history of the solution process in

order to encourage customer-route combinations that have not occurred very frequently. To this

end, we measure the frequency uij of assigning customer i to route j and derive a penalty term

κ · |K| ·
√
uij · f(Sbest)/|N | that grows sublinearly with this frequency. The penalty depends on

a parameter κ = 0.1 that controls the extent of diversification, the number of vehicles |K|, and the

currently best objective function value per customer f(Sbest)/|N |.
Probabilistic insertion randomizes the order of customer insertions and the decision whether to assign

a customer to one of the vehicle routes or to the common carrier. The next customer i is selected

randomly, and then we calculate the changes of the objective function value ∆fxgen(S+i) with

x = r for assigning i to route r at its cost-minimal position and with x = c for assigning i to the

common carrier. Now, we use roulette wheel selection with probabilities inversely proportional

to the weighted changes in the objective value (∆fxgen(S+i))χins to decide whether to assign cus-

tomer i to route r at the best position on the route or to the common carrier, i.e., the higher the

increase when assigned to x, the lower the probability to select it. The parameter χins controls the

amount of diversification.

2.4.3.3. Acceptance Criterion

We use an SA based acceptance criterion (Kirkpatrick, Gelatt, and Vecchi, 1983) to decide (i) whether

to replace the solution to each subproblem with the newly generated solution for the subproblem, and

(ii) whether to continue the search from the tentative solution St after all subproblems have been solved

or to continue from the current solution Sc. Based on the temperature T and the difference between the

objective function value of a new solution Snew and the previous solution Sold , SA decides whether to

accept deteriorating solutions (improving ones are always accepted) with probability p(Snew ,Sold , T ) =

e(fgen (Sold )−fgen (Snew ))/T .

We set start and end temperature such that a new solution that deteriorates the initial solution by τmax %

and τmin%, respectively, is accepted with a probability of 50%. After each iteration, T decreases by

a constant factor, which is determined such that the end temperature is reached after 50% of the total

iterations. From there, we keep T constant instead of further decreasing it to allow more diversification

in the search. Pretests have shown that this has strong positive effects on the solution quality. To evaluate

the acceptance of a new solution SPr , we determine fgen(Snew ) as the objective value of the complete

solution that would be obtained if SPr replaced the previous solution to Pr. This is necessary because

the temperature T is scaled to the value of complete solutions of the original problem.

28



2.4.3.4. Variable Neighborhood Descent

After two rounds of problem decomposition and improvement using LNS, feasible solutions are im-

proved by a VND with a probability of 0.25. The VND follows a first-improvement strategy, and the list

of neighborhoods contains the following operators in the given order: relocate (Waters, 1987), exchange

(Savelsbergh, 1992), and a restricted version of 2-add-drop (Bolduc, Renaud, Boctor, and Laporte, 2008).

Relocate and exchange are implemented in inter- and intra-route fashion. The 2-add-drop operator is

specific to the VRPPC and was originally introduced as combined operator that (i) transfers up to two

customers from the common carrier to the private fleet or vice versa, and (ii) transfers a single customer

from the private fleet to the common carrier and at the same time inserts another customer currently

assigned to the common carrier at the best possible position within the routes of the private fleet. We use

only the second variant.

To limit the computational effort, we restrict the search to promising moves as follows: For each cus-

tomer i, we store the closest 0.3 ·min(|V|, 150) vertices in an immutable neighbor list. We generate only

those relocate moves of which either the new successor or predecessor of i is contained in the neighbor

list of i, but we always evaluate the move where i is assigned to the common carrier. For exchange

moves, only vertices in the neighbor list of i are considered as exchange partners of i. For 2-add-drop

moves, we do not restrict the search to closely located vertices because good insertion positions can be

far from the removal position.

2.4.4. Set Covering with Fleet Constraints

Finally, we apply a post-processing step that aims at improving on the best found solution by solving a

set-covering problem with constraints on the fleet composition. Similar techniques have been success-

fully used in, e.g., Rochat and Taillard (1995) and Groër, Golden, and Wasil (2011), and Subramanian,

Uchoa, and Ochi (2013). For each vehicle group l ∈ L, we collect all feasible routes encountered during

the search in a pool of routes ΩLNS
l . Whenever we find a route of a vehicle of group l that serves the

same customers as a route already present in the respective pool but with lower cost, we replace the

corresponding route. Then, we solve formulation (2.1) using a commercial solver with a time limit of

min(300, |⋃l∈LΩLNS
l |/100) seconds. We initialize the solver with Sbest in order to decrease the com-

puting time. If we obtain a solution in which customers are contained in more than one route, we simply

remove the redundant occurrences.

2.5. Numerical Studies

This section details the experiments to assess the performance of our BPC and our LNS. Section 2.5.1

introduces the benchmark instances on which both algorithms are evaluated. Section 2.5.2 discusses the

parameter tuning, the value of individual components, and the comparison to the state-of-the-art for our

LNS. Results of our BPC algorithm are presented in Section 2.5.3.

29



2.5.1. Benchmark Instances

In our computational studies, we use the benchmark sets available from the literature. Bolduc, Renaud,

Boctor, and Laporte (2008) introduce two sets that assume a homogeneous vehicle fleet. These sets

are based on the well-known capacitated vehicle-routing problem (CVRP) instances of Christofides,

Mingozzi, and Toth (1979) (14 instances with 50–199 customers) and Golden et al. (1998) (20 instances

with 200–483 customers). The names of the instances of these sets start with CE and G, respectively.

To obtain VRPPC instances, the original instances are adapted as follows: (i) the number of vehicles is

reduced such that only 80% of the total demand of the customers can be satisfied by the private fleet, (ii)

the vehicle fixed costs are set based on the average route length of the best known solution to the original

instance, and (iii) the cost of subcontracting a customer is based on the best known objective value of the

original instance, the distance of the customer to the depot, and its demand. To obtain instances with a

heterogeneous fleet, both sets are further modified in Bolduc, Renaud, Boctor, and Laporte (2008). The

vehicles are divided into two or three different vehicle types, with 80%, 100% and 120% of the capacity

and of the fixed cost of the vehicles of the homogeneous fleet. The instance names of these sets start with

CE-H and G-H, respectively.

2.5.2. Performance of the LNS

Experimental environment and parameter setting For our LNS, we perform all numerical experi-

ments with a single core of a desktop computer equipped with an Intel I7 processor at 2.8 GHz with 8 GB

of RAM and running Windows 7 Enterprise. The algorithm is implemented in Java, and the commercial

solver used to solve the set-covering problem (Section 2.4.4) is Gurobi at version 7.0.1. Ten runs per

instance are performed.

We set the total number of search iterations to η = 20, 000 because this value offers a good trade-off

between run-time and solution quality. We tune the other parameters of the algorithm as follows: We use

only three randomly selected instances from the set CE and three instances from the set G to keep the

computational tuning effort low and to avoid overfitting the algorithm to the benchmark set. We begin

with a reasonable base setting of the parameters that we have determined during the development of our

algorithm. Then, we iteratively modify the base value of each parameter to a reasonable lower and higher

value. We keep the best value for each parameter (based on the average quality of 10 runs) and continue

with the next parameter. Parameters that are closely related are grouped and changed simultaneously to

keep the testing effort moderate. We examine the following parameters in the given order: The external

cost noise factor (ζ), the weight factors for the Shaw removal operator (χd, χh, χq), the minimal and

maximal factors for the number of customers to remove (ωmin , ωmax ), the removal diversification factor

(χrem ), the continuous diversification factor (κ), the probabilistic insertion factor χins , the minimal and

maximal SA deterioration percentage (τmin , τmax ), and finally the penalty update factor %. Table 2.1

summarizes the results of our parameter study. The base value is given in the middle and the best value

is marked in bold and used as final setting. For each setting, we report the deviation in percent of the

objective value ∆f to the value of the best setting. We conclude that our solution method is quite robust

against parameter variations as the deviation from the best setting is always below 0.2%.

30



Table 2.1.: Results of our parameter study on a subset of the VRPPC instances. We mark the best setting
for each parameter in bold and use it as final setting. For each setting, we report the deviation
(∆f ) to the best setting of the respective parameter.

LNS
ζ 0.25 0.5 0.75

∆f (%) 0.02 0.00 0.1

(χd, χh, χq) (4,5,6) (6, 5, 4) (6, 4, 5)

∆f (%) 0.00 0.03 0.19

(ωmin , ωmax ) (0.05, 0.4) (0.1,0.4) (0.1, 0.6)

∆f (%) 0.09 0.00 0.02

χrem 26 36 46

∆f (%) 0.16 0.00 0.03

κ 0.02 0.1 0.5

∆f (%) 0.00 0.04 0.17

χins 2 4 6

∆f (%) 0.07 0.00 0.09

SA & Penalties
τmin 0.01 0.05 0.1

∆f (%) 0.17 0.00 0.03

τmax 0.1 0.2 0.4

∆f (%) 0.07 0.00 0.02

% 1.02 1.1 1.5

∆f (%) 0.14 0.00 0.12

Influence of algorithmic components To assess the effect that different components of the algorithm

have on the quality and speed of our LNS, we compare the following variants of the LNS on the bench-

mark sets with homogeneous (Table 2.2) and heterogeneous fleet (Table 2.3):

LNS Our LNS with all components as described above

LNS–noSC In this setting, we omit the set covering as post-processing step. To be able to observe

the undistorted effect of the post processing, the results of LNS–noSC and LNS presented in

the following are based on the same runs: LNS–noSC is the result of the LNS before the post-

processing phase starts.

LNS–noDec This setting does not use the problem decomposition technique but instead applies the

removal and insertion operators on complete solutions. To make the comparison fair, we double

the number of total search iterations because we always do two rounds of destroy and repair in the

variants featuring decomposition.

For each instance, column |N | reports the number of customers, column BKS the previously best known

solution value from the literature (in the case of Table 2.2 taken from Vidal, Maculan, et al. (2016) and

in the case of Table 2.3 taken from Bolduc, Renaud, Boctor, and Laporte (2008) and Potvin and Naud

(2011) and from the updated results for Côté and Potvin (2009) reported in Appendix A). For each variant

of the LNS, column ∆best reports the percentage gap between the best solution obtained in the 10 runs

and the previous best known solution, and column t gives the run-time in seconds. Finally, columns

31



LNS list the best objective value f that we found during the overall testing and the respective gap to the

BKS ∆f . Note that the best solution value for each instance is marked in bold, and average values are

provided in the last row.

The solution behavior is rather similar on both types of instances: The two variants using decomposition

show a clearly superior solution quality while having higher run-times. Of these two, LNS shows a

better solution quality than LNS–noSC, but the average run-time increases by roughly 25%. The results

show that both algorithmic components—decomposition and post-processing—have a positive impact

on solution quality and a negative one on run-time. In real-world applications, the decision for one of

the variants depends on the desired tradeoff between solution quality and run-time that the planner wants

to achieve. For the following comparison to the state-of-the-art, we put the major emphasis on solution

quality and only investigate variant LNS.

Comparison to the state-of-the-art As Table 2.2 shows, LNS is able to match 10 and improve 6

previous BKS out of the 34 instances with a homogeneous vehicle fleet. During the overall testing, LNS

matches 12 and improves 12 BKS of these instances. On the instances with a heterogeneous fleet (see

Table 2.3), LNS matches 1 and improves 26 out of 34 instances, and LNS matches 3 and improves 29

instances.

Table 2.4 gives an aggregate comparison of LNS to the state-of-the-art methods from the literature: RIP

(Bolduc, Renaud, Boctor, and Laporte, 2008), TS (Côté and Potvin, 2009), TS+ (Potvin and Naud, 2011),

AVNS (Stenger, Vigo, et al., 2013), AVNS-RN (Stenger, Schneider, and Goeke, 2013), UGHS (Vidal,

Maculan, et al., 2016), MS-ILS (Vidal, Maculan, et al., 2016), and MS-LS (Vidal, Maculan, et al., 2016).

The upper part of the table is devoted to the comparison on the instances with a homogeneous fleet,

the lower part to those with a heterogeneous fleet. The first three rows in each part report the average

percentage gap to the previous best known solution in percent achieved by each method in the best of the

runs on the respective instance set. The solutions reported for RIP are obtained by solving each instance

only once, all other heuristics report the best solution found in 10 runs. The fourth row gives the average

run-time per instance in minutes. Finally, in row CPU@GHz, we list the processor and clock rate of the

computers on which the respective methods were tested. We indicate with † results that are not directly

comparable because they are obtained using truncated customer coordinates. Please note that the results

reported for TS are based on non-truncated coordinates because the authors repeated the testing of their

algorithm and provided us with this data. We report their updated results in Appendix A.

On the homogeneous-fleet instances, LNS provides the best solution quality on set CE and the second-

best quality after UHGS on set G within very competitive run-times. On the heterogeneous-fleet in-

stances, LNS is able to significantly improve the average solution quality by more than 1% compared to

all competitors. However, run-times compared to TS are also clearly higher.

32



Table 2.2.: Detailed results and comparison of algorithmic components on the instance sets with a homo-
geneous fleet.

LNS LNS–noSC LNS–noDec LNS

Inst. |N | BKS ∆best(%) t(sec) ∆best(%) t(sec) ∆best(%) t(sec) f ∆f (%)

CE
CE-01 50 1119.47 0.00 27 0.00 27 0.00 13 1119.47 0.00
CE-02 75 1814.52 0.00 53 0.00 53 0.00 118 1814.52 0.00
CE-03 100 1919.05 0.00 73 0.00 73 0.11 67 1919.05 0.00
CE-04 150 2505.39 0.08 133 0.08 133 0.00 161 2505.39 0.00
CE-05 199 3081.59 0.23 298 0.25 272 0.35 374 3086.75 0.17
CE-06 50 1207.47 0.00 27 0.00 27 0.00 13 1207.47 0.00
CE-07 75 2004.53 0.00 53 0.00 53 0.00 109 2004.53 0.00
CE-08 100 2052.05 0.00 73 0.07 73 0.09 94 2052.05 0.00
CE-09 150 2422.74 -0.12 130 -0.12 128 -0.08 190 2419.84 -0.12
CE-10 199 3381.67 -0.12 288 -0.09 269 0.08 404 3376.80 -0.14
CE-11 120 2330.94 0.00 104 0.00 104 0.00 58 2330.94 0.00
CE-12 100 1952.86 0.04 73 0.04 73 0.00 82 1952.86 0.00
CE-13 120 2858.83 0.00 104 0.00 104 0.00 60 2858.83 0.00
CE-14 100 2213.02 0.00 72 0.00 72 0.00 65 2213.02 0.00
G
G-01 240 14131.18 0.21 349 0.25 305 0.58 352 14134.20 0.02
G-02 320 19142.75 0.06 471 0.20 400 1.35 463 19145.60 0.01
G-03 400 24409.02 0.45 604 0.63 465 1.90 526 24563.34 0.63
G-04 480 34362.8 -0.52 731 -0.45 554 1.29 623 34183.06 -0.52
G-05 200 14223.63 1.07 193 1.19 189 0.70 132 14246.68 0.16
G-06 280 21382.16 0.92 279 1.01 264 0.54 216 21496.93 0.54
G-07 360 23373.38 0.50 550 0.51 399 1.21 464 23398.93 0.11
G-08 440 29797.62 -0.34 683 -0.10 510 1.59 587 29697.75 -0.34
G-09 255 1326.2637 0.35 460 0.35 323 0.29 437 1325.03 -0.09
G-10 323 1593.79492 0.13 697 0.13 498 0.43 474 1586.50 -0.46
G-11 399 2173.82151 0.30 917 0.30 627 0.63 510 2163.72 -0.46
G-12 483 2494.56071 0.27 1036 0.27 757 0.49 543 2490.23 -0.17
G-13 252 2258.02 0.08 869 0.08 661 0.99 536 2259.75 0.08
G-14 320 2683.73 0.00 1209 0.29 914 1.27 579 2682.90 -0.03
G-15 396 3145.11 0.07 1672 0.07 1370 0.74 637 3147.21 0.07
G-16 480 3620.71 0.11 2107 0.11 1803 0.82 695 3614.79 -0.16
G-17 240 1666.31 0.00 446 0.00 385 0.04 325 1666.31 0.00
G-18 300 2730.55 0.09 1015 0.17 712 0.39 560 2731.98 0.05
G-19 360 3497.2 -0.02 1476 0.06 1170 0.61 634 3492.31 -0.14
G-20 420 4312.45 -0.10 2080 -0.01 1771 0.90 734 4303.56 -0.21

Avg. 0.11 569 0.16 457 0.51 348 -0.03

33



Table 2.3.: Detailed results and comparison of algorithmic components on the instance sets with a het-
erogeneous fleet.

LNS LNS–noSC LNS–noDec LNS

Inst. |N | BKS ∆best(%) t(sec) ∆best(%) t(sec) ∆best(%) t(sec) f ∆f (%)

CE-H
CE-H-01 50 1191.70 0.19 27 0.19 27 0.19 16 1191.70 0.00
CE-H-02 75 1790.67 0.46 49 0.46 49 -0.07 121 1789.41 -0.07
CE-H-03 100 1917.96 -0.10 70 -0.10 70 -0.23 78 1913.49 -0.23
CE-H-04 150 2475.16 -0.10 131 0.04 129 -0.01 149 2465.51 -0.39
CE-H-05 199 3143.01 -0.76 322 -0.76 274 -0.50 416 3119.10 -0.76
CE-H-06 50 1204.48 0.00 26 0.00 26 0.00 13 1204.48 0.00
CE-H-07 75 2025.98 0.34 53 0.34 53 0.04 103 2026.70 0.04
CE-H-08 100 1984.36 -0.28 71 -0.28 71 0.00 64 1978.79 -0.28
CE-H-09 150 2438.73 -0.32 130 -0.28 128 -0.42 150 2424.43 -0.59
CE-H-10 199 3267.85 -0.71 287 -0.58 253 -0.54 387 3240.00 -0.85
CE-H-11 120 2303.13 -0.06 105 -0.06 105 0.00 62 2301.78 -0.06
CE-H-12 100 1908.74 -0.04 74 -0.04 72 -0.04 109 1908.05 -0.04
CE-H-13 120 2842.18 -0.07 104 -0.07 104 -0.02 59 2832.88 -0.33
CE-H-14 100 1907.74 0.30 71 0.30 71 0.17 68 1907.75 0.00
G-H
G-H-01 240 14251.75 -0.81 325 -0.69 303 -0.74 277 14097.33 -0.95
G-H-02 320 18560.07 -0.57 539 -0.51 400 -0.04 453 18412.40 -0.80
G-H-03 400 25356.63 -1.34 589 -1.19 465 -0.45 503 25016.72 -1.34
G-H-04 480 34589.11 -0.75 774 -0.65 553 0.85 627 34328.99 -0.75
G-H-05 200 15667.13 -1.10 184 -1.04 182 -0.25 99 15398.76 -1.71
G-H-06 280 19975.32 -0.74 337 -0.70 301 -0.60 306 19743.63 -1.16
G-H-07 360 23510.98 -0.04 531 0.08 398 0.73 431 23293.54 -0.92
G-H-08 440 27420.68 -0.23 659 -0.13 496 0.65 554 27358.69 -0.23
G-H-09 255 1331.83 0.10 468 0.10 331 0.24 448 1324.99 -0.27
G-H-10 323 1561.52 0.23 596 0.23 425 -0.02 463 1556.39 -0.05
G-H-11 399 2195.31 -0.30 935 -0.21 638 0.37 524 2185.08 -0.30
G-H-12 483 2487.38 0.36 1176 0.36 873 1.03 559 2488.08 0.03
G-H-13 252 2239.18 -0.42 727 -0.29 568 0.05 519 2218.92 -0.85
G-H-14 320 2682.85 -0.88 1156 -0.88 916 -0.17 625 2649.32 -1.25
G-H-15 396 3131.89 -0.39 1705 -0.35 1403 0.55 681 3108.53 -0.45
G-H-16 480 3629.41 -0.60 2111 -0.60 1807 0.77 738 3598.41 -0.60
G-H-17 240 1695.75 -0.58 571 -0.38 376 -0.29 460 1685.97 -0.58
G-H-18 300 2740.05 -0.37 1004 -0.27 701 0.46 590 2729.61 -0.38
G-H-19 360 3464.70 -0.22 1451 -0.16 1145 0.23 675 3453.41 -0.33
G-H-20 420 4352.35 -0.80 2129 -0.80 1820 0.45 798 4311.17 -0.95

Avg. -0.31 573 -0.26 457 0.07 357 -0.51

34



Table 2.4.: Overview of results obtained with LNS and heuristics from the literature. Note that Xe stand
for Intel Xeon and Opt for AMD Opteron.

RIP TS TS+ AVNS AVNS-RN UHGS MS-ILS MS-LS LNS

Avg. ∆best(%)

CE 1.063 0.345 0.309 0.196 0.131 0.015 0.065 1.405 0.008
G 1.988 1.807 †0.225 0.636 0.554 0.110 0.469 2.643 0.181
CE & G 1.666 1.258 †0.266 0.473 0.380 0.074 0.317 2.211 0.110
Avg. t(min) 1×17.45 10×2.98 10×34.86 10×11.94 10×12.14 10×26.40 10×16.62 10×1.89 10×9.49

Avg. ∆best(%)

CE-H 0.646 0.391 0.291 -0.082
G-H 1.324 1.162 †-0.344 -0.473
CE-H & G-H 1.084 0.879 †-0.093 -0.305
Avg. t(min) 1×17.50 10×2.86 10×40.56 10×9.55

CPU@GHz Xe@3.6 I7@3.4 Opt@2.2 I5@2.67 I5@2.67 Xe@3.07 Xe@3.07 Xe@3.07 I7@2.8

2.5.3. Results of the BPC

All algorithmic components of the BPC were coded in C++ and compiled into 64-bit single-thread code

with MS Visual Studio 2013. The callable library of CPLEX 12.6.0 was used for re-optimizing the

master program. The computational experiments of the BPC were conducted on a standard PC with an

Intel I7-5930k 3.5 GHz processor with 64 GB of main memory. The time limit was set to two hours.

Tables 2.5 and 2.6 summarize the results of our BPC on the homogeneous and heterogeneous instance

sets, respectively. The columns have the following meaning: IUB is the initial upper bound given to the

algorithm (from our LNS or from the literature), LB denotes the lower bound provided by the algorithm

when the time limit was reached (values in bold indicate that the instance was solved to proven optimality

within the time limit while values marked with an asterisk constitute new best known solutions), ∆LB(%)

is the optimality gap in percent, t(sec) the run-time in seconds taken by the algorithm to solve an instance

to proven optimality (or TL if the time limit was reached), #Nds is the number of solved branch-and-

bound nodes, and #Cuts the number of generated cuts.

Our results reveal that the proposed exact approach is able to solve some small to medium-sized instances

to optimality in reasonable time. Thereby, new best known solutions are found for two of the instances

from benchmark set CE-H. For the larger instances, only lower bounds can be provided within the time

limit of two hours. For the two largest instances G-12/G-H-12, we were not able to solve the root node

in the computation time of two hours. The average optimality gaps are 0.22%, 0.78%, 0.31%, and 1.10%

for the instances sets CE, G, CE-H, and G-H, respectively. Thus, the lower bounds provided by our BPC

seem to be rather tight while the upper bounds from our LNS (and from other state-of-the-art heuristics)

also seem to be of good quality.

35



Table 2.5.: Results of the BPC for the homogeneous instances.

Inst. |N | IUB LB ∆LB(%) t(sec) #Nds #Cuts

CE
CE-01 50 1119.47 1119.47 0.00 10.7 27 127
CE-02 75 1814.52 1814.52 0.00 489.7 224 227
CE-03 100 1919.05 1916.49 0.13 TL 237 240
CE-04 150 2505.39 2495.26 0.41 TL 312 289
CE-05 199 3081.59 3066.67 0.49 TL 265 339
CE-06 50 1207.47 1207.47 0.00 13.9 25 147
CE-07 75 2004.53 2004.53 0.00 280.8 154 229
CE-08 100 2052.05 2049.11 0.14 TL 219 233
CE-09 150 2419.84 2407.18 0.53 TL 257 267
CE-10 199 3376.80 3355.75 0.63 TL 240 270
CE-11 120 2330.94 2323.89 0.30 TL 5 21
CE-12 100 1952.86 1950.79 0.11 TL 217 225
CE-13 120 2858.83 2850.75 0.28 TL 7 21
CE-14 100 2213.02 2211.63 0.06 TL 149 225

G
G-01 240 14131.20 14044.00 0.62 TL 150 225
G-02 320 19142.80 18987.20 0.82 TL 56 225
G-03 400 24409.00 24200.60 0.86 TL 1 0
G-04 480 34183.10 33898.40 0.84 TL 1 0
G-05 200 14223.60 14144.50 0.56 TL 33 225
G-06 280 21382.20 21299.60 0.39 TL 29 225
G-07 360 23373.40 23172.40 0.87 TL 2 0
G-08 440 29679.80 29439.60 0.82 TL 1 0
G-09 255 1325.03 1308.85 1.24 TL 11 60
G-10 323 1586.50 1567.65 1.20 TL 1 0
G-11 399 2163.72 2137.78 1.21 TL 1 0
G-12 483 2490.23 — — TL 0 0
G-13 252 2258.02 2234.83 1.04 TL 44 225
G-14 320 2682.90 2658.79 0.91 TL 49 225
G-15 396 3145.11 3109.45 1.15 TL 16 60
G-16 480 3614.79 3578.88 1.00 TL 2 0
G-17 240 1666.31 1666.31 0.00 43.5 1 0
G-18 300 2730.55 2719.11 0.42 TL 270 225
G-19 360 3492.31 3479.43 0.37 TL 154 225
G-20 420 4303.56 4278.97 0.57 TL 47 225

36



Table 2.6.: Results of the BPC for the heterogeneous instances.

Inst. |N | IUB LB ∆LB(%) t(sec) #Nds #Cuts

CE-H
CE-H-01 50 1191.70 1191.70 0.00 598.4 78 226
CE-H-02 75 1790.67 ∗1789.41 0.00 2773.3 604 226
CE-H-03 100 1913.49 1906.78 0.35 TL 91 233
CE-H-04 150 2465.51 2449.38 0.66 TL 140 225
CE-H-05 199 3119.10 3095.40 0.77 TL 129 225
CE-H-06 50 1204.48 1204.48 0.00 56.7 36 186
CE-H-07 75 2025.98 ∗2025.05 0.00 5426.8 762 225
CE-H-08 100 1978.79 1973.81 0.25 TL 163 225
CE-H-09 150 2424.43 2414.22 0.42 TL 198 225
CE-H-10 199 3240.00 3218.85 0.66 TL 104 225
CE-H-11 120 2301.78 2286.11 0.69 TL 3 10
CE-H-12 100 1908.05 1903.41 0.24 TL 118 225
CE-H-13 120 2832.88 2824.19 0.31 TL 3 10
CE-H-14 100 1907.74 1907.74 0.00 2088.6 78 225

G-H
G-H-01 240 14097.30 14002.80 0.67 TL 83 225
G-H-02 320 18412.40 18218.10 1.07 TL 15 101
G-H-03 400 25016.70 24729.70 1.16 TL 1 0
G-H-04 480 34329.00 33407.20 2.76 TL 1 0
G-H-05 200 15398.80 15370.10 0.19 TL 69 225
G-H-06 280 19743.60 19595.60 0.76 TL 8 70
G-H-07 360 23293.50 23158.40 0.58 TL 1 0
G-H-08 440 27358.70 26864.30 1.84 TL 1 0
G-H-09 255 1324.99 1308.17 1.29 TL 1 0
G-H-10 323 1556.39 1530.34 1.70 TL 1 0
G-H-11 399 2185.08 2152.47 1.52 TL 1 0
G-H-12 483 2488.08 — — TL 0 0
G-H-13 252 2218.92 2194.40 1.12 TL 47 225
G-H-14 320 2649.32 2621.75 1.05 TL 16 50
G-H-15 396 3108.53 3059.82 1.59 TL 9 40
G-H-16 480 3598.41 3547.73 1.43 TL 1 0
G-H-17 240 1685.97 1682.40 0.21 TL 320 225
G-H-18 300 2729.61 2718.39 0.41 TL 165 225
G-H-19 360 3453.41 3430.93 0.66 TL 67 225
G-H-20 420 4311.17 4270.90 0.94 TL 28 151

37



2.6. Summary and Conclusion

We present the first exact solution method for the VRPPC. Our BPC algorithm solves instances with up

to 75 customers to optimality and provides tight lower bounds for instances with up to 480 customers. In

addition, we propose an LNS as upper bounding procedure, which is among the best heuristic solution

methods for the VRPPC. Our LNS features a decomposition procedure which may also be interesting for

the solution of other VRP variants.

As future research, it seems worthwhile to extend the VRPPC to a planning problem spanning multiple

days. This is motivated by applications in e-commerce, where often some customers have a desired

delivery date, but others are indifferent about the concrete delivery date as long as it lies within a certain

time frame. The idea here is to simultaneously solve the VRPPC on multiple days, i.e., one type of

customers must be served on specified days, the other type can be scheduled freely, and those that cannot

be served economically may be subcontracted.

Bibliography

Baldacci, R., A. Mingozzi, and R. Roberti (2011). New route relaxation and pricing strategies for the

vehicle routing problem. In: Operations Research 59 (5), pp. 1269–1283.

Bolduc, M.-C., J. Renaud, and F. Boctor (2007). A heuristic for the routing and carrier selection problem.

In: European Journal of Operational Research 183 (2), pp. 926–932.

Bolduc, M.-C., J. Renaud, F. Boctor, and G. Laporte (2008). A perturbation metaheuristic for the vehicle

routing problem with private fleet and common carriers. In: Journal of the Operational Research

Society 59 (6), pp. 776–787.

Christofides, N., A. Mingozzi, and P. Toth (1979). The vehicle routing problem. In: Combinatorial Opti-

mization. Ed. by N. Christofides, A. Mingozzi, P. Toth, and C. Sandi. Chichester, UK: Wiley, pp. 315–

338.

Chu, C.-W. (2005). A heuristic algorithm for the truckload and less-than-truckload problem. In: Euro-

pean Journal of Operational Research 165 (3), pp. 657–667.

Clarke, G. and J. Wright (1964). Scheduling of vehicles from a central depot to a number of delivery

points. In: Operations Research 12 (4), pp. 568–581.

Contardo, C. and R. Martinelli (2014). A new exact algorithm for the multi-depot vehicle routing problem

under capacity and route length constraints. In: Discrete Optimization 12, pp. 129–146.

Cordeau, J.-F., G. Laporte, and A. Mercier (2001). A unified tabu search heuristic for vehicle routing

problems with time windows. In: Journal of the Operational Research Society 52 (8), pp. 928–936.

Côté, J.-F. and J.-Y. Potvin (2009). A tabu search heuristic for the vehicle routing problem with private

fleet and common carrier. In: European Journal of Operational Research 198 (2), pp. 464–469.

Feillet, D., M. Gendreau, and L.-M. Rousseau (2007). New refinements for the solution of vehicle routing

problems with branch and price. In: Information Systems and Operational Research 45 (4), pp. 239–

256.

Gaskell, T. J. (1967). Bases for vehicle fleet scheduling. In: Journal of the Operational Research Society

18 (3), pp. 281–295.

38



Gendreau, M., A. Hertz, and G. Laporte (1994). A tabu search heuristic for the vehicle routing problem.

In: Management Science 40 (10), pp. 1276–1290.

Golden, B., E. Wasil, J. Kelly, and I.-M. Chao (1998). Fleet management and logisitics. In: The impact of

metaheuristics on solving the vehicle routing problem: Algorithms, problem sets, and computational

results. Ed. by T. G. Grainic and G. Laporte. Springer, pp. 33–56.

Groër, C., B. Golden, and E. Wasil (2011). A parallel algorithm for the vehicle routing problem. In:

INFORMS Journal on Computing 23 (2), pp. 315–330.

Irnich, S. and G. Desaulniers (2005). Shortest path problems with resource constraints. In: Column Gen-

eration. Ed. by G. Desaulniers, J. Desrosiers, and M. Solomon. New York, NY: Springer. Chap. 2,

pp. 33–65.

Irnich, S., G. Desaulniers, J. Desrosiers, and A. Hadjar (2010). Path-reduced costs for eliminating arcs

in routing and scheduling. In: INFORMS Journal on Computing 22 (2), pp. 297–313.

Jepsen, M., B. Petersen, S. Spoorendonk, and D. Pisinger (2008). Subset-row inequalities applied to the

vehicle-routing problem with time windows. In: Operations Research 56 (2), pp. 497–511.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing. In: Science

220 (4598), pp. 671–680.

Krajewska, M. A. and H. Kopfer (2009). Transportation planning in freight forwarding companies: Tabu

search algorithm for the integrated operational transportation planning problem. In: European Journal

of Operational Research 197 (2), pp. 741–751.

Li, F., B. Golden, and E. Wasil (2005). Very large-scale vehicle routing: New test problems, algorithms,

and results. In: European Journal of Operational Research 32 (5), pp. 1165–1179.

Liu, R., Z. Jiang, X. Liu, and F. Chen (2010). Task selection and routing problems in collaborative

truckload transportation. In: Transportation Research Part E: Logistics and Transportation Review

46 (6), pp. 1071–1085.

Lübbecke, M. and J. Desrosiers (2005). Selected topics in column generation. In: Operations Research

53 (6), pp. 1007–1023.

Lysgaard, J. (2003). CVRPSEP: A package of separation routines for the Capacitated Vehicle Routing

Problem. Working Paper 03-04. Aarhus, Denmark: Department of Management Science and Logistics,

Aarhus School of Business.

Pecin, D., C. Contardo, G. Desaulniers, and E. Uchoa (2017). New enhancements for the exact solution of

the vehicle routing problem with time windows. In: INFORMS Journal on Computing 29 (3), pp. 489–

502.

Potvin, J.-Y. and M.-A. Naud (2011). Tabu search with ejection chains for the vehicle routing problem

with private fleet and common carrier. In: Journal of the Operational Research Society 62 (2), pp. 326–

336.

Righini, G. and M. Salani (2006). Symmetry helps: Bounded bi-directional dynamic programming for the

elementary shortest path problem with resource constraints. In: Discrete Optimization 3 (3), pp. 255–

273.

Roberti, R. and A. Mingozzi (2014). Dynamic ng-path relaxation for the delivery man problem. In:

Transportation Science 48 (3), pp. 413–424.

Rochat, Y. and É. D. Taillard (1995). Probabilistic diversification and intensification in local search for

vehicle routing. In: Journal of Heuristics 1 (1), pp. 147–167.

39



Ropke, S. and D. Pisinger (2006a). A unified heuristic for a large class of vehicle routing problems with

backhauls. In: European Journal of Operational Research 171 (3), pp. 750–775.

– (2006b). An adaptive large neighborhood search heuristic for the pickup and delivery problem with

time windows. In: Transportation Science 40 (4), pp. 455–472.

Savelsbergh, M. (1992). The vehicle routing problem with time windows: Minimizing route duration. In:

ORSA Journal on Computing 4 (2), pp. 146–154.

Schrimpf, G., J. Schneider, H. Stamm-Wilbrandt, and G. Dueck (2000). Record breaking optimization

results using the ruin and recreate principle. In: Journal of Computational Physics 159 (2), pp. 139–

171.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle routing prob-

lems. Tech. rep. Glasgow, Scotland: Department of Computer Science, University of Strathclyde.

– (1998). Using constraint programming and local search methods to solve vehicle routing problems.

In: Principles and Practice of Constraint Programming – CP98. Ed. by M. Maher and J.-F. Puget.

Vol. 1520. Lecture Notes in Computer Science. London, United Kingdom: Springer, pp. 417–431.

Stenger, A., M. Schneider, and D. Goeke (2013). The prize-collecting vehicle routing problem with

single and multiple depots and non-linear cost. In: EURO Journal on Transportation and Logistics

2 (1-2), pp. 57–87.

Stenger, A., D. Vigo, S. Enz, and M. Schwind (2013). An adaptive variable neighborhood search al-

gorithm for a vehicle routing problem arising in small package shipping. In: Transportation Science

47 (1), pp. 64–80.

Subramanian, A., E. Uchoa, and L. S. Ochi (2013). A hybrid algorithm for a class of vehicle routing

problems. In: Computers & Operations Research 40 (10), pp. 2519–2531.

Tang, L. and X. Wang (2006). Iterated local search algorithm based on very large-scale neighborhood for

prize-collecting vehicle routing problem. In: The International Journal of Advanced Manufacturing

Technology 29 (11), pp. 1246–1258.

Tilk, C., A.-K. Rothenbächer, T. Gschwind, and S. Irnich (2017). Asymmetry matters: Dynamic half-way

points in bidirectional labeling for solving shortest path problems with resource constraints faster. In:

European Journal of Operational Research 261 (2), pp. 530–539.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins (2013). A hybrid genetic algorithm with adaptive

diversity management for a large class of vehicle routing problems with time-windows. In: Computers

& Operations Research 40, pp. 475–489.

Vidal, T., N. Maculan, L. S. Ochi, and P. H. V. Penna (2016). Large neighborhoods with implicit customer

selection for vehicle routing problems with profits. In: Transportation Science 50 (2), pp. 720–734.

Waters, C. D. J. (1987). A solution procedure for the vehicle-scheduling problem based on iterative route

improvement. In: Journal of the Operational Research Society 38 (9), pp. 833–839.

Yellow, P. (1970). A computational modification to the savings method of vehicle scheduling. In: Oper-

ational Research Quarterly 21, pp. 281–283.

40



Chapter 3

Respecting Consistency Requirements in Delivery

3.1. Introduction

Vehicle-routing problems (VRPs) with consistency considerations have received substantial interest in

recent years because of the practical importance of providing consistent service in many industries,

like, e.g., small package shipping, health care, or vendor-managed inventory systems (for a survey, see

Kovacs, Hartl, et al., 2014). To boost customer satisfaction, customers should be served at roughly the

same time (arrival time consistency, ATC) by the same driver (driver consistency, DC), or at least a small

set of familiar drivers, each time they require service. Taking the driver’s perspective, serving the same

customers repeatedly makes the driver familiar with the geographic region and the characteristics of the

customer, and thus more efficient in fulfilling his tasks.

The most prominent variant of the class of VRPs with consistency considerations is the consistent VRP

(ConVRP), introduced by Groër, Golden, and Wasil (2009). The ConVRP is a multi-day VRP requiring

that, in addition to the traditional constraints on vehicle capacity and route duration, the same driver

serves the same customers at approximately the same time on each day that these customers require ser-

vice, given by a maximum allowed difference between the arrival times on the different days. Originally,

the problem is motivated from the delivery and collection operations at United Parcel Services, where

strong emphasis is put on customer and employee satisfaction.

In the academic literature, the ConVRP has received adequate attention from the heuristic side. Groër,

Golden, and Wasil (2009) develop a two-phase algorithm based on record-to-record travel, which first

constructs template routes and then uses them to generate the daily routes by removing non-occurring

customers and inserting new ones. The template routes are based on a simple precedence principle,

which states that if two customers a and b are served by the same driver on a specific day, then the driver

that serves them and the order in which they are served must be the same on all days on which they both

require service. Since the publication of this article, four algorithms have been proposed that are able to

solve ConVRP instances, three of which use the idea of a template that is adjusted to the individual days

(Sungur et al., 2010; Tarantilis, Stavropoulou, and Repoussis, 2012; Kovacs, Parragh, and Hartl, 2014)

and one approach that applies search over all routes of all days (Kovacs, Golden, et al., 2015).

Sungur et al. (2010) actually solve a different problem called courier delivery problem, which is modeled

as a multi-day VRP with soft time windows, using robust optimization and scenario-based stochastic pro-

gramming to represent uncertainty in service time and probabilistic customers. With slight adaptations,

41



their tabu search (TS) approach can provide solutions that adhere to the precedence principle of Groër,

Golden, and Wasil (2009) and thus solve the ConVRP. Tarantilis, Stavropoulou, and Repoussis (2012)

use a TS to improve the template routes and the resulting daily routes in a sequential manner. Kovacs,

Parragh, and Hartl (2014) present an adaptive large neighborhood search (ALNS) that is solely applied

to the template routes; the daily routes are improved using a truncated 2-opt operator. In addition, the

paper proposes a relaxed version of the problem called ConVRP with shiftable starting times, in which

it is possible to delay the departure at the depot to better meet the ATC requirements. Finally, Kovacs,

Golden, et al. (2015) introduce the generalized ConVRP, which (i) allows each customer to be served by

a set of drivers (instead of a single one), (ii) features shiftable starting times and AM/PM time windows,

and (iii) does not integrate the maximum time differences between arrivals on different days as hard

constraints but penalizes them in the objective function. The proposed large neighborhood search (LNS)

works on entire solutions instead of a template and currently represents the state-of-the-art heuristic also

for the standard ConVRP. Multi-objective variants of the ConVRP are investigated by Kovacs, Parragh,

and Hartl (2015), and Lian, Milburn, and Rardin (2016) and are addressed by means of multi-directional

LNS and local search (LS), respectively. Feillet, Garaix, et al. (2014) present an ALNS to tackle a VRP

with ATC in the context of transporting people with disabilities.

To the best of our knowledge, no exact approach to the ConVRP has been proposed yet. The only

two papers addressing consistency considerations in an exact fashion are owed to Subramanyam and

Gounaris (2016) and Subramanyam and Gounaris (2017) who study the consistent traveling-salesman

problem (TSP), i.e., only one route per day is planned and routes must adhere to the ATC requirements.

Subramanyam and Gounaris (2016) present three mixed-integer linear programming (MILP) formula-

tions and several classes of valid inequalities that are embedded in a branch-and-cut framework; they

are able to solve all instances with up to five planning periods and 25 customers to guaranteed optimal-

ity, but also some instances with up to 50 customers. Subramanyam and Gounaris (2017) decompose

the problem into a sequence of single-period TSP with time windows and solve the consistent TSP via

branch-and-bound; they are able to solve instances with up to five planning periods and 100 customers,

outperforming the results of Subramanyam and Gounaris (2016), but a few instances with 33 customers

remain open.

The major contribution of this work is twofold:

• We propose the first exact method for the ConVRP, which is able to solve small and medium-sized

instances with up to five planning periods and 30 customers. Most of the state-of-the-art exact

methods to solve VRPs are based on column generation (CG) applied to formulations where each

variable represents a feasible route, and the pricing problem is solved via dynamic programming

(DP). However, these methods cannot be directly extended to solve the ConVRP because the linear

relaxation of route-based formulations provides weak lower bounds due to the interdependency

between the daily routes, which is caused by the required ATC at customers. Therefore, we propose

an exact method based on CG applied to a formulation in which each variable represents the set

of routes assigned to a vehicle over the planning horizon. The exact method initially takes into

account DC only, and addresses ATC at a later stage.

• As upper bounding procedure, we develop a LNS featuring suitable penalty mechanisms to deal

with infeasible solutions and a repair procedure specifically designed to improve the ATC of solu-

tions. Used as stand-alone heuristic, the LNS is able to significantly improve the solution quality

42



on benchmark instances from the literature compared to state-of-the-art heuristics. This is espe-

cially true for instances that assume small service frequencies, i.e., the probability that a customer

requires service on a given day is relatively small, and that are therefore more difficult for template-

based methods.

A minor contribution of this work is to provide a new compact formulation for the ConVRP that improves

upon the compact formulation presented by Groër, Golden, and Wasil (2009). The new compact formu-

lation contains fewer variables and constraints and is able to provide optimal solutions of small-sized

instances in significantly shorter computing times.

The organization of this chapter is as follows. In Section 3.2, we formally define the ConVRP and

the notation used throughout the chapter. In Section 3.3, we introduce the new compact formulation.

Section 3.4 describes the proposed exact method, Section 3.5 the LNS. Section 3.6 is devoted to the

computational results. Finally, conclusions and future research directions are summarized in Section 3.7.

3.2. Problem Definition

In the ConVRP, a set of customers N require delivery of a single commodity over a set D of days. The

demand of customer i ∈ N on day d ∈ D is denoted by qid (we assume that qid = 0 if customer i does

not require service on day d); Di ⊆ D indicates the subset of days on which customer i must be served

(i.e.,Di = {d ∈ D | qid > 0}), andNd ⊆ N is the subset of customers that must be served on day d ∈ D
(i.e., Nd = {i ∈ N | qid > 0}).

A homogeneous fleet K of capacitated vehicles based at a single depot, denoted by 0, is available to

satisfy all customer requests. The capacity of the vehicles is given by Q. We indicate with V the set of

customers plus the depot (i.e., V = N ∪ {0}). The travel time tij between two locations i, j ∈ V is

assumed to be deterministic and symmetric (i.e., tij = tji). The service time at customer i ∈ N on day

d ∈ D is denoted by sid. The maximum route duration of a vehicle on each day is T time units.

To respect DC, each customer must be served by the same driver/vehicle on every day of the planning

horizon on which service is required. ATC is expressed by requiring that the service must take place

roughly at the same time, so the difference between the latest and the earliest arrival time at each customer

over the planning horizon cannot exceed the maximum allowed time difference L. As defined in Groër,

Golden, and Wasil (2009), we assume that vehicles are not allowed to wait at a customer nor at the depot

to meet ATC. The objective of the ConVRP is to find a set of routes for the vehicle fleet that minimizes

the total vehicle operating time z, defined as the total travel and service time over the planning horizon.

3.3. A New Compact Formulation for the Consistent Vehicle-Routing
Problem

To the best of our knowledge, the only formulation proposed in the literature for the ConVRP is owed

to Groër, Golden, and Wasil (2009), who introduced a compact formulation for the problem. In the

following, we present a new compact formulation that uses fewer variables than the one of Groër, Golden,

and Wasil (2009), namely at most |V2| · |K| · |D| + |V| · |K| + |V| · |D| instead of at most |V2| · |K| ·

43



|D| + |V| · |K| · |D| + |V| · |D|. The computational efficiency of the two formulations is compared in

Section 3.6.2, where we show that the new formulation is always better both in terms of the quality of

the lower bound provided by its linear relaxation and in terms of the computing time to find the optimal

solutions of small-sized instances.

We represent the ConVRP on a directed multi-graph G = (V,A). The arc set A is defined as A =

∪d∈DAd, where Ad = {(0, j) | j ∈ Nd} ∪ {(i, 0) | i ∈ Nd} ∪ {(i, j) | i, j ∈ Nd : i 6= j}. Let t̂ijd be

the modified travel time associated with arc (i, j) ∈ Ad, d ∈ D, defined as t̂ijd = tij if i = 0, and

t̂ijd = tij + sid otherwise. By defining the following three sets of variables

• xijkd ∈ {0, 1}: binary variable equal to 1 if arc (i, j) ∈ Ad is traversed by vehicle k ∈ K on day

d ∈ D (0 otherwise),

• yik ∈ {0, 1}: binary variable equal to 1 if customer i ∈ N is served by vehicle k ∈ K (0

otherwise),

• bid ∈ R+: continuous variable indicating the arrival time at customer i ∈ N on day d ∈ Di,

the ConVRP can be formulated as follows:

z = min
∑
d∈D

∑
k∈K

∑
(i,j)∈Ad

t̂ijdxijkd (3.1)

s.t.
∑

(0,j)∈Ad

x0jkd ≤ 1 k ∈ K d ∈ D (3.2)

∑
k∈K

yik = 1 i ∈ N (3.3)∑
i∈Nd

qidyik ≤ Q k ∈ K d ∈ D (3.4)

∑
(i,j)∈Ad

xijkd =
∑

(j,i)∈Ad

xjikd j ∈ N k ∈ K d ∈ Dj (3.5)

∑
(i,j)∈Ad

xijkd = yjk j ∈ N k ∈ K d ∈ Dj (3.6)

bid ≤ T − (T − t̂0id)
∑
k∈K

x0ikd d ∈ D i ∈ Nd (3.7)

bid + (t̂ijd + T )
∑
k∈K

xijkd + (T − t̂jid)
∑
k∈K

xjikd ≤ bjd + T d ∈ D i, j ∈ Nd : i 6= j (3.8)

bid − bid′ ≤ L i ∈ N d, d′ ∈ Di : d 6= d′ (3.9)

xijkd ∈ {0, 1} k ∈ K d ∈ D (i, j) ∈ Ad (3.10)

yik ∈ {0, 1} i ∈ N k ∈ K (3.11)

t̂0id ≤ bid ≤ T − t̂i0d i ∈ N d ∈ Di (3.12)

The objective function aims at minimizing the total operating time. Constraints (3.2) guarantee that each

vehicle performs at most one route on each day. Constraints (3.3) assign each customer to exactly one

vehicle. Constraints (3.4) guarantee that the capacity of the vehicles is not exceeded. Constraints (3.5)

are flow conservation constraints. Constraints (3.6) link x and y variables to ensure DC. Constraints (3.7)

ensure that the arrival time at a customer i is not greater than the travel time from the depot to i if arc

(0, i) is traversed. Constraints (3.8) link x and b variables to set the arrival times based on the traversed

44



arcs and prevent subtours. Constraints (3.9) model ATC requirements. Constraints (3.10)–(3.12) define

the range of the decision variables and ensure that maximum route duration is respected.

Adding subtour elimination constraints (SECs) to formulation (3.1)–(3.12) allows to significantly de-

crease the computing time to find an optimal solution of small ConVRP instances. Therefore, in the

computational experiments in Section 3.6.2, the following set of generalized SECs (GSECs) are added

to our formulation:∑
(i,j)∈Ad : i∈V\S, j∈S

Qxijkd ≥
∑
i∈S

qidyid k ∈ K d ∈ D S ⊂ Nd : |S| ≥ 2. (3.13)

Constraints (3.13) are clearly redundant when integrality constraints (3.10) and (3.11) are present, but

they strengthen the linear relaxation of formulation (3.1)–(3.12).

3.4. An Exact Method for the ConVRP

In this section, we introduce a formulation of the ConVRP with exponentially many variables. Two lower

bounds based on this formulation are presented in Section 3.4.1. An outline of the proposed exact method

is provided in Section 3.4.2, and the different steps of the algorithm are detailed in Sections 3.4.3–3.4.6.

Let Ω be the set of all possible subsets of customers (hereafter called clusters) that can be served by

a single vehicle over the planning horizon without violating capacity, route duration, DC, and ATC

constraints. Moreover, let gC be the minimum cost to serve cluster C ∈ Ω with a single vehicle, i.e., gC
is the sum of the costs of the least-cost routes satisfying the listed constraints performed by the vehicle

on each day d ∈ D to serve the customers C ∩ Nd. By introducing a binary decision variable ξC that is

equal to 1 if cluster C ∈ Ω is assigned to a vehicle (0 otherwise), the ConVRP can be formulated as the

following set-partitioning (SP) problem:

z(SP) = min
∑
C∈Ω

gCξC (3.14)∑
C∈Ω : i∈C

ξC = 1 i ∈ N (3.15)∑
C∈Ω

ξC ≤ |K| (3.16)

ξC ∈ {0, 1} C ∈ Ω (3.17)

The objective function (3.14) asks for minimizing the cost of the selected clusters. Constraints (3.15)

ensure that each customer belongs to exactly one selected cluster. Constraint (3.16) ensures that at most

|K| clusters are selected. Constraints (3.17) define variables ξ as binary. Each feasible solution of

problem (3.14)–(3.17) is a subset of clusters of Ω. The ConVRP solution corresponding to that subset of

clusters consists of the least-cost routes associated with costs gC .

Note that SP contains exponentially many variables, so a CG approach must be applied to find an optimal

ConVRP solution when solving problem SP. For many variants of the VRP, the state-of-the-art exact

45



methods are based on CG (see, e.g., Jepsen et al., 2008; Baldacci, Mingozzi, and Roberti, 2011; Dabia

et al., 2013; Contardo and Martinelli, 2014; Pecin, Contardo, et al., 2017; Pecin, Pessoa, et al., 2017). In

all of these methods, the pricing problem is solved via DP. Unfortunately, DP cannot directly be applied

to price out clusters in a CG approach based on formulation SP because of the number and the range of

the state variables that are needed, and the weakness of the dominance rules that can be applied.

However, it is possible to derive some tight lower bounds from formulation SP (see Section 3.4.1), which

are used by our exact method to find an optimal ConVRP solution. In the remainder of the chapter, we

refer to our exact method as cluster column generation (CCG).

3.4.1. Lower Bounds based on Formulation SP

Recall that, for a given cluster C ∈ Ω, the minimum cost gC to serve all customers in C with a single

vehicle throughout the planning horizon is given by the sum of the costs of the routes that on each day d ∈
D serve all customers Nd ∩ C without violating capacity, route duration, and ATC constraints. Because

of the ATC requirement, the routes performed by a vehicle on the individual days do not necessarily

correspond to the least-cost routes (i.e., the TSPs) to serve all customers in the cluster.

Let Ω̂ ⊇ Ω be the set of all possible clusters that can be served by a single vehicle over the planning hori-

zon without violating capacity and route duration constraints. Let ĝC be the cost to serve all customers

of the cluster C ∈ Ω̂ with a single vehicle so that capacity and route duration constraints are respected,

but ATC constraints can be violated. It is easy to observe that cost ĝC of cluster C ∈ Ω̂ is given by the

sum of the cost of the TSPs to serve customers C ∩Nd on each day d ∈ D.

A valid lower bound to the ConVRP is therefore given by the optimal value, z(LP0), of the following

linear problem, hereafter called LP0:

z(LP0) = min
∑
C∈Ω̂

ĝCξC (3.18)

s.t.
∑

C∈Ω̂ : i∈C

ξC = 1 i ∈ N (3.19)

∑
C∈Ω̂

ξC ≤ |K| (3.20)

ξC ≥ 0 C ∈ Ω̂ (3.21)

The lower bound z(LP0) can be improved by adding the following valid inequalities:

• Minimum number of vehicles:∑
C∈Ω̂

ξC ≥ Kmin, (3.22)

where Kmin is a lower bound on the minimum number of vehicles used in any optimal solution of

the ConVRP.

46



• Subset-row (SR) inequalities that state that, for each triplet of customers {i, j, h} ⊆ N , no more

than one of the clusters serving at least two of the three customers {i, j, h} can be selected:∑
C∈Ω̂ : |C∩{i,j,h}|≥2

ξC ≤ 1 {i, j, h} ⊆ N : i 6= j 6= h. (3.23)

Inequalities (3.23) are a special case of the well-known SR inequalities introduced by Jepsen et al.

(2008) and can be separated by complete enumeration.

In the following, we denote by z(LP1) the optimal value of problem LP0 plus inequalities (3.22), and by

z(LP2) the optimal value of problem LP0 plus inequalities (3.22) and (3.23). Moreover, let αi ∈ R be the

dual variable associated with constraint (3.19) of customer i ∈ N , α0 ∈ R− the dual variable associated

with constraint (3.20), β ∈ R+ the dual variable associated with constraint (3.22), and γijh ∈ R− the

dual variable associated with constraint (3.23) of the triplet of customers {i, j, h} ⊆ N .

3.4.2. Overview of CCG

CCG consists of four main steps that can be outlined as follows:

Step 1: Initialization. An upper bound UB to the ConVRP and a lower bound Kmin to the number

of vehicles in any optimal ConVRP solution are computed. The upper bound UB is computed by

running 10 times the LNS described in Section 3.5.3, each time with a limit of 25000 iterations

(i.e., ηtotal = 25000). The lower bound Kmin on the minimum number of vehicles is computed by

using a MILP (see Section 3.4.3).

Step 2: Generate the set of clusters Ω̂. The goal of this step is to generate the whole set of clusters

Ω̂ (i.e., clusters that can be served by a single vehicle over the planning horizon without violating

capacity and route duration constraints). As described in Section 3.4.4, this can be done via DP. If

it is not possible to generate the whole set Ω̂, then CCG stops without providing a proven optimal

solution to the ConVRP.

Step 3: Remove non-optimal clusters from Ω̂. This step aims at removing clusters that cannot

belong to an optimal ConVRP solution from the set of clusters Ω̂ by iteratively computing optimal

dual solutions of problems LP1 and LP2.

First, we use CG as described in Section 3.4.5 to compute an optimal LP1 dual solution (α∗,β∗)

of cost z(LP1). Any cluster having reduced cost, w.r.t. (α∗,β∗), greater than the corresponding

gap (i.e., UB − z(LP1)) is then removed from the set Ω̂ because it cannot belong to an optimal

ConVRP solution. Second, using CG as described in Section 3.4.5, an optimal LP2 dual solution

(α∗,β∗,γ∗) of cost z(LP2) is computed. Any cluster having reduced cost, w.r.t. (α∗,β∗,γ∗),

greater than the corresponding gap (i.e., UB− z(LP2)) is then removed from the set Ω̂.

Step 3 is iterated as long as the set of clusters Ω̂ is reduced by using the optimal dual solutions

(α∗,β∗) and (α∗,β∗,γ∗).

Step 4: Find an optimal ConVRP solution. Let Ω ⊆ Ω be a subset of clusters C for which cost

gC is known, such that Ω ∩ Ω̂ = ∅. The optimal value of the following problem SP provides a

valid lower bound to the ConVRP:

47



z(SP) = min
∑
C∈Ω

gCξC +
∑
C∈Ω̂

ĝCξC (3.24)

∑
C∈Ω∪Ω̂ : i∈C

ξC = 1 i ∈ N (3.25)

∑
C∈Ω∪Ω̂

ξC ≤ |K| (3.26)

ξC ∈ {0, 1} C ∈ Ω ∪ Ω̂ (3.27)

The objective function (3.24) aims at minimizing the total cost of the clusters selected from the two

sets Ω and Ω̂. Constraints (3.25) ensure that each customer belongs to exactly one of the selected

clusters. Constraint (3.26) guarantees that at most |K| clusters are selected. Constraints (3.27) are

integrality constraints.

Let Ω∗ ⊆ Ω ∪ Ω̂ be the set of clusters in an optimal solution of SP. We can observe that whenever

Ω∗ ⊆ Ω, then the clusters of the set Ω∗ represent an optimal ConVRP solution because they take

into account ATC and by definition DC.

To find an optimal ConVRP solution, the last step of CCG consists of iteratively solving SP with

a general purpose MILP solver until an optimal ConVRP is found while changing the sets of

clusters Ω and Ω̂. At each iteration, SP is solved, the cost gC∗ of one of the clusters C∗ ∈ Ω∗ ∩ Ω̂

is computed (see Section 3.4.6), and cluster C∗ is removed from Ω̂. If z(SP) + gC∗ − ĝC∗ ≤ UB,

then cluster C∗ is also added to Ω because it can be part of an optimal ConVRP solution of cost

between z(SP) and UB. At the first iteration, the set Ω̂ is inherited from Step 3, and the set Ω is

empty. Note that it may not be possible to serve a cluster C∗ with a single vehicle while adhering

to ATC; if so, cluster C∗ is obviously not added to Ω.

Because the complexity of computing cost gC∗ for a given cluster C∗ also depends on the number

of customers in the cluster C∗, at each iteration the selected cluster C∗ ∈ Ω∗ ∩ Ω̂ is the one with

the smallest number of customers.

3.4.3. Computing Kmin in Step 1

The lower bound Kmin on the minimum number of vehicles in any ConVRP solution is computed by

solving the following MILP. Let ϕik ∈ {0, 1} be a binary variable equal to 1 if customer i ∈ N is

assigned to vehicle k ∈ K (0 otherwise), and let ϑk ∈ {0, 1} be a binary variable equal to 1 if vehicle

k ∈ K is used (0 otherwise). Then, Kmin can be computed as:

Kmin = min
∑
k∈K

ϑk (3.28)

s.t.
∑
k∈K

ϕik = 1 i ∈ N (3.29)∑
i∈Nd

qidϕik ≤ Qϑk d ∈ D k ∈ K (3.30)

48



ϕik ∈ {0, 1} i ∈ N k ∈ K (3.31)

ϑk ∈ {0, 1} k ∈ K (3.32)

The objective function (3.28) aims at minimizing the number of vehicles used. Constraints (3.29) ensure

that each customer i ∈ N is assigned to exactly one vehicle. Constraints (3.30) guarantee that the

capacity of each vehicle k ∈ K is respected on each day d ∈ D. The range of the decision variables is

defined by constraints (3.31) and (3.32).

For small and medium-sized ConVRP instances, problem (3.28)–(3.32) can be solved to optimality with

a general purpose MILP solver in less than a second of computing time.

3.4.4. Generating the Set Ω̂ in Step 2

To generate the set Ω̂, we use a simple DP recursion that enumerates all feasible routes Φd for each day

d ∈ D of the planning horizon, and then clusters are generated by combining the routes of the sets Φd. A

route is feasible if the vehicle capacity Q is not exceeded and its duration does not exceed the maximum

route duration T .

Let fd(S, i) be the cost of the min-cost path starting from the depot, visiting all customers of the set

S ⊆ Nd, and ending at customer i ∈ S on day d ∈ D. Functions fd(S, i) for each day d ∈ D can

be computed via DP as follows. We initialize fd({i}, i) = t̂0id for each i ∈ Nd. The recursion for

computing functions fd(S, i) for each subset of customers S ⊆ Nd and each customer i ∈ S is:

fd(S, i) = min
j∈S\{i}

{fd(S \ {i}, j) + t̂jid}.

Because routes have to respect the vehicle capacity Q and the maximum route duration T , there is no

need to propagate functions fd(S, i) such that either fd(S, i) + t̂i0d > T or
∑

j∈S qjd > Q. For the sake

of simplicity, we assume, in the remainder of the section, that fd(S, i) = ∞ if function fd(S, i) is not

computed because of constraint violations.

The cost of the least-cost route to serve the subset of customers S ⊆ Nd on day d ∈ D is given by

mini∈S{fd(S, i) + t̂i0d}. From functions fd(S, i), it is possible to generate the set Ω̂. In particular,

cluster C ⊆ N belongs to the set Ω̂ if mini∈C∩Nd
{
fd(C ∩ Nd, i) + t̂i0d

}
≤ T for each day d ∈ D;

otherwise, cluster C does not belong to the set Ω̂.

The cost ĝC of cluster C ∈ Ω̂ is given by:

ĝC =
∑
d∈D

(
min

i∈C∩Nd

{
fd(C ∩Nd, i) + t̂i0d

})
.

We can observe that ĝC is the cost to serve all customers of the set C with a single vehicle over the

planning horizon without necessarily satisfying the ATC constraints.

49



3.4.5. Computing Lower Bounds z(LP1) and z(LP2) in Step 3

In principle, because all variables are generated a-priori, we could simply solve LP1 as it is. However, it

is computationally convenient to apply a simple CG algorithm that solves LP1 by starting from a small

set of clusters (we use a dummy cluster that contains all customers and has cost equal to UB), and then

iteratively adding the 100 clusters with the most negative reduced cost at a time until all clusters of the

set Ω̂ have non-negative reduced cost w.r.t. the dual solution (α,β) of problem LP1. The reduced cost

ĝC(α,β) of cluster C ∈ Ω̂ is computed as ĝC(α,β) = ĝC − α0 −
∑

i∈C αi − β.

Once an optimal dual solution (α∗,β∗) of cost z(LP1) is found, all clusters C ∈ Ω̂ having reduced cost

ĝC(α∗,β∗) greater than the gap left (i.e., UB − z(LP1)) can be removed from the set Ω̂ because they

cannot belong to an optimal ConVRP solution.

A similar CG procedure is applied to compute z(LP2). At the beginning, the master problem contains no

SR inequalities (3.23) and just a dummy cluster; then, at each iteration, the 100 clusters having the most

negative reduced cost w.r.t. the dual solution (α,β,γ) of LP2 are added along with the most violated

SR inequality (3.23).

Once an optimal dual solution (α∗,β∗,γ∗) of cost z(LP2) is found, all clusters C ∈ Ω̂ having reduced

cost ĝC(α∗,β∗,γ∗) greater than the gap left (i.e., UB− z(LP2)) can be removed from the set Ω̂ because

they cannot belong to an optimal ConVRP solution. The reduced cost ĝC(α∗,β∗,γ∗) of cluster C ∈ Ω̂

is computed as:

ĝC(α∗,β∗,γ∗) = ĝC − α∗0 −
∑
i∈C

α∗i − β∗ −
∑

{i,j,h}∈N :
|{i,j,h}∩C|≥2

γ∗ijh.

3.4.6. Computing Cost gC in Step 4

The problem of computing cost gC for a given cluster C ∈ Ω∗ ∩ Ω̂ can be represented on a directed

multi-graph G(C) = (V(C),A(C)). The vertex set is defined as V(C) = C ∪{0}, and the arc setA(C)

is defined as A(C) = ∪d∈DAd(C), where Ad(C) = {(0, j) | j ∈ Nd ∩ C} ∪ {(i, 0) | i ∈ Nd ∩ C} ∪
{(i, j) | i, j ∈ Nd ∩ C : i 6= j}. Let us define the following two sets of variables:

• xijd ∈ {0, 1}: binary variable equal to 1 if arc (i, j) ∈ Ad(C) is used on day d ∈ D (0 otherwise);

• bid ∈ R+: continuous variable indicating the arrival time at vertex i ∈ C on day d ∈ Di.

Then, the cost gC of cluster C corresponds to the optimal value of the following MILP:

gC = min
∑
d∈D

∑
(i,j)∈Ad(C)

t̂ijdxijd (3.33)

s.t.
∑

(0,j)∈Ad(C)

x0jd ≤ 1 d ∈ D (3.34)

∑
(i,j)∈Ad(C)

xijd = 1 j ∈ C d ∈ Dj (3.35)

50



∑
(j,i)∈Ad(C)

xjid = 1 j ∈ C d ∈ Dj (3.36)

bid ≤ T − (T − t̂0id)x0id d ∈ D i ∈ Nd ∩ C (3.37)

bid + (t̂ijd + T )xijd + (T − t̂jid)xjid ≤ bjd + T d ∈ D i, j ∈ Nd ∩ C : i 6= j (3.38)

bid − bid′ ≤ L i ∈ C d, d′ ∈ Di : d 6= d′ (3.39)

xijd ∈ {0, 1} d ∈ D (i, j) ∈ Ad(C) (3.40)

t̂0id ≤ bid ≤ T − t̂i0d i ∈ C d ∈ Di (3.41)

The objective function (3.33) aims at minimizing the total operating time to visit all customers of the set

C. Constraints (3.34) ensure that the vehicle performs at most one route on each day of the planning

horizon. Constraints (3.35) and (3.36) are in-degree and out-degree constraints, respectively. Con-

straints (3.37) along with constraints (3.41) properly set the arrival time at the first customer of each

route of each day. Constraints (3.38) link variables x and z to update the arrival times at the customers

depending on the traversed arcs and prevent subtours. Constraints (3.39) guarantee the ATC of the routes.

Constraints (3.40) and (3.41) define the range of the decision variables.

We solve problem (3.33)–(3.41) by using a general purpose MILP solver. We also add, in a cutting-plane

fashion, the well-known SECs defined as:

∑
(i,j)∈Ad(C) :
i∈C,j∈V(C)\C

xijd ≥ 1 d ∈ D S ⊆ Nd ∩ C : |S| ≥ 2. (3.42)

Because the number of customers in the clusters is usually limited to 10–15 customers, it is possible to

enumerate all SECs (3.42) a-priori and let the MILP solver add them in a cutting-plane fashion.

As mentioned in Section 3.4.2, problem (3.33)–(3.41) does not necessarily have feasible solutions.

3.5. Large Neighborhood Search for the ConVRP

We propose a LNS for the ConVRP that is used to obtain upper bounds within our exact method, but that

can also be used as stand-alone metaheuristic approach. The LNS is enhanced by several components:

(i) suitable penalty mechanisms to deal with infeasible solutions, (ii) a repair procedure that is applied

to improve the ATC, and (iii) regularly solving a set-partitioning problem using the clusters previously

found by the search to improve the solution quality.

In the following description, we represent a solution S as a set of routes {rkd | k ∈ K, d ∈ D}. A route

rkd = 〈v0 = 0, v1, . . . , vnkd , vnkd+1 = 0〉 is given as a sequence of vertices that starts and ends at the

depot vertex 0 and visits a set N (rkd) of nkd customer vertices in between.

In the description of the algorithm, we directly report the utilized values of the algorithm parameters.

The latter were determined in experimental fashion during the development of our algorithm, and no

systematic fine-tuning was carried out. We found that our algorithm is quite stable with regards to

51



changes in the parameter values as long as the new values stay within the magnitude of the values of the

current setting.

An overview of the algorithm, which we call LNS with set partitioning (LNS-SP), is given in Figure 3.1.

First, LNS-SP generates a feasible initial solution Sc with a savings algorithm that respects the consis-

tency requirements of the ConVRP (see Section 3.5.1). Then, the initial solution is improved in 25000 it-

erations of LNS, including our specialized component for improving the ATC (Section 3.5.3). Here,

infeasible solutions are allowed and are evaluated with a generalized objective function (Section 3.5.2).

The set-partitioning problem for feasible clusters is described in Section 3.5.4. Finally, every 250 itera-

tions without improvement of Sbest , we reset Sc to Sbest .

1: η← 1 {Set iteration counter.}
2: Sc ← generateInitialSolution
3: while η ≤ 25000 do

{Perform large neighborhood search.}
4: δ ← drawNumberOfCustomersToRemove
5: St ← insertCustomers(removeCustomers(Sc, δ))
6: St ← applyATCImprovement (St)
7: updatePenalties(St)
8: if acceptSA(Sc,St) then
9: Sc ← St

10: end if
11: if St improves Sbest then
12: Sbest ← St
13: end if

{Perform set partitioning.}
14: ΩLNS ← addClusters(St)
15: if 5000 iterations have passed since last set partitioning then
16: Sbest ← solveSetPartitioning(Sbest ,ΩLNS )
17: end if
18: if solution has not improved for 250 iterations then
19: Sc ← Sbest
20: end if
21: η ← η + 1

22: end while
23: return Sbest

Figure 3.1.: Overview of the LNS-SP algorithm.

3.5.1. Modified Savings Algorithm

To generate an initial solution, we adapt the savings algorithm of Clarke and Wright (1964) to handle the

multi-day horizon and the DC and ATC constraints of the ConVRP. Before the merge step of the savings

algorithm is applied, the routes to be merged are assigned to two different vehicles. Consequently, for

the ConVRP, merging two routes on a single day entails that the routes of the two respective vehicles are

also merged on all other days.

In detail, our procedure works as follows: At the beginning, each request is served by a dedicated route,

and if a customer requests service on multiple days of the planning horizon, the corresponding routes are

all assigned to the same vehicle. In the next step, we evaluate for each pair of vehicles, how the solution

52



changes if the routes of the two vehicles are merged on all days of the planning horizon. To this end,

we sum up the individual savings of merging both routes on each day on which both vehicles provide

service. We limit the evaluation to the two cases where either (i) all routes of the first vehicle are served

before all routes of the second vehicle or (ii) vice versa, but we do not allow combinations hereof. This

makes sense from a practical viewpoint because it entails that requests of a customer are served at about

the same time on each day. The cases that we do not evaluate are likely to result in routes on which a

customer is served early on one day and late on another day. Finally, we perform the merge that results

in the largest total saving, but only if it leads to a feasible solution, i.e., no resulting route exceeds the

vehicle capacity or maximum route duration, and the vehicle does not violate the ATC constraint. After

each step, we remove one of the two vehicles whose routes were merged.

Figure 3.2 shows an example of four iterations of the modified savings algorithm for a two-day problem.

In the beginning, each request is served by a dedicated route. Customer requests occurring on both days

are depicted in black, and single-day requests are depicted in gray. In the first step, the routes serving

requests of customers A and B are merged on both days, and the vehicle serving customer B is removed.

Arcs to be added are depicted as dashed lines, arcs to be removed as dotted lines. In the second step,

the routes serving requests of customers G and D are merged on the second day, and we keep the route

serving D on the first day (because G does not request service on the first day). The third merge operation

affects both days, whereas the fourth merge operation is limited to the first day. The final solution uses

three vehicles to serve all customer requests.

Day 1 

Day 2 

 Step 1 

Day 1 

Day 2 

A B 

C 
D 

E 

F 

G 

Day 1 

Day 2 

Day 1 

Day 2 

Day 1 

Day 2 

Day 1 

Day 2 

 Step 2  Step 3  Step 4 Final solution Start solution 

A B 

C 
D 

Figure 3.2.: Four steps of our modified savings algorithm on a two-day example problem.

3.5.2. Generalized Objective Function and Penalty Calculation

We allow infeasible solutions during the LNS and evaluate a solution S using the following generalized

objective function that penalizes constraint violations using an adaptive mechanism:

zgen(S) = z(S) + σcap ·Gcap(S) + σdur ·Gdur (S) + σatc ·Gatc(S),

53



where z(S) denotes the objective value as defined in Equation (3.1), Gcap(S) the capacity violation,

Gdur (S) the route duration violation, and Gatc(S) the ATC violation of solution S, and σcap , σdur , and

σatc are the respective penalty factors.

The constraint violations are determined as follows:

• Vehicle capacity violation: Gcap(S) =
∑

k∈K
∑

d∈Dmax(0,
∑

i∈N (rkd) qid −Q),

• Route duration violation: Gdur (S) =
∑

k∈K
∑

d∈Dmax(0,maxi∈N (rkd)(bid + t̂i0d)− T ),

• ATC violation: Gatc(S) =
∑

i∈N
∑

d∈Di
∑

d′∈Di max(0, |bid − bid′ | − L).

All penalty factors are initialized to a value of 10 and are restricted to the interval [0.01, 1000]. In

every iteration of LNS-SP, the penalty factors are multiplied or divided by a factor of 1.05 based on the

following rules:

• Factor σcap is increased if Gcap(S) > 0 and decreased otherwise.

• We link the behavior of the penalty factors σdur and σatc because Gatc(S) and Gdur (S) are

strongly interdependent in our algorithm. This is due to our procedure for improving the ATC

(Section 3.5.3.2), which often reduces violations of the ATC at the expense of generating longer

routes that are likely to violate the route duration constraint. Therefore, σdur is increased if

Gdur (S) > 0 ∧ Gatc(S) = 0, decreased if Gdur (S) = 0 ∧ Gatc(S) = 0, and kept at its cur-

rent value otherwise. Analogously, σatc is increased if Gatc(S) > 0 ∧Gdur (S) = 0, decreased if

Gatc(S) = 0 ∧Gdur (S) = 0, and kept fixed otherwise.

3.5.3. Large Neighborhood Search Component

LNS, originally introduced by Shaw (1998), is a metaheuristic principle that aims at iteratively improv-

ing an initial solution by first removing a larger part of the solution (using a set of so-called removal

operators) and then reinserting the removed solution components (using so-called insertion operators).

In recent years, LNS has successfully been applied to many variants of the VRP (see, e.g., Ropke and

Pisinger, 2006b; Masson, Lehuédé, and Péton, 2013; Adulyasak, Cordeau, and Jans, 2014).

In each iteration of LNS-SP, the number of customers to be removed is randomly drawn from the interval

δ = rand([0.05, 0.2]) · min(150, |N |). Removal, insertion and subsequent ATC improvement (see

Sections 3.5.3.1 and 3.5.3.2) create a tentative solution St, which may be infeasible because LNS-SP

always generates a complete solution and does not leave customer requests in a so-called request bank

as often done in LNS. The decision whether to accept St or to keep the current solution Sc is based on a

simulated annealing (SA) criterion (Section 3.5.3.3).

3.5.3.1. Removal and Insertion Operators

In each iteration, LNS-SP randomly selects one of the removal and one of the insertion operators with

uniform probability. Removal/insertion of a customer implies the removal/insertion of all service re-

quests of this customer on all days of the planning horizon. The following removal operators are used:

Random removal removes δ arbitrarily selected customers.

54



Worst removal was introduced by Ropke and Pisinger (2006b) to remove vertices that are served at

undesirable positions in the routes. We propose a modified version of the operator that is (i) not

randomized, and (ii) adapted to the ConVRP. Let S−i denote a solution where customer i is re-

moved on all days. We define the following measure κi to determine which customers should be

removed from the solution:

κi = (z(S−i)−z(S))/|Di|+σcap · (Gcap(S−i)−Gcap(S))+σdur · ((Gdur (S−i)−Gdur (S)).

Note that we divide the reduction in total operating time by the number of days on which cus-

tomer i requires service, i.e., we base the decision on the average operating time reduction per

request. Otherwise, the selection would be biased towards customers with a higher number of

service requests. Finally, all customers are sorted in ascending order of κi, and we select the first

δ customers for removal.

Proximity removal removes close customers. Let tmax = maxi∈N ,j∈N tij be the maximum travel

time between any pair of customers. The first customer i to remove is randomly selected. It

serves as center point for the subsequent removals of customers j that are randomly selected if

tij ≤ 0.2 · tmax until δ customers are removed. If the number of customers within 0.2 · tmax is less

than the number of customers to be removed, we randomly select a customer that is served by the

same vehicle as the last removed customer to be the next center point.

Vehicle removal selects customers for removal that are served by the same vehicle. We start with a

randomly selected vehicle, and remove all customers served by the vehicle. If at least δ customers

have been removed, we terminate the procedure. Otherwise, each remaining vehicle k is selected

as the next vehicle for removal with a probability pk = χkk′/
∑

k′′∈K χk′k′′ that is proportional to

the inverse distance χkk′ between vehicle k and the previously selected vehicle k′. The distance

between vehicles is the Euclidean distance between their centers of gravity, which is determined

as the mean of the weighted coordinates of the customers served by the vehicle. The coordinates

of a customer i are weighted with the factor |Di|/|D|.

We use the following insertion operators:

Greedy insertion iteratively performs the best possible insertion in myopic manner. Computational

experience shows that the ATC violations caused by the insertion of customers into partial solu-

tions are not representative for the ATC violations of the final completed solution. In addition,

calculating these violations is computationally expensive. Therefore, we do not consider the direct

effect of an insertion on the ATC violation by means of Gatc , but instead use a learning-based

penalty component Patc that aims at indirectly improving the ATC. Not directly considering ATC

violations allows to determine the best insertion position separately on each individual day because

violations of route duration and capacity are not linked over the days.

Let r+(i,p)
kd be the current route of vehicle k on day d with customer i inserted after position p.

Then, for each still unassigned customer i and each vehicle k, we compute the cost increase

55



∆ẑik =
∑
d∈Di

min
p=0,...,nkd

(
(z(r

+(i,p)
kd )− z(rkd)) + σcap · (Gcap(r

+(i,p)
kd )−Gcap(rkd))

+ σdur · ((Gdur (r
+(i,p)
kd )−Gdur (rkd)) + Patc(r

+(i,p)
kd )

)
,

and perform the cheapest insertion according to ∆ẑik. The procedure is iterated until all customers

are inserted.

The aim of the penalty Patc is to identify solution components that are critical with regards to the

ATC constraints. For every arc (h, j) ∈ Ad and for every day d ∈ D, we store a penalty value µhjd
that is initially set to zero. After each iteration, the penalty values of a subset of the arcs contained

in the newly generated solution S are updated based on the ATC of the vehicle k traveling the arc:

• If vehicle k does not violate the ATC, we set µhjd := max(0, µhjd −∆µhjd) with ∆µhjd =

0.25 · thj for all arcs traveled by vehicle k.

• If vehicle k violates the ATC, we first draw a randomly selected subset D of the days of the

planning horizon (each day is drawn with a probability of 0.5) on which the arcs contained

in the solution shall be penalized; penalizing on all of the days on which the vehicle is used

does not help our algorithm to explore new solution components. Then, we increase on every

day d ∈ D the penalty values µhjd of all arcs (h, j) ∈ Ad that are traveled by the vehicle by

∆µhjd.

Thus, we determine the penalty Patc(r
+(i,p)
kd ) for inserting customer i after position p into route

rkd, i.e., between vertices v = rkd(p) and w = rkd(p + 1), as Patc(r
+(i,p)
kd ) = µvid + µiwd.

A large penalty µhjd might prevent the corresponding arc from being included in a solution and

consequently, with the rules described above, this penalty value would never be reduced again. To

counteract this undesired behavior, we discount in every iteration all penalty values by a constant

factor as µhjd := µhjd/1.5.

Regret insertion tries to anticipate and avoid the negative future consequences of greedy insertion

(Ropke and Pisinger, 2006b). We calculate the 2-regret value of each customer i as the difference

between the insertion cost ∆ẑik of assigning customer i to the best vehicle k and the cost ∆ẑik′

of assigning to the second-best vehicle k′. The customer with the largest absolute 2-regret value is

selected for insertion and the procedure is iterated until all customers are inserted.

We implement two additional variants of Greedy and Regret insertion that add a continuous diversifica-

tion penalty Pdiv (i, k) for assigning customer i to vehicle k:

Pdiv (i, k) = rand([0.5, 1.0]) ·
√
z(S) · ζi,k∑
i∈N |Di|

,

where ζi,k is the frequency with which customer i was assigned to vehicle k, and the randomization is

introduced to prevent cycling of the algorithm. The goal is to encourage the experimental exploration of

different solutions (see, e.g., Cordeau, Laporte, and Mercier, 2001).

56



3.5.3.2. ATC Improvement

We find that the generated solutions that violate ATC constraints often contain routes that serve the same

set of customers in almost reversed order on different days, i.e, they strongly disregard the precedence

principle of Groër, Golden, and Wasil (2009) described in Section 3.1. For each vehicle violating ATC

constraints, we try to improve the ATC with the following two-stage procedure:

1. Inversion of a subset of the routes to generate similar orders of the customer visits on all days,

2. Customer relocation to reduce ATC violations.

To determine which routes should be selected for inversion in Step 1, we require (i) a measure for the

difference between routes with regard to the order of customer visits, and (ii) a mechanism to decide

which subset of day routes should be inverted based on the pairwise difference of the routes with respect

to the measure defined in (i).

As difference measure between two routes, we use the number of customer pairs that occur in reverse

order in the two routes. More precisely, we first define a function p(rkd, v) that returns the position of

vertex v in route rkd. Then, we determine R<kd = {(v, w) | v, w ∈ N (rkd), p(rkd, v) < p(rkd, w)}
as the set of all pairs of customers (v, w) where customer v is served before customer w in route rkd.

Further, we define a function γ(v, w) that returns 1 if v = w and 0 otherwise. With this, we measure the

difference ρ(rkd, rkd′) between routes rkd and rkd′ on two days d and d′ as:

ρ(rkd, rkd′) =
∑

(v,w)∈R<kd

∑
(v′,w′)∈R<

kd′

γ(v, w′) · γ(w, v′).

We illustrate the calculation with this example: routes rkd = 〈0, 4, 1, 2, 0〉 and rkd′ = 〈0, 1, 2, 4, 0〉 have

the corresponding setsR<kd = {(4, 1), (4, 2), (1, 2)} andR<kd′ = {(1, 2), (1, 4), (2, 4)}, respectively. The

difference ρ(rkd, rkd′) is equal to two because two pairs occur in reverse order in both routes, namely

(4, 1) and (1, 4), and (4, 2) and (2, 4).

To determine the subset of routes to be inverted, we separate the day routes of each vehicle into two

groups using average linkage clustering based on the distance measure ρ (see, e.g. Sarstedt and Mooi,

2014). We first generate a solution by inverting all routes of the first group and then a second solution

by inverting all routes of the second group. We calculate the number of customers that violate the ATC

constraint in each of the two resulting solutions and in the original solution, and we hand the solution with

the lower number over to the second stage. To save computational effort spent on evaluating unpromising

steps, we skip the clustering and the subsequent route inversion if the routes of a vehicle k are too similar,

i.e., if
∑

d∈D
(∑

d′∈D,d6=d′ ρ(rkd, rkd′)/|N (rkd)|
)

is below a threshold value that we set to 0.01.

The idea of the second stage is to use customer relocates to improve the ATC. We first determine the

customer with the largest ATC violation and inspect all requests of this customer. We call every request

late (early) if it causes a violation of the maximum allowed time difference assuming that the request

served earliest (latest) is fixed. Then, we investigate two options for improving ATC of customer i: (i) to

serve customer i later on the days with early service, and (ii) to serve customer i earlier on the days with

57



late service. For both cases, we determine a time window within which the customer should be served

on the violating days.

In case (i), we separate the planning horizon into a set of early days Ψi = {d|d ∈ Di ∧ bid <

(maxd∈Di bid) − L} and a set of feasible days Θi = Di \ Ψi. Now, we determine a time window

[maxd∈Θi bid − L,mind∈Θi bid + L]. Then, for each violating day d ∈ Ψi, we relocate customer i such

that the new arrival time lies within the time window, and the increase in operating time is minimum.

The procedure for case (ii) works analogously. Note that the determined time window does not guarantee

ATC of the resulting solution but aims to guide the algorithm towards better ATC.

We tentatively perform the relocates for the selected customer and both cases. Because the relocation of

requests may lead to violations of the maximum allowed time difference at other customers, we either

keep the original solution or the solution related to case (i) or case (ii) depending on which solution has

the lowest number of violating customers. Then, we continue with the next customer until all customers

are served consistently, or each customer has been tried once.

Figure 3.3 shows an example application of our ATC improvement procedure. Vertices depicted in black

violate the ATC constraint. In the left part, we illustrate the clustering algorithm and the inversion of

routes. First, the difference between every pair of days is calculated: days 1 and 3 are identical and have

a distance of zero, days 1 and 2 and days 2 and 3 both have a distance of eight. The clustering assigns

days 1 and 3 to the first cluster and day 2 to the second cluster. The best solution is obtained by inverting

the route on the second day (the inversion of the routes of the first cluster is not shown). In the center

part of the figure, the resulting solution is shown: only customer C exhibits an ATC violation. Now, we

evaluate both options: to serve customer C later on day 2 or earlier on days 1 and 3 (only the first case is

shown). Based on the fixed arrival times on days 1 and 3, we determine the time window within which

customer C has to be served on day 2. Customer C is relocated between customers B and D because the

increase in operating time is minimum. The final solution, which respects the ATC constraints, is shown

in the right part of the figure.

Inversion 

Clustering 

A 

B 

C 

D 

E 

E 

Day 2 

D 

B 

A 

C 

A 

Day 1 

B 

C 

D 

E 

Relocate 

A 

Day 3 

B 

C 

D 

E 

A 

Day 2 

B 

C 

D 

E 

A 

Day 1 

B 

C 

D 

E 

A 

Day 3 

B 

C 

D 

E 

C 

Day 2 

A 

B 

D 

E 

A 

Day 1 

B 

C 

D 

E 

time window 
for customer C [       ]     

Day 3 

Figure 3.3.: Example application of the ATC improvement procedure.

58



3.5.3.3. Simulated Annealing Based Acceptance

Our LNS-SP always accepts improving solutions, and a deteriorating solution St is accepted with a

probability that depends on the difference between the objective function values ∆zrel and a temperature

θ (see, e.g., Kirkpatrick, Gelatt, and Vecchi, 1983):

p(St,Sc, θ) = e
−∆zrel (St,Sc)

θ .

To avoid the undesired effect that differences between objective function values also depend on the values

of the penalty factors, we use the relative difference between objective function values to calculate the

acceptance probabilities (see Goeke and Schneider, 2015):

∆zrel (St,Sc) =
zgen(St)− zgen(Sc)

zgen(Sc)
.

The temperature follows a predefined cooling schedule defined by an initial temperature and a cooling

rate. The initial temperature is such that a solution that deteriorates the initial solution by 0.5% is ac-

cepted with a probability of 50%. We decrease the temperature in every iteration by multiplying it with

the cooling rate, and we set the cooling rate such that the temperature is below θmin = 0.0001 in the last

20% of iterations.

3.5.4. Set Partitioning

Every 5000 iterations, we try to improve the best solution found so far by solving the set-partitioning

formulation (3.14)–(3.17) for a pool ΩLNS of heuristically determined clusters with a commercial solver.

If we find a new best solution, we replace the previous best solution Sbest . To speed up the solution

process, we use the current best solution as initial solution. To generate ΩLNS , we add all feasible

clusters that we find during the search, and we store the associated objective value gC and the routing

solutions of the individual days. Whenever we encounter a cluster that is already present in ΩLNS , we

update the objective value and the routing if the new objective value is better.

Because we never remove any cluster from ΩLNS , the problem size is strictly increasing, and we use the

following three approaches to reduce run-time:

Restrict the number of routes. Subramanian, Uchoa, and Ochi (2013) found that restricting the

number of available routes can speed up the solution of the set-partitioning problem for a wide

range of VRPs. We add the following constraint to restrict the number of selected clusters:

|K′| − 1 ≤
∑

C∈ΩLNS

ξC ≤ |K′|+ 1,

with K′ the set of vehicles in the current Sbest that serve at least one customer.

59



Only solve promising problems. We observed that it is unlikely to find a new best solution if the

lower bound LB given by the linear relaxation of the current set-partitioning does not improve

compared to the LB of the last SP solved. Therefore, before we solve the set-partition problem

including the integrality constraints (3.17), we relax the latter to quickly obtain a LB. Now, we

only add the integrality constraints if this LB improves the previous LB by more than 0.4%.

Limit the run-time of the solver. We adjust the time limit of the commercial solver depending on

the initial optimality gap, i.e., the difference between the objective value Sbest and LB. In detail,

we calculate the run-time in seconds as 10 + min(20, 20 · (z(Sbest) − LB)/0.04). Consequently,

the maximum run-time of 30 seconds is used if the optimality gap is at least 4%. Furthermore,

the last problem solved during LNS-SP is always performed with the maximum time limit of 30

seconds.

3.6. Numerical Studies

In this section, we present our numerical studies to assess the performance of CCG and LNS-SP. In Sec-

tion 3.6.1, we describe the benchmark instances available from the literature and the generation of new

medium-sized instances. In the first experiment (Section 3.6.2), we solve the compact formulation of

Groër, Golden, and Wasil (2009) and our improved formulation using CPLEX, and compare it to CCG

on small-sized instances from the literature. In the second experiment (Section 3.6.3), we study the per-

formance of CCG on the newly generated medium-sized instances and investigate how the performance

is related to parameters of the problem. Finally, we compare LNS-SP as stand-alone metaheuristic to

other state-of-the-art metaheuristics on benchmark instances from the literature (Section 3.6.4).

We performed all tests on a desktop computer with an AMD FX-6300 processor at 3.5 GHz with 8 GB

of RAM and running Windows 10 Pro. We used CPLEX 12.6.3 as a MILP solver to solve problem

(3.28)–(3.32) in Step 1, problem (3.18)–(3.21) in Steps 2 and 3, problem (3.33)–(3.41) in Step 4 and the

set-partitioning problem detailed in Section 3.5.4. CCG is implemented in C and LNS-SP in Java. Both

codes and CPLEX were executed using a single core. For CCG, we set a time limit of two hours for all

tests. All computing times are reported in seconds.

3.6.1. Benchmark Instances

Several benchmark sets for the ConVRP are available in the literature. Two sets are introduced in Groër,

Golden, and Wasil (2009) and differ with regard to instance size (small and large) and the way the

instances are generated: Dataset A contains five instances with 10 customers and five instances with

12 customers; the planning horizon spans three days; customers have a 70% service frequency, i.e., the

probability that a customer requires service on a given day is 0.7. Dataset B contains 12 instances with

50 to 199 customers. The instances are derived from instances of the well-known benchmark set for

the distance-constrained capacitated VRP presented in Christofides, Mingozzi, and Toth (1979). Five of

these instances have route duration constraints; the planning horizon spans five days; customers have a

70% service frequency. Note that Groër, Golden, and Wasil (2009) do not restrict the maximum allowed

time difference L on these instances but report the maximum value that they obtain for each instance.

60



Because later works (Tarantilis, Stavropoulou, and Repoussis, 2012; Kovacs, Parragh, and Hartl, 2014;

Kovacs, Golden, et al., 2015) reported this maximum value as a limit on L, we do the same in order to

have comparable results.

Dataset C contains 144 instances and was introduced by Kovacs, Parragh, and Hartl (2014) to investigate

the impact of varying the maximum allowed time difference and the service frequency. In addition to the

instances from Dataset B with 70% service frequency, the authors generate instances with 50% and 90%

service frequency. Then, for each service frequency, they vary the maximum allowed time difference and

generate four instances: the first has an unbounded value of L (these instances are referred to as L∞ in

the following), while the other three are obtained by setting Lx = x · Lmax, where Lmax is the maximum

arrival time difference obtained by solving the instance L∞, and x = 0.4, 0.6, 0.8 (these instances are

referred to as L0.4, L0.6, L0.8).

Datasets A and B, and C are used to assess the performance of LNS-SP, but only Dataset A is suitable to

assess the performance of CCG because most of the instances from the other sets are too large. Therefore,

we create an additional Dataset D with 144 instances with 20 to 30 customers by adapting the instances

from Dataset C. We leave the planning horizon of five days unchanged because a weekly plan seems a

reasonable setting. From every subset representing one combination of service frequency and maximum

allowed time difference, we select the instances labeled 6, 7 and 8 from instances 1–12 because they

have both route duration and capacity constraints and create two new instances: the first containing the

first 20 customers, and the second the first 30 customers. In addition, we duplicate every new instance

by removing the route duration to study the influence that this parameter has on the performance of our

approach. We round all distances to the second decimal place to make our results practically independent

of the internal precision of the hardware and software used. We name the instances according to the

following exemplary format: 6_19_0.5_0.4 means that the instance is based on instance 6 from Dataset

C, contains 19 customers that require service (some instances contain customers that do not require

service on any day, and for clarity we remove these customers from the instance), has a service frequency

of 50% and a maximum allowed time difference of 40% of the maximum arrival time difference obtained

for the unbounded instance in Kovacs, Parragh, and Hartl (2014).

3.6.2. Comparison between Compact Formulations and CCG on Dataset A

In this section, we compare the computational performance of the original compact formulation of

Groër, Golden, and Wasil (2009) (hereafter called GGW), our improved compact formulation (3.1)–

(3.12) (called GRS), and CCG on Dataset A.

Table 3.1 reports the instance name (Inst.) and the best known upper bound (UB), indicated in bold if

it corresponds to the optimal solution cost. For both GGW and GRS, we provide the lower bound (LB)

obtained by the corresponding linear relaxation in percent of the UB (∆LB) and the total computing time

(t). For CCG, we give the number of routes (|Φ|) and the initial number of clusters generated in Step 2

(ω′), lower bounds x ∈ {z(LP1), z(LP2), z(SP)} in percent of the UB (∆x), the number of clusters left

after executing Steps 1–3 (ω′′), the number of times Step 4 is executed (|Ω|), and the total computing

time of CCG without considering the time to compute UB (tnoUB) and including the time to compute UB

(ttot). Detailed results for CCG can be found in Table B.1 of the appendix of this chapter.

61



Table 3.1.: Computational performance of GGW, GRS, and CCG on Dataset A.

GGW GRS CCG

Inst. UB ∆LB t ∆LB t |Φ| ω′ ∆z(LP1) ∆z(LP2) ω′′ ∆z(SP) |Ω| tnoUB ttot

1_10 142.03 61.0 9.4 66.5 5.2 305 744 100.0 100.0 5 100.0 2 0.1 5.1
2_10 121.07 57.3 2.0 69.4 1.1 760 951 97.6 100.0 9 100.0 2 0.1 2.6
3_10 149.41 53.5 10.4 61.8 9.4 1221 774 100.0 100.0 10 100.0 2 0.1 2.7
4_10 150.89 58.5 13.0 62.7 10.1 753 801 100.0 100.0 9 100.0 2 0.1 2.5
5_10 132.31 63.9 636.3 71.2 11.4 718 810 95.9 98.8 14 100.0 4 0.2 3.6
1_12 171.02 57.2 1524.1 66.4 122.3 852 2150 98.9 99.9 19 100.0 2 0.1 3.3
2_12 111.54 64.5 4.5 72.1 3.4 657 3743 99.5 99.5 11 100.0 2 0.1 3.2
3_12 145.69 51.4 179.1 59.2 54.4 1573 3666 99.7 99.7 10 100.0 4 0.2 3.0
4_12 166.37 51.7 3286.3 60.1 60.6 928 2317 97.1 98.6 47 100.0 13 0.5 3.9
5_12 140.42 52.8 66.0 60.5 31.6 1188 3412 98.5 99.5 11 100.0 5 0.2 3.3

Avg. 57.2 573.1 65.0 30.9 896 1937 98.7 99.6 15 100.0 4 0.2 3.3

As the computing times show, all three formulations could solve all instances to optimality. However,

GRS outperforms GGW both in terms of lower bound provided by the linear relaxation, which is on

average 7.8% higher, and in terms of the total computing time (30.9 vs. 573.1 seconds). CCG is signif-

icantly faster on average than GRS, even when taking into account the time to compute UB. We also

observe that the lower bounds computed by CCG are of very good quality. In particular, note that the

average optimality gaps of LP1 and LP2, which do not consider ATC, are quite small (1.3% and 0.4%,

respectively). Moreover, the number of clusters for which ATC had to be included a-posteriori is very

low (see column |Ω|). This suggests that DC in many instances already implies ATC.

Finally, we assessed the impact of using GSECs by removing them from GGW and GRS (not reported

in the table): without GSECs, we are still able to solve all instances to optimality within the time limit,

but the average computing time increases significantly, i.e., for GGW from 573.1 to 1378.3 seconds and

for GRS, from 30.9 to 382.4 seconds.

3.6.3. Computational Results of CCG on Dataset D

In this section, we investigate the computational performance of CCG on the 144 new instances of

Dataset D. In Tables 3.2 and 3.3, the results are aggregated according to the number of customers (|N |)
and the presence/absence of route duration constraints (T = yes/no). Table 3.2 reports results based

on different values of maximum allowed time difference (L0.4, L0.6, L0.8, L∞), and Table 3.3 based on

different values of service frequency (D0.5, D0.7, D0.9). The values reported in each row of Tables 3.2

and 3.3 are averages over the corresponding nine and 12 instances, respectively. Column Opt reports

the number of instances solved to optimality out of the total number of instances in the group. Detailed

results can be found in Tables B.2–B.5 of the appendix of this chapter.

The discussion of the results follows the order of the columns in Tables 3.2 and 3.3. We observe that

CCG solves 128 of the 144 instances to optimality. Instances with 30 customers (60 solved) are obvi-

ously more difficult than instances with 20 customers (68 solved). The remaining 16 instances could

not be solved because either the time limit was reached (eight instances) or CCG ran out of memory

62



Table 3.2.: Overview of results for different values of maximum allowed time difference (Lx) on newly
generated medium-sized instances of Dataset D.

|N | T Opt |Φ| ω′ ∆z(LP1) ∆z(LP2) ω′′ ∆z(SP) |Ω| tnoUB ttot

L0.4

20 yes 9/9 51 143 183 386 97.6 97.8 379 100.0 30 25.0 164.0
20 no 5/9 211 817 561 468 95.8 96.1 39 780 97.8 41 3253.1 3410.8
30 yes 8/9 870 272 17 395 266 97.6 98.0 5575 99.6 30 905.1 1159.0
30 no 4/9 10 924 570 202 276 014 97.6 97.9 6322 99.2 67 3241.5 3482.1

L0.6

20 yes 9/9 51 143 183 386 99.4 99.5 47 100.0 6 0.7 105.8
20 no 9/9 211 817 561 468 98.6 98.7 100 100.0 10 485.0 633.5
30 yes 9/9 870 272 17 395 266 99.3 99.5 200 100.0 6 55.2 290.7
30 no 7/9 10 924 570 202 276 014 99.1 99.2 104 100.0 15 324.8 541.0

L0.8

20 yes 9/9 51 143 183 386 99.6 99.8 34 100.0 4 0.5 86.0
20 no 9/9 211 817 561 468 99.2 99.3 37 100.0 4 59.2 194.8
30 yes 9/9 870 272 17 395 266 99.4 99.6 148 100.0 5 53.9 266.0
30 no 7/9 10 924 570 202 276 014 99.9 99.9 16 100.0 4 280.0 466.0

L∞
20 yes 9/9 51 143 183 386 99.9 99.9 22 100.0 3 0.4 59.4
20 no 9/9 211 817 561 468 100.0 100.0 10 100.0 2 6.9 81.9
30 yes 9/9 870 272 17 395 266 99.5 99.7 132 100.0 4 53.6 187.5
30 no 7/9 10 924 570 202 276 014 100.0 100.0 12 100.0 3 280.2 406.0

Table 3.3.: Overview of results for different service frequencies (Dx) on newly generated medium-sized
instances of Dataset D.

|N | T Opt |Φ| ω′ ∆z(LP1) ∆z(LP2) ω′′ ∆z(SP) |Ω| tnoUB ttot

D0.5

20 yes 12/12 3831 372 678 99.3 99.4 47 100.0 12 2.0 76.3
20 no 11/12 6239 699 534 97.8 97.8 27 938 99.4 29 882.5 970.5
30 yes 12/12 43 382 47 459 139 99.5 99.6 141 100.0 15 105.4 260.0
30 no 7/12 93 653 205 949 404 98.9 98.9 2059 99.9 49 1077.5 1208.1

D0.7

20 yes 12/12 30 451 112 843 98.6 98.7 210 100.0 13 12.0 108.1
20 no 11/12 85 691 513 249 98.7 98.8 989 99.5 10 654.2 793.4
30 yes 12/12 519 274 3 438 466 98.7 99.3 782 100.0 11 45.5 272.5
30 no 11/12 9 137 334 316 518 019 99.3 99.4 1624 99.8 16 994.0 1221.0

D0.9

20 yes 12/12 119 146 64 637 99.4 99.6 104 100.0 7 5.8 127.0
20 no 10/12 543 521 471 622 98.7 98.9 1019 99.4 4 1316.4 1476.9
30 yes 11/12 2 048 161 1 288 192 98.5 98.7 3619 99.7 8 650.0 894.9
30 no 7/12 24 436 342 27 239 617 99.2 99.4 1152 99.7 6 1042.3 1243.6

63



in Step 2 while generating the set of all routes Φ or the initial set of all clusters Ω̂ (eight instances).

Instances without route duration constraint are harder to solve: 15 out of the 16 unsolved instances have

unlimited route duration, and all cases of insufficient memory occur for this type of instances. As Ta-

ble 3.2 shows, instances that have a lower maximum allowed time difference are more difficult: 10 of the

16 open instances belong to the group L0.4, and the average computing times increase significantly if the

maximum allowed time difference decreases. The latter effect is due to the lower quality of the bounds

provided by CCG. Table 3.3 shows that no similar effect can be observed for the service frequency: six

of the open instances are in group D0.5, two in D0.7, and eight in D0.9.

The number of routes |Φ| and the initial number of clusters ω′ increases with the number of customers and

with unlimited route duration. As Table 3.2 shows, both values are independent of the group Lx because

the maximum allowed time difference is not considered in this step. From Table 3.3, we observe that the

number of routes increases drastically with the service frequency because more customers request service

on any of the days. The number of clusters ω′ decreases with rising service frequency because there are

fewer ways to combine the routes to clusters that respect the DC. Note that the values ω′ provided for

|N | = 30 and T = no of groupsD0.5 andD0.9 can be compared with each other because for both groups

we could not generate the initial routes for the same set of instances due to insufficient memory. This

does not hold for the comparison with D0.7.

CCG provides high-quality lower bounds: ∆z(LP1) is 98.9% averaged over all instances of Dataset D

(computed from the results reported in Tables B.2–B.5 of the appendix), ∆z(LP2) is 99.0%; the lowest

value for any instance is 91.3% for both bounds, and for none of the groups considered in Tables 3.2 and

3.3 the bounds lie below 96.1%. The quality of the bounds decreases for lower values of Lx, but there is

no clear relationship between their quality and the service frequencyDx, the number of customers, or the

existence of a limit on the route duration. Analogous effects can be observed for the number of clusters

ω′′. It is noteworthy how strongly the number of clusters can be reduced because of Step 3 when bounds

are tight.

The final lower bounds ∆z(SP) show that for groups with a maximum allowed time difference larger than

L0.4, we are able to solve all instances to optimality whenever we have enough memory to generate the

initial clusters. For a maximum allowed time difference of L0.4, we obtain aggregated final bounds of at

least 97.8%. In addition, we find that for large values of Lx orDx, the number of clusters for which ATC

had to be included a-posteriori (see column |Ω|) is typically very low, i.e., the SP often quickly identifies

the optimal clusters in Step 4. As already discussed above, removing the route duration or decreasing the

maximum allowed time difference makes the instances more difficult, and thus the total computing time

increases. On the other hand, there is no clear relationship between the service frequency and the total

computing time.

3.6.4. Computational Results of LNS-SP

In this section, we investigate the performance of LNS-SP as stand-alone method. First, we compare

LNS-SP to the approaches from the literature on Dataset B; for the sake of conciseness, we limit the

comparison to the two best-performing approaches, i.e., the template-based ALNS of Kovacs, Parragh,

and Hartl (2014) (denoted as KPH) and the LNS method of Kovacs, Golden, Hartl, and Parragh (2015)

(denoted as KGHP). Second, we study the performance of LNS-SP in comparison to KPH on Dataset

64



C (no results are available for KGHP) and assess the influence of different service frequencies Dx and

maximum allowed time differences Lx on the comparison.

Table 3.4 shows the results for Dataset B. Two different versions of LNS-SP are studied: LNS-SP–

25k using a total of ηtotal = 25000 iterations, and LNS-SP–5k using a reduced number of iterations

ηtotal = 5000. For each instance, we report the name and the previous best-known solution (BKS).

For each solution method, we report the percentage gap of the best solution found in 10 runs to the

BKS (∆zb), the gap of the average solution value of the 10 runs to the BKS (∆za), and the average

computation time in seconds (t). In addition, the best solution that we found during the overall testing of

our method and its gap to the BKS are reported in columns LNS-SP. For each instance, the best solution

found by any of the tested methods is marked in bold.

Table 3.4.: Comparison of LNS-SP to the best-performing approaches from the literature: KPH (Kovacs,
Parragh, and Hartl, 2014) and KGHP (Kovacs, Golden, Hartl, and Parragh, 2015) on Dataset
B.

KPH KGHP LNS-SP–25k LNS-SP–5k LNS-SP

Inst. BKS ∆zb ∆za t ∆zb ∆za t ∆zb ∆za t ∆zb ∆za t z ∆z

1_50_0.7 2124.21 0.0 3.3 5.5 0.0 0.4 15.1 0.0 0.2 40.5 0.0 0.9 9.2 2121.84 -0.1
2_75_0.7 3540.80 1.7 1.8 14.7 0.0 1.4 18.8 -1.3 -0.9 86.9 -1.0 0.2 16.9 3481.72 -1.7
3_100_0.7 3280.47 1.4 1.8 25.6 0.0 0.9 40.2 -0.1 0.5 195.3 0.1 1.5 33.6 3278.36 -0.1
4_149_0,7 4473.31 1.9 2.8 84.3 0.0 1.9 62.7 -1.4 -0.2 369.7 -1.4 1.3 80.1 4355.47 -2.6
5_199_0.7 5632.22 0.6 0.9 122.2 0.0 0.8 87.3 -2.6 -0.9 477.6 -0.3 0.7 97.7 5480.00 -2.7
6_49_0.7 4051.48 0.0 0.0 6.6 0.5 0.6 14.6 0.0 0.0 31.7 0.0 0.1 6.9 4051.48 0.0
7_75_0.7 6673.61 1.5 2.0 18.3 0.0 0.6 19.7 -0.4 -0.4 73.6 -0.4 0.5 16.4 6645.05 -0.4
8_100_0.7 7126.29 0.0 0.9 32.2 0.0 1.0 31.3 -0.5 -0.1 145.5 -0.4 0.4 30.1 7094.05 -0.5
9_150_0.7 10 381.90 0.0 0.7 97.4 0.1 0.6 50.2 -0.5 -0.1 367.6 -0.6 0.1 66.8 10 318.99 -0.6
10_198_0.7 12 955.10 1.1 2.2 146.3 0.0 0.7 78.7 -0.9 0.1 467.0 -0.2 0.3 83.9 12 839.78 -0.9
11_119_0.7 4471.22 0.3 0.3 36.0 0.0 2.6 83.6 -0.5 0.5 227.1 -0.3 3.7 119.1 4447.45 -0.5
12_100_0.7 3497.93 0.0 0.0 25.6 0.7 2.5 27.4 -2.3 -2.0 125.9 -2.1 0.3 27.2 3416.08 -2.3

Avg. 0.7 1.4 51.2 0.1 1.2 44.1 -0.9 -0.3 217.3 -0.6 0.8 49.0 -1.0

The performance of LNS-SP on Dataset B is very convincing. LNS-SP–25k improves the previous BKS

on 10 out of the 12 instances (for two of the instances, the improvement is above 2%) and matches it on

the remaining two. The average improvement based on the best run is nearly 1%, and even the average

of the runs shows a negative gap of -0.3% to the previous BKS. Concerning the comparison of the run-

times of the different solution methods, we think that a relatively fair comparison is possible because

all algorithms were tested on modern desktop computers with processors of similar speed (Intel Xeon

X5550 at 2.67 GHz for KPH and KGHP). The run-time of LNS-SP–25k is approximately five times the

run-times of the comparison methods, however, the run-time stays below eight minutes for all instances,

which we deem very reasonable for a multi-period problem with up to 199 customers and five periods

from a practical perspective.

The fast variant of our algorithm, LNS-SP–5k, has roughly the same run-times as the comparison meth-

ods but is able to improve the previous BKS for nine of the 12 instances, matches it on two, and yields a

gap of 0.1% on one instance. On average, LNS-SP–5k still shows a negative gap to the previous BKS of

-0.6%. Finally, during the overall testing, we find new BKS for all instances with an average gap to the

previous BKS of -1.0%. On three instances, we obtain significant improvements of the solution quality

with gaps above -2.3%.

Table 3.5 shows the results for Dataset C. Only averages over 10 runs are reported by KGHP, so we

65



perform the same number of runs and conduct the comparison based on averages: ∆za reports the

percentage gap between the average objective value of LNS-SP–25k and that of KPH, i.e., ∆za =

(za(LNS-SP–25k)− za(KPH))/za(KPH). Moreover, we report the percentage gap of the average max-

imum arrival time difference between any two visits to a customer in column ∆bmax
a , i.e., for every run

we memorize the maximum arrival time difference that occurs for any of the customers in the best solu-

tion obtained during that run, then we average these values over all runs and calculate the gap in percent

to the corresponding value reported for KPH. To provide comparison values for future researchers, we

additionally provide the best objective function value obtained during 10 runs in column zb.

We find that the solution quality of LNS-SP–25k is clearly superior to that of KPH: the average gap is

negative for 133 of 144 instances with an average improvement of -12.4%. The largest gaps are obtained

for small values of Lx; depending on the service frequency, the gaps lie between -44.2% and -32.2% for

L0.4. With regards to the maximum arrival time difference bmax
a , we observe a nonnegative gap between

LNS-SP and KPH for all groups. This suggests that our method is able to better utilize the maximum

allowed time difference to find high-quality solutions.

Summarizing, the results indicate that, contrary to the template-based approach of KPH, LNS-SP is also

suitable for low values of L. As can be expected, the difference between the two methods becomes

smaller for a high service frequency of Dx because instances where days resemble each other with

regards to the customers that have to be served are beneficial for the template concept.

3.7. Summary and Conclusion

In this work, we address the ConVRP and present the first exact solution method and a heuristic that

represent the new state-of-the-art solution methods to solve the problem.

Unlike most of the state-of-the-art exact methods for VRPs that rely on route-based formulations, the

proposed exact method is based on a formulation in which variables represent a set of customers (called

cluster) assigned to the same vehicle over the planning horizon. We first generate the entire set of clus-

ters and then eliminate those clusters that cannot belong to any optimal ConVRP solution by computing

gradually stronger lower bounds to the problem. The main idea of our algorithm is that the DC consis-

tency is implied by the definition of the clusters, and the ATC is iteratively imposed on a small number

of clusters only when necessary. The computational experiments show that, because of the strength of

the computed lower bounds, the proposed exact method can solve, within reasonable amounts of com-

puting times, instances with up to 30 customers and a five-day planning horizon. The performance of the

method is not affected by the service frequency in the instances, and the method is particularly effective

if ATC constraints are not extremely tight.

In addition, we present a LNS that is used in combination with the exact method to find optimal ConVRP

solutions and as a stand-alone heuristic to find high-quality solutions in short run-times. The method

embeds (i) a suitable penalty mechanism to deal with infeasible solutions, (ii) a repair procedure to

improve the ATC, and (iii) the solution of a SP problem to enhance solution quality. The computational

experiments show that our LNS is able to clearly improve the solution quality compared to previously

published heuristics on benchmark instances from the literature, especially if ATC constraints are tight.

66



Table 3.5.: Comparison of LNS-SP–25k to KPH (Kovacs, Parragh, and Hartl, 2014) on Dataset C.

L∞ L0.8 L0.6 L0.4

Inst. zb ∆za ∆bmax
a zb ∆za ∆bmax

a zb ∆za ∆bmax
a zb ∆za ∆bmax

a

D0.5

1_50_0.5 1616.37 -2.0 56.7 1628.76 -2.4 -4.0 1641.51 -6.0 4.0 1696.33 -7.6 1.5
2_75_0.5 2554.83 -0.7 66.7 2554.94 -1.2 9.4 2563.74 -1.1 -2.2 2590.12 -27.5 6.1
3_100_0.5 2632.43 -1.7 158.6 2632.96 -1.8 6.4 2658.19 -1.5 0.9 2716.13 -36.7 2.1
4_149_0.5 3317.49 -1.7 103.2 3333.52 -1.3 2.1 3337.12 -9.5 -3.3 3366.54 -75.7 7.6
5_199_0.5 3986.56 -0.2 164.0 3988.21 -1.5 1.9 3994.09 -2.8 -0.6 4098.44 -79.7 27.4
6_49_0.5 2863.55 -0.2 65.8 2872.94 -0.4 3.5 2889.42 -1.8 2.3 2943.77 -22.8 5.5
7_75_0.5 4632.31 -1.3 42.8 4637.52 -1.2 1.9 4642.50 -3.4 -3.1 4662.84 -44.1 16.2
8_100_0.5 5332.55 -0.3 109.0 5335.32 -0.2 0.8 5342.04 -0.5 -1.1 5384.56 -45.4 3.4
9_150_0.5 7347.4 -1.1 70.5 7352.24 -1.5 2.8 7354.43 -4.5 0.7 7402.12 -52.7 4.9
10_198_0.5 9267.06 -0.5 99.7 9238.96 -0.8 -0.3 9363.47 -52.9 1.8 9576.16 -60.2 2.3
11_119_0.5 3245.08 -1.3 208.2 3253.59 -3.5 36.2 3256.72 -3.6 -1.7 3258.40 -7.0 -1.4
12_100_0.5 2835.65 -1.4 339.4 2845.27 -2.0 8.4 2847.79 -2.0 2.8 2895.90 -71.5 27.6

Avg. -1.0 123.7 -1.5 5.8 -7.5 0.0 -44.2 8.6

D0.7

1_50_0.7 2105.39 -0.5 183.2 2110.59 -0.5 -9.2 2118.97 -1.0 2.2 2137.65 -29.0 6.1
2_75_0.7 3481.82 -2.4 113.9 3481.72 -1.8 -1.3 3513.81 -3.4 -0.3 3543.00 -55.2 2.0
3_100_0.7 3266.77 -1.0 220.7 3272.50 -1.1 2.0 3283.23 -0.6 0.9 3325.92 -66.8 7.1
4_149_0,7 4346.38 -2.5 249.8 4408.77 -4.1 0.1 4479.40 -26.1 1.8 4640.36 -81.9 -22.0
5_199_0.7 5464.52 -2.8 217.0 5488.70 -2.2 9.9 5525.68 -2.7 5.6 5571.35 -13.9 0.6
6_49_0.7 4048.96 -0.1 129.0 4051.48 0.0 -2.7 4062.70 0.0 0.1 4102.95 -5.9 -1.5
7_75_0.7 6645.05 -2.1 77.3 6645.95 -2.6 5.1 6658.68 -3.7 -4.1 6676.41 -35.4 2.1
8_100_0.7 7092.22 -1.4 195.4 7097.27 -1.4 3.6 7125.73 -7.6 0.4 7321.12 -55.3 2.5
9_150_0.7 10 316.71 -1.5 58.4 10 327.97 -1.4 0.4 10 339.81 -3.0 -1.3 10 373.95 -47.7 1.4
10_198_0.7 12 827.08 -2.1 117.4 12 909.74 -2.0 -1.8 12 912.85 -17.8 -0.4 13 200.08 -60.3 4.0
11_119_0.7 4443.76 -0.7 843.5 4450.56 3.3 -2.2 4458.83 -10.6 0.9 4950.48 -86.9 39.2
12_100_0.7 3408.55 -3.0 325.5 3416.08 -2.9 2.6 3418.03 -3.5 0.4 3489.39 -80.7 10.4

Avg. -1.7 227.6 -1.4 0.6 -6.6 0.5 -51.6 4.3

D0.9

1_50_0.9 2478.84 -0.3 128.9 2488.27 -0.1 -8.8 2493.14 -0.1 4.1 2507.37 -21.1 -4.5
2_75_0.9 4001.08 -0.9 232.2 4003.68 -0.6 -2.4 4007.29 -1.8 10.2 4044.71 -8.9 7.7
3_100_0.9 3974.74 -0.4 282.9 3988.08 0.1 -0.4 4001.64 -0.3 -3.1 4039.43 -5.8 2.6
4_149_0,7 4942.23 -0.8 373.6 4971.81 -0.1 1.7 4929.50 -0.2 3.8 5108.54 -79.8 20.1
5_199_0.9 6376.09 -0.6 371.0 6399.05 -3.5 10.1 6397.04 -7.0 -7.3 6453.19 -76.1 45.0
6_49_0.9 4751.79 -0.2 111.8 4761.17 0.0 7.2 4768.31 -1.0 0.6 4877.14 -18.9 -0.8
7_75_0.9 7705.73 -0.5 53.5 7706.18 -0.4 5.2 7706.18 -0.3 -6.2 7718.94 -2.8 1.3
8_100_0.9 8733.72 0.0 196.3 8673.73 0.0 -3.2 8776.89 -0.6 2.1 8835.97 -29.3 3.9
9_150_0.9 12 377.6 -0.5 203.5 12 391.43 -0.4 -1.1 12 442.23 -7.4 0.2 12 618.92 -58.6 5.5
10_198_0.9 15 820.63 -0.4 321.9 15 824.39 -0.4 0.9 15 828.35 -11.0 0.8 16 212.92 -65.6 2.5
11_119_0.9 4986.96 7.7 866.3 4975.01 9.0 -7.2 5452.57 9.9 -6.0 5496.98 -16.3 -1.3
12_100_0.9 4011.73 0.9 524.4 4013.50 0.8 -2.3 4014.73 0.3 35.8 4024.41 -3.4 3.5

Avg. 0.3 305.5 0.4 0.0 -1.6 2.9 -32.2 7.1

67



Bibliography

Adulyasak, Y., J.-F. Cordeau, and R. Jans (2014). Optimization-based adaptive large neighborhood search

for the production routing problem. In: Transportation Science 48 (1), pp. 20–45.

Baldacci, R., A. Mingozzi, and R. Roberti (2011). New route relaxation and pricing strategies for the

vehicle routing problem. In: Operations Research 59 (5), pp. 1269–1283.

Christofides, N., A. Mingozzi, and P. Toth (1979). The vehicle routing problem. In: Combinatorial Opti-

mization. Ed. by N. Christofides, A. Mingozzi, P. Toth, and C. Sandi. Chichester, UK: Wiley, pp. 315–

338.

Clarke, G. and J. Wright (1964). Scheduling of vehicles from a central depot to a number of delivery

points. In: Operations Research 12 (4), pp. 568–581.

Contardo, C. and R. Martinelli (2014). A new exact algorithm for the multi-depot vehicle routing problem

under capacity and route length constraints. In: Discrete Optimization 12, pp. 129–146.

Cordeau, J.-F., G. Laporte, and A. Mercier (2001). A unified tabu search heuristic for vehicle routing

problems with time windows. In: Journal of the Operational Research Society 52 (8), pp. 928–936.

Dabia, S., S. Ropke, T. van Woensel, and T. de Kok (2013). Branch and price for the time-dependent

vehicle routing problem with time windows. In: Transportation Science 47 (3), pp. 380–396.

Feillet, D., T. Garaix, F. Lehuédé, O. Péton, and D. Quadri (2014). A new consistent vehicle routing

problem for the transportation of people with disabilities. In: Networks 63 (3), pp. 211–224.

Goeke, D. and M. Schneider (2015). Routing a mixed fleet of electric and conventional vehicles. In:

European Journal of Operational Research 245 (1), pp. 81–99.

Groër, C., B. Golden, and E. Wasil (2009). The consistent vehicle routing problem. In: Manufacturing &

Service Operations Management 11 (4), pp. 630–643.

Jepsen, M., B. Petersen, S. Spoorendonk, and D. Pisinger (2008). Subset-row inequalities applied to the

vehicle-routing problem with time windows. In: Operations Research 56 (2), pp. 497–511.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing. In: Science

220 (4598), pp. 671–680.

Kovacs, A. A., B. L. Golden, R. F. Hartl, and S. N. Parragh (2015). The generalized consistent vehicle

routing problem. In: Transportation Science 49 (4), pp. 796–816.

Kovacs, A. A., R. F. Hartl, S. N. Parragh, and B. L. Golden (2014). Vehicle routing problems in which

consistency considerations are important: A survey. In: Networks 64 (3), pp. 192–213.

Kovacs, A. A., S. N. Parragh, and R. F. Hartl (2014). A template-based adaptive large neighborhood

search for the consistent vehicle routing problem. In: Networks 63 (1), pp. 60–81.

– (2015). The multi-objective generalized consistent vehicle routing problem. In: European Journal of

Operational Research 247 (2), pp. 441–458.

Lian, K., A. B. Milburn, and R. L. Rardin (2016). An improved multi-directional local search algorithm

for the multi-objective consistent vehicle routing problem. In: IIE Transactions 48 (10), pp. 975–992.

Masson, R., F. Lehuédé, and O. Péton (2013). An adaptive large neighborhood search for the pickup and

delivery problem with transfers. In: Transportation Science 47 (3), pp. 344–355.

Pecin, D., C. Contardo, G. Desaulniers, and E. Uchoa (2017). New enhancements for the exact solution of

the vehicle routing problem with time windows. In: INFORMS Journal on Computing 29 (3), pp. 489–

502.

68



Pecin, D., A. Pessoa, M. Poggi, and E. Uchoa (2017). Improved branch-cut-and-price for capacitated

vehicle routing. In: Mathematical Programming Computation 9 (1), pp. 61–100.

Ropke, S. and D. Pisinger (2006b). An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. In: Transportation Science 40 (4), pp. 455–472.

Sarstedt, M. and E. Mooi (2014). A concise guide to market research: The process, data, and methods us-

ing IBM SPSS statistics. In: Berlin Heidelberg, Germany: Springer. Chap. Cluster Analysis, pp. 273–

324.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing prob-

lems. In: Principles and Practice of Constraint Programming – CP98. Ed. by M. Maher and J.-F.

Puget. Vol. 1520. Lecture Notes in Computer Science. London, United Kingdom: Springer, pp. 417–

431.

Subramanian, A., E. Uchoa, and L. S. Ochi (2013). A hybrid algorithm for a class of vehicle routing

problems. In: Computers & Operations Research 40 (10), pp. 2519–2531.

Subramanyam, A. and C. E. Gounaris (2016). A branch-and-cut framework for the consistent traveling

salesman problem. In: European Journal of Operational Research 248 (2), pp. 384–395.

– (2017). A decomposition algorithm for the consistent traveling salesman problem with vehicle idling.

In: Transportation Science. DOI: 10.1287/trsc.2017.0741.

Sungur, I., Y. Ren, F. Ordóñez, M. Dessouky, and H. Zhong (2010). A model and algorithm for the

courier delivery problem with uncertainty. In: Transportation Science 44 (2), pp. 193–205.

Tarantilis, C., F. Stavropoulou, and P. Repoussis (2012). A template-based tabu search algorithm for the

consistent vehicle routing problem. In: Expert Systems with Applications 39 (4), pp. 4233–4239.

69

https://doi.org/10.1287/trsc.2017.0741




Chapter 4

Mixed Fleets: The Transition to Electric Commercial Vehicles

4.1. Introduction

In Europe, recent years have seen a steady increase of energy costs while more and more laws are passed

to regulate the emission of greenhouse gases in the transportation sector. These external factors and the

society’s rising environmental and social awareness have triggered numerous green initiatives at compa-

nies. In the logistics field, electric commercial vehicles (ECVs) are now considered a serious alternative

to conventional internal combustion commercial vehicles (ICCVs). ECVs have no local greenhouse gas

emission and produce only minimal noise, however, they are currently hardly competitive with ICCVs

from a cost point of view (Davis and Figliozzi, 2013). Nevertheless, several companies have started to

employ ECVs in their last-mile delivery operations, e.g., in the field of small-package shipping (Klein-

dorfer et al., 2012) or the distribution of food (National Renewable Energy Laboratory, 2014) and bev-

erages (Heineken International, 2014). Moreover, governments and private companies are starting to

provide the required infrastructure to further boost this electrification trend (Tesla Motors, Inc., 2014;

International Energy Agency, 2012; International Energy Agency, 2013).

One important aspect to render ECVs more competitive is to consider their special characteristics—a

limited driving range and the potential need to recharge en route—in the planning of the last-mile de-

livery operations employing ECVs. These distribution tasks are generally represented as vehicle-routing

problems (VRPs), whose goal is to find minimum-cost routes to serve a given set of customers from a

central depot (Toth and Vigo, 2014). The first VRPs to address ECVs (or alternative fuel vehicles) with

a limited driving range and the possibility of recharging (refueling) at dedicated stations have recently

been presented in the literature (Conrad and Figliozzi, 2011; Erdoğan and Miller-Hooks, 2012; Schnei-

der, Stenger, and Goeke, 2014). Although two important constraints of last-mile delivery operations,

namely vehicle capacity constraints and customer time windows have already been considered (Conrad

and Figliozzi, 2011; Schneider, Stenger, and Goeke, 2014), many relevant real-life constraints are not

yet covered by routing models for ECVs and dedicated solution methods.

In this work, we consider two important aspects for route planning with ECVs:

Mixed fleet: Most companies do not operate pure ECV fleets but are gradually introducing ECVs into

their existing ICCV fleet. Therefore, our route planning method is able to handle a mixed fleet

of ECVs and ICCVs. Compared to ICCVs, energy costs for operating ECVs are generally lower

while labor costs may increase due to time spent on potentially necessary recharging activities

71



along the routes. Energy and labor costs are among the main components of total operating costs

(see, e.g., Bektaş and Laporte, 2011)), so high-quality route planning with a mixed vehicle fleet

has to consider the cost tradeoff between the two vehicle types.

Energy consumption: Real-life energy consumption is not a linear function of traveled distance as as-

sumed in the models of Erdoğan and Miller-Hooks (2012) and Schneider, Stenger, and Goeke

(2014). We use realistic energy consumption functions of ECVs and ICCVs that incorporate ve-

hicle speed, gradients and cargo load. In recent years, realistic energy consumption models have

started to play an important role in routing models that consider fuel costs and vehicle emissions

(Bektaş and Laporte, 2011; Jabali, Woensel, and Kok, 2012). In the context of ECVs, energy

consumption determines electricity costs on the one hand, but, more importantly, also the driving

range of an ECV and thus the latest possible moment at which a recharge has to take place in order

to prevent an ECV from getting stranded.

We propose the electric VRP with mixed fleet (E-VRPTWMF) to determine optimal routes (according

to different alternative objective functions considered in this work) for a given mixed fleet of ECVs and

ICCVs. E-VRPTWMF incorporates time window and vehicle capacity constraints. We assume that

ECVs can be recharged at any of the available stations causing a recharging time that depends on the

battery level on arrival at the station. The energy consumption of ICCVs is calculated by means of the

model presented in (Demir, Bektaş, and Laporte, 2012) and we extend this model to compute the battery

energy consumption of ECVs.

As E-VRPTWMF extends the notoriously hard-to-solve VRP with time windows (VRPTW), exact meth-

ods will not be able to solve instances of realistic size within fast computation times. Therefore, we de-

velop a heuristic solution method to address the problem, namely an adaptive large neighborhood search

(ALNS) enhanced by a local search (LS) for intensification. Besides new operators considering recharg-

ing stations, our ALNS features several new ideas: (i) an adaptive mechanism to choose the number

of customers to be removed in each iteration, (ii) the use of surrogate violations in order to handle the

complexity of calculating time window and battery capacity violations, and (iii) an acceptance criterion

taking into account the different penalty factors that were used when calculating the objective value of

the solutions to be compared.

In numerical studies, we assess the performance of ALNS on benchmark instances of related problems:

ALNS achieves convincing results on the well-studied VRPTW benchmark of Solomon (1987), and

outperforms previous methods on the electric vehicle-routing problem with time windows (E-VRPTW)

benchmark set of Schneider, Stenger, and Goeke (2014). In addition, we create a set of new E-VRPTWMF

instances based on the pollution-routing problem (PRP) benchmark of Demir, Bektaş, and Laporte

(2012). In experiments on these newly designed instances, we find that consideration of the actual load

strongly improves the quality of the generated solutions in comparison to solutions that are generated

based on load estimates. Moreover, we find that a large number of solutions that are generated with

“optimistic” load estimates are actually infeasible due to battery capacity or time window violations. We

further show that our ALNS works effectively with all of the investigated cost functions and that the

traditional objective of minimizing traveled distance fails to produce high-quality solutions if routing

costs including energy, labor and battery depreciation are considered. The choice of objective function

additionally has a strong influence on the level of usage of the ECVs in the fleet.

This work is organized as follows: In Section 4.2, we briefly review the literature related to E-VRPTWMF.

72



Section 4.3 introduces the energy consumption models for ECVs and ICCVs. Section 4.4 presents a

mixed-integer program of E-VRPTWMF. The ALNS is detailed in Section 4.5. The parameter setting,

the generation of new E-VRPTWMF instances and the numerical studies on the new instances and on the

test instances of related problems are presented in Section 4.6. Section 4.7 summarizes and concludes

the chapter.

4.2. Literature

In the following, we discuss the literature related to the E-VRPTWMF. First, we review works on routing

alternative fuel vehicles. Second, VRP papers that explicitly model energy consumption or account for

the impact of load distribution are presented. Third, we discuss other related fields.

Conrad and Figliozzi (2011) study the Recharging VRP, in which vehicles with limited range can

recharge at certain customer locations. Time window constraints are considered and a fixed recharg-

ing time is assumed. The authors compute bounds to predict average tour lengths and study the impact

of driving range, recharging times, and time window existence. Erdoğan and Miller-Hooks (2012) pro-

pose two heuristics for the Green VRP. In this problem, alternative fuel is only available at dedicated

points that have to be visited en route. Refueling time is assumed fixed and no capacity or time win-

dow constraints are included. Other works addressing the Green VRP or extensions of this problem are

(Schneider, Stenger, and Hof, 2015; Montoya et al., 2014; Felipe et al., 2014). Schneider, Stenger, and

Goeke (2014) develop a hybrid of variable neighborhood search (VNS) and tabu search (TS) to address

E-VRPTW, in which ECVs with a limited battery capacity may visit recharging stations en route, and

customer time windows and vehicle capacities have to be respected. Recharging time is proportional to

the amount of energy required to recharge the battery to full capacity. Desaulniers et al. (2016) present

branch-price-and-cut algorithms to address four variants of the E-VRPTW. In a recent working paper,

Hiermann, Puchinger, and Hartl (2014) combine the E-VRPTW and the Fleet Size and Mix VRP with

Fixed costs (FSMF). In the resulting E-FSMVRPTW an unlimited number of ECVs with different bat-

tery capacities and vehicle-independent routing costs are available. Cost-optimal routes are determined

by means of an ALNS enhanced by a labeling algorithm. Barco et al. (2013) propose a comprehensive

approach for planning the deployment of electric vehicles (EVs) in an airport shuttle service. They first

determine a minimal consumption graph, on which routing decisions under consideration of a limited

battery capacity are made. The assignment of vehicles to routes and the scheduling of recharges is de-

termined by an evolutionary algorithm. Finally, Preis, Frank, and Nachtigall (2014) investigate an ECV

routing model with customer time windows, fixed recharging times, and the goal of minimizing total

energy consumption, which depends on gradients and cargo load. A simple TS algorithm based on a

relocate operator is presented.

The second strand of relevant literature integrates energy considerations and the resulting fuel consump-

tion and emissions of ICCVs into routing models. Bektaş and Laporte (2011) propose the PRP, in

which they estimate the price of pollution and introduce it as part of the objective function, besides

costs for driver wages and fuel consumption. They allow the choice between different speed levels for

arcs and consider speed, gradients, and load to calculate the fuel consumption and corresponding emis-

sions. Demir, Bektaş, and Laporte (2011) provide a comparison of vehicle emission models. Demir,

73



Bektaş, and Laporte (2012) propose an ALNS and a speed optimization algorithm for the PRP. Com-

putational experiments show moderate run-times for problem sizes with 200 customers. Demir, Bektaş,

and Laporte (2014b) address a bi-objective function for the PRP that models the conflicting targets of

minimizing driver time and usage of fuel and thus avoid the problematic representation of emissions in

terms of monetary cost. An extensive review of related literature can be found in (Demir, Bektaş, and

Laporte, 2014a). Kopfer, Schönberger, and Kopfer (2014) use CPLEX to solve a heterogeneous VRP

with the objective of minimizing fuel consumption. To this end, the authors derive linear relationships

between fuel consumption and cargo load for the different vehicle types.

Xiao et al. (2012) calculate a fuel consumption rate depending on the mass of the remaining cargo and

they find significant fuel saving potential for the capacitated VRP (CVRP). Zhang, Tang, and Fung (2011)

propose a multi-depot VRP that includes, in the objective function, a cost term that increases linearly with

the amount of cargo and the traveled distance and which depends on an empirical cost factor. Another

related problem is the fuel or emission shortest-path problem, which may be used to define the arc set of

a VRP. Nie and Li (2013) propose such a model to minimize total operating cost while meeting a limit

on emissions.

E-VRPTWMF is further related to VRPs with intermediate replenishment facilities (Crevier, Cordeau,

and Laporte, 2007; Hemmelmayr, Doerner, et al., 2013) or with distance constraints (Laporte, Nobert,

and Desrochers, 1985) due to the similar structure of the problems, to refueling problems with a dense

infrastructure (Bousonville et al., 2011; Suzuki, 2012), to energy shortest path problems (Artmeier et

al., 2010), and in a more general sense to the field of green logistics from an operations research (OR)

perspective (Sbihi and Eglese, 2010; Dekker, Bloemhof, and Mallidis, 2012). Moreover, the planning

of electric infrastructure has attracted increasing research interest (He et al., 2013; Nie and Ghamami,

2013; Wang and Lin, 2013; Mak, Rong, and Shen, 2013). Finally, Davis and Figliozzi (2013) and Feng

and Figliozzi (2013) address the competitiveness of ECVs. Davis and Figliozzi (2013) show that ECVs

are competitive in comparison to ICCVs for certain application scenarios with large route distances and

low vehicle speeds.

4.3. Energy Consumption Models

Our VRP model incorporates two specific characteristics of employing ECVs, namely a reduced operat-

ing range and the possibility to recharge at certain stations in order to increase this range. The necessity

to visit a recharging station and the recharging time at the station depend on the battery level of the

ECV, which itself depends on the energy consumption along the route. Previous works on vehicle rout-

ing problems with refueling or recharging (Erdoğan and Miller-Hooks, 2012; Schneider, Stenger, and

Goeke, 2014) assume energy consumption to be a linear function of the traveled distance. In this work,

we use a more realistic model and consider the following factors that influence the energy consumption

of a vehicle:

Vehicle Mass: The mass of the vehicle is composed of its curb mass and the load. Concerning the

routing of the vehicle, the order in which customers are visited and cargo is unloaded, i.e., the

distribution of the load during the course of a route, can strongly influence the energy consumption

on the route.

74



Speed: Accelerating a vehicle and keeping the vehicle in motion at a certain speed consumes energy

due to the aerodynamic and rolling resistance that has to be overcome. We assume travel speeds to

be constant on a each arc, i.e., we neglect acceleration phases, but vehicle speed may be different

for different arcs. Note that in principle vehicle speed could be handled as a decision variable and

could be increased in order to fulfill time window requirements and be reduced to decrease energy

consumption (see, e.g., Demir, Bektaş, and Laporte, 2014a). As traffic conditions have a strong

impact on vehicle speed, we chose to refrain from this modeling.

Gradient of the terrain: We assume a non-flat terrain with grades. Going uphill requires higher amounts

of energy than traveling flat terrain or going downhill. ECVs may be able to recharge their battery

when going downhill, a process called recuperation.

In the following, we present the methods for determining the energy consumption of ECVs (Section 4.3.1)

and ICCVs (Section 4.3.2).

4.3.1. Energy Consumption of Electric Vehicles

We calculate the energy consumption of an ECV in three steps as shown in Figure 4.1. First, we de-

termine the mechanical power PM using the model presented in (Bektaş and Laporte, 2011), which

determines energy consumption based on the factors described above (mass, speed, gradient) and the

physical environment (road surface, vehicle dimensions, engine properties). Second, PM is translated

into the electric power PE that the electric motor needs to provide the required amount of mechanical

power. This amount is determined by the efficiency of the electric motor.

Third, the required electric power is converted into the amount of power that has to be taken from the

battery (PB), which depends on the battery efficiency. In the following, these three steps are described

in more detail.

Vehicle mass m Gradient αSpeed ν

Air resistance Fa Rolling resistance Fr Gravitional force Fg

Mechanical power PM

Electric power PE

Battery power PB

Electrical energy

consumption on arc

Fuel rate FR

Fuel consump-

tion on arc

1

Figure 4.1.: Calculation of required energy and fuel.

The mechanical power PM is needed to overcome rolling resistance and aerodynamic resistance and is

influenced by the gravitational force. Letm denote the total vehicle mass, g the gravitational constant, cr

75



the rolling friction coefficient (which depends on tire pressure, road surface conditions and other factors)

and α the gradient angle. Then the rolling resistance Fr can be determined as:

Fr = cr ·m · g · cos(α).

With ν denoting the speed, cd the aerodynamic drag coefficient, ρa the air density and Af the frontal

area of the vehicle, the aerodynamic resistance is:

Fa =
1

2
· ρa ·Af · cd · ν2.

Adding the gravitational force Fg = m · g · sin(α), the total mechanical power PM is:

PM =
(
m · a+

1

2
· cd · ρ ·A · ν2 +m · g · sin(α) + cr ·m · g · cos(α)

)
· ν, (4.1)

where a denotes the acceleration. As mentioned above, a is assumed to be zero in the following as we

do not consider acceleration and braking processes.

In the second step, the electric power PE that is needed to achieve the required mechanical power PM
is calculated, taking into account energy losses that occur in the electric engine. To this end, we use the

Quantized State System model of an electric engine presented in (Guzzella and Amstutz, 2005). The

authors provide values for the engine efficiency at given pairs of torque and rotational velocity. We

directly convert torque and rotational velocity to mechanical power. Using homogeneous regression,

i.e. a linear regression with a y-axis intercept of zero, on the converted values, we obtain the following

relationship between PM and the discharged electric energy P dE (respectively the recuperated electric

energy P rE) that is described by the regression coefficient φ:

P dE = φd · PM for 0 kW ≤PM ≤ 100 kW ,

P rE = φr · PM for −100 kW ≤PM < 0 kW.

The determined relationship is adequate for a mechanical power demand of up to 100 kW, which we

consider a realistic threshold for commonly employed ECV models.

In the third step, we compute the battery power PB that is necessary to obtain the required electric energy

PE . For this purpose, we use the relationship for converting electric power PE into battery power PB
for a lithium-ion accumulator presented in (van Keulen et al., 2010). The presented relationship does not

account for external effects (e.g., the ambient temperature) or the influence of the current charge level

of the battery. We approximate the given relation by means of a homogeneous regression and obtain as

final equations for discharging (P dB) and recuperating (P rB):

P dB = ϕd · PE for PE ≥ 0 kW ,

P rB = ϕr · PE for PE < 0 kW,

with the regression coefficient ϕ that describes the battery efficiency.

To compute energy consumption on a graph, vehicle mass is defined as a function of the currently loaded

amount of cargo u, i.e., m(u) = mc +mu ·u, where mc is the curb mass of the vehicle and mu the mass

76



of one unit of cargo. Let uj denote the amount of cargo when arriving at customer j (before unloading),

i.e., the amount required to fulfill the demand at customer j and all following customers. Further, let

Pij(uj) denote the constant mechanical power demand over the course of an arc (i, j) with a load that is

equivalent to the remaining customer demand:

Pij(uj) =
(1

2
· cd · ρ ·A · ν2 +m(uj) · g ·

(
sin(αij) + cr · cos(αij)

))
· νij .

Then, the battery power demand on this arc is given by PB(PE(Pij(uj)))). Multiplying with the asso-

ciated travel time tij of the arc yields the electric energy consumption bij for traveling this particular

arc:

bij(uj) =

φd · ϕd · Pij(uj) · tij if Pij(uj) ≥ 0 kW ,

φr · ϕr · Pij(uj) · tij if Pij(uj) < 0 kW .
(4.2)

All variables except the amount of cargo uj are constant for a given arc. Therefore, it is possible to split

bij(uj) into a fixed and a load-dependent part and precompute parts of the expression.

4.3.2. Energy Consumption of Combustion Engines

Mechanical power can be directly translated to diesel fuel consumption as shown in (Demir, Bektaş, and

Laporte, 2012). The fuel rate is given by FR = ξ
κ·ψ (kND + PM

η·ηtf ), where PM is the mechanical power

as defined in Equation (4.1), ξ the fuel-to-air mass ratio, κ the heating value of typical diesel fuel, k the

engine friction factor, N the engine speed, D the engine displacement, ψ a factor converting the fuel rate

from gram/second to liter/second , η the efficiency parameter for diesel engines and ηtf the drive train

efficiency. We assume that driving downhill in gear can reduce the engine consumption down to 0. The

constant fuel rate over the course of an arc is given by:

FRij(uj) = max(
ξ

κ · ψ (kND +
Pij(uj)

η · ηtf
), 0).

Thus, the fuel consumption of an ICCV traversing an arc (i, j) with cargo uj can be calculated as:

fij(uj) = tij · FRij(uj). (4.3)

4.4. The Electric Vehicle Routing Problem with Time Windows and Mixed
Fleet

We define E-VRPTWMF on a complete, directed graph G = (V ′0,N+1, A). V = {1, . . . , N} denotes the

set of customers, F the set of recharging stations, F ′ the set of visits to vertices in F and V ′ denotes the

union of V and F ′. Vertices 0 and N+1 denote instances of the depot, and all routes start at 0 and end at

N+1. Inclusion of one or both depot instances is indicated by subscripting the respective set, e.g., the set

V ′0,N+1 contains both instances of the depot. The set of arcs is given by A = {(i, j) | i, j ∈ V ′0,N+1, i 6=
j}.

77



With each vertex i ∈ V ′0,N+1, we associate a nonnegative demand qi (qi = 0, i 6∈ V ), a nonnegative

service time si (si = 0, i 6∈ V ) and a time window [ei, li], within which service at the customer has to

start. Time windows are hard, i.e., starting service late is not allowed but waiting in case of early arrival

is possible. The time window [e0, lN+1] at the depot specifies the scheduling horizon of the problem.

Each arc is described by the following properties: distance dij , travel speed νij , travel time tij = dij/νij

and a factor αij representing the gradient of the terrain.

A mixed vehicle fleet of fixed size consisting ofmE ECVs andmIC ICCVs is positioned at the depot. All

vehicles have the same maximal cargo loading capacity Q. On each visit to a recharging station, ECVs

are recharged to their maximum battery capacity B. The recharging time depends on the recharging rate

r and the difference betweenB and charge level on arrival at the station. Electricity and fuel consumption

of a vehicle traveling an arc are determined by the models introduced in Section 4.3.

Thus, E-VRPTWMF can be formulated as a (nonlinear) mixed-integer program. For every arc (i, j) ∈ A,

we define the following binary decision variables: Variables xEij are equal to 1 if an arc (i, j) is traveled

by an ECV, variables xIC
ij if the arc is traveled by an ICCV. Otherwise, the decision variables are 0.

Variables τi define the arrival time, uj the remaining cargo (before unloading) and yi the remaining

charge level on arrival at vertex i ∈ V ′0,N+1. Table 4.1 summarizes the variables and parameters of our

model.

Table 4.1.: Variable and parameter definitions of the E-VRPTWMF model.
0, N+1 depot instances
F ′ set of visits to recharging stations, dummy vertices of the set of recharging stations F
V set of customer vertices V = {1, . . . , N}
V ′ set of customers and recharging visits: V ′ = V ∪ F ′
dij distance between vertices i and j
tij travel time between vertices i and j
Q vehicle capacity
r recharging rate
B battery capacity
bij(uj) electric energy consumption between between vertices i and j depending on cargo uj (Equation (4.2))
fij(uj) fuel consumption between between vertices i and j depending on cargo uj (Equation (4.3))
qi demand of vertex i, 0 if i 6∈ V
ei earliest start of service at vertex i
li latest start of service at vertex i
si service time at vertex i (s0, sN+1 = 0)
τi decision variable specifying the time of arrival at vertex i
ui decision variable specifying the remaining cargo on arrival at vertex i
yi decision variable specifying the remaining battery capacity on arrival at vertex i
xEij binary decision variable indicating if arc (i, j) is traveled by an ECV
xICij binary decision variable indicating if arc (i, j) is traveled by an ICCV

In this work, we consider three alternative objective functions for E-VRPTWMF:

1. Minimize traveled distance fd:

fd =
∑

i∈V ′0 , j∈V ′N+1, i 6=j

dij (xEij + xIC
ij )→ min. (4.4)

2. Minimize cost fc, consisting of the cost for vehicle propulsion and labor cost. Cost factors cE and

78



cIC denote the cost of electric energy, respective diesel fuel and cD the driver wage per time unit:

fc =
∑

i∈V ′0 , j∈V ′N+1, i 6=j

[cE · bij(uj) · xEij + cIC · fij(uj) · xIC
ij ] +

∑
i∈V ′

cD (xEiN +1 + xIC
iN +1 )(τi + si + tiN +1 )→ min.

(4.5)

3. Minimize cost including cost for battery replacement fcb. The distance traveled by ECVs is mul-

tiplied by a cost factor cB that accounts for the cost of battery replacement. It is expressed as cost

per kilometer by dividing acquisition cost by the expected total lifetime mileage:

fcb = fc +
∑

i∈V ′0 , j∈V ′N+1, i 6=j

cB · dij · xEij → min. (4.6)

The constraints of E-VRPTWMF are as follows:∑
j∈V ′

(xEij + xICij ) = 1 ∀i ∈ V (4.7)

∑
j∈V ′

N+1
, i 6=j

xEij ≤ 1 ∀i ∈ F ′ (4.8)

∑
j∈V ′

N+1
, i 6=j

xEij −
∑

j∈V ′
0 , i 6=j

xEji = 0 ∀i ∈ V ′ (4.9)

∑
j∈VN+1, i 6=j

xICij −
∑

j∈V0, i6=j

xICji = 0 ∀i ∈ V (4.10)

∑
j∈V ′

xE0j ≤ mE (4.11)

∑
j∈V

xIC0j ≤ mIC (4.12)

τi + (si + tij) (xEij + xICij )− l0 (1− xEij − xICij ) ≤ τj ∀i ∈ V0,∀j ∈ V ′N+1, i 6= j (4.13)

τi + tij · xEij + r (B − yi) xEij − (l0 + rB) (1− xEij) ≤ τj ∀i ∈ F ′,∀j ∈ V ′N+1, i 6= j (4.14)

ei ≤ τi ≤ li ∀i ∈ V ′0,N+1 (4.15)

ui − qi (xEij + xICij ) +Q (1− xEij − xICij ) ≥ uj ≥ 0 ∀i ∈ V ′0 ,∀j ∈ V ′N+1, i 6= j (4.16)

0 ≤ u0 ≤ Q (4.17)

yi − bij(uj) · xEij +B (1− xEij) ≥ yj ∀i ∈ V, ∀j ∈ V ′N+1, i 6= j (4.18)

B − bij(uj) · xEij ≥ yj ∀i ∈ F ′0,∀j ∈ V ′N+1, i 6= j (4.19)

B ≥ yi ≥ 0 ∀i ∈ V ′0,N+1 (4.20)

xEij , x
IC
ij ∈ {0, 1} ∀i, j ∈ V ′0,N+1, i 6= j (4.21)

Constraints (4.7) enforce that each customer visit has exactly one successor. Constraints (4.8) guar-

antee that each visit to a recharging station is used at most once, i.e., not all recharging visit vertices

must be used. Flow conservation constraints (4.9) and (4.10) guarantee for each vertex that the num-

ber of incoming arcs is equal to the number of outgoing arcs for each vehicle type. Constraints (4.11)

and (4.12) ensure that the maximum number of employed vehicles adheres to the fleet composition.

Constraints (4.13) and (4.14) link arrival times at vertices i and j if the arc from i to j is traveled. Con-

straints (4.14) cover the case with recharging visits: Here, recharging times that depend on the remaining

charge level yi when arriving at station i have to be taken into account. Constraints (4.15) guarantee

79



arrival within the time window at each vertex. Constraints (4.16) enforce the fulfillment of demand at

customer vertices. Constraint (4.17) restricts the initial cargo load level to the maximum capacity of a

vehicle.

Constraints (4.18) set the battery level at a vertex succeeding a customer visit in accordance with the

energy consumption for discharging or recuperating. For vertices succeeding a visit to a recharging

station or the depot, constraints (4.19) set the battery level equal to the maximum battery capacity reduced

by the energy required on the respective arc. Here, the battery is either discharged or recuperation

takes place. Constraints (4.20) restrict the charge level to the maximum battery capacity in order to

prevent recuperation beyond the maximal capacity. Finally, binary decision variables are defined in

constraints (4.21).

Although our model covers several real-world aspects of ECVs, we still use some simplifications. Gradi-

ent and speed are considered fixed over the course of an arc. However, a more fine-grained topology and

acceleration patterns can be integrated, e.g., by considering a path p(i, j) instead of the arc (i, j). A path

p(i, j) is defined by a fixed sequence of n(i, j) intermediate vertices (v0 = i, v1, . . . , vn(i,j)−1, vn(i,j) =

j) located on arc (i, j), where each of the vertices marks a change in gradient or acceleration. Let

A(p(i, j)) denote the arcs of path p. Now, we can use the energy consumption function for ECVs in

Equation (4.2) to calculate the energy consumption on each arc a ∈ A(p(i, j)) of the path p:

ba(uj) = Pa(uj) · ta ·

φd · ϕd if Pa(uj) ≥ 0 kW ,

φr · ϕr if Pa(uj) < 0 kW .

Now, given the energy consumptions on each arc of path p(i, j), we can recursively define the energy

consumption on arc (i, j) taking into account that (i) recuperation is restricted by the total battery capac-

ity, and (ii) that we are not allowed to have a negative remaining battery level at any point traveling p. To

do so, we let yvk denote the battery level at each intermediate vertex vk and define:

yv0(uj) = yi,

yvk(uj) =

min(yvk−1
(uj)− bvk−1vk(uj), B) if yvk−1

(uj)− bvk−1vk(uj) ≥ 0

−∞ else
k = 1, . . . , n(i, j),

bij(uj) = yv0(uj)− yvn(i,j)
(uj).

The original Equation (4.3) for calculating the fuel consumption of ICCVs can be adapted in analoguous

fashion. In this way, the energy consumption on an arc (i, j) is defined by means of the energy consump-

tions on the path p(i, j), which can be used to represent gradients and accelerations in an arbitrarily

fine-grained fashion.

Our model uses additional simplifications. We neglect the influence of outside temperatures on battery

capacity. A related issue is the need to power the car heating, which requires additional energy in contrast

to ICCVs, for which the waste heat is sufficient to ensure a comfortable temperature in the driver cabin.

Further, we neither consider the dependency between charge level and battery efficiency (Hoke et al.,

2011), nor the non-linear relationship between charge level and recharging duration (Marra et al., 2012),

which are present in real-world recharging processes.

80



4.5. Adaptive Large Neighborhood Search for Solving E-VRPTWMF

This section details our ALNS for addressing E-VRPTWMF. Large neighborhood search (LNS), orig-

inally introduced by Shaw (1998), iteratively destroys and repairs potentially larger parts of an initial

solution in order to gradually improve the solution. Ropke and Pisinger (2006b) proposed ALNS, an

approach that uses several destroy and repair methods and selects the operators in each iteration based

on a probability that depends on the previous success of the respective method.

Our ALNS is inspired by the work of Ropke and Pisinger (2006b) but differs regarding several aspects.

First, most ALNS implementations operate on feasible solutions (see, e.g., Ropke and Pisinger, 2006b;

Ropke and Pisinger, 2006a; Demir, Bektaş, and Laporte, 2012) and do not reinsert removed customers

if their insertion leads to a constraint violation. Contrary to this, we always insert all removed customers

in each ALNS step and handle the resulting infeasible solutions by means of a penalty mechanism (cp.

Hemmelmayr, Cordeau, and Crainic, 2012; Dayarian et al., 2013). Second, we select the number of

customers for removal from dynamically changing intervals. Third, our ALNS features a local search

component, which is used for intensification, while the main purpose of the ALNS component is the

diversification of search. Finally, we introduce a new mechanism for the acceptance decision of the

ALNS, where solutions with objective function values calculated based on different penalty factors are

compared.

Figure 4.2 shows a pseudocode overview of our solution method. First, a preprocessing step is applied

to determine arcs that cannot be part of a feasible solution (Section 4.5.1). Next, we generate an initial

solution S with a given number of ECVs and ICCVs (Section 4.5.3). The initial solution and solutions in

the improvement phase may be infeasible and are handled through a penalty mechanism (Section 4.5.2).

ALNS and LS are iteratively applied to improve the solution (Section 4.5.4).

1: preprocessArcList()
2: S ← generateInitialSolution(mE , mIC )
3: while termination criterion not met do

{Draw number of customers δ to remove from intervals. Probabilities of intervals are given by π||.}
4: δ ← drawNumberOfCustomersToRemove(π||)

{Apply randomly selected destroy operator. Probabilities of destroy operators are given by π−.}
5: S′ ← applyDestroy(S, δ, π−)

{Apply randomly selected repair operator. Probabilities of repair operators are given by π+.}
6: S′ ← applyRepair(S′, π+)

{Apply local search. Penalty factors are updated based on a dynamic mechanism.}
7: S′ ← applyLocalSearch(S′)
8: if acceptSA(S′, S) then
9: S ← S′

10: end if
11: σ||, σ−, σ+ ← updateScores(S′)
12: π||, π−, π+ ← updateSelectionProbabilites(σ||, σ−, σ+)
13: end while

Figure 4.2.: Overview of the ALNS algorithm.

81



4.5.1. Preprocessing

In the preprocessing step, we remove all arcs that cannot be part of a feasible solution, i.e., their inclusion

leads to a constraint violation. An arc (v, w) is infeasible if one of the following conditions holds:

1. v, w ∈ V ∧ qv + qw > Q,

2. v ∈ V ′0 , w ∈ V ′N+1 ∧ ev + sv + tvw > lw,

3. v ∈ V ′0 , w ∈ V ′ ∧ ev + sv + tvw + sw + twN+1 > l0,

4. v ∈ V ′0 , w ∈ V ′ ∧ αvw ≥ 0 ∧ bvw(qw) > B,

5. v ∈ V ′0 , w ∈ V ′∧∀j ∈ F ′0, i ∈ F ′N+1 : αjv, αvw, αwi ≥ 0∧bjv(qv+qw)+bvw(qw)+bwi(0) > B.

Rules 1–3 eliminate arcs because of capacity and time window violations (cp. Schneider, Stenger, and

Goeke, 2014). Rules 4 and 5 are specific to E-VRPTWMF and only hold for ECV routes. Rule 4 de-

termines those arcs that cannot be traveled without violating battery capacities, even if only the demand

qw has to be transported on the arc. Note that a gradient αvw ≥ 0 is necessary as otherwise recuper-

ation might render the considered arc feasible. Rule 5 additionally considers visits to the best possible

recharging station before and after the arc. Note that Rule 4 is not contained in Rule 5 as we have to

make the additional assumption that all involved gradients αjv, αwi are greater or equal to zero.

As Rules 4 and 5 are only valid for ECV routes, we keep two separate reduced arc sets: The set A−

contains all arcs that are feasible for ICCVs. The set A−E ⊆ A− excludes arcs that are not feasible in

ECV routes.

4.5.2. Generalized Cost Function and Penalty Calculation

During the search, we allow infeasible solutions in order to be more flexible in traversing the solution

space. The objective function of a solution S is computed by a generalized cost function fgen(S) (see,

e.g., Gendreau, Hertz, and Laporte, 1994):

fgen(S) = f(S) + γcap · Lcap(S) + γtw · Ltw (S) + γbatt · Lbatt(S).

f(S) denotes the considered objective function: total traveled distance fd(S) (Equation 4.4), routing

costs without battery deprecation fc(S) (Equation 4.5), or routing costs including battery deprecation

fcb(S) (Equation 4.6). Violations of capacity Lcap(S), time windows Ltw (S) and battery capacity

Lbatt(S) are scaled by penalty factors γcap , γtw and γbatt .

The penalty factors are dynamically adjusted as follows: If a constraint has been violated for βpen it-

erations, the respective penalty factor is multiplied by a factor % to guide the search towards feasibility.

In analogous manner, the respective penalty factor is divided by % if the constraint is met for βpen it-

erations. The penalty factors are initially set to γ0
cap = γ0

tw = γ0
batt = 100 and are restricted to the

intervals [γmin
cap , γ

max
cap ], [γmin

tw , γmax
tw ] and [γmin

batt , γ
max
batt ] respectively. In order to scale the penalty factors

to the problem setting and the order of magnitude of the objective function value, we set γmax
cap ,γmax

tw and

γmax
batt to the objective function value of the initial solution. The lower limits γmin

cap ,γmin
tw and γmin

batt are set

to 0.5.

The efficient calculation of changes in constraint violations caused by a LS move is crucial for the

quality of our algorithm. Vehicle capacity violations are not affected by the energy consumption model

82



considered in this work and therefore changes in capacity violations can be calculated in constant time as

described in (Kindervater and Savelsbergh, 1997). However, the considered energy consumption model

influences the calculation of changes in battery capacity and time window violations for ECV routes.

ICCV routes are also affected if the objective functions fcb or fc are used.

Let a sequence of customers 〈v0, v1, . . . , vn, vn+1〉, with v0 and vn+1 representing the depot, define a

route r. A solution S is defined as the union of the set of ECV routes SE = {rk, k = 1, ...,mE} and the

set of ICCV routes SIC = {rk, k = mE + 1, ...,mE + mIC }, i.e., S = SE
⋃
SIC . Let Vert(r) denote

the set of vertices that are part of route r.

We are interested in the constraint violations of a route that is constructed by concatenating two partial

routes 〈v0, . . . , u〉 and 〈w, . . . , vn+1〉 or by inserting a vertex v between the two partial routes. To calcu-

late battery capacity violations of ECV routes, we define the following two variables for each vertex of

a route r: Υ→vi is the battery charge that is needed to travel either from the previous visit to a recharging

station or from the depot (in case no recharging visit is part of the route) to vertex vi. Υ←vi is the battery

charge that is needed to travel from vi to either the next recharging station or the depot. The variables

are calculated as follows:

Υ→vi =

max(bvi−1vi(uvi), 0) if vi−1 ∈ F ′0
max(Υ→vi−1

+ bvi−1vi(uvi), 0) if vi−1 /∈ F ′0
i = 1, . . . , n+ 1,

Υ←vi =

max(bvivi+1(uvi+1), 0) if vi+1 ∈ F ′n+1

max(Υ←vi+1
+ bvivi+1(uvi+1), 0) if vi+1 /∈ F ′n+1

i = 0, . . . , n.

The battery capacity violation of a solution S can be calculated by summing up the individual violations

at every visit to a recharging station and on return to the depot:

Lbatt(S) =
∑
rk∈SE

( ∑
vi∈Vert(rk)∩F ′N+1

max (Υ→vi −B, 0)
)

.

If energy consumption is independent of cargo load, changes in battery capacity violation can be calcu-

lated in O(1) for conventional neighborhood operators (see Schneider, Stenger, and Goeke, 2014). If

load is considered, concatenation of partial routes or inserting a customer vertex between partial routes

alter the energy consumption of all arcs preceding the point of route concatenation or vertex insertion.

Thus, individual battery capacity violations at each recharging visit before and the next visit directly after

the point of change are modified and therefore necessitate a recalculation. To lower the computational

burden, we substitute a surrogate violation L̃batt(S) for the real battery capacity violation Lbatt(S). The

surrogate assumes that violations at the preceding recharging visits remain unmodified. In this way, we

are able to compute surrogates of the battery capacity violations in O(1). Note that the insertion of a

recharging station can be handled in constant time without using surrogates.

Time window violations are calculated based on the principle of time travel described in (Nagata, Bräysy,

and Dullaert, 2010; Schneider, Sand, and Stenger, 2013), which allows to compute the change in time

window violation for conventional inter-route moves inO(1). In short, the violation of a time window is

83



counted once at the vertex v where the violation occurs and for the calculation of consecutive violations

the vehicle is assumed to start service at the latest feasible moment lv. Schneider, Stenger, and Goeke

(2014) adapt this principle to the E-VRPTW. Here, if the partial route 〈w, . . . , vn+1〉 contains a recharg-

ing station z, i.e., 〈w, . . . , z, z+1, . . . , vn+1〉, variables have to be recalculated for 〈v, . . . , z+1〉 in case

of vertex insertion and for 〈w, . . . , z+1〉 for route concatenation.

In case of the E-VRPTWMF, for both vertex insertion and route concatenation, a recalculation from the

beginning of the route to the first recharging station contained in the second partial route, i.e., of the

partial route 〈v0, . . . , z+1〉, becomes necessary. This is because the amount of required energy (affected

by the change in mass along the route as explained above) is needed to calculate recharging times. We

again use a surrogate L̃tw (S) to reduce computational effort and assume time window violations of

vertices preceding the point of change to remain unmodified.

The generalized cost function using surrogates for both battery capacity violation and time window

violation is denoted as f̃gen .

4.5.3. Generation of Initial Solution

We generate an initial solution withm = mE+mIC . First, we buildm ECV routes, of whichmIC routes

are later converted to ICCV routes. Each route is initialized with a seed customer. The seed customers

are determined by first sorting the customers in ascending order of their latest start time of service lv
and then selecting the first m entries. The remaining customers in the list are successively inserted into

the existing routes at the cost-minimal position according to the generalized cost function fgen(S). As

soon as a route becomes battery capacity infeasible, recharging visits are added at cost-minimal positions

(according to fgen(S)) until the route again becomes battery feasible.

After all customers are inserted into routes, we convert long routes with strong constraint violations to

ICCV routes by removing recharging visits. More precisely, we sort the routes in descending order of

their contribution to the generalized cost function and select the first mIC entries for conversion.

4.5.4. Solution Improvement

The steps of the solution improvement phase are shown in Figure 4.2. First, we select the number of

customers to be removed in the ALNS step. This number is commonly defined as percentage of the

overall number of customers N and is usually drawn from a given interval [Ωmin ,Ωmax ]. In preliminary

studies, we found that the size of this interval influences the quality of the solution and that a good choice

for the interval is instance-dependent. Therefore, we use an adaptive mechanism to select promising

intervals (in analogous fashion to the selection of destroy and repair operators). To this end, we split the

original interval in ω subintervals without overlap. ALNS then chooses a subinterval according to the

probabilities π||i , i = 1, ..., ω. From the subinterval, we draw a random number δ of customers and/or

stations. Afterwards, we consecutively apply a destroy and repair operator (Section 4.5.4.1).

The resulting solution is improved by a LS step (Section 4.5.4.2), which determines a locally optimal

solution S′ using dynamic penalties as described in Section 4.5.2. Solution acceptance is based on a sim-

ulated annealing (SA) criterion (Section 4.5.4.3). Finally, selection probabilities of the destroy and repair

84



operators, and of the intervals for the numbers of customers to remove are adjusted (Section 4.5.4.4). To

find a feasible solution, the search is run for at most βfeas iterations. After a feasible solution is found,

the search continues for another βobj to improve the solution.

4.5.4.1. Destroy and Repair Operators

Our ALNS uses the following destroy operators:

Random removal removes arbitrary vertices. We implement two versions, the first only removes cus-

tomers, the second removes customers and recharging visits.

Worst removal was introduced by Ropke and Pisinger (2006b) and aims at removing vertices that are

unfavorable at their current position in a route. We sort all vertices in descending order of their

contribution to the cost of the current solution, which is determined as the change in f̃gen that

is caused by removing the respective vertex. From this list the vertex at position bD · bχworst c is

chosen, where D is the size of the list, b is a uniform random number ∈ [0, 1] and χworst a param-

eter to weight the impact that the change in objective value has on the selection. Again a version

considering customers and a version considering customers and recharging visits is implemented.

Shaw removal was introduced in (Shaw, 1997). The idea is to remove customers that are similar to

each other with respect to several criteria and are thus likely to be interchangeable. We define

the relatedness between two customers i and j by geographical distance dij , difference in demand

|qi − qj | and difference of the earliest start time of service |ei − ej |. Each criterion is weighted

with a parameter χ and normalized. The relatedness can be calculated as:

R(i, j) = χd
dij

max
i,j∈V

(dij)
+ χq

|qi − qj |
max
i∈V

(qi)−min
i∈V

(qi)
+ χe

|ei − ej |
max
i∈V

(ei)−min
i∈V

(ei)
.

The first customer to be removed is selected randomly. Then, in each iteration, one customer is

drawn randomly from the already removed customers and all non-removed customers are sorted

in ascending order of their relatedness value to the selected customer (a small value of R(i, j)

corresponds to a high relatedness). From this list, the customer at position bD · bχshaw c is chosen,

where D is the size of the list, b is a uniform random number ∈ [0, 1] and χshaw a parameter to

weight the impact that relatedness has on the selection. Shaw removal is only defined for customer

vertices.

Cluster removal identifies and removes clusters of geographically close vertices and was proposed in

(Ropke and Pisinger, 2006a). First, a route is selected at random and vertices contained in the

route are separated into two clusters. To this end, Kruskal’s algorithm for the minimal spanning

tree problem is stopped when two subtrees remain. We randomly select one of the trees as cluster

for removal. For the next clustering step, we determine the route closest to a randomly selected

customer of the removed cluster. This process is repeated until the required number of vertices

is removed. If the overall number of customers in a cluster exceeds the number of vertices that

are still to be removed, we randomly select customers from the cluster until the given number is

reached. Only one version of cluster removal exists, which does not distinguish between customers

and recharging visits.

85



Station vicinity removal is a special type of the cluster removal operator, which aims at reordering cus-

tomer visits in the vicinity of recharging stations. We observed that routes in these regions tend to

be complex and intertwined because recharging and customer visits have to be scheduled in a man-

ner respecting time window requirements and battery capacity level. To define the vicinity of a sta-

tion, we randomly choose a radius r in the interval [χmin
radius ·maxi,j∈V (dij), χ

max
radius ·maxi,j∈V (dij)],

i.e., the radius r is determined instance-dependent as percentage χmin
radius (χmax

radius ) of the maximal

distance between two customers. Next, we randomly select a recharging station R and remove all

customers i with a distance diR < r. This step is repeated until q customers are removed. We

implement a second version that also removes all visits to the considered recharging stations.

The following repair operators are used in our ALNS:

Greedy insertion iteratively performs the best possible insertion. For each still unassigned vertex the

increase of the surrogate cost function f̃gen for the insertion at every route position is evaluated

and the vertex and position with minimal cost increase are chosen.

Regret insertion was described by Ropke and Pisinger (2006b) in the context of ALNS. The idea is

to anticipate the future effect of an insertion operation. The k-regret value for each vertex is

calculated as the difference between the insertion cost in the best route and in the k-best route, i.e.,

k describes the extent to which the future is anticipated. The cost of insertion is evaluated with

f̃gen under the assumption that the insertion is performed at the best possible position within the

route. We implement the regret-2 and regret-3 heuristic.

Greedy and Regret insertion are both realized in four variants: the first version only inserts cus-

tomer vertices, the second version inserts customer vertices and recharging visits, and versions

three and four additionally use a diversification penalty to evaluate the costs of inserting a ver-

tex. The diversification penalty is based on the continuous diversification principle introduced in

(Cordeau, Laporte, and Mercier, 2001) and later adapted to the E-VRPTW by Schneider, Stenger,

and Goeke (2014).

GRASP insertion is based on the greedy randomized adaptive search (GRASP) metaheuristic intro-

duced in (Feo and Resende, 1989). Analogous to greedy insertion, the cost increase for the inser-

tion of all remaining vertices is calculated and the vertices are stored in a list of sizeD in ascending

order of cost increase. Instead of selecting the best vertex for insertion, a random vertex of the first

bχgrasp · Dc best vertices is selected, where χgrasp denotes the degree of randomness. GRASP

only inserts customer vertices.

4.5.4.2. Local Search

The LS follows a best-improvement strategy using a composite neighborhood of Relocate (Savelsbergh,

1992), Exchange (Savelsbergh, 1992), 2-opt* (Potvin and Rousseau, 1995) and an operator for inserting

and removing visits to recharging stations, called stationInRe (Schneider, Stenger, and Goeke, 2014).

Relocate and Exchange are applied for intra- and inter-route moves, 2-opt* is only defined for inter-route

moves. Moreover, Relocate is defined to handle recharging visits and 2-opt* allows to modify routes

including recharging visits, while Exchange is explicitly not applied to recharging visits. 2-opt* is not

86



allowed between ECV and ICCV routes. Relocate moves inserting recharging visits into ICCV routes

are forbidden and also stationInRe moves on ICCV routes.

Moves are realized by means of the generator arc principle introduced in (Toth and Vigo, 2003). Moves

leading to the inclusion of an infeasible arc, i.e., moves that insert an arc from the set A \ A− into an

ICCV route or moves inserting an arc from the set A \ A−E into an ECV route, are not evaluated. As

described in Section 4.5.2, we use a surrogate cost function whose evaluation is less demanding (see,

e.g., Crainic et al., 1993; Gendreau and Potvin, 2010).

In each iteration of the LS, we determine a list M of the best ε solutions that can be generated in the

composite neighborhood. The costs used to determine whether a solution is included in the list are either

surrogate or exact cost values that were determined in previous iterations (Due to caching, exact values

are available for moves that have been evaluated in previous iterations and that only affect routes which

have not been changed since the exact evaluation). Then, for each solution with surrogate cost included

in the list, we evaluate the exact cost and carry out the best of the ε moves based on exact costs.

The LS stops as soon as a local optimum (based on the current penalty factors) is reached.

4.5.4.3. Acceptance Criterion

In order to overcome local optima, ALNS uses an SA-based acceptance criterion (Kirkpatrick, Gelatt,

and Vecchi, 1983). Besides always accepting an improving solution, SA accepts a new deteriorating

solution with a certain probability that depends (i) on the difference between cost values of the new and

the current solution and (ii) a temperature which follows a predefined cooling schedule.

As described above, we allow infeasible solutions and handle them with a dynamic penalty mechanism.

Consequently, the cost value of a solution is strongly dependent on the current values of the penalty

factors. The dynamic nature of the penalty factors raises the question which penalty factors to use in

order to compare the cost value of the current and the new solution. Evaluating both solutions with

different penalty factors, e.g., the ones that were valid at the time the solutions were created, can be

misleading because differences in cost values may be solely caused by the difference in penalty factors.

Let (γScap , γ
S
tw , γ

S
batt) be the vector of penalty factors used for evaluating fgen(S) and (γS

′
cap , γ

S′
tw , γ

S′
batt)

the penalty factors used for evaluating fgen(S′) at the time of solution creation. Then, in order to make

solutions comparable, the cost values feval
gen (S) and feval

gen (S′) to compute the acceptance probability are

determined with penalty factors:

(γeval
cap , γ

eval
tw , γeval

batt ) = (
1

2
· (γS′cap + γScap),

1

2
· (γS′tw + γStw ),

1

2
· (γS′batt + γSbatt)).

If solutions stay infeasible for longer periods, penalty factors and thus the absolute difference between

cost values of solutions increase. To avoid the undesired effect that these (potentially better) solutions

have a low chance to be accepted because of high penalty factors, we use the relative difference between

cost values to calculate the acceptance probabilities:

∆frel (S
′, S) =

feval
gen (S′)− feval

gen (S)

feval
gen (S)

.

87



Thus, we always accept improving solutions, while, given the current temperature T , deteriorating solu-

tions are accepted with probability:

p(S, S′, T ) = e
−∆frel (S

′,S)

T .

The starting temperature is chosen in a fashion that a solution that deteriorates the current solution by ι%

is accepted with a probability of 50%. The temperature is decreased by a constant factor such that the

temperature is below Tthreshold = 0.0001 in the last 20% of iterations.

4.5.4.4. Adaptive Mechanism

Adaptive weight adjustment assesses the importance of each destroy and repair operator by modifying

the probability π with which the respective operator is chosen based on the previous performance of the

operator. In more detail, we periodically adjust the probabilities of the destroy operators (π−i ), of the

repair operators (π+
i ), and of the intervals from which the number of customers to remove is drawn (π||i ).

Performance is measured by assigning scores σi to the destroy and repair operators and the intervals. If

an operator or interval i is used in the current iteration of ALNS, we increase the respective score by σA
if the following LS results in a new global best solution, by σB if a new improving solution is found,

and by σC if a new deteriorating solution is found and accepted by the SA-based criterion. We consider

a solution to be new if we did not obtain the cost value fgen(S′) before (evaluated with a standard set of

penalty factors γcap , γtw , γbatt = 1).

After βπ iterations, we update the weights λ||i , λ−i and λ+
i to:

λi := w
σi
ni

+ (1− w)λi,

where w denotes the weight of the current phase of evaluation, (1 − w) the weight put on the previous

success of the operator or interval, and ni the number of times the operator or interval was selected

during the last βπ iterations. Then, the scores of each operator or interval are reset 0. Subsequently, we

determine the corresponding probabilities π||i , π−i and π+
i to:

πi =
λi∑
i λi

.

4.6. Numerical Studies

We conduct numerical experiments on two different types of instances: First, we use newly generated

E-VRPTWMF instances to investigate (i) the influence of using the surrogate objective function on the

solution process, (ii) the effect of considering the actual distribution of load in comparison to assuming

constant load over all traveled arcs, and (iii) the influence of different objective functions on the structure

and costs of generated solutions and the share that ECVs contribute to this cost. Second, to assess the

performance of ALNS in terms of solution quality and run-time, we conduct tests on available benchmark

instances of the related problems VRPTW and E-VRPTW.

88



The section is structured as follows. The parameter tuning is presented in Section 4.6.1, the generation

of the E-VRPTWMF benchmark instance in Section 4.6.2, the tests performed on these instances in

Section 4.6.3, and the tests on the benchmark instances of related problems in Section 4.6.4.

4.6.1. Experimental Environment and Parameter Setting

All experiments are conducted on a desktop computer with an Intel Core i7 processor at 2.8 GHz, 8

GB of RAM, running Windows 7 Enterprise. Our ALNS is implemented as single-thread code in Java.

The parameter setting of the ALNS is determined using a subset of 20 randomly selected E-VRPTWMF

instances with 50 and 100 customers (details on the generation of E-VRPTWMF instances are given in

Section 4.6.2). Parameter tests are carried out using the objective of minimizing traveled distance.

During the development of our algorithm, we identified (i) a set of parameters that have a stronger

influence on the solution quality of the algorithm, and (ii) for each of these parameters a well-performing

base setting. In the parameter tuning, we investigate the influence of modifying this base setting in two

directions, i.e., three settings are tested per parameter. More precisely, we consecutively assess each of

the parameters and always keep the best setting found for this parameter for the tuning of the remaining

parameters. The order in which the parameters are tuned is determined randomly. Table 4.2 shows, for

each parameter, the three tested settings and the deviation ∆fd of the best solution found in 10 runs with

the respective setting to the result obtained with the best setting for this parameter. The best setting for

each parameter is given in bold.

Table 4.2.: Results of different parameter settings on a subset of the E-VRPTWMF instances. The best
setting for each of the parameters is marked in bold and used as final setting. Results for
the tested settings for each parameter are given as deviation of the best solution achieved in
10 runs with the tested setting to the result obtained with the best setting for the respective
parameter (∆fd).

ALNS
βπ 25 50 75

∆fd(%) 0.03 0.02 0.0

(σA, σB , σC) (20, 10, 10) (10, 20, 10) (5, 5, 10)
∆fd(%) 0.0 0.0 0.10

w 0.2 0.4 0.6
∆fd(%) 0.28 0.23 0.0

Ωmax 30% 40% 50%
∆fd(%) 0.04 0.11 0.0

(χmin
radius , χ

max
radius) (1%, 15%) (5%, 15%) (5%, 20%)

∆fd(%) 0.13 0.01 0.00

ι 10% 30% 50%
∆fd(%) 0.02 0.0 0.08

LS
% 1.2 1.5 2.0

∆fd(%) 0.10 0.14 0.0

ε 25 50 75
∆fd(%) 0.0 0.10 0.09

In the described fashion, we test the following parameters: the number of iterations after which the

weights of ALNS are adjusted (βπ), the scores used in the adaptive weight adjustment (σA, σB, σC), the

89



reaction factor (w) of the weight adjustment, the maximal percentage of removed customers (Ωmax ), the

minimal and maximal radius for the station vicinity removal operator (χmin
radius , χ

max
radius ), the percentage of

deterioration that is accepted at the beginning of SA (ι), the penalty update factor (%), and the number of

solutions in each iteration that are evaluated with the original objective function instead of the surrogate

(ε). We observe that none of the tested settings leads to a significant deterioration of solution quality (the

deviation is always below 0.28%). Consequently, our ALNS seems relatively insensitive to parameter

variations.

In order to achieve a good tradeoff between run-time and solution quality, we set the maximal number

of ALNS iterations to find a feasible solution to βfeas = 2000 and the number of iterations for further

improvement to βobj = 750 for all instances with less than 100 customers. For larger instances, we

use βobj = 750/(0.01 · |N |)1.5 in order to keep run-times acceptable. Table 4.3 summarizes the final

parameter setting, which is used for all of the following experiments.

Table 4.3.: Final parameter setting of ALNS used in the numerical studies.

ALNS ALNS LS

βfeas 2000 (Ωmin ,Ωmax ) (10%, 50%) ε 25
βobj (|N | ≤ 100) 750 ω 5 γ0

cap , γ
0
tw , γ

0
batt 100

βobj (|N | > 100) 750/(0.01 · |N |)1.5 (χmin
radius , χ

max
radius ) (5%, 15%) γmin

cap , γ
min
tw , γmin

batt 0.5
βπ 75 χgrasp 0.2 γmax

cap , γ
max
tw , γmax

batt fgen(Sinital)
(σA, σB , σC) (10, 20, 10) χworst 6 % 2.0
w 0.6 χshaw 6 βpen 2
ι 30% (χd, χq, χe) (6, 4, 5)

4.6.2. Generation of E-VRPTWMF Instances

This section describes the generation of E-VRPTWMF test instances. The instances are based on the PRP

instances proposed in (Demir, Bektaş, and Laporte, 2012). The customer locations in these instances

represent real cities in the UK, customer demands and time windows are generated in random fashion.

The benchmark consists of 9 instance sets grouped according to the size of the instances contained in

each set (10–200 customers). Each set contains 20 instances with the respective size. Contrary to the

PRP, speed is not a decision variable in E-VRPTWMF and we set a fixed speed that corresponds to the

upper speed limit given in the PRP instances, i.e, we set vij = 90 km/h, ∀i, j ∈ V ′0,N +1 . In this way,

we also ensure that all instances can be feasibly solved (with respect to time windows) when using a fleet

of ICCVs.

The number of recharging stations is adapted to the number of customers N of the instances. More

precisely, we locate b0.1 · |N |c recharging stations at randomly drawn customer locations and one addi-

tional station at the depot. To determine the number of ECVs and ICCVs of each instance, we proceed

as follows: We start with a total vehicle number m that corresponds to the number of ICCVs given in the

PRP solutions of Demir, Bektaş, and Laporte (2012), and gradually substitute ICCVs with ECVs until

either mE = bm/2c, or our ALNS is no longer able to find a feasible solution.

We use the physical constants, vehicle properties and coefficients provided in (Demir, Bektaş, and La-

porte, 2012). The battery capacity is set to 80 kWh, which is a realistic for ECVs according to Davis

and Figliozzi (2013). Efficiency parameters for engine and battery during discharge and recuperation are

90



determined as described in Section 4.3.1. The recharging power at stations is assumed equivalent to that

of the Tesla supercharger network for passenger cars (Tesla Motors, Inc., 2014).

When using the objectives fc or fcb , we assume the following cost structure: Driver costs are equal for

ICCVs and ECVs and correspond to the time spend en route. Hourly wages are given in (Demir, Bektaş,

and Laporte, 2012). The diesel price, electricity price and costs for battery replacement used for calculat-

ing driving costs are taken from (Davis and Figliozzi, 2013). To determine the battery replacement cost

on a per kilometer basis, we assume that a battery has to be replaced after 241350 kilometers (150000

miles) at a cost of 600 $/kWh . Table 4.4 summarizes the data.

Table 4.4.: Data of E-VRPTWMF instances.

Notation Value Description Source

g 9.81 m/s2 gravitational constant Demir, Bektaş, and Laporte (2012)
ρ 1.2041 kg/m3 air density Demir, Bektaş, and Laporte (2012)
A 3.912 m2 frontal surface Demir, Bektaş, and Laporte (2012)
mc 6350 kg curb mass Demir, Bektaş, and Laporte (2012)
mu 1 kg mass per unit
Q 3650 capacity Demir, Bektaş, and Laporte (2012)
cr 0.01 coefficient rolling resistance Demir, Bektaş, and Laporte (2012)
cd 0.7 coefficient aerodynamic drag Demir, Bektaş, and Laporte (2012)

k 0.2 kJ/(rev · l) engine friction factor Demir, Bektaş, and Laporte (2012)
ξ 1 fuel-to-air mass ratio Demir, Bektaş, and Laporte (2012)
η 0.9 efficiency parameter diesel engines Demir, Bektaş, and Laporte (2012)
ηtf 0.4 efficiency parameter drive train Demir, Bektaş, and Laporte (2012)
κ 44 kJ/g heating value diesel fuel Demir, Bektaş, and Laporte (2012)
ψ 737 l/g conversion factor Demir, Bektaş, and Laporte (2012)
N 33 rev/s engine speed Demir, Bektaş, and Laporte (2012)
D 5 l engine displacement Demir, Bektaş, and Laporte (2012)

B 80 kWh battery capacity Davis and Figliozzi (2013)
r 120−1 h/kW recharging rate Tesla Motors, Inc. (2014)
φd 1.184692 efficiency parameter (motor mode) see Section 4.3.1
φr 0.846055 efficiency parameter (generator mode) see Section 4.3.1
ϕd 1.112434 efficiency parameter discharging see Section 4.3.1
ϕr 0.928465 efficiency parameter recuperation see Section 4.3.1

cD 13.1368 $/h driver wages, conversion ratio 1.6421 $/£ Demir, Bektaş, and Laporte (2012)
cIC 1.07 $/l diesel fuel cost Davis and Figliozzi (2013)
cE 0.1106 $/kWh electricity cost Davis and Figliozzi (2013)
cB 0.1989 $/km battery replacement cost see above

4.6.3. Experiments on E-VRPTWMF Instances

We conducted tests with our ALNS for the complete set of instances described above. The detailed results

are given in Appendix C as comparison values for researchers addressing the same instances in the future.

In this section, we describe the numerical tests that investigate the research questions introduced above:

1. impact of using the surrogate objective function (Section 4.6.3.1)

2. effect of considering load in the calculation of energy consumption (Section 4.6.3.2)

3. influence of different objective functions and the resulting level of usage of ECVs (Section 4.6.3.3).

91



4.6.3.1. Influence of Surrogate Cost Function

As described in Section 4.5.4.2, the LS determines the best move in each iteration based on exactly

evaluating a listM of promising candidate moves that were found using a surrogate cost function f̃gen .

We assess the impact of using the surrogate cost function (i) on the course of the search, and (ii) on the

solution quality of our ALNS.

First, we conduct 50 iterations of ALNS on the 100-customer instance E-UK_100_03 with the objective

of minimizing traveled distance. The size of the listM is set to ε = 50. In each iteration, we calculate the

best move based on the surrogate cost function, i.e., we fillM using the surrogate cost, then determine

the exact costs of the entries in M and select the best entry. The quality of this move is assessed by

determining its rank among the possible moves in this iteration if all moves were evaluated exactly (not

only those inM).

In Figure 4.3, we plot these ranks. Applications of destroy and repair operators are marked with an “x”.

Thus, we identify how often and to what degree we miss the best possible move. In 45% of iterations

we choose the rank 1 move and in 59% of iterations we choose one of the top 3 moves. Only in 3.5% of

iterations, the selected move is not among the top 10.

-1

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Local search iterations

Rank of best move according to surrogate cost function Applications of ALNS destroy and repair operators

Figure 4.3.: Effect of using the surrogate cost function f̃gen to determine the best move in 50 ALNS
iterations on the 100-customer instance E-UK_100_03. The figure depicts the rank of the
selected best move among all possible moves evaluated with the exact cost function.

Second, we carry out additional experiments to investigate the effect of using the surrogate cost function

on the solution quality of ALNS by comparing the solutions obtained with the surrogate and with the

exact cost function. To keep computation times reasonable, the tests are run on a reduced subset of the

E-VRPTWMF instances, which is obtained by randomly selecting 5 out of 20 instances for each problem

size. Due to the very high run-times when using the exact cost function, we further have to restrict the

size of the considered instances to maximally 75 customers for this study. Summarizing, we randomly

select 5 of the 20 instances for the problem sizes |N | = 5, 10, 15, 20, 25, 50, 75 and conduct 10 runs for

92



each instance with the surrogate cost function and with the exact cost function, following the objective

of minimizing traveled distance. The size of the listM is again set to ε = 50.

For the exact cost function, Table 4.5 reports the best solution found in the 10 runs (fbest
d ), the average

solution quality (favg
d ) and the average run-time in minutes (tavg ) as averages of groups of instances of

the same size. For the surrogate cost function, the same measures are evaluated and the solution quality

is reported as gaps ∆best
d and ∆avg

d to the solutions obtained with the exact cost function. The run-time

using the surrogate cost function is presented using a run-time reduction factor T , which is obtained by

dividing the average run-time using the exact cost function by the average run-time using the surrogate

cost function. At the bottom of the table, average results over the investigated instance groups are given.

The results show that using the surrogate cost function has only minimal negative effect on the solution

quality concerning the best as well as the average solution quality. However, the run-time savings using

the surrogate are really impressive with a factor T of 194 for the 75-customer instances.

Table 4.5.: Comparison of the solution quality using the exact cost function and using the surrogate cost
function. Gaps are reported in percent and run-times in minutes.

exact cost function surrogate cost function

Inst. group fbestd favgd tavg ∆best
d ∆avg

d T
E-UK10 456.60 456.60 0.13 0.00 0.00 6.45
E-UK15 663.04 663.06 0.73 0.00 0.00 13.94
E-UK20 837.71 837.76 1.97 0.00 0.00 21.41
E-UK25 940.80 941.40 6.07 0.00 -0.03 27.81
E-UK50 1408.05 1415.55 100.08 0.08 0.38 107.94
E-UK75 1932.65 1939.69 419.49 0.15 0.50 194.04

4.6.3.2. Effect of Considering the Distribution of Load on Solution Quality and Cost Estimates

This study investigates the importance of considering the distribution of load when routing a mixed fleet

of ICCVs and ECVs. To this end, we compare the quality of the solutions obtained based on the actual

load distribution to the solutions obtained with the following two load estimates. First, the cautious

load estimate is to assume that all vehicles are fully loaded during their whole trip (ū = Q). This is

a worst-case estimate in some sense because it implies maximal energy consumption. This estimate

guarantees that all obtained solutions are still feasible with respect to battery capacity and time windows

if the actual load distribution is considered. The second load estimate assumes the average case that the

vehicles travel half-loaded (ū=Q/2). This may result in solutions that are infeasible when taking into

account the actual load due to either violations of battery capacity, i.e., ECVs that get stranded, or due to

violations of time windows, which are caused by a wrong estimation of the recharging time of ECVs.

We are interested in:

• the quality of solutions S obtained with the estimates S(ū=Q) and S(ū=Q/2) when afterwards

evaluating the costs considering the actual load (denoted as fuic (S)), and

• the error of determined costs when the solutions are obtained and evaluated based on the load

estimates (denoted as f ū=Q
c (S) and f ū=Q/2

c (S)). These cases are interesting as these are the cost

estimates that will often be used in practical planning situations.

We conduct experiments addressing the above points on a reduced subset of the E-VRPTWMF instances

93



(5 randomly chosen instances out of 20 for each group), again, in order to keep computation times

reasonable. For each instance, 10 ALNS runs are performed following the objective of minimizing costs

without battery costs fc and the reported results are based on the best of the 10 runs. Table 4.6 provides

for each of the instances the number of ICCVs (mIC) and ECVs (mE), the cost of the solution obtained

based on the actual load distribution and evaluated using the actual load (fuic (S(ui))), and the gap (to

the costs fuic (S(ui))) of the solutions obtained considering load estimates and evaluated using (i) the

actual load (columns ∆fuic (S(ū = Q)) and ∆fuic (S(ū = Q/2))), and (ii) the load estimate (columns

∆f ū=Q
c (S(ū = Q)) and ∆f

ū=Q/2
c (S(ū = Q/2))). Instances for which the solution found with the

estimate ū=Q/2 is not feasible if the actual load is considered are marked with a dash. At the bottom

of the table, average results over the investigated instances are given.

As mentioned above, using the estimate ū = Q guarantees feasibility, however, the obtained solutions

show an average gap of 1.89% if the actual load distribution is used for evaluating costs. Further, cost

evaluation based on this estimate leads to an overestimation of costs by more than 5% on average. On

the other hand, using the estimate ū=Q/2 leads to infeasible solutions for 17 out of 45 instances and an

average gap of approximately 1% over the instances for which a feasible solution is found. Costs based

on this estimate underestimate real costs by −0.94%.

The results show that the quality of solutions obtained using estimates is clearly inferior to the quality

of the solutions obtained considering the actual load. Moreover, costs evaluated with estimates strongly

differ from real costs. Both deviations are stronger in the case of ū = Q. However, in the context of

ECVs, using a load estimate other than this “worst-case estimate” may result in infeasible solutions due to

stranded ECVs or time window violations caused by wrong assessment of the required recharging times

of ECVs. This is different from ICCV fleet, where load estimates can only lead to wrong cost estimations

and wrong routing decisions but not to infeasible solutions. Also note that it may happen that using a

certain load estimate, it is not possible to find a feasible solution although a feasible solution exists for

the actual load distribution. For example, this may be the case if time windows are very restrictive and

ECVs have to travel with very little load in order to avoid recharging operations.

Overall, the study clearly demonstrates the importance of considering load information in the route

planning of ECVs from a feasibility as well as a cost perspective. While the problem of stranded ECVs

may be counteracted by allotting high safety margins, an adequate consideration of energy consumption

allows to better utilize expensive battery capacity. Finally, we note that our ALNS is capable to solve all

instances with the same number of vehicles as determined originally for the PPR and we can substitute

approximately half of the ICCVs in the fleet (mE/(mE +mIC ) = 47.2%) by ECVs.

4.6.3.3. Assessment of Different Objective Functions and Cost Contribution of ECVs

In this study, we compare the solutions obtained with the different objective functions of minimizing

traveled distance (fd), costs without battery depreciation cost (fc) and costs including battery costs (fcb)

in terms of their performance regarding the different objectives. In the second part of the study, we

investigate to what extent ECVs are employed when different objective functions are used.

We conduct 10 ALNS runs with each of the objective functions fd, fc and fcb on the reduced in-

stance set described above, and we assess the results of the best of the 10 runs for each instance.

94



Table 4.6.: Effect of considering the distribution of load on the solution quality and cost estimates. For
each instance, the number of ICCVs (mIC) and ECVs (mE) and the results of the best of
10 ALNS runs are reported. fuic (S(ui)) denotes the cost (in dollar) of the solution obtained
based on the actual distribution of load and evaluated using the actual load, ∆fuic (S(ū=Q))
and ∆fuic (S(ū=Q/2)) the gaps (to the costs fuic (S(ui))) obtained based on load estimates
and evaluated using the actual load, and ∆f ū=Q

c (S(ū=Q)) and ∆f
ū=Q/2
c (S(ū=Q/2)) the

gaps obtained based on load estimates and evaluated using load estimates. Gaps are reported
in percent. Instances with an infeasible solution are marked with a dash.

S(ui) S(ū=Q) S(ū=Q/2)

Inst. mIC mE fui
c ∆fui

c ∆f ū=Q
c ∆fui

c ∆f
ū=Q/2
c

E-UK10_04 1 1 207.14 0.25 4.20 0.25 0.46
E-UK10_09 1 1 188.32 0.06 4.23 0.06 0.39
E-UK10_13 1 1 207.96 0.32 4.52 0.32 0.31
E-UK10_18 1 1 159.86 5.61 9.47 5.61 0.10
E-UK10_20 1 1 165.06 7.60 13.15 7.98 1.35

E-UK15_01 2 0 313.46 0.00 3.38 0.00 -0.33
E-UK15_07 2 1 267.11 0.00 4.36 0.00 0.92
E-UK15_09 2 1 265.72 6.23 9.17 0.09 -4.88
E-UK15_12 2 1 319.79 0.96 5.33 0.96 0.63
E-UK15_15 1 1 231.21 12.64 18.01 0.00 -10.66

E-UK20_05 2 1 316.31 3.00 6.29 2.38 -0.79
E-UK20_06 2 1 366.85 0.36 3.64 0.04 -0.69
E-UK20_09 2 1 337.95 0.00 3.95 0.00 0.36
E-UK20_14 2 2 410.33 6.79 10.92 3.59 -2.74
E-UK20_15 2 1 338.95 0.09 4.07 0.00 0.19

E-UK25_10 2 2 367.30 2.74 6.50 0.26 -2.15
E-UK25_11 2 2 376.18 1.98 5.89 − -1.54
E-UK25_12 2 2 426.02 2.15 6.15 − -3.93
E-UK25_16 2 2 348.59 2.61 6.40 0.94 -1.41
E-UK25_19 2 2 441.59 4.07 8.28 − -2.06

E-UK50_11 4 3 646.02 1.32 5.11 1.03 -0.04
E-UK50_12 4 3 586.88 0.74 4.17 0.24 -0.45
E-UK50_13 4 3 587.82 0.26 3.33 − -1.21
E-UK50_16 4 3 582.00 0.96 3.95 1.12 -0.07
E-UK50_18 4 4 695.65 1.00 3.89 0.71 -0.63

E-UK75_02 6 5 854.35 2.37 5.20 0.54 -2.00
E-UK75_04 6 5 833.66 0.92 3.79 0.06 -0.76
E-UK75_09 5 5 933.15 1.32 4.69 − -1.20
E-UK75_12 5 5 859.67 0.57 3.74 0.11 -0.62
E-UK75_17 6 5 914.59 1.09 4.18 − -0.11

E-UK100_01 7 7 1247.03 0.07 2.91 − -0.96
E-UK100_03 7 6 1120.41 0.80 3.90 − -0.52
E-UK100_06 7 7 1237.11 1.59 4.74 0.47 -1.45
E-UK100_07 6 6 1079.63 0.86 3.92 − -1.40
E-UK100_17 8 7 1308.21 1.43 4.48 − -0.90

E-UK150_01 10 10 1527.75 1.77 4.35 − -1.00
E-UK150_02 10 10 1758.03 2.16 5.14 − -2.23
E-UK150_03 10 9 1535.77 0.88 3.40 0.87 -0.20
E-UK150_13 10 9 1692.97 1.42 4.32 − -0.92
E-UK150_17 10 10 1728.11 3.09 6.24 − -2.59

E-UK200_03 14 13 2212.82 0.82 3.68 -0.09 -1.09
E-UK200_05 14 13 2316.20 -0.06 2.69 − -0.94
E-UK200_08 14 13 2217.84 2.10 4.91 − 0.19
E-UK200_13 13 12 2284.02 0.02 2.98 0.15 -0.10
E-UK200_16 14 13 2183.56 0.10 2.84 − 0.08

Avg. 1.89 5.34 0.99 -0.94

95



Table 4.7 reports the results as averages over the instance groups with different customer numbers

10, 15, 20, 25, 50, 75, 100, 150 and 200. Let Sx, x ∈ {d, c, cb} denote the solution obtained when mini-

mizing with objective fx and let fy(S), y ∈ {d, c, cb} denote the objective value of evaluating solution

S with objective function fy. The table reports the average values over the instance group for the so-

lutions Sd obtained with the objective of minimizing traveled distance (columns fd(Sd), fc(Sd), and

fcb(Sd)), and the gaps (to these values) of the objective values of the solutions obtained when mini-

mizing costs (columns ∆fd(Sc), ∆fc(Sc), and ∆fcb(Sc)) and when minimizing costs including battery

costs (columns ∆fd(Scb), ∆fc(Scb), and ∆fcb(Scb)).

The results show that the ALNS is effective with regard to the different optimization objectives: The best

results found with respect to a certain objective function are always found when optimizing according

to this objective. The gaps of the solutions found with other objectives are partly significant with nearly

5%. In particular, the results show that the traditional objective of minimizing traveled distance does not

provide satisfying solutions when costs for fuel (diesel and electricity), labor, and battery are considered.

This is in line with the results of Bektaş and Laporte (2011) for pure ICCV fleets, who note similar effects

considering the cost components fuel, labor and emission costs. If battery costs are included, the quality

of distance-minimizing solutions rises as traveled distance becomes more expensive (there is only a gap

of −3.84% for ∆fcb(Scb) compared to a gap of −4.92% for ∆fc(Sc)).

In Table 4.8, we report the share that ECVs contribute to the traveled distance of the solutions obtained

with the different objective functions, denoted as dE (f(S)). If ICCVs and ECVs were used to the same

extent, ECVs would contribute with mE/(mE + mIC ) = 47.2% to the traveled distance. We find that

when minimizing traveled distance, ECVs travel a noticeably smaller part of the total distance because

long routes will mostly be assigned to ICCVs in order to save detours. The share of traveled distance

rises significantly when costs without battery costs are considered because ECV travel is cheaper than

ICCV travel if only fuel and electricity consumption is considered. Finally, if costs including battery

costs are considered, the contribution of ECVs decreases perceptibly because ECVs become relatively

expensive if battery deprecation costs are added to the travel costs.

Table 4.7.: Comparison of the different objective functions fd, fc and fcb. Results of the best of 10 ALNS
runs, averaged over instance groups are reported. Sx, x ∈ {d, c, cb} denotes the solution
obtained when minimizing with objective fx and fy(S), y ∈ {d, c, cb} denotes the objective
value (in dollar, respectively km) of evaluating solution S with objective function fy. The
results for using the cost-minimizing objectives fc and fcb are given as gaps to the values
obtained using the distance-minimizing objective fd in percent.

Sd Sc Scb

Inst. group fd(Sd) fc(Sd) fcb(Sd) ∆fd(Sc) ∆fc(Sc) ∆fcb(Sc) ∆fd(Scb) ∆fc(Scb) ∆fcb(Scb)

E-UK10 456.60 198.61 219.65 2.54 -6.50 -3.39 2.14 -2.95 -5.71
E-UK15 663.04 295.67 321.21 1.60 -5.53 -2.37 2.24 -2.82 -3.73
E-UK20 837.71 373.99 418.87 2.08 -5.37 -3.13 1.01 -4.65 -4.76
E-UK25 940.80 404.09 477.41 1.64 -3.02 -1.01 0.77 -2.19 -3.16
E-UK50 1409.00 665.59 766.10 4.16 -6.92 1.22 2.45 -4.52 -4.22
E-UK75 1935.64 937.70 1088.39 2.24 -6.23 -1.78 2.00 -4.19 -5.51
E-UK100 2666.67 1250.15 1475.69 2.84 -4.14 -0.43 1.91 -3.01 -3.46
E-UK150 3487.07 1705.31 2007.53 3.15 -3.34 0.15 1.47 -2.90 -3.04
E-UK200 4671.72 2316.99 2697.74 3.91 -3.20 0.79 3.57 -1.75 -0.94

Avg. 1896.47 905.35 1052.51 2.68 -4.92 -1.11 1.95 -3.22 -3.84

96



Table 4.8.: Share in percent that ECVs contribute to the traveled distance of the solutions obtained with
the different objective functions.

Inst. group dE (fd(Sd)) dE (fd(Sc)) dE (fd(Scb))

E-UK10 23.92 29.80 16.18
E-UK15 19.92 25.76 16.57
E-UK20 25.66 29.42 23.94
E-UK25 39.32 42.57 35.71
E-UK50 35.30 53.23 33.82
E-UK75 39.18 48.11 33.00
E-UK100 42.76 49.83 39.41
E-UK150 43.34 50.47 41.07
E-UK200 40.92 49.31 41.11

Avg. 34.48 42.06 31.20

4.6.4. Performance of our ALNS on Instances of Related Problems

To assess the performance of the proposed ALNS, we conduct experiments on available benchmark

instances for the related problems VRPTW and E-VRPTW, which are both special cases of the E-

VRPTWMF. In the VRPTW, only ICCVs are available and no energy consumption is considered. In

the E-VRPTW, only ECVs are available and instead of the energy consumption function described in

Section 4.3, consumed energy is a linear function of the distance traveled. The following two sections

present the detailed results.

4.6.4.1. Performance of ALNS on VRPTW Instances

We use the well-known Solomon 100-customer instances as VRPTW benchmark set (Solomon, 1987).

The set contains 56 instances, which are grouped according to the distribution of customer locations—

random (R), clustered (C), random-clustered (RC)—and the considered scheduling horizon. Heuristic

methods for VRPTW use a hierarchical objective (minimize number of vehicles first, minimize traveled

distance second). Our ALNS is not designed to minimize vehicle routes but to minimize traveled distance

with a given number of vehicles. Therefore, we set the initial number of routes for each instance to the

best known number given in the literature. If ALNS is not able to determine a feasible solution with the

given number of vehicles after βfeas iterations, the number of vehicles is increased by one.

As comparison method for our ALNS, we use the currently best-performing VRPTW method in the

literature, the memetic algorithm proposed by Nagata, Bräysy, and Dullaert (2010) (NBD). Note that

for all Solomon instances the solution found by NBD corresponds to the best-known solution (BKS)

in the literature (Vidal, Crainic, et al., 2013). Table 4.9 reports the best solution with respect to the

vehicle number m and the distance traveled f out of 10 runs for our ALNS (out of five runs for NBD).

Results are given as averages over the instance groups R1, R2, C1, C2, RC1 and RC2. Finally, the

cumulative number of vehicles (CNV) and the cumulative traveled distance (CTD) over all instances are

reported. ALNS achieves a gap to NBD of 0% concerning the CNV and a gap of 0.37% with regard

to the CTD. Although a direct comparison of run-times between different platforms (using different

operating systems, programming languages, and compilers) is always difficult, we state that ALNS has

an average computation time of 87 seconds per run compared to 300 seconds of NBD. These results

97



prove the capability of ALNS to find high-quality VRPTW solutions in fast computation times. This is a

prerequisite to be able to address the computationally demanding E-VRPTWMF instances.

Table 4.9.: Results of ALNS on Solomon benchmark instances in comparison to the currently best
VRPTW heuristic from the literature by Nagata, Bräysy, and Dullaert (2010) (NBD). We
report the number of vehicles m and the traveled distance f of the best of 10 runs for the
ALNS, and of five runs for NBD. Average results for each instance group, the CNV and the
CTD are given.

Inst. group NBD (m | f ) ALNS (m | f )

R1 11.92 | 1210.34 11.92 | 1215.60
R2 2.73 | 951.03 2.73 | 958.02
C1 10.0 | 828.38 10.0 | 828.38
C2 3.0 | 589.86 3.0 | 589.86
RC1 11.5 | 1384.16 11.5 | 1388.76
RC2 3.25 | 1119.24 3.25 | 1123.37

CNV 405 405
CTD 57187 57397

4.6.4.2. Performance of ALNS on E-VRPTW Instances

Experiments for the E-VRPTW are conducted on the instance set presented in (Schneider, Stenger, and

Goeke, 2014), where also a detailed description of the instances can be found. The set contains 56

instances which are based on the Solomon VRPTW instances but additionally contain 21 recharging

stations. The vehicle fleet consists solely of ECVs with a limited battery capacity, whose energy con-

sumption depends linearly on the distance traveled. Recharging times at stations are assumed a linear

function of the required charge. The objective of E-VRPTW is hierarchical like in the VRPTW and we

use the numbers of vehicles reported in (Schneider, Stenger, and Goeke, 2014) as start values for our

ALNS. As comparison method, we use the ALNS of Hiermann, Puchinger, and Hartl (2014) (HPH), and

the VNS/TS hybrid of Schneider, Stenger, and Goeke (2014) (SSG).

In Table 4.10, for each instance, we provide the previous BKS as reported in (Hiermann, Puchinger,

and Hartl, 2014; Schneider, Stenger, and Goeke, 2014) in terms of number of vehicles m and traveled

distance f . For the algorithms HPH, SSG, and our ALNS, we report the best result out of 10 runs: the

vehicle number m and the gap of the traveled distance to the BKS (∆best(%)). Since our ALNS uses the

same vehicle numbers as reported in (Schneider, Stenger, and Goeke, 2014), it is only reported once for

SSG. Moreover, for HPH and our ALNS, we additionally provide the average run-time for each instance,

for SSG only the average run-time over all instances is given. A precise comparison of run-times is only

possible for ALNS and SSG because both algorithms were run on the same platform. However, although

HPH was run on a different platform, we think that a rough comparison of run-times may be valid since

all algorithms were run on modern computers with comparable computing power.

Column ALNS lists the overall best results that we found during the testing of our ALNS. The best

solution for each instance is marked in bold. Moreover, we mark in italics those results for which the

number of vehicles used by HPH and SSG/ALNS differ. Finally, the CNV, the averages over the gaps

and the average run-times in minutes are reported at the bottom of the table. The average gap is the

average over all instances, the corrected average gap only includes the instances for which all algorithms

98



use the same number of vehicles. We deem the latter measure more important due to the influence of the

number of vehicles on the traveled distance. It may be quite easy to find a better distance when using one

more vehicle, but this distorts the comparison between the algorithms with regard to traveled distance.

The results show that our ALNS outperforms HPH and SSG. In comparison to SSG, ALNS finds the

same CNV and improves the average gap of the traveled distance from 0.49% to 0.11%. In comparison

to HPH, ALNS is able to reduce the CNV by one vehicle and to improve the distance gap by 0.62%. The

average run-time decreases from about 15 minutes for SSG and HPH to less than 3 minutes. Considering

the solutions found during the overall testing, our ALNS is able to improve the previous BKS for 34

out of the 56 instances, for 20 instances the previous BKS is matched. On average, the previous BKS is

improved by 0.35%.

4.7. Summary and Conclusion

We introduce the E-VRPTWMF, a VRP to optimize the routing of a mixed vehicle fleet consisting of

ICCVs and ECVs. Contrary to existing VRPs for ECVs which assume energy consumption to be a linear

function of traveled distance, we utilize a realistic energy consumption model that incorporates speed,

gradient and load distribution. This is highly relevant in the context of ECVs, as energy consumption

determines the maximal driving range of ECVs and the recharging times at stations. To address the

problem, we develop an ALNS algorithm that is enhanced by a LS for intensification.

In numerical studies on newly designed E-VRPTWMF test instances, we find that consideration of the

actual load strongly improves the quality of the generated solutions in comparison to solutions that are

generated based on load estimates. Moreover, we find that a large number of solutions that are gen-

erated with “optimistic” load estimates are actually infeasible due to battery capacity or time window

violations. We further show that our ALNS works effectively with all of the investigated cost functions

and that the traditional objective of minimizing traveled distance fails to produce high-quality solutions

if routing costs including fuel, labor and battery depreciation are considered. The choice of objective

function additionally has a strong influence on the level of usage of the ECVs in the fleet. Finally, the

performance of the developed algorithm is proven on benchmark instances of related problems: The

ALNS provides convincing results in moderate run-times on the well-known Solomon VRPTW bench-

mark. On E-VRPTW instances, the ALNS outperforms all comparison methods with respect to both

solution quality and run-time.

There are several interesting avenues for future research. From a modeling perspective, the real-world

processes related to ECVs should be modeled in a more realistic fashion, see our discussion at the end

of Section 4.4 on how to integrate topology and acceleration processes. Another important point in this

respect is a more realistic modeling of the recharging processes. From the computational viewpoint,

the development of exact solution methods for solving basic electric VRPs, and the design of efficient

metaheuristics for solving rich variants featuring realistic energy consumption and recharging models as

well as relevant side constraints of practical routing problems are both interesting topics.

99



Table 4.10.: Results of our ALNS on E-VRPTW instances in comparison to those of the ALNS of Hier-
mann, Puchinger, and Hartl (2014) (HPH), and of the VNS/TS of Schneider, Stenger, and
Goeke (2014) (SSG). BKS denotes the previously best known solution.

BKS HPH SSG ALNS ALNS
Inst. m f m ∆best t m ∆best ∆best t f ∆f

c101 12 1053.83 12 0.00 9.16 12 0.00 0.00 1.62 1053.83 0.00
c102 11 1056.47 11 0.07 9.76 11 0.07 0.07 2.61 1051.38 -0.48
c103 10 1041.55 10 0.25 9.15 10 0.00 -0.26 3.61 1034.86 -0.64
c104 10 979.51 10 0.52 11.09 10 0.13 -0.76 4.89 961.88 -1.80
c105 11 1075.37 11 0.00 9.31 11 0.00 0.00 1.82 1075.37 0.00
c106 11 1057.65 11 0.00 9.44 11 0.02 0.00 2.44 1057.65 0.00
c107 11 1031.56 11 0.00 9.66 11 0.00 0.00 2.72 1031.56 0.00
c108 10 1100.32 10 0.83 9.21 10 0.00 -0.13 3.20 1095.66 -0.42
c109 10 1036.64 10 1.43 10.17 10 1.47 -0.29 2.84 1033.67 -0.29
c201 4 645.16 4 0.00 18.11 4 0.00 0.00 1.45 645.16 0.00
c202 4 645.16 4 0.21 21.13 4 0.00 0.00 2.49 645.16 0.00
c203 4 644.98 4 0.00 22.91 4 0.00 0.00 3.48 644.98 0.00
c204 4 636.43 4 0.30 19.70 4 0.00 0.00 3.45 636.43 0.00
c205 4 641.13 4 0.00 20.96 4 0.00 0.00 2.03 641.13 0.00
c206 4 638.17 4 0.00 23.26 4 0.00 0.00 2.33 638.17 0.00
c207 4 638.17 4 0.00 22.68 4 0.00 0.00 2.71 638.17 0.00
c208 4 638.17 4 0.00 22.30 4 0.00 0.00 2.61 638.17 0.00
r101 18 1663.04 18 0.00 8.80 18 0.57 0.46 1.58 1665.62 0.16
r102 16 1488.97 16 0.00 9.85 16 3.15 0.26 2.26 1487.41 -0.10
r103 13 1285.96 13 0.00 9.91 13 1.06 -0.31 2.62 1271.35 -1.14
r104 11 1088.43 11 0.86 8.73 11 0.00 0.21 2.43 1088.43 0.00
r105 14 1461.25 15 -1.87 9.31 14 0.84 -0.51 3.38 1442.35 -1.29
r106 13 1344.66 13 1.38 8.91 13 0.00 -1.13 2.64 1324.10 -1.53
r107 12 1154.52 12 0.94 9.16 12 0.00 -0.26 2.56 1150.95 -0.31
r108 11 1050.04 11 1.66 8.78 11 1.51 1.22 2.63 1050.04 0.00
r109 12 1294.05 13 -3.72 9.48 12 0.00 -2.53 3.76 1261.31 -2.53
r110 11 1126.74 11 2.56 9.15 11 1.49 1.30 3.69 1119.50 -0.64
r111 12 1106.19 12 1.29 9.34 12 1.62 1.61 2.71 1106.19 0.00
r112 11 1026.52 11 1.68 8.70 11 0.00 0.02 2.73 1016.63 -0.96
r201 3 1264.82 3 0.37 27.05 3 0.00 0.21 2.05 1264.82 0.00
r202 3 1052.32 3 0.15 27.60 3 0.00 0.05 2.71 1052.32 0.00
r203 3 895.91 3 0.14 27.81 3 1.89 0.35 3.14 895.54 -0.04
r204 2 788.67 2 0.00 17.86 2 0.24 -0.73 4.55 779.49 -1.16
r205 3 988.67 3 1.35 24.85 3 0.00 0.14 2.08 987.36 -0.13
r206 3 922.70 3 0.00 24.98 3 0.27 0.23 2.60 922.19 -0.06
r207 2 848.53 2 1.33 20.83 2 0.49 0.05 3.46 845.26 -0.39
r208 2 736.60 2 0.49 18.25 2 0.00 0.44 3.52 736.12 -0.07
r209 3 872.36 3 2.10 25.56 3 0.00 0.16 2.66 867.05 -0.61
r210 3 847.06 3 1.94 25.56 3 0.00 0.34 3.11 846.20 -0.10
r211 2 847.45 2 3.09 20.62 2 2.21 -1.41 3.53 827.89 -2.31
rc101 16 1726.91 16 0.00 8.05 16 0.24 0.47 1.45 1726.91 0.00
rc102 14 1659.53 14 0.00 8.57 15 -6.32 -6.15 1.88 1552.08 -6.47
rc103 13 1351.15 13 1.35 8.89 13 0.18 0.02 2.46 1350.09 -0.08
rc104 11 1229.82 11 0.00 8.79 11 1.58 -0.05 2.86 1227.25 -0.21
rc105 14 1475.31 14 0.23 7.88 14 0.55 0.62 1.48 1475.31 0.00
rc106 13 1436.61 13 0.00 7.63 13 0.25 0.17 1.66 1427.21 -0.65
rc107 12 1275.89 12 0.60 8.02 12 0.00 0.04 2.06 1274.89 -0.08
rc108 11 1204.87 11 0.00 7.68 11 2.82 -0.35 2.61 1197.83 -0.58
rc201 4 1444.94 4 1.34 23.02 4 0.16 0.13 1.77 1444.94 0.00
rc202 3 1412.91 3 1.71 25.12 3 0.00 0.45 3.24 1410.74 -0.15
rc203 3 1073.98 3 1.00 26.12 3 0.40 -0.01 3.88 1055.19 -1.75
rc204 3 885.35 3 1.96 26.45 3 0.44 0.80 4.08 884.80 -0.06
rc205 3 1282.58 3 0.00 23.42 3 3.05 0.56 3.19 1273.55 -0.70
rc206 3 1190.75 3 2.35 24.36 3 0.03 0.06 2.69 1188.63 -0.18
rc207 3 995.52 3 2.07 23.75 3 0.00 1.01 3.66 985.03 -1.05
rc208 3 837.82 3 1.20 24.64 3 0.03 -0.18 3.98 836.29 -0.18
CNV 440 442 441
Avg. gap 0.59 0.36 -0.06 -0.52
Avg. gap (corr.) 0.73 0.49 0.11 -0.35
Avg. time 15.92 15.34 2.78

100



Bibliography

Artmeier, A., J. Haselmayr, M. Leucker, and M. Sachenbacher (2010). The shortest path problem revis-

ited: Optimal routing for electric vehicles. In: KI 2010: Advances in Artificial Intelligence. Vol. 6359.

Lecture Notes in Computer Science. Springer, Berlin, pp. 309–316.

Barco, J., A. Guerra, L. Muñoz, and N. Quijano (2013). Optimal routing and scheduling of charge for

electric vehicles: Case study. In: CoRR abs/1310.0145. URL: http://arxiv.org/abs/1310.0145.

Bektaş, T. and G. Laporte (2011). The pollution-routing problem. In: Transportation Research Part B:

Methodological 45 (8), pp. 1232–1250.

Bousonville, T., A. Hartmann, T. Melo, and H. Kopfer (2011). Vehicle routing and refueling: The im-

pact of price variations on tour length. In: Logistikmanagement - Herausforderungen, Chancen, und

Lösungen (Proceedings of LM 11). Vol. 2, pp. 83–101.

Conrad R., G. and A. Figliozzi M. (2011). The recharging vehicle routing problem. In: Proceedings of the

2011 Industrial Engineering Research Conference. Ed. by T. Doolen and E. Van Aken. Reno, USA.

Cordeau, J.-F., G. Laporte, and A. Mercier (2001). A unified tabu search heuristic for vehicle routing

problems with time windows. In: Journal of the Operational Research Society 52 (8), pp. 928–936.

Crainic, T. G., M. Gendreau, P. Soriano, and M. Toulouse (1993). A tabu search procedure for multicom-

modity location/allocation with balancing requirements. In: Annals of Operations Research 41 (4),

pp. 359–383.

Crevier, B., J.-F. Cordeau, and G. Laporte (2007). The multi-depot vehicle routing problem with inter-

depot routes. In: European Journal of Operational Research 176 (2), pp. 756–773.

Davis, B. A. and M. A. Figliozzi (2013). A methodology to evaluate the competitiveness of electric de-

livery trucks. In: Transportation Research Part E: Logistics and Transportation Review 49 (1), pp. 8–

23.

Dayarian, I., G. Crainic T., M. Gendreau, and W. Rei (2013). An Adaptive Large Neighborhood Search

Heuristic for a Multi-Period Vehicle Routing Problem. Tech. rep. 2013-67. CIRRELT, Canada.

Dekker, R., J. Bloemhof, and I. Mallidis (2012). Operations research for green logistics: An overview of

aspects, issues, contributions and challenges. In: European Journal of Operational Research 219 (3),

pp. 671–679.

Demir, E., T. Bektaş, and G. Laporte (2012). An adaptive large neighborhood search heuristic for the

pollution-routing problem. In: European Journal of Operational Research 223 (2), pp. 346–359.

Demir, E., T. Bektaş, and G. Laporte (2011). A comparative analysis of several vehicle emission models

for road freight transportation. In: Transportation Research Part D: Transport and Environment 16 (5),

pp. 347–357.

– (2014a). A review of recent research on green road freight transportation. In: European Journal of

Operational Research 237 (3), pp. 775–793.

– (2014b). The bi-objective pollution-routing problem. In: European Journal of Operational Research

232 (3), pp. 464–478.

Desaulniers, G., F. Errico, S. Irnich, and M. Schneider (2016). Exact algorithms for electric vehicle-

routing problems with time windows. In: Operations Research 64 (6), pp. 1388–1405.

Erdoğan, S. and E. Miller-Hooks (2012). A green vehicle routing problem. In: Transportation Research

Part E: Logistics and Transportation Review 48 (1), pp. 100–114.

101

http://arxiv.org/abs/1310.0145


Felipe, Á., M. T. Ortuño, G. Righini, and G. Tirado (2014). A heuristic approach for the green vehicle

routing problem with multiple technologies and partial recharges. In: Transportation Research Part E:

Logistics and Transportation Review 71, pp. 111–128.

Feng, W. and M. A. Figliozzi (2013). An economic and technological analysis of the key factors af-

fecting the competitiveness of electric commercial vehicles: A case study from the USA market. In:

Transportation Research Part C: Emerging Technologies 26, pp. 135–145.

Feo, T. A. and M. G. C. Resende (1989). A probabilistic heuristic for a computationally difficult set

covering problem. In: Operations Research Letters 8 (2), pp. 67–71.

Gendreau, M., A. Hertz, and G. Laporte (1994). A tabu search heuristic for the vehicle routing problem.

In: Management Science 40 (10), pp. 1276–1290.

Gendreau, M. and J.-Y. Potvin (2010). Tabu search. In: Handbook of Metaheuristics. Ed. by M. Gen-

dreau and J.-Y. Potvin. Vol. 146. International Series in Operations Research & Management Science.

Springer, pp. 41–59.

Guzzella, L. and A. Amstutz (2005). The QSS toolbox manual. Accessed May 10, 2013. URL: http :

//www.idsc.ethz.ch/Downloads/DownloadFiles/qss.

He, F., D. Wu, Y. Yin, and Y. Guan (2013). Optimal deployment of public charging stations for plug-in

hybrid electric vehicles. In: Transportation Research Part B: Methodological 47, pp. 87–101.

Heineken International (2014). Case Studies: Europe’s largest electric truck will drive down emissions.

Sustainability Report 2013. Accessed July 17, 2014. URL: http : / / sustainabilityreport . heineken . com /

Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm.

Hemmelmayr V., C., F. Doerner K., F. Hartl R., and S. Rath (2013). A heuristic solution method for node

routing based solid waste collection problems. In: Journal of Heuristics 19 (2), pp. 129–156.

Hemmelmayr, V. C., J.-F. Cordeau, and G. Crainic T. (2012). An adaptive large neighborhood search

heuristic for two-echelon vehicle routing problems arising in city logistics. In: Computers & Opera-

tions Research 39 (12), pp. 3215–3228.

Hiermann, G., J. Puchinger, and R. F. Hartl (2014). The electric fleet size and mix vehicle routing problem

with time windows and recharging stations. Tech. rep. Accessed July 17, 2014. URL: http: / /prolog.

univie.ac.at/research/publications/downloads/Hie_2014_638.pdf.

Hoke, A., A. Brissette, D. Maksimovic, A. Pratt, and K. Smith (2011). Electric vehicle charge optimiza-

tion including effects of lithium-ion battery degradation. In: Vehicle Power and Propulsion Conference

(VPPC). Chicago, USA: IEEE, pp. 1–8.

International Energy Agency (2012). EV city casebook: A look at the global electric vehicle movement.

Accessed July 17, 2014. URL: http://www.iea.org/publications/freepublications/publication/EVCityCaseboo

k.pdf.

– (2013). EV outlook: Understanding the electric vehicle landscape to 2020. Accessed July 17, 2014.

URL: http://www.iea.org/publications/freepublications/publication/GlobalEVOutlook_2013.pdf.

Jabali, O., T. van Woensel, and A. de Kok (2012). Analysis of travel times and CO2 emissions in time-

dependent vehicle routing. In: Production and Operations Management 21 (6), pp. 1060–1074.

Kindervater, G. and M. Savelsbergh (1997). Vehicle routing: Handling edge exchanges. In: Local Search

in Combinatorial Optimization. Ed. by E. Aarts and J. Lenstra. John Wiley & Sons, pp. 337–360.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing. In: Science

220 (4598), pp. 671–680.

102

http://www.idsc.ethz.ch/Downloads/DownloadFiles/qss
http://www.idsc.ethz.ch/Downloads/DownloadFiles/qss
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://prolog.univie.ac.at/research/publications/downloads/Hie_2014_638.pdf
http://prolog.univie.ac.at/research/publications/downloads/Hie_2014_638.pdf
http://www.iea.org/publications/freepublications/publication/EVCityCasebook.pdf
http://www.iea.org/publications/freepublications/publication/EVCityCasebook.pdf
http://www.iea.org/publications/freepublications/publication/GlobalEVOutlook_2013.pdf


Kleindorfer, P. R., A. Neboian, A. Roset, and S. Spinler (2012). Fleet renewal with electric vehicles at

La Poste. In: Interfaces 42 (5), pp. 465–477.

Kopfer, H. W., J. Schönberger, and H. Kopfer (2014). Reducing greenhouse gas emissions of a heteroge-

neous vehicle fleet. In: Flexible Services and Manufacturing Journal 26 (1-2), pp. 221–248.

Laporte, G., Y. Nobert, and M. Desrochers (1985). Optimal routing under capacity and distance restric-

tions. In: Operations Research 33 (5), pp. 1050–1073.

Mak, H.-Y., Y. Rong, and Z.-J. M. Shen (2013). Infrastructure planning for electric vehicles with battery

swapping. In: Management Science 59 (7), pp. 1557–1575.

Marra, F., G. Y. Yang, C. Traholt, E. Larsen, C. N. Rasmussen, and Y. Shi (2012). Demand profile study

of battery electric vehicle under different charging options. In: Power and Energy Society General

Meeting, 2012. San Diego, USA: IEEE, pp. 1–7.

Montoya, A., C. Guéret, J. E. Mendoza, and J. G. Villegas (2014). A modified multi-space sampling

heuristic for the green vehicle routing problem. Tech. rep. LARIS-EA 7315. Laboratoire Angevin de

Recherche en Ingénierie des Sytèmes, Université d’Angers, France.

Nagata, Y., O. Bräysy, and W. Dullaert (2010). A penalty-based edge assembly memetic algorithm for the

vehicle routing problem with time windows. In: Computers & Operations Research 37 (4), pp. 724–

737.

National Renewable Energy Laboratory (2014). Project startup: evaluating the performance of Frito

Lay’s electric delivery trucks. Accessed July 23, 2014. URL: http://www.nrel.gov/docs/fy14osti/61455.pdf.

Nie, Y. and M. Ghamami (2013). A corridor-centric approach to planning electric vehicle charging in-

frastructure. In: Transportation Research Part B: Methodological 57, pp. 172–190.

Nie, Y. and Q. Li (2013). An eco-routing model considering microscopic vehicle operating conditions.

In: Transportation Research Part B: Methodological 55, pp. 154–170.

Potvin, J.-Y. and J.-M. Rousseau (1995). An exchange heuristic for routeing problems with time win-

dows. In: Journal of the Operational Research Society 46 (12), pp. 1433–1446.

Preis, H., S. Frank, and K. Nachtigall (2014). Energy-optimized routing of electric vehicles in urban

delivery systems. In: Operations Research Proceedings 2012 – Selected Papers of the International

Annual Conference of the German Operations Research Society (GOR). Ed. by S. Helber, M. Breitner,

D. Rösch, C. Schön, J.-M. Graf von der Schulenburg, P. Sibbertsen, M. Steinbach, S. Weber, et al.

Cham: Springer International Publishing, pp. 583–588.

Ropke, S. and D. Pisinger (2006a). A unified heuristic for a large class of vehicle routing problems with

backhauls. In: European Journal of Operational Research 171 (3), pp. 750–775.

– (2006b). An adaptive large neighborhood search heuristic for the pickup and delivery problem with

time windows. In: Transportation Science 40 (4), pp. 455–472.

Savelsbergh, M. (1992). The vehicle routing problem with time windows: Minimizing route duration. In:

ORSA Journal on Computing 4 (2), pp. 146–154.

Sbihi, A. and R. W. Eglese (2010). Combinatorial optimization and green logistics. In: Annals of Oper-

ations Research 175 (1), pp. 159–175.

Schneider, M., B. Sand, and A. Stenger (2013). A note on the time travel approach for handling time

windows in vehicle routing problems. In: Computers & Operations Research 40 (10), pp. 2564–2568.

Schneider, M., A. Stenger, and D. Goeke (2014). The electric vehicle-routing problem with time windows

and recharging stations. In: Transportation Science 48 (4), pp. 500–520.

103

http://www.nrel.gov/docs/fy14osti/61455.pdf


Schneider, M., A. Stenger, and J. Hof (2015). An adaptive VNS algorithm for vehicle routing problems

with intermediate stops. In: OR Spectrum 37 (2), pp. 353–387.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle routing prob-

lems. Tech. rep. Glasgow, Scotland: Department of Computer Science, University of Strathclyde.

– (1998). Using constraint programming and local search methods to solve vehicle routing problems.

In: Principles and Practice of Constraint Programming – CP98. Ed. by M. Maher and J.-F. Puget.

Vol. 1520. Lecture Notes in Computer Science. London, United Kingdom: Springer, pp. 417–431.

Solomon, M. (1987). Algorithms for the vehicle routing and scheduling problems with time window

constraints. In: Operations Research 35 (2), pp. 254–265.

Suzuki, Y. (2012). A decision support system of vehicle routing and refueling for motor carriers with

time-sensitive demands. In: Decision Support Systems 54 (1), pp. 758–767.

Tesla Motors, Inc. (2014). Supercharger. Accessed July 7, 2014. URL: http : / / www . teslamotors . com /

supercharger.

Toth, P. and D. Vigo (2003). The granular tabu search and its application to the vehicle-routing problem.

In: INFORMS Journal on Computing 15 (4), pp. 333–346.

Toth, P. and D. Vigo, eds. (2014). Vehicle Routing: Problems, Methods, and Applications. 2nd ed. MOS-

SIAM Series on Optimization. Philadelphia, USA: SIAM.

van Keulen, T., B. de Jager, A. Serrarens, and M. Steinbuch (2010). Optimal energy management in hy-

brid electric trucks using route information. In: Oil and Gas Science and Technololgy 65 (1), pp. 103–

113.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins (2013). A hybrid genetic algorithm with adaptive

diversity management for a large class of vehicle routing problems with time-windows. In: Computers

& Operations Research 40, pp. 475–489.

Wang, Y.-W. and C.-C. Lin (2013). Locating multiple types of recharging stations for battery-powered

electric vehicle transport. In: Transportation Research Part E: Logistics and Transportation Review

58, pp. 76–87.

Xiao, Y., Q. Zhao, I. Kaku, and Y. Xu (2012). Development of a fuel consumption optimization model

for the capacitated vehicle routing problem. In: Computers & Operations Research 39 (7), pp. 1419–

1431.

Zhang, J., J. Tang, and R. Fung (2011). A scatter search for multi-depot vehicle routing problem with

weight-related cost. In: Asia-Pacific Journal of Operational Research 28 (3), pp. 323–348.

104

http://www.teslamotors.com/supercharger
http://www.teslamotors.com/supercharger


Chapter 5

Electric Vehicles for Pickups and Deliveries in Urban Areas

5.1. Introduction

Electric vehicles (EVs) gained popularity in policy-making, from car manufactures, and in the public

interest as a means to reduce local and greenhouse gas emissions. Motivated by this trend, the vehicle-

routing community recently began to spend considerable research effort on the development of models

and algorithms for the use of EVs in goods distribution, see, e.g., the reviews of Demir, Bektaş, and

Laporte (2014a) and Pelletier, Jabali, and Laporte (2016). Much of this work is dedicated to investigating

variants of the classical vehicle-routing problem (VRP) in which customers are served with goods stored

in a central depot. A practically important representative of this class is the VRP with time windows

(VRPTW) where each customer needs to be served within an individual time interval. This problem

was then extended in Schneider, Stenger, and Goeke (2014) to the electric VRPTW (E-VRPTW) in

which EVs are used with a limited battery capacity that can be recharged en route. In the following,

variants, extensions and solution methods for the E-VRPTW were widely studied, (see, e.g., Felipe et al.,

2014; Preis, Frank, and Nachtigall, 2014; Bruglieri et al., 2015; Goeke and Schneider, 2015; Hiermann,

Puchinger, Ropke, et al., 2016; Desaulniers et al., 2016; Keskin and Çatay, 2016; Montoya et al., 2017).

The pickup and delivery problem with time windows (PDPTW) generalizes the VRPTW. The PDPTW

is about planning routes in which commodities are transported from multiple pickup to delivery loca-

tions under time restrictions. Besides urban courier services and less-than-truckload transportation, this

problem has also important applications in passenger transport, where it is known as dial-a-ride-problem

(Ropke and Cordeau, 2009). Today, third-party logistics providers gain increasing importance, and we

see the advent of logistics marketplaces like Freightos, where excess transport capacity can be sold on-

line (Deutsche Post DHL Group, 2016). This facilitates logistics systems where multiple requests are

consolidated on one vehicle in order to reduce cost and lessen the impact that transportation has on the

environment; however it also requires complex planning tools that model many-to-many relationships.

Investigating EVs for these tasks, that often arise in urban areas, might be a promising avenue as the

advantages of EVs especially come into effect in the context of intra-city logistics (Dekker, Bloemhof,

and Mallidis, 2012).

To the best of our knowledge, a variant of the PDPTW that uses EVs is only studied in Grandinetti

et al. (2016). They propose a model based on a three-indexed formulation that allows vehicles to be

recharged at dedicated recharging stations. However, the vehicles must be fully charged whenever they

105



visit a recharging station. Further, the authors do not develop a solution method and only introduce toy

instances with at most three requests and four recharging stations. This work focuses on this important

research gap. We study the electric pickup and delivery problem with time windows and electric vehicles

(PDPTW-EV) that extends the PDPTW by using EVs with a limited battery capacity that might be

arbitrarily recharged at dedicated recharging stations. We consider a partial recharging option as it can

have substantial advantages over mandatory full recharging, (see, e.g., Bruglieri et al., 2015; Desaulniers

et al., 2016; Keskin and Çatay, 2016).

The contributions of this work are:

• We introduce a compact two-indexed formulation for the PDPTW-EV with the option of recharg-

ing an arbitrary amount (full or partial recharge) when visiting recharging stations.

• We develop the first solution method for the PDPTW-EV, a granular tabu search (GTS) algorithm

that is able to solve the PDPTW-EV on realistic-sized instances. We contribute to this approach

by computing an efficient recharging plan for EVs that finds a feasible solution if one exists and

otherwise minimizes time window violations.

• In order to assess the performance of our metaheuristic, we also solve benchmark instances for

the closely related PDPTW. On these instances, we show that GTS has an excellent performance.

We attribute this to the following reasons: Local search methods proposed earlier in the literature

use complex moves that simultaneously change pairs of pickup and delivery. We show that it is

sufficient to use simple moves that change one vertex at a time, and to penalize violations of the

pairing constraints in the objective function instead. This offers the following advantages: (i) the

computational complexity of many typical moves is reduced from quadratic to linear, (ii) we can

use other powerful moves introduced for VRPs, e.g., the two-opt*, without being concerned about

splitting pickups and deliveries, and (iii) we are more flexible in traversing the solution space.

Moreover, we propose rules to generate moves based on the granular arcs and rules to decide

whether a move is tabu that are tailored to the type of move. We employ a simple move caching

technique that further restricts the moves that are updated in every iteration, and we aim to compute

moves efficiently by storing precalculated information about routes.

• Finally, we introduce a small and a larger set of instances for the PDPTW-EV. On the small in-

stances, we compare the solution quality of GTS to the results obtained for the compact formu-

lation. On the large instances, we show that interrupting the recharging process can noticeably

decrease the number of vehicles required and the distance traveled because it allows to reach cer-

tain critical customers just in time.

The remainder of this work is organized as follows: In Section 5.2, we formally introduce the PDPTW-

EV and our mathematical problem formulation. Section 5.3 details the GTS for solving PDPTW-EV.

Section 5.4 describes the generation of instances for the PDPTW-EV and presents the numerical studies

that we performed on these new instances and on instances for the PDPTW available from the literature.

Finally, some conclusions drawn in Section 5.5 close this chapter.

106



5.2. The Pickup and Delivery Problem with Time Windows and Electric
Vehicles

The PDPTW-EV asks that n transportation requests are fulfilled. A transportation request specifies one

location where a quantity q of some commodity is picked up and another location where the commodity

is delivered; each operation takes s units of time. In addition, requests are associated with time windows

for pickup and delivery, i.e., each operation must take place at a time between e and l.

Each request is served by one vehicle from a homogeneous fleet K of EVs. The EVs are based at a

single depot and have a limited capacity C to store commodities. Further, the EVs are associated with a

maximum battery capacity Q. The EVs depart from the depot with a fully charged battery, and consume

energy for traveling between locations. It is required that there is always sufficient energy left to reach the

next recharging station or the depot. To this end, an arbitrary amount of energy (so that we not exceedQ)

can be replenished at a set of recharging stationsF , i.e., partial recharging is permitted. Under real-world

conditions, the recharging rate is usually only constant until the state-of-charge reaches around 80% of

the battery capacity and then the recharging speed decreases. Montoya et al. (2017) approximate this

nonlinear behaviour with piecewise linear functions and already investigated how this affects solutions

to the E-VRPTW in terms of feasibility and quality. Integrating this behavior could be also interesting

for future work, but for the time being, we assume that the recharging time is proportional to the energy

charged, expressed by a constant recharging rate g.

The objective of the PDPTW-EV is to determine routes that begin and end at the depot, serve all requests,

and respect all constraints such that first the total number of routes and second the total distance traveled

is minimized. In the following, we provide a compact formulation and define the problem on a directed

graph G = (V ′0,2n+1,A): Let V = P ∪ D be the set of vertices containing pickup P and delivery D
locations, and let i ∈ P be the pickup vertex that represents the origin of a request with delivery vertex

i + n ∈ D. Visits to the depot at the beginning and the end of a route are represented by vertices 0

and 2n + 1, respectively. If a set of vertices X includes the depot vertices, we indicate this with a

subscript, i.e., X0 = X ∪ {0}. Then, let F ′ = {2n + 2, ...} be a set of dummy vertices that indicate

visits to recharging stations F , and V ′ = V ∪ F ′ denote the joint set. Further, we define the set of arcs

as A = {(i, j) : i ∈ V ′0, j ∈ V ′2n+1, i 6= j}. Each arc (i, j) ∈ A is associated with positive distance dij ,

energy consumption γij and a modified travel time t̂ij . If i ∈ V , then t̂ij includes the service time si at

the pickup or delivery location, i.e., t̂ij = tij + si with tij the time required to travel from i to j, and

otherwise t̂ij = tij . Every vertex i ∈ V ′0,2n+1 is associated with a demand qi that is positive for i ∈ P ,

negative for i ∈ D, and zero for i ∈ F ′0,2n+1. In addition, each vertex i is associated with a time window

[ei, li]. Pickup and delivery operations must begin within this time window, and if the EV arrives before

ei, it must wait until ei. The time window at the depot specifies the planning horizon, and vehicles might

arrive at any time at recharging stations, i.e., the time windows are not restrictive.

We decided to use a two-index formulation in order to keep the number of variables manageable for

larger instances as we use the linear relaxation of the model in our heuristic. We therefore use route

tracking variables Θi that were proposed in Furtadoa, Munaria, and Morabitoa (2017) for a two-index

formulation of the PDPTW. These variables ensure the pairing constraints, i.e., that pickup and delivery

location of the same request are on the same route. The idea is to find an individual identifier for every

107



route and to assign this identifier to every vertex i ∈ V ′ that is visited by this route. Let Θi be a unique

positive and integer identifier for every vertex i ∈ V ′, we use the index of the vertex Θi = i, and let

Θmax = maxi∈V ′(Θi) be the largest identifier, i.e., Θmax = |V ′|. Then, Θa of the first vertex a that

is visited after the depot is chosen as the route’s identifier. Further, we define the arrival time τi, the

cumulated demand ui, and the remaining battery charge yi when arriving at vertex i ∈ V ′0,2n+1. For each

visit to a recharging station i ∈ F ′, we also define the amount of energy ȳi that is charged. For each

arc (i, j) ∈ A, we define a binary decision variable xij that is equal to 1 when the arc is traversed and 0

otherwise. The resulting mixed-integer linear programming (MILP) (note that, for better readability, we

tacitly assume i 6= j) is:

min
∑
j∈V ′

x0j first, (5.1)

∑
i∈V ′0,j∈V ′2n+1

dijxij second (5.2)

s.t.
∑

j∈V ′2n+1

xij = 1 i ∈ V (5.3)

∑
j∈V ′2n+1

xij ≤ 1 i ∈ F ′ (5.4)

∑
i∈V ′0

xij −
∑

i∈V2n+1

xji = 0 j ∈ V ′ (5.5)

ui + qi − C(1− xij) ≤ uj i ∈ V ′0 j ∈ V ′2n+1 (5.6)

0 ≤ uj ≤ C j ∈ V ′0,2n+1 (5.7)

yi − γijxij +Q(1− xij) ≥ yj i ∈ V0 j ∈ V ′2n+1 (5.8)

yi + ȳi − γijxij +Q(1− xij) ≥ yj i ∈ F ′ j ∈ V ′2n+1 (5.9)

0 ≤ ȳi ≤ Q− yi i ∈ F ′ (5.10)

0 ≤ yj ≤ Q j ∈ V ′0,2n+1 (5.11)

Θjx0j ≤ ϑj j ∈ V ′ (5.12)

Θjx0j + Θmax(1− x0j) ≥ ϑj j ∈ V ′ (5.13)

ϑi −Θmax(1− xij) ≤ ϑj i, j ∈ V ′ (5.14)

ϑi + Θmax(1− xij) ≥ ϑj i, j ∈ V ′ (5.15)

ϑi = ϑi+n i ∈ P (5.16)

τi + t̂ijxij − l2n+1(1− xij) ≤ τj i ∈ V0 j ∈ V ′2n+1 (5.17)

τi + t̂ijxij + gȳi − (l2n+1 + gQ)(1− xij) ≤ τj i ∈ F ′ j ∈ V ′2n+1 (5.18)

ej ≤ τj ≤ lj j ∈ V ′0,2n+1 (5.19)

τi + t̂i,i+n ≤ τi+n i ∈ P (5.20)

xij ∈ {0, 1} i ∈ V ′0 j ∈ V ′2n+1 (5.21)

The hierarchical objective function is given in (5.1) and (5.2). Constraints (5.3) ensure that each cus-

tomer is visited exactly once and constraints (5.4) that each visit to a recharging station is optional.

108



Constraints (5.5) handle flow conservation at vertices. Constraints (5.6) and (5.7) guarantee that the ca-

pacity of vehicles to transport commodities is not exceeded. Constraints (5.8) update the battery charge

when arriving at a vertex after departing from a customer or the depot, and constraints (5.9) when leaving

from a recharging station. Constraints (5.10) limit the energy that can be charged at a visit to a recharg-

ing station, and constraints (5.11) restrict the level of charge at every vertex. Constraints (5.12)–(5.16)

guarantee the pairing constraints. In particular, constraints (5.12) and (5.13) set the identifier of each

route to the first vertex visited after the depot, and constraints (5.14) and (5.15) propagate the identifier

to all vertices in that route. At last, constraints (5.16) ensure that the same route identifier is assigned to

pickup and delivery of a request. Constraints (5.17) set the arrival time at the successor of a customer or

the depot, and constraints (5.18) set the arrival time if the predecessor was a recharging station depending

on the amount of energy charged. Constraints (5.19) ensure that all vertices are visited within their time

windows. Finally, constraints (5.20) ensure that the pickup of a request is performed before the delivery.

Note that in order to change the partial recharging option to a full recharging condition, we can simply

replace constraints (5.10) with constraints ȳi = Q− yi for every i ∈ F ′.

5.3. Granular Tabu Search to Solve the PDPTW-EV

GTS is a metaheuristic that was introduced in Toth and Vigo (2003) for the capacitated vehicle-routing

problem (CVRP). The core of the approach is that the full neighborhood of a solution can be restricted

to a granular neighborhood provided a suitable sparse graph is generated a priori. The sparse graph then

filters moves so that only promising moves are evaluated. The time saved can then, e.g., be invested into

performing an increased number of iterations. The authors use a simple sparsification method based on

the length of arcs. A side benefit they observed (this observation is in line with what we found during our

testing activities) is that a suitable sized sparse graph, typically between 10–25% of the original graph,

can even provide higher-quality solutions within the same number of iterations. For problems that are

heavier-constrained than the CVRP, mechanisms to reduce the size of a neighborhood become even more

crucial because the evaluation of a single move might already be computationally expensive.

The successful application of GTS to the CVRP inspired Schneider, Schwahn, and Vigo (2017) to inves-

tigate the influence of more sophisticated sparsification methods for the VRPTW. They found that using

the reduced cost of arcs as given by the network relaxation of the VRP, works especially well. Following

this direction of research, we also use reduced cost to decide which arcs are included in the sparse graph.

We obtain the reduced cost by relaxing the integrality constraints of formulation (5.1)–(5.21) and solving

the resulting linear program. Further, we carefully design appropriate rules to (i) generate moves based

on two sets of arcs, i.e., a reduced set from which we remove clearly infeasible arcs and a second set that

contains the granular arcs, and (ii) then to decide whether a move is tabu or not. In addition, following

the example of Schneider, Schwahn, and Vigo (2017), we rely on the time-travel approach introduced

for the VRPTW in Nagata, Bräysy, and Dullaert (2010). Time-travel is a way to consider temporary

violations of time windows during the search. This strategy of relaxing restrictive time windows can be

considered state-of-the-art in local search methods.

Now, we describe the components of our GTS. In a preprocessing phase, we detect infeasible arcs and

create the sparse graph based on reduced cost (Section 5.3.1). During the search, we allow infeasible

109



solutions that are rated with a generalized objective function (Section 5.3.2). Note that the pairing con-

straints are also handled by the penalty mechanism of the objective function. In this way, we are able to

use the simple neighborhood structures known for the CVRP and VRPTW. We use a recharging policy

to determine the energy recharged at every visit to a recharging station (Section 5.3.3). Figure 5.1 gives

an overview of the following steps: First, we generate an initial solution S (Section 5.3.4). Then, we

create a move cache that constitutes the neighborhood of S (Section 5.3.5). The algorithm begins with

a feasibility phase that lasts until we find a feasible solution using at most |K| vehicles. In this phase,

we add every ηfeas = 50000 iterations another EV to K. In a second phase, we aim to minimize the

traveled distance. This phase stops after ηdist = 7500 iterations without finding a solution that improves

the currently best solution. In each iteration, we change S using a non-tabu move , and then we perform

an update of the move cache (Section 5.3.6). In addition, we store every feasible route found in a route

cache R. Every ηcover = 1000 iterations, we combine these routes in order to find a new solution using

the set covering formulation proposed for the VRP in Balinski and Quandt (1964) (Section 5.3.7).

1: S ← generateInitialSolution(K)
2: M← generateMoveCache(S)
3: i← 0

4: feasibilityPhase ← true
5: while feasibilityPhase ∨ (¬feasibilityPhase ∧ i < ηdist) do
6: S ← applyNonTabuMove(M)
7: M← updateMoves(S)
8: R ← storeRoutes(S)
9: if ηcover iterations have passed then

10: S ← solveSetCovering(R)
11: M← generateMoveCache(S)
12: end if
13: if feasibilityPhase then
14: if ¬ feasible(S) then
15: if i = ηfeas then
16: K ← addVehicle(K)
17: i← −1

18: end if
19: else
20: feasibilityPhase ← false
21: i← −1

22: end if
23: else
24: if isImproving(S) then
25: i← −1

26: end if
27: end if
28: i← i+ 1
29: end while

Figure 5.1.: Overview of the GTS algorithm.

5.3.1. Preprocessing and Arc Sparsification

In the preprocessing step, we first derive tighter time windows, and reduce the set of arcs by identifying

infeasible arcs that cannot be part of a feasible solution to the PDPTW-EV. Then, we create an additional

110



sparse graph that consists of arcs that are promising candidates for a high-quality solution (Toth and

Vigo, 2003; Schneider, Schwahn, and Vigo, 2017).

(i) Shrinking time windows: We perform a preliminary step in order to increase the number of arcs

that we can identify as infeasible (Dumas, Desrosiers, and Soumis, 1991). Because the pickup of a re-

quest must be served before the delivery, the time window of the pickup and the travel time to the delivery

define a time interval during which we can arrive at the delivery and vice versa. Therefore, we redefine the

time windows of delivery vertices i ∈ D to ei := max(ei, ei−n + t̂i−n,i) and li := min(li, li−n + t̂i−n,i),

and of pickup vertices i ∈ P to ei := max(ei, ei+n − t̂i,i+n) and li := min(li, li+n − t̂i−n,i).

(ii) Generating the reduced graph In the following, we present the rules that we use in order to

generate the reduced arc set A′ from A. Every arc (i, j) ∈ A that matches at least one of the following

conditions is infeasible and therefore removed from A:

(i ∈ P) ∧ (j = 2n+ 1), (5.22)

(j ∈ D) ∧ (i = 0), (5.23)

(i ∈ D, j ∈ P) ∧ (j = i− n), (5.24)

i, j ∈ V ∧ ∀w, h ∈ F ′0,2n+1 : γwi + γij + γjh > Q, (5.25)

i, j ∈ V ∧ ei + t̂ij > lj , (5.26)

i ∈ P, j ∈ V ′ ∧max(ej , ei + t̂ij) + t̂j,i+n > li+n, (5.27)

i ∈ V ′, j ∈ D ∧max(ei, ej−n + t̂j−n,i) + t̂i,j > lj . (5.28)

Conditions (5.22)–(5.24) are presented in Dumas, Desrosiers, and Soumis (1991) and relate to the order

of pickup and delivery in a route. Note that for GTS, we dynamically reinsert the arcs removed by

conditions (5.22) and (5.23) into A′, whenever a route contains no other vertices than the depot. The

reason is that otherwise we cannot insert any pickup or delivery into this route. Schneider, Stenger, and

Goeke (2014) introduce conditions (5.25) that state that an arc can be removed if the battery capacity

is insufficient to support traveling the arc itself and to and from it via recharging stations or the depot.

Conditions (5.26) are derived from the time windows of i and j as described in Dumas, Desrosiers,

and Soumis (1991). Cordeau (2006) presents conditions (5.27) and (5.28), which extend the previous

conditions to triples of vertices, i.e., if it is not possible to arrive in time at a delivery vertex when

departing from the pickup and making a detour to another vertex in between, both arcs connected to the

detour vertex are infeasible.

In addition, we experimented with more complex rules, which extend conditions (5.27)–(5.28). In the

first experiment, we considered the minimum additional time required for recharging when making a

detour via a recharging station. The second experiment concerns rules described in Dumas, Desrosiers,

and Soumis (1991) for sequences of two pickup and delivery pairs, i.e., if a sequence 〈i, j, i+ n, j + n〉
and 〈i, j, j + n, i + n〉 with i, j ∈ P , or if a sequence 〈j − n, i − n, i, j〉 and 〈i − n, j − n, i, j〉 with

i, j ∈ D are temporally infeasible, we could remove arc (i, j). However, even though many arcs could

111



potentially be removed with these rules, our experiments indicate that the solution quality of GTS suffers

when we remove these arcs.

(iii) Generating the sparse graphA′−: Contrary to other granular tabu search algorithms that rely on

just one set of arcs, we work with two sets when creating moves, i.e., we keep the reduced set A′ as it is,

and create another sparse set A′− ⊆ A′. To this end, we first solve the linear relaxation of formulation

(5.1)–(5.21) with 0 ≤ xij ≤ 1 if (i, j) ∈ A′ and xij = 0 if (i, j) /∈ A′. In the linear relaxation, each

xij is associated with reduced cost. The reduced cost indicate how much the objective function value

would increase if the arc was included in the solution. Initially, we have an empty set A′−. We first

add all arcs incident to the depot because, in our experience, keeping the complete set of depot arcs is

beneficial to the search. Then, we iteratively add the arcs fromA′ that have the lowest reduced cost until

|A′−| = min(|A′|, 0.25|A|).

5.3.2. Generalized Objective Function

We use the following generalized objective function fgen(S) (see, e.g., Gendreau, Hertz, and Laporte,

1994) in order to evaluate solution S:

fgen(S) = f(S)+σcap ·zcap(S)+σbatt ·zbatt(S)+σtw ·ztw(S)+σpair ·zpair(S)+σprec ·zprec(S). (5.29)

f(S) denotes the total traveled distance as given in equation (5.2). Violations of capacity zcap(S), battery

capacity zbatt(S), time windows ztw(S), pickup and delivery pairing zpair(S), and pickup and delivery

precedence zprec(S) are rated by penalty factors σcap, σbatt, σtw, σpair, and σprec, respectively.

The penalty factors are determined in such a way that they eventually guide GTS towards feasible so-

lutions, but in order to traverse the solution space, temporarily allow infeasible solutions. If a violation

of type x has been present (zx(S) > 0) for two successive iterations, the penalty factor is updated to

σx := 1.2σx, and similarly, if it has been absent (zx(S) = 0) for two iterations, updated to σx := σx/1.2.

Further, all factors are restricted to a minimum and maximum value, i.e., σx ∈ [0.1, 5000]. The factor for

time window violations is further restricted because its value can be quite large in comparison with those

of the other violations, i.e., σtw ∈ [0.1, 500]. Initially, we randomize the penalty factors in the interval

σx ∈ [5, 1000].

We represent a solution as a set of routes S = {rk | k ∈ K}. A route r = 〈v0 = 0, v1, . . . , vn(r)−1, vn(r) =

2n+ 1〉 is given as a sequence of n(r) + 1 vertices. The sequence starts and ends at the depot. We reuse

the notation already introduced to indicate sets specifically describing routes, e.g., the set V(r) contains

the pickup and delivery vertices visited by route r, which do not necessarily belong to the same request,

and F ′(r) denotes visits to recharging stations. We denote the vertex at position o in route r with vo.

Each violation zx(S) is computed by calculating the sum of the individual violations zx(r) for each route

r ∈ S.

In the following, we give a formal description of the violations zx(r) and explain how they can be

computed efficiently. For this purpose, each move evaluated during the search is expressed as a series of

concatenations of partial sequences a ⊕ b ⊕ ... ⊕ c (see Section 5.3.5) that are derived from the routes

involved. In turn, each concatenation a⊕ b is evaluated by using stored values for a and b.

112



• We determine the capacity violation of a route r as the maximum cumulated demand exceeding

the vehicle capacity for any sequence of vertices in r starting from the depot. We first define the

cumulated demand Π(a) =
∑

i∈V(a) qi of the pickup and delivery vertices V(a) served in sequence

a (recall that qi > 0 if i ∈ P and qi < 0 if i ∈ D). Now, let av0vp indicate a sub-sequence of a that

begins at the first vertex of a and ends at position p. We calculate the maximum cumulated demand

Φ(a) = max
n(a)
p=0 Π(av0vp). Then, the capacity violation of route r is zcap(r) = max(Φ(r) −

C, 0). In order to efficiently calculate the capacity violation associated with a move, we require

the maximum cumulated demand Φ(a⊕b) = max(Φ(a),Π(a)+Φ(b)) and the cumulated demand

Π(a⊕b) = Π(a)+Π(b). For example, assume that a route r is to be composed of three sequences

r = a⊕ b⊕ c, then we recursively calculate zcap(r) = max(Φ((a⊕ b)⊕ c)− C, 0).

• In order to calculate the time window violation, we utilize the well-known concept of time travel

(also called time warp) (Nagata, Bräysy, and Dullaert, 2010; Schneider, Sand, and Stenger, 2013;

Vidal, Crainic, et al., 2013). The idea is that a vehicle arriving late at a vertex i, i.e., τi > li,

is assumed to begin service not at time τi but already at time li; we denote this the adjusted

begin of service τ ′i = min(τi, li). The time of arrival at the successor j is calculated as τj =

max(ej , τ
′
i + t̂ij) if i ∈ V0 and τj = max(ej , τ

′
i + t̂ij + gȳi) if i ∈ F ′. The total time window

violation can now be computed as ztw(r) =
∑

i∈V ′0,2n+1(r) max(τi − li, 0). Note that the arrival

time depends on the variable amount of energy ȳi recharged if the predecessor is a recharging

station. The policy that we use in order to calculate ȳi is explained in Section 5.3.3.

Nagata, Bräysy, and Dullaert (2010) propose to efficiently calculate time window violations for

simple moves by saving forward and backward slack variables for every vertex. The calculation

in O(1) is limited to neighborhoods that change the route at only one position, e.g., the inter-route

variant of relocate, exchange or two-opt. But, it can neither be applied to moves that alter a route at

multiple positions as used by our GTS nor is it able to account for changes of the time required for

recharging. Vidal, Crainic, et al. (2013) show that time window violations can also be calculated

efficiently for the concatenation of arbitrary sequences if aggregated values for duration, time

window violation, and earliest and latest begin of service are available for each of the considered

sequences.

We determine the time window violation z̃tw(r) as if no recharging took place as described in Vi-

dal, Crainic, et al. (2013) and later add the additional time window violation caused by recharging

under our policy z+
tw(r) , i.e., ztw(r) = z̃tw(r) + z+

tw(r). In order to calculate z+
tw(r) (see Sec-

tion 5.3.3), we need to isolate visits to recharging stations when we evaluate moves, i.e., visits

to recharging stations should (when we begin the concatenation) only be contained alone in a se-

quence. We achieve this by splitting sequences before and after every visit to a recharging station.

Therefore, the complexity of the time window calculation for a given move depends linearly on

the number of sequences that are concatenated. This number depends in turn on the type of the

move and also on the number of visits to recharging stations.

• To calculate the battery capacity violation of route r, we first define a variable Γ(a) that represents

the energy required to travel to the last vertex vp of a sequence a = 〈vo, ..., vp−1, vp〉. If sequence

a contains at least one visit to a recharging station, Γ(a) corresponds to the energy required from

the last recharging station preceding vp. If there is no recharging station in a, then Γ(a) represents

113



the energy from vo to vp. Further, we define a function φ<(i) that returns the recharging station

preceding vertex i or the start depot if no recharging station exists in the sequence. The battery

capacity violation zbatt(r) of route r is the sum of violations at all recharging stations and the depot

at the end of the route, i.e., zbatt(r) =
∑

i∈F ′2n+1(r) max(Γ(aφ<(i),i)−Q, 0).

Now, we formally introduce how Γ(a) is calculated by concatenation. If a sequence a has only

one vertex, i.e., |a| = 1, then we set Γ(a) = 0. For the concatenation of two sequences b and c,

we obtain Γ(b⊕ c) = γvn(b),v0(c)
+ Γ(c) if sequence b ends with a visit to a recharging station, i.e.,

vn(b) ∈ F ′, and Γ(b ⊕ c) = Γ(b) + γvn(b),v0(c)
+ Γ(c) if vn(b) /∈ F ′. Note that this is only valid

because we construct the sequences in such a way that sequence c contains no visit to a recharging

station if |c| > 1.

• The violation of the pairing constraints zpair(r) is defined as the number of requests where either

the pickup or the delivery is contained in route r, but not both. Let P−(a) denote the set of pickups

in sequence a where the corresponding delivery is not contained in a, i.e., P−(a) = {i ∈ P(a) |
(i + n) /∈ D(a)} and the set of unmatched deliveries as D−(a) = {i ∈ D(a) | (i − n) /∈ P(a)},
then zpair(r) = |P−(r)| + |D−(r)|. The corresponding set for unmatched pickups resulting from

concatenation is then calculated as P−(a ⊕ b) = (P−(a) ∪ P−(b))/({i ∈ P−(a) | (i + n) ∈
D−(b)} ∪ {i ∈ P−(b) | (i + n) ∈ D−(a)}). We calculate D−(a ⊕ b) in analogous fashion. The

time complexity of evaluating the concatenation with respect to the pairing violation thus depends

on the size of the sets, but in our experience, the sets typically become not that large and each

check can be performed with low computational effort using appropriate data structures.

• The violation of the precedence constraints corresponds to the number of requests where pickup

and delivery are contained in route r but the delivery is served before the pickup. We calculate

zprec(r) = |P>(r)| with the help of set P>(a) = {i ∈ P(a) | (i + n) ∈ D(a) ∧ τi > τi+n}. For

concatenation, we thus obtain P>(a ⊕ b) = P>(a) ∪ P>(b) ∪ {i ∈ P−(b) | (i + n) ∈ D−(a)}
resulting in a complexity that again depends linearly on the size of the sets.

5.3.3. Recharging Policy

In order to generate a plan that determines the amount of energy recharged at every station in a route r,

we propose a recharging policy with the following properties: First, it is complete, i.e., if it is possible

depot

pickup/delivery

recharging visit

y=5

τ̃ ′=0

[2,∞]

τ̃ ′=2

t̂=1

γ=1

y=3

↑ ȳ=2

τ̃ ′=3

t̂=1

γ=1

[5,∞]

τ̃ ′=5

t̂=1

γ=1

[0, 7]

τ̃ ′=6

t̂=1

γ=1

[0,∞]

τ̃ ′=7

t̂=1

γ=1

y=1

↑ ȳ=1

τ̃ ′=8

↑ ∆τ=1

t̂=1

γ=1

[0, 10]

τ̃ ′=9

↑ τ=11

t̂=1

γ=1

y=0

τ̃ ′=10

↑ τ=11

t̂=1

γ=1

σ̃=2

σ̃=2, ψ̃=1

σ̃=1, ψ̃=0

Figure 5.2.: Recharging policy applied to an example with recharging rate g = 1. Note that there exists
no feasible solution. We determine the minimal time window violation to one unit. We
indicate the changes caused by the recharging decisions with an arrow (↑).

114



to charge in such a way that the route is feasible with respect to energy consumption and time windows,

our policy always provides a feasible charging plan. Second, it has a time complexity that is linear

in the number of stations, i.e., O(|F ′(r)|) provided that aggregated information as described below is

computed beforehand. Third, it makes sense from a practical point of view, i.e, if there exists no feasible

charging plan, our policy minimizes violations of battery capacity first, and violations of time windows

second.

Now, we briefly outline how our iterative policy works, and then we explain it in more detail: We charge,

limited by the battery capacity, at every station first as much energy as required to reach the next station

or the depot given the current state-of-charge. In addition, we charge as much as possible without adding

any time window violation at any later vertex in the route. We begin at the first station in the route and

then consider one station after another.

To compute the plan efficiently, we require slack and total waiting time between each pair of vertices

in a route. Slack is the time that we can delay at the first vertex without causing an increase in time

window violation at any subsequent vertex until we reach the second vertex. Total waiting time is the

sum of all individual waiting times at vertices between the first (excluded) and the second (included)

vertex. Let us now hypothetically assume that no recharging takes place. We need (i) the slack σ̃w,h
between each station w ∈ F ′(r) and the station h ∈ F ′(r) that succeeds w, (ii) the total waiting time

ψ̃w,h, and (iii) the slack σ̃w,vn(r)
between each station w ∈ F ′(r) and the depot vn(r). In addition,

let τ̃ ′i be the adjusted begin of service at vertex i before any charging takes place on the route, i.e.,

ȳj = 0 ∀j ∈ F ′(r). Then, the total waiting time ψ̃vovp between two vertices vo and vp at position o

and p in a sequence a = 〈vo, ..., vp−1, vp〉 is ψ̃(a) = ψ̃vovp =
∑b≤p

b=o+1 max(evb − τ̃ ′vb−1
− t̂vb−1vb , 0) for

p > o and 0 for p = o. We recursively define the slack σ̃(a) = σ̃vovp = min(σ̃vovp−1 , ψ̃vovp + lvp − τ̃ ′vp)
for p > o and ∞ for p = o. The values resulting from the concatenation of two sequences a and b

can be calculated as ψ̃(a ⊕ b) = ψ̃(a) + ψ̃(b) + max(ev0(b)
− τ̃ ′vn(a)

− t̂vn(a)v0(b)
, 0) and σ̃(a ⊕ b) =

min(σ̃(a),min(ψ̃(a ⊕ v0(b)) + σ̃(b), ψ̃(a⊕ v0(b)) + lv0(b)
− τ̃ ′v0(b)

)).

In order to determine the amount of energy ȳ to recharge and ultimately the increase in time window

violation z+
tw(r) caused by recharging, we iteratively take the charging decisions into account. Let w ∈

F ′(r) be the current station and φ>(w) be the recharging station succeeding w or the end depot if no

recharging station exists. Then, we charge, up to the available battery capacity, at least as much energy as

required to reach the next station or the depot given the current state-of-charge. If the slack allows us to

charge more than this minimum amount of energy, we charge the respective additional amount. In detail,

we charge an amount of energy ȳw = min(max(Γ(aw,φ>(w)) − yw, (σ̃w,vn(r)
− ∆τw)/g), Q − yw) in

t̄w = gȳw units of time, with Γ(aw,φ>(w)), the amount of energy required for the sequence until the next

station or the depot, σw,vn(r)
the slack between w and the depot, and ∆τw the difference in arrival time

at w that results from all previous recharging decisions for route r. The charge still left in the battery

when arriving at w is calculated as yw = max(yφ<(w) + ȳφ<(w) − Γ(aφ<(w),w), 0) if φ<(w) is a station

or yw = max(Q − Γ(aφ<(w),w), 0) if φ<(w) is the start depot. Further, the delay at w is propagated

from φ<(w) as ∆τw = max(min(∆τφ<(w)+ t̄φ<(w), σ̃φ<(w),w)−ψ̃φ<(w)w, 0). The total increase of time

window violation due to recharging is then calculated as z+
tw(r) =

∑
j∈F ′(r) max(t̄j+∆τj− σ̃j,φ>(j), 0).

In Figure 5.2, we give an example that illustrates the calculations. Starting with y = 5 units of charge

at the depot, we have a charge of three units left when we arrive at the first recharging visit. In order to

115



reach the second recharging station, we need to charge at least one unit. Because two units of slack σ̃

(outer dashed arc) are available, we can safely recharge an amount ȳ of two units in two units of time.

Because one unit of waiting time ψ̃ is available between the two visits, recharging delays the arrival at

the second recharging station ∆τ by only one unit of time. At the second recharging station, we need

to recharge one unit to reach the depot. This requires one additional unit of time. As only one unit of

slack σ̃ is available, this results in a time window violation of one unit (we arrive late τ = 11 at the last

pickup/delivery location).

5.3.4. Generation of the Initial Solution

The following simple procedure is used to generate an initial solution. We create |K| routes that contain

only the depot. Considering one vertex at a time, we greedily insert the vertices i ∈ V such that we

minimize the generalized objective function fgen(S) as given by equation (5.29).

5.3.5. Reduced Neighborhood

In this section, we discuss our strategy to generate the neighborhood of a solution S. Our aim is to keep

the computational effort low by investigating only a part of the neighborhood that could be generated

using the neighborhood structures implemented. At the same time, we want to ensure that we have a

fair chance to access every part of the solution space. Therefore, we introduce a probabilistic element in

the generation of the neighborhood, which can also help to diversify the search: We keep a move cache

M that stores all moves that we have already evaluated with respect to fgen(S). When we generate the

cache for the first time, we add all moves toM that can be generated from the neighborhood structures

as detailed below. In every iteration, we select fromM the move m that minimizes fgen(S) and is not

tabu (see Section 5.3.6). Then, we perform move m and change the solution accordingly. Now, in order

to update M, we consider all moves from M that share at least one route associated with m. Some

of these moves are now structurally invalid because the arcs involved do not longer correspond to the

current solution, and for other moves the objective function value must be adjusted. We remove the

former moves fromM. The latter moves, we sort according to their old objective function value. Then,

we re-evaluate only the 100 best of these moves, and remove the others. Subsequently, we draw, with

equal probability, one of our neighborhood structures, create all moves that are related to any of the

routes modified by m and add them toM if they are not already present from the previous step.

In the following, we detail our neighborhood structures with the help of two exemplary routes r and s

and two dedicated vertices i at position o and vertex j at position p, respectively:

r = 〈v0, . . . , i = vo, . . . , vn(r)〉,
s = 〈v0, . . . , j = vp, . . . , vn(s)〉.

• Relocate was introduced in Waters (1987). The idea is to move a single vertex i ∈ V ′ from position

o in route r to another position p > 0 in route s. For the case of an intra-route move (r = s) and

the case of an inter-route move (r 6= s), we obtain the following changed routes:

r = s p < o r′ = 〈v0, . . . , vp−1〉 ⊕ 〈i〉 ⊕ 〈vp, . . . , vo−1〉 ⊕ 〈vo+1, . . . , vn(r)〉,

116



p > o r′ = 〈v0, . . . , vo−1〉 ⊕ 〈vo+1, . . . , vp−1〉 ⊕ 〈i〉 ⊕ 〈vp, . . . , vn(r)〉,
r 6= s r′ = 〈v0, . . . , vo−1〉 ⊕ 〈vo+1, . . . , vn(r)〉,

s′ = 〈v0, . . . , vp−1〉 ⊕ 〈i〉 ⊕ 〈vp, . . . , vn(s)〉.

In this way, we create the following arcs A⊕ = A⊕1 ∪ A⊕2 with A⊕1 = {(vp−1, i), (i, vp)} at the

new position of i and A⊕2 = {(vo−1, vo+1)} at its old position. We aim to move a vertex only to

feasible insertion positions, therefore we allow only moves where all arcs from A⊕1 are feasible,

i.e., ∀a ∈ A⊕1 : a ∈ A′. The sparse graph should restrict the moves to a lesser extent than the

reduced graph and gently guide GTS towards promising solutions. Therefore, we only generate

moves where at least one arc from A⊕1 is contained in the sparse graph, i.e., ∃a ∈ A⊕1 : a ∈ A′−.

The removed arcs areA	 = {(vo−1, i), (i, vo+1), (vp−1, vp)}. We explain in the next section, how

the removed arcs are relevant to the decision whether the move is tabu.

• Exchange was introduced in Savelsbergh (1992). Two vertices i ∈ V ′ and j ∈ V ′ are swapped.

For intra-route moves, we only investigate the case that o < p. By this means, we avoid evaluating

the same move twice.

r = s r′ = 〈v0, . . . , vo−1〉 ⊕ 〈j〉 ⊕ 〈vo+1, . . . , vp−1〉 ⊕ 〈i〉 ⊕ 〈vp+1, . . . , vn(r)〉,
r 6= s r′ = 〈v0, . . . , vo−1〉 ⊕ 〈j〉 ⊕ 〈vo+1, . . . , vn(r)〉,

s′ = 〈v0, . . . , vp−1〉 ⊕ 〈i〉 ⊕ 〈vp+1, . . . , vn(s)〉.

This creates arcsA⊕ = A⊕1 ∪A⊕2 withA⊕1 = {(vp−1, i), (i, vp+1)} andA⊕2 = {(vo−1, j), (j, vo+1)}.
We restrict moves to cases where all arcs fromA⊕1 andA⊕2 are feasible, i.e., ∀a ∈ A⊕1 ∪A⊕2 : a ∈
A′, and at least one arc from each A⊕1 and A⊕2 is part of the sparse graph, i.e., ∃a ∈ A⊕1 : a ∈
A′−∧∃a ∈ A⊕2 : a ∈ A′−. The removed arcs areA	 = {(vo−1, i), (i, vo+1), (vp−1, j), (j, vp+1)}.

• Two-opt* was proposed in Potvin and Rousseau (1995) as special case of the two-opt (Lin, 1965).

It is suitable for problems with time windows because it preserves the orientation of routes. We

split two routes (r 6= s) at i ∈ V ′0 and j ∈ V ′0 and then cross-connect them:

r′ = 〈v0, . . . , i〉 ⊕ 〈vp+1, . . . , vn(s)〉,
s′ = 〈v0, . . . , j〉 ⊕ 〈vo+1, . . . , vn(r)〉.

This creates arcs A⊕ = {(i, vp+1), (j, vo+1)}. We allow only moves where all arcs from A⊕ are

feasible, i.e., ∀a ∈ A⊕ : a ∈ A′ and at least one arc from A⊕ is part of the sparse arcs, i.e.,

∃a ∈ A⊕ : a ∈ A′−. The removed arcs are A	 = {(i, vo+1), (j, vp+1)}.

• Swapping pairs was introduced in Nanry and Barnes (2000) for the PDPTW. The idea is that

pickup and delivery vertices of two requests are simultaneously exchanged. We only consider

inter-route moves (r 6= s)) where pickup and delivery of the same request are on the same route.

We exchange i ∈ P with j ∈ P and i+n ∈ D with j+n ∈ D. Let i+n be at position b and j+n

be at position u. We exemplarily show how the concatenation works for the case that both pickups

117



are served before their respective deliveries. The other variants can be derived analogously.

r′ = 〈v0, . . . , vo−1〉 ⊕ 〈j〉 ⊕ 〈vo+1, . . . , vb−1〉 ⊕ 〈j + n〉 ⊕ 〈vb+1, . . . , vn(r)〉,
s′ = 〈v0, . . . , vp−1〉 ⊕ 〈i〉 ⊕ 〈vp+1, . . . , vu−1〉 ⊕ 〈i+ n〉 ⊕ 〈vu+1, . . . , vn(s)〉.

This creates arcs A⊕1 = {(vp−1, i), (i, vp+1)}, A⊕2 = {(vo−1, j), (j, vo+1)}, A⊕3 = {(vu−1, i +

n), (i, vu+1)}, and A⊕4 = {(vb−1, j + n), (j, vb+1)}. We allow only moves where all arcs from

A⊕ =
⋃
xA⊕x with x ∈ X = {1, 2, 3, 4} are feasible, i.e., ∀a ∈ A⊕ : a ∈ A′ and at least one arc

from each A⊕x is part of the sparse arcs, i.e., ∀x ∈ X : (∃a ∈ A⊕x : a ∈ A′−). We remove arcs

A	 = {(vo−1, i), (i, vo+1), (vp−1, j), (j, vp+1), (vb−1, i + n), (i + n, vb+1), (vu−1, j + n), (j +

n, vu+1)}.

• stationInRe was introduced in Schneider, Stenger, and Goeke (2014) and is used to insert or re-

move visits to recharging stations in intra-route fashion. We first describe the case that we insert a

recharging station w before position o in route r:

r′ = 〈v0, . . . , vo−1〉 ⊕ 〈w〉 ⊕ 〈vo, . . . , vn(r)〉.

In this way, we create two arcsA⊕ = {(vo−1, w), (w, vo)} and remove one arcA	 = {(vo−1, vo)}.
We opted for the following compromise to allow that visits to different stations are explored

by GTS and at the same time the computational effort is kept low: We only consider the three

closest feasible stations for insertion, i.e., w is from the set Λvo−1,vo ⊆ F ′ (this set can be pre-

computed for every combination of vo−1 and vo). We generate Λvo−1,vo by considering all sta-

tions h ∈ F ′ : (vo−1, h) ∈ A′ ∧ (h, vo) ∈ A′, and then select the three stations h for which

dvo−1h + dhvo − dvo−1vo is smallest. Note that only considering the station that causes the smallest

total detour would be too limiting, as the remaining energy at vo−1 might be too low to reach this

station. Finally, we consider the case that we remove a recharging station j ∈ F ′ from route s:

s′ = 〈v0, . . . , vp−1〉 ⊕ 〈vp+1, . . . , vn(s)〉.

This creates a single arcA⊕ = {(vp−1, vp+1)} and removes two arcsA	 = {(vp−1, j), (j, vp+1)}.

Additionally, we use a revoking criterion to quickly overcome solutions that contain infeasible arcs. If

any removed arc is infeasible, i.e., ∃a : a ∈ A	 ∧ a /∈ A′, we create that move irrespective of whether

the newly created arcs a ∈ A⊕ are in the sparse graph or feasible (we prefer to explore solutions with

different infeasible arcs to having a few infeasible arcs that persist for a long duration). Further, we do

not select intra-route moves m that do not improve the current solution, i.e., ∆fgen(m) ≥ 0 as we found

that, being in a local optimum, there are typically more intra-route than inter-route moves that deteriorate

the solution only slightly and are thus more likely to be selected. But, these do not contribute much in

terms of exploring alternate search directions.

5.3.6. Tabu Criteria

During preliminary testing, we observed that a single tabu criterion is not equally well-suited for all

neighborhood structures. For some, it was better to create a relationship between vertices and routes,

118



for others, it was more appropriate to take the arcs into account. Therefore, our tabu criterion depends

on the type of move, and we use two lists of tabu items, Ξ1 = {(i, r) | i ∈ V ∪ F , r ∈ S} and Ξ2 =

{(i, j) | (i, j) ∈ A}. In addition, it can be useful to distinguish whether a move improves or deteriorates

the current solution in order to avoid cycles during the search and to guide GTS between feasible and

infeasible solutions. Now, we first explain on which criteria we base the decision whether a move is tabu,

and then which tabu items we generate when we perform a move:

First, we discuss how we treat the inter-route moves. Because the two-opt* reassigns multiple vertices

to another route, it is more suitable and has a computational advantage to base the tabu definition on

arcs and not on vertex-route pairs. Therefore, we set a two-opt* move tabu when at least one arc is tabu,

i.e., ∃a ∈ A⊕ : a ∈ Ξ2. For the other inter-route moves, using the first criterion helps to move both

vertices, pickup and delivery, associated with a request to another route in order to respect the pairing

constraints. Therefore, we say a relocate is tabu if (i, s) ∈ Ξ1, an exchange is tabu if (i, s)∨ (j, r) ∈ Ξ1,

and a paired-exchange is tabu if (i, s) ∨ (i + n, s) ∨ (j, r) ∨ (j + n, r) ∈ Ξ1. In order to avoid that an

intra-route move is too soon repeated, we consider it tabu if all created arcs A⊕ are on the tabu list, i.e.,

∀a ∈ A⊕ : a ∈ Ξ2.

When we add tabu items to Ξ1 and Ξ2, we distinguish between moves m that improve S and moves

that do not. The idea is that we do not want to repeat the former in the near future and do not want to

immediately revert the latter, i.e., the rules for both cases complement each other. Now, we describe the

first case ∆fgen(m) < 0. For intra-route moves and two-opt*, we add all created arcs a ∈ A⊕ to Ξ2. In

addition, for two-opt* and stationInRe we also add the removed arcs a ∈ A	 to Ξ2. For relocate moves,

we add (i, s), for exchange {(i, s), (j, r)}, and for paired-exchange {(i, s), (i+ n, s), (j, r), (j + n, r)}
to Ξ1. For the second case ∆fgen(m) ≥ 0, we add for two-opt* the removed arcs a ∈ A	 and also

the added arcs a ∈ A⊕ to Ξ2. For relocate moves, we add (i, r), for exchange {(i, r), (j, s)}, and for

paired-exchange {(i, r), (i + n, r), (j, s), (j + n, s)} to Ξ1. For the reasons explained in the previous

section, we do not perform intra-route moves that deteriorate the current solution. When we add a tabu

item to Ξ1 or Ξ2, we associate it with a tenure that we draw randomly from the interval [4, 12]. After that

number of search iterations, we remove it from the list.

5.3.7. Set Covering

Periodically, we solve a set-covering problem involving all feasible routes that we found so far (see, e.g.,

Rochat and Taillard, 1995; Groër, Golden, and Wasil, 2011; Subramanian, Uchoa, and Ochi, 2013). In

this way, we aim to find a new best solution and to continue the search from a better solution. For that

reason, we store all feasible routes encountered in a setR. Then, we associate each route r ∈ Rwith (i) a

binary decision variable xr that indicates whether the route is part of the new solution, (ii) coefficients bri
that denote whether pickup i ∈ P is contained in r (because the routes are feasible, the delivery will also

be included), and (iii) its contribution f(r) to the objective function value, as defined in equation (5.29).

In some instances, it can be difficult to obtain a feasible solution that serves all customers. Therefore,

we allow solutions where not all requests are served, but we penalize them. To this end, let the binary

decision variables yi = 1 indicate that i ∈ P is not part of any selected route, and let ζi be a dynamically

updated penalty factor. We set ζi to 10000(1.0 + 0.1λi) where λi is a variable that counts how many

times the request was not served in a solution to the set-covering problem. In this way, we try to explore

119



different starting points to continue the search. We solve the following integer program with help of a

commercial solver using a run-time limit of (|R|/100) seconds:

min
∑
r∈R

f(r)xr +
∑
i∈P

ζiyi (5.30)

s.t.
∑
r∈R

brixr + yi ≥ 1 i ∈ P (5.31)∑
r∈R

xr ≤ |K| (5.32)

xr ∈ {0, 1} r ∈ R (5.33)

yi ∈ {0, 1} i ∈ P (5.34)

The objective is to minimize the sum of cost for routes and penalty for unserved requests as defined

in (5.30). Constraints (5.31) ensure that each request is covered at least once by a route or that oth-

erwise y is set. Constraints (5.32) limit the number of routes to the number of available vehicles, and

constraints (5.33) and (5.34) define the range of variables.

When we restore S from the selected routes, we ensure that every request is included at most once in S,

and we add, one at a time, the requests associated with yi = 1 in a greedy fashion such that fgen(S) is

minimized. We continue the search from the new solution if the new solution is better than the previous

best solution or if we have not obtained any feasible solution yet.

5.4. Numerical Studies

In this section, we present our numerical studies. First, we perform two series of experiments on the

PDPTW-EV. To this end, we generated two sets of instances (Section 5.4.1.1). In the first series of ex-

periments (Section 5.4.1.2), we solve our compact formulation on small-sized instances using Gurobi,

and compare it to GTS in order to validate our solution method. In the second series (Section 5.4.1.3),

we investigate on larger-sized instances how solution quality is affected when only full recharging is

permitted instead of the option of partial recharging. Finally, we use GTS to solve the PDPTW and com-

pare our method to other state-of-the-art heuristics on standard benchmark instances from the literature

(Section 5.4.2).

We performed all tests on a desktop computer equipped with an AMD FX-6300 processor at 3.5 GHz

with 8 GB of RAM and running Windows 10 Pro. We used Gurobi 6.5 as MILP solver to solve (i) the

compact formulation (5.1)–(5.21), (ii) the set-covering problem (5.30)–(5.33), and (iii) the correspond-

ing linear programming (LP) relaxation of (5.1)–(5.21) used to generate the granular arc set. GTS is

implemented in Java. All calculations of GTS and Gurobi were performed using a single core, and the

run-times are reported in seconds.

120



5.4.1. Experiments on PDPTW-EV

5.4.1.1. Generation of Test Instances

We generate two sets of instances: a set of 36 small instances with 3–9 requests and 2–8 recharging

stations, and another set of 56 larger instances with 50 requests and 21 stations each.

The small instances are based on instances for the E-VRPTW introduced in Schneider, Stenger, and

Goeke (2014). We determine pickup and delivery pairs in the following way that resembles the method

proposed in Nanry and Barnes (2000): We first obtain an optimal solution to the corresponding VRPTW

instance by solving each of the original instances with Gurobi, assuming that an unlimited battery capac-

ity is available. Then, we randomly pair the customer vertices within each route of the solution in order

to obtain pickup-delivery pairs. If their number is odd, we duplicate the last selected vertex. Finally, for

each instance we take the characteristics of the vehicles and recharging stations from Schneider, Stenger,

and Goeke (2014).

We generate the larger instances by combining the standard benchmark instances for the PDPTW intro-

duced in Li and Lim (2001) and the instances for the E-VRPTW introduced in Schneider, Stenger, and

Goeke (2014). As both sets are based on the same VRPTW instances, we use the pickup-delivery loca-

tions of the PDPTW instance and the vehicle characteristics and recharging stations of the E-VRPTW

instance in order to generate a new instance. This is useful for benchmarking new solution methods

because several of these instances are even today challenging for the majority of methods known from

the literature. This difficulty is often governed by the properties of the instance, i.e., how the locations

are distributed within the instances (randomly, clustered or randomly-clustered), the scheduling horizon

(long or short), and the time windows (width and distribution).

During preliminary testing, we detected that we could not solve some of the new large instances when

only full recharging is allowed. As we would like to compare that scenario to a partial recharging option,

we repair these instances by increasing the battery capacity in steps of 10% until GTS finds a feasible

solution.

5.4.1.2. Comparison between GTS and Compact Formulation

In this section, we investigate the performance of GTS in comparison to an exact solution approach.

To this end, we perform 10 runs of GTS on the small-sized instances. Then, we restrict the run-time

to one hour and solve them using Gurobi with the compact formulation introduced in Section 5.2. For

this, we generate three visits for each recharging station. We think is a reasonable value for instances

that contain at most 9 requests. Prior to this, in order to solve more instances optimally, we quickly

generate a lower bound on the number of vehicles |K| by solving the PDPTW-relaxation of the PDPTW-

EV, i.e., we set the battery capacity Q to a large value and remove the recharging stations from the

problem. Now, we add the constraint
∑

j∈V ′ x0j ≥ |K| to our formulation for the PDPTW-EV. In

addition, we add the following simple symmetry breaking constraints that ensure that for any two visits

associated with the same recharging station, we use the one with a lower identifier first:
∑

j∈V ′2n+1
xij ≥∑

j∈V ′2n+1
xwj ∀i, w ∈ F ′ : F(i) = F(w)∧Θi < Θw with Θi the route identifier andF(i) a function

121



that returns the recharging station associated with visit i. Note that we also use the number of vehicles

|K| that we get from solving the PDPTW instances as initial number for the feasibility phase of GTS.

Table 5.1 gives an overview of the results obtained for each of the three experiments, i.e., using Gurobi

to solve the PDPTW-relaxation, using Gurobi to solve PDPTW-EV, and the best solution obtained for

GTS in 10 runs. We report the instance name (Inst.), and for every experiment the number of vehicles

used (|K|) and the total distance traveled (f ). We indicate optimal solutions to the PDPTW-EV in bold

(assuming that no recharging station needs to be visited more than three times), and solutions in italics if

GTS provided a better one than Gurobi. In addition, we provide the number of visits that took place to

recharging stations (|F̃ ′|). Further, we provide the run-time (t) for GTS as average over 10 runs, and for

Gurobi as the time until an optimal solution was found, or we indicate–with TL–if the time limit of one

hour was reached. In these cases, we also report the final lower bound obtained by Gurobi in terms of the

number of vehicles (|K|L) and the distance (fL). Note that the lower bound on the distance is only valid

if upper and lower bounds on the number of vehicles are equal. For instances where this is guaranteed,

we compare the lower bound for the PDPTW-EV to the lower bound that we can derive from the solution

to the PDPTW. Then, we indicate the better of the two by underlining the corresponding value.

From the table, we see that Gurobi guarantees an optimal solution for 16 instances, and for another

six instances at least the optimal number of vehicles. We further observe that GTS always matches

the results obtained with the compact formulation. On four instances, the distance provided by GTS

is even better (-0.29%, -2.32%, -5.82%, and -9.83%) than the upper bound reported by Gurobi. These

four instances are also the only ones where the number of visits to recharging stations deviates between

the two experiments. These very convincing results already clearly speak in favor of the ability of our

recharging policy to handle the partial recharging aspect of the problem. In terms of run-time, GTS is

significantly faster as it only requires on average about 17 compared to 2058 seconds for Gurobi, and

when only considering the instances solved to optimality, 6 compared to 130 seconds. When we just

compare the results between the two formulations, we conclude that PDPTW-EV is much more difficult

to solve than PDPTW. All instances for the latter can easily be solved and need on average only nine

seconds and at most three minutes. Often, also the final lower bound for PDPTW-EV after one hour of

computation is still worse than for PDPTW.

5.4.1.3. Comparison between Full and Partial Recharging

This section intends to demonstrate that GTS is capable of solving instances with a practically important

size in a reasonable run-time and that it makes adequate decisions on the amount recharged. Further, it

provides some insight into the trade-off between the two extreme positions: vehicles are fully recharged

at every visit to a recharging station or the amount recharged can be chosen freely. We perform for both

settings 10 runs of GTS on the set of instances with 100 locations, and report the results in Table 5.2.

Note that full recharging is implemented with a minor change to the recharging policy described in

Section 5.3.3, i.e., we set ȳw = Q − yw. We set the initial number of vehicles for the feasibility phase

to the best value known for the corresponding instance of the PDPTW instance set, which we think is a

reasonable lower bound.

For both settings, we report the best number of vehicles (|K|), the corresponding minimum distance

(f ), the average run-time (t) and the number of visits to recharging stations |F̃ ′|. Furthermore, we

122



Table 5.1.: Results on the small-sized instances obtained by Gurobi for the PDPTW-relaxation and for
our compact formulation of PDPTW-EV, in comparison to the results of GTS.
Gurobi (PDPTW) Gurobi (PDPTW-EV) GTS

Inst. |K| f t |K| f |F̃ ′| |K|L fL t |K| f |F̃ ′| t

c101-6 2 240.00 0.1 2 264.44 3 1.3 2 264.44 3 5.7
c103-6 1 164.82 0.2 1 175.37 3 2.6 1 175.37 3 4.6
c206-6 1 236.51 0.1 1 242.56 3 4.5 1 242.56 3 5.5
c208-6 1 157.72 0.2 1 158.48 2 1.8 1 158.48 2 4.9
r104-6 1 132.81 0.1 2 191.62 3 1 203.70 TL 2 191.62 3 13.9
r105-6 2 151.15 0.1 2 166.31 3 1.0 2 166.31 3 4.9
r202-6 1 126.52 0.1 1 128.78 2 1.0 1 128.78 2 4.4
r203-6 1 178.05 0.2 1 179.06 3 1.2 1 179.06 3 5.0
rc105-6 2 227.18 0.1 2 233.77 3 1.6 2 233.77 3 5.2
rc108-6 2 245.87 0.1 2 253.93 3 1.1 2 253.93 3 5.6
rc204-6 1 172.03 0.1 1 176.39 3 2.7 1 176.39 3 4.8
rc208-6 1 162.67 0.2 1 167.98 2 1.5 1 167.98 2 4.7

c104-10 1 234.22 2.8 2 326.75 4 1 274.05 TL 2 326.75 4 22.0
c205-10 1 271.30 0.1 2 271.75 2 1 270.20 TL 2 271.75 2 22.9
r201-10 1 232.64 0.1 1 241.51 5 285.9 1 241.51 5 6.7
r203-10 1 213.65 14.3 1 218.21 4 7.5 1 218.21 4 5.5
rc108-10 2 329.79 0.5 4 468.09 4 2 352.01 TL 4 468.09 4 32.7
rc201-10 1 399.65 0.1 1 412.86 6 1 334.79 TL 1 412.86 6 7.3
rc205-10 1 446.06 0.2 2 424.32 5 1 336.93 TL 2 424.32 5 28.1
c101-12 3 366.33 0.1 3 388.25 5 839.4 3 388.25 5 7.7
c202-12 1 282.44 0.1 1 304.06 5 902.7 1 304.06 5 6.3
r102-12 3 241.14 0.1 3 249.19 3 16.3 3 249.19 3 6.6
r103-12 2 188.67 54.0 2 219.35 4 2 201.03 TL 2 219.35 4 8.1
rc102-12 3 384.75 0.1 4 429.50 2 3 415.91 TL 4 429.50 2 22.8

c103-16 2 344.06 0.4 3 380.67 5 2 311.61 TL 3 380.67 5 35.5
c106-16 2 274.35 0.2 3 365.88 4 2 305.93 TL 3 365.88 4 27.2
c202-16 1 534.34 22.4 2 532.96 7 1 350.45 TL 2 532.96 7 56.6
c208-16 1 315.90 0.3 2 328.30 4 1 284.90 TL 2 328.30 4 35.9
r105-16 3 312.41 0.1 4 396.64 5 3 318.93 TL 4 396.64 5 27.6
r202-16 1 405.63 11.3 2 467.79 9 1 305.57 TL 2 440.56 8 62.1
r209-16 1 299.69 14.2 1 341.04 7 1 288.08 TL 1 341.04 7 10.8
rc103-16 3 406.87 4.0 4 471.56 3 3 339.81 TL 4 471.56 3 27.5
rc108-16 3 358.78 149.9 3 398.51 4 3 380.86 TL 3 398.51 4 8.0
rc202-16 1 599.87 0.7 2 536.07 6 1 368.67 TL 2 523.65 8 53.1
rc204-16 1 314.29 56.0 1 427.52 6 1 244.09 TL 1 385.48 7 8.4
r102-18 5 377.76 0.2 5 421.14 7 5 372.48 TL 5 419.90 6 9.3

Avg. 9.3 2.1 315.57 4.1 2057.6 2.1 313.27 4.2 16.9

123



calculate gaps between the two settings in order to facilitate easier comparison, i.e., we report the absolute

difference of the number of vehicles (∆|K|) and visits (∆|F̃ ′|), and the relative difference in distance

(∆f ) in percent.

Comparing the results, we find that there is no difference between the two settings in only four instances.

In the other cases, full recharging is clearly inferior. On average, it requires another 0.5 vehicles and the

distance is increased by 3.76%. This effect can be mainly attributed to instances from groups with a short

scheduling horizon (lc1x, lr1x, and lrc1x) whereas for instances with a long scheduling horizon (lc2x,

lr2x, and lrc2x) no additional vehicle is required for any instance and we observe only moderate detours.

Further, we observe that the number of recharging visits decreases by 0.93 on average. From the driver’s

perspective, fewer stops might be desirable and increase the acceptance of the solution. From a cost

perspective, recharging reduces the battery life, but it is difficult to tell how a reduced number of visits

should be judged when considered on its own. Han, Han, and Aki (2014) propose a model to calculate

the cost of battery wear and show that the cost is a function of the state-of-charge. They demonstrate that

shallow as well as deep discharging should be avoided. If batteries are always fully recharged, it is cost

efficient to actively use the middle range of the available capacity, i.e., the battery life is maximized if

the battery is always discharged to about 30% and then recharged back to 100%. If the charging process

can be interrupted, it is advantageous to always operate the battery at a low to medium state-of-charge.

This, on the other hand, conflicts with the goal of providing a sufficient range and our prerequisite that

vehicles are fully recharged at the depot during off-hours which makes certainly sense from a practical

point of view.

Concerning run-time, GTS requires on average 162 and 222 seconds, for the partial and full recharging

setting, respectively. The difference in run-time can be explained by the fact that it is more difficult to

find a feasible solution with the second setting. Overall, we think the run-times are still moderate.

5.4.2. Experiments on PDPTW

For the PDPTW, instance sets that are currently studied in the literature were introduced in Li and Lim

(2001) and are publicly available from https://www.sintef.no/projectweb/top/pdptw/

li-lim-benchmark. We assess the performance of GTS on the benchmark set with 100 locations

and compare our results to heuristics from the literature that report solutions for the same set and use

a hierarchical objective function that minimizes the number of vehicles first and the distance second.

The focus of more recent research on the PDPTW shifted to solving large instances, but we think this

is beyond the scope of this work. Instead, we aim to demonstrate that our GTS is capable of effectively

searching the solution space for instances that have a size that is realistic when EVs are first introduced

for transportation services.

We compare our GTS to (i) a tabu-embedded simulated annealing approach introduced in Li and Lim

(2001) that operates on feasible solutions only (TS+SA), (ii) a two-stage hybrid algorithm introduced

in Bent and Hentenryck (2006) that first uses SA to minimize the number of vehicles and then LNS

to minimize distance while preserving feasibility (SA+LNS), and (iii) an adaptive LNS that was pro-

posed in Ropke and Pisinger (2006b) and which features an SA component for accepting solutions and

a request bank to store requests that cannot be feasibly inserted (ALNS). We do not report results for

(i) the genetic algorithm of Pankratz (2005) because it only minimizes distance and (ii) the generic VRP

124

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark


Table 5.2.: Comparison between the partial and the full recharging option on newly-generated instances.
Partial recharging allowed Full recharging only Gaps

Inst. |K| f t |F̃ ′| |K| f t |F̃ ′| ∆|K| ∆f (%) ∆|F̃ ′|
lc101 11 954.57 50.72 9 11 989.20 74.02 7 0 3.63 -2
lc102 11 950.40 88.52 10 11 985.55 83.51 7 0 3.70 -3
lc103 10 998.21 308.08 10 11 963.51 305.95 7 1 -3.48 -3
lc104 10 902.35 210.84 8 10 960.19 270.44 8 0 6.41 0
lc105 10 843.32 52.60 8 11 974.22 177.48 7 1 15.52 -1
lc106 10 853.25 75.16 7 11 964.46 197.29 7 1 13.03 0
lc107 10 843.32 80.71 8 11 938.52 226.48 9 1 11.29 1
lc108 10 842.13 84.58 7 11 952.94 245.27 9 1 13.16 2
lc109 10 842.09 99.23 7 11 944.37 345.76 8 1 12.15 1

lc201 4 757.59 91.81 6 4 779.86 76.43 5 0 2.94 -1
lc202 4 706.53 86.09 6 4 744.21 113.12 6 0 5.33 0
lc203 4 689.61 103.38 5 4 740.88 137.86 4 0 7.44 -1
lc204 4 688.98 113.41 5 4 692.36 107.50 3 0 0.49 -2
lc205 4 685.47 69.99 5 4 690.06 82.62 4 0 0.67 -1
lc206 4 693.72 74.81 4 4 699.36 78.07 3 0 0.81 -1
lc207 4 660.97 70.86 4 4 660.97 82.61 4 0 0.00 0
lc208 4 649.47 73.27 3 4 649.47 60.87 3 0 0.00 0

lr101 20 1737.24 39.17 14 22 1855.17 169.80 11 2 6.79 -3
lr102 17 1517.09 106.36 13 19 1664.17 396.62 15 2 9.70 2
lr103 14 1424.11 140.58 15 15 1493.97 286.86 14 1 4.91 -1
lr104 12 1227.93 186.88 19 12 1273.53 226.47 16 0 3.71 -3
lr105 16 1715.32 220.16 31 19 1738.76 599.57 26 3 1.37 -5
lr106 14 1549.11 205.80 27 16 1548.48 441.57 19 2 -0.04 -8
lr107 13 1293.31 165.11 18 13 1359.75 178.90 17 0 5.14 -1
lr108 12 1222.85 178.85 17 13 1263.68 379.30 18 1 3.34 1
lr109 14 1458.36 172.08 24 15 1531.40 290.07 22 1 5.01 -2
lr110 13 1274.28 176.14 21 13 1366.76 341.82 20 0 7.26 -1
lr111 12 1319.23 288.83 22 13 1357.71 360.23 19 1 2.92 -3
lr112 12 1194.25 222.46 17 12 1293.14 373.50 17 0 8.28 0

lr201 4 1254.83 79.68 6 4 1256.35 94.22 6 0 0.12 0
lr202 3 1204.62 162.04 8 3 1210.06 156.93 7 0 0.45 -1
lr203 3 951.55 197.86 6 3 955.26 185.00 4 0 0.39 -2
lr204 2 866.87 551.78 6 2 895.36 478.15 4 0 3.29 -2
lr205 3 1056.94 144.55 8 3 1060.65 148.17 7 0 0.35 -1
lr206 3 933.03 154.49 4 3 933.03 204.85 4 0 0.00 0
lr207 2 915.02 345.54 4 2 915.03 242.44 5 0 0.00 1
lr208 2 738.31 182.80 4 2 739.41 243.97 4 0 0.15 0
lr209 3 937.82 165.06 6 3 945.49 177.51 5 0 0.82 -1
lr210 3 970.30 189.11 6 3 970.30 169.68 6 0 0.00 0
lr211 3 885.48 240.08 2 3 888.54 264.05 2 0 0.35 0

lrc101 18 1962.31 128.05 23 19 2063.67 168.54 21 1 5.17 -2
lrc102 17 1916.66 142.49 25 18 2050.31 212.58 24 1 6.97 -1
lrc103 13 1627.13 247.11 20 14 1704.20 267.95 19 1 4.74 -1
lrc104 12 1333.14 185.48 14 13 1470.23 326.23 15 1 10.28 1
lrc105 16 2048.31 210.14 21 17 2104.76 318.86 19 1 2.76 -2
lrc106 14 1740.33 159.69 23 16 1822.24 293.82 19 2 4.71 -4
lrc107 13 1452.14 146.36 16 14 1579.01 244.20 17 1 8.74 1
lrc108 12 1423.99 256.63 19 13 1470.01 308.02 19 1 3.23 0

lrc201 4 1414.51 93.06 7 4 1417.20 84.95 6 0 0.19 -1
lrc202 3 1383.22 177.22 6 3 1390.98 126.38 6 0 0.56 0
lrc203 3 1092.05 171.34 4 3 1101.83 191.54 5 0 0.90 1
lrc204 3 825.97 164.41 6 3 835.54 150.65 6 0 1.16 0
lrc205 4 1313.43 129.52 6 4 1314.39 122.99 5 0 0.07 -1
lrc206 3 1198.97 162.37 6 3 1214.19 162.55 5 0 1.27 -1
lrc207 3 1066.65 235.36 7 3 1080.79 191.55 6 0 1.33 -1
lrc208 3 865.65 196.88 6 3 877.10 170.43 6 0 1.32 0

Avg. 161.71 221.72 0.50 3.76 -0.93

125



solver described in Hasle and Kloster (2007) as, due to confidentiality reasons, no details on the solution

method are given and we were not able to interpret the reported run-times; however, what we can say

is that both methods miss best-known solution (BKS) in a few instances. We think that the mentioned

algorithms sufficiently mark out the field of heuristics commonly applied to VRPs to offer a good basis

for comparison.

Note that we initialize the feasibility phase with the best known value for the number of vehicles. As

GTS starts with a low estimate of the number of vehicles and then increases this number if it fails to

find a feasible solution, the solution quality would not be influenced if we started with a lower number.

Clearly, the run-time would increase but we think that this elevated number would offer little insight

and only complicate the comparison. Further, in many practical applications a reasonable range for the

available vehicles is known (Ibaraki et al., 2008).

In Table 5.3, we report the best-known value (BKV) in the first row and then in the order of publication

the following measures for the solution methods listed above: The number of runs performed (runs), the

cumulative number of vehicles obtained in the best run (CNVb), the corresponding cumulative traveled

distance (CTDb), as well as average values calculated over all runs (CNVa and CTDa). Further, we

provide the average run-time (t) in seconds as given in the original paper. In order to enable a fairer

comparison of run-times that takes the performance of the hardware into account, we assign the single-

thread score (SCO) attributed by PassMark (https://www.cpubenchmark.net) to the respective

CPU. We then use this score to convert the original time to a run-time (t′) as if using our hardware. Note

that we set the result reported for TS+SA in italics, because for one instance the distance reported is

slightly lower than the optimal one.

Focusing on solution quality, we observe that the three last methods obtain results very close to each

other, i.e., they all find the best known number of vehicles and only differ slightly in terms of distance.

However, GTS is the only method that matches the BKS on every instance. Concerning average solution

quality, GTS demonstrates a very convincing performance. It constantly provides the best number of

vehicles whereas SA+LNS and ALNS use on average one additional vehicle. In terms of cumulative

distance, GTS has on average a gap of only 0.11% compared to slightly increased values of 0.33%

and 0.42% for ALNS and SA+LNS, respectively. In terms of run-time, ALNS clearly stands out with

a converted time of only 16 seconds on average. On the other end of the range, SA+LNS is with 1031

seconds by far the slowest of the four methods, but it is set to always spend five minutes on each instance,

therefore this is to be interpreted carefully. GTS uses on average 69 seconds. We think that this is a very

reasonable value for a method based on local search, that is sufficient to serve most practical purposes.

Finally, we perform another experiment in order to investigate how changing the arc sparsification

Table 5.3.: Comparison of GTS to other heuristics from the literature.

runs CNVb CTDb CNVa CTDa t SCO t′

BKV 402 58059.50

TS+SA - 405 58184.91 769 200 109
SA+LNS 5 402 58061.82 403.0 58305.86 3600 403 1031
ALNS 10 402 58060.02 403.0 58249.42 66 344 16
GTS 10 402 58059.50 402.0 58126.15 69 1407 69

126

https://www.cpubenchmark.net


method influences solution quality (keeping the size of the sparse arc set constant). To this end, we

generate the sparse arcs A′− (i) with our base setting as described in Section 5.3.1 (denoted method a),

(ii) with a simple procedure that sorts all arcs (i, j) ∈ A′ by their length dij and then selects the short-

est arcs (denoted b), and (iii) based on the arcs that are present in solutions to elementary shortest-path

problems with resource constraints (ESPPRCs) (denoted c). The idea is that if in an solution only few

vertices are visited between each pair of pickup and delivery, then promising arcs might be found in a

restricted number of shortest paths from pickup to delivery. More precisely, for every pair of pickup and

delivery, we solve 40 distinct ESPPRCs considering only the feasible arc set A′. Each path must respect

capacity and time windows but we allow that pairing and precedence constraints of the other vertices

visited may be violated. We store all arcs present on the ESPPRCs, and then select the shortest arcs until

A′− has the desired size. If there are too few arcs available from the solutions to the ESPPRCs, we fill

A′− by selecting the shortest remaining edges from A′.

In Figure 5.3, we illustrate how many arcs from the BKS to each instance are missing in A′− when it

is generated with each of the three methods (a, b, and c) described above. We find that for the majority

of the 56 instances (33, 36, and 37 for a, b, and c, respectively) all arcs of the BKS are represented in

A′−. For the other instances, the number of missing arcs is quite low and and does not exceed five. This

seems to indicate that 25% of the size of A′ is a reasonable value for the size of A′−. In total, 51, 40,

and 36 arcs are missing for a, b, and c, respectively. This suggest that c should have been able to provide

solutions closest to the BKS if the coverage of BKS arcs had been the decisive criterion.

However, as shown in Table 5.4, we find that a has the best performance of the three methods, i.e., in

10 runs, it provides at least once the BKS to every instance. In contrast, b and c miss the BKS for one

instance. Further, a has also the best average solution quality in terms of vehicles (CNVa) and distance

(CTDa); between b and c, c has the lower CNVa and b the lower CTDa. This clearly speaks for using the

reduced cost as criterion to select the sparse arcs. But, on the other hand, a has also the highest run-time,

i.e., 69 seconds compared to 40 seconds for b and c because the LP relaxation of formulation (5.1)–(5.21)

needs to be solved. For our other studies, we chose a as base setting because we decided to favor solution

quality over run-time in order to be able to provide high-quality solutions for the PDPTW-EV instances.

Note that we annotate the run-time of c with † because the reported run-time does not include the time

required to solve the ESPPRCs. For our experiment, we used Gurobi to solve the ESPPRCs a priori

and then loaded the stored solutions. We think that with an efficient labeling algorithm the (currently

prohibitively high) run-time for solving the ESPPRCs could be significantly decreased. But, because we

opted for a, we refrained from implementing the labeling algorithm.

Table 5.4.: Comparison of three different methods for arc sparsification.

runs CNVb CTDb CNVa CTDa t

a (reduced cost) 10 402 58059.50 402.0 58126.15 69
b (shortest arcs) 10 402 58059.56 402.2 58377.25 40
c (ESPPRCs) 10 402 58059.56 402.0 58686.19 †40

127



12345

lc101
lc102

lc103
lc1

04
lc1

05lc1
06lc1

07lc
10

8lc
10

9

lc
20

1

lc
20

2

lc
20

3

lc
20

4lc205

lc206

lc207

lc208

lr101lr102lr103lr104lr105
lr106

lr107
lr108

lr109

lr110

lr111

lr112

lr201

lr202

lr203

lr204

lr2
05

lr2
06

lr2
07

lr2
08

lr2
09

lr2
10

lr2
11

lrc
10

1

lr
c1

02

lr
c1

03

lrc104

lrc105

lrc106
lrc107

lrc108
lrc201

lrc202

lrc203

lrc204

lrc205

lrc206

lrc207

lrc208

aa

aa

a a

a
a

a
a

a a

a

a

a
a

a

a

a
a a

a

a

b

b

b
b

b
b

b b

b
b

b

b

b b

b

b
b

b
b

b

c

c

c

c

c

c

c

c

c

c
c

c c

c

c

c
c

c c

Figure 5.3.: Comparison of three different methods to generate the set of granular arcs. Arcs are spar-
sified based on reduced cost (a), shortest edges (b), and solutions to ESPPRCs (c). Then,
for each instance the number of arcs that is present in the BKS but not present in the sparse
arc set A′− (generated once by each of thee three methods) is counted. These values are
always between zero and five. We represent each value between one and five (omitting the
zeros for clarity) by three circles, one for each method. Each instance is associated with a
ray. In order to illustrate the distribution across the instances, we plot a, b, and c where the
respective circle and ray intersect.

128



5.5. Summary and Conclusion

In this work, we introduce a variant of the PDPTW in which EVs are used for pickup and delivery

operations. The vehicles have a limited battery capacity and their batteries can be recharged with an

arbitrary amount of energy at dedicated recharging stations. Because of its relevance for real-world

applications, we assume that this takes a time proportional to the amount of energy recharged. For

testing purposes, we generate a set of small and another set of larger PDPTW-EV instances.

Further, we develop a novel GTS algorithm that features a policy for partial recharging. We validate our

approach on small instances by comparing it to results obtained with Gurobi for our compact formula-

tion. We find that the new formulation is considerably more difficult to solve than its PDPTW-relaxation.

In contrast, the performance of GTS is excellent and matches or improves the solutions obtained with

Gurobi within the time limit on every instance. On larger instances, we show that a partial recharging

setting leads to a considerably reduced number of vehicles and total distance compared to a full recharg-

ing setting if the planning horizon is short. Finally, we demonstrate that GTS has a very convincing

performance on benchmark instances for the PDPTW from the literature.

In future research, it might be worthwhile to examine the PDPTW-EV with an additional recharging

infrastructure established at customer locations (Conrad and Figliozzi, 2011) in order to better utilize

service and waiting times and reduce the additional time spent for recharging. In particular, it might be

interesting to study this in combination with an accurate model, see, e.g., Barco et al. (2013) and Han,

Han, and Aki (2014), to quantify the wear of the battery as a function of the state-of-charge and the

amount of energy recharged.

Bibliography

Balinski, M. L. and R. E. Quandt (1964). On an integer program for a delivery problem. In: Operations

Research 12 (2), pp. 300–304.

Barco, J., A. Guerra, L. Muñoz, and N. Quijano (2013). Optimal routing and scheduling of charge for

electric vehicles: Case study. In: CoRR abs/1310.0145. URL: http://arxiv.org/abs/1310.0145.

Bent, R. and P. V. Hentenryck (2006). A two-stage hybrid algorithm for pickup and delivery vehicle

routing problems with time windows. In: Computers & Operations Research 33 (4), pp. 875–893.

Bruglieri, M., F. Pezzella, O. Pisacane, and S. Suraci (2015). A variable neighborhood search branching

for the electric vehicle routing problem with time windows. In: Electronic Notes in Discrete Mathe-

matics 47, pp. 221–228.

Conrad R., G. and A. Figliozzi M. (2011). The recharging vehicle routing problem. In: Proceedings of the

2011 Industrial Engineering Research Conference. Ed. by T. Doolen and E. Van Aken. Reno, USA.

Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. In: Operations Research

54 (3), pp. 573–586.

Dekker, R., J. Bloemhof, and I. Mallidis (2012). Operations research for green logistics: An overview of

aspects, issues, contributions and challenges. In: European Journal of Operational Research 219 (3),

pp. 671–679.

129

http://arxiv.org/abs/1310.0145


Demir, E., T. Bektaş, and G. Laporte (2014a). A review of recent research on green road freight trans-

portation. In: European Journal of Operational Research 237 (3), pp. 775–793.

Desaulniers, G., F. Errico, S. Irnich, and M. Schneider (2016). Exact algorithms for electric vehicle-

routing problems with time windows. In: Operations Research 64 (6), pp. 1388–1405.

Deutsche Post DHL Group (2016). Logistics trend radar. DHL Customer Solutions & Innovation. Ac-

cessed December 16, 2017. Troisdorf, Germany. URL: http://www.dhl.com/en/about_us/logistics_insights/

dhl_trend_research/trendradar.html#.Wf9MZLpFxZQ.

Dumas, Y., J. Desrosiers, and F. Soumis (1991). The pickup and delivery problem with time windows.

In: European Journal of Operational Research 54 (1), pp. 7–22.

Felipe, Á., M. T. Ortuño, G. Righini, and G. Tirado (2014). A heuristic approach for the green vehicle

routing problem with multiple technologies and partial recharges. In: Transportation Research Part E:

Logistics and Transportation Review 71, pp. 111–128.

Furtadoa, M. G., P. Munaria, and R. Morabitoa (2017). Pickup and delivery problem with time windows:

a new compact two-index formulation. In: Operations Research Letters 45 (4), pp. 334–341.

Gendreau, M., A. Hertz, and G. Laporte (1994). A tabu search heuristic for the vehicle routing problem.

In: Management Science 40 (10), pp. 1276–1290.

Goeke, D. and M. Schneider (2015). Routing a mixed fleet of electric and conventional vehicles. In:

European Journal of Operational Research 245 (1), pp. 81–99.

Grandinetti, L., F. Guerriero, F. Pezzella, and O. Pisacane (2016). A pick-up and delivery problem with

time windows by electric vehicles. In: International Journal of Productivity and Quality Management

18 (2-3), pp. 403–423.

Groër, C., B. Golden, and E. Wasil (2011). A parallel algorithm for the vehicle routing problem. In:

INFORMS Journal on Computing 23 (2), pp. 315–330.

Han, S., S. Han, and H. Aki (2014). A practical battery wear model for electric vehicle charging appli-

cations. In: Applied Energy 113, pp. 1100–1108.

Hasle, G. and O. Kloster (2007). Industrial vehicle routing. In: Geometric Modelling, Numerical Simu-

lation, and Optimization: Applied Mathematics at SINTEF. Ed. by G. Hasle, K.-A. Lie, and E. Quak.

Berlin, Heidelberg: Springer, pp. 397–435.

Hiermann, G., J. Puchinger, S. Ropke, and R. F. Hartl (2016). The electric fleet size and mix vehicle

routing problem with time windows and recharging stations. In: European Journal of Operational

Research 252 (3), pp. 995–1018.

Ibaraki, T., S. Imahori, K. Nonobe, K. Sobue, T. Uno, and M. Yagiura (2008). An iterated local search

algorithm for the vehicle routing problem with convex time penalty functions. In: Discrete Applied

Mathematics 156 (11), pp. 2050–2069.

Keskin, M. and B. Çatay (2016). Partial recharge strategies for the electric vehicle routing problem with

time windows. In: Transportation Research Part C: Emerging Technologies 65, pp. 111–127.

Li, H. and A. Lim (2001). A metaheuristic for the pickup and delivery problem with time windows. In:

Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’01). Ed.

by D. Moldovan. IEEE Press, pp. 160–167.

Lin, S. (1965). Computer solutions of the traveling salesman problem. In: Bell System Technical Journal

44 (10), pp. 2245–2269.

130

http://www.dhl.com/en/about_us/logistics_insights/dhl_trend_research/trendradar.html#.Wf9MZLpFxZQ
http://www.dhl.com/en/about_us/logistics_insights/dhl_trend_research/trendradar.html#.Wf9MZLpFxZQ


Montoya, A., C. Guéret, J. E. Mendoza, and J. G. Villegas (2017). The electric vehicle routing problem

with nonlinear charging function. In: Transportation Research Part B: Methodological 103, pp. 87–

110.

Nagata, Y., O. Bräysy, and W. Dullaert (2010). A penalty-based edge assembly memetic algorithm for the

vehicle routing problem with time windows. In: Computers & Operations Research 37 (4), pp. 724–

737.

Nanry, W. P. and J. W. Barnes (2000). Solving the pickup and delivery problem with time windows using

reactive tabu search. In: Transportation Research Part B: Methodological 34 (2), pp. 107–121.

Pankratz, G. (2005). A grouping genetic algorithm for the pickup and delivery problem with time win-

dows. In: OR Spectrum 27 (1), pp. 21–41.

Pelletier, S., O. Jabali, and G. Laporte (2016). 50th anniversary invited article–Goods distribution with

electric vehicles: Review and research perspectives. In: Transportation Science 50 (1), pp. 3–22.

Potvin, J.-Y. and J.-M. Rousseau (1995). An exchange heuristic for routeing problems with time win-

dows. In: Journal of the Operational Research Society 46 (12), pp. 1433–1446.

Preis, H., S. Frank, and K. Nachtigall (2014). Energy-optimized routing of electric vehicles in urban

delivery systems. In: Operations Research Proceedings 2012 – Selected Papers of the International

Annual Conference of the German Operations Research Society (GOR). Ed. by S. Helber, M. Breitner,

D. Rösch, C. Schön, J.-M. Graf von der Schulenburg, P. Sibbertsen, M. Steinbach, S. Weber, et al.

Cham: Springer International Publishing, pp. 583–588.

Rochat, Y. and É. D. Taillard (1995). Probabilistic diversification and intensification in local search for

vehicle routing. In: Journal of Heuristics 1 (1), pp. 147–167.

Ropke, S. and J.-F. Cordeau (2009). Branch and cut and price for the pickup and delivery problem with

time windows. In: Transportation Science 43 (3), pp. 267–286.

Ropke, S. and D. Pisinger (2006b). An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. In: Transportation Science 40 (4), pp. 455–472.

Savelsbergh, M. (1992). The vehicle routing problem with time windows: Minimizing route duration. In:

ORSA Journal on Computing 4 (2), pp. 146–154.

Schneider, M., B. Sand, and A. Stenger (2013). A note on the time travel approach for handling time

windows in vehicle routing problems. In: Computers & Operations Research 40 (10), pp. 2564–2568.

Schneider, M., F. Schwahn, and D. Vigo (2017). Designing granular solution methods for routing prob-

lems with time windows. In: European Journal of Operational Research 263 (2), pp. 493–509.

Schneider, M., A. Stenger, and D. Goeke (2014). The electric vehicle-routing problem with time windows

and recharging stations. In: Transportation Science 48 (4), pp. 500–520.

Subramanian, A., E. Uchoa, and L. S. Ochi (2013). A hybrid algorithm for a class of vehicle routing

problems. In: Computers & Operations Research 40 (10), pp. 2519–2531.

Toth, P. and D. Vigo (2003). The granular tabu search and its application to the vehicle-routing problem.

In: INFORMS Journal on Computing 15 (4), pp. 333–346.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins (2013). A hybrid genetic algorithm with adaptive

diversity management for a large class of vehicle routing problems with time-windows. In: Computers

& Operations Research 40, pp. 475–489.

Waters, C. D. J. (1987). A solution procedure for the vehicle-scheduling problem based on iterative route

improvement. In: Journal of the Operational Research Society 38 (9), pp. 833–839.

131





Chapter 6

Conclusion

6.1. Summary and Conclusion

This thesis investigates four variants of the vehicle-routing problem (VRP). First, it focuses on two

well-established and fundamental problems that are highly relevant in many logistics applications, con-

tributing to them from a methodological point of view. Then, this work turns towards two new problems

that are aligned with the introduction of electric commercial vehicles (ECVs) and are practically relevant

in the context of small-package shipping and urban logistics. Several methodological ideas and insights

can be carried over to other VRPs as they are generic to some extent.

Chapter 2 studies the VRP with private fleet and common carrier (VRPPC). For the VRPPC, the first

exact method is proposed, i.e., a branch-price-and-cut method (BPC). Routes are generated by solv-

ing shortest-path problems with resource constraints and restricted non-elementary paths, and heuristic

pricers are used as acceleration technique. A hierarchical branching scheme ensures integrality. In ad-

dition, a large neighborhood search (LNS) is developed to solve the VRPPC heuristically. The LNS

features a dynamic problem decomposition. In every iteration, subproblems are generated based on the

current solution, and removal and insertion of customers are only performed on these subproblems. The

solutions to modified subproblems are reintegrated into the solution to the original problem according

to a criterion based on simulated annealing. Subsequently, a variable neighborhood descent improves

the solutions of the original problem. The BPC provides tight lower bounds on large instances and can

solve medium-sized instances with up to 75 customers to optimality. The LNS provides many new up-

per bounds, especially for instances with a heterogeneous vehicle fleet and is among the best heuristic

methods for the VRPPC.

The high quality of the lower bounds for the VRPPC indicates that it should be within reach to solve

several of the larger-sized instances to optimality if the pricing problems can be solved more efficiently.

To this end, in the course of this thesis, two heuristics were tested (i) the LNS algorithm to heuristically

solve the pricing subproblems in addition to using it for the complete problem and (ii) an iterated nearest-

neighbor heuristic featuring a tabu criterion in order to explore different paths. Unfortunately, even

though both heuristics worked in principle, they proved to be too slow in practice. The decomposition

procedure used in the LNS, which generates subproblems based on routes, proved to be successful to

solve the VRPPC. It would be interesting to learn whether LNS with decomposition is also suitable for

other VRPs as it is quite easy to implement, possibly also using other decomposition strategies.

133



Chapter 3 investigates the consistent VRP (ConVRP), a multi-day problem in which driver consistency

and arrival time consistency (ATC) must be respected when serving the customers. The first exact

method, called cluster column generation (CCG), and an improved mixed-integer linear programming

(MILP) formulation are proposed for the ConVRP. For CCG, a column does not represent a single route,

which is usually a typical choice for VRPs, but a cluster of customers served by the same driver on

all days of the planning horizon. Lower bounds are obtained by solving a traveling-salesman problem

(TSP) for every customer cluster on each day. At a later stage, a MILP solver generates routes respecting

ATC. As upper bounding procedure, an LNS is developed. An important element of the LNS is a re-

optimization procedure in which routes are first inverted and then customers are relocated such that ATC

is improved. New medium-sized instances are generated to test the performance of the exact method in

a structured fashion, and most instances with up to 30 customers and five days can be solved to optimal-

ity. The LNS provides excellent upper bounds, and tested as stand-alone algorithm on large instances is

clearly superior to all solution methods for the ConVRP suggested in the literature.

For medium-sized instances of ConVRP, CCG is very fast, and probably no substantial run-time im-

provements can be achieved or would be helpful in practice. However, the shortcoming of CCG is its

limitation to medium-sized instances. CCG is mainly restricted by its memory requirements that increase

exponentially with the instance size. The reason is that CCG depends on the complete enumeration of

all customer clusters. If the clusters cannot be enumerated a priori, no meaningful lower bound can be

provided. It would be desirable to develop an exact method that could theoretically be used to approach

large instances. However, other column-generation formulations that keep the consistency requirements

in the master problem seem to provide weaker lower bounds and are thus less suitable for a branch-

and-cut approach. On the other hand, solving pricing problems over multiple days representing them as

elementary shortest-path problems with resource constraints (ESPPRCs) might be not applicable. This

makes further steps a challenging endeavor.

Chapter 4 introduces the electric VRP with mixed fleet (E-VRPTWMF). E-VRPTWMF uses realistic

energy consumption functions for ECVs and internal combustion commercial vehicles and models the

relationship between energy consumption and cargo load of a vehicle. The idea is that it might be

desirable, in terms of saving energy, to serve customers with high demand early in a route even if a a

detour needs to be accepted in exchange. An adaptive LNS is developed to solve E-VRPTWMF. Because

the calculation of violations is computationally expensive when cargo load is taken into account, the

ALNS uses a surrogate cost function to select promising moves. Then, the correct cost function only

evaluates the promising moves. Numerical experiments performed on newly generated instances show

that it is beneficial to consider the actual load and that the choice of objective function strongly influences

the share of ECVs used. In addition, ALNS has better solution quality and run-time than all previous

methods for the electric vehicle-routing problem with time windows and is competitive on instances for

the vehicle-routing problem with time windows.

A lesson learned from the E-VRPTWMF is that a simplified objective function can be adequate if it is

computationally too expensive to evaluate the neighborhood of a solution in detail. A promising subset

of the neighborhood can then be evaluated with the real objective function to select the next solution

from which the search is continued.

Chapter 5 proposes the electric pickup and delivery problem with time windows and electric vehicles

(PDPTW-EV) with partial recharging option. As first solution method for the PDPTW-EV, a granular

134



tabu search (GTS) is designed. The GTS uses conventional VRP moves and acknowledges the coupling

constraints of pickups and deliveries with a penalty term in the objective function. On new instances, it is

demonstrated that partial recharging is advantageous compared to mandatory full recharging. Further, the

GTS provides state-of-the-art solutions with moderate run-times for instances of the pickup and delivery

problem with time windows.

Recent advances in the exact domain were made concerning VRPs with electric vehicles (EVs) and

VRPs with a pickup and delivery structure, see Desaulniers et al. (2016) and Gschwind et al. (2018),

respectively. Combining these with the high-quality upper bounds provided from the GTS, should allow

a straight-forward implementation of an exact solution method for PDPTW-EV. Lower bounds could also

indicate whether further heuristics need to be developed. When developing the GTS, the tabu rules were

critical for the success of GTS, i.e., they need to be carefully adapted to the operators used. However,

an yet open research question is how to approach larger-sized instances with GTS. GTS is very effective

for medium-sized instances, however an inherent conflict of tabu search is that short tabu durations are

typically too weak to move the search to different regions of the solution space if instances are large and

long tabu durations make it difficult to comprehensively search the close region of a particular solution.

Finally, it can be remarked that relaxing constraint violations and accounting for them with penalties was

always superior to restricting the search to feasible solutions. This was the case for all tests performed in

the course of this thesis, even when feasibility was easy to restore. But, this should be interpreted with

caution as there are might be limits to the extent to which this observation can be generalized.

6.2. Outlook

Several of the trends described in the introduction have not yet been sufficiently studied. One promising

direction of research is to develop models for the simultaneous routing of drone-carrying platforms and

drones. Until now, there is little literature regarding the optimization of such problems and, to the best

of our knowledge, so far only the routing of a single platform serving as mobile basis for the drones has

been considered, see, e.g., Murray and Chu (2015), Savuran and Karakaya (2016), and Ferrandez et al.

(2016).

Two approaches to model the movement of drone-carrying platforms come to mind: (i) platforms are

restricted to stops at dedicated locations, e.g., points on a grid or suitable waiting positions in a city, or

(ii) they can move and stop freely. In the first scenario, the problem is closely related to the two-echelon

capacitated VRP (2E-CVRP), see, e.g., Baldacci, Mingozzi, Roberti, and Calvo (2013). However, the 2E-

CVRP typically only consider a small number of satellites whereas one can expect that there are many

potential stops for platforms—this might drastically change how the problem needs to be approached

from an algorithmic point of view. In addition, one typically abstracts from timing aspects in the 2E-

CVRP but might need to take them into account when routing drones. This is especially the case if drones

do not need to return to the platform from which they departed but can be exchanged between platforms.

In the second scenario, the problem can be seen as related to the TSP with neighborhoods in which the

tour must not exactly visit a customer but only traverse its neighborhood. For halting position available

on the plane or in a street network, see, e.g., Arkin and Hassin (1994) and Shuttleworth et al. (2008),

respectively. Note that so far the TSP with neighborhoods has not been studied for multiple tours.

135



The problem of placing and re-positioning micro-depots shares some similarities with the VRP with

trailers and transshipments (Drexl, 2013). The micro-depots can be considered non-autonomous trailers

and the lorries are tasked with relocating them. However, a major difference when operating mobile

depots in urban areas is that the trucks are not allowed to visit customers; for that purpose there is

another category of task vehicles—the load tricycles—that in turn can not pull the lorries.

Both problems described above could also be conceived as bilevel optimization problems. In bilevel op-

timization, a low-level problem is nested in a high-level problem, the decisions of the higher-level prob-

lem set the frame for the lower-level problem, that is optimized autonomously within these boundaries.

Thus, the optimal decisions for the lower-level problem must be anticipated in the higher-level problem.

For an overview, see, Colson, Marcotte, and Savard (2007). Recently, a solver for bilevel optimization

problems, which is able to cope with integer and continuous variables on both levels, was proposed in

Fischetti et al. (2017). As it was made publicly available, it could be interesting to use it as a starting

point in order to investigate both problems more closely. In such a bilevel setting, the drones/tricycles

would act as autonomous agents that can interact with the stops of the platforms/micro-depots, however

the reaction of the agents need to be taken into account when planning the first-level routes.

With regard to the BPC for the VRPPC, one could contemplate to use a parallel architecture, e.g., a

graphics processing unit, to obtain heuristics solutions for the pricing problem in shorter run-times, i.e.,

start several runs in parallel. Further, it is notable that large-sized instances for the heterogeneous fleet

VRP could recently be solved in Sadykov, Uchoa, and Pessoa (2017). They use a bucket graph to

organize the labels of the ESPPRCs that are solved in the pricing and thus are able to perform dominance

check on labels more efficiently. As the problem studied is closely related to the VRPPC, this might

be a promising direction to investigate. From a problem-oriented point of view, it could be promising

to extend the VRPPC to a multi-period problem. In last-mile delivery, customers can often specify

the preferred date of delivery, however it might also be acceptable that deliveries arrive one or several

days late. This presents an opportunity to schedule the visits to customers over multiple days and to

subcontract only those that cannot be profitably served on any day. This optimization problem can then,

e.g., be embedded in a rolling-horizon decision making process and optimized in ongoing fashion.

Another opportunity presents itself in the context of the routing of EVs. The models discussed in this

thesis assume that recharging stations are privately owned and their availability is not limited. Recently,

Froger et al. (2017) are the first to introduce the notion of a limited number of chargers at recharging sta-

tions; but, they consider them to be fully at the disposal of the decision-maker. It could be interesting to

study a scenario where electric vehicles share a public infrastructure of recharging stations complement-

ing (or substituting) the privately operated infrastructure. In this setting, chargers might be occupied

when EVs arrive, and one would either need to wait for the next free slot or visit another recharging

station if enough energy is left. To this end, a model based on queueing theory could be developed in

order to determine a decision policy. In addition, to improve the robustness of solutions, stochastic in-

fluences on the energy consumption, e.g., traffic congestion, temperature, and driving behavior, need to

be incorporated into models for VRPs with EVs. So far, the effect of stochastic variables on the energy

consumption of electric vehicles has only been considered in Jafari and Boyles (2017) in the context of

finding the shortest path for an EV.

Finally, some general methodological ideas are presented that are related to the combination of artificial

learning methods and optimization. Comparatively scarce work has been done related to the learning of

136



decision making in exact methods (Lodi and Zarpellon, 2017). The branching decisions influence the

performance of branch-and-bound methods; however they are inherently heuristic. Learning approaches

provide a data-driven foundation. For example, one could try to exploit information about the shape of

the decision tree, e.g., in terms of depth, breadth and number of branches. Other sources of informa-

tion are the already expanded nodes and the structure of the problem instances, i.e., the constraints and

objective function coefficients. Two well-known techniques to improve branch-and-bound search are

strong branching and pseudo-cost branching. Strong branching aims to look ahead by tentatively fixing

fractional variables and observing the impact on the lower bound. However, as this is computationally

expensive, artificial learning could present a chance to identify a promising subset of variables for strong

branching. On the other hand, pseudo-cost branching looks back at the past success of a variable by

assigning a score to each variable that captures information about the gain achieved by branching on this

variable in terms of feasibility and improvement of the lower bound. As the pseudo-costs are a very sim-

ple measure, more complex methods, e.g., the training of neural nets, might offer a chance to improve the

pseudo-cost strategy. Often, branch-and-bound methods will fail if the initial optimality gap is too large.

Valid inequalities (cuts) can potentially strengthen the linear relaxation; however violated inequalities

need to be identified by a separation procedure. For example, for the CVRP there exists an exponential

number of capacity constraints, i.e., the minimum number of vehicles required to serve the demand of

every subset of customers. In order to identify violated capacity constraints, one needs to check subsets

of customers, and as there are many, one often resorts to heuristics to identify promising ones (Augerat

et al., 1998). In addition, as often the inequalities have little impact on the lower bound but only increase

the size of the linear program, one needs to decide how many and which cuts are added to the linear

relaxation. Both tasks could be supported by artificial intelligence techniques.

Concerning the domain of metaheuristics, it is striking that LNS often provides high-quality solutions if

the insertion and removals operators are adapted to the problem characteristics and include information

related to the history of the search. One often finds a set of functions that rate moves based on simple

expressions and work well; however determining them manually is often time consuming and it is likely

that good ones are missed. It could be worthwhile to explore a direction of research where one automates

this approach by specifying a function comprised of several weighted terms derived from the problem

properties, e.g., for the case of the VRPPC, demand, cost of subcontracting, detour, and capacity viola-

tion. Then, one could try to find appropriate functions and randomization strategies. The idea is closely

related to the idea of ALNS introduced in Ropke and Pisinger (2006b); however in the original setting

one aims to determine a subset from a defined set of operators that work well on a specific instance and

select these with a higher probability. The idea here is to first derive a set of operators from a generic

function that work well over a broad range of instances for a given problem.

Bibliography

Arkin, E. M. and R. Hassin (1994). Approximation algorithms for the geometric covering salesman

problem. In: Discrete Applied Mathematics 55 (3), pp. 197–218.

Augerat, P., J. Belenguer, E. Benavent, A. Corberán, and D. Naddef (1998). Separating capacity con-

straints in the CVRP using tabu search. In: European Journal of Operational Research 106 (2),

pp. 546–557.

137



Baldacci, R., A. Mingozzi, R. Roberti, and R. W. Calvo (2013). An exact algorithm for the two-echelon

capacitated vehicle routing problem. In: Operations Research 61 (2), pp. 298–314.

Colson, B., P. Marcotte, and G. Savard (2007). An overview of bilevel optimization. In: Annals of Oper-

ations Research 153 (1), pp. 235–256.

Desaulniers, G., F. Errico, S. Irnich, and M. Schneider (2016). Exact algorithms for electric vehicle-

routing problems with time windows. In: Operations Research 64 (6), pp. 1388–1405.

Drexl, M. (2013). Applications of the vehicle routing problem with trailers and transshipments. In: Eu-

ropean Journal of Operational Research 227 (2), pp. 275–283.

Ferrandez, S. M., T. Harbison, T. Weber, R. Sturges, and R. Rich (2016). Optimization of a truck-drone in

tandem delivery network using k-means and genetic algorithm. In: Journal of Industrial Engineering

and Management 9 (2).

Fischetti, M., I. Ljubić, M. Monaci, and M. Sinnl (2017). A new general-purpose algorithm for mixed-

integer bilevel linear programs. In: Operations Research 65 (6), pp. 1615–1637.

Froger, A., J. E. Mendoza, O. Jabali, and G. Laporte (2017). A Matheuristic for the Electric Vehicle

Routing Problem with Capacitated Charging Stations. Tech. rep. 2017-31. CIRRELT, Canada.

Gschwind, T., S. Stefan Irnich, A.-K. Rothenbächer, and C. Tilk (2018). Bidirectional labeling in column-

generation algorithms for pickup-and-delivery problems. In: European Journal of Operational Re-

search 266 (2), pp. 521–530.

Jafari, E. and S. D. Boyles (2017). Multicriteria stochastic shortest path problem for electric vehicles. In:

Networks and Spatial Economics 17 (3), pp. 1043–1070.

Lodi, A. and G. Zarpellon (2017). On learning and branching: A survey. In: TOP 25 (2), pp. 207–236.

Murray, C. C. and A. G. Chu (2015). The flying sidekick traveling salesman problem: Optimization of

drone-assisted parcel delivery. In: Transportation Research Part C: Emerging Technologies 54, pp. 86–

109.

Ropke, S. and D. Pisinger (2006b). An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. In: Transportation Science 40 (4), pp. 455–472.

Sadykov, R., E. Uchoa, and A. Pessoa (2017). Enhanced Branch-Cut-and-Price Algorithm for Heteroge-

neous Fleet Vehicle Routing Problems. Tech. rep. L-2017-7. Niterói, Brazil: Cadernos do LOGIS-UFF.

Savuran, H. and M. Karakaya (2016). Efficient route planning for an unmanned air vehicle deployed on

a moving carrier. In: Soft Computing 20 (7), pp. 2905–2920.

Shuttleworth, R., B. L. Golden, S. Smith, and E. Wasil (2008). Advances in meter reading: Heuristic

solution of the close enough traveling salesman problem over a street network. In: The Vehicle Routing

Problem: Latest Advances and New Challenges. Ed. by B. Golden, S. Raghavan, and E. Wasil. Boston,

MA, USA: Springer, pp. 487–501.

138



Appendices

139





Appendix A

Updated Results for the TS Algorithm of Côté and Potvin (2009)

Table A.1 provides updated results for the tabu search (TS) introduced in Côté and Potvin (2009). The

coordinates of customers in instances of sets G and G-H are specified with a precision of four decimal

places, but the results reported in Côté and Potvin (2009) are obtained treating them as integers. The

authors repeated their tests with the higher precision and provided us with the results. Columns denoted

fbest report the best objective value of TS obtained in tens runs and columns t(sec) the total run-time in

seconds to perform tens runs using an I7 processor with 3.3 GHz. Note that the experiments in Potvin

and Naud (2011) were also performed with integer coordinates. However, we cannot provide updated

results for TS+ because we could not reach the author with the latest code version.

141



Table A.1.: Updated results for the TS of Côté and Potvin (2009).

TS TS

Inst. fbest t(sec) Inst. fbest t(sec)

CE CE-H
CE-01 1119.47 75 CE-H-01 1191.70 80
CE-02 1816.28 96 CE-H-02 1792.36 97
CE-03 1922.19 207 CE-H-03 1918.47 208
CE-04 2529.40 350 CE-H-04 2481.46 356
CE-05 3113.33 487 CE-H-05 3150.06 464
CE-06 1207.47 77 CE-H-06 1208.08 77
CE-07 2006.52 95 CE-H-07 2029.40 93
CE-08 2065.95 208 CE-H-08 1989.61 219
CE-09 2437.76 331 CE-H-09 2451.16 332
CE-10 3406.67 491 CE-H-10 3270.25 496
CE-11 2332.03 307 CE-H-11 2335.25 302
CE-12 1952.86 154 CE-H-12 1912.47 154
CE-13 2862.16 307 CE-H-13 2871.79 304
CE-14 2219.31 167 CE-H-14 1925.46 167
G G-H
G-01 14284.07 1306 G-H-01 14233.25 1345
G-02 19675.29 2484 G-H-02 18727.91 2618
G-03 25543.93 5918 G-H-03 26042.63 4895
G-04 36221.59 8481 G-H-04 36518.80 7677
G-05 14866.58 1917 G-H-05 15897.83 1530
G-06 22455.49 3384 G-H-06 20582.61 2585
G-07 24203.51 4794 G-H-07 24228.65 4436
G-08 30822.56 6154 G-H-08 28505.81 6413
G-09 1326.26 1085 G-H-09 1328.61 1079
G-10 1593.79 1733 G-H-10 1557.13 2036
G-11 2173.82 3073 G-H-11 2191.75 3018
G-12 2494.56 4901 G-H-12 2501.02 4836
G-13 2274.56 596 G-H-13 2237.86 657
G-14 2702.49 1066 G-H-14 2683.88 1124
G-15 3162.90 1921 G-H-15 3122.68 1989
G-16 3643.39 3002 G-H-16 3620.27 3123
G-17 1674.64 563 G-H-17 1702.66 607
G-18 2752.80 919 G-H-18 2754.05 940
G-19 3523.57 1654 G-H-19 3493.83 1657
G-20 4355.19 2378 G-H-20 4360.03 2383

142



Appendix B

Detailed results on Datasets A and D for the ConVRP

In Tables B.1–B.5, we report detailed results for large neighborhood search with set partitioning (LNS-

SP)–25k and CCG on Datasets A and D. For LNS-SP–25k, we perform 10 runs on the instances of

Dataset D, but only one run on those of Dataset A because the latter are easy to solve. We report the best

objective function value UBinit obtained in the specified number of runs and the total time theu to perform

all runs. Additionally, we report the time tclu that we spend to generate the routes Φ and clusters Ω̂ in

Step 2 of CCG. We calculate percentage gaps ∆x of lower bound x to the best upper bound obtained,

i.e., the minimum of UBfinal and UBinit. Optimal solutions are marked in bold, and timeouts in italics.

Finally, we indicate all cases of insufficient memory with OOM.

143



Table B.1.: Detailed results on small instances of Dataset A.

LNS-SP CCG

Inst. UBinit theu |Φ| ω′ tclu z(LP1) ∆z(LP1) z(LP2) ∆z(LP2) ω′′ z(SP) ∆z(SP) |Ω| UBfinal tnoUB ttot

1_10 142.03 5.1 305 744 0.1 142.03 100.0 142.03 100.0 5 142.03 100.0 2 142.03 0.1 5.2
2_10 121.07 2.5 760 951 0.1 118.15 97.6 121.07 100.0 9 121.07 100.0 2 121.07 0.1 2.6
3_10 149.41 2.6 1221 774 0.1 149.41 100.0 149.41 100.0 10 149.41 100.0 2 149.41 0.1 2.7
4_10 150.89 2.4 753 801 0.1 150.89 100.0 150.89 100.0 9 150.89 100.0 2 150.89 0.1 2.5
5_10 132.31 3.4 718 810 0.1 126.90 95.9 130.77 98.8 14 132.31 100.0 4 132.31 0.2 3.6
1_12 171.02 3.2 852 2150 0.1 169.14 98.9 170.93 99.9 19 171.02 100.0 2 171.02 0.1 3.3
2_12 111.54 3.0 657 3743 0.1 110.96 99.5 110.96 99.5 11 111.54 100.0 2 111.54 0.1 3.2
3_12 145.69 2.8 1573 3666 0.1 145.32 99.8 145.32 99.8 10 145.69 100.0 4 145.69 0.2 3.0
4_12 166.37 3.4 928 2317 0.1 161.49 97.1 164.01 98.6 47 166.37 100.0 13 166.37 0.5 3.9
5_12 140.42 3.1 1188 3412 0.1 138.36 98.5 139.75 99.5 11 140.42 100.0 5 140.42 0.2 3.3

Avg 3.2 896 1937 0.1 98.7 99.6 15 100.0 4 0.2 3.3

144



Table B.2.: Detailed results on new instances of Dataset D with 20 customers and route duration.

LNS-SP CCG

Inst. UBinit theu |Φ| ω′ tclu z(LP1) ∆z(LP1) z(LP2) ∆z(LP2) ω′′ z(SP) ∆z(SP) |Ω| UBfinal tnoUB ttot

6_19_0.5_0.4 1247.04 92.0 3948 357 551 0.2 1224.64 98.2 1228.09 98.5 89 1247.04 100.0 14 1247.04 0.8 92.8
6_19_0.5_0.6 1228.12 81.5 3948 357 551 0.2 1224.64 99.7 1228.09 100.0 13 1228.12 100.0 2 1228.12 0.4 81.9
6_19_0.5_0.8 1228.12 68.4 3948 357 551 0.2 1224.64 99.7 1228.09 100.0 13 1228.12 100.0 2 1228.12 0.4 68.8
6_19_0.5_1.0 1228.12 49.7 3948 357 551 0.2 1224.64 99.7 1228.09 100.0 13 1228.12 100.0 2 1228.12 0.4 50.0
6_19_0.7_0.4 1992.41 158.7 33 136 79 766 0.2 1950.73 97.9 1952.14 98.0 529 1992.41 100.0 24 1992.41 4.5 163.2
6_19_0.7_0.6 1982.33 93.5 33 136 79 766 0.2 1950.73 98.4 1952.14 98.5 267 1982.33 100.0 7 1982.33 1.2 94.7
6_19_0.7_0.8 1974.50 80.3 33 136 79 766 0.2 1950.73 98.8 1952.14 98.9 167 1974.5 100.0 4 1974.5 0.5 80.8
6_19_0.7_1.0 1971.66 63.6 33 136 79 766 0.2 1950.73 98.9 1952.14 99.0 118 1971.66 100.0 3 1971.66 0.4 64.0
6_19_0.9_0.4 2159.29 186.0 113 561 51 606 0.3 2149.89 99.6 2149.89 99.6 27 2159.29 100.0 9 2159.29 1.7 187.7
6_19_0.9_0.6 2156.01 170.4 113 561 51 606 0.2 2146.46 99.6 2149.03 99.7 23 2156.01 100.0 6 2156.01 0.9 171.2
6_19_0.9_0.8 2154.30 112.6 113 561 51 606 0.3 2132.27 99.0 2149.89 99.8 23 2154.3 100.0 5 2154.3 0.8 113.3
6_19_0.9_1.0 2149.91 70.5 113 561 51 606 0.3 2149.04 100.0 2149.04 100.0 11 2149.91 100.0 3 2149.91 0.3 70.8
7_20_0.5_0.4 1395.44 81.8 1456 88 035 0.1 1375.47 98.6 1375.47 98.6 74 1395.44 100.0 28 1395.44 0.9 82.8
7_20_0.5_0.6 1378.31 69.0 1456 88 035 0.2 1375.47 99.8 1375.47 99.8 29 1378.31 100.0 6 1378.31 0.3 69.3
7_20_0.5_0.8 1377.14 47.5 1456 88 035 0.2 1375.47 99.9 1375.47 99.9 37 1377.14 100.0 6 1377.14 0.3 47.8
7_20_0.5_1.0 1375.50 34.4 1456 88 035 0.2 1375.47 100.0 1375.47 100.0 18 1375.5 100.0 3 1375.5 0.2 34.6
7_20_0.7_0.4 2117.73 114.3 13 883 13 247 0.1 2015.68 95.2 2030.08 95.9 1124 2117.73 100.0 41 2117.73 11.7 126.0
7_20_0.7_0.6 2030.11 87.3 13 883 13 247 0.1 2030.08 100.0 2030.08 100.0 9 2030.11 100.0 3 2030.11 0.2 87.4
7_20_0.7_0.8 2030.11 69.2 13 883 13 247 0.1 2030.08 100.0 2030.08 100.0 9 2030.11 100.0 3 2030.11 0.2 69.3
7_20_0.7_1.0 2030.11 56.9 13 883 13 247 0.1 2030.08 100.0 2030.08 100.0 9 2030.11 100.0 3 2030.11 0.1 57.1
7_20_0.9_0.4 2339.56 122.3 24 364 10 175 0.1 2329.8 99.6 2329.8 99.6 10 2339.56 100.0 5 2339.56 0.4 122.7
7_20_0.9_0.6 2334.67 91.8 24 364 10 175 0.1 2329.8 99.8 2329.8 99.8 11 2334.67 100.0 4 2334.67 0.3 92.0
7_20_0.9_0.8 2334.44 80.9 24 364 10 175 0.1 2314.73 99.2 2327.25 99.7 24 2334.44 100.0 4 2334.44 0.3 81.2
7_20_0.9_1.0 2329.84 63.5 24 364 10 175 0.1 2329.8 100.0 2329.8 100.0 7 2329.84 100.0 4 2329.84 0.2 63.7
8_20_0.5_0.4 1391.32 101.4 6089 672 447 0.4 1349.13 97.0 1356.94 97.5 231 1391.32 100.0 57 1391.32 18.1 119.5
8_20_0.5_0.6 1370.20 117.7 6089 672 447 0.3 1349.32 98.5 1356.94 99.0 32 1370.2 100.0 17 1370.2 1.4 119.1
8_20_0.5_0.8 1356.96 100.3 6089 672 447 0.4 1356.94 100.0 1356.94 100.0 6 1356.96 100.0 2 1356.96 0.6 100.8
8_20_0.5_1.0 1356.96 47.4 6089 672 447 0.4 1356.94 100.0 1356.94 100.0 6 1356.96 100.0 2 1356.96 0.5 47.9
8_20_0.7_0.4 2001.81 137.2 44 334 245 517 0.3 1911.73 95.5 1911.73 95.5 236 2001.81 100.0 57 2001.81 123.1 260.3
8_20_0.7_0.6 1929.03 122.1 44 334 245 517 0.3 1911.73 99.1 1911.73 99.1 27 1929.03 100.0 3 1929.03 1.3 123.4
8_20_0.7_0.8 1917.23 105.1 44 334 245 517 0.3 1911.73 99.7 1911.73 99.7 21 1917.23 100.0 3 1917.23 0.6 105.7
8_20_0.7_1.0 1911.73 64.8 44 334 245 517 0.3 1911.73 100.0 1911.73 100.0 6 1911.73 100.0 2 1911.73 0.5 65.3
8_20_0.9_0.4 2338.99 257.6 219 512 132 131 0.5 2256.59 96.5 2273.16 97.2 1088 2338.83 100.0 36 2338.83 63.8 321.4
8_20_0.9_0.6 2274.02 112.7 219 512 132 131 0.4 2274.02 100.0 2274.02 100.0 9 2274.02 100.0 3 2274.02 0.5 113.2
8_20_0.9_0.8 2274.02 105.4 219 512 132 131 0.4 2274.02 100.0 2274.02 100.0 9 2274.02 100.0 3 2274.02 0.6 105.9
8_20_0.9_1.0 2274.02 80.7 219 512 132 131 0.5 2274.02 100.0 2274.02 100.0 9 2274.02 100.0 3 2274.02 0.6 81.3

Avg. 97.2 51 143 183 386 0.2 99.1 99.3 120 100.0 11 6.6 103.8

145



Table B.3.: Detailed results on new instances of Dataset D with 20 customers and without route duration.

LNS-SP CCG

Inst. UBinit theu |Φ| ω′ tclu z(LP1) ∆z(LP1) z(LP2) ∆z(LP2) ω′′ z(SP) ∆z(SP) |Ω| UBfinal tnoUB ttot

6_19_0.5_0.4 1247.04 92.9 4310 453 087 0.2 1214.53 97.4 1214.53 97.4 535 1247.04 100.0 25 1247.04 14.8 107.6
6_19_0.5_0.6 1221.59 88.9 4310 453 087 0.2 1214.53 99.4 1214.53 99.4 11 1221.59 100.0 2 1221.59 0.6 89.5
6_19_0.5_0.8 1216.89 85.1 4310 453 087 0.2 1214.53 99.8 1214.53 99.8 14 1216.89 100.0 2 1216.89 0.5 85.6
6_19_0.5_1.0 1214.56 53.6 4310 453 087 0.2 1214.53 100.0 1214.53 100.0 14 1214.56 100.0 2 1214.56 0.4 54.0
6_19_0.7_0.4 1914.25 194.8 78 895 332 602 0.3 1861.8 97.3 1866.31 97.5 601 1914.25 100.0 37 1914.25 307.6 502.4
6_19_0.7_0.6 1874.14 175.1 78 895 332 602 0.3 1866.31 99.6 1866.31 99.6 18 1874.14 100.0 4 1874.14 1.1 176.2
6_19_0.7_0.8 1874.14 151.4 78 895 332 602 0.3 1866.31 99.6 1866.31 99.6 18 1874.14 100.0 4 1874.14 1.3 152.7
6_19_0.7_1.0 1866.33 81.5 78 895 332 602 0.3 1866.31 100.0 1866.31 100.0 8 1866.33 100.0 2 1866.33 0.5 82.0
6_19_0.9_0.4 2151.30 200.2 372 185 262 770 0.7 2058.06 95.7 2066.55 96.1 3832 2087.16 97.0 4 2151.40 7201.0 7401.1
6_19_0.9_0.6 2116.19 175.0 372 185 262 770 0.7 2058.06 97.3 2066.55 97.7 530 2116.19 100.0 10 2116.19 1328.4 1503.5
6_19_0.9_0.8 2096.99 149.4 372 185 262 770 0.8 2058.06 98.2 2066.55 98.6 200 2096.62 100.0 4 2096.62 48.4 197.8
6_19_0.9_1.0 2066.58 73.7 372 185 262 770 0.8 2066.55 100.0 2066.55 100.0 11 2066.58 100.0 2 2066.58 0.9 74.6
7_20_0.5_0.4 1383.02 89.1 5453 596 939 0.3 1322.03 95.6 1322.03 95.6 2521 1383.02 100.0 244 1383.02 139.4 228.5
7_20_0.5_0.6 1355.65 81.4 5453 596 939 0.3 1322.03 97.5 1322.03 97.5 228 1355.65 100.0 42 1355.65 3.5 84.9
7_20_0.5_0.8 1332.60 88.3 5453 596 939 0.3 1322.03 99.2 1322.03 99.2 29 1332.6 100.0 8 1332.60 0.7 89.0
7_20_0.5_1.0 1322.04 45.4 5453 596 939 0.3 1322.03 100.0 1322.03 100.0 14 1322.04 100.0 2 1322.04 0.5 45.8
7_20_0.7_0.4 2023.34 119.6 77 850 159 129 0.2 1969.14 97.3 1969.14 97.3 448 2023.34 100.0 52 2023.34 14.2 133.8
7_20_0.7_0.6 1980.89 89.8 77 850 159 129 0.2 1969.14 99.4 1969.14 99.4 24 1980.89 100.0 6 1980.89 0.7 90.5
7_20_0.7_0.8 1969.17 86.4 77 850 159 129 0.2 1969.14 100.0 1969.14 100.0 11 1969.17 100.0 3 1969.17 0.3 86.7
7_20_0.7_1.0 1969.17 56.9 77 850 159 129 0.2 1969.14 100.0 1969.14 100.0 11 1969.17 100.0 3 1969.17 0.3 57.2
7_20_0.9_0.4 2230.16 145.6 182 168 116 396 0.4 2223.26 99.7 2223.26 99.7 13 2230.16 100.0 3 2230.16 0.6 146.2
7_20_0.9_0.6 2228.29 111.9 182 168 116 396 0.3 2223.26 99.8 2223.26 99.8 9 2228.29 100.0 3 2228.29 0.5 112.4
7_20_0.9_0.8 2228.06 99.7 182 168 116 396 0.3 2223.26 99.8 2223.26 99.8 11 2228.06 100.0 3 2228.06 0.5 100.1
7_20_0.9_1.0 2223.26 68.8 182 168 116 396 0.3 2223.26 100.0 2223.26 100.0 6 2223.26 100.0 3 2223.26 0.4 69.2
8_20_0.5_0.4 1378.12 127.7 8955 1 048 575 0.4 1258.1 91.3 1258.1 91.3 331 833 1285.84 93.3 3 1378.22 7200.4 7328.1
8_20_0.5_0.6 1308.13 124.1 8955 1 048 575 0.4 1258.1 96.2 1258.1 96.2 43 1308.13 100.0 15 1308.13 2817.0 2941.2
8_20_0.5_0.8 1292.97 109.0 8955 1 048 575 0.4 1258.1 97.3 1258.1 97.3 11 1292.97 100.0 3 1292.97 410.9 519.9
8_20_0.5_1.0 1258.10 70.2 8955 1 048 575 0.4 1258.1 100.0 1258.1 100.0 4 1258.1 100.0 1 1258.10 1.4 71.5
8_20_0.7_0.4 1946.20 168.6 100 329 1 048 017 0.7 1818.77 93.5 1825.08 93.8 10 649 1825.08 93.8 2 1946.30 7200.2 7368.8
8_20_0.7_0.6 1846.00 234.8 100 329 1 048 017 0.7 1825.08 98.9 1825.08 98.9 32 1846 100.0 4 1846.00 206.6 441.4
8_20_0.7_0.8 1835.84 208.6 100 329 1 048 017 0.7 1825.08 99.4 1825.08 99.4 32 1835.84 100.0 2 1835.84 63.5 272.1
8_20_0.7_1.0 1825.09 102.7 100 329 1 048 017 0.6 1825.08 100.0 1825.08 100.0 15 1825.09 100.0 2 1825.09 54.4 157.0
8_20_0.9_0.4 2267.22 281.3 1 076 210 1 035 699 2.4 2144.42 94.6 2172.15 95.8 7591 2172.15 95.8 2 2267.32 7199.6 7481.0
8_20_0.9_0.6 2181.90 255.4 1 076 210 1 035 699 2.4 2172.15 99.6 2172.15 99.6 7 2181.9 100.0 4 2181.90 6.3 261.7
8_20_0.9_0.8 2181.90 242.6 1 076 210 1 035 699 2.4 2172.15 99.6 2172.15 99.6 7 2181.9 100.0 4 2181.90 6.6 249.2
8_20_0.9_1.0 2172.15 122.4 1 076 210 1 035 699 2.4 2172.15 100.0 2172.15 100.0 9 2172.15 100.0 2 2172.15 3.3 125.7

Avg. 129.2 211 817 561 468 0.6 98.4 98.5 9982 99.4 14 951.0 1080.2

146



Table B.4.: Detailed results on new instances of Dataset D with 30 customers and with route duration.

LNS-SP CCG

Inst. UBinit theu |Φ| ω′ tclu z(LP1) ∆z(LP1) z(LP2) ∆z(LP2) ω′′ z(SP) ∆z(SP) |Ω| UBfinal tnoUB ttot

6_29_0.5_0.4 1835.77 136.6 45 910 28 967 792 46.8 1830.85 99.7 1831.19 99.8 17 1835.77 100.0 8 1835.77 60.6 197.1
6_29_0.5_0.6 1835.63 155.2 45 910 28 967 792 46.9 1830.85 99.7 1831.19 99.8 15 1835.63 100.0 11 1835.63 61.6 216.8
6_29_0.5_0.8 1835.02 141.7 45 910 28 967 792 46.8 1830.77 99.8 1831.19 99.8 24 1835.02 100.0 8 1835.02 61.4 203.1
6_29_0.5_1.0 1831.25 95.6 45 910 28 967 792 47.0 1831.19 100.0 1831.19 100.0 16 1831.25 100.0 3 1831.25 60.3 155.9
6_29_0.7_0.4 2575.00 258.4 352 396 2 512 344 14.8 2516.63 97.7 2516.63 97.7 311 2575.00 100.0 29 2575.00 71.2 329.6
6_29_0.7_0.6 2524.04 199.8 352 396 2 512 344 14.7 2516.63 99.7 2516.63 99.7 10 2524.04 100.0 3 2524.04 15.7 215.5
6_29_0.7_0.8 2521.56 172.7 352 396 2 512 344 14.7 2516.63 99.8 2516.63 99.8 12 2521.56 100.0 3 2521.56 15.4 188.2
6_29_0.7_1.0 2516.67 124.7 352 396 2 512 344 14.7 2516.63 100.0 2516.63 100.0 7 2516.67 100.0 3 2516.67 15.3 140.0
6_29_0.9_0.4 3008.48 313.5 1 736 175 764 444 23.8 2893.42 96.2 2904.11 96.5 11 302 3008.48 100.0 37 3008.48 267.9 581.4
6_29_0.9_0.6 2962.44 273.5 1 736 175 764 444 23.7 2893.42 97.7 2904.11 98.0 1146 2962.44 100.0 6 2962.44 27.1 300.6
6_29_0.9_0.8 2958.34 204.7 1 736 175 764 444 23.7 2893.42 97.8 2904.11 98.2 790 2958.34 100.0 6 2958.34 26.4 231.1
6_29_0.9_1.0 2954.36 130.5 1 736 175 764 444 23.8 2893.42 97.9 2904.11 98.3 677 2954.36 100.0 4 2954.36 25.5 155.9
7_30_0.5_0.4 2106.96 148.7 8602 2 084 316 12.5 2055.42 97.6 2075.81 98.5 1162 2106.96 100.0 56 2106.96 28.4 177.2
7_30_0.5_0.6 2084.88 151.9 8602 2 084 316 12.5 2074.9 99.5 2075.81 99.6 43 2084.88 100.0 12 2084.88 13.4 165.3
7_30_0.5_0.8 2077.73 128.5 8602 2 084 316 12.5 2075.8 99.9 2075.8 99.9 24 2077.73 100.0 6 2077.73 13.0 141.4
7_30_0.5_1.0 2076.22 87.1 8602 2 084 316 12.5 2076.18 100.0 2076.18 100.0 6 2076.22 100.0 4 2076.22 12.9 100.1
7_30_0.7_0.4 2986.74 218.1 108 313 108 933 8.2 2871.66 96.1 2919.77 97.8 7433 2986.74 100.0 42 2986.74 128.6 346.7
7_30_0.7_0.6 2945.62 181.7 108 313 108 933 8.1 2874.05 97.6 2919.77 99.1 528 2945.62 100.0 8 2945.62 16.6 198.3
7_30_0.7_0.8 2944.57 152.8 108 313 108 933 8.2 2874.05 97.6 2919.77 99.2 446 2944.57 100.0 5 2944.57 13.3 166.1
7_30_0.7_1.0 2944.57 119.7 108 313 108 933 8.2 2874.05 97.6 2919.77 99.2 446 2944.57 100.0 5 2944.57 14.3 134.0
7_30_0.9_0.4 3257.22 207.0 164 734 77 960 20.0 3218.71 98.8 3235.59 99.3 34 3257.22 100.0 5 3257.22 20.9 227.9
7_30_0.9_0.6 3255.35 183.4 164 734 77 960 19.9 3235.59 99.4 3235.59 99.4 22 3255.35 100.0 5 3255.35 20.6 204.1
7_30_0.9_0.8 3254.27 166.3 164 734 77 960 20.2 3247.74 99.8 3247.74 99.8 12 3254.27 100.0 5 3254.27 20.9 187.1
7_30_0.9_1.0 3247.81 131.8 164 734 77 960 19.3 3247.74 100.0 3247.74 100.0 12 3247.81 100.0 5 3247.81 19.6 151.4
8_30_0.5_0.4 1994.22 219.5 75 635 111 325 308 171.3 1953.18 97.9 1953.18 97.9 348 1994.22 100.0 61 1994.22 299.6 519.0
8_30_0.5_0.6 1953.60 221.0 75 635 111 325 308 172.3 1953.18 100.0 1953.18 100.0 13 1953.60 100.0 3 1953.60 222.1 443.0
8_30_0.5_0.8 1953.18 234.1 75 635 111 325 308 171.7 1953.18 100.0 1953.18 100.0 9 1953.18 100.0 3 1953.18 216.0 450.0
8_30_0.5_1.0 1953.18 135.0 75 635 111 325 308 171.7 1953.18 100.0 1953.18 100.0 9 1953.18 100.0 3 1953.18 216.0 350.9
8_30_0.7_0.4 2704.92 402.0 1 097 114 7 694 121 59.5 2673.06 98.8 2673.06 98.8 172 2704.92 100.0 23 2704.92 69.7 471.6
8_30_0.7_0.6 2673.06 367.8 1 097 114 7 694 121 59.2 2673.06 100.0 2673.06 100.0 8 2673.06 100.0 3 2673.06 62.0 429.8
8_30_0.7_0.8 2673.06 334.9 1 097 114 7694 121 58.9 2673.06 100.0 2673.06 100.0 8 2673.06 100.0 3 2673.06 61.8 396.7
8_30_0.7_1.0 2673.06 191.3 1 097 114 7 694 121 59.1 2673.06 100.0 2673.06 100.0 8 2673.06 100.0 3 2673.06 61.9 253.2
8_30_0.9_0.4 3183.11 381.1 4 243 573 3 022 173 56.4 3031.64 95.2 3031.64 95.2 29 396 3067.43 96.4 12 3183.21 7199.0 7580.1
8_30_0.9_0.6 3040.10 385.1 4 243 573 3 022 173 56.2 3031.64 99.7 3031.64 99.7 14 3040.10 100.0 3 3040.10 57.9 443.0
8_30_0.9_0.8 3031.64 373.6 4 243 573 3 022 173 55.6 3031.64 100.0 3031.64 100.0 10 3031.64 100.0 3 3031.64 56.9 430.5
8_30_0.9_1.0 3031.64 189.1 4 243 573 3 022 173 55.6 3031.64 100.0 3031.64 100.0 10 3031.64 100.0 3 3031.64 56.8 245.9

Avg. 208.8 870 272 17 395 265 45.9 98.9 99.2 1514 99.9 11 267.0 475.8

147



Table B.5.: Detailed results on new instances of Dataset D with 30 customers and without route duration.

LNS-SP CCG

Inst. UBinit theu |Φ| ω′ tclu z(LP1) ∆z(LP1) z(LP2) ∆z(LP2) ω′′ z(SP) ∆z(SP) |Ω| UBfinal tnoUB ttot

6_29_0.5_0.4 1808.47 136.6 107 422 266 052 583 126.3 1777.59 98.3 1777.59 98.3 891 1808.47 100.0 47 1808.47 282.1 418.7
6_29_0.5_0.6 1797.64 155.2 107 422 266 052 583 125.5 1777.59 98.9 1777.59 98.9 51 1797.64 100.0 24 1797.64 277.5 432.7
6_29_0.5_0.8 1786.60 141.7 107 422 266 052 583 125.2 1777.59 99.5 1777.59 99.5 34 1786.6 100.0 7 1786.6 253.8 395.5
6_29_0.5_1.0 1777.63 95.6 107 422 266 052 583 131.0 1777.59 100.0 1777.59 100.0 12 1777.63 100.0 2 1777.63 263.2 358.9
6_29_0.7_0.4 2521.96 258.4 4 372 042 120 585 951 90.2 2485.79 98.7 2494.71 99.1 615 2518.52 100.0 11 2518.52 108.1 366.5
6_29_0.7_0.6 2504.13 199.8 4 372 042 120 585 951 90.4 2494.71 99.6 2494.71 99.6 22 2504.13 100.0 3 2504.13 99.5 299.4
6_29_0.7_0.8 2498.45 172.7 4 372 042 120 585 951 90.3 2494.71 99.9 2494.71 99.9 9 2498.45 100.0 3 2498.45 98.9 271.7
6_29_0.7_1.0 2494.75 124.7 4 372 042 120 585 951 90.3 2494.71 100.0 2494.71 100.0 12 2494.75 100.0 3 2494.75 99.6 224.3
6_29_0.9_0.4 2917.67 313.5 43 645 944 50 553 707 209.8 2824.76 96.8 2833.25 97.1 8799 2848.88 97.6 3 2917.77 7199.4 7512.9
6_29_0.9_0.6 2862.65 273.5 43 645 944 50 553 707 291.5 2824.76 98.8 2833.25 99.1 193 2858.7 100.0 14 2858.7 341.1 614.7
6_29_0.9_0.8 2835.91 204.7 43 645 944 50 553 707 295.6 2833.25 99.9 2833.25 99.9 13 2835.91 100.0 4 2835.91 299.7 504.4
6_29_0.9_1.0 2833.28 130.5 43 645 944 50 553 707 295.1 2833.25 100.0 2833.25 100.0 9 2833.28 100.0 3 2833.28 299.8 430.2
7_30_0.5_0.4 1998.04 148.7 79 883 145 846 224 73.8 1922.96 96.2 1922.96 96.2 15 212 1989.62 99.6 265 1998.04 7253.7 7402.4
7_30_0.5_0.6 1958.23 151.9 79 883 145 846 224 71.1 1922.96 98.2 1922.96 98.2 253 1958.23 100.0 44 1958.23 128.1 280.0
7_30_0.5_0.8 1923.01 128.5 79 883 145 846 224 71.1 1922.96 100.0 1922.96 100.0 9 1923.01 100.0 3 1923.01 80.6 209.0
7_30_0.5_1.0 1923.01 87.1 79 883 145 846 224 71.3 1922.96 100.0 1922.96 100.0 9 1923.01 100.0 3 1923.01 80.7 167.8
7_30_0.7_0.4 2887.70 218.1 2 240 806 7 831 629 22.6 2807.24 97.2 2824.32 97.8 9432 2887.7 100.0 137 2887.7 596.1 814.2
7_30_0.7_0.6 2824.32 181.7 2 240 806 7 831 629 23.0 2824.32 100.0 2824.32 100.0 15 2824.32 100.0 4 2824.32 23.8 205.5
7_30_0.7_0.8 2824.32 152.8 2 240 806 7 831 629 22.4 2824.32 100.0 2824.32 100.0 15 2824.32 100.0 4 2824.32 23.2 176.0
7_30_0.7_1.0 2824.32 119.7 2 240 806 7 831 629 22.7 2824.32 100.0 2824.32 100.0 15 2824.32 100.0 4 2824.32 23.4 143.1
7_30_0.9_0.4 3147.24 207.0 5 226 739 3 925 527 48.1 3118.09 99.1 3126.92 99.4 102 3145.37 100.0 6 3145.37 50.4 257.4
7_30_0.9_0.6 3145.29 183.4 5 226 739 3 925 527 48.5 3119.53 99.2 3126.92 99.4 68 3145.29 100.0 6 3145.29 50.1 233.5
7_30_0.9_0.8 3131.55 166.3 5 226 739 3 925 527 48.3 3126.92 99.9 3126.92 99.9 17 3131.55 100.0 5 3131.55 48.9 215.1
7_30_0.9_1.0 3126.95 131.8 5 226 739 3 925 527 48.2 3126.92 100.0 3126.92 100.0 13 3126.95 100.0 5 3126.95 48.6 180.4
8_30_0.5_0.4 1956.30 219.5 OOM 219.5
8_30_0.5_0.6 1905.55 221.0 OOM 221.0
8_30_0.5_0.8 1905.55 234.1 OOM 234.1
8_30_0.5_1.0 1874.87 135.0 OOM 135.0
8_30_0.7_0.4 2616.57 402.0 20 799 154 821 136 477 756.6 2540.33 97.1 2549.22 97.4 9200 2549.22 97.4 2 2616.67 7200.6 7602.6
8_30_0.7_0.6 2574.86 367.8 20 799 154 821 136 477 741.5 2549.22 99.0 2549.22 99.0 129 2574.86 100.0 12 2574.86 1353.4 1721.2
8_30_0.7_0.8 2552.02 334.9 20 799 154 821 136 477 729.1 2549.22 99.9 2549.22 99.9 16 2552.02 100.0 2 2552.02 1155.2 1490.1
8_30_0.7_1.0 2549.24 191.3 20 799 154 821 136 477 732.5 2549.22 100.0 2549.22 100.0 11 2549.24 100.0 2 2549.24 1146.3 1337.6
8_30_0.9_0.4 3087.07 381.1 OOM 381.1
8_30_0.9_0.6 2967.49 385.1 OOM 385.1
8_30_0.9_0.8 2961.19 373.6 OOM 373.6
8_30_0.9_1.0 2947.71 189.1 OOM 189.1

Avg. 208.8 10 924 570 202 276 014 196.1 99.1 99.2 1613 99.8 22 1031.6 1011.2

148



Appendix C

Detailed results on E-VRPTWMF

To enable researchers that address the E-VRPTWMF in the future to compare the performance of their

algorithms with ours, we provide results on the complete set of E-VRPTWMF instances introduced in

Section 4.6.2. The reported results are based on the best of 10 ALNS runs. As objective function, we

used the minimization of traveled distance fd (in km).

149



Table C.1.: Overview of results for the complete E-VRPTWMF instance set. Results for the best of 10
ALNS runs under the objective of distance minimization are reported. We provide the number
of ICCVs (mIC ), the number of ECVs (mE), the distance (fd) and the average run-time (t)
in minutes.

Inst. mIC mE fd t Inst. mIC mE fd t Inst. mIC mE fd t

E-UK10_01 2 1 408.13 0.03 E-UK25_01 3 1 672.89 0.59 E-UK100_01 14 7 2820.29 7.02
E-UK10_02 2 1 527.13 0.02 E-UK25_02 4 2 812.97 0.22 E-UK100_02 13 6 2668.59 6.74
E-UK10_03 2 1 493.05 0.02 E-UK25_03 3 1 467.84 0.48 E-UK100_03 13 6 2476.95 7.55
E-UK10_04 2 1 495.66 0.02 E-UK25_04 3 1 611.53 0.34 E-UK100_04 14 7 2351.57 8.72
E-UK10_05 2 1 454.86 0.03 E-UK25_05 4 2 790.33 0.22 E-UK100_05 14 7 2281.46 6.62
E-UK10_06 2 1 595.80 0.02 E-UK25_06 4 2 715.26 0.25 E-UK100_06 14 7 2713.13 6.02
E-UK10_07 2 1 510.30 0.02 E-UK25_07 3 1 795.60 0.24 E-UK100_07 12 6 2412.81 6.80
E-UK10_08 2 1 581.21 0.02 E-UK25_08 3 1 874.11 0.18 E-UK100_08 13 6 2546.89 6.44
E-UK10_09 2 1 451.99 0.02 E-UK25_09 4 2 679.11 0.22 E-UK100_09 13 6 2191.43 6.71
E-UK10_10 2 1 569.74 0.02 E-UK25_10 4 2 895.39 0.30 E-UK100_10 12 6 2473.94 6.75
E-UK10_11 2 1 761.50 0.02 E-UK25_11 4 2 887.59 0.53 E-UK100_11 15 7 2736.90 6.11
E-UK10_12 2 1 472.83 0.07 E-UK25_12 4 2 1034.18 0.19 E-UK100_12 12 6 2353.43 6.84
E-UK10_13 2 1 524.57 0.02 E-UK25_13 4 2 511.47 0.48 E-UK100_13 13 6 2614.28 6.48
E-UK10_14 2 1 397.75 0.01 E-UK25_14 4 2 927.99 0.21 E-UK100_14 14 7 2902.97 6.16
E-UK10_15 2 1 291.37 0.12 E-UK25_15 3 1 879.95 0.17 E-UK100_15 15 7 2989.12 6.00
E-UK10_16 2 1 443.61 0.03 E-UK25_16 4 2 818.78 0.24 E-UK100_16 12 6 2200.01 6.43
E-UK10_17 2 1 387.52 0.06 E-UK25_17 4 2 1277.86 0.17 E-UK100_17 15 7 2907.88 6.28
E-UK10_18 2 1 394.53 0.03 E-UK25_18 3 1 942.12 0.18 E-UK100_18 13 6 2487.61 7.69
E-UK10_19 2 1 414.46 0.06 E-UK25_19 4 2 1068.07 0.19 E-UK100_19 13 6 2262.53 6.67
E-UK10_20 2 1 416.23 0.03 E-UK25_20 4 2 825.93 0.16 E-UK100_20 14 7 2899.56 6.06

E-UK15_01 2 0 709.01 0.03 E-UK50_01 7 3 1357.86 1.05 E-UK150_01 20 10 3046.28 17.67
E-UK15_02 2 1 517.16 0.06 E-UK50_02 7 3 1406.41 1.18 E-UK150_02 20 10 3831.61 12.18
E-UK15_03 3 1 751.86 0.08 E-UK50_03 7 3 1448.90 2.20 E-UK150_03 19 9 3132.22 15.38
E-UK15_04 3 1 757.34 0.08 E-UK50_04 8 4 1764.76 1.25 E-UK150_04 21 10 3703.23 10.88
E-UK15_05 2 1 891.94 0.06 E-UK50_05 6 3 1568.67 1.16 E-UK150_05 20 10 3276.74 12.06
E-UK15_06 3 1 551.15 0.13 E-UK50_06 8 4 1283.86 2.05 E-UK150_06 21 10 3195.89 14.89
E-UK15_07 3 1 604.83 0.10 E-UK50_07 7 3 1193.06 1.74 E-UK150_07 21 10 3856.46 10.89
E-UK15_08 2 1 431.17 0.07 E-UK50_08 7 3 1271.94 1.10 E-UK150_08 20 10 3447.95 11.63
E-UK15_09 3 1 637.57 0.07 E-UK50_09 7 3 1611.98 0.98 E-UK150_09 20 10 3789.48 10.51
E-UK15_10 2 1 568.48 0.08 E-UK50_10 7 3 1564.27 1.95 E-UK150_10 20 10 3616.08 10.24
E-UK15_11 2 0 644.95 0.08 E-UK50_11 7 3 1473.79 1.15 E-UK150_11 20 10 3818.09 11.33
E-UK15_12 3 1 779.42 0.05 E-UK50_12 7 3 1318.96 1.45 E-UK150_12 21 10 4018.53 10.47
E-UK15_13 3 1 593.14 0.08 E-UK50_13 7 3 1324.20 0.91 E-UK150_13 19 9 3686.79 10.73
E-UK15_14 3 1 846.94 0.04 E-UK50_14 7 3 1542.86 1.73 E-UK150_14 20 10 3729.52 10.42
E-UK15_15 2 1 584.35 0.06 E-UK50_15 6 3 1373.09 1.26 E-UK150_15 19 9 3107.91 11.53
E-UK15_16 2 1 556.12 0.06 E-UK50_16 7 3 1322.54 1.63 E-UK150_16 20 10 3772.39 12.16
E-UK15_17 3 1 693.26 0.04 E-UK50_17 7 3 938.50 1.01 E-UK150_17 20 10 3805.71 11.24
E-UK15_18 3 1 825.43 0.05 E-UK50_18 8 4 1601.10 1.05 E-UK150_18 20 10 3739.99 11.78
E-UK15_19 2 1 376.11 0.18 E-UK50_19 7 3 1347.43 1.26 E-UK150_19 20 10 4161.73 10.78
E-UK15_20 3 1 469.97 0.16 E-UK50_20 7 3 1573.49 1.24 E-UK150_20 20 10 4051.19 11.47

E-UK20_01 3 1 785.47 0.13 E-UK75_01 11 5 2227.65 2.73 E-UK200_01 28 14 4616.77 17.11
E-UK20_02 3 1 881.53 0.13 E-UK75_02 11 5 1803.68 3.00 E-UK200_02 24 12 4478.89 17.44
E-UK20_03 3 1 456.73 0.25 E-UK75_03 10 5 1965.21 2.91 E-UK200_03 27 13 4420.04 16.07
E-UK20_04 3 1 800.39 0.18 E-UK75_04 11 5 1689.82 3.72 E-UK200_04 26 13 4175.85 16.45
E-UK20_05 3 1 718.34 0.11 E-UK75_05 10 5 2009.95 2.98 E-UK200_05 27 13 4868.83 15.37
E-UK20_06 3 1 839.43 0.15 E-UK75_06 11 5 2085.90 2.83 E-UK200_06 27 13 4044.02 16.26
E-UK20_07 3 1 522.23 0.46 E-UK75_07 11 5 2201.08 2.49 E-UK200_07 27 13 4334.31 16.40
E-UK20_08 3 1 700.59 0.14 E-UK75_08 10 5 2334.70 3.52 E-UK200_08 27 13 4679.70 24.72
E-UK20_09 3 1 796.50 0.09 E-UK75_09 10 5 2155.98 2.84 E-UK200_09 25 12 4026.65 16.91
E-UK20_10 3 1 696.79 0.35 E-UK75_10 11 5 2232.32 2.97 E-UK200_10 28 14 4903.01 15.23
E-UK20_11 3 1 932.86 0.12 E-UK75_11 10 5 1427.25 2.79 E-UK200_11 27 13 4130.06 16.12
E-UK20_12 3 1 794.58 0.12 E-UK75_12 10 5 1971.57 2.97 E-UK200_12 25 12 4845.70 15.86
E-UK20_13 3 1 764.83 0.11 E-UK75_13 10 5 2263.37 3.08 E-UK200_13 25 12 4847.07 16.45
E-UK20_14 4 2 1045.96 0.11 E-UK75_14 10 5 2146.74 3.18 E-UK200_14 27 13 4406.88 16.12
E-UK20_15 3 1 788.34 0.11 E-UK75_15 10 5 2346.76 2.65 E-UK200_15 25 12 4766.98 16.04
E-UK20_16 3 1 829.14 0.09 E-UK75_16 10 5 2132.85 2.73 E-UK200_16 27 13 4520.69 15.98
E-UK20_17 3 1 873.35 0.14 E-UK75_17 11 5 2057.84 2.60 E-UK200_17 26 13 5006.00 14.74
E-UK20_18 3 1 838.96 0.10 E-UK75_18 10 5 1882.89 3.09 E-UK200_18 27 13 4453.07 20.28
E-UK20_19 3 1 812.21 0.11 E-UK75_19 10 5 1865.06 2.22 E-UK200_19 25 12 3999.15 15.30
E-UK20_20 3 1 873.35 0.11 E-UK75_20 11 5 2028.89 2.21 E-UK200_20 27 13 4825.55 15.44

150



Formalities

Complete Bibliography

Achterberg, T., T. Koch, and A. Martin (2005). Branching rules revisited. In: Operations Research Letters

33 (1), pp. 42–54.

Adulyasak, Y., J.-F. Cordeau, and R. Jans (2014). Optimization-based adaptive large neighborhood search

for the production routing problem. In: Transportation Science 48 (1), pp. 20–45.

Ahammed, F. and P. Moscato (2011). Evolving L-systems as an intelligent design approach to find classes

of difficult-to-solve traveling salesman problem instances. In: Applications of Evolutionary Compu-

tation. EvoApplications 2011. Ed. by C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. I.

Esparcia-Alcázar, J. J. Merelo, F. Neri, et al. Vol. 6624. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, pp. 1–11.

Ajanovic, A. and R. Haas (2016). Dissemination of electric vehicles in urban areas: Major factors for

success. In: Energy 115 (Part 2), pp. 1451–1458.

Applegate, D. L., R. E. Bixby, V. Chvatal, and W. J. Cook (2007). The Traveling Salesman Problem:

A Computational Study (Princeton Series in Applied Mathematics). Princeton, NJ, USA: Princeton

University Press.

Arkin, E. M. and R. Hassin (1994). Approximation algorithms for the geometric covering salesman

problem. In: Discrete Applied Mathematics 55 (3), pp. 197–218.

Artmeier, A., J. Haselmayr, M. Leucker, and M. Sachenbacher (2010). The shortest path problem revis-

ited: Optimal routing for electric vehicles. In: KI 2010: Advances in Artificial Intelligence. Vol. 6359.

Lecture Notes in Computer Science. Springer, Berlin, pp. 309–316.

Augerat, P., J. Belenguer, E. Benavent, A. Corberán, and D. Naddef (1998). Separating capacity con-

straints in the CVRP using tabu search. In: European Journal of Operational Research 106 (2),

pp. 546–557.

Baldacci, R., A. Mingozzi, and R. Roberti (2011). New route relaxation and pricing strategies for the

vehicle routing problem. In: Operations Research 59 (5), pp. 1269–1283.

Baldacci, R., A. Mingozzi, R. Roberti, and R. W. Calvo (2013). An exact algorithm for the two-echelon

capacitated vehicle routing problem. In: Operations Research 61 (2), pp. 298–314.

Balinski, M. L. and R. E. Quandt (1964). On an integer program for a delivery problem. In: Operations

Research 12 (2), pp. 300–304.

Barco, J., A. Guerra, L. Muñoz, and N. Quijano (2013). Optimal routing and scheduling of charge for

electric vehicles: Case study. In: CoRR abs/1310.0145. URL: http://arxiv.org/abs/1310.0145.

Barks, C. (1953). Walt Disney’s Comics and Stories. Vol. 149. New York, NY, USA: Dell Comics.

151

http://arxiv.org/abs/1310.0145


Bektaş, T. and G. Laporte (2011). The pollution-routing problem. In: Transportation Research Part B:

Methodological 45 (8), pp. 1232–1250.

Bent, R. and P. V. Hentenryck (2006). A two-stage hybrid algorithm for pickup and delivery vehicle

routing problems with time windows. In: Computers & Operations Research 33 (4), pp. 875–893.

Berg, P., S. Isaacs, and K. Blodgett (2016). Airborne fulfillment center utilizing unmanned aerial vehicles

for item delivery. US Patent 9,305,280. April 5, 2016.

Bernon, M., J. Cullen, and J. Gorst (2016). Online retail returns management: Integration within an omni-

channel distribution context. In: International Journal of Physical Distribution & Logistics Manage-

ment 46 (6/7), pp. 584–605.

Bogdanski, R. (2017). Innovationen auf der letzten Meile - Bewertung der Chancen für die nachhaltige

Stadtlogistik von morgen - Nachhaltigkeitsstudie 2017. Ed. by Bundesverband Paket & Express Lo-

gistik. Accessed 7/24/2017. URL: www.biek.de/index.php/studien.html?file=tl_files/biek/Nachhaltigkeitsst

udie%202017/BIEK_Nachhaltigkeitsstudie_2017.pdf.

Bolduc, M.-C., J. Renaud, and F. Boctor (2007). A heuristic for the routing and carrier selection problem.

In: European Journal of Operational Research 183 (2), pp. 926–932.

Bolduc, M.-C., J. Renaud, F. Boctor, and G. Laporte (2008). A perturbation metaheuristic for the vehicle

routing problem with private fleet and common carriers. In: Journal of the Operational Research

Society 59 (6), pp. 776–787.

Bousonville, T., A. Hartmann, T. Melo, and H. Kopfer (2011). Vehicle routing and refueling: The im-

pact of price variations on tour length. In: Logistikmanagement - Herausforderungen, Chancen, und

Lösungen (Proceedings of LM 11). Vol. 2, pp. 83–101.

Bruglieri, M., F. Pezzella, O. Pisacane, and S. Suraci (2015). A variable neighborhood search branching

for the electric vehicle routing problem with time windows. In: Electronic Notes in Discrete Mathe-

matics 47, pp. 221–228.

Christofides, N., A. Mingozzi, and P. Toth (1979). The vehicle routing problem. In: Combinatorial Opti-

mization. Ed. by N. Christofides, A. Mingozzi, P. Toth, and C. Sandi. Chichester, UK: Wiley, pp. 315–

338.

Chu, C.-W. (2005). A heuristic algorithm for the truckload and less-than-truckload problem. In: Euro-

pean Journal of Operational Research 165 (3), pp. 657–667.

Clarke, G. and J. Wright (1964). Scheduling of vehicles from a central depot to a number of delivery

points. In: Operations Research 12 (4), pp. 568–581.

Colson, B., P. Marcotte, and G. Savard (2007). An overview of bilevel optimization. In: Annals of Oper-

ations Research 153 (1), pp. 235–256.

Conrad R., G. and A. Figliozzi M. (2011). The recharging vehicle routing problem. In: Proceedings of the

2011 Industrial Engineering Research Conference. Ed. by T. Doolen and E. Van Aken. Reno, USA.

Contardo, C. and R. Martinelli (2014). A new exact algorithm for the multi-depot vehicle routing problem

under capacity and route length constraints. In: Discrete Optimization 12, pp. 129–146.

Cordeau, J.-F., G. Laporte, and A. Mercier (2001). A unified tabu search heuristic for vehicle routing

problems with time windows. In: Journal of the Operational Research Society 52 (8), pp. 928–936.

Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. In: Operations Research

54 (3), pp. 573–586.

152

www.biek.de/index.php/studien.html?file=tl_files/biek/Nachhaltigkeitsstudie%202017/BIEK_Nachhaltigkeitsstudie_2017.pdf
www.biek.de/index.php/studien.html?file=tl_files/biek/Nachhaltigkeitsstudie%202017/BIEK_Nachhaltigkeitsstudie_2017.pdf


Côté, J.-F. and J.-Y. Potvin (2009). A tabu search heuristic for the vehicle routing problem with private

fleet and common carrier. In: European Journal of Operational Research 198 (2), pp. 464–469.

Council of Supply Chain Management Professionals (2013). Supply chain management terms and glos-

sary. Accessed July 20, 2017. URL: http://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_

of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx.

Crainic, T. G., M. Gendreau, P. Soriano, and M. Toulouse (1993). A tabu search procedure for multicom-

modity location/allocation with balancing requirements. In: Annals of Operations Research 41 (4),

pp. 359–383.

Crevier, B., J.-F. Cordeau, and G. Laporte (2007). The multi-depot vehicle routing problem with inter-

depot routes. In: European Journal of Operational Research 176 (2), pp. 756–773.

Dabia, S., S. Ropke, T. van Woensel, and T. de Kok (2013). Branch and price for the time-dependent

vehicle routing problem with time windows. In: Transportation Science 47 (3), pp. 380–396.

Davis, B. A. and M. A. Figliozzi (2013). A methodology to evaluate the competitiveness of electric de-

livery trucks. In: Transportation Research Part E: Logistics and Transportation Review 49 (1), pp. 8–

23.

Dayarian, I., G. Crainic T., M. Gendreau, and W. Rei (2013). An Adaptive Large Neighborhood Search

Heuristic for a Multi-Period Vehicle Routing Problem. Tech. rep. 2013-67. CIRRELT, Canada.

Dekker, R., J. Bloemhof, and I. Mallidis (2012). Operations research for green logistics: An overview of

aspects, issues, contributions and challenges. In: European Journal of Operational Research 219 (3),

pp. 671–679.

Dembski, W. A. and R. J. Marks II (2009). Conservation of information in search: Measuring the cost

of success. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans

39 (5), pp. 1051–1061.

Demir, E., T. Bektaş, and G. Laporte (2012). An adaptive large neighborhood search heuristic for the

pollution-routing problem. In: European Journal of Operational Research 223 (2), pp. 346–359.

Demir, E., T. Bektaş, and G. Laporte (2011). A comparative analysis of several vehicle emission models

for road freight transportation. In: Transportation Research Part D: Transport and Environment 16 (5),

pp. 347–357.

– (2014a). A review of recent research on green road freight transportation. In: European Journal of

Operational Research 237 (3), pp. 775–793.

– (2014b). The bi-objective pollution-routing problem. In: European Journal of Operational Research

232 (3), pp. 464–478.

Desaulniers, G., F. Errico, S. Irnich, and M. Schneider (2016). Exact algorithms for electric vehicle-

routing problems with time windows. In: Operations Research 64 (6), pp. 1388–1405.

Desrosiers, J. and M. E. Lübbecke (2005). A primer in column generation. In: Column Generation. Ed.

by G. Desaulniers, J. Desrosiers, and M. M. Solomon. Boston, MA, USA: Springer, pp. 1–32.

Deutsche Post DHL Group (2016). Logistics trend radar. DHL Customer Solutions & Innovation. Ac-

cessed December 16, 2017. Troisdorf, Germany. URL: http://www.dhl.com/en/about_us/logistics_insights/

dhl_trend_research/trendradar.html#.Wf9MZLpFxZQ.

Drexl, M. (2013). Applications of the vehicle routing problem with trailers and transshipments. In: Eu-

ropean Journal of Operational Research 227 (2), pp. 275–283.

153

http://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx
http://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx
http://www.dhl.com/en/about_us/logistics_insights/dhl_trend_research/trendradar.html#.Wf9MZLpFxZQ
http://www.dhl.com/en/about_us/logistics_insights/dhl_trend_research/trendradar.html#.Wf9MZLpFxZQ


Dumas, Y., J. Desrosiers, and F. Soumis (1991). The pickup and delivery problem with time windows.

In: European Journal of Operational Research 54 (1), pp. 7–22.

Erdoğan, S. and E. Miller-Hooks (2012). A green vehicle routing problem. In: Transportation Research

Part E: Logistics and Transportation Review 48 (1), pp. 100–114.

European Commission (2014). Communication from the Commission to the European Parliament, the

Council, the European Economic and Social Committee and the Committee of the regions. A policy

framework for climate and energy in the period from 2020 to 2030, COM(2014)15, SWD(2014) 16

final. Accessed July 25, 2017. URL: http : / / eur - lex . europa . eu / legal - content / EN / ALL / ?uri = CELEX :

52014DC0015.

– (2016). EU Transport in figures: Statistical pocketbook. Luxembourg: Publications Office of the Eu-

ropean Union.

European Environment Agency (2017a). Data viewer on greenhouse gas emissions and removals, sent

by countries to UNFCCC and the EU Greenhouse Gas Monitoring Mechanism (EU Member States).

Accessed July 25, 2017. URL: http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-

gases-viewer.

– (2017b). Greenhouse gas emissions from transport. Accessed July 25, 2017. URL: https://www.eea.

europa . eu / data - and - maps / indicators / transport - emissions - of - greenhouse - gases / transport - emissions - of -

greenhouse-gases-10.

Feillet, D., M. Gendreau, and L.-M. Rousseau (2007). New refinements for the solution of vehicle routing

problems with branch and price. In: Information Systems and Operational Research 45 (4), pp. 239–

256.

Feillet, D. (2010). A tutorial on column generation and branch-and-price for vehicle routing problems.

In: 4OR - A Quarterly Journal of Operations Research 8 (4), pp. 407–424.

Feillet, D., T. Garaix, F. Lehuédé, O. Péton, and D. Quadri (2014). A new consistent vehicle routing

problem for the transportation of people with disabilities. In: Networks 63 (3), pp. 211–224.

Felipe, Á., M. T. Ortuño, G. Righini, and G. Tirado (2014). A heuristic approach for the green vehicle

routing problem with multiple technologies and partial recharges. In: Transportation Research Part E:

Logistics and Transportation Review 71, pp. 111–128.

Feng, W. and M. A. Figliozzi (2013). An economic and technological analysis of the key factors af-

fecting the competitiveness of electric commercial vehicles: A case study from the USA market. In:

Transportation Research Part C: Emerging Technologies 26, pp. 135–145.

Feo, T. A. and M. G. C. Resende (1989). A probabilistic heuristic for a computationally difficult set

covering problem. In: Operations Research Letters 8 (2), pp. 67–71.

Ferrandez, S. M., T. Harbison, T. Weber, R. Sturges, and R. Rich (2016). Optimization of a truck-drone in

tandem delivery network using k-means and genetic algorithm. In: Journal of Industrial Engineering

and Management 9 (2).

Fischetti, M., I. Ljubić, M. Monaci, and M. Sinnl (2017). A new general-purpose algorithm for mixed-

integer bilevel linear programs. In: Operations Research 65 (6), pp. 1615–1637.

Froger, A., J. E. Mendoza, O. Jabali, and G. Laporte (2017). A Matheuristic for the Electric Vehicle

Routing Problem with Capacitated Charging Stations. Tech. rep. 2017-31. CIRRELT, Canada.

Furtadoa, M. G., P. Munaria, and R. Morabitoa (2017). Pickup and delivery problem with time windows:

a new compact two-index formulation. In: Operations Research Letters 45 (4), pp. 334–341.

154

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52014DC0015
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52014DC0015
http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10


Gaskell, T. J. (1967). Bases for vehicle fleet scheduling. In: Journal of the Operational Research Society

18 (3), pp. 281–295.

Gendreau, M., A. Hertz, and G. Laporte (1994). A tabu search heuristic for the vehicle routing problem.

In: Management Science 40 (10), pp. 1276–1290.

Gendreau, M. and J.-Y. Potvin (2010). Tabu search. In: Handbook of Metaheuristics. Ed. by M. Gen-

dreau and J.-Y. Potvin. Vol. 146. International Series in Operations Research & Management Science.

Springer, pp. 41–59.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. In: Computers

& Operations Research 13 (5), pp. 533–549.

Goeke, D. and M. Schneider (2015). Routing a mixed fleet of electric and conventional vehicles. In:

European Journal of Operational Research 245 (1), pp. 81–99.

Golden, B., E. Wasil, J. Kelly, and I.-M. Chao (1998). Fleet management and logisitics. In: The impact of

metaheuristics on solving the vehicle routing problem: Algorithms, problem sets, and computational

results. Ed. by T. G. Grainic and G. Laporte. Springer, pp. 33–56.

Grandinetti, L., F. Guerriero, F. Pezzella, and O. Pisacane (2016). A pick-up and delivery problem with

time windows by electric vehicles. In: International Journal of Productivity and Quality Management

18 (2-3), pp. 403–423.

Groër, C., B. Golden, and E. Wasil (2009). The consistent vehicle routing problem. In: Manufacturing &

Service Operations Management 11 (4), pp. 630–643.

– (2011). A parallel algorithm for the vehicle routing problem. In: INFORMS Journal on Computing

23 (2), pp. 315–330.

Gschwind, T., S. Stefan Irnich, A.-K. Rothenbächer, and C. Tilk (2018). Bidirectional labeling in column-

generation algorithms for pickup-and-delivery problems. In: European Journal of Operational Re-

search 266 (2), pp. 521–530.

Guzzella, L. and A. Amstutz (2005). The QSS toolbox manual. Accessed May 10, 2013. URL: http :

//www.idsc.ethz.ch/Downloads/DownloadFiles/qss.

Han, S., S. Han, and H. Aki (2014). A practical battery wear model for electric vehicle charging appli-

cations. In: Applied Energy 113, pp. 1100–1108.

Hasle, G. and O. Kloster (2007). Industrial vehicle routing. In: Geometric Modelling, Numerical Simu-

lation, and Optimization: Applied Mathematics at SINTEF. Ed. by G. Hasle, K.-A. Lie, and E. Quak.

Berlin, Heidelberg: Springer, pp. 397–435.

Hawkins, T. R., O. M. Gausen, and A. H. Strømman (2012). Environmental impacts of hybrid and electric

vehicles: A review. In: The International Journal of Life Cycle Assessment 17 (8), pp. 997–1014.

He, F., D. Wu, Y. Yin, and Y. Guan (2013). Optimal deployment of public charging stations for plug-in

hybrid electric vehicles. In: Transportation Research Part B: Methodological 47, pp. 87–101.

Heineken International (2014). Case Studies: Europe’s largest electric truck will drive down emissions.

Sustainability Report 2013. Accessed July 17, 2014. URL: http : / / sustainabilityreport . heineken . com /

Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm.

Hemmelmayr V., C., F. Doerner K., F. Hartl R., and S. Rath (2013). A heuristic solution method for node

routing based solid waste collection problems. In: Journal of Heuristics 19 (2), pp. 129–156.

155

http://www.idsc.ethz.ch/Downloads/DownloadFiles/qss
http://www.idsc.ethz.ch/Downloads/DownloadFiles/qss
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm


Hemmelmayr, V. C., J.-F. Cordeau, and G. Crainic T. (2012). An adaptive large neighborhood search

heuristic for two-echelon vehicle routing problems arising in city logistics. In: Computers & Opera-

tions Research 39 (12), pp. 3215–3228.

Hiermann, G., J. Puchinger, and R. F. Hartl (2014). The electric fleet size and mix vehicle routing problem

with time windows and recharging stations. Tech. rep. Accessed July 17, 2014. URL: http: / /prolog.

univie.ac.at/research/publications/downloads/Hie_2014_638.pdf.

Hiermann, G., J. Puchinger, S. Ropke, and R. F. Hartl (2016). The electric fleet size and mix vehicle

routing problem with time windows and recharging stations. In: European Journal of Operational

Research 252 (3), pp. 995–1018.

Ho, Y. and D. Pepyne (2002). Simple explanation of the no-free-lunch theorem and its implications. In:

Journal of Optimization Theory and Applications 115 (3), pp. 549–570.

Hoke, A., A. Brissette, D. Maksimovic, A. Pratt, and K. Smith (2011). Electric vehicle charge optimiza-

tion including effects of lithium-ion battery degradation. In: Vehicle Power and Propulsion Conference

(VPPC). Chicago, USA: IEEE, pp. 1–8.

Ibaraki, T., S. Imahori, K. Nonobe, K. Sobue, T. Uno, and M. Yagiura (2008). An iterated local search

algorithm for the vehicle routing problem with convex time penalty functions. In: Discrete Applied

Mathematics 156 (11), pp. 2050–2069.

International Energy Agency (2012). EV city casebook: A look at the global electric vehicle movement.

Accessed July 17, 2014. URL: http://www.iea.org/publications/freepublications/publication/EVCityCaseboo

k.pdf.

– (2013). EV outlook: Understanding the electric vehicle landscape to 2020. Accessed July 17, 2014.

URL: http://www.iea.org/publications/freepublications/publication/GlobalEVOutlook_2013.pdf.

Irnich, S. and G. Desaulniers (2005). Shortest path problems with resource constraints. In: Column Gen-

eration. Ed. by G. Desaulniers, J. Desrosiers, and M. Solomon. New York, NY: Springer. Chap. 2,

pp. 33–65.

Irnich, S., G. Desaulniers, J. Desrosiers, and A. Hadjar (2010). Path-reduced costs for eliminating arcs

in routing and scheduling. In: INFORMS Journal on Computing 22 (2), pp. 297–313.

Jabali, O., T. van Woensel, and A. de Kok (2012). Analysis of travel times and CO2 emissions in time-

dependent vehicle routing. In: Production and Operations Management 21 (6), pp. 1060–1074.

Jafari, E. and S. D. Boyles (2017). Multicriteria stochastic shortest path problem for electric vehicles. In:

Networks and Spatial Economics 17 (3), pp. 1043–1070.

Jepsen, M., B. Petersen, S. Spoorendonk, and D. Pisinger (2008). Subset-row inequalities applied to the

vehicle-routing problem with time windows. In: Operations Research 56 (2), pp. 497–511.

Jochem, P., C. Doll, and W. Fichtner (2016). External costs of electric vehicles. In: Transportation Re-

search Part D: Transport and Environment 42, pp. 60–76.

Juan, A., C. Méndez, J. Faulin, J. de Armas, and S. Grasman (2016). Electric vehicles in logistics and

transportation: A survey on emerging environmental, strategic, and operational challenges. In: Ener-

gies 9 (2), pp. 86–107.

Keskin, M. and B. Çatay (2016). Partial recharge strategies for the electric vehicle routing problem with

time windows. In: Transportation Research Part C: Emerging Technologies 65, pp. 111–127.

Kindervater, G. and M. Savelsbergh (1997). Vehicle routing: Handling edge exchanges. In: Local Search

in Combinatorial Optimization. Ed. by E. Aarts and J. Lenstra. John Wiley & Sons, pp. 337–360.

156

http://prolog.univie.ac.at/research/publications/downloads/Hie_2014_638.pdf
http://prolog.univie.ac.at/research/publications/downloads/Hie_2014_638.pdf
http://www.iea.org/publications/freepublications/publication/EVCityCasebook.pdf
http://www.iea.org/publications/freepublications/publication/EVCityCasebook.pdf
http://www.iea.org/publications/freepublications/publication/GlobalEVOutlook_2013.pdf


Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing. In: Science

220 (4598), pp. 671–680.

Kleindorfer, P. R., A. Neboian, A. Roset, and S. Spinler (2012). Fleet renewal with electric vehicles at

La Poste. In: Interfaces 42 (5), pp. 465–477.

Kopfer, H. W., J. Schönberger, and H. Kopfer (2014). Reducing greenhouse gas emissions of a heteroge-

neous vehicle fleet. In: Flexible Services and Manufacturing Journal 26 (1-2), pp. 221–248.

Kovacs, A. A., B. L. Golden, R. F. Hartl, and S. N. Parragh (2015). The generalized consistent vehicle

routing problem. In: Transportation Science 49 (4), pp. 796–816.

Kovacs, A. A., R. F. Hartl, S. N. Parragh, and B. L. Golden (2014). Vehicle routing problems in which

consistency considerations are important: A survey. In: Networks 64 (3), pp. 192–213.

Kovacs, A. A., S. N. Parragh, and R. F. Hartl (2014). A template-based adaptive large neighborhood

search for the consistent vehicle routing problem. In: Networks 63 (1), pp. 60–81.

– (2015). The multi-objective generalized consistent vehicle routing problem. In: European Journal of

Operational Research 247 (2), pp. 441–458.

Krajewska, M. A. and H. Kopfer (2009). Transportation planning in freight forwarding companies: Tabu

search algorithm for the integrated operational transportation planning problem. In: European Journal

of Operational Research 197 (2), pp. 741–751.

Lanz, M. and R. Tuokko (2017). Concepts, methods and tools for individualized production. In: Produc-

tion Engineering 11 (2), pp. 205–212.

Laporte, G., Y. Nobert, and M. Desrochers (1985). Optimal routing under capacity and distance restric-

tions. In: Operations Research 33 (5), pp. 1050–1073.

Lebeau, P., C. Macharis, and J. van Mierlo (2016). Exploring the choice of battery electric vehicles in

city logistics: A conjoint-based choice analysis. In: Transportation Research Part E: Logistics and

Transportation Review 91, pp. 245–258.

Lebeau, P., C. Macharis, J. van Mierlo, and K. Lebeau (2015). Electrifying light commercial vehicles for

city logistics? A total cost of ownership analysis. In: European Journal of Transport and Infrastructure

Research 15 (4), pp. 551–569.

Li, F., B. Golden, and E. Wasil (2005). Very large-scale vehicle routing: New test problems, algorithms,

and results. In: European Journal of Operational Research 32 (5), pp. 1165–1179.

Li, H. and A. Lim (2001). A metaheuristic for the pickup and delivery problem with time windows. In:

Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’01). Ed.

by D. Moldovan. IEEE Press, pp. 160–167.

Lian, K., A. B. Milburn, and R. L. Rardin (2016). An improved multi-directional local search algorithm

for the multi-objective consistent vehicle routing problem. In: IIE Transactions 48 (10), pp. 975–992.

Lin, S. (1965). Computer solutions of the traveling salesman problem. In: Bell System Technical Journal

44 (10), pp. 2245–2269.

Liu, R., Z. Jiang, X. Liu, and F. Chen (2010). Task selection and routing problems in collaborative

truckload transportation. In: Transportation Research Part E: Logistics and Transportation Review

46 (6), pp. 1071–1085.

Lodi, A. and G. Zarpellon (2017). On learning and branching: A survey. In: TOP 25 (2), pp. 207–236.

Lübbecke, M. and J. Desrosiers (2005). Selected topics in column generation. In: Operations Research

53 (6), pp. 1007–1023.

157



Lysgaard, J. (2003). CVRPSEP: A package of separation routines for the Capacitated Vehicle Routing

Problem. Working Paper 03-04. Aarhus, Denmark: Department of Management Science and Logistics,

Aarhus School of Business.

Mak, H.-Y., Y. Rong, and Z.-J. M. Shen (2013). Infrastructure planning for electric vehicles with battery

swapping. In: Management Science 59 (7), pp. 1557–1575.

Marra, F., G. Y. Yang, C. Traholt, E. Larsen, C. N. Rasmussen, and Y. Shi (2012). Demand profile study

of battery electric vehicle under different charging options. In: Power and Energy Society General

Meeting, 2012. San Diego, USA: IEEE, pp. 1–7.

Masson, R., F. Lehuédé, and O. Péton (2013). An adaptive large neighborhood search for the pickup and

delivery problem with transfers. In: Transportation Science 47 (3), pp. 344–355.

Montoya, A., C. Guéret, J. E. Mendoza, and J. G. Villegas (2014). A modified multi-space sampling

heuristic for the green vehicle routing problem. Tech. rep. LARIS-EA 7315. Laboratoire Angevin de

Recherche en Ingénierie des Sytèmes, Université d’Angers, France.

– (2017). The electric vehicle routing problem with nonlinear charging function. In: Transportation

Research Part B: Methodological 103, pp. 87–110.

Murray, C. C. and A. G. Chu (2015). The flying sidekick traveling salesman problem: Optimization of

drone-assisted parcel delivery. In: Transportation Research Part C: Emerging Technologies 54, pp. 86–

109.

Nagata, Y., O. Bräysy, and W. Dullaert (2010). A penalty-based edge assembly memetic algorithm for the

vehicle routing problem with time windows. In: Computers & Operations Research 37 (4), pp. 724–

737.

Nanry, W. P. and J. W. Barnes (2000). Solving the pickup and delivery problem with time windows using

reactive tabu search. In: Transportation Research Part B: Methodological 34 (2), pp. 107–121.

National Renewable Energy Laboratory (2014). Project startup: evaluating the performance of Frito

Lay’s electric delivery trucks. Accessed July 23, 2014. URL: http://www.nrel.gov/docs/fy14osti/61455.pdf.

Nie, Y. and M. Ghamami (2013). A corridor-centric approach to planning electric vehicle charging in-

frastructure. In: Transportation Research Part B: Methodological 57, pp. 172–190.

Nie, Y. and Q. Li (2013). An eco-routing model considering microscopic vehicle operating conditions.

In: Transportation Research Part B: Methodological 55, pp. 154–170.

Nitta, N., F. Wu, J. T. Lee, and G. Yushin (2015). Li-ion battery materials: Present and future. In: Mate-

rials Today 18 (5), pp. 252–264.

Nordelöf, A., M. Messagie, A.-M. Tillman, M. Ljunggren Söderman, and J. van Mierlo (2014). Environ-

mental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life

cycle assessment? In: The International Journal of Life Cycle Assessment 19 (11), pp. 1866–1890.

Pankratz, G. (2005). A grouping genetic algorithm for the pickup and delivery problem with time win-

dows. In: OR Spectrum 27 (1), pp. 21–41.

Paterson, C., G. Kiesmüller, R. Teunter, and K. Glazebrook (2011). Inventory models with lateral trans-

shipments: A review. In: European Journal of Operational Research 210 (2), pp. 125–136.

Pecin, D., C. Contardo, G. Desaulniers, and E. Uchoa (2017). New enhancements for the exact solution of

the vehicle routing problem with time windows. In: INFORMS Journal on Computing 29 (3), pp. 489–

502.

158

http://www.nrel.gov/docs/fy14osti/61455.pdf


Pecin, D., A. Pessoa, M. Poggi, and E. Uchoa (2017). Improved branch-cut-and-price for capacitated

vehicle routing. In: Mathematical Programming Computation 9 (1), pp. 61–100.

Pelletier, S., O. Jabali, and G. Laporte (2016). 50th anniversary invited article–Goods distribution with

electric vehicles: Review and research perspectives. In: Transportation Science 50 (1), pp. 3–22.

Potvin, J.-Y. and M.-A. Naud (2011). Tabu search with ejection chains for the vehicle routing problem

with private fleet and common carrier. In: Journal of the Operational Research Society 62 (2), pp. 326–

336.

Potvin, J.-Y. and J.-M. Rousseau (1995). An exchange heuristic for routeing problems with time win-

dows. In: Journal of the Operational Research Society 46 (12), pp. 1433–1446.

Preis, H., S. Frank, and K. Nachtigall (2014). Energy-optimized routing of electric vehicles in urban

delivery systems. In: Operations Research Proceedings 2012 – Selected Papers of the International

Annual Conference of the German Operations Research Society (GOR). Ed. by S. Helber, M. Breitner,

D. Rösch, C. Schön, J.-M. Graf von der Schulenburg, P. Sibbertsen, M. Steinbach, S. Weber, et al.

Cham: Springer International Publishing, pp. 583–588.

Quak, H., N. Nesterova, and T. van Rooijen (2016). Possibilities and barriers for using electric-powered

vehicles in city logistics practice. In: Tenth International Conference on City Logistics 17-19 June

2015, Tenerife, Spain. Ed. by E. Taniguchi and G. Russell. Vol. 12. Transportation Research Procedia.

Elsevier, pp. 157–169.

Reichel, J. (2016). Lastenrad-Projekt: UPS gewinnt Nachhaltigkeitspreis. In: Logistra - News. Accessed

7/24/2017. URL: http://www.logistra.de/news- nachrichten/nfz- fuhrpark- lagerlogistik- intralogistik/7687/

maerkte-amp-trends/lastenrad-projekt-ups-gewinnt-nachhaltigkeitsp.

Righini, G. and M. Salani (2006). Symmetry helps: Bounded bi-directional dynamic programming for the

elementary shortest path problem with resource constraints. In: Discrete Optimization 3 (3), pp. 255–

273.

Roberti, R. and A. Mingozzi (2014). Dynamic ng-path relaxation for the delivery man problem. In:

Transportation Science 48 (3), pp. 413–424.

Rochat, Y. and É. D. Taillard (1995). Probabilistic diversification and intensification in local search for

vehicle routing. In: Journal of Heuristics 1 (1), pp. 147–167.

Ropke, S. and J.-F. Cordeau (2009). Branch and cut and price for the pickup and delivery problem with

time windows. In: Transportation Science 43 (3), pp. 267–286.

Ropke, S. and D. Pisinger (2006a). A unified heuristic for a large class of vehicle routing problems with

backhauls. In: European Journal of Operational Research 171 (3), pp. 750–775.

– (2006b). An adaptive large neighborhood search heuristic for the pickup and delivery problem with

time windows. In: Transportation Science 40 (4), pp. 455–472.

Sadykov, R., E. Uchoa, and A. Pessoa (2017). Enhanced Branch-Cut-and-Price Algorithm for Heteroge-

neous Fleet Vehicle Routing Problems. Tech. rep. L-2017-7. Niterói, Brazil: Cadernos do LOGIS-UFF.

Sarstedt, M. and E. Mooi (2014). A concise guide to market research: The process, data, and methods us-

ing IBM SPSS statistics. In: Berlin Heidelberg, Germany: Springer. Chap. Cluster Analysis, pp. 273–

324.

Savelsbergh, M. (1992). The vehicle routing problem with time windows: Minimizing route duration. In:

ORSA Journal on Computing 4 (2), pp. 146–154.

159

http://www.logistra.de/news-nachrichten/nfz-fuhrpark-lagerlogistik-intralogistik/7687/maerkte-amp-trends/lastenrad-projekt-ups-gewinnt-nachhaltigkeitsp
http://www.logistra.de/news-nachrichten/nfz-fuhrpark-lagerlogistik-intralogistik/7687/maerkte-amp-trends/lastenrad-projekt-ups-gewinnt-nachhaltigkeitsp


Savuran, H. and M. Karakaya (2016). Efficient route planning for an unmanned air vehicle deployed on

a moving carrier. In: Soft Computing 20 (7), pp. 2905–2920.

Sbihi, A. and R. W. Eglese (2010). Combinatorial optimization and green logistics. In: Annals of Oper-

ations Research 175 (1), pp. 159–175.

Schneider, M., B. Sand, and A. Stenger (2013). A note on the time travel approach for handling time

windows in vehicle routing problems. In: Computers & Operations Research 40 (10), pp. 2564–2568.

Schneider, M., F. Schwahn, and D. Vigo (2017). Designing granular solution methods for routing prob-

lems with time windows. In: European Journal of Operational Research 263 (2), pp. 493–509.

Schneider, M., A. Stenger, and D. Goeke (2014). The electric vehicle-routing problem with time windows

and recharging stations. In: Transportation Science 48 (4), pp. 500–520.

Schneider, M., A. Stenger, and J. Hof (2015). An adaptive VNS algorithm for vehicle routing problems

with intermediate stops. In: OR Spectrum 37 (2), pp. 353–387.

Schrimpf, G., J. Schneider, H. Stamm-Wilbrandt, and G. Dueck (2000). Record breaking optimization

results using the ruin and recreate principle. In: Journal of Computational Physics 159 (2), pp. 139–

171.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle routing prob-

lems. Tech. rep. Glasgow, Scotland: Department of Computer Science, University of Strathclyde.

– (1998). Using constraint programming and local search methods to solve vehicle routing problems.

In: Principles and Practice of Constraint Programming – CP98. Ed. by M. Maher and J.-F. Puget.

Vol. 1520. Lecture Notes in Computer Science. London, United Kingdom: Springer, pp. 417–431.

Shuttleworth, R., B. L. Golden, S. Smith, and E. Wasil (2008). Advances in meter reading: Heuristic

solution of the close enough traveling salesman problem over a street network. In: The Vehicle Routing

Problem: Latest Advances and New Challenges. Ed. by B. Golden, S. Raghavan, and E. Wasil. Boston,

MA, USA: Springer, pp. 487–501.

Solomon, M. (1987). Algorithms for the vehicle routing and scheduling problems with time window

constraints. In: Operations Research 35 (2), pp. 254–265.

Spiegel, J., M. McKenna, G. Lakshman, and P. Nordstrom (2013). Method and system for anticipatory

package shipping. US Patent 8,615,473. December 24, 2013.

Stenger, A., M. Schneider, and D. Goeke (2013). The prize-collecting vehicle routing problem with

single and multiple depots and non-linear cost. In: EURO Journal on Transportation and Logistics

2 (1-2), pp. 57–87.

Stenger, A., D. Vigo, S. Enz, and M. Schwind (2013). An adaptive variable neighborhood search al-

gorithm for a vehicle routing problem arising in small package shipping. In: Transportation Science

47 (1), pp. 64–80.

Stevens, G. C. and M. Johnson (2016). Integrating the supply chain ... 25 years on. In: International

Journal of Physical Distribution & Logistics Management 46 (1), pp. 19–42.

Subramanian, A., E. Uchoa, and L. S. Ochi (2013). A hybrid algorithm for a class of vehicle routing

problems. In: Computers & Operations Research 40 (10), pp. 2519–2531.

Subramanyam, A. and C. E. Gounaris (2016). A branch-and-cut framework for the consistent traveling

salesman problem. In: European Journal of Operational Research 248 (2), pp. 384–395.

– (2017). A decomposition algorithm for the consistent traveling salesman problem with vehicle idling.

In: Transportation Science. DOI: 10.1287/trsc.2017.0741.

160

https://doi.org/10.1287/trsc.2017.0741


Sungur, I., Y. Ren, F. Ordóñez, M. Dessouky, and H. Zhong (2010). A model and algorithm for the

courier delivery problem with uncertainty. In: Transportation Science 44 (2), pp. 193–205.

Suzuki, Y. (2012). A decision support system of vehicle routing and refueling for motor carriers with

time-sensitive demands. In: Decision Support Systems 54 (1), pp. 758–767.

Tang, L. and X. Wang (2006). Iterated local search algorithm based on very large-scale neighborhood for

prize-collecting vehicle routing problem. In: The International Journal of Advanced Manufacturing

Technology 29 (11), pp. 1246–1258.

Tarantilis, C., F. Stavropoulou, and P. Repoussis (2012). A template-based tabu search algorithm for the

consistent vehicle routing problem. In: Expert Systems with Applications 39 (4), pp. 4233–4239.

Tesla Motors, Inc. (2014). Supercharger. Accessed July 7, 2014. URL: http : / / www . teslamotors . com /

supercharger.

Tilk, C., A.-K. Rothenbächer, T. Gschwind, and S. Irnich (2017). Asymmetry matters: Dynamic half-way

points in bidirectional labeling for solving shortest path problems with resource constraints faster. In:

European Journal of Operational Research 261 (2), pp. 530–539.

Toth, P. and D. Vigo (2003). The granular tabu search and its application to the vehicle-routing problem.

In: INFORMS Journal on Computing 15 (4), pp. 333–346.

Toth, P. and D. Vigo, eds. (2014). Vehicle Routing: Problems, Methods, and Applications. 2nd ed. MOS-

SIAM Series on Optimization. Philadelphia, USA: SIAM.

Tsurukawa, N., S. Prakash, and A. Manhart (2011). Social impact of artisanal cobalt mining in Katanga,

Democratic Republic of Congo. Tech. rep. Accessed December 13, 2017. Freiburg, Germany: ÖkoIn-

stitut e.V. URL: https://www.oeko.de/oekodoc/1294/2011-419-en.pdf.

van Keulen, T., B. de Jager, A. Serrarens, and M. Steinbuch (2010). Optimal energy management in hy-

brid electric trucks using route information. In: Oil and Gas Science and Technololgy 65 (1), pp. 103–

113.

van Mierlo, J., M. Messagie, and S. Rangaraju (2017). Comparative environmental assessment of alterna-

tive fueled vehicles using a life cycle assessment. In: World Conference on Transport Research - WCTR

2016 Shanghai. 10-15 July 2016. Vol. 25. Transportation Research Procedia. Elsevier, pp. 3435–3445.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins (2013). A hybrid genetic algorithm with adaptive

diversity management for a large class of vehicle routing problems with time-windows. In: Computers

& Operations Research 40, pp. 475–489.

Vidal, T., N. Maculan, L. S. Ochi, and P. H. V. Penna (2016). Large neighborhoods with implicit customer

selection for vehicle routing problems with profits. In: Transportation Science 50 (2), pp. 720–734.

Wainwright, I. (2015). TfL Freight and fleet presentation to UKNMB. Presentation on sustainable deliv-

ery and servicing - Lessons from London. Accessed July 25, 2017. URL: http://www.ukroadsliaisongroup.

org/download.cfm/docid/31DA53DC-664B-4164-87603AFECDFAE6C7.

Wang, Y.-W. and C.-C. Lin (2013). Locating multiple types of recharging stations for battery-powered

electric vehicle transport. In: Transportation Research Part E: Logistics and Transportation Review

58, pp. 76–87.

Waters, C. D. J. (1987). A solution procedure for the vehicle-scheduling problem based on iterative route

improvement. In: Journal of the Operational Research Society 38 (9), pp. 833–839.

Weinberg, B. and E. G. Talbi (2004). NFL theorem is unusable on structured classes of problems. In:

Proceedings of the 2004 Congress on Evolutionary Computation. Vol. 1. IEEE, pp. 220–226.

161

http://www.teslamotors.com/supercharger
http://www.teslamotors.com/supercharger
https://www.oeko.de/oekodoc/1294/2011-419-en.pdf
http://www.ukroadsliaisongroup.org/download.cfm/docid/31DA53DC-664B-4164-87603AFECDFAE6C7
http://www.ukroadsliaisongroup.org/download.cfm/docid/31DA53DC-664B-4164-87603AFECDFAE6C7


Wolpert, D. H. and W. G. Macready (1997). No free lunch theorems for optimization. In: IEEE Transac-

tions on Evolutionary Computation 1 (1), pp. 67–82.

Wulfsberg, J. P., T. Redlich, and F.-L. Bruhns (2011). Open production: Scientific foundation for co-

creative product realization. In: Production Engineering 5 (2), pp. 127–139.

Xiao, Y., Q. Zhao, I. Kaku, and Y. Xu (2012). Development of a fuel consumption optimization model

for the capacitated vehicle routing problem. In: Computers & Operations Research 39 (7), pp. 1419–

1431.

Yellow, P. (1970). A computational modification to the savings method of vehicle scheduling. In: Oper-

ational Research Quarterly 21, pp. 281–283.

Zhang, J., J. Tang, and R. Fung (2011). A scatter search for multi-depot vehicle routing problem with

weight-related cost. In: Asia-Pacific Journal of Operational Research 28 (3), pp. 323–348.

162



Office: Kackertstraße 7 – 52072 Aachen
T +49 241 80 96188 • B goeke@dpo.rwth-aachen.de

Dominik Goeke
Education

06/2012–05/2018 PhD student, TU Kaiserslautern.
08/2010–01/2011 Semester abroad, Linköping University (Sweden).
10/2006–03/2012 Diploma, TU Kaiserslautern, Industrial engineering.

Work Experience

since 07/2017 Research Associate, Deutsche Post Chair - Optimization of Distribution
Networks, RWTH Aachen.

10/2016 Research Visit, Vrije Universiteit Amsterdam.
06/2012–06/2017 Research Associate, Chair of Business Information Systems and Opera-

tions Research, TU Kaiserslautern.

163



Office: Kackertstraße 7 – 52072 Aachen
T +49 241 80 96188 • B goeke@dpo.rwth-aachen.de

Publications
{ D. Goeke, R. Roberti, and M. Schneider (forthcoming). “Exact and Heuristic Solution of the

Consistent Vehicle-Routing Problem”. In: Transportation Science.

{ D. Goeke, T. Gschwind, and M. Schneider (2017). Upper and lower bounds for the vehicle-
routing problem with private fleet and common carrier. Tech. rep. DPO-2017-08. Manuscript
submitted for publication. Aachen, Germany: Deutsche Post Lehrstuhl - Optimization of Distribution
Networks. url: http://www.dpo.rwth- aachen.de/global/show_document.asp?id=
aaaaaaaaaaydqff.

{ D. Goeke (2017). The Pickup and Delivery Problem with Time Windows and Electric Vehicles.
Tech. rep. DPO-2017-07. Manuscript submitted for publication. Aachen, Germany: Deutsche Post
Lehrstuhl - Optimization of Distribution Networks. url: http://www.dpo.rwth-aachen.de/
global/show_document.asp?id=aaaaaaaaaaxubza.

{ D. Goeke, M. Moeini, and D. Poganiuch (2017). “A Variable Neighborhood Search heuristic for
the maximum ratio clique problem”. In: Computers & Operations Research 87, pp. 283–291.

{ J. Hof, M. Schneider, and D. Goeke (2017). “Solving the battery swap station location-routing
problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems
with intermediate stops”. In: Transportation Research Part B: Methodological 97, pp. 102–112.

{ D. Goeke and M. Schneider (2015). “Routing a mixed fleet of electric and conventional vehicles”.
In: European Journal of Operational Research 245.1, pp. 81–99.

{ O. Wendt and D. Goeke (2014). “Revenue Management für Tourenplanungsprobleme”. In:
Management integrativer Leistungserstellung: Festschrift für Hans Corsten, Betriebswirtschaftliche
Schriften. Ed. by R. Gössinger and G. Zäpfel. Vol. 168. Berlin: Duncker & Humblot, pp. 455–485.

{ M. Schneider, A. Stenger, and D. Goeke (2014). “The Electric Vehicle-Routing Problem with Time
Windows and Recharging Stations”. In: Transportation Science 48.4, pp. 500–520.

{ A. Stenger, M. Schneider, and D. Goeke (2013). “The prize-collecting vehicle routing problem
with single and multiple depots and non-linear cost”. In: EURO Journal on Transportation and
Logistics 2.1, pp. 57–87.

164


	List of Figures
	List of Tables
	List of Abbreviations
	Thesis Overview
	Background
	Fundamentals
	Contribution and Organization
	Bibliography

	Outsourcing and Postponement of Deliveries
	Introduction
	The Vehicle-Routing Problem with Private Fleet and Common Carrier
	Branch-Price-and-Cut Algorithm for the VRPPC
	Path-Based Formulation
	Cutting Planes
	Labeling Algorithm
	Branching

	Large Neighborhood Search for the VRPPC
	Generation of Initial Solution
	Generalized Cost Function and Penalty Calculation
	Solution Improvement
	Set Covering with Fleet Constraints

	Numerical Studies
	Benchmark Instances
	Performance of the LNS
	Results of the BPC

	Summary and Conclusion
	Bibliography

	Respecting Consistency Requirements in Delivery
	Introduction
	Problem Definition
	A New Compact Formulation for the Consistent Vehicle-Routing Problem
	An Exact Method for the ConVRP
	Lower Bounds based on Formulation SP
	Overview of CCG
	Computing Kmin in Step 1
	Generating the set OmegaHat in Step 2
	Computing Lower Bounds z(LP1) and z(LP2) in Step 3
	Computing g(C) in Step 4

	Large Neighborhood Search for the ConVRP
	Modified Savings Algorithm
	Generalized Objective Function and Penalty Calculation
	Large Neighborhood Search Component
	Set Partitioning

	Numerical Studies
	Benchmark Instances
	Comparison between Compact Formulations and CCG on Dataset A
	Computational Results of CCG on Dataset D
	Computational Results of LNS-SP

	Summary and Conclusion
	Bibliography

	Mixed Fleets: The Transition to Electric Commercial Vehicles
	Introduction
	Literature
	Energy Consumption Models
	Energy Consumption of Electric Vehicles
	Energy Consumption of Combustion Engines

	The Electric Vehicle Routing Problem with Time Windows and Mixed Fleet
	Adaptive Large Neighborhood Search for Solving E-VRPTWMF
	Preprocessing
	Generalized Cost Function and Penalty Calculation
	Generation of Initial Solution
	Solution Improvement

	Numerical Studies
	Experimental Environment and Parameter Setting
	Generation of E-VRPTWMF Instances
	Experiments on E-VRPTWMF Instances
	Performance of our ALNS on Instances of Related Problems

	Summary and Conclusion
	Bibliography

	Electric Vehicles for Pickups and Deliveries in Urban Areas
	Introduction
	The Pickup and Delivery Problem with Time Windows and Electric Vehicles
	Granular Tabu Search to Solve the PDPTW-EV
	Preprocessing and Arc Sparsification
	Generalized Objective Function
	Recharging Policy
	Generation of the Initial Solution
	Reduced Neighborhood
	Tabu Criteria
	Set Covering

	Numerical Studies
	Experiments on PDPTW-EV
	Experiments on PDPTW

	Summary and Conclusion
	Bibliography

	Conclusion
	Summary and Conclusion
	Outlook
	Bibliography

	Appendix Updated Results for the TS Algorithm of Cote:2009
	Appendix Detailed results on Datasets A and D for the ConVRP
	Appendix Detailed results on E-VRPTWMF

